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Genetic Screening Approaches to Cancer Driver Characterization 
and Synthetic Lethal Target Discovery 

 
 

Abstract 
 

Advances in genetic screening technology have expanded the toolkit for 

systematic perturbation of gene function.  While the CRISPR-Cas9 system robustly 

probes genetic loss-of-function in mammalian cells, a barcoded ORFeome library offers 

the opportunity to systematically study genetic gain-of-function.  We employed these 

two screening tools for three purposes.   

First, we performed shRNA and CRISPR-based screens for synthetic lethality 

with BRCA2 deficiency, in two pairs of BRCA2 isogenic cell lines.  BRCA2 mutation 

commonly drives hereditary breast and ovarian cancer, but also creates vulnerability to 

PARP inhibitor treatment.  Among other genes, we found the AP endonuclease APEX2 

and the flap endonuclease FEN1 to be synthetic lethal with BRCA2 deficiency; the base 

excision repair (BER) pathway was synthetic lethal overall.  We demonstrated that 

FEN1 plays a role in microhomology-mediated end joining (MMEJ) and that a FEN1 

inhibitor selectively targets BRCA-deficient cells, offering therapeutic potential in the 

setting of PARP inhibitor resistance.

Second, we screened a barcoded ORFeome library for genes that either 

upregulate PD-L1 or interfere with IFNγ signaling.  Tumor-expressed PD-L1 engages 

PD-1 on T cells, dampening T-cell based immune responses to tumors, while defects in 
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IFNγ signaling underlie resistance to immunotherapy.  We found 12 GPCRs that 

significantly increase cell surface PD-L1 display, including three LPARs (LPAR1/2/5), 

and a family of RNA-binding proteins (CELF3/4/5) that upregulates PD-L1.  

Conversely, we showed that CLK2 overexpression antagonizes IFNγ signaling; CLK2 is 

known to phosphorylate PTPN1 and is amplified in tumor types that respond poorly to 

immunotherapy.  Thus, segregating patients based on CLK2 amplification status or 

augmenting immunotherapy with CLK2 inhibitors may improve clinical responses. 

 Finally, we utilized CRISPR and ORF-based libraries targeting known and 

predicted tumor suppressor genes (TSGs) or oncogenes (OGs) to systematically screen 

cancer drivers for a variety of phenotypes.  We found at least 20 genes not commonly 

annotated as drivers that enhanced proliferation, including PAWR, AMBRA1, and 

USP28.  We screened OGs bearing tumor-associated point mutations and functionally 

validated the MYCN P44L mutation.  We mapped drivers across multiple hallmark 

cancer phenotypes and found that IRF6 knockout promotes anoikis bypass.  Thus, 

functional studies can augment computational approaches in identifying cancer driver 

genes. 
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 1 

Chapter 1: Introduction  

I. Drivers of Tumorigenesis 

Genomic Alterations Drive Cancer 

 Cancer is a complex, multi-stage disease process through which normal cells 

progressively acquire the capacity to grow abnormally.  Histologically, through 

sequential stages, tumorigenic tissues increasingly lose normal architecture and function, 

while their constituent cells exhibit large nuclei with atypical mitotic figures and 

abnormal cellular structure.  Interestingly, the predecessor stage of this process is often 

a stress-responsive increase in normal cell growth (hyperplasia) or transmutation of cell 

type (metaplasia), which can lead to the generation of abnormal cells (dysplasia), 

growth of in situ and benign tumors, progression to invasive malignancy, and eventually 

metastatic spread throughout the body. 

These progressive histological stages reflect ongoing accumulation of genomic 

alterations, some of which actively drive abnormal proliferative behavior.  Theodor 

Boveri first suggested this notion in 1914, when he postulated that an “abnormal 

combination of chromosomes” (aneuploidy) can give rise to the aberrant proliferative 

behavior that underlies tumor development (3).  This concept gained considerable 

credibility when a particular chromosomal abnormality, the Philadelphia chromosome, 

was observed in a large proportion of chronic myelogenous leukemia (CML) cases (4).  

The causative link between such chromosomal aberrancies and tumor development 
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began to emerge from experimental demonstration that physical and chemical 

carcinogens such as coal tar (5), X-rays (6), and aflatoxin (7) actively mutagenize 

genetic content (8).   

Definitive proof of this causative link arose from a revolutionary experiment with 

another class of carcinogens: tumor-causing viruses. Rous sarcoma virus (RSV), long 

known to be capable of causing chicken tumors in vivo (9) and transforming chicken 

embryonic fibroblasts in vitro (10), contained what could be considered the first 

identified cancer driver gene.  Utilizing the availability of reverse transcriptase, Peter 

Vogt generated a DNA probe that selectively bound to transformation-competent RSV 

but not transformation-incompetent RSV; this probe was in fact hybridizing to viral Src 

(v-Src).  Surprisingly, this probe also hybridized to normal chicken DNA, highlighting 

that individual endogenous genetic elements, such as cellular Src (c-Src) in this case, are 

capable of transforming cells to a cancerous state (11). 

This prescient experiment led to a concept that has remained central to cancer 

biology: some driver genes such as c-Src, when altered, are capable of actively 

contributing a selective growth advantage to tumorigenic cells.  However, many genetic 

alterations that occur in the process of cancer progression are simply passengers in the 

tumorigenic process: their alteration does not contribute to tumor development, but 

rather occurs as a by-product of it.  Distinguishing alterations that actively drive 

tumorigenesis from hitchhiking inactive passenger mutations remains a central challenge 

in the cancer biology field.  
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In adult solid tumors, generally 33-66 genes possess mutations in their protein-

coding sequence that would be expected to alter their function (12).  If one examines all 

mutations in the ~22K tumors currently accessible through the Cosmic database, the 

A B 

C 

Figure 1-1. Analysis of Mutations Available in Cosmic Database. All mutations 
available from ~22K tumors in the Cosmic Database were downloaded and analyzed for the 
indicated properties. (A) Median-centered quartile box-and-whisker plot illustrating the number 
of mutations predicted to be pathogenic by Fathmm (2) per tumor for each of the indicated age 
groups. (B) Median-centered quartile box-and-whisker plot illustrating the number of mutations 
predicted to be pathogenic by Fathmm (2) for each of the indicated anatomic sites of the 
primary tumor; outliers above 1000 predicted pathogenic mutations per tumor are not shown. 
(C) The frequency of each type of mutation is plotted as a percent of all mutations in tumors. 
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cumulative nature of genetic alterations in tumors is apparent, based on the clear 

correlation of tumor mutational burden with the age of the patient when tumor 

sampling was performed (Figure 1-1A).  Half or more of these alterations are incidental 

passenger mutations that occur in the preneoplastic phase (13). 

To complicate matters, tumor mutational burden also varies widely among tumor 

types (Figure 1-1B).  Carcinogenic insults such as cigarette smoke in lung cancer and 

UV light in skin cancer create hypermutated tumors, as does loss of DNA mismatch-

repair gene functionality that creates microsatellite instability (MSI) in colon cancer 

(14).  The majority of observed mutations result in missense point substitutions (Figure 

1-1C), a fraction of which impact protein function, and further subgroup of which 

actively drive tumorigenesis.   

 

Taking a Census of Cancer Drivers 

Cancer driver genes generally fall into one of two broad categories: oncogenes 

(OGs) and tumor suppressor genes (TSGs).  Whereas OGs contribute to tumorigenesis 

when activated, inactivation of TSG function promotes oncogenesis.  In tumors, this 

activation or inactivation can occur by a variety of genetic or epigenetic means.  While 

OGs are commonly activated by missense mutation, translocation, overexpression, focal 

amplification, or chromosome arm-level amplification, TSGs can be inactivated by 

nonsense, missense, or splicing site point mutations, focal deletion, chromosome arm-

level deletion, epigenetic silencing, or downregulation (15).   
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Of the myriad genetic and epigenetic alterations that accrue during tumor 

formation, what proportion of these changes functionally contribute to tumorigenesis?  

And relatedly, how many cancer driver genes exist?  A classic epidemiologic study 

posited that tumors require alterations in 5-8 driver genes to develop (16), and it has 

been suggested that only three driver gene mutations are required to cause tumor 

formation (17, 18).  An analysis of mutation data from 12 common cancer types 

suggested that most tumors harbor mutations in 2-6 genes that commonly act as drivers 

(19).  However, an independent analysis found a mean number of ~1 OG mutation, ~3 

TSG mutations, ~4 whole chromosome gains or losses, ~8 chromosome arm-level gains 

or losses, and ~23 focal somatic copy number alterations (SCNAs) per tumor (15).  This 

latter study observed that SCNA patterns in tumors correlate with the presence of OGs 

or TSGs in regions of amplification or deletion respectively, implying selection for 

altered gene dosage of drivers in regions of SCNAs (15). 

Though it is equally pertinent to study SCNA and mutation data when 

identifying driver genes, regions of amplification and deletion are often multigenic.  In a 

comprehensive study of 3,131 tumors across various lineages, 76 common focal 

amplification peak regions and 82 common focal deletion peak regions were identified, 

containing a median of 6.5 and 7 genes, respectively (20).  Revision of this statistical 

approach, termed GISTIC2.0, has further refined boundaries of focal SCNAs (21).  This 

data can be integrated with whole-exome and whole-genome tumor sequencing, RNA-

seq, and DNA methylation profiling to improve confidence in driver predictions. 
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Over time, efforts have converged to integrate this data and define a formal list 

of cancer driver genes.  In 2004, the Cancer Gene Census (CGC) catalogued driver genes 

and found 291 drivers to be significantly implicated in a causal role in the tumorigenic 

process (22).  Other resources have collected lists of 140 driver genes (12), or estimates 

of 200 genes (17).  In April 2018, Cell released the Pan-Cancer Atlas, a series of 27 

papers that constitute a meta-analysis of The Cancer Genome Atlas (TCGA) dataset 

(23).  TCGA, a joint effort between the National Cancer Institute (NCI) and the 

National Human Genome Research Institute (NHGRI), collected a vast dataset 

encompassing 33 tumor types and 11,000 tumors from 2006 to 2016, and released 31 

tumor-type specific marker papers over the course of a decade (24, 25).  The Pan-

Cancer Atlas includes a “final consensus list” of 299 driver genes (26). 

The landscape of tumor mutation frequency has been described as hills, valleys, 

and mountains, with frequently mutated, highly penetrant drivers being “mountains” in 

this landscape (12).  Less frequently mutated “hill” genes may provide a significant 

driving force in tumors when altered, but their overall frequency of mutation is lower.  

Despite the formalization of smaller lists of cancer drivers, some estimates of the number 

of “hills and mountains” range from 350 (22) to ~500 genes (15, 22). 

Although frequency of alteration should correlate with the likelihood of any given 

gene being a bona fide cancer driver, there are many layers of complication to this 

assumption.  For example, somatic mutation rates vary significantly across the genome, 

more than 100-fold between some regions, introducing inherent bias (27).  In addition, 
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chromosomal linkage to neighboring genes that promote proliferation may bias a false 

positive driver gene toward amplification, while linkage to toxic genes may prevent 

amplification of a true drive gene.  Genes that are located near or that encompass fragile 

sites may be deleted, despite the fact that they do not confer a selective growth 

advantage (22).  These factors, among others, may complicate any attempt to 

thoroughly catalog the list of cancer drivers from a computational analysis of gene 

alteration frequencies in tumors. 

 

Drivers of Hereditary Breast and Ovarian Cancer 

 The French physician Pierre Paul Broca is traditionally credited with observing 

the first case of hereditary breast cancer: his wife acquired breast cancer at an early age, 

and he documented four generations of her family with cases of breast cancer (28).  The 

heritability of multiple familial cancer syndromes soon led to the conclusion that cancer 

is fundamentally a genetic disease (29).  In 1971, Alfred Knudson formalized the 

observation that onset of unilateral, sporadic cases of retinoblastoma occurs at a later 

age than onset of bilateral, familial cases of retinoblastoma, and that the kinetics of 

onset implies inheritance of a predisposing mutation and development of a second, 

somatic mutation, the so-called “two-hit model” (30).   

A broad collection of tumor susceptibility syndromes was observed and 

characterized over time, including Lynch syndrome, von Hippel Lindau disease, Li-

Fraumeni-syndrome, Cowden’s disease, and neurofibromatosis among many others (31).  
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Sequencing of tumors began to catalog the causative mutations of these familial disease, 

beginning with TP53 mutations underlying Li-Fraumeni syndrome (32).  Inherited 

defects in DNA repair genes were found to cause a prominent group of these syndromes 

including ataxia telangiectasia, Bloom’s syndrome, Fanconi’s anemia, and xeroderma 

pigmentosum (33).  

For hereditary breast and ovarian cancer (HBOC), two major genes have been 

associated with susceptibility: breast cancer susceptibility gene 1 (BRCA1) and breast 

cancer susceptibility gene 2 (BRCA2) (34).  Mutation in either of these genes confers a 

lifetime 60-85% risk of developing breast cancer and 15-50% risk of developing ovarian 

cancer for women (35-37), and 1.2% (BRCA1) or 6.8% (BRCA2) risk of developing 

breast cancer for men (28).  Unlike BRCA1, BRCA2 mutation also predisposes to 

pancreatic and prostate cancer (38).  These two breast cancer susceptibility genes share 

a crucial role in repair of DNA double-strand breaks (DSBs) by the high-fidelity repair 

process homologous recombination (HR). 

Studies have estimated that approximately 25% of HBOC cases can be attributed 

to BRCA1 or BRCA2 mutation (39).  Over 25 additional genes have shown less 

prevalent associations with HBOC, but many of these genes function in DNA repair and 

genome maintenance pathways related to BRCA1 and BRCA2 function.  For example, 

among these genes are direct BRCA1 and BRCA2-interacting proteins BRCA1-

associated RING domain protein 1 (BARD1) and Partner and localizer of BRCA2 

(PALB2), both of which participate in HR (40, 41).  Also associated with HBOC risk 
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are MRE11 and NBN, two components of the MRN complex, which resects DNA at 

DSBs before repair by HR can ensue (42-44).  Finally, three paralogs of the RAD51 

recombinase (RAD51B, RAD51C, and RAD51D) that mediate strand invasion during 

HR have also been associated with risk of HBOC (45, 46). 

Recently, Knijnenburg et al. found that, across 33 tumor types, the majority of 

cancer predisposition genes affect genome integrity, with 64% being core members of the 

DNA damage response (DDR) (47).  When germline and somatic mutations are pooled 

across all tumors, the most frequently mutated cancer predisposition genes are BRCA1 

and BRCA2 (48).  Unsurprisingly, patients who harbor germline BRCA1 or BRCA2 

mutations develop tumors at a younger age than patients who develop mutations in 

these genes somatically.  Across the pan-cancer cohort in this study, the mean age of 

diagnosis in patients with germline mutations was 54.4±13.0 years, compared to 

62.3±13.4 years for cases with only somatic mutations (48).  

 Also released in the Pan-Cancer Atlas compendium of analyses, Huang et al. 

performed the largest systematic investigation of germline predisposition variants 

conducted to date, from 10,389 cases across 33 cancer types (49).  8% of cancers were 

found to carry a probable pathogenic germline variant, and 22.9% of cases from the 

Pediatric Cancer Genome Project contained one such variant.  The majority of these 

germline variants were in TSGs, but rare variants were discovered in five OGs.  

Pathogenic and likely pathogenic germline variants of BRCA1 and BRCA2 were 

frequently discovered in ovarian and breast cancer, as expected, and germline 
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pathogenic variants of BRCA2 were also found to be significantly enriched in pancreatic 

adenocarcinoma.   

Although Knudon’s original paper did not directly propose that the two “hits” of 

familial tumors occur in the same gene, his two-hit model has frequently been 

interpreted in this way.  An alternative model proposes that most sporadic TSGs are 

haploinsufficient, and that loss-of-function alteration in a single allele of most TSGs 

would likely impart a significant phenotype (15).  To speak to this point, Huang et al. 

also assessed the second allele in 154 cases with germline BRCA1 or BRCA2 mutation.  

Deletion of the wild-type allele was observed in ~38% of cases, and in 3 cases with 

germline BRCA mutations, distinct somatic mutations in the second allele were found 

(49).   

 

II. Hallmarks of Cancer 

Hallmark Properties and Stress Phenotypes of Cancer 

Despite the fact that tumors can arise from almost any tissue in the body, diverse 

forms of cancer ultimately grow to share certain phenotypic characteristics, collectively 

termed the “hallmarks of cancer” by Hanahan and Weinberg (50).  They proposed the 

notion that most tumors acquire this shared set of hallmark features, and that the 

commonality of these phenotypic features implies a need for tumors to obtain these 
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capabilities during the course of their evolution.   In a classic review, they described six 

phenotypes that enable tumor growth and metastatic dissemination of cancer (50). 

Perhaps the most foundational of these phenotypes is sustained proliferative 

signaling.  Cancer cells acquire a license to proliferate even in the absence of signals 

which normally instruct cells to grow and divide.  This self-sufficient license to sustain 

chronic proliferation contributes to the bulk mass of cells that ultimately forms the 

tumor; a palpable ~1cm3 tumor consists of 109 cells and has undergone 32 population 

doublings (for cells that are ~10μm in diameter) (51).  One example of a genetic lesion 

that licenses cells to proliferate in the absence of growth factors stimulation is 

amplification or activating mutation of epidermal growth factor receptor (EGFR). 

Second, in addition to sustained proliferative signaling, tumors also acquire the 

ability to evade growth suppressive signals, including powerful growth control 

mechanisms within the cell such as the p53 pathway, which ordinarily limits 

proliferation in the presence of cellular stress.  Third, tumors learn to evade apoptotic 

signals, sometimes including evasion of a special form of apoptosis known as anoikis.  

Anoikis is an apoptotic pathway that activates upon disruption of contacts between 

epithelial cells and their underlying extracellular matrix (ECM), through which they 

receive integrin-mediated growth signals (52). 

Fourth, cancer cells must subvert the issue of telomere shortening which limits 

their replicative potential, either through expression of telomerase or the alternative 

lengthening of telomeres (ALT) pathway (53).  Fifth, tumors acquire a heightened 
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ability to induce neovasculature through increased angiogenesis, supplying them with 

oxygen and nutrients to support their enhanced proliferative growth.  And finally, 

cancer cells invade neighboring tissue and eventually spawn showers of micro-emboli 

that can disseminate in the circulation and colonize foreign tissue, forming metastases.  

The latter capability is responsible for 90% of cancer-associated mortality (54).   

This original set of six phenotypic hallmarks has expanded to include the 

phenomenon of immune evasion, discussed in detail below (55).  In addition, an 

additional set of five “stress phenotypes” have been proposed as hallmark characteristics 

of cancer (56).  In contrast to the six classical hallmark phenotypes, which are 

prerequisite skills acquired by the tumor to promote oncogenic development, the five 

stress phenotypes are intrinsic forms of stress that are endemic to the tumorigenic state.  

They include mitotic, oxidative, proteotoxic, metabolic, and DNA damage stress, and 

result from both the demands and consequences of unbridled proliferation.  Phenotypes 

such as aneuploidy, increased reactive oxygen species (ROS), and hypoxia create these 

stresses, which require tolerance through the enlistment of stress support pathways. 

 

Genomic Instability Fuels Tumor Evolution 

 When outlining the six original hallmark features of cancer, Hanahan and 

Weinberg noted that these phenotypes represent acquired capabilities, but there is also 

one shared characteristic of tumors that instead enables tumorigenesis: increased 

genomic instability (50).  Enhanced mutagenic capacity continuously provides a 
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background of greater genetic and epigenetic heterogeneity from which clones with 

increased fitness can arise.  From this landscape of alterations, mutations that confer a 

selective advantage spawn expansion of clones, resulting in bursts of clonal growth that 

occur in a step-wise process, in the context of a Darwinian-like evolutionary setting (57).  

 Tumors acquire increased genomic instability through alteration of so-called 

“caretaker” genes: tumor suppressor genes that safeguard the genome from alteration 

(58-60).  Caretaker genes encode proteins that detect DNA damage and activate an 

appropriate repair response, that actively participate in repairing DNA, that maintain 

telomeres, and that intercept mutagenic molecules with the potential to damage DNA 

(61-63).  A similar concept, the classic “mutator hypothesis,” postulates that loss of 

DNA repair genes leads to genomic instability, which enhances mutation rates and 

promotes cellular transformation (64, 65).  Though these proposals predated the 

accumulation of abundant tumor sequencing data, current evidence supports their 

predictions, as mutation in a core DNA damage repair gene correlates with a 

significantly higher tumor mutational burden (48).  Evidence suggests that alteration of 

genes involved in the DNA repair pathway occurs early and frequently tumorigenesis, 

with up to 40-50% of many cancer types exhibiting alteration in one or more of these 

genes (66).   

 In addition, mutations in DNA repair proteins have been linked to a variety of 

hereditary cancer predisposition syndromes, including BRCA1 and BRCA2 mutations 

that frequently occur in hereditary breast and ovarian cancer, as discussed above.  In 
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addition, germline mutations in a number of other DNA repair genes have been linked 

to familial cancer syndromes (29); for example, mutation in genes involved in the 

nucleotide excision repair pathway (XPA-G) cause xeroderma pigementosum (67).  

Mutations in genes that aid in repair of DNA double-strand breaks (DSBs) and 

intrastrand cross-links, including Werner syndrome helicase (WRN), Bloom syndrome 

helicase (BLM), RecQ protein-like 4 (RECQL4), and the Fanconi anemia genes, have 

been linked to the development various cancers including leukemias and lymphomas (68-

70). 

 Similarly, germline mutations in genes encoding members of the mismatch repair 

(MMR) pathway (MSH2, MSH6, MLH1) predispose to hereditary nonpolyposis 

colorectal cancer (HNPCC), also known as Lynch Syndrome, and lead to a specific type 

of genomic instability known as microsatellite instability (MSI, also known as MIN) (71, 

72).  Microsatellite instability refers to a DNA sequence feature apparent in the genomes 

of MSI tumors: expansion or contraction of the number of oligonucleotide repeats 

present in microsatellite sequences (71, 72).  This feature of MSI-tumors highlights a 

broader theme: alteration in DNA repair genes can create signature patterns of genomic 

alteration that can be discerned from tumor sequencing data.  For example, tumors with 

increased APOBEC activity display frequent cytidine conversion at TpC dinucleotides 

(73).  Alternatively, the genomes of BRCA1 and BRCA2-mutant tumors exhibit larger 

and more frequent insertions and deletions (indels), with microhomology regions on 

either side of the deletion breakpoint region (74); this feature may reflect the use of 
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microhomology-mediated repair (MMEJ), an alternate DSB repair pathway to 

homologous recombination (HR) discussed below.   

 

The DNA Damage Response (DDR) 

One of the five stress phenotypes of tumors is genotoxic stress, which threatens 

the integrity and informational content of DNA.  The deoxyribonucleic acid (DNA) 

macromolecule is a polymer of nucleotides: organic compounds consisting of five-carbon 

deoxyribose sugars, aromatic nitrogenous bases, and phosphate groups.  The order in 

which these nucleotides self-assemble in a polymeric format encodes the information 

required to coordinate cellular activities and generate life from gametes.  Thus, it is vital 

that this information is preserved with high fidelity as it is replicated during cellular 

mitosis and meiosis.  

Despite the inherent structural stability in its design, DNA is subject to a 

constant onslaught of both endogenous and exogenous damage, from a variety of 

sources.  Endogenous damage can result in non-enzymatic hydrolytic depurination, 

dNTP misincorporation during DNA replication, cytosine deamination, alkylation of 

DNA bases, and oxidation of DNA bases by reactive oxygen species (ROS) (75).  

Alternatively, exogenous sources of damage can produce a broad range of additional 

insults.  For example, ultraviolet (UV) light from the sun can induce pyrimidine dimers 

and 6-4 phosphoproducts, at an estimated rate of 105 DNA lesions per cell per day (76).  
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Cigarette smoke causes bulky aromatic DNA adducts (77), and ionizing radiation (IR) 

from cosmic radiation and X-rays can generate single-strand breaks (SSBs) and double-

strand breaks (DSBs) in DNA.  Lastly, chemotherapeutic agents can induce either kind 

of DNA break (camptothecin and etoposide), alkylate DNA (methyl methanesulfonate 

and temozolomide), or chemically crosslink DNA (mitomycin C) (61).  

Fortunately, a battery of coordinated cellular programs exists to recognize, 

repair, and respond to each of these types of lesions, broadly called the DNA damage 

response (DDR).  The DDR encompasses a number of repair pathways, and the type of 

Figure 1-2. Sources of Damage, DNA lesions, and Repair Pathways. DNA damage 
is overall categorized as either single-strand damage (orange) or double-strand damage 
(green). Within these categories, types of lesions are listed along with possible exogenous and 
endogenous sources of damage that cause them.  Lesions are depicted graphically and the 
pathways utilized to repair the relevant lesions are listed. 
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DNA damage that occurs prompts activation of the appropriate pathway response 

(Figure 1-2).  For example, misincorporation of incorrect dNTPs during replication 

results in base-base mismatches.  The mismatch repair (MMR) system, mutated in MSI-

tumors as discussed, recognizes base-base mismatches (usually in the post-replicative 

setting) and repairs this specific type of DNA lesion (78).   

Small lesions confined to a single base, such as alkylated or oxidized bases, 

activate the base excision repair (BER) pathway.  An appropriate glycosylase (such as 

OGG1, UNG, NEIL1-3 or NTHL1) excises the damaged base, generating an apurinic 

(AP) site that stimulates several steps of downstream processing, terminating in 

resolution by ligation of a single-stranded nick (79, 80).  If the lesion encompasses 

several bases, such as in pyrimidine dimers or intrastrand cross-link lesions, the related 

nucleotide excision repair (NER) pathway removes an oligonucleotide of approximately 

30 base pairs containing the damaged lesion (81).  

All of the repair mechanisms mentioned above can utilize the paired undamaged 

DNA strand as a faithful template for repair, since they involve damage to a single 

strand of the DNA molecule.  Thus, repair of double-stranded DNA lesions is 

intrinsically more complicated; it must involve pairing with the undamaged sister 

chromatid in order to retain information from the damaged lesion with high fidelity.  

Though the downstream steps of this process are more involved for high-fidelity repair 

processes, repair of double-strand lesions operates within the same logical framework as 

repair of single-strand lesions: pathway steps involve sensing of the DNA lesion, 
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activation of master-regulators and signal transducers, and recruitment of effectors. 

Central transducers of the DDR in mammalian cells include three members of the 

phosphatidylinositol-3-kinase-like protein kinase (PIKKs) family: ATM (ataxia-

telangiectasia mutated), ATR (ATM- and Rad3-Related), and DNA-PKcs (DNA-

dependent protein kinase catalytic subunit) (82-84).   

Of the many lesions that can threaten the integrity of the genome, the double-

strand break (DSB) is one of the most detrimental.  Repair of DSBs in mammalian cells 

can proceed through several pathways, including classical non-homologous end-joining 

(c-NHEJ), microhomology-mediated end joining (MMEJ), single-strand annealing (SSA) 

or homologous recombination (HR) (61, 85).  While c-NHEJ is a template-free process 

that involves minimal end processing of DSBs and potentially inaccurate religation, HR 

coordinates pairing of the DSB-bearing strand with its intact sister chromatid, precisely 

restoring the original genomic sequence.  The hereditary breast and ovarian cancer 

susceptibility genes BRCA1 and BRCA2, mentioned above, play a crucial role in HR: 

they facilitate exchange of the ssDNA-coating heterotrimer RPA for RAD51 

recombinase.   

Multiple layers of regulation influence the method of DSB repair selected by the 

cell; for example, pathway choice is tightly coupled to cell cycle, because resection of 

double-strand breaks by the MRN complex (MRE11-RAD50-NBS1) is restricted to 

S/G2 phase (86, 87).  Similarly, 53BP1 negatively regulates HR by antagonizing 

resection (88).  While c-NHEJ acts to rapidly rejoin non-resected DSBs and is favored 
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in G1, HR and MMEJ act on resected DSBs that are generated in S/G2 phase (89).  Of 

these pathway alternatives, MMEJ is the least fully characterized pathway; it involves 

direct annealing of regions of microhomology on either side of the DSB with the aid of 

polymerase theta (POLΘ) (90).  Interestingly, MMEJ and HR are competitive pathways 

that exhibit synthetic lethality when co-mutated; not only do they share the same 

starting substrate, but POLΘ has also been shown to directly suppress HR (91).    

 

Tumor Neoantigens and the Antitumor Immune Response 

Although mutations in DDR genes and concomitant genomic instability generally 

promote tumorigenic development, they do impart one advantageous corollary.  The 

increased mutational burden associated with DDR gene mutation has been shown to 

increase the diversity of neoantigens available to the immune system, which promotes 

an antitumor immune response (92).  In the extreme, MSI-tumors with particularly high 

mutational burdens respond well to immunotherapy (93).  How does an increased 

complement of neoantigens provoke a tumor-targeted response from the immune 

system? 

Activated CD8+ T-cells can identify and destroy aberrant cellular targets, such 

as virally-infected cells, by engaging the target cell’s MHC I-antigen complex with their 

T cell receptors (TCRs).  A complex set of co-stimulatory and co-inhibitory inputs 

determines the output of MHC-TCR engagement, resulting in either T-cell mediated 

killing of the target cell (via perforin-delivered granzyme) or survival of the target.  



 

 20 
 

Accurate interpretation of this balance of costimulatory and coinhibitory signals is 

crucial to the maintenance of self-tolerance and the efficacy of T-cell based immunity. 

The atypical, aberrant cellular targets that CD8+ T cells can become licensed to 

destroy include not only virally-infected cells, but also cancer cells.  The latter concept 

was unclear for many years, because athymic (nude) mice do not exhibit an increased 

incidence of spontaneous or carcinogen-induced tumors (94).  However, athymic mice 

retain many components of innate immune function, and improved mouse models of 

immunodeficiency revealed that the immune system not only controls growth, but also 

shapes the immunogenicity of tumors (95-99).   

Despite the potential for T-cell based immunity to control tumor growth, tumors 

frequently evade immunosurveillance (100); this behavior was proposed as the seventh 

hallmark feature of cancer by Kroemer and Pouyssegur (55).   Among other tactics, 

tumors downregulate antigen presentation machinery and upregulate cell surface-

expressed molecules that deliver coinhibitory signals to T cells.  With some spatial and 

temporal variation, T cells receive these coinhibitory signals through their cell surface-

expressed molecules CTLA-4 (cytotoxic T lymphocyte antigen-4) and PD-1 

(programmed cell death protein 1); appropriate delivery of these signals is critical for 

self-tolerance (94).   

CTLA-4 binding to CD80 and CD86, which are expressed mainly in lymphoid 

tissues, results in critical anti-inflammatory effects during initial T cell priming in 

lymphoid organs.  Similarly, T cells upregulate PD-1 after activation and maintain its 
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expression through repeated exposure to antigen and T cell exhaustion.  PD-1 interacts 

with two main ligands: PD-L1 (Programmed death ligand 1; CD274) and PD-L2 

(Programmed cell death 1 ligand 2; CD273) (101). While PD-L2 expression is primarily 

restricted to myeloid cells such as dendritic cells, macrophages, and mast cells, PD-L1 

expression is broad, ranging from lymphoid and myeloid cells to several types of non-

hematopoietic healthy tissue (102), and it appears to be more ubiquitously expressed in 

tumors than PD-L2 (103, 104).  Upregulation of immune evasion molecules such as PD-

L1 is a mechanistic example of the seventh hallmark behavior of cancer: the ability to 

evade detection and destruction by the immune system. 

 

III. Challenges and Paradigms in Cancer Therapeutics 

Opening a Therapeutic Window 

It is a relatively simple task to identify a small organic molecule capable of killing 

cancer cells.  In fact, 0.1-1% of small molecules present in a common pharmaceutical 

compound library are toxic to cancer cells within the concentration ranges typically 

tested in high-throughput screening (105).  Rather, the key challenge in 

chemotherapeutic development is the task of selectively killing cancer cells while sparing 

the healthy, wild-type counterpart cells from which they are derived. 

Classic cytotoxic cancer treatments, such as IR, DNA alkylating agents, and 

mitotic poisons, differentiate between cancerous and normal tissue by the crude measure 
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of proliferative rate.  This distinction is very poor, and inevitably leads to severe side-

effects in all of the rapidly proliferative normal tissues of the body (hair, skin, bone 

marrow, and gastrointestinal tissue).  Targeting rapidly proliferative cells is a strategy 

that offers a narrow therapeutic window (the concentration range over which 

therapeutic effects would be expected) and represents a low therapeutic index (the dose 

required for toxic effects divided by the dose required for therapeutic effects) (106).  

Early examples of chemotherapy targeted toward specific tumor types utilized 

clinical evidence to guide therapeutic strategies.  For example, sex steroids were found 

to drive proliferation of reproductive tissue; thus, hormone-ablation therapy evolved for 

breast cancer, first by oophorectomy, then through administration of estrogen receptor 

antagonists such as tamoxifen (107).  Similarly, Sidney Farber observed that children 

with acute lymphoblastic leukemia exhibit low serum folic acid levels, leading him to 

postulate that their leukemia cells may be particularly reliant on folic acid (108).  This 

hypothesis led to the design and implementation of antifolate therapy, predating the 

discovery of either the target (dihydrofolate reductase, DHFR) or mechanism of the 

drug (109). 

Discovery and mechanistic understanding of cancer driver genes significantly 

broadened the potential therapeutic window of chemotherapeutic reagents, by offering 

the opportunity to target individual genetic lesions that are distinct to tumor cells.  Less 

than two decades after the discovery of the Philadelphia chromosome (a chromosomal 

translocation event that produces a fusion between the genes BCR and ABL1) (110), 
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the c-Abl kinase inhibitor imatinib (Gleevec) became the first successful example of 

gene-specific targeted therapy (111).  Gleevec produced striking, stable remissions in 

90% of BCR-ABL+ CML patients in initial trials (111); however, a proportion of 

patients became resistant to the drug, most commonly through development of 

secondary mutations in the Abl kinase that rendered them resistant (frequently the 

T315I mutation) (111).  Nonetheless, long-term outcomes of imatinib treatment for 

CML remain very good, with an estimated overall survival rate at 10 years of 83.3% and 

fewer side-effects than traditional chemotherapeutic treatments (112). 

 

Acquired Resistance to Targeted Therapies 

With anticipation of equal degrees of success, this principle was applied to 

develop therapies targeted toward driver genes in other tumor types.  For example, 

Genentech developed a humanized monoclonal antibody to HER2, trastuzumab 

(Herceptin), to target HER2+ breast cancer (113).  Similarly, because the epidermal 

growth factor receptor (EGFR) is overexpressed in a large proportion of non-small-cell 

lung cancer (NSCLC), efforts led to the development of a small molecule ATP-

competitive EGFR tyrosine kinase inhibitor (TKI), gefitinib (114).  Disappointingly, on 

the whole, gefitinib did not provide a substantial benefit to EGFR+ NSCLC patients 

(115, 116).  However, about 10% of patients exhibited a rapid, dramatic clinical 

response; this subsection of patients harbored an activating mutation in EGFR, 

rendering them more sensitive to the inhibitor (117).   
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Despite this key insight, patients with activating EGFR mutations who did 

benefit from targeted therapy almost inevitably underwent relapse within one year of 

treatment, and sometimes within mere months (118, 119).  Most often, this resistance 

occurred due to secondary mutation in EGFR or maintenance of signaling through the 

pathway through other means (commonly through MET or AXL amplification) (120).  

Although EGFR-mutant cells that respond to EGFR TKIs have become reliant on 

EGFR signaling for growth, a phenomenon known as “oncogene addiction,” there is 

sufficient intrinsic heterogeneity within most tumors that drug-resistant clonal evolution 

occurs rapidly in the setting of targeted therapy (121, 122).  Upon reflection, perhaps 

the fact that CML generally exhibits lower intratumoral heterogeneity underlies the 

singular success of Gleevec, which has not been recapitulated in any solid tumor setting; 

perhaps the tumor, rather than the target, explains the special success in this case. 

The inevitable development of resistance to targeted therapies appears to be a 

pervasive theme.  Another example is the BRAF inhibitor vemurafenib, which produced 

stunning initial responses, but fell victim to the same frequency of relapse and resistance 

as EGFR TKIs (123).  For patients who relapse on targeted TKI treatment, second-line 

therapies have been developed to target common mechanisms of resistance.  For 

example, for EGFR, second- and third-line therapy includes TKIs targeting the most 

common gefitinib-resistant mutant form of EGFR, the so-called “gatekeeper” T790M 

mutation (124, 125).  It has been suggested that “rational upfront polytherapy,” 
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concurrent targeting of multiple critical signaling pathways, may be the only way to 

prevent or delay resistance to targeted therapy (126).  

Instead of targeting oncogenic lesions that are tumor-specific, an alternative 

therapeutic strategy is to target tumor-specific stress pathways that are not themselves 

altered or mutated in the tumor.  This strategy refers to targeting non-oncogene 

addiction (127): tumors become specifically dependent on certain cellular activities and 

stress support pathways, which can serve as drug targets (56).  Either overloading the 

stress pathways by increasing tumor-specific stress, or inhibiting stress support 

mechanisms, represent viable non-oncogene addiction therapeutic targeting strategies.  

For example, bortezomib (Velcade®) targets the proteasome in multiple myeloma; this 

antibody-secreting plasma cell tumor intrinsically experiences significant proteotoxic 

stress and requires proteasome function for homeostasis and survival (128).    

Targeting non-oncogene addiction exploits the principle of, to borrow a term from 

yeast and fly genetics, synthetic lethality.  Two genes are “synthetic lethal” if mutation 

of either gene is viable, but mutation of both genes simultaneously is lethal (106).  This 

principle can be extended to target not only non-oncogene addiction pathways, but also 

“undruggable” oncogenic lesions.  For example, the transcription factor Myc is among 

the most highly mutated oncogenes in tumors, but inhibition of its activity with small 

molecules has proved challenging (129).  Thus, genetic screening efforts have attempted 

to identify drug targets that are synthetic lethal with Myc: inactivation of these genes is 
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lethal in the context of mutated Myc, but viable in the setting of wild-type Myc (130).  

Similar efforts have been performed for KRAS (131, 132) and PIK3CA (133). 

In a clinical setting, this therapeutic strategy has been most successfully applied 

to the treatment of BRCA1 and BRCA2-deficient breast and ovarian cancer patients 

with inhibitors of poly(ADP-ribose) polymerase (PARP).  Though it was long believed 

that PARP inhibitors exert their synthetic lethal effects in BRCA-deficient cells through 

inhibition of PARP enzymatic function, recent work has shown that PARP inhibitors 

physically trap PARP onto DNA, forming toxic complexes that stall replication forks 

and require HR for resolution (134-136).  Five PARP inhibitors are in clinical trials for 

BRCA-mutant or ovarian cancer and have shown clinical benefit in these settings (137-

139), but as with targeted therapies, patients commonly acquire resistance to PARP 

inhibitors (66, 140).  Often these resistance mechanisms include restoration of the HR 

pathway, for example through reversion mutations in BRCA that restore its 

functionality, or decreased expression of 53BP1 (141, 142). 

  

The Promise of Immunotherapy  

In contrast to all of the aforementioned therapeutic strategies, immunotherapy 

represents an entirely different mechanism of promoting tumor clearance.  Rather than 

directly exerting toxicity in tumor cells, immunotherapeutic agents instead harness the 

immune system’s natural potential to impart that toxicity in a highly specific manner.  

This highly promising group of therapeutics encompasses a broad variety of technologies 
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including cancer vaccines, engineered T cells, and antibodies that block coinhibitory 

pathways which inhibit T cell-mediated immune responses to tumors. 

In the latter category, monoclonal antibodies that block either CTLA-4 or the 

PD-1-PD-L1 signaling axis have shown remarkable potential as therapeutic agents.  

Examples of success in murine models led first to the clinical development of anti-

CTLA-4 blocking antibodies as cancer therapeutics (143, 144).  Ipilimumab, an anti-

CTLA-4 monoclonal antibody, produced a significant overall survival advantage in 

metastatic melanoma clinical trials when administered with a peptide vaccine, 

generating great excitement about this treatment modality (145).  Later, CTLA-4 

exhibited efficacy as a single agent in non-small cell lung cancer (NSCLC) (146), 

hepatocellular carcinoma (HCC) (147), colorectal cancer (148), and mesothelioma (149).  

The most striking property of anti-CTLA4 blockade in clinical trials has been the 

proportion of patients who achieve curative durable remission on this treatment 

regimen; among patients with non-resectable or metastatic melanoma, 22% responded 

durably, with their complete response extending for the ten years of data available in a 

long-term survival study (150).   

  Similarly, blockade of PD-1-PD-L1 interaction with monoclonal antibodies to 

either PD-1 or PD-L1 has produced remarkable success in a variety of cancer types, 

leading to over 1500 clinical trials and FDA-approval of its treatment for NSCLC (151-

157), melanoma (158-164), MMR-mutated (MSI) colorectal cancer (165-167), RCC 

(168), Hodgkin’s lymphoma (169, 170), head and neck squamous cell carcinoma 
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(HNSCC) (171, 172), Merkel-cell carcinoma (173), HCC (174), urothelial cancer (175-

181), and gastric cancer (182).  Anti-PD-1 and anti-PD-L1 monoclonal antibodies 

produce fewer adverse inflammatory reactions than anti-CTLA-4 antibodies (183, 184), 

and thus have been approved for first-line use in NSCLC (185), melanoma, urothelial 

cancer, and Merkel cell carcinoma (186, 187).  Addition of pembrolizumab to standard 

chemotherapy as first-line therapy augments both overall and progression-free survival 

compared to standard chemotherapy alone in NSCLC (188).  However, the clinical 

activity of these antibodies does not extend to all tumor types, with responses in breast, 

ovarian, non-MSI colorectal, and prostate cancer being limited (189, 190). 

Within tumor types that do respond to anti-PD-1 or anti-PD-L1 therapy, the 

frequency of complete response (CR), partial response (PR), and overall response rate 

(ORR) varies widely, with the latter ranging from 14.3 to 69% (101).  This observed 

heterogeneity in response rates has prompted significant efforts to determine predictive 

biomarkers of response to PD-1-PD-L1 axis blockade.  From these efforts, several 

themes have emerged: determinants of response include “foreignness” of the tumor (i.e. 

the diversity of tumor neo-antigens) (191, 192), the presence of a tumor T cell infiltrate 

(193), the presence of intact antigen presentation machinery in the tumor (194), and the 

expression of PD-L1 on tumor cells (152, 154, 161-163, 180).  In some contexts, PD-L1 

expression on infiltrating T cells themselves also possesses predictive value (195-197). 

Immunohistochemical staining for PD-L1 expression (PD-L1 tumor proportion 

score, TPS) appears to be the strongest of these predictive biomarkers for many tumor 



 

 29 
 

types, though it is an imperfect marker: positive responses can occur in the absence of 

PD-L1 staining, and in other cases PD-L1-positive tumors fail to respond to 

immunotherapy (101, 198).  There is some evidence that secondary immunosuppressive 

effects in the tumor microenvironment, such as the effect imposed by TGFβ, may 

explain PD-L1+ unresponsive tumors (199).  And for unclear reasons, 

immunohistochemistry (IHC) for PD-L1 expression is not strongly associated with 

clinical benefit in HNSCC or RCC (168, 200).  

Efforts to improve understanding of discrepancies between PD-L1 tumor staining 

and clinical response to immune checkpoint blockade will likely improve the efficacy of 

this forefront therapy.  In addition, a more comprehensive understanding of mechanisms 

of acquired and innate resistance to immunotherapy will aid in patient stratification and 

in supplementation with adjunct therapies.  In a study of melanoma patients who 

developed resistance to PD-1-blocking antibodies, the most commonly occurring 

mutations found to promote resistance occurred in components of the IFNγ signaling 

pathway (JAK2, STAT1) and a component of antigen presentation machinery, β2-

microglobulin (201).  Despite these cases of acquired resistance and the diversity in 

responses observed across various tumor types, immunotherapy currently represents the 

promising avenue toward development of potentially curative chemotherapeutic 

treatments.  
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Chapter 2: Genetic Screens Reveal APEX2 and FEN1 as BRCA2 Synthetic 
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I. Introduction 

Damage to human genetic material frequently contributes to oncogenic 

transformation, and it threatens faithful transmission of genetic information across 

generations.  In response to the wide variety of lesions in DNA caused by endogenous 

and exogenous sources of damage, cells have evolved a complex signal transduction 

pathway known as the DNA damage response (DDR).  The DDR senses DNA damage, 

recruits a coordinated set of factors to repair the lesion appropriately, and executes a 

coordinated cellular response which may include immune system activation, cell cycle 

arrest, cellular senescence or cell death (61, 202).   

Among the many lesions that occur in DNA, the double-strand break (DSB) is 

one of the most detrimental.  Failure to properly repair DSBs can lead to a variety of 

adverse outcomes such as replication fork collapse, cell death, oncogenic translocation, 

or loss of telomeric DNA.  Three main pathways exist to repair DSB lesions: 

homologous recombination (HR), classical non-homologous end-joining (NHEJ), and 

microhomology-mediated end-joining (MMEJ).  Whereas HR utilizes information from a 

paired sister chromatid to seamlessly repair a DSB with high fidelity, NHEJ and MMEJ 

can result in sequence alterations at the repaired DSB site.  However, unlike NHEJ, HR 

and MMEJ both act on resected DSBs, and these two pathways both complement and 

directly compete with one another (91, 203). 

Several genes that play a crucial role in DSB repair are frequently mutated in 

cancer.  Germline mutations in BRCA1 or BRCA2, both important players in the HR 



 

 32 
 

pathway, account for the majority of hereditary breast and ovarian cancer (204-206).  

Women carrying mutations in one of these two tumor suppressor genes have up to an 

80% risk of developing breast cancer and up to a 50% risk of developing ovarian cancer 

(206, 207).  Overall, up to 50% of all high grade serous ovarian cancers (HGSOC) have 

detectable germline and somatic inactivation of HR genes, with 30% of these alterations 

being BRCA1 or BRCA2 (140).  And unlike BRCA1, BRCA2 mutation also predisposes 

to pancreatic and prostate cancer (38).  

Although BRCA1 and BRCA2 share a common function in facilitating HR, 

BRCA2 is known to play several additional roles in safeguarding genomic integrity.  By 

loading Rad51 onto DNA breaks and gaps, BRCA2 prevents Mre11-dependent 

degradation of nascent DNA at stalled replication forks (208-211), and with BRCA1 

promotes HR-mediated resolution of fork stalling (211).  Also, BRCA2 protects telomere 

integrity (212) and prevents accumulation of R-loops, which can lead to replication fork 

stalling and interference with transcriptional elongation (213). 

In part due to a synthetic lethal (SL) relationship, BRCA1 and BRCA2-deficient 

cells are exquisitely sensitive to treatment with inhibitors of poly(ADP-ribose) 

polymerase (PARP) (214, 215).  Synthetic lethality refers to a concept borrowed from 

classical genetics; it describes a condition in which mutation of either of two genes is 

viable, but simultaneous mutation of both genes is lethal (106).  In this case, 

inactivation of BRCA1 or BRCA2 renders cells sensitive to PARP inhibition.  PARP 

inhibitors have recently gained FDA approval for their success in a Phase III clinical 
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trial (137, 138) for patients with metastatic breast cancer and a germline BRCA 

mutation, and are FDA-approved for the treatment of recurrent HGSOC (139, 140).   

However, dual depletion of PARP and BRCA2 by siRNA does not recapitulate 

the potent lethality observed upon chemical inhibition of PARP (214). Rather than 

solely exploiting a genetic SL relationship, PARP inhibitors also cause lethality by 

physically trapping PARP onto single-strand break (SSB) intermediates, obstructing 

progression of replication forks (134-136), and in that sense behaving more like classical 

DNA damage agents to which BRCA2-mutant tumors are also sensitive.  Indeed, the 

toxic PARP-DNA complexes formed as a result of PARP trapping have been shown to 

be more cytotoxic than unresolved SSBs (136).   

Targeting the intrinsic genetic vulnerabilities in BRCA1 and BRCA2-deficient 

cells offers the opportunity to meet an urgent clinical need in the treatment of refractory 

or metastatic breast cancer in patients with a germline BRCA mutation (216) and 

recurrent HGSOC more broadly (139, 217).  Despite recent success in clinical trials, 

PARP inhibitor efficacy appears to be limited by inherent and acquired resistance, 

underscoring the urgent need for identification of synergistic and alternative targets 

(66).  Because the sensitivity of BRCA-deficient cells to PARP inhibition is not due 

solely to synthetic lethality, we sought to explore if additional genetic synthetic lethal 

relationships exist with BRCA2 deficiency.  We chose BRCA2 for this study because of 

its myriad important roles in protecting genomic integrity beyond its crucial role in HR.   
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To uncover novel BRCA2 synthetic lethal genes (B2SLs), we used a genetic 

screening approach, studying both shRNA and CRISPR-based genetic libraries in a 

pooled screening format, in two pairs of isogenic cell lines.  We found BRCA2 mutant 

(B2MUT) cells to be more dependent than their wild-type counterparts (B2WT) on 

several pathways including base excision repair (BER), ATR activation, and MMEJ.  

We identified APEX2 and FEN1 as novel B2SL targets, and we showed through the use 

of a novel cell-based reporter that FEN1 participates in MMEJ. 

 

II. Results 

shRNA and CRISPR screens identify B2SL Candidates 

To identify novel B2SL candidates, we began by establishing a pair of cell lines 

that are isogenic except for the presence or absence of a BRCA2 mutation.  We 

obtained a modified DLD-1 colon cancer cell line with a homozygous deletion of BRC 

repeat 6 in exon 11 that also introduces a loxP site and a stop codon between BRC 

repeats 5 and 6, resulting in a biallelic BRCA2 premature truncation mutation (218).  

To this BRCA2 mutant (B2MUT) cell line, we introduced a full-length BRCA2 

mammalian expression construct through transfection and selection for stable integrants.  

These add back BRCA2 wild-type cells are a closer isogenic comparison to B2MUT cells  
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Figure 2-1. Establishment of isogenic cell line systems for B2SL screening. (A) 
Extracts from the indicated cell lines untreated or treated with the indicated siRNAs were 
immunoblotted with antibodies to BRCA2 and GAPDH. (B) Immunofluorescence with 
antibodies to γH2AX and Rad51 protein was performed on cells of the indicated genotypes to 
evaluate foci formation after 10Gy IR. (C) The indicated cell lines were passaged in the 
presence of the indicated dose of olaparib or DMSO; after three days cell survival was quantified 
using CellTiter-Blue. (D) Schematic diagram depicting the experimental procedure for B2SL 
screening in isogenic BRCA2 cell lines. (E) Schematic of wild-type BRCA2 structure, depicted 
with its functional domains and sites of interaction with key binding partners. BRCA2 
truncation mutant proteins possessed by the colonic and ovarian BRCA2 MUT cell lines used in 
this study are shown for comparison. Type and location of all BRCA2 mutations observed in the 
METABRIC breast cancer study are diagrammed. 
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Figure 2-1 (Continued). Establishment of isogenic cell line systems for B2SL screening.  
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than the parental DLD-1 line, due to the genetic drift that occurs in this mismatch 

repair (MMR)-deficient background. 

We isolated individual clones from these BRCA2 wild-type cells (B2WT) and 

characterized several clones to demonstrate restoration of functional BRCA2 expression.  

We confirmed full-length BRCA2 protein expression by Western blotting, utilizing 

BRCA2 siRNA to confirm the identity of the protein (Figure 2-1A).  We observed that 

expression of full-length BRCA2 enhanced the growth rate of B2MUT cells 

(Supplemental Figure S2-1A) and that expression of BRCA2 in our add back clones 

restored resistance to the PARP inhibitor olaparib (Figure 2-1C).  Finally, we confirmed 

that adding back full-length BRCA2 to B2MUT cells restored their ability to form 

Rad51 foci in response to ionizing radiation (IR) (Figure 2-1B). 

Using this pair of isogenic cell lines, we performed a series of genetic screens 

designed to identify novel B2SL genes.  We screened a targeted library of 380 genes with 

a known or suspected role in the DDR; inclusion of genes in this library was based on 

either a role in DNA repair described in the literature or performance of the gene in 

prior screens for sensitivity to DNA damaging agents (unpublished data).  In each 

screen, B2MUT and B2WT lines were separately transduced with either an shRNA-

based or CRISPR-based library targeting these DDR genes, at a low multiplicity of 

infection (MOI) in triplicate (Figure 2-1D).  Cell pellets were collected before and after 

passaging for 12 population doublings (PDs), and the relative change of shRNAs or 
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gRNAs during culture was determined by next-generation sequencing (NGS) of shRNA 

half-hairpins (219) or gRNAs PCR-amplified from PD0 and PD12 cell pellets.   

To explore the generalizability of our results, we also obtained a second 

previously characterized isogenic cell line pair: ovarian PEO1 B2MUT cells, which 

contain a hemizygous truncation mutation in BRC repeat 5 of exon 11, and an in vitro-

derived cisplatin-selected clone C4-2 which contains a reversion mutation that restores 

full-length BRCA2 expression (B2WT) (220).  We note that the colonic DLD-1 B2MUT 

cell line and the ovarian PEO1 B2MUT cell line express similar truncation mutants of 

BRCA2 (218, 220), both prematurely terminated directly in or immediately after BRC 

repeat 5 in exon 11 (Figure 2-1E).  This truncation mutant retains the N-terminal 

transactivation domain of BRCA2 (TAD) and the first four BRC repeats, which are 

known to bind free RAD51 (221), but lacks the DNA binding domains of BRCA2 and 

its C-terminal Rad51 binding domain (Figure 2-1E).  We examined all BRCA2 

mutations reported from 2,433 tumors in the METABRIC breast cancer targeted exome 

sequencing study (222) and found that mutations in the BRC repeat region of exon 11 

are not uncommon, with about 16% of functionally impactful mutations occurring in 

this region (Figure 2-1E).  We screened our CRISPR-based library, but not our shRNA-

based library, in this ovarian isogenic cell line pair (Supplemental Figure S2-1B). 

We analyzed the results of our screens by MAGeCK (223) and edgeR (224), 

relying on edgeR analysis to calculate reported false discovery rates (FDRs) (Figures 2-

2A-F).  B2SL genes drop out in the B2MUT cell line more than the B2WT cell line, 
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Figure 2-2 BRCA2 Synthetic Lethal Screen Results. (A-C) Volcano plots for the 
shRNA colonic, CRISPR colonic, and CRISPR ovarian B2SL screens. Significance (-log10FDR) 
is plotted against the genetic interaction (GI) score (average log2-fold-change for each gene in 
BRCA2 MUT versus BRCA2 WT cells). Genes that met a significance threshold of -
log10FDR>1 are color-coded as green for relative dropout or red for relative enrichment in 
BRCA2 MUT vs BRCA2 WT cells. (D-F) Results from the colonic shRNA, colonic CRISPR, 
and ovarian CRISPR B2SL screens, plotted as the log2-fold-change in BRCA2 MUT cells 
against the log2-fold-change in BRCA2 WT cells. (G) Comparison of GI score (average log2-
fold-change for each gene in BRCA2 MUT versus BRCA2 WT cells) in the ovarian CRISPR 
screen versus the colonic CRISPR screen. (H) MCA assays were performed after infection with 
the indicated gRNAs in the indicated isogenic cell line pairs. GFP-labeled BRCA2 MUT cells 
were mixed with DsRed-labeled BRCA2 WT cells and relative growth was measured as the 
change in GFP+ cells by FACS after 12 days, normalized to negative control gRNA-expressing 
cells.  The BRCA2 MUT line of one isogenic cell line pair (colonic) possesses a BRCA2 
truncation mutant that terminates after BRC repeat 5, while the BRCA2 MUT line of a second 
isogenic cell line pair (pancreatic) possesses a longer mutant protein that terminates in BRC 
repeat 8. 
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Figure 2-2 (Continued). BRCA2 Synthetic Lethal Screen Results. 
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and thus the fold-change in the B2MUT line is lower than the fold-change in the B2WT 

line, yielding a B2MUT/B2WT ratio that is negative on a log2 scale (GI score) (Figures 

2-2A-C); this value can also be negative for genes that promote growth of B2WT cells 

more than B2MUT cells.  Overall, the magnitude of effects we observed was more 

potent with our CRISPR-based than our shRNA-based library, and the CRISPR library 

produced larger fold-changes in the diploid colonic background than the aneuploid 

ovarian background. 

Analysis of our primary shRNA screen revealed POLQ and SF3B2 as B2SL 

candidates.  POLQ encodes polymerase theta, a large A-family DNA polymerase that 

plays an important role in MMEJ and is known to be synthetic lethal with the HR 

pathway (91, 203).  Its helicase domain promotes unwinding and exposure of 

microhomology regions on either side of a DSB, while its polymerase domain extends 

DNA from a region of microhomology base pairing (225).  Thus, POLQ serves as a 

positive control for BRCA2 synthetic lethality.   

SF3B2 is part of the U2 snRNP that assembles with other snRNP components to 

form the spliceosome (226).  While SF3B2 loss is toxic to both B2MUT and B2WT 

cells, B2MUT cells appear to be more reliant on its function than B2WT cells.  When 

we re-screened 50 hits from this library in a secondary shRNA screen, we observed that 

SF3B2 and POLQ validated as B2SL candidates (Supplemental Figures S2-2A and S2-

2B), and that our secondary shRNA screen sublibrary enriched for B2SL candidates 

overall (Supplemental Figures S2-1C-F). 
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Screening our CRISPR library in the colonic DLD-1 isogenic cell line pair 

confirmed POLQ as a B2SL gene and also found FEN1, APEX2, UBE2A, CLSPN, and 

DCLRE1C to behave as B2SLs (Figures 2-2B and 2-2E).  Screening this same library in 

the ovarian PEO1 isogenic cell line pair revealed POLQ, FEN1, XRCC1, and RHNO1 to 

be among the strongest B2SL hits (Figures 2-2C and 2-2F).  Because we are most 

interested in genes that generalize as SL broadly, we compared ovarian and colonic 

cancer cell lines to find POLQ, FEN1, and APEX2 as strong, consistent B2SL in both 

contexts (Figure 2-2G).  While POLQ serves as a positive control, FEN1 and APEX2 

represent novel B2SL genes and novel potential drug targets in BRCA-deficient tumors.  

Notably, several of our B2SL hits demonstrated stronger synthetic lethality than 

PARP1 in both ovarian and colonic cells, including FEN1, APEX2, POLQ, XRCC1, and 

UBE2A.  This observation underscores the well-established finding that PARP inhibitor 

effectiveness in BRCA2-deficient cells is due not only to a mild synthetic lethal 

interaction between PARP1 and BRCA2, but also because of the phenomenon of PARP 

trapping (134, 136).  

 

Loss of early HR components promotes growth of cells with BRCA2 

truncation mutations 

From our comparison of CRISPR screens in the ovarian and colonic cell line 

pairs, we noticed a striking phenomenon: every RAD51 paralog (RAD51, RAD51B, 

RAD51C, RAD51D, XRCC2 and XRCC3) exhibited a strongly positive genetic 
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interaction (GI) score in both cell line contexts (Figure 2-2G, Supplemental Figure S2-

2C).  This positive GI score (the average log2-fold-change in B2MUT versus B2WT 

cells) reflects not only a detrimental effect in B2WT cells from the loss of these HR 

components, but also a surprising enhancement of B2MUT cell growth (Figures 2-2E 

and 2-2F).  We hypothesized that the residual BRCA2 truncation mutant present in 

both ovarian and colonic B2MUT cells may somehow be exerting a toxic neomorphic 

effect, involving its remaining intact interaction with free Rad51.  When we examined 

our data for the performance of BRCA2 itself we found that, like Rad51 and its 

paralogs, CRISPR-based knockout is detrimental to B2WT cells but also enhances 

growth of B2MUT cells, yielding a positive GI score.  All of the gRNAs targeting 

BRCA2 in our CRISPR library cut upstream of exon 11, except for a single gRNA that 

does not score in this fashion.  These observations support our hypothesis that the 

residual BRCA2 truncation mutant in complex with free Rad51 paralogs exerts a toxic 

effect in the B2MUT cells. 

To validate this result, we employed a multicolor competition assay (MCA): as 

previously described (227), we mixed GFP-labeled B2MUT cells with DsRed-labeled 

B2WT cells, infected the mixture with individual gRNAs, and monitored the relative 

change in percent GFP+ cells by FACS (Supplemental Figure S2-2D).  We individually 

tested the relative effect of two gRNAs to RAD51, RAD51C, RAD51D, and the N-

terminal portion of BRCA2 in B2MUT versus B2WT cells, utilizing our colonic isogenic 

cell line pair.  Consistent with our screen results, all of the gRNAs tested resulted in an 
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enhanced ratio of B2MUT to B2WT cells, relative to negative control gRNAs that cut 

intergenic regions with low predicted off-target frequencies (Figure 2-2H).   

To test our hypothesis that the growth enhancement seen upon depletion of 

RAD51 or its paralogs is specific to BRCA2 mutants truncated near BRC repeat 5, we 

performed MCA assays with our gRNAs in an isogenic cell line pair that possesses a 

different BRCA2 truncation mutant: the pancreatic CAPAN-1 cell line and its in vitro-

derived cisplatin-resistant clone C2-5 (228).  CAPAN-1 BRCA2 mutant cells have a 

single base pair deletion in one copy of BRCA2 that produces a frameshift and 

prematurely truncates the protein in BRC repeat 8 (c.[6174delT*fsTer6431]), while the 

second allele of BRCA2 is deleted.  C2-5 cells possess a second small deletion within the 

mutated copy of BRCA2 that restores its correct reading frame.  In an MCA assay with 

this second isogenic cell line pair, the same individual gRNAs targeting RAD51, 

RAD51C, RAD51D, and the N-terminal portion of BRCA2 no longer result in an 

enhancement of B2MUT cell growth relative to B2WT cells, but create the opposite 

effect, possibly due to suppression of residual HR in the mutant cell line (Figure 2-2H).  

This result suggests that the toxic effect of Rad51 depletion in cells expressing BRCA2 

mutant truncation protein terminating early in BRC repeat 5 does not extend to cells 

that possesses a BRCA2 mutant protein with a nearly intact BRC repeat region.  
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BRCA2 mutant cells rely on ATR activation and base excision repair  

From our analysis of screens in both the ovarian and colonic isogenic cell line 

pairs, several pathways emerged as general themes.  Overall, long-patch base excision 

A B 

C D E F 

Figure 2-3. Pathway analysis of BRCA2 Synthetic Lethality. (A) Performance of 
genes in several key pathways, plotted on a color scale for genetic interaction (GI) score: the 
normalized average log2-fold-change across both colonic and ovarian CRISPR screens. The 
asterisk indicates reporting of GI score from the shRNA screen instead of combined CRISPR 
screens. (B) Schematic of the base excision repair (BER) pathway, showing the strength of 
the GI score for each gene in the pathway, plotted on the same color scale as in (A). (C-F) 
MCA assays in which colonic GFP-labeled BRCA2 MUT and DsRed-labeled BRCA2 WT 
cells were mixed and co-treated with the indicated drugs. Change in percent GFP+ cells was 
measured by FACS after 12 days and normalized to vehicle control. 
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repair (BER) scores potently as SL overall (Figure 2-3A).  Indeed, almost every member 

of this pathway scores as SL except for the partially redundant glycosylases which 

initiate repair through this pathway by removing damaged sugars; their absence would 

not be expected to lead to nicks or DSBs that could result in an increased need for HR 

or AP sites that may produce replication stress (Figure 2-3B).  Similarly, several 

members of the ATR/Chk1 signaling pathway were B2SLs, except for some of the more 

essential components of the ATR/ATRIP pathway such as ATR/ATRIP themselves 

and RPA1, which did not score using the CRISPR-based library (Figure 2-3A).   

Known components of MMEJ scored more strongly as B2SL than NHEJ 

components, perhaps implying that the majority of detrimental unresolved DSBs 

addressed by these auxiliary pathways occurs during replication.  The strikingly potent 

positive GI score we observe for BRCA2 and Rad51 paralogs does not extend to later 

steps of HR, but focally affects the components of HR involved in Rad51 loading.  

Finally, although SF3B2 performs as a B2SL using our shRNA library, and SF1 does as 

well to a lesser extent (Figure 2-3A), these essential factors do not score with the more 

penetrant CRISPR-based library. 

To further validate some of these pathway synthetic lethalities, we employed a 

multicolor competition assay (MCA).  As described above, we mixed GFP-labeled 

B2MUT cells with DsRed-labeled B2WT cells, subjected the mixture to various drug, 

gRNA or control treatments, and monitored the relative change in percent GFP+ cells.  

We tested two spliceosome inhibitors, spliceostatin-A and sudemycin D6, both of which 
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inhibit the U2 component SF3B1 (229).  Both of these drugs caused a dose-dependent 

depletion of B2MUT GFP+ cells relative to B2WT DsRed+ cells, supporting the 

hypothesis that inhibition of the U2 spliceosome component is SL with BRCA2 loss of 

function (Figures 2-3C and 2-3D).   

Similarly, because several components required for ATR activation emerged as 

B2SL from our CRISPR screens, including RHNO1, CLSPN, and to a lesser degree the 

more essential TOPBP1, we tested the ATR inhibitor VE-821 for synthetic lethality in 

our MCA assay.  This ATP-competitive inhibitor of ATR also exhibited dose-dependent 

selective inhibition of B2MUT cell growth versus B2WT cells (Figure 2-3E), confirming 

that B2MUT cells are more dependent on ATR activation than B2WT cells.  Finally, 

we tested our hypothesis that B2MUT cells are more dependent on competent function 

of the BER pathway by increasing the load of damage that must be repaired by BER.  

We introduced deoxyuridine monophosphate (dUMP) directly into our cell culture 

medium, which has been shown to increase misincorporation of uracil into DNA (230).  

dUMP also caused a dose-dependent selective depletion of B2MUT versus B2WT cells 

in our MCA assay, supporting our hypothesis that B2MUT cells are more dependent on 

BER than B2WT cells (Figure 2-3F). 

 



 

 48 
 

AP endonuclease APEX2 is synthetic lethal with BRCA1 and BRCA2 loss-

of-function 

 In our CRISPR-based screens, we identified two novel, potent, and generalizable 

B2SL hits: APEX2 and FEN1.  APEX2 encodes Ape2, an AP endonuclease responsible 

for the second step of BER: after base removal by a lesion-appropriate glycosylase, Ape2 

hydrolyzes the phosphodiester backbone immediately 5’ to the AP site to create a 

single-strand break (SSB).  In addition to its AP endonuclease activity, Ape2 also 

possesses 3’ phosphodiesterase activity and 3’-5’ exonuclease activity, executed from the 

same ExoIII-like nuclease domain. 

Human cells rely on two ExoIII-family type II endonucleases to generate a nick 

upstream of AP sites during BER, encoded by APEX1 and APEX2.  We were curious 

as to why APEX2 scored strongly as a B2SL gene, while APEX1 scored weakly, given 

that Ape1 possesses stronger in vitro AP endonuclease activity than Ape2 (231).  Ape1 

and Ape2 both contain an ExoIII-like endonuclease domain with 29% sequence identity 

and high sequence similarity (232), but Ape1 also contains a separate, distinct N-

terminal redox domain.  A critical cysteine in this redox domain reduces the 

heterodimeric transcription factor AP-1 (c-Jun/c-Fos), enhancing its DNA-binding 

activity (233).   

To validate APEX2 as a B2SL hit, we tested three individual APEX2 gRNAs in 

an MCA assay (Figure 2-4A) compared to non-cutting negative control gRNAs and 

negative control gRNAs that cut intergenic regions with low predicted off-target cutting  
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  Figure 2-4. APEX2 is synthetic lethal with BRCA2. (A-B) MCA assays in which 
ovarian GFP-labeled BRCA2 MUT cells and DsRed-labeled BRCA2 WT cells were mixed 
and co-infected with 3 individual lentiviruses expressing gRNAs to APEX2 or APEX1. 
Change in percent GFP+ cells was measured by FACS after 7 days and normalized to 
gRNA-expressing cells. (C-D) MCA assays in which GFP-labeled BRCA1 MUT cells and 
DsRed-labeled BRCA1 WT cells were mixed and co-infected with 3 individual lentiviruses 
expressing gRNAs to APEX2 or APEX1. Change in percent GFP cells was measured by 
FACS after 12 days and normalized to gRNA-expressing cells. (E) List of ORFs tested for 
complementation in cells expressing Cas9 and a gRNA to APEX2. (F) Examination of the 
ability of the ORFs from (F) to rescue the growth defect caused by expression of Cas9 and 
an APEX2 gRNA in ovarian BRCA2 MUT cells. Cells were co-infected with lentivirus 
expressing an APEX2 gRNA and the indicated gRNA-resistant APEX2 ORF or negative 
control peptide. After selection and growth for 8 days, survival was quantified with a 
FACS-based cell counting method. (G) MCA assay (as described above) in which colonic 
BRCA2 MUT and BRCA2 WT cells were mixed and treated for 12 days with the Ape 
nuclease inhibitor APEIII. (H) MCA assay (as described above) in which GFP-labeled 
colonic BRCA2 MUT and DsRed-labeled colonic BRCA2 WT cells were mixed and treated 
for 12 days with the Ape1 redox inhibitor E3330, which inhibits the redox functionality of 
Ape1 but not its nuclease domain. 
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Figure 2-4 (Continued). APEX2 is synthetic lethal with BRCA2.  
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(Supplemental Figure S2-3A).  Consistent with our screen results, three individual 

gRNAs targeting APEX2 validated strongly as B2SL in our ovarian isogenic cell line 

pair, while three individual gRNAs targeting APEX1 validated weakly as B2SL (Figures 

2-4A and 2-4B).  We found the same result to be true in our colonic isogenic cell line 

pair (Supplemental Figures S2-3H and S2-3I).  In addition, we asked whether 

inactivation of APEX1 or APEX2 exhibits synthetic lethality with BRCA1 by testing 

these same gRNAs in an MCA assay utilizing a BRCA1 isogenic cell line pair in the 

RPE background.  In a similar fashion to deficiency of BRCA2, knockout of APEX2 is 

strongly SL with BRCA1 deficiency, while knockout of APEX1 exhibits synthetic 

lethality to a weaker degree (Figures 2-4C, 2-4D). 

We further assessed the synthetic lethality of APEX1 by testing two chemical 

inhibitors of Ape1: APE Inhibitor III and E3330.  APE1 Inhibitor III enzymatically 

inhibits Ape1’s nuclease domain (234), though its potential to exert off-target effects on 

the structurally similar nuclease domain of Ape2 has not yet been characterized.  This 

small molecule caused selective growth inhibition of B2MUT cells relative to B2WT 

cells, through enzymatic inhibition of the nuclease domain of Ape1 and possibly also 

Ape2 (Figure 2-4G).  In contrast, the small molecule inhibitor E3330 blocks the redox 

activity of Ape1 but does not impede its DNA repair function (235).  This inhibitor did 

not exhibit the same SL effect, suggesting that the nuclease domain, rather than the 

redox domain, of Ape1 contributes to its B2SL phenotype (Figure 2-4H). 
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To verify that the B2SL phenotype exhibited by APEX2 gRNAs is due to cutting 

of APEX2 by Cas9, rather than off-target effects, we performed a rescue experiment 

(Figures 2-4E and 2-4F).  We demonstrated that expression of gRNA-resistant wild-type 

Ape2 was able to rescue the growth defect in B2MUT cells caused by APEX2 gRNA 

cutting, relative to two negative control peptides (Figure 2-4F).  When we introduced a 

point mutation in the gRNA-resistant Ape2 ORF that inactivated its nuclease domain 

(D277A), we found that the nuclease-deficient Ape2 mutant was no longer capable of 

rescuing the growth deficit caused by the APEX2 gRNA (Figure 2-4F).  This 

observation suggests that the nuclease domain of Ape2 is required for the B2SL 

phenotype.  Similarly, expression of the wild-type Ape1 ORF (which is not cut by our 

APEX2 gRNA), or its nuclease-deficient point mutant (Y171F) was not able to rescue 

B2MUT cell growth.  The fact that Ape1 cannot complement loss of Ape2 further 

suggests that Ape2 possesses a distinct feature responsible for its stronger SL phenotype. 
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Figure 2-5. FEN1 is a novel B2SL gene that promotes MMEJ. (A) MCA assay in 
which ovarian GFP-labeled BRCA2 MUT cells and DsRed-labeled BRCA2 WT cells were mixed 
and co-infected with 3 individual gRNAs to FEN1. Change in percent GFP+ cells was measured 
by FACS after 7 days and normalized to negative control gRNA-expressing cells. (B) MCA 
assay in which colonic GFP-labeled BRCA2 MUT cells and DsRed-labeled BRCA2 WT cells 
were mixed and co-infected with 3 individual gRNAs to FEN1. Change in percent GFP+ cells 
was measured by FACS after 7 days and normalized to negative control gRNA-expressing cells. 
(C) MCA assay in which colonic GFP-labeled BRCA2 MUT cells and DsRed-labeled BRCA2 
WT cells were mixed and co-treated with the indicated doses of a FEN1 inhibitor. The percent 
of GFP+ cells was quantified by FACS after 7 days and normalized to DMSO. (D) Dependency 
of BRCA1/2 MUT or BRCA1/2 WT cell lines on FEN1, determined by the CERES 
computational method from genome-scale CRISPR-Cas9 essentiality screens across 324 cancer 
cell lines from the Cancer Cell Line Encyclopedia (CCLE) (236). (E) Extracts from BRCA2 
MUT ovarian cells expressing Cas9 and the indicated gRNAs were immunoblotted with the 
indicated antibodies; both panels were run on the same gel. (F) Examination of the ability of 
the ORFs listed in (G) to rescue the growth defect caused by expression of Cas9 and a FEN1 
gRNA. BRCA2 MUT ovarian cells were co-infected with lentivirus expressing a FEN1 gRNA 
and the indicated gRNA-resistant FEN1 ORF or negative control peptide. After selection and 
growth for 8 days, survival was quantified with a FACS-based cell counting method. (G) List of 
gRNA-resistant ORFs tested for complementation in BRCA2 MUT cells expressing Cas9 and a 
FEN1 gRNA. (H) Extracts from BRCA2 WT cells expressing Cas9, a validated FEN1 gRNA, 
and the indicated gRNA-resistant ORF were immunoblotted with the indicated antibodies. (I) 
Cells transfected with negative control (NC) or FEN1 siRNAs were stained with DAPI and an 
antibody to γH2AX to examine foci formation by immunofluorescence. (J) Schematic of the 
Dual EJ reporter. (K) Effect of siRNA knockdown of PARP1, FEN1, and POLQ on MMEJ and 
NHEJ repair as measured by the Dual EJ Reporter in U2OS cells.  The presence of an asterisk 
indicates statistical significance (p<0.05 by t-test) for the corresponding siRNA versus negative 
control siRNA. 
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Figure 2-5 (Continued). FEN1 is a novel B2SL gene that promotes MMEJ. 



 

 55 
 

Flap endonuclease FEN1 is a novel B2SL that plays a role in MMEJ  

 Our top novel B2SL hit, FEN1, performed strongly in both the ovarian and 

colonic isogenic BRCA2 mutant cell line pairs.  FEN1 is a structure-specific 

endonuclease that recognizes and cleaves 5’ ended single-stranded flaps (235).  Several 

essential processes in DNA repair and metabolism require this enzymatic function, such 

as the penultimate step of BER: FEN1 processes the 5’ flap created by Polβ-mediated 

strand-displacement synthesis.  Similarly, FEN1 resolves 5’ flaps created in lagging 

strand synthesis during replication; while extending an Okazaki fragment, Polδ 

encounters the subsequent 3’ fragment and proceeds by strand-displacement synthesis to 

displace the downstream RNA-DNA primer, creating a 5’ flap structure.  In addition to 

this important flap endonuclease activity, FEN1’s sole active site also possesses gap 

endonuclease activity and 5’-3’ exonuclease activity, both of which are weaker than its 

flap endonuclease activity in vitro (237). 

 We first validated that FEN1 is a B2SL gene using the MCA assay described 

above.  Three individual gRNAs targeting FEN1 resulted in selective growth inhibition 

of B2MUT versus B2WT cells, in both the ovarian and colonic backgrounds (Figures 2-

5A and 2-5B).  To ask if this drug would induce synthetic lethality in BRCA1-mutant 

as well as BRCA2-mutant tumor lines, we tested three individual gRNAs to FEN1 in an 

MCA assay utilizing a BRCA1 isogenic cell line pair in the RPE background.  Each of 

the gRNAs selectively inhibit growth of BRCA1 MUT cells relative to BRCA1 WT cells, 

indicating that FEN1 is a target applicable to patients with either a germline BRCA1 or 
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BRCA2 mutation (Supplemental Figure S2-3N).  We verified that these gRNAs deplete 

the protein level of FEN1 by Western blotting (Figure 2-5E), and we further saw an 

increase in γH2AX phosphorylation and Chk1 phosphorylation at S317 in the presence 

of FEN1 gRNAs, possibly reflecting an increase in DSB load (Figure 2-5E).  From this 

result, we cannot distinguish whether the increase in γH2AX and Chk1 phosphorylation 

is a result of gRNA cutting or of FEN1 depletion.  Thus, we utilized a pooled siRNA 

mixture to deplete FEN1, and indeed we observed an increase in γΗ2ΑΧ foci by 

immunofluorescence upon FEN1 knockdown (Figure 2-5I).   

 To assess whether FEN1 may represent a novel drug target in BRCA-deficient 

tumors, we tested a small molecule inhibitor of FEN1.  This inhibitor sterically occupies 

the active site of FEN1, and thus impedes both its exonuclease and endonuclease 

functionalities (238, 239).  In an MCA assay, we found that this FEN1 inhibitor 

selectively impairs growth of B2MUT cells relative to B2WT cells, confirming that 

FEN1 is a viable novel B2SL drug target (Figure 2-5C).  We also asked if we could 

validate FEN1 as broadly BRCA SL by utilizing the publicly available Avana CRISPR-

Cas9 genome-scale dataset, analyzed by the CERES algorithm (236).  We separated 391 

cell lines based on BRCAness (by mutation status of BRCA1 and BRCA2) and saw that 

the BRCA-mutant lines are more dependent on FEN1 than the BRCA-wildtype lines 

(Figure 2-5D).  This analysis provides independent confirmation of the strength of FEN1 

as a B2SL hit. 
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 Next, we asked whether the B2SL phenotype induced by our FEN1 gRNAs is 

directly due to on-target cutting of FEN1 by CRISPR/Cas9.  We rescued one of our 

validated FEN1 gRNAs with either a gRNA-resistant wild-type FEN1 ORF or negative 

control peptides; we found that full-length gRNA-resistant wild-type FEN1 rescues the 

growth defect imparted by the FEN1 gRNA, confirming an on-target effect of our gRNA 

(Figures 2-5F and 2-5G).  To investigate which enzymatic function of FEN1 is 

important for its B2SL phenotype, we made a series of point mutants, including one 

mutant that inactivates only the exonuclease activity of FEN1, and two different point 

mutants that inactivate both its endonuclease and exonuclease activity.  There is no 

single point mutation that inactivates the endonuclease activity of FEN1 while leaving 

its exonuclease activity intact.  We found that the exonuclease-deficient FEN1 mutant 

was able to rescue the effect of our FEN1 gRNA, while both endonuclease mutants were 

unable to rescue this effect, suggesting that BRCA2-deficient cells are selectively 

dependent upon the endonuclease but not the exonuclease activity of FEN1 (Figures 2-

5F and 2-5G).   We verified that all of these FEN1 wild-type and mutant ORFs were 

expressed in the presence of the chosen FEN1 gRNA by Western blotting (Figure 2-5H). 

Finally, we considered why the flap endonuclease activity of FEN1 is particularly 

important in BRCA2-deficient cells.  We hypothesized that FEN1 may be involved in 

processing the 5’ flaps created by POLQ during MMEJ repair (240).  To test whether 

FEN1 plays a role in MMEJ flap resolution in mammalian cells, we designed a novel 

cell-based reporter construct: the Dual EJ Reporter (Figure 2-5J).  This reporter is a 
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modified fusion protein between a DsRed derivative (E2-Crimson) and GFP that yields 

information about both MMEJ and NHEJ-mediated repair.   

We inserted an I-SceI cut site followed by a transcriptional stop sequence into a 

structurally and functionally critical region of DsRed.  We flanked both sides of this I-

SceI cut site with the same 8bp region of microhomology, so that repair by MMEJ 

perfectly restores the original sequence of DsRed.  To this modified DsRed protein, we 

fused GFP with an intervening glycine and serine-rich flexible linker.  Thus, MMEJ 

repair of an I-SceI-induced DSB yields expression of both correctly-repaired DsRed and 

GFP.  In contrast, NHEJ repair of the I-SceI cut site does not restore the sequence of 

this functionally important part of DsRed, but one-third of the time resolves into in-

frame expression of GFP.  Thus, single positive GFP+ cells reflect NHEJ repair, while 

double-positive DsRed-GFP+ cells reflect MMEJ repair. 

 We introduced our Dual EJ Reporter at low MOI into U2OS cells and tested the 

effect of pooled siRNA-mediated knockdown of PARP1, FEN1, and POLQ versus 

negative control siRNA on the reporter.  Both POLQ and PARP1 are known to have a 

role in MMEJ (241); as expected, knockdown of both genes resulted in decreased 

expression of the double-positive DsRed-GFP+ fusion protein (Figure 2-5K).  

Knockdown of FEN1 had a similar effect, confirming our hypothesis that FEN1 

participates in MMEJ in mammalian cells (Figures 2-5J and 2-5K).  In contrast, none of 

these genes are expected to play a role in classical NHEJ, and our reporter confirmed 

that knockdown of these three genes did not affect classical NHEJ repair.  Thus, 
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screening for B2SL genes led us to identify a FEN1 as a component of the MMEJ 

pathway, highlighting how dependent B2MUT cells are upon MMEJ in the absence of 

functional HR. 

 

III. Discussion 

 It has become clear that PARP inhibitor effectiveness in BRCA-deficient cells is 

partially due to the phenomenon of PARP trapping, in addition to exploitation of an 

underlying synthetic lethal genetic interaction between PARP and BRCA1/2 

deficiencies.  However, a systematic analysis of BRCA2-mutant interactions with 

deficiencies of other DNA repair functions has not been reported. We reasoned that 

unexplored SL relationships with BRCA-deficiency may exist and these might represent 

valuable drug targets for metastatic or refractory BRCA-deficient breast tumors, 

recurrent HGSOC, and PARP inhibitor-resistant BRCA-deficient tumors.  Thus, we 

designed a series of genetic screens to identify novel B2SL targets.  We show here that 

there are several B2SL genes and pathways whose inactivation exhibits stronger 

synthetic lethality with BRCA2 inactivation than PARP1 loss.  Both APEX2 and FEN1 

are previously unreported, potent, and generalizable B2SL hits that represent novel drug 

targets.   

 Inactivation of APEX2 hampers the BER pathway, which overall is more 

important to survival in the context of BRCA2 inactivation than in counterpart BRCA2 

wild-type cells.  It has previously been assumed that PARP involvement in BER is SL 
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with BRCA inactivation because unresolved SSBs create an increased DSB burden 

during replication.  However, inactivation of APEX2 would not necessarily lead to an 

increase in SSBs, since Ape1 and Ape2 endonucleases are responsible for the nick-

generating step of BER.  Rather, in the absence of Ape2 endonuclease function, residual 

AP sites would persist during S phase, resulting in replication fork stalling.  We 

hypothesize that this increase in replication stress is more toxic in the absence of 

functional BRCA2, since BRCA2 has been shown to safeguard forks from resection 

(242).  This hypothesis is consistent with our observation that B2MUT cells are more 

dependent on ATR activation, given the master regulatory role of ATR activation in 

replication fork protection (243).  

 Despite the fact that Ape1 is commonly believed to be the dominant BER AP 

endonuclease, we found that APEX2 is a stronger BRCA1 and BRCA2 SL hit than 

APEX1.  The fact that we cannot complement APEX2 loss with overexpression of the 

wild-type APEX1 ORF suggests that there is a distinct feature of APEX2 that is 

responsible for its stronger SL phenotype.  In contrast to Ape1, Ape2 binds PCNA (244, 

245), which suggests that Ape2 may participate in BER during replication, such as 

when a replication fork encounters an abasic lesion.  We hypothesize that the co-

localization of Ape2 with PCNA during replication is responsible for its stronger BRCA1 

and BRCA2 SL effect. 

 Surprisingly, we found that depletion of every human Rad51 paralog, as well as 

PALB2 and BRCA2 itself, enhances growth of our B2MUT cell lines.  We note that 
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both the ovarian and colonic B2MUT lines possess similar BRCA2 truncation mutants, 

present in about ~16% of breast tumors.  This truncation mutant is capable of binding 

Rad51; thus, we propose that exon 11 BRCA2 truncation mutants may exert a toxic, 

neomorphic function involving Rad51.  We did not see this same effect when we tested 

B2MUT cells possessing a longer truncation mutant, terminating at BRC repeat 8, 

suggesting that this toxic function involving Rad51 may be unique to BRCA2 

truncation mutants that terminate near BRC repeat 5.  This result suggests that 

inhibiting HR in the context of a BRCA2 exon 11 truncation mutant may actually 

accelerate tumor growth, implying that certain classes of HR inhibitors might 

exacerbate cancers if given to patients with exon 11 BRCA2 truncation mutants. 

A few essential genes scored as SL in our shRNA screen, but not CRISPR-based 

screens, including the splicing factors SF3B2 and SF1.  We validated that two inhibitors 

of the SF3B1 component of the U2 snRNP selectively impair growth of B2MUT cells. 

Since inactivation of BRCA2 leads to increased R-loop formation (213), dual 

inactivation of BRCA2 and SF3B1 may compound R-loop induced DNA damage to a 

toxic level.  Alternatively, this effect may be explained by previously reported results 

that the U2 snRNP maintains protein levels of essential DDR components and prevents 

R-loop induced DNA damage (246).  These two explanations for the effect of SF3B1 

inhibition on BRCA2 mutant cells are not mutually exclusive.  

Our strongest novel B2SL candidate is the flap endonuclease FEN1.  We 

validated FEN1 as a BRCA1 and BRCA2 SL target and showed that its endonuclease 
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but not its exonuclease enzymatic activity is required to rescue the effect of FEN1 

gRNA knockout in BRCA2 MUT cells.  We showed using a novel cell-based reporter 

that FEN1 is an essential component of the MMEJ pathway.  The fact that we found 

this phenotype through a B2SL screen underscores how important the MMEJ pathway 

becomes in the absence of functional HR.  However, the SL phenotype of FEN1 

knockout in B2MUT cells is likely multifactorial: its loss impairs BER, creates 

replication stress by hindering processing of Okazaki fragments, and also impairs 

MMEJ-mediated DSB repair.  Overall, MMEJ appears to be more important in 

complementing loss of HR than classical NHEJ, perhaps implying that the predominant 

load of DSBs left unresolved by HR deficiency occurs during replication. 

Finally, we showed that an existing inhibitor to FEN1 exhibits synthetic lethality 

in vitro, suggesting it could possibly be utilized in the treatment of BRCA-deficient 

tumors, subsequently or in combination with PARP inhibitors.  Importantly, the toxic 

PARP-SSB intermediates that occur upon PARP trapping are thought to be resolved 

largely by BER; thus, because FEN1 executes the penultimate step of BER, it may 

exhibit a synergistic effect with PARP inhibition.  Not only would its inhibition be SL 

in BRCA-deficient tumors due to the role of FEN1 in MMEJ, replication, and BER, but 

its inhibition should also leave toxic PARP-SSB complexes unresolved, potentially 

augmenting a synergistic lethality. 

 We are currently optimizing a drug synergy study between FEN1 and PARP 

inhibitors.  In addition, we have generated a gRNA-resistant ORF encoding a PIP-box 
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mutant of Ape2 that should fail to bind PCNA; we are testing our hypothesis that Ape2 

synthetic lethality is stronger than Ape1 synthetic lethality due to its ability to bind 

PCNA.  Importantly, we are characterizing our Dual EJ reporter in depth: we FACS-

sorted cells that repaired the reporter to express both DsRed-GFP or GFP alone, and 

deep sequenced the sorted populations to confirm their repair by the expected pathway.  

We are also repeating this assay with siRNA to known components of the NHEJ 

pathway including XRCC5/6 as additional controls.  Ideally, we feel that re-cloning the 

reporter to include a P2A-based DsRed-GFP construct instead of a fusion protein would 

yield better stability and likely increased signal. 

 

IV. Methods 

Cell culture 

Human DLD-1 cells and all clones derived from this cell line were maintained in 

RPMI-1640 Medium (ATCC modification) supplemented with 10% (v/v) fetal bovine 

serum (FBS), 100 units/mL penicillin, and 100 µg/mL streptomycin.  Human PEO1 

cells and their BRCA2 revertant clone C4-2 were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% FBS, 1% Pen-Strep, and 2mM glutamine.  A 

pair of BRCA1 isogenic RPE1 cell lines was generously shared by Connor Clairmont 

and Alan D’Andrea; this isogenic cell line pair was created by CRISPR-based knockout 

of TP53 with or without CRISPR-based knockout of BRCA1 in the RPE1 background.  
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These cells were grown in DMEM/F12 medium supplemented with 10% FBS, 100 

units/mL penicillin, and 100 µg/mL streptomycin.  HEK293T cells were maintained in 

DMEM supplemented with 10% FBS, 100 units/mL penicillin, and 100 µg/mL 

streptomycin.   

 

Lentivirus and retrovirus production and titering  

To produce lentivirus, HEK293T cells were seeded in tissue culture dishes at a 

density equivalent to 6x105 cells per 0.9 cm2 surface area.  Plasmid DNA was diluted 

into serum-free medium with a lentiviral packaging plasmid mixture of SV40 VSVg, 

Gag/Pol, Tat, and Rev, and transfected with PolyJet or MIRUS Trans-IT.  After 48 h, 

the supernatant was harvested, filtered through a low-protein binding HT Tuffryn® 

membrane with 0.45 µm pores (Pall cat. #4184), and stored at -80°C.  Lentiviral titer 

was determined by transducing the cell line of interest plated at clonogenic density with 

serial dilutions of virus in the presence of 4-8 µg/mL polybrene.  After selecting with 

puromycin or NAT, colonies were counted to determine viral titer.  The same process 

was utilized to package retrovirus when applicable, except that a retroviral packaging 

plasmid mixture of 1:1 Gag/Pol and VSVG was co-transfected with retroviral 

constructs.  All transductions were performed in the presence of 4-8 µg/mL polybrene. 
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Generation of isogenic cell lines 

We obtained a BRCA2 mutant cell line (BRCA2-/- DLD-1) from Horizon 

Pharma.  This cell line was originally generated in the colonic pseudodiploid DLD-1 

background through two successive rounds of homologous recombination introduced by 

adeno-associated virus, each of which created a small deletion in exon 11, leaving a 

residual loxP site and premature stop codon (218).  We received a pcDNA3.1-neo 

construct for full-length BRCA2 expression as a generous gift from Ralph Scully.  We 

transformed this plasmid into DH5α E. coli and maintained growth of bacteria at 30°C 

in the presence of Ampicillin.  The amplified plasmid was linearized, treated with calf 

alkaline phosphatase, and transfected into mutant BRCA2-/- DLD-1cell line with 

MIRUS.  Neomycin selection was maintained for several weeks to identify stable 

integrants, and individual clones were isolated.  Restoration of full-length BRCA2 

expression was confirmed by Western blotting, and selected clones were shown to 

exhibit olaparib resistance and Rad51 foci formation after 10Gy IR.  

 

shRNA screens 

We designed a targeted sublibrary of 380 genes with either a known or suspected 

role in the DNA damage response.  Inclusion of genes in this DNA damage sublibrary 

was based either on a known role in DNA repair described in the literature, or 

performance of the gene in prior screens for sensitivity to DNA damaging agents 

(unpublished data).  We began by performing a primary shRNA screen to these 380 
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genes, with an shRNA library targeting each gene with 50 different shRNAs (~19K 

total).  Pooled oligonucleotides encoding these shRNAs were cloned into the mir30 

backbone context in the retroviral hairpin-expressing vector MSCV (247).  The library 

was packaged into retrovirus along with 10 negative control shRNAs in a pooled format, 

and titer was measured by a colony formation assay.   

A pooled shRNA screen was then performed by transducing this retroviral library 

into both colonic DLD-1 B2MUT and B2WT cell lines at a low multiplicity of infection 

(0.5) in triplicate at a representation of 1000 cellular integrations per shRNA.  After 

selection in 4 µg/mL puromycin for 3 days, cells were passaged for 12 population 

doubling (PDs), and cell pellets were collected both after puromycin selection (PD0) and 

after passaging cells for 12 population doublings (PD12).  Genomic DNA was isolated 

from these cell pellets by phenol/chloroform extraction, and the relative representation 

of library reagents in each sample was determined by Illumina sequencing of PCR-

amplified half-hairpins (219).   

Fifty genes that performed well in the primary shRNA screen were selected to 

comprise a secondary screen sublibrary.  Ten hairpin sequences were designed to each of 

these fifty genes (~500 total) and synthesized along with 772 negative control shRNAs.  

Pooled oligonucleotides encoding these hairpins were cloned into the mir-E shRNA 

context in the lentiviral vector pHAGE pInducer10 (248).  A pooled shRNA screen was 

performed similarly to the primary shRNA screen in both colonic DLD-1 B2MUT and 

B2WT cell lines, with the lentiviral library pool being transduced at low multiplicity of 
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infection (0.2) in triplicate at a representation of 1000.  After selection with 4 µg/mL 

puromycin for 3 days, cells were passaged for 12 PDs, and cell pellets were collected 

from both starting PD0 and final PD12 cell populations.  Again, genomic DNA was 

isolated from these cell pellets by phenol-chloroform extraction, and the relative 

representation of library reagents was determined by Illumina sequencing of PCR-

amplified half-hairpins (219).   

For both the primary and shRNA screens, NGS sequencing reads were aligned to 

the library using Bowtie (249) and counts were obtained for each shRNA.  MAGeCK 

(223), MAGeCK-VISPR (250) and edgeR (224) were used to calculate gene rank lists, 

false discovery rates (FDRs), and log2-fold-changes for each gene 

 

CRISPR screens 

gRNAs were designed to 357 of the 380 DNA damage sublibrary genes targeted 

by the primary shRNA library.  Ten gRNAs were designed to each gene, yielding ~3500 

gRNAs total.  A negative control library targeted to the E. coli genome with minimal 

predicted off-target cutting sites in the human genome was designed in parallel.  These 

oligonucleotides were cloned in a pooled format into the LentiCRISPRv2 plasmid, which 

contains EFS-driven Cas9 (251).  The DNA damage sublibrary and E. coli-targeted 

negative control library were packaged into lentivirus and titered separately but pooled 

before transduction into colonic or ovarian B2MUT or B2WT cells in triplicate at a 
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MOI of 0.2.  After puromycin selection (4 µg/mL for colonic B2MUT and B2WT lines 

and 1.5µg/mL for ovarian B2MUT and B2WT lines), cells were passaged for 12 PDs, 

and cell pellets were collected at both PD0 and PD12.  Genomic DNA was isolated from 

cell pellets using phenol-chloroform extraction, and gRNAs were PCR-amplified from 

genomic DNA and adapted for Illumina sequencing.  Sequencing reads were aligned to 

the starting libraries, and read counts were analyzed by MAGeCK (223), MAGeCK-

VISPR (250) and edgeR (224) to calculate gene rank lists, FDRs, and log2-fold-changes 

for each gene. 

 

Multicolor Competition Assay (MCA) 

Individual gRNAs or small molecules were tested for synthetic lethality using a 

multi-color competition assay (MCA) (132).  In this assay, GFP-labeled B2MUT cells 

are mixed with B2WT cells labeled with the DsRed-derivative red fluorescent protein 

E2-Crimson (E2C), at a 2:1 ratio.  The percent of GFP+ cells was monitored over time 

using fluorescence-activated cell sorting (FACS), and unmixed GFP-labeled B2MUT 

and E2C-labeled B2WT cells were maintained in parallel to assure the purity of each 

population. 

For MCA assays evaluating the effect of gRNAs, individual gRNAs were cloned 

into the LentiCRISPRv2 plasmid containing the previously described F+E modifications 

to the tracrRNA sequence (252).  After sequence verification of the cloned gRNA, each 
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gRNA to be tested was packaged separately into lentivirus (251, 253).  Negative control 

gRNAs included three sequences targeted to the E. coli genome that are predicted to 

have no off-target cutting sites in the human genome, and several intergenic gRNA 

sequences predicted to have a single cutting site in the human genome, in a DNAse 

hypersensitive region, on chromosome 2, 15, or 16.  The 2:1 mixture of pre-labeled 

B2MUT and B2WT cells was infected with each gRNA to be tested, selected with 

puromycin, and the percent GFP+ cells after selection was measured as the starting 

percent GFP.  After passaging in culture for 1 week, the percent of GFP+ cells from 

each sample was measured again.  The change in percent GFP after passaging cells was 

normalized to the negative control gRNAs and adjusted for differing relative growth 

rates as previously described (254), according to the following formula: 

 

Log2(ΔGFP)= log2

(GFPtreated-GFPcontrol*GFPtreated)
(GFPcontrol-GFPcontrol*GFPtreated)

 

 

For MCA assays evaluating the effect of small molecules, serial dilutions of each 

drug were prepared in DMSO, with the final concentration of DMSO in culture never 

exceeding 0.45%.  We verified that the addition of 0.45% DMSO had no effect on the 

change in percent GFP+ cells over time.  We mixed GFP-labeled B2MUT with E2C-

labeled B2WT cells as described above, and then added drug to the mixture every 3-4 

days for 1 week of passaging in culture.  We measured the percent of GFP+ positive 
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cells by FACS and normalized to DMSO-treated cells using the formula above.  The 

only exception to this procedure was for 2′-deoxyuridine 5′-monophosphate disodium salt 

(dUMP), which was solubilized in H2O.  For this compound, change in percent GFP+ 

cells was normalized to the change in percent GFP+ cells with the addition of the same 

volume of H2O. 

The drugs test in this study include: APE Inhibitor III (Calbiochem), ATR 

inhibitor VE-821 (Axon 1893), dUMP (Sigma D3876), E3330 (Sigma E8534), Olaparib 

(Selleck Chemicals S1060), and SSA (Adooq Bioscience A12700).  Sudemycin 6 was a 

generous gift from Dr. Thomas Westbrook and FEN1 inhibitor was generously provided 

by Dr. Stephen Durant from AstraZeneca (238).  

 

Western blotting 

Cells were trypsinized, washed in PBS, counted in order to standardize gel 

loading, and lysed by resuspension in 2X NuPAGE LDS Sample Buffer (Thermo) 

containing Halt protease and phosphatase inhibitors (Thermo).  Each sample was 

sonicated 4 times for 15 second intervals, with at least 15 seconds rest on ice in between 

successive sonication periods, before being boiled for 5 minutes at 95°C.  Protein lysates 

were separated on 4-12% Bis-Tris gels (Thermo) and transferred to nitrocellulose 

membranes (Bio-Rad), which were blocked with 0.45µm-filtered 5% BSA in TBST (Cell 

Signaling Technology).  The following primary antibodies and dilutions were used for 

immunoblotting: vinculin (1:1000, Sigma V9131), GAPDH (1:1000, Santa Cruz, sc-



 

 71 
 

25778), BRCA2 (1:1000, Millipore OP95), phospho-Chk1 S317 (1:500, Cell Signaling 

2344), Chk1 (1:1000, Cell Signaling 2360), phospho-H2AX S139 (1:1000, Millipore 05-

636), and FEN1 (1:500, Thermo 4E7).  Goat anti-mouse (1:5000, Jackson 115-035-003) 

or goat anti-rabbit (1:5000, Jackson 111-035-003) HRP-conjugated secondary antibodies 

were used for detection with enhanced chemiluminescence (ECL) (Perkin-Elmer 

NEL104001EA). 

 

Immunofluorescence 

Cells grown on coverslips were fixed for 10 minutes at room temperature in 3.7% 

formaldehyde, freshly diluted in PBS.  Cells were then permeabilized for 10 minutes at 

room temperature in 0.5% Triton-X in PBS and blocked for 20 minutes in 0.5% BSA 

and 0.2% gelatin from cold water fish skin (Sigma) in PBS.  Three PBS washes occurred 

before each of these steps.  Primary and secondary antibodies were diluted in PBS with 

0.5% BSA and 0.2% gelatin from cold water fish skin (Sigma).  Unless otherwise stated, 

primary antibody incubations were performed for 2 hours at room temperature in a 

dark, humidified chamber followed by a 1 h secondary antibody incubation in a dark, 

humidified chamber.  The following antibodies and dilutions were used in this study: 

phospho-H2AX S139 (1:500, Millipore 05-636), Rad51 (1:200, 45 min, 37°C, Santa Cruz 

sc8349).  Secondary antibodies included Alexa Fluor® 488 goat anti-mouse IgG (1:1000, 

Invitrogen A-11001), Alexa Fluor® 594 goat anti-mouse IgG (1:1000, Invitrogen A-

11005), Alexa Fluor® 647 goat anti-mouse IgG (1:1000, Invitrogen A-21236), and Alexa 
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Fluor® 488 goat anti-rabbit IgG (1:1000, Invitrogen A-11008).  Coverslips were 

mounted on slides using Vectashield mounting medium with DAPI (Vector 

Laboratories), and imaging was performed on an Olympus Fluoview FV1000 Confocal 

Microscope. 

 

Rescue Experiment 

The ORF encoding full-length APEX2 was obtained from the human ORFeome 

8.1 collection, and a stop codon was introduced after the last residue of the APEX2 

coding sequence.  A gRNA-resistant version of this construct was constructed by site-

directed mutagenesis (Agilent) of the PAM and several bases in the seed sequence of the 

corresponding to a pre-validated APEX2 gRNA (APEX2 gRNA #3: 5’- 

GGTAGCATTGTCCTTACAGA-3’).  This gRNA-resistant construct was used as the 

substrate to make several APEX2 point mutants.   

The full-length ORF encoding FEN1 terminated by its natural stop codon was 

obtained from the Ultimate ORF collection (Thermo Fisher).  A gRNA-resistant version 

of this construct was cloned by site-directed mutagenesis (Agilent) of the PAM and 

several bases in the seed sequence of a pre-validated gRNA to FEN1 (FEN1 gRNA #3: 

5’- GGCTGGCAAAGTCTATGCTG-3’).  This gRNA-resistant construct was used as 

the substrate to make several FEN1 point mutants.   

All resulting constructs were cloned into a lentiviral destination vector by a 

Gateway LR reaction.  A small, 20 amino-acid negative control peptide and the red 
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fluorescent protein E2C were cloned in parallel to serve as negative controls.  Pre-

validated gRNAs to APEX2 or FEN1 were transduced into ovarian B2MUT cells or 

ovarian B2WT cells and selected with 1.5 µg/mL puromycin.  Subsequently, ORF 

constructs were transduced and selected with 200μg/mL nourseothricin sulfate (Gold 

Biotechnology N-500-1).  Each gRNA and ORF combination was counted individually 

after selection and plated evenly at 20K cells/well in 24-well tissue culture plates, in 

triplicate.  After growth for 1 week, cells were trypsinized and counted using 

CountBright Absolute counting beads (Thermo Fisher) and propidium iodide as a 

viability stain with a flow cytometer.  Statistical significance was calculated using a one-

sided t-test.   

 

Dual EJ Reporter Assay 

The BstXI site of the DsRed derivative red fluorescent protein E2-Crimson (E2C) 

was used to introduce an I-SceI cut site followed by a stop codon and flanked by 8bp 

microhomology regions.  A fusion protein containing E2C, a glycine-rich linker, and 

GFP was assembled using a sewing PCR reaction, with PCR primers terminating with 

Gateway attB sites.  This PCR product was cloned by a BP reaction into pDONR221, 

and subsequently transferred to a lentiviral destination vector (pHAGE CMV DEST-

Blast) by a Gateway LR reaction.  The resulting lentiviral construct was sequence-

verified and packaged into lentivirus as described above.  To create the reporter cell 

line, U2-OS osteosarcoma cells were infected with this lentiviral construct at a very low 
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MOI of 0.1 and selected with 20 µg/mL blasticidin.  I-SceI was cloned into a lentiviral 

construct expressing BFP, and this construct was packaged into lentivirus to transduce 

reporter cells.  Ninety-six hours after transduction with I-SceI, reporter cells were 

analyzed by FACS for BFP, GFP, and E2C expression, in the presence of 1nM 

bortezomib (Selleck Chemicals).  The percent of GFP and E2C cells were quantified 

from gated BFP+ cells that received the I-SceI virus.  MMEJ was quantified as the 

percent of double-positive GFP+ E2C+ cells, and NHEJ was quantified as the percent of 

single-positive GFP+ cells. 
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Chapter 3: Genome-Scale ORFeome Screen Identifies Regulators of PD-L1 

Expression and IFNγ Signaling 

 

Attributions 

I performed all experiments described herein, analyzed the data, and wrote the following 

chapter.  The barcoded ORFeome library, generated by the lab through cumulative 

effort over many years, has recently been published (255).  Steve Elledge and I 

conceived the study, with helpful input from Tomasz Kula. 

 

I. Introduction 

Upon encountering MHC bearing a foreign antigen, T cells must interpret a 

balance of costimulatory and coinhibitory signals to determine the outcome of TCR-

MHC engagement.  Coinhibitory signals, delivered primarily through T-cell surface-

expressed CTLA-4 and PD-1, dampen the T cell-mediated immune response and 

promote tolerance.  Tumors frequently upregulate a ligand of PD-1, PD-L1, as a method 

of immune evasion.  PD-1 can also interact with PD-L2, but PD-L2 expression is 

restricted to myeloid-derived cells (102), while PD-L1 expression is far more ubiquitous 

(103, 104) and more functionally important in tumor settings (256). 

Antibodies that block CTLA-4, PD-1, or PD-L1, thus relieving the coinhibitory 

signals that prevent T cells from targeting tumor cells, have exhibited stunning 
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performances in clinical trials (150, 152, 155, 156).  22% of melanoma patients achieved 

impressively durable long-term remissions from anti-CTLA-4 therapy (150), and the 

anti-PD-1 antibody pembrolizumab has replaced standard chemotherapy as first-line  

 

 

Figure 3-1. Layers of PD-L1 Regulation. Mechanisms of PD-L1 regulation can be 
broadly categorized as transcriptional, post-transcriptional, and post-translational.  These 
layers of regulation are depicted, along with graphical representations of examples for each 
regulatory category. 
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therapy for NSCLC patients with a PD-L1 tumor proportion score (TPS) >50% (188).  

The clinical success of these agents has prompted over 1500 trials and accelerated FDA 

approval in many settings (257).  

Although some patients respond durably and favorably to PD-1-PD-L1 blockade, 

clinical response rates vary within and among tumor types.  To maximize the utility of 

these newly available treatments, it is clinically imperative to understand the 

parameters that predict clinical response.  Several biomarkers have emerged as 

predictive of positive response to anti-PD-1-PD-L1 treatment, including the diversity of 

tumor neoantigens, the extent of T cell infiltrate in the tumor, the immune status of the 

patient, and expression of PD-L1 in the tumor (101).  Of these prognostic parameters, 

the latter appears to correlate most directly with clinical outcome (152, 154, 161-163, 

180).   

Thus, understanding the mechanisms of PD-L1 regulation and expression on 

tumor cells is of major clinical relevance.  Several layers of regulation are known to 

underlie expression of PD-L1 at the cell surface (Figure 3-1).  Inflammatory signaling, 

such as IFN-γ-mediated signaling through the JAK-STAT1 pathway, is a dominant 

method of PD-L1 transcriptional upregulation (258) that also paradoxically upregulates 

components of the antigen presentation machinery (259).  PD-L1 can also be 

transcriptionally up-regulated by Myc, NFκB, HIF1α, and signaling through the PI3K-

Akt and MEK-ERK pathways (101). 
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Post-transcriptionally, loss of the PD-L1 3’UTR increases PD-L1 protein levels 

(260).  This effect may be partly due to microRNA-mediated degradation of the PD-L1 

transcript, which can occur through miR-513, among other microRNA species (261).  

Alternatively, K-Ras signaling promotes stabilization of the PD-L1 transcript through 

phosphorylation of TTP (tristetraprolin), a protein that binds to the AU-rich elements 

in the 3’UTR of PD-L1 and promotes its degradation. 

Two whole-genome loss-of-function screens uncovered the same positive regulator 

of PD-L1 protein stability: CMTM6.  CMTM6 directly interacts with PD-L1 at the 

plasma membrane, facilitating its correct endocytic recycling and protecting it from 

lysosomal degradation (262).  CMTM4, a family member of CMTM6, can also facilitate 

PD-L1 cell surface stability (263).  Finally, PD-L1 post-translational stability can be 

affected by the cell cycle, as Cdk4/6 phosphorylation of SPOP promotes degradation of 

PD-L1, mediated by the E3 ligase Cul3 (264).   

These two fruitful whole-genome loss-of-function screens yielded a shared, 

interesting mechanism of positive PD-L1 regulation.  Yet no systematic whole-genome 

gain-of-function screen for PD-L1 regulation has been performed to date.  Our 

laboratory recently established a modular, Gateway-compatible barcoded ORFeome 

library that can be used for systematic gain-of-function genetic screens (255).  Thus, we 

sought to apply this unique tool to search for mechanisms of PD-L1 regulation that may 

not have emerged from loss-of-function screening systems.  
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In addition, we realized that our screen design offered the opportunity to ask a 

second clinically-relevant question in parallel, with minimal expenditure of additional 

materials.  Separate from the question of predicting intrinsic response to 

immunotherapy, several groups have addressed the issue of acquired resistance to anti-

PD-1 blockade.  Among melanoma patients who initially responded, but ultimately 

relapsed on PD-1 antibody treatment, two types of mutations have been found: defects 

in antigen presentation (such as β2-microglobulin, B2M), and defects in the IFNγ-

signaling pathway (201).  Of the two, IFNγ pathway mutations appear to be 

predominant, and were confirmed to cause resistance to immunotherapy in both in vitro 

(265) and in vivo (266) screens.   

Thus, we screened our barcoded whole-genome ORFeome library both ORFs that 

promote PD-L1 expression, and ORFs that interfere with IFNγ signaling, using PD-L1 

expression as a readout.  A more complete understanding of modifiers of the IFNγ 

signaling pathway, beyond the downstream components of its JAK-STAT-IRF1 axis, 

may be of prognostic value and may represent alternative forms of intrinsic or acquired 

resistance to anti-PD-1-PD-L1 blockade. 
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II. Results 

Optimization and design of two parallel genome-scale ORFeome screens 

 We began by establishing an optimal system in which to screen for induction of 

PD-L1 cell surface expression.  In particular, we chose a clinically-relevant cell line 

background (NSCLC) with low cell surface PD-L1 expression but high inducibility of 

PD-L1 in the presence of IFNγ.  We tested the human NSCLC cell line H1299 for PD-

L1 cell surface expression through FACS staining, in the absence or presence of IFNγ 

Figure 3-2. IFNγ induces cell surface expression of PD-L1 in H1299 cells.  H1299 
cells were treated with the indicated doses of IFNγ, and after 48 hours cells were harvested and 
stained with either monoclonal anti-PD-L1 antibody or isotype control antibody, as indicated.  
Both antibodies are conjugated to allophycocyanin (APC), and staining was quantified by 
FACS. 
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treatment.  We found that 100ng/mL IFNγ or above induced PD-L1 cell surface 

expression on 93% of cells, whereas 84% of cells were PD-L1-negative in the absence of 

IFNγ (Figure 3-2). 

 From this parental H1299 population, we established an optimal clonal 

background to serve as the basis for screening.  Namely, we selected a clone with low 

background PD-L1 expression, high inducibility of PD-L1 cell surface expression upon 

IFNγ treatment, and optimal expression of a reverse tetracycline-controlled 

transactivator (rtTA) to drive ORF expression from a Tet Response Element (TRE) 

promoter (Figure 3-3).  To select this clone, we transduced parental H1299 cells with a 

neomycin-selectable rtTA construct at a very low multiplicity of infection (MOI).  As 

part of a tetracycline-on system, addition of doxycycline to cells expressing this rtTA   

 

Figure 3-3. Optimization of a clonal background for screening. 96 rtTA-expressing 
clones were isolated from H1299 cells and tested for several properties relevant to screening. 
(Upper) Clones were infected with a test construct expressing a red fluorophore (E2C) 
under TRE promoter control.  E2C expression was measured by FACS in the APC channel 
to select clones with high inducibility of TRE-driven E2C expression and minimal leakiness 
from the promoter. (Lower) Clones were stained with APC-conjugated anti-PD-L1 antibody 
or isotype control in the presence or absence of 100ng/mL IFNγ.  
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will induce transcription from TRE promoters.  After neomycin selection, we plated 

these cells at low clonogenic density and isolated 96 clones to test for optimal screening 

properties.  Ultimately, we chose clone 2 as having the lowest background and best 

inducibility of PD-L1, with robust and non-leaky rtTA expression (Figure 3-3). 

 After expansion, we transduced clone 2 with a 3’ barcoded whole-genome 

ORFeome library under TRE promoter control at an MOI of 0.1 and a representation of 

1000 cellular integrations per ORF, in triplicate.  We selected the cells with puromycin 

and afterwards split them into two equivalent populations to perform two FACS-based 

screens in parallel.  We induced ORF expression for 48 hours with doxycycline, stained 

the cells with a monoclonal antibody recognizing PD-L1, and FACS sorted the cells into 

PD-L1high, PD-L1med, and PD-L1low-staining populations (Figure 3-4A).  One screen, 

performed in the absence of IFNγ, was designed to identify ORFs that induce PD-L1 

cell surface expression.  The second parallel screen, performed in the presence of 

100ng/mL IFNγ, was designed to identify ORFs that disrupt IFNγ-mediated induction 

of PD-L1 cell surface expression.  In principle, failure to bind α-PD-L1 antibody could 

result from abrogation of any step in the IFNγ-JAK-STAT signaling pathway or 

negative transcriptional, post-transcriptional, or post-translational regulation of PD-L1.   

ORF barcodes were PCR-amplified from the genomic DNA of all FACS-sorted 

populations and adapted for next-generation sequencing (Figure 3-4A).  After alignment, 

read counts were analyzed by edgeR camera gene set enrichment analysis to calculate p-

values for gene enrichment in each sorted population.  Enriched populations were 
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normalized to the starting pre-sorted population and to the bulk (PD-L1med staining) 

sorted population.  For the PD-L1 Induction screen, either normalization produced an 

almost identical result, while normalization to the bulk (PD-L1med staining) sorted 

population was statistically preferable for the IFNγ Response screen. 

 

A genome-scale ORFeome screen identifies positive regulators of PD-L1 cell 

surface expression 

Comparison of p-values for the hits from both screens (Figure 3-4B) demonstrates 

very little overlap between the two.  Unsurprisingly, a top hit for the PD-L1 Induction 

screen is PD-L1 itself (Figures 3-4B and 3-5A-C), serving as an intrinsic positive control.  

In addition, several groups of genes exhibited a striking pattern of performance.  First, 

almost every type I interferon included in the ORFeome library induced PD-L1 cell 

surface expression with a p-value of <0.05 (IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, 

IFNA8, IFNA10, IFNA13, IFNA14, IFNA17, IFNB1, IFNL1 IFNW1), and 10 of these 

were among the top 30 hits with a p-value of <0.0013.   

Type I interferons have been shown to induce PD-L1 expression in melanoma 

cells, endothelial cells, dendritic cells, and monocytes (258, 267, 268).  Adding to the 

tissue diversity in which this phenomenon has been observed, our results show that 

overexpression of type I interferons can induce PD-L1 in lung cells.  Notably, type I 

interferons have been shown to induce PD-L2 more potently than PD-L1 in melanoma 
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cells; in three melanoma cell lines, exposure to IFNγ more potently induces PD-L1 than 

exposure to the same dose of IFNα or IFNβ (258).  Our findings demonstrate that, when 

overexpressed, type I interferons can induce PD-L1 as strongly as IFNγ in human 

NSCLC cells. 

-log(p-value) A B 

Figure 3-4. Design and results of two parallel whole-genome ORFeome screens. 
(A) Schematic depicting the design of two parallel whole-genome ORFeome screens: (1) a 
PD-L1 induction screen performed in the absence of IFNγ and (2) a screen for responsiveness 
to IFNγ performed in the presence of 100ng/mL IFNγ. After staining with α-PD-L1 
antibody, cells were FACS-sorted into high, medium, and low-staining populations.  The 
population of most interest for each screen is highighted, with ~5% of cells falling into the 
indicated gate. (B) A heatmap of p-values for the top hits from the PD-L1 Induction and 
IFNγ Response screens, plotted as color-coded values according to the adjacent -log10 scale. 

 



 

 85 
 

Second, we found that multiple members of two gene families scored as strong inducers 

of PD-L1 cell surface expression (Table 3-1).  From the CELF family of RNA-binding 

proteins, CELF3 and CELF5 scored as hits #9 and #16, respectively.  We considered 

that, even in the presence of IFNγ, genes that strongly induce PD-L1 expression may be 

enriched in the corresponding PD-L1high cells.  When we examined the ORFs that 

induced the highest levels of PD-L1 in the presence of IFNγ, we saw that CELF3, 

CELF4, and CELF5 performed as hits #1, #17, and #2, respectively (Table 3-2, Figure 

3-5D).  In addition to the CELFs, three members of the LPAR gene family are among 

the top 25 hits in the PD-L1 induction screen: LPAR1, LPAR2, and LPAR5 (Table 3-

1).  These genes belong to a family of G-protein coupled receptors (GPCRs) that signal 

in response to the small phospholipid lysophosphatidic acid (LPA) (269).   

Among the top PD-L1-inducing ORFs, we observed several additional genes of 

note.  For example, Fcγ Receptor IIA (FCGR2A) enriched in the PD-L1high population 

(Figures 3-5A-C).  In a prior whole-genome antibody-based FACS screen for cell surface 

regulation (data not shown), we observed very strong enrichment of FCGR2A, 

presumably due to its binding of the Fc region of the primary antibody used for staining 

and FACS sorting.  In this screen, to mitigate noise introduced by this potential effect, 

we utilized a primary antibody that is directly conjugated to the red fluorophore APC 

through its Fc region, which should sterically obstruct binding of the Fcγ Receptor.  

This strategy appears to have partially, but not entirely, dampened unintentional 

binding of the Fcγ Receptor to our primary antibody. 
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-log(p-value) 

A 

B 

C 
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Figure 3-5. Performance of ORFs that induce PD-L1 cell surface expression. (A-
C) Average log2-fold-changes between the PD-L1high-sorted versus unstained pre-sorted 
populations are plotted for the top 100 genes, for each indicated pair of replicates. Genes are 
represented by a single dot and are color-coded according to their FDR, determined by edgeR 
camera gene set enrichment analysis. This data was obtained in the absence of IFNγ. (D) 
The strongest PD-L1-inducing ORFs in presence of IFNγ (the IFNγ Response Screen) are 
displayed as a color-coded heatmap of -log10(p-values); all p-values were determined by 
edgeR camera gene set enrichment analysis. The p-value for each gene is shown in 
comparison with its p-value for PD-L1 enrichment obtained in the absence of IFNγ (the PD-
L1 induction screen). 
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Rank Gene P-Value Gene Name 
1 IFNA14 2.04E-09 interferon alpha 14 
2 IFNA17 1.19E-07 interferon alpha 17 
3 MRGPRX4 2.23E-07 MAS related GPR family member X4 
4 IFNA6 3.00E-07 interferon alpha 6 
5 IFNA4 3.86E-07 interferon alpha 4 
6 SFXN5 9.18E-06 sideroflexin 5 
7 IFNB1 1.32E-05 interferon beta 1 
8 IFNA10 2.83E-05 interferon alpha 10 
9 CELF3 3.37E-05 CUGBP Elav-like family member 3 

10 SERBP1 5.67E-05 SERPINE1 mRNA binding protein 1 
11 LPAR1 7.64E-05 lysophosphatidic acid receptor 1 
12 CD274 8.95E-05 CD274 molecule 
13 CWF19L1 1.31E-04 CWF19 like 1, cell cycle control (S. pombe) 
14 IFNA8 1.43E-04 interferon alpha 8 
15 S1PR2 2.40E-04 sphingosine-1-phosphate receptor 2 
16 CELF5 2.44E-04 CUGBP Elav-like family member 5 
17 BHLHA15 3.17E-04 basic helix-loop-helix family member a15 
18 CRTAC1 3.32E-04 cartilage acidic protein 1 
19 LPAR2 4.00E-04 lysophosphatidic acid receptor 2 
20 ZIC3 4.61E-04 Zic family member 3 
21 PPP4R2 4.77E-04 protein phosphatase 4 regulatory subunit 2 
22 IFNA2 4.88E-04 interferon alpha 2 
23 FCGR2A 5.28E-04 Fc fragment of IgG receptor IIa 
24 LPAR5 5.57E-04 lysophosphatidic acid receptor 5 
25 IFNA1 7.83E-04 interferon alpha 1 
54 IL22RA1 4.02E-03 interleukin 22 receptor subunit alpha 1 
57 IFNW1 4.34E-03 interferon omega 1 
58 IFNG 4.38E-03 interferon gamma 
99 IFNA13 8.30E-03 interferon alpha 13 

110 TGFB1 9.39E-03 transforming growth factor beta 1 
113 CMTM4 9.78E-03 CKLF like MARVEL transmembrane domain containing 4 

Table 3-1. List of hits from the PD-L1 Induction Screen.  The top 25 hits from the 
whole-genome PD-L1 induction screen are listed, along with a small selection of additional 
genes of interest.  Gene rank and p-value were determined by edgeR camera gene set 
enrichment analysis, and they are listed along with the full gene names for each hit.  Two 
gene families are highlighted: CELFs (yellow) and LPARs (green). 
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In addition, we found that overexpression of the α subunit of IL-22 Receptor 

(IL22RA1) increases PD-L1 cell surface expression (Table 3-1, Figures 3-5A-C).  IL-22 is 

a member of the IL-10 family of cytokines that typically binds to a heterodimeric 

receptor formed from IL22RA1 and IL-10RB.  Binding of IL-22 to this receptor complex 

leads to JAK-STAT signaling, usually mediated by STAT1, which canonically 

transcriptionally induces PD-L1 through IRF-1 (258, 270-272). Overexpression of the α 

subunit of this receptor may lead to auto-phosphorylation and activation of this well-

characterized PD-L1 regulatory pathway. 

Of note, we recovered CMTM4 as a positive PD-L1 regulator with a p-value of 

0.00978 in the absence of IFN-γ and a stronger p-value of 0.00476 in the presence of 

IFN-γ (Tables 3-1 and 3-2).  In a reciprocal approach, CMTM4 and CMTM6 were 

identified as PD-L1 positive regulators from loss-of-function screens that isolated the 

PD-L1low FACS-sorted population, using either a CRISPR-based (262) or mutagenized 

haploid cell line library (263).  Inversely, in our case, we see that overexpression of the 

CMTM4 ORF results in its enrichment in the PD-L1high sorted population; CMTM6 was 

not in our ORFeome library.   

Finally, we observe that overexpression of TGF-β (TGB1) induces PD-L1 in our 

NSCLC cell line (Table 3-1).  TGF-β is generally an anti-inflammatory cytokine, though 

it has been shown to exert tissue-specific effects in regulating PD-L1 expression.  For 

example, TGF-β represses PD-L1 expression in monocytes (273) and tubular epithelial 

cells in vitro (274).  In contrast, TGF-β induces PD-L1 expression in dendritic cells in 
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vitro (275, 276) and in a model of pancreatic islet transplantation in vivo (277).  We see 

TGF-β enriching in the PD-L1high sorted cell population, as well as an additional 

member of the TGF-β superfamily, BMP4, with a p-value of 0.0045 (Supplemental 

Table S3-1). 

 

Rank Gene P-Value Gene Name 
1 CELF3 5.10E-10 CUGBP Elav-like family member 3 
2 CELF5 1.60E-09 CUGBP Elav-like family member 5 
3 ZIC3 9.10E-07 Zic family member 3 
4 SPSB4 2.10E-06 splA/ryanodine receptor domain and SOCS box containing 4 
5 IFNA14 6.50E-06 interferon alpha 14 
6 ANXA2R 4.30E-05 annexin A2 receptor 
7 IFNA6 6.70E-05 interferon alpha 6 
8 MRGPRX4 9.80E-05 MAS related GPR family member X4 
9 CD274 1.40E-04 CD274 molecule 
10 IFNA17 1.70E-04 interferon alpha 17 
11 MRPS15 5.50E-04 mitochondrial ribosomal protein S15 
12 SFXN5 5.90E-04 sideroflexin 5 
13 CCDC130 8.60E-04 coiled-coil domain containing 130 
14 SERPINA4 1.20E-03 serpin family A member 4 
15 IFNA10 1.20E-03 interferon alpha 10 
16 CLDN14 1.50E-03 claudin 14 
17 CELF4 1.80E-03 CUGBP Elav-like family member 4 
18 B4GALT3 2.70E-03 "beta-1,4-galactosyltransferase 3" 
19 NAT16 3.40E-03 N-acetyltransferase 16 (putative) 
20 CTBP1 3.40E-03 C-terminal binding protein 1 
21 CCNC 3.60E-03 cyclin C 
22 CMTM4 4.20E-03 CKLF like MARVEL transmembrane domain containing 4 
23 PPP2R2C 4.80E-03 protein phosphatase 2 regulatory subunit B gamma 
24 NDUFS6 4.80E-03 NADH:ubiquinone oxidoreductase subunit S6 
25 CLDN19 5.20E-03 claudin 19 

 

Table 3-2. List of ORFs that induce PD-L1 in the presence of IFNγ. Genes that 
produced the highest PD-L1 signal from the IFNγ response screen were determined by 
normalizing the PD-L1high-sorted population to the PD-L1medium-sorted bulk population. P-
values and ranks were calculated by edgeR camera gene set enrichment analysis and the 
CELF family genes are highlighted (yellow). 
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Although SMC4 is not present in this ORFeome library, overexpression of wild-

type Smad proteins typically increase TGF-β signaling activity (278, 279).  The fact 

that SMADs 1, 2, 3, 4, and 9 failed to score significantly in our screen suggests that 

perhaps TGF-β is inducing PD-L1 signaling through its SMAD-independent signaling 

pathway in this context, which can engage the MAPK/Erk pathway, p38 MAPK, 

Rho/Rac, or PI3K/Akt signaling pathways downstream (280); BMP4 can also activate 

these downstream SMAD-independent pathways (281).  The effect of TGFβ is 

therapeutically important, as its presence in tumors correlates with intrinsic resistance 

to anti-PD-L1 blockade (199).  

 

GSEA highlights GPCR signaling as positively regulating PD-L1 

Because a large number of genes scored in the PD-L1 Induction screen (edgeR 

camera gene set analysis found 115 genes with a p-value <0.01), we performed two gene 

set enrichment pathway analyses to identify common pathways and networks among 

these genes.  We removed all type I interferons from the analyses, which otherwise 

predominate the list of pathways obtained.  We used Ingenuity Pathway Analysis (IPA) 

and DAVID Functional Annotation (282) to determine the pathways and networks that 

result in cell surface expression of PD-L1. 

Both analyses recognized the large number of G-protein coupled receptors 

(GPCRs) that scored in the screen; 12 GPCRs enriched with a p-value <0.01, in 

addition to a guanine nucleotide exchange factor (GEF) and a monomeric G-protein  
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(Figures 3-6 and 3-7).  Three of these GPCRs are members of the same family, the 

lysophosphatidic acid receptor family (LPARs).  This GPCR family responds to 

glycerophospholipid lysophosphatidic acid species (LPA) to activate a variety of 

downstream pathways including the Rho/Rac, Ras/MAPK, and PI3K/Akt pathways 

(283).  All of these pathways have been linked to transcriptional or post-transcriptional 

regulation of PD-L1 in one or more contexts (284-286).   

 

Figure 3-6. DAVID Gene Ontology pathway analysis of PD-L1 induction screen.  
Genes that significantly enriched in the PD-L1 Induction Screen (with a p-value of <0.01) 
were submitted to DAVID for functional annotation, after filtering out all type I interferons 
(which otherwise predominated the analysis). The top 25 identified pathways are shown, 
ordered and color-coded by the p-value returned by DAVID for their enrichment.  The 
percent of genes in the pathway that scored in our screen is plotted on the x-axis.   
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-log 
(p-val) 
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C 

Figure 3-7. GPCRs increase PD-L1 cell surface expression.  (A) P-values determined by 
edgeR camera gene set enrichment analysis are plotted as a heatmap for the 12 GPCRs that scored 
with a p-value <0.01, as well as one GEF and the only monomeric G protein that also met this 
cutoff. (B) List of genes plotted in (A) along with their complete gene names. (C) A top network 
identified by Ingenuity as enriched in the PD-L1 Induction screen. Red shading indicates genes that 
scored in the screen with a p-value <0.01 determined by edgeR, and the legend identifies the type of 
protein in the network its shape. 
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  Examination of the barcodes corresponding to LPARs 1, 2, and 5 showed 

consistent, strong enrichment in the PD-L1high sorted cell population across all three 

replicates (Figure 3-8).  There are two additional LPAR family members in the library 

(LPAR4 and LPAR6) that did not score, and each of these genes has only 2 or 3 

barcodes; while LPAR6 does not appear to enrich, the barcodes for LPAR4 are 

inconsistent (Supplemental Figure S3-1).  It is important to note that the H1299 cell 

line is KRAS wild-type but harbors an activating NRAS mutant; thus, it is perhaps the 

PI3K-Akt downstream signaling of the LPAR pathway that is predominantly important 

in this context.  

IPA identified several additional pathways of note (Supplemental Figure S3-2A).  

First, it discovered a network of enriched genes centered around activation of Myc, 

which is known to be capable of transcriptionally up-regulating PD-L1 (Supplemental 

Figure S3-2B) (287, 288), though MYC itself is not in the ORFeome library.  Second, 

both IPA and DAVID analysis identified the PI3K-Akt pathway as positively regulating 

PD-L1 cell surface expression.  Finally, IPA identified the Wnt pathway as enriching in 

the PD-L1 induction screen, partially by virtue of Wnt3A (p-value=0.0077) and Wnt16  
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(p-value=0.026) themselves enriching.  The Wnt pathway has been associated with 

immunoevasion (289) but not directly connected to PD-L1 expression.   

A B C 

D E F 

G H I 

Figure 3-8. Performance of barcodes for LPAR genes that scored in the PD-L1 
Induction screen. Normalized read counts are shown for two timepoints: the pre-sorted 
unstained library of cells, and the PDL1high sorted cell population. Each line represents an 
individual barcode for the corresponding gene. Performance in all 3 replicates is depicted for 
LPAR1 (A-C), LPAR2 (D-F), and LPAR5 (G-I).  
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CELF3 is a positive regulator of PD-L1 expression that is amplified in lung 

cancer 

 Among the genes that enhanced PD-L1 cell surface expression, the most striking 

previously unreported putative regulators are the CELF genes.  CELF3 (rank=9, p-

value=3.37x10-5) and CELF5 (rank=16, p-value=2.44x10-4) were among the top genes 

enriched in PD-L1high cells in the absence of IFNγ.  Another family member, CELF4, 

also enriched in this sorted cell population, but not as strongly (p-value=0.072).  

However, in the presence of IFNγ, CELF3 (rank=1, p-value=5.11x10-10), CELF4 

(rank=17, p-value=1.83x10-3), and CELF5 (rank=2, p-value=1.63x10-9) all scored as top 

hits.  Examination of the performance of each barcode corresponding to CELF3 and 

CELF5 in the PD-L1 induction screen showed consistent, robust enrichment of barcodes 

across all three replicates (Figures 3-9A-F). 

The CUG-BP, Elav-like Family (CELF) gene family contains 6 members in homo 

sapiens: CELF1-6 (290).  CELF3, CELF4, and CELF5 are the only members of the 

CELF family included in the ORFeome library, and as discussed above, they all 

robustly induced PD-L1 cell surface expression.  These genes encode RNA-binding 

proteins which modulate several steps of RNA processing including alternative splicing, 

deadenylation or polyadenylation, mRNA stability, and translation efficiency (290-292).  

Though they share a common structure of three RNA-binding domains (RRM) with a 

divergent domain (DD) between RRMs 2 and 3, CELF proteins fall into two subfamilies 

based on their expression and activity patterns: CELF1-2 and CELF3-6 (293).  Whereas  
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Figure 3-9. CELF3 positively regulates PD-L1 and is amplified in lung tumors. (A-
C) Normalized read counts for barcodes corresponding to CELF3 in the pre-sorted unstained 
library population and the PD-L1high sorted cell population, in all three replicates. Each line 
corresponds to an individual barcode associated with CELF3. (D-F) Normalized read counts as 
described above, for CELF5. (G-H) Analysis of CELF3 (G) and CELF5 (H) expression from 
RNA-seq data (RPKM) across a panel of 1019 cancer cell lines, separated by tissue type as 
indicated. (I) Frequency of amplification of the indicated genes in lung adenocarcinoma. (J) 
Kaplan-Meier survival curve depicting the effect of CELF3 amplification on survival in lung 
adenocarcinoma patients.  
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Figure 3-9 (Continued). CELF3 positively regulates PD-L1 and is amplified in lung tumors. 
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CELF1-2 expression is more ubiquitous, CELF3-6 expression in adult tissue and during 

embryogenesis is restricted almost entirely to the nervous system (291, 292, 294).  

CELF1-2 have received far more attention than CELF4-6 in the literature, with no RIP-

seq or CLIP-seq data available for CELF4-6, and no common RNA-binding consensus 

sequence being known. 

 We asked if this family of putative PD-L1 regulators is expressed in lung cancer.  

To address this question, we surveyed a compilation of RNA-seq data from 1019 cancer 

cell lines.  We found that both CELF3 and CELF5 are expressed specifically in lung 

cancer cell lines, and also to some degree in cancer cell lines derived from brain tissues 

(Figures 3-9G and 3-9H).  We also examined whether CELF family members undergo 

mutation or copy number alterations in tumors.  We find that CELF3 is amplified in 

8.91% of lung adenocarcinoma but is not subject to similar levels of copy number 

alteration in other tumors (Figure 3-9I).   

Unlike CELF4 and CELF5, CELF3 falls into a region of frequent focal and large-

scale amplification in lung adenocarcinoma, 1q21.3 (295).  This focal region contains a 

proto-oncogene driver, aryl hydrocarbon receptor nuclear translocator (ARNT), which 

may explain the frequency of its amplification in lung cancers.  We performed a survival 

analysis to ask if CELF3 amplification has a statistically significant correlation with 

prognosis using a dataset from lung adenocarcinoma patients (295); we found that 

increased copy number of CELF3 is associated with worse prognosis (Figure 3-9K).  

Although this finding is consistent with its putative effect on PD-L1 levels, there are  
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Figure 3-10. Results of the IFNγ Response Screen. (A-C) Average log2-fold-
changes between the PD-L1low sorted versus unstained pre-sorted populations are plotted 
for the top 50 genes, for each pair of replicates. Genes are represented by a single dot and 
are color-coded according to their FDR, determined by edgeR camera gene set enrichment 
analysis.  This data was obtained in the presence of IFNγ. (D) The ORFs which enrich 
most strongly in the IFNγ Response screen are displayed as a heatmap of -log10(p-values); 
all p-values were determined by edgeR camera gene set enrichment analysis. The p-value 
for each gene is shown in comparison with its p-value in the PD-L1 induction screen and 
plotted by color-coding according to the adjacent color scale. 
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many co-variates with CELF3 amplification, including amplification of the driver gene 

ARNT.   

 

SPDYE2/4 or CLK2 Overexpression Interferes with IFNγ Signaling 

 In addition to screening for ORFs that induce PD-L1 expression, we also 

performed a parallel FACS-based ORFeome screen in the presence of IFNγ, to screen 

for ORFs that block induction of PD-L1.  The object of this screen was to identify 

ORFs that interfere with the IFNγ signaling response, using PD-L1 as a readout of 

functional IFNγ signaling.  Because defects in IFNγ signaling appear to be the most 

significant cause of acquired resistance to immunotherapy (201, 265), it is important to 

identify genetic modifiers of this pathway. 

 Unlike the PD-L1 Induction screen, in which a large set of genes enriched in the 

PD-L1high population with a significant p-value, the IFNγ Response screen revealed two 

genes with a particularly high p-value for enrichment in the PD-L1low population: 

SPDYE2 and SPDYE4 (Figures 3-10 and 3-11, Table 3-3).  These genes encode two 

members of the Speedy family of non-cyclin CDK activators.  Speedy genes are 

mammalian orthologs of the Xenopus gene XRINGO (Xenopus Rapid Inducer of G2-M 

in Oocytes), and they include 12 related family members, 4 of which are in our 

ORFeome library (SPDYC, SPDYE2, SPDYE4, and SPDYE9P) (296).   

Although most of these family members promote cell cycle progression through 

activation of CDK1, CDK2, and CDK5 (297), Speedy E (SPDYE1) has been shown to 
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impair cell cycle progression of mammalian U2-OS osteosarcoma cells by sequestration 

of CDK1 from its substrates (298).  Thus, it remains unclear whether SPDYE2 and 

SPDYE4 impair or enhance cell cycle progression in mammalian cells.  Nonetheless, it 

may be relevant that PD-L1 expression is regulated by the cell cycle, through CDK4/6 

phosphorylation of SPOP, which mediates ubiquitination and degradation of 

  
Rank Gene P-Value Gene Name 

1 SPDYE2 3.33E-12 speedy/RINGO cell cycle regulator family member E2 
2 SPDYE4 5.39E-12 speedy/RINGO cell cycle regulator family member E4 
3 BANP 2.70E-08 BTG3 associated nuclear protein 
4 SALL4 2.73E-07 spalt like transcription factor 4 
5 IRF4 2.94E-07 interferon regulatory factor 4 
6 CD80 2.50E-06 CD80 molecule 
7 TMPRSS2 4.18E-06 transmembrane serine protease 2 
8 CLK2 1.84E-05 CDC like kinase 2 
9 IL21R 4.14E-04 interleukin 21 receptor 

10 GCK 9.82E-04 glucokinase 
11 CD99L2 4.08E-03 CD99 molecule like 2 
12 FAM32A 6.21E-03 family with sequence similarity 32 member A 
13 SPIRE1 1.19E-02 spire type actin nucleation factor 1 
14 ZFP36L1 1.66E-02 ZFP36 ring finger protein like 1 
15 OSM 1.75E-02 oncostatin M 
16 TMPRSS13 2.07E-02 transmembrane serine protease 13 
17 FGR 2.31E-02 FGR proto-oncogene, Src family tyrosine kinase 
18 IRF8 2.84E-02 interferon regulatory factor 8 
19 COPS5 3.00E-02 COP9 signalosome subunit 5 
20 NAE1 3.94E-02 NEDD8 activating enzyme E1 subunit 1 
21 HSBP1 5.73E-02 heat shock factor binding protein 1 
22 GPA33 6.43E-02 glycoprotein A33 
23 TBCA 7.60E-02 tubulin folding cofactor A 
24 NAPA 7.61E-02 NSF attachment protein alpha 
25 GRHL2 8.38E-02 grainyhead like transcription factor 2 

Table 3-3. List of Genes that Scored in the IFNγ Response Screen.  Genes that 
enriched in the PD-L1low sorted cell population after IFNγ treatment were ranked according 
to their p-value determined by edgeR camera gene set enrichment analysis.  The top two 
families of genes are highlighted: SPDYE genes (yellow) and TMPRSS genes (green). 
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PD-L1 (264).  Examination of the barcodes corresponding to SPDYE2 and SPDYE4 

showed strong enrichment in the PD-L1low sorted cell population of all barcodes 

corresponding to the SPDYE2 and SPDYE4 ORFs across all three replicates (Figure 3-

11). 

Although SPDYE2 and SPDYE4 outperform the rest of the library, it is 

noteworthy that CD80 is among the top ORFs that block PD-L1 induction in the 

presence of IFN-γ.  CD80 is a direct ligand of PD-L1, and it binds to the same region of 

PD-L1 as the monoclonal antibody we used for screening (299).  CD80 overexpression 

on the cell surface may physically interfere with antibody binding, due to direct binding 

and sequestration of PD-L1.  It is also significant that, from a whole-genome library, 

two related transmembrane serine proteases (TMPRSS2 and TMPRSS13) appear to 

block PD-L1 induction; overexpression of these serine proteases may interfere with cell 

surface display of PD-L1 in some way. 

The most clinically relevant gene that impaired the ability of IFNγ to induce PD-

L1 is CDC-like kinase 2 (CLK2).  CLK2 is very frequently amplified and overexpressed 

in breast (300) (21.36% of METABRIC), prostate (29.9%), and pancreatic (22.2%) 

cancer (301).  These three tumor types notoriously respond poorly to immunotherapy, 

particularly breast and prostate cancer (189).  Based on our results, we would 

hypothesize that tumors with CLK2 amplification may have intrinsic resistance to 

immunotherapy.  Segregating patients based on CLK2 status may improve outcomes in 

these immunotherapy-intractable tumor types.   
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Figure 3-11. Performance of barcodes for top hits in the IFNγ Response 
Screen. Normalized read counts of barcodes mapped to SPDYE2 (A), SPDYE4 (B) 
and BANP (C) are shown for three timepoints of the IFNγ response screen: the pre-
sorted unstained library of cells, the bulk PD-L1medium sorted cell population, and the 
PDL1low sorted cell population. Each line represents an individual barcode corresponding 
to the indicated gene. Performance in each replicate is depicted in a separate panel. 
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Furthermore, a straightforward mechanism for the role of CLK2 in antagonizing 

IFNγ signaling immediately suggests itself from the literature.  CLK2 is a dual-

specificity kinase that phosphorylates a variety of serine/threonine and tyrosine-

containing substrates, one of which is PTPN1 (302).  PTPN2 has been shown to 

antagonize JAK-Stat signaling by directly dephosphorylating JAK1 and STAT1 (266, 

303, 304).  Thus, CLK2 phosphorylation of PTPN1 (and/or PTPN2), which has been 

shown to promote its function (302), likely directly antagonizes JAK-Stat signaling.  

This may result in defective antigen presentation machinery and cause tumors with 

CLK2 amplification to be intrinsically resistant to immunotherapy.  

 

III. Discussion 

 We performed parallel whole-genome screens for regulators of PD-L1 expression 

and modifiers of IFNγ signaling using a barcoded ORFeome library.  We recovered a 

distinct set of positive PD-L1 regulators from our gain-of-function study, compared with 

the hits recovered from loss-of-function screening.  Burr et al. (262) and Mezzadra et al. 

(263) found that interfering with components of the JAK-STAT signaling pathway, 

CMTM6, or PD-L1 itself led to the strongest reduction in PD-L1 signal by FACS.  

While our results included CMTM4, JAK1 and JAK2 were not in our ORFeome library, 

and we found that overexpression of interferons themselves, rather than interferon 

receptors, was more potent in upregulating PD-L1, in the presence or absence of IFNγ.  

Overall the signal to noise from FACS-sorting for PD-L1high cells was favorable, leading 
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to a large list of recovered genes with significant p-values.  The overlap and distinctions 

in these gene lists reflect the pros and cons of loss-of-function versus gain-of-function 

screening approaches to this type of biological question. 

Among the positive PD-L1 regulators discovered by our screen, we found that the 

RNA-binding proteins CELF3, CELF4, and CELF5 are capable of robustly inducing 

PD-L1 expression when overexpressed.  We found that CELF3 and CELF5 are 

expressed in lung cancer cell lines, and that CELF3 is amplified in 8.9% of lung 

adenocarcinoma.  Its amplification may be driven by its chromosomal linkage to the 

lung cancer oncogene ARNT. 

Although the complete recovery of these three family members in both screens 

and the consistency of barcode performance corresponding to these ORFs provides a 

fairly large degree of internal validation, we have cloned the ORFs encoding CELF3, 

CELF4, and CELF5 into an inducible lentiviral vector for individual validation.  We 

plan to test the straightforward hypothesis that these proteins are regulating PD-L1 

post-transcriptionally, as their primary functional domains are RNA-binding motifs.  We 

plan to test whether they are affecting stability of the PD-L1 transcript, or perhaps 

promoting alternative splicing.  There are two main transcript variants of PD-L1, one of 

which lacks the exon required for interaction with PD-1, as well as recognition by the 

antibody used in our screen (305).   

 We found 12 GPCRs that positively regulate PD-L1 cell surface expression in our 

NSCLC line, including three members of the LPAR family.  Several connections 
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between GPCR signaling and PD-L1 imply possible mechanisms for this regulatory 

influence.  For example, KRAS signaling is known to regulate PD-L1 post-

transcriptionally, through phosphorylation of the 3’UTR-binding protein TTP (285).  In 

addition, cross-talk with PI3K, MAPK, and NFκB signaling can upregulate PD-L1 

transcript levels (101).  Importantly, the H1299 NSCLC cell line possesses an activating 

mutation in NRAS.  Because PI3K signaling downstream of LPARs is particularly 

strong (283), we hypothesize that the PI3K signaling pathway may be mediating this 

GPCR effect, consistent with the observation that interfering with the PI3K pathway 

leads to loss of PD-L1 expression (258).  Because PI3K signaling has complex roles in 

potentiating and responding to interferon signaling (306), we plan to test if these 

GPCRs are inducing interferon expression.  

 Finally, we recovered a group of genes that block IFNγ-induced expression of PD-

L1.  These genes, if overexpressed in tumors, would represent potential resistance 

mechanisms to immunotherapy.  For this reason, we are exploring datasets such as the 

Van Allen et al. RNA-seq and survival analysis (307), to ask if overexpression of these 

genes correlate with poor response to immunotherapy.  Two genes belonging to the same 

family achieved a notably high p-value in this screen: SPDYE2 and SPYDE4.  We have 

cloned these ORFs into a lentiviral vector to test the effect of their overexpression on 

the cell cycle, and to ask if their effect on the cell cycle is directly responsible for 

abrogating PD-L1 expression. 



 

 107 
 

 Potentially the most important finding from our IFNγ Response screen is the 

observation that CLK2 overexpression interferes with functional IFNγ signaling.  CLK2 

is frequently amplified in breast, prostate, and pancreatic cancer, three tumor types 

which have responded poorly to immunotherapy in clinical trials, for reasons that are 

not well understood (189).  Based on our results, we suggest that the fraction of 

patients with breast, prostate, or pancreatic cancer that possess CLK2 amplification 

(~20-30%) may be intrinsically resistant to immunotherapy.  Segregating patients based 

on CLK2 status may improve response rates in these immunotherapy-intractable tumor 

types, and supplementation with CLK2 inhibitors in tumors with CLK2 amplification 

may improve outcomes.   

 

IV. Methods 

Cell culture  

Human H1299 cells and all clones derived from this parental cell line were 

cultured in RPMI-1640 Medium (ATCC modification) supplemented with 10% (v/v) 

fetal bovine serum (FBS), 100 units/mL penicillin, and 100 µg/mL streptomycin.  

HEK293T cells, utilized for lentivirus production, were maintained in DMEM 

supplemented with 10% FBS, 100 units/mL penicillin, and 100 µg/mL streptomycin.  

U2-OS osteosarcoma cells from the American Tissue Type Collection (ATCC), utilized 
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for titering virus, were cultured in DMEM supplemented with 10% FBS, 100 units/mL 

penicillin, and 100 µg/mL streptomycin. 

 

Lentivirus production and titering 

To produce lentivirus, HEK293T cells were seeded in tissue culture dishes at a 

density equivalent to 6x105 cells per 0.9 cm2 surface area.  Plasmid DNA was diluted 

into serum-free medium with a lentiviral packaging plasmid mixture of SV40 VSVg, 

Gag/Pol, Tat, and Rev, and transfected with PolyJet.  Cell culture media was changed 

24 hours later.  After 48 h, the supernatant was harvested, filtered through a low-

protein binding HT Tuffryn® membrane with 0.45 µm pores (Pall cat. #4184), and 

stored at -80°C.  Lentiviral titer was determined by transducing the cell line of interest 

or U2-OS cells plated at clonogenic density with serial dilutions of virus in the presence 

of 4-8 µg/mL polybrene.  After selecting with puromycin, colonies were counted to 

determine viral titer.   

 

H1299 clone design and selection 

First, the non-small cell lung carcinoma cell line H1299 was assessed for its 

suitability to this screening application.  H1299 cells were stained with an APC-

conjugated CD274 monoclonal antibody (eBioscience, clone MIH1) or its APC-

conjugated mouse IgG1 κ isotype control, in the presence or absence of varying doses of 
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IFNγ, ranging from 50ng/μL-1μg/μL; these stained cells were analyzed by fluorescence-

activated cell sorting (FACS).  100ng/μL IFNγ or higher dosing induced maximal 

expression of PD-L1, so 100ng/μL was selected as the optimal dose for further 

experimentation.  Moreover, H1299 background expression of PD-L1 in the absence of 

IFN-γ was found to relatively low, even when stained with 5x or 10x the recommended 

antibody dose.  Thus, because of its low background PD-L1 cell surface expression and 

its highly inducible expression of PD-L1 in response to IFNγ, as well as its 

therapeutically relevant lung cancer origin, the H1299 cell line was chosen as the basis 

for screening. 

To produce an optimal clonal screening context, parental H1299 cells were 

transduced in the presence of 8μg/mL polybrene with lentivirus containing an rtTA-neo 

construct.  This construct was previously derived from pInducer20 (248) by BstXI 

digestion, gel purification, self-ligation, and sequence verification.  After selection with 

500μg/mL neomycin, cells were plated at clonogenic density and 96 clones were 

individually isolated for further study. 

These 96 individual clones were tested for their background cell surface 

expression of PD-L1, as well as their cell surface expression of PD-L1 induced by 

treatment with IFN-γ.  Among these 96 clones there was some variability in background 

PD-L1 expression in the absence of IFN-γ, as well as the level of PD-L1 induced in the 

presence of IFN-γ.  12 clones with the lowest background PD-L1 cell surface expression 

and highest PD-L1 inducibility in response to IFN-γ were chosen for further selection. 
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These 12 selected clones were divided into two populations: one for testing, and 

one for maintenance.  The test population was transduced in the presence of 8µg/mL 

polybrene with lentivirus containing a pBI-TRE construct, which was cloned and 

generously shared by Qikai Xu.  This construct possesses a tet-On bidirectional TRE 

promoter, cloned into the pHAGE backbone from pBI-TRE (Clontech) and engineered 

to drive expression of GFP and DsRed.  After selection of this construct with 

puromycin, GFP and DsRed were induced by treatment with 1µg/µL doxycycline, and 

fluorophore expression was measured in these 12 clones by FACS.  The 5 clones with 

the most highly inducible GFP and DsRed expression upon doxycycline treatment were 

chosen for the final phase of characterization.   

Finally, leakiness from integrated rtTA in the 5 most inducible clones was 

assessed using the same pBI-TRE-infected test cells.  Levels of DsRed and GFP induced 

with 1μg/μL doxycycline were compared to levels in the absence of doxycycline and 

normalized to uninfected maintenance populations.  Clone 2 exhibited the best induction 

and lowest background of DsRed and GFP in the test population.  Test populations 

were discarded and the maintenance population of clone 2 was expanded to serve as the 

basis for screening. 

 

Whole-Genome ORFeome Screen 

 A whole-genome barcoded open reading frame (ORF) library was generated as 

previously described (255).  In brief, a pool of 24-mer barcodes was subcloned into the 
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pHAGE-CMV-Dest-PGK-puro vector to generate a pHAGE-CMV-Dest-PGK-puro-3’ 

barcoded library.  LR reactions were performed between this library and pDONR221 

Orfeome v8.1 pools, which contain 10,298 unique genes.  Barcode-ORF pairs were 

mapped by Illumina sequence, revealing an average complexity of 5 barcodes per gene.  

Although it is unlikely to affect the function of most ORFs, this LR reaction produces a 

small 9 amino acid sequence (NPAFLYKVV) at the C-terminus of the protein, before 

each stop codon. 

 This barcoded ORFeome library, containing a total of ~12.8K ORFs, was 

packaged into lentivirus in a pooled format, and titer was measured by the colony 

formation assay in U2-OS cells described above.  Functional titer was confirmed in a 

pilot test infection of H1299 cells before proceeding with screen infection; after infection 

and puromycin selection at estimated multiplicity of infection (MOI) ranging from 0.1-1, 

visual inspection of the percent of cell death was utilized to confirm the correct titer. 

 A pooled ORFeome screen was then performed by transducing H1299 cells in the 

presence of 8µg/mL polybrene with the barcoded ORFeome library, at an MOI of 0.1 

and a representation of 1000 cellular integrations per ORF.  After selection in 3µg/mL 

puromycin for 3 days and expansion for 2 days, the screen was split into two equivalent 

populations, each of which maintained the original representation of 1000 cellular 

integrations per ORF.  One screen population was treated with 1μg/μL doxycycline for 

48 hours, while the second population was treated with 1μg/μL doxycycline for 48 hours 

and 100ng/μL IFN-γ for the latter 24 hours.  After treatment, cells were harvested and 
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a pre-sort starting pellet was collected from both IFNγ+ and IFNγ- populations before 

proceeding with cell staining.  The remaining cells were stained with an APC-conjugated 

CD274 monoclonal antibody (eBioscience, clone MIH1), subjected to FACS sorting, and 

pelleted for analysis.  At least 12x106 cells were sorted for each replicate, ensuring 

maintenance of the entire representation of 1000 cellular integrations per ORF.  For 

both screens, three populations were collected from sorting: PD-L1high, PD-L1med, and 

PD-L1low.  In each case, gates were set so that the PD-L1high and PD-L1low populations 

received ~5% of stained cells. 

Screen cell pellets were lysed overnight at 55°C in 10mM Tris pH8.0, 10mM 

EDTA, 0.5% SDS, and 0.5mg/mL proteinase K.  Genomic DNA was isolated from cell 

pellets by phenol:chloroform extraction using Phaselock tubes (5 PRIME), followed by 

chloroform extraction.  RNase A was added at a final concentration of 25μg/mL and 

incubated for 4 hours at 37°C before a second round of phenol:chloroform and 

chloroform extractions.  DNA was ethanol precipitated, recovered by centrifugation, 

washed three times with 70% ethanol, and resuspended in 10mM Tris-Cl pH 8.5.  

ORF barcodes were PCR-amplified from resuspended genomic DNA and adapted 

for Illumina sequencing through the addition of a P5 adapter, standard Illumina primer 

binding site, and a stagger sequence of variable length (0-8bp) 5’ of the ORF barcode, 

followed by a 3’ Illumina index sequence primer binding site, a 7 base pair index 

sequence, and a P7 adaptor.  The relative representation of library reagents in each 
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sample was determined by Illumina sequencing of PCR-amplified ORF barcodes on a 

NextSeq500 System. 

 

Analysis of Screen Results 

Sequencing reads were trimmed to isolate ORF barcodes and aligned to the 

reference library using Bowtie (308).  Read counts were analyzed by MAGeCK (223) 

and edgeR (224), utilizing camera gene set analysis to calculate gene rank lists, p-values, 

and FDRs for each gene.  The log2-fold-change for each barcode was manually 

determined by normalizing samples for total read counts and then calculating the log2-

fold-change for each barcode between the relevant sorted bin and the pre-sorted starting 

cells.  The average log2-fold-change for each gene was calculated by averaging the fold-

changes for all barcodes corresponding to the given ORF. 

Pathway analysis was performed on analyzed read counts from both screens, 

using two methods.  First, all genes meeting a cutoff p-value of 0.01 by edgeR were 

submitted to the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) version 6.8 (282), after removing all type-I interferons from the submitted 

gene list.  Similarly, all genes meeting a cutoff p-value of 0.01 by edgeR, except the type 

I interferons, were analyzed through the use of Ingenuity Pathway Analysis (IPA) 

(Qiagen, Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-

analysis). 
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The frequency of CELF3 amplification in lung adenocarcinoma was calculated by 

downloading CNA files for all lung adenocarcinoma studies with available CNA data 

through cBioPortal (301, 309).  CELF3 expression in CCLE cell lines was determined 

from CCLE cell line RNA-Seq data, which was downloaded and compiled by Kamila 

Naxerova.  The CELF3 survival analysis was performed with a publicly available 

dataset including both CNA data and survival information from 183 lung 

adenocarcinoma patients (310).   
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Chapter 4: A systems approach to mapping the functionality of cancer 

driver genes 

 

Attributions 

The work presented herein was conceived by Steve Elledge and myself.  I 

selected, designed, and optimized conditions for the 30 HMEC screens described, and 

performed 23/30 of the HMEC screens in their entirety; the results of many of these 

screens (outlined in Figure 4-13) are pending sequencing and analysis.  Eric Wooten 

performed the tissue culture for the 7 TSG and OG drug screens outlined in Figure 4-13.  

I generated and titered library lentivirus used for all screens, performed all genomic 

DNA extractions, PCRs, performed all analysis contained herein, and wrote the 

following chapter.   

Teresa Davoli and Yumei Leng designed the oncogene library, and Yumei Leng 

performed the site-directed mutagenesis and cloning steps involved in generation of OG 

library pools. Mei Yuk Choi performed infections, puromycin selection, and cell 

passaging for OG and TSG screens in p53+/- HCECs and HPNEs, as well as 

constitutive promoter-driven OG library screens in HMECs and hTERT-IMR90s. 

Mamie Li performed cloning steps to generate the shRNA and CRISPR TSG 

libraries and ORF OG libraries.  Qikai Xu and Teresa Davoli designed the shRNA and 

sgRNA sequences used to generate the TSG libraries.  Rupesh Patel performed the 

hTERT-IMR90 CRISPR TSG screen as the proliferation control arm for his senescence 
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bypass screen.  Timothy Martin generated the clonal p53-/- HCEC and p53-/- HPNE 

cell lines.   

In collaboration with Kornelia Polyak’s lab, Andriy Marusyk performed the 

orthotopic injections for the in vivo pilot screen and Doris Tabassum performed the 

orthoptic injections, tumor measurements, and luciferase imaging for the in vivo 

CRISPR screens. 

 

I. Introduction 

Numerous genes undergo point mutations in the course of tumorigenesis, yet only 

a fraction of these genes functionally contribute to the tumorigenic process.  The most 

potent drivers of oncogenesis have been discovered and recurrently recovered through 

tumor sequencing efforts (311); these genes have been termed “mountains,” reflecting 

their high frequency of alteration in tumors (12).  However, driver genes that are less 

frequently mutated, termed “hills,” nonetheless can play an important role in tumor 

formation, and can be challenging to identify from tumor sequencing data.  Several 

analyses have interpreted point mutations in tumors with the goal of identifying driver 

genes (12, 312), and the Pan-Cancer Atlas recently released a final consensus list of 299 

driver genes (26). 

We developed an approach to this computational challenge called Tumor 

Suppressor and Oncogene (TUSON) Explorer (15).  The TUSON Explorer algorithm 

computes the likelihood of every gene being either a tumor suppressor gene (TSG) or 
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oncogene (OG) based on the pattern of mutations that occur in that gene in tumor 

sequencing data. The analysis relies upon simple principles: it assumes that the ratio of 

functionally impactful to functionally benign mutations should be higher for a driver 

versus a passenger gene (Figure 4-1).  Furthermore, it expects that mutations are more 

likely to be clustered in particular positions along the length of the gene body for OGs 

rather than TSGs, because there are fewer potential gain-of-function point mutations 

than loss-of-function mutations in general (Figure 4-1).  

TUSON Explorer predicted a larger list of putative driver genes with a 

statistically significant p-value than most similar studies.  We utilized the predictions 

generated by TUSON Explorer to create small genetic sublibraries targeting the top 500 

TSGs and top 350 OGs, to utilize for systematic genetic screens.  We created shRNA 

Neutral Gene Oncogene Tumor Suppressor 

Figure 4-1. Pattern of Mutations Expected by TUSON Explorer for a neutral 
gene, a TSG, or an OG. Schematic depiction of the mutation patterns interpreted by 
TUSON Explorer in predicting the likelihood that any given gene is a neutral gene, a TSG, 
or an OG. Compared to neutral genes, TSGs are expected to display a higher proportion of 
nonsense and functionally impactful missense point mutations. Furthermore, functionally 
impactful point mutations in OGs should be clustered along the length of the gene body. 
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and CRISPR-based libraries to the top 500 TSGs, and barcoded ORF libraries to the 

top OGs.  The compact nature of these libraries enabled high-throughput screening.   

We sought to systematically explore if TUSON-predicted TSGs or OGs could 

functionally drive cancer, either by promoting proliferation or other hallmark cancer 

phenotypes.  To that end, we selected and optimized conditions that recapitulate both 

classic and stress hallmark phenotypes of cancer; we screened both the TSG and OG 

library in these conditions.  In addition, recent work has shown that driver genes can 

vary significantly by tissue type (255, 313).  Thus, we screened both the TSG and OG 

libraries for proliferation in immortalized cell lines of four different tissue types, to 

uncover driver genes and compare differences in genes that drive proliferation in cell 

lines derived from four different tissue sources.  

 

II. Results 

Screens of TSG and OG Libraries Identify Proliferation Drivers and Reveal 

Tissue-Specific Proliferation Pathways  

Based upon TUSON Explorer’s predictions for the likelihood of genes being either 

a TSG or OG, we designed two sets of genetic sublibraries: TSG libraries and an OG 

library.  For TSGs, we designed both CRISPR and shRNA-based libraries containing 10 

gRNAs or shRNAs targeting the top 500 genes predicted to be TSGs by TUSON 

Explorer.  For OGs, we generated a barcoded ORF library combining 150 genes whose 
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mutational signatures implicate them as potential OGs by TUSON Explorer with 172 

genes that are likely to be OGs based on prior screen data (255, 314), frequent 

amplification in tumors (21), or previous annotation as cancer drivers (22, 315).  To this 

pool of genes, we added 150 OGs altered by site-directed mutagenesis to include the 

most common point mutation found in tumors.  Thus, the OG library contains a 

mixture of 300 wild-type and 150 mutant ORFs corresponding to known and predicted 

OGs. 

We performed a series of systematic screens with these libraries, beginning with 

screens for proliferation in four independent immortalized non-cancerous cell lines.  

These lines included telomerase (hTERT)-immortalized human mammary epithelial cells 

(HMECs), hTERT-immortalized human nestin-expressing pancreatic epithelial cells 

(HPNEs), human colonic epithelial cells (HCECs), and human fetal lung fibroblasts 

(IMR90s).  Importantly, hTERT-HMECs lose their luminal lineage markers in culture 

and become more similar to basal-like cells (316, 317).  In this group of screens, we 

intended to ask two related questions: first, did TUSON predict novel TSGs or OGs 

that functionally drive proliferation?  And second, are there differences in genes that 

drive proliferation in one tissue context versus others? 

For each of these screens, we transduced the corresponding cell line with either 

the OG or TSG library, at a multiplicity of infection of 0.2 and a representation of 1000 
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cellular integrations per sgRNA or 500 cellular integrations per ORF barcode.  After 

puromycin selection, we collected initial cell pellets and passaged the cells for 12 

population doublings.  We isolated genomic DNA from initial and final cell pellets and 

OG Library TSG Library 

A B 

OG Library TSG Library 

C D 

Figure 4-2. Correlation of TSG and OG library performance in proliferation 
screens of immortalized cell lines.  (A-B) Correlation between proliferation screens 
performed in the indicated immortalized cell lines with either the CRISPR TSG library (A) or 
the ORF OG library (B) is depicted as a Pearson correlation matrix.  The log2-fold-change of 
each gene was used to calculate Pearson correlation coefficients, which are displayed and color-
coded according to the adjacent color scale. (C-D) Hierarchical clustering of all statistically 
significant log2-fold-changes from proliferation screens of the TSG (C) or OG (D) library in 
the four indicated cell lines. 
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PCR-amplified gRNAs or ORF barcodes to determine the relative distribution of 

reagents at the beginning versus the end of the screen.  We calculated this difference as 

an average log2-fold-change for each gene and determined the p-value for each gene’s 

performance by MAGeCK (223) for CRISPR and edgeR (224) for ORFs.   

We began by calculating the correlation between screens performed in different 

cell lines, comparing the log2-fold-changes of all genes (Figure 4-2).  We found all 

Pan-Cancer Atlas driver 
Not a Pan-Cancer Atlas driver 

-log10(p-value) 

A B 

Putative Novel  
Driver Gene 

Figure 4-3.  Proliferation of TSGs and OGs in Pancreas versus Breast Cells.  
Scatterplots depicting the log2-fold-change of each gene in the CRISPR TSG (A) or ORF 
OG (B) library in telomerase-immortalized pancreas versus breast cells.  Genes are colored 
according to whether they are (red) or are not (blue) annotated as a cancer driver by the 
Pan-Cancer Atlas. Each dot represents a single gene, and its opacity is graded according to 
the significance of its performance according to MAGeCK (A) or edgeR (B).  Putative novel 
driver genes are outlined, and genes of interest are labeled.   
 



 

 122 
 

TSG Enrichment A B -log10(p-value) TSG Dropout -log10(p-value) 

Figure 4-4. TSG Proliferation in Cell Lines from Four Tissue Types.  Genes with 
the most significant p-values by MAGeCK for enrichment (A) or dropout (B) in 
proliferation screens across four immortalized cell lines are depicted as heatmaps. The four 
columns of each heatmap correspond to the indicated cell lines.  The p-value of each gene is 
plotted by color-coding according to the adjacent color legend, on a -log10scale.  To clarify 
directionality, this value is plotted as positive for genes that enriched in the screen (with a 
positive log2-fold change) and negative for genes that dropped out in the screen (with a 
negative log2-fold-change.  Genes were hierarchically clustered using the complete linkage 
method. 
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correlations to be positive, and correlations were notably stronger for the TSG library, 

possibly because this library contains multiple essential genes, so strong dropout is 

concordant across all four lines (Figure 4-2A).  Correlations were less uniform for the 

OG library; log2-fold-changes in breast and pancreas cells overall correlated with a 

Pearson correlation coefficient of 0.6, bearing less resemblance to log2-fold-changes in 

colon epithelial cells and even less resemblance to log2-fold-changes in fibroblasts 

(Figure 4-2B).  When we hierarchically clustered screen data using all statistically 

significant log-2-fold-changes, these relationships were apparent from the OG library 

screens, but they were generally masked in the TSG library screens by the tight 

correlation of performance of this library across cell lines (Figures 4-2C and 4-2D). 

We examined individual gene performance in breast versus pancreas cells, for 

both the TSG and OG library, in more detail (Figure 4-3).  In the TSG library, a 

number of genes were essential in both immortalized cell lines, and we observed 

particularly robust, consistent dropout of genes involved in cell division including sister 

chromatid cohesion (SMC4 NIPBL), mitotic spindle assembly (TTK, HAUS8, NPM1), 

and chromosome segregation (INO80, RAD21); we noted equally potent dropout of the 

master regulator of the DNA damage response, ATR (Figure 4-3A).  In terms of 

enrichment, CRISPR-based knockout of TP53 potently drove proliferation in both cell 

lines, as did knockout of USP28, which deubiquitinates p53 to promote its stability 

(318, 319).  TRIP12, another shared positive regulator of proliferation, is an E3 

ubiquitin-protein ligase involved in degradation of p19(ARF), a p53-stabilizing product 
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A B -log10(p-value) OG Enrichment OG Dropout -log10(p-value) 

Figure 4-5. OG Proliferation in Cell Lines from Four Tissue Types. Genes with the 
most significant p-values by edgeR for enrichment (A) or dropout (B) in proliferation 
screens across four immortalized cell lines are depicted as heatmaps. The four columns of 
each heatmap correspond to the indicated cell lines. The p-value of each gene is plotted by 
color-coding according to the adjacent color legend, on a -log10scale. To clarify directionality, 
this value is plotted as positive for genes that enriched in the screen (with a positive log2-
fold change) and negative for genes that dropped out in the screen (with a negative log2-
fold-change. Genes were hierarchically clustered using the complete linkage method. 
 



 

 125 
 

of the CDKN2A locus (320, 321).  Thus, the TP53 pathway is a potent regulator of 

both breast and pancreas lines. 

In contrast, loss of certain genes enhanced proliferation of breast or pancreas 

cells, but not both.  For breast cells, these genes included TGFBR2 and SMAD4, both 

members of the TGFβ signaling pathway.  Although widely distributed in vivo, TGFβ 

exerts diverse tissue-specific growth effects, and has been shown to specifically inhibit 

mammary growth and morphogenesis (322).  Breast-specific suppressors of proliferative 

growth also included EP300, PAWR, and ZFY.  Interestingly, although ZFY is 

genomically located on the Y chromosome and these are breast cells derived from 

reduction mammoplasty tissue of a female patient, 10/10 of the gRNAs targeting this 

gene also target the highly related paralog ZFX, located on the X chromosome.  In the 

opposing cell line, pancreas-specific drivers of proliferation included AMBRA1, NF1, 

SPRED1, TRAF3, and KDM3B. 

From the OG library, by far the strongest driver of proliferation in both breast 

and pancreas cells was a mutated version of the MYCN gene (Figure 4-3B).  The wild-

type MYCN ORF was modified by site-directed mutagenesis to include the P44L point 

mutation, a somatic mutation found in neuroblastoma, Wilms tumor (323), glioma 

(324), medulloblastoma (325), neoplastic cysts of the pancreas (326), and other tumor 

types (327).  This point mutation is found in 1.7% of neuroblastoma cases without 

MYCN amplification (328).  Based on its frequent recurrence, the P44L mutation has 

been presumed to be activating, but it has not been functionally or biochemically 
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characterized (329).  Our data shows that this point mutation potently increases the 

activity of MYCN in promoting proliferation, and indeed is a functionally strong 

activating mutation.  The P44L MYCN mutant exhibited a 2-fold higher log2-fold-

change than wild-type MYCN in pancreas cells, and a 4.5-fold higher log2-fold-change in 

breast cells.  Wild-type MYC also promoted proliferation of both cell lines, but there is 

no mutant version of the MYC ORF in the OG library. 

As with TSGs, several OGs enhanced proliferation of either breast or pancreas 

cells specifically, but not both.  For example, SKAP2, an adaptor protein essential in 

Src pathway signaling, enhanced proliferation of pancreas cells specifically.  In general, 

Src pathway activation accelerates formation of pancreatic tumors in mouse models and 

correlates with poor prognosis patients (330), so there is some contextual basis in 

concordance with this tissue-specific OG activity.  On the other hand, NEDD9 promotes 

breast cell proliferation more strongly than pancreas cell proliferation; NEDD9 is a 

multi-domain scaffold protein that assembles signaling complexes downstream of a 

variety of pathways, including integrins and receptor tyrosine kinases. 

The recently released Pan-Cancer Atlas published a final consensus list of Cancer 

Driver Genes, consisting of 299 unique genes (26).  25% of our TSG library genes are 

annotated as Cancer Driver Genes by the Pan-Cancer Atlas, and 26% of our OG library 

genes are annotated as Cancer Driver Genes.  We asked if the genes that functionally 

drove proliferation in our cell lines are annotated as drivers (Figure 4-3).  While many 

proliferation drivers are annotated as Cancer Driver Genes (red), several are not 
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annotated on this consensus driver gene list (blue), and we note putative novel driver 

genes that could be added to this list as including AMBRA1, TRAF3, KDM3B, PAWR, 

ZFX, and USP28. 

 This analysis can be extended to include all four cell lines screened, and most 

effectively visualized as a heatmap (Figures 4-4 and 4-5).  As seen in comparing breast 

versus pancreas proliferation drivers, loss of some genes drove proliferation across all cell 

types, including TP53 and CDKN2A (p16) (Figure 4-4, Supplemental Figure S4-1).  

Among our list of putative novel drivers, AMBRA1 and PAWR impressively drove 

proliferation in three of the four cell lines tested.  USP28 knockout drove proliferation in 

all four cell lines, likely through its role in promoting p53 stability.  In contrast, certain 

genes enhanced proliferation in only one particular cell line, behaving as tissue-specific 

drivers.  

 By far, the most prominent driver in the OG library is the P44L mutant form of 

MYCN, discussed above (Figure 4-5, Supplemental Figure S4-2).  It appears to be an 

epithelial-specific driver, as it enhances proliferation of breast, pancreas and colon 

epithelial cell lines, but not fibroblasts.  The second strongest driver across all four cell 

lines is a mutated form of cyclin D, CCND3, containing an I290R mutation.  This point 

mutation occurs very near the C-terminus of the cyclin D protein, at a highly conserved 

isoleucine residue; this isoleucine is not only highly conserved among cyclin D3 homologs 

in different species, but similar amino acids occur at the corresponding position in cyclin 

D1 and cyclin D2.  A nearby threonine (T283) is an important a site of phosphorylation 
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A 

B 

C TSG Library 

Pan-Cancer Atlas driver 
Not a Pan-Cancer Atlas driver 

-log10(p-value) 

-log10(p-value) 

Figure 4-6. Effect of p53 Deletion on TSG Proliferation. (A-B) Scatterplots 
depicting the log2-fold-change of each gene in the CRISPR TSG library in p53 knockout 
versus p53 wild-type colon (A) or pancreas (B) cells.  Genes are colored according to 
whether they are (red) or are not (blue) annotated as a cancer driver by the Pan-Cancer 
Atlas. Each dot represents a single gene, and its opacity is graded according to the 
significance of its performance according to MAGeCK. (C) Genes with the most significant 
p-values by MAGeCK are depicted as a heatmap. The p-value of each gene is plotted by 
color-coding according to the adjacent color legend, on a -log10scale. To clarify directionality, 
this value is plotted as positive for genes that enriched in the screen (with a positive log2-
fold change) and negative for genes that depleted in the screen (with a negative log2-fold-
change.  Genes were hierarchically clustered using the complete linkage method. 
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that triggers degradation of cyclin D3, and the I293R mutation has been shown to 

promote stability of the cyclin D3 protein (331).  The mutant form of CCND3 far 

outperforms the only wild-type cyclin included in the OG library (CCND1), for all cell 

lines, underscoring the general theme that in this competitive setting, point mutations 

can dramatically enhance the ability of OGs to promote proliferation. 

 We also screened our TSG and OG libraries in two p53 knockout cell lines 

(p53KO), to investigate the effect of p53 loss on the ability of drivers to promote 

proliferation.  Both colon and pancreas p53 knockout lines were generated by transient 

transfection of the corresponding immortalized parental cell line (p53WT) with Cas9 and 

a gRNA targeting p53.  We compared TSG and OG library screens in these p53 

knockout lines with screens performed in the parental wild-type lines from which they 

were derived (Figure 4-6, Figure 4-7, Supplemental Figure S4-3).  Most TSGs behaved 

quite similarly in p53WT and p53KO cells, with some notable exceptions.  For example, 

TP53 drove proliferation in the p53WT cell line but not in the p53KO cell line, as 

expected.  USP28 and RBM15 exhibited the same pattern, and this result was true for 

both the colon and pancreas p53WT and p53KO cell line pairs.  As discussed above, 

USP28 deubiquitinates and stabilizes p53 (318, 319).  Although not a prominent 

member of the p53 pathway, RBM15 knockout has been shown to reduce Ras-induced 

p53 protein levels in murine embryonic fibroblasts (MEFs), through a proteasome-

dependent mechanism (332).   
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Figure 4-7. Effect of p53 Deletion on OG Proliferation. (A-B) Scatterplots depicting 
the log2-fold-change of each gene in the ORF OG library in p53 knockout versus p53 wild-
type colon (A) or pancreas (B) cells. Genes are colored according to whether they are (red) 
or are not (blue) annotated as a cancer driver by the Pan-Cancer Atlas. Each dot represents 
a single gene, and its opacity is graded according to the significance of its performance 
according to edgeR. (C) Genes with the most significant p-values by edgeR are represented 
as a heatmap. The p-value of each gene is plotted by color-coding according to the adjacent 
color legend, on a -log10scale. To clarify directionality, this value is plotted as positive for 
genes that enriched in the screen (with a positive log2-fold change) and negative for genes 
that depleted in the screen (with a negative log2-fold-change. Genes were hierarchically 
clustered using the complete linkage method 
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Overall, we found that some genes were tissue-specific proliferation drivers, while 

other genes drove proliferation in a manner that was context-independent.  We noticed 

certain pathway themes in tissue-specific behavior of drivers; for example, the TGFβ 

pathway appeared to be breast and colon-specific (Figure 4-4A).  Thus, we asked, in an 

unbiased manner, which pathways were overall most important in driving proliferation 

of each cell line.  To do this, we utilized the recently published curated set of 10 

canonical oncogenic signaling pathways released by the Pan-Cancer Atlas (1).  We 

classified the genes in our TSG and OG libraries according to these curated pathways 

and calculated the significance of each pathway in driving proliferation of the four cell 

lines we screened (Figure 4-8). 

 This pathway analysis confirmed our incidental observation that the TGFβ 

pathway drove proliferation of breast and colon cells, but not pancreas or fibroblast 

cells.  The TP53 pathway and the Cell Cycle pathway (containing CDKN1A, CCND1, 

CDKN2A, RB1, and others) promoted proliferation of all four cell lines.  The Myc 

pathway potently drove proliferation of all three epithelial cell lines and was a less 

potent driver of fibroblasts.  Among the other canonical oncogenic signaling pathways, 

the Hippo and PI3K pathways were the most potent drivers of proliferation, with the 

PI3K pathway performing strongest in breast cells.  Though altered in many tumor 

types, the PI3K-Akt pathway is altered in breast tumors with particularly high 

frequency (1), and a recent whole-genome gain-of-function study from our laboratory 

also found the PI3K pathway to be specifically important in driving proliferation of 
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breast cells (255).  In contrast, the fact that the RTK-Ras pathway enhanced 

proliferation more modestly may be a matter of relative competition; the log-2-fold-

changes for many of the genes in the RTK Ras pathway were positive, but not 

statistically significant in the presence of these other potent drivers of proliferation.  

To ask if we could observe these pathway relationships on a broad scale, we 

combined all statistically significant OG and TSG proliferation drivers across our four 

cell lines and hierarchically clustered them (Supplemental Figure S4-4); this approach 

accurately clustered some genes by pathway, and perhaps suggests some unknown 

Tissue-specific  
Pathway Enrichment -log10(p-value) 

Figure 4-8. Tissue Specificity of Pan-Cancer Atlas Canonical Oncogenic Signaling 
Pathways. P-values for enrichment of each of the 10 canonical oncogenic signaling pathways 
curated by the Pan-Cancer Atlas (1) are plotted as a heatmap on a color-coded -log10 scale.  
Each column of the heatmap corresponds to a cell line of a different tissue type in which 
proliferation of TSG and OG library screens were performed. Pathway significance was 
calculated using a two-tailed Fisher’s exact test for the proportion of genes in that pathway 
that scored in the indicated cell line (requiring a p-value<0.01 to consider a gene as having 
scored). 
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functional relationships between genes, but is not a strictly literal map of pathway 

relationships.  

Mapping Drivers of Hallmark Cancer Phenotypes 

 Increased proliferation is one of 12 proposed hallmark phenotypes shared by 

tumors (55, 56, 333).  We hypothesized that TSGs and OGs recurrently mutated in 

tumors may also be driving one or more of other the hallmark phenotypes of cancer, in 

addition to enhanced proliferation.  We designed and conducted a systematic series of 

screens to probe the hallmark phenotypes of cancer with our TSG and OG libraries in 

HMECs. 

 We began by screening HMECs for several growth-related phenotypes, with both 

our CRISPR and shRNA-based TSG libraries.  As a baseline, we first compared 

CRISPR versus shRNA libraries in proliferation screens performed in HMECs, 

conducted as described above.  We passaged cells in culture for 12 population doublings 

and sequencing PCR-amplified gRNAs or half-hairpins (219) from genomic DNA of cell 

pellets collected at the beginning and the end of the screen.  We saw broad overall 

similarity in gene performance, with some notable discrepancies in gene behavior (Figure 

4-9).  For example, CRISPR-based knockout of ZFY nominally enhanced proliferation, 

while shRNAs targeting ZFY had no effect.  As discussed above, ZFY is located on the 

Y chromosome, while its closely related paralog ZFX, located on the X chromosome, is 

also targeted by 10/10 of these gRNAs.  In HMECs derived from female patients, it is 

possible that these gRNAs may have a phenotype through their effect on ZFX, but 
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shRNA targeting ZFY have no activity toward ZFX.  ZFX is a transcriptional activator 

expressed in multiple tumor types whose knockdown downregulates many genes, 

including CDKN2A and TGFBR1 (334). 

In the contrary direction, TNRC6B knockdown by shRNA drove proliferation, 

while CRISPR knockout of TNRC6B did not produce the same effect. TNRC6B is an 

essential component of Argonaute-associating microRNA machinery (335), and thus its 

knockout by CRISPR is likely somewhat toxic.  In terms of proliferative enhancement, 

positive drivers of proliferation recognized by both libraries include TGFβ pathway 

CRISPR vs shRNA HMEC Proliferation 

TUSON Rank 

-log10FDR 

Figure 4-9. HMEC CRISPR versus shRNA TSG Proliferation. Scatterplot 
comparing the log2-fold-change of each TSG for the CRISPR TSG HMEC proliferation 
screen versus shRNA TSG HMEC proliferation screen. Each dot represents the average of 
10 gRNAs targeting a single gene and is color-coded according to the original rank assigned 
to that gene by TUSON Explorer. The opacity of each gene corresponds to the significance 
of that gene’s performance as determined by MAGeCK.    
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members TGFBR2 and SMAD4 and the transcriptional repressor PAWR, a notably 

strong enhancer of proliferation (rank=6) relative to its original TUSON Rank 

(rank=310).  In general, even after mean-normalizing data to facilitate comparison, 

CRISPR produced more potent log2-fold-changes than shRNA-based reagents (Figure 4-

9). 

In parallel with proliferation, we screened our libraries in HMECs under several 

additional growth conditions designed to emulate the stress phenotypes experienced by 

cancer cells during growth and invasion: at low clonogenic density, in media with 

limiting growth factors, and on ultra-low attachment tissue culture plates (anoikis-

inducing conditions).  Particularly because HMECs grow as epithelial islands, growth at 

clonogenic density deprives cells of paracrine support signals and increases the 

stringency of intrinsic survival signals required for clonal growth (336).  Growth in the 

presence of limiting growth factors increases the demand for self-sufficient proliferative 

signaling.  Growth on ultra-low attachment plates deprives cells of the simulated 

basement membrane provided by serum proteins that attach to plasma-treated tissue 

culture plates, inducing a particular form of apoptosis known as anoikis (337).  These 

three culture conditions impose phenotypic demands on the cells that correspond to the 

hallmark cancer phenotypes of “evading apoptosis” and “self-sufficiency in growth 

signals.”  

We performed these screens with both CRISPR (Figure 4-10 and Supplemental 

Figure S4-7) and shRNA (Supplemental Figures S4-5 and S4-6) TSG libraries and 
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CRISPR Enrichment CRISPR Dropout 
A B 

-log10(p-value) -log10(p-value) 

Figure 4-10. CRISPR TSG Library Performance Across Four Different Growth 
Phenotypes in HMECs. Heatmaps depicting genes with the most significant p-values by 
MAGeCK for enrichment (A) or dropout (B) in HMEC CRISPR TSG screens for 
proliferation, clonogenic growth, anoikis bypass, and growth factor deprivation.  The p-
value of each gene is plotted by color-coding according to the adjacent color legend, on a -
log10scale. To clarify directionality, this value is plotted as positive for genes that enriched 
in the screen (with a positive log2-fold change) and negative for genes that dropped out in 
the screen (with a negative log2-fold-change.  Genes were hierarchically clustered using the 
complete linkage method. 
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compared the results to their corresponding proliferation screens.   Some genes promoted 

growth in all contexts, while others became important under particular stress conditions.  

For example, EP300, PAWR, SMAD4, CDKN2A, and USP28 promoted survival or 

growth in every screen.  In contrast, knockout of NF2, MAP3K4, and IRF6 was 

particularly beneficial in allowing cells to bypass exposure to anoikis-inducing culture 

conditions.   

  

TUSON Rank 

-log10FDR 

CRISPR Anoikis vs Proliferation A B 

Figure 4-11. IRF6 depletion allows HMECs to bypass anoikis. (A) Scatterplot 
depicting the log2-fold-change of each gene in the CRISPR TSG library during the HMEC 
CRISPR TSG anoikis bypass screen versus the HMEC CRISPR TSG proliferation screen.  
Each dot represents the average of 10 gRNAs targeting a single gene and is color-coded 
according to the original rank assigned to that gene by TUSON Explorer. The opacity of 
each gene corresponds to the significance of that gene’s performance according to MAGeCK. 
(B) gRNAs to IRF6 and PAWR were tested individually for their ability to confer survival 
under anoikis stress conditions, compared with negative control (intergenic-cutting) gRNAs.  
HMECs were transduced with lentivirus expressing the indicated gRNA under U6 promoter 
control and Cas9 under EFS promoter control. After selection, cells were subjected to low 
attachment plating for 24-hours, recovered for 12-hours, and counted with a Coulter counter 
to measure survival. 
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We explored these putative anoikis bypass drivers in more detail (Figure 4-11A) 

and saw that MAP3K4, IRF6, and PAWR were low-ranking TUSON Explorer genes 

that had particularly strong effects in bypassing anoikis.  While PAWR also promoted 

proliferation, IRF6 appeared to be an anoikis-specific driver.  We cloned individual 

gRNAs targeting IRF6 and PAWR in parallel with control gRNAs into a lentiviral 

vector.  We packaged this vector, which also contains Cas9 under EFS promoter 

control, into lentivirus and transduced it into HMECs.  We subjected HMECs to anoikis 

stress conditions and recovered overnight to quantify their survival (Figure 4-11B).  We 

tested two gRNAs targeting IRF6, both of which dramatically enhanced 

CRISPR H2O2 vs Proliferation A B 

TUSON Rank 

-log10FDR 

Figure 4-12. H2O2 Bypass Screen Identifies Nrf2-Cul3-Keap1 Pathway. (A) 
Scatterplot depicting the log2-fold-change of each gene in the CRISPR TSG library during 
the HMEC H2O2 bypass screen versus the HMEC proliferation screen. Each dot represents 
the average of 10 gRNAs targeting a single gene and is color-coded according to the original 
rank assigned to that gene by TUSON Explorer. The opacity of each gene corresponds to the 
significance of that gene’s performance according to MAGeCK. (B) Graphical representation 
of the Nrf2-Cul3-Keap1 pathway. 
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the ability of HMECs to bypass this in vitro culture stress relative to negative control 

gRNAs. 

 In addition to these hallmark growth-related phenotypes, cancers also exhibit 

several forms of characteristic cellular stress, termed the “stress phenotypes of cancers” 

(56, 127).  Though these phenotypes do not initiate the tumorigenic process, they are 

common features of the tumorigenic state, and they include replication stress, 

proteotoxic stress, metabolic stress, oxidative stress, and mitotic stress.  We 

hypothesized that genes frequently mutated in tumors may promote tolerance to these 

forms of stress.   

To test this hypothesis in a pilot screen, we exposed cells to reactive oxygen 

species (ROS) stress, by simple hydrogen peroxide supplementation during screening.  

We found 3 genes that potently allowed cells to survive in the presence of hydrogen 

peroxide (Figure 4-12A): TP53, KEAP1, and CUL3.  While TP53 was also a 

proliferation driver, neither KEAP1 nor CUL3 drove proliferation, but both provided a 

robust resistance to ROS stress.  KEAP1 and CUL3 are negative regulators of Nrf2, the 

master transcription factor of the anti-oxidant stress response.  In its reduced state, 

Keap1 tethers Nrf2 to the E3 ligase Cul3, promoting its ubiquitin-mediated degradation 

(Figure 4-12B).  However, Keap1 possesses cysteine sensor residues that, when oxidized, 

alter the conformation of Keap1 to release Nrf2 and allow it to translocate to the 

nucleus, where it upregulates antioxidant response target genes.   
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Because we were able to elicit this characterized antioxidant response pathway in 

a pilot screen for ROS stress, we proceeded to screen both the TSG and OG libraries 

under a broader variety of conditions corresponding to the stress phenotypes of cancer 

(Figure 4-13).  All of these screens have been completed, and the results are pending 

sequencing and analysis.  In parallel, we screened both the TSG and OG libraries by 

FACS-sorting HMECs for cell-surface and intracellular markers that provide information 

Figure 4-13. Graphical Overview of Screens Performed.  List of screens performed 
with the OG and TSG libraries according to screen type and the cancer hallmark phenotype 
to which the screen corresponds. 
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about these hallmark phenotypic properties, including molecules upregulated by tumors 

to evade the immune system (Figure 4-13). 

 

An in vivo metastasis screen suggests that TP53 and IRF6 promote breast 

cancer metastasis 

 Among the 12 hallmark phenotypes of cancer, by far the hallmark feature that 

causes the greatest morbidity and mortality for patients is the phenomenon of 

metastasis.  Primary tumors shower micro-emboli into the vasculature, beginning fairly 

early in tumorigenesis, and rarely these circulating cells can seed metastatic clones in a 

foreign microenvironment.  Once multiple or inoperable metastases grow large enough to 

become symptomatic, therapeutic options for patients are very limited; metastatic 

growth and its consequences are responsible for about 90% of cancer-related mortality 

(338).   

 Although the success rate of seeding a metastatic colony from a primary tumor is 

extremely low, it has been suggested that there are no “metastasis genes” (12); in other 

words, there are no additional rare genetic alterations that endow cells with the capacity 

to accomplish this exceptional feat.  Rather, cancer driver genes altered in the primary 

tumor may promote metastasis, and success of metastatic seeding may be purely 

stochastic, increasing in probability as the primary tumor grows in size.  To test if any 

genes in our TSG library can promote metastasis, we performed an in vivo screen in 

collaboration with the laboratory of Kornelia Polyak.   
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 First, we performed a pilot experiment to determine if our library could maintain 

adequate representation during tumor formation.  We chose a breast cancer cell line 

that does not involute after orthotopic injection into mammary fat pads, with the hope 

that cells would survive and maintain representation of the full complexity of the 

library.  We transduced MDA-MB-468 cells with a doxycycline-inducible library 

containing 5000 unique reagents, orthotopically implanted them into mammary fat pads, 

and analyzed the complexity of the library maintained in tumors after 3.5 weeks of 

growth in the absence of doxycycline.  We found that the complexity of the library 

detected in the cells we injected orthotopically compared to the tumors we harvested 

after 3.5 weeks were comparable, regardless of the number of reads per reagent we 

required as a cutoff for detection (Figure 4-14A).    

 Under these experimental conditions, we proceeded to test our TSG CRISPR 

library in MDA-MB-468 cells, in two batches: the top 100 TSGs (originally ranked 1-100 

by TUSON) and the bottom 400 TSGs (ranked 101-500 by TUSON).  We analyzed 

primary tumors along with lungs, which are the main site of metastasis for this cell line, 

at both an early and late time point; the early and late time point experiments were 

performed in series, not in parallel.  At the late time point, the lungs of all mice were 

riddled with micrometastases, though no macrometastases were visible (Figure 4-14B).  

Macrometastases were visible in the axillary lymph nodes of two mice carrying the 

bottom 400 TSG library; these lymph nodes were harvested and analyzed separately.   

 



 

 143 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4-14. In vivo screen for TSGs that enhance metastasis. (A) Bar graph 
depicting the number of shRNAs detected from a doxycycline-inducible library of 5000 
shRNAs by sequencing either the pre-injection cells, or the tumor resulting from 
orthotopic injection of cells into mammary fat pads and growth for 3.5 weeks in the 
absence of doxycycline. The number of reagents from the library that was detected 
according to the indicated read count cutoff threshold is plotted for both pre-injection 
cells and harvested tumors. (B) Representative H&E-stained lung sections from mice 
orthotopically injected with MDA-MB-M468 cells containing the CRISPR TSG library. 
(C-D) Heatmap depicting genes with the most significant p-values by edgeR for 
enrichment in MDA-MB-468 cells.  MDA-MB-468 cells were transduced with the TSG 
CRISPR library in two pools: either the 100 genes with the best original ranking by 
TUSON (Top 100 TSGs) or the next 400-ranked genes (Bottom 400 TSGs). Both 
libraries were screened in vitro and orthotopically implanted into mammary fat pads, 
after which tumors and lungs were examined at both an early and late time point. The 
p-values for genes with the most statistically significant enrichments are plotted as 
color-coded values on a -log10 scale. 
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Figure 4-14 (Continued). In vivo screen for TSGs that enhance metastasis. 
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We also performed an in vitro screen to compare in vitro versus in vivo growth for this 

cell line.  

Overall, primary tumor read counts in this experiment were dominated by one or 

two gRNAs; read counts for all other gRNAs were consequently compressed by this 

phenomenon.  Nonetheless, CBFB and CMTR2 consistently enhanced growth of this cell 

line both in vitro and in vivo (Figure 4-14D).  CBFB is frequently mutated in breast 

cancer and is a well-established breast cancer driver that binds RUNX transcription 

factors in a heterodimeric fashion (339).  In terms of metastasis enhancers, the strongest 

overall driver of metastasis to the lungs was TP53 (Figure 4-14C) and the strongest 

driver of metastasis to axillary lymph node macrometastases was IRF6 (Figure 4-14D).  

p53 loss, and dominant negative p53 mutations in particular, are known to enhance 

metastasis in mouse models (340).  Interestingly, IRF6 knockout also potentiated bypass 

of anoikis stress in vitro, as discussed above.  Survival in the absence of attachment to 

basement membrane is a prerequisite step in the successful completion of the metastatic 

cascade, and thus these two phenotypic behaviors are related. 

  

III. Discussion 

We designed genetic sublibraries targeting known and predicted driver genes of 

two classes: TSGs, as CRISPR and shRNA-based libraries, and OGs, as a barcoded 

mixture of wild-type and mutant ORFs.  We systematically screened these libraries in 

cell lines derived from different tissue types, and for a variety of hallmark cancer 
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phenotypes, with multiple aims: to uncover novel drivers from the predicted driver gene 

set, to study differences in genes that drive proliferation in different cell lines, and to ask 

which driver genes promote hallmark phenotypes of cancer.  

25% of our TSG library and 26% of our OG library genes are annotated as 

Cancer Driver Genes by the Pan-Cancer Atlas (26).  By screening our libraries in four 

immortalized cell lines derived from different tissue types, we found 8 genes that 

strongly drive proliferation but are not annotated as drivers by the Pan-Cancer Atlas: 

AMBRA1, TRAF3, KDM3B, PAWR, ZFX, USP28, TAOK1, and KIRREL.  This list 

becomes longer depending on the cutoff set for p-value and log2-fold enrichment.  

Requiring a p-value<0.01 and a log2-fold-change increase>1, we observed 20 genes 

driving proliferation that are not annotated by the Pan-Cancer Atlas.  Regardless of the 

cutoff value chosen, our data suggests that functional studies can augment 

computational approaches in identifying cancer driver genes. 

From our OG library screens, we found that the MYCN P44L mutation is 

functionally activating and potently drives proliferation, specifically in epithelial cell 

lines.  This point mutation increases the log2-fold-change compared to wild-type MYCN 

by 3-fold in colon cells, 4.45-fold in breast cells, and 2-fold in pancreas cells.  The P44L 

mutation has been recurrently observed in multiple tumor types but neither functional 

nor biochemically characterized previously.  This point mutation is located in the N-

terminal transactivation domain (TAD) of MYCN, which interacts with Aurora-A, a 

kinase that promotes N-Myc stability by reducing the proportion of K48 linkages in its 
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poly-ubiquitin chains (341).  We plan investigate how the P44L mutation activates N-

Myc and specifically test if this mutation enhances the stability of N-Myc. 

The P44L MYCN mutation is an epithelial-specific driver of proliferation, and 

both wild-type MYCN and wild-type MYC also selectively enhance proliferation of 

epithelial cells, but not fibroblasts.  We observed this pattern incidentally, and 

independently confirmed it with an unbiased analysis for tissue-specific pathways that 

promote proliferation.  Through this analysis we also saw that the TGFβ pathway 

exerts a tissue-specific inhibitory effect on proliferation of breast and colon cells.  We 

classified genes according to the 10 canonical signaling pathways of cancer characterized 

in the Pan-Cancer Atlas by Bailey et al. (1).  These authors also profiled how frequently 

these 10 pathways are altered across 33 different tumor types.  Our functional data is 

partially concordant with their findings, and we plan to formally analyze the statistical 

significance of this concordance, as well as investigate possible explanations for points of 

discrepancy.   

Among the genes that drove proliferation in most cell lines, AMBRA1 enhanced 

proliferation of every cell line except for HMECs.  AMBRA1 is a negative regulator of c-

Myc, promoting its dephosphorylation and degradation by acting as a scaffold with the 

phosphatase PP2A (342).  It also promotes autophagy, directly binding Beclin-1 and 

increasing its interaction with VPS34, thus fostering autophagosome formation (343); 

the latter function may be more important in fibroblasts, which should be relatively 

insensitive to Myc stabilization.  Its failure to promote HMEC proliferation, and similar 
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discrepancies of TSG performance more broadly, may be due to differences in protein 

expression levels.  We plan to compare RNA-seq data with our functional proliferation 

data, to ask if expression differences can explain some of the tissue-specific proliferation 

effects we observed in driver performance, particularly with the TSG library.  

When we compared shRNA and CRISPR-based TSG libraries in HMEC 

proliferation screens, we noted overall stronger effects with CRISPR-based reagents.  An 

exception to this trend was the pair of ribosomal proteins RPL5 and RPL18, which 

produced a more robust dropout phenotype with the shRNA library than the CRISPR 

library.  Prior studies have shown that shRNA-based libraries identify different 

categories of essential genes more effectively than CRISPR-based libraries (344).  It may 

be that cell death following CRISPR-based cutting of ribosomal gene loci occurs so 

rapidly that it partially occurs during puromycin selection, before the initial cell pellet is 

collected, thus limiting the dynamic range of the CRISPR screen to detect dropout.   

The driving hypothesis for our subsequent series of screens was the notion that, 

in addition to proliferation, the 12 hallmark cancer phenotypes may be driven by genes 

that are frequently mutated in tumors.  For cancer stress phenotypes, mutated genes 

may promote tolerance of stress conditions that are endemic to the cancer condition.  

Thus, we screened 30 independent conditions with both the OG and TSG libraries, 

probing each of the hallmark phenotypes associated with cancer; the results of many of 

these screens are pending sequencing and analysis.  The size of these small, biologically-
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motivated genetic libraries allowed high-throughput parallel screening for multiple 

phenotypes of interest, which would be infeasible with a whole-genome library.   

 From the results we have obtained, we found and validated a specific driver of 

anoikis bypass, IRF6, which also promoted metastasis of breast cancer cells to axillary 

lymph nodes in an in vivo screen.  IRF6, when mutated in humans, can lead to familial 

syndromes that include cleft lip and palate features (345), and mutational variants have 

been strongly associated with syndromic cleft lip (346).  Downregulation of IRF6 has 

been shown to promote invasion of keratinocytes in vitro, which is concordant with our 

results.  We plan to explore the mechanism of IRF6’s role in potentiating anoikis bypass 

by studying the transcriptional consequences of its by RNA-seq. 

We have identified a specific antioxidant stress response pathway, the Nrf2-

Keap1-Cul3 pathway, by exposing cells to reactive oxygen species stress.  The results of 

the rest of our screens are pending sequencing and analysis, but we hope to elicit similar 

stress response pathways from our other perturbations.  We screened cells for a variety 

of cell surface and intracellular markers of hallmark cancer phenotypes by FACS, and 

we plan to analyze the results, with an eye toward identifying drivers involved in 

multiple hallmark phenotypes. 
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IV. Methods 

Cell culture 

Human mammary epithelial cells (HMECs), originally derived from reduction 

mammoplasty tissue, were purchased from Lonza and immortalized by transduction 

with a retroviral pBabe-hygro vector expressing human telomerase (hTERT).  hTERT-

HMECs were maintained in Mammary Epithelial Cell Growth Medium (MEGM, 

Lonza).  hTERT-immortalized human nestin-expressing pancreatic epithelial cells 

(HPNEs) (347) and clonal derivatives were maintained in a 1:4 mixture of M3:BaseFTM 

culture medium (InCell) and high-glucose Dulbecco’s Modified Eagle’s Medium 

(DMEM, Gibco), supplemented with 10% fetal bovine serum (FBS), 100 units/mL 

penicillin, and 100 µg/mL streptomycin.   

Human colonic epithelial cells (HCECs) immortalized with retroviral Cdk4 and 

hTERT were generously shared by Jerry Shay (308).  HCECs and clonal derivatives 

were maintained in a 1:4 mixture of Medium 199 and high-glucose DMEM with the 

following supplements, at the indicated concentrations: EGF (20ng/mL, Invitrogen), 

hydrocortisone (1µg/mL, Sigma), insulin (10µg/mL, Sigma), transferrin (2µg/mL, 

Sigma), sodium selenite (5nM, Sigma), 10% FBS, 100 units/mL penicillin, and 100 

µg/mL streptomycin.  Human fetal lung fibroblast cells (IMR90) were obtained from the 

American Tissue Type Collection (ATCC) and immortalized by transduction with a 

retroviral pBabe-hygro vector expressing hTERT.  hTERT-IMR90s were maintained at 
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3% O2 in high-glucose DMEM with GlutamaxTM supplement (Gibco), and additionally 

supplemented with 15% FBS, 0.1mM non-essential amino acids, 120 units/mL penicillin, 

and 120 µg/mL streptomycin.  HEK293T cells utilized for virus production were grown 

in DMEM supplemented with 10% FBS, 100 units/mL penicillin, and 100 µg/mL 

streptomycin.  U2-OS osteosarcoma cells from ATCC, utilized for titering virus, were 

cultured in DMEM supplemented with 10% FBS, 100 units/mL penicillin, and 100 

µg/mL streptomycin.   

Clonal p53-knockout cells were generated from parental HCEC and HPNE cell 

lines by Timothy Martin.  To generate these lines, HCEC and HPNE parental cells were 

co-transfected with a pENTR-U6 gRNA expression construct and pcDNA3.3-TOPO-

hCas9 (Addgene Plasmid #41815).  sgRNA sequences used to targeted TP53 were: 5’-

GCAGTCACAGCACATGACGG-3’ and 5’- GAATCAACCCACAGCTGCAC-3’. One 

week after transfection, cells were treated with 10μM nutlin-3 (Cayman Chemical) and 

grown until a non-sgTP53 control plate stopped growing completely.  Subsequently, 

individual clones were isolated from a sparsely plated 15cm tissue culture dish, and loss 

of p53 protein in isolated clones was verified by Western blotting. 

 

Lentivirus production and titering 

To produce lentivirus, HEK293T cells were seeded in tissue culture dishes at a 

density equivalent to 6x105 cells per 0.9 cm2 of tissue culture surface area.  Plasmid 
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DNA was diluted into serum-free medium with a lentiviral packaging plasmid mixture of 

SV40 VSVg, Gag/Pol, Tat, and Rev, and transfected with PolyJet (SignaGen).  Cell 

culture media was changed 24 hours later.  After 48 h, the supernatant was harvested, 

filtered through a low-protein-binding HT Tuffryn® membrane with 0.45 µm pores 

(Pall, cat. #4184), aliquoted, and stored at -80°C.  Lentiviral titer was determined by 

transducing U2-OS cells plated at clonogenic density with serial dilutions of virus in the 

presence of 4 µg/mL polybrene.  After selecting with puromycin, colonies were stained 

with methylene blue and counted manually to determine viral titer.   

 

TSG Library Construction 

DNA oligonucleotides encoding shRNA and sgRNA sequences designed to target 

the top 500 TUSON-predicted TSGs were synthesized on a custom microarray 

(Agilent).  These oligonucleotides were PCR-amplified separately with specific sets of 

primers in four batches: the top 100 shRNAs were PCR-amplified separately from the 

bottom 400 shRNAs, and likewise the sgRNAs were PCR-amplified in two pools.   

PCR-amplified gRNA libraries were digested with BbsI and purified on a 10% 

TBE PAGE gel.  Purified, digested fragments were cloned into BsmBI-digested 

pLentiCRISPRv2 (Addgene Plasmid #52961).  A negative control non-cutting gRNA 

library comprised of 500 gRNAs targeting the E. coli genome was designed and cloned 

in parallel. 
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PCR-amplified shRNA oligonucleotide libraries were digested with XhoI and 

EcoRI, and subsequently purified on a 3% Nusieve gel.  Gel purified digestion products 

were cloned into a XhoI/EcoRI digested pHAGE-pInducer10-miRE-pheS(ΔΕcoRI) 

plasmid.  To create the pHAGE-pInducer10miRE-pheS(ΔΕcoRI) vector, the pInducer10 

mir30 shRNA construct (248) was moved to the pHAGE backbone, with pertinent 

mir30 elements being replaced by miR-E elements by PCR (348).  In addition, the sole 

EcoRI restriction site in the pHAGE backbone was mutated to facilitate cloning.  A 

negative control shRNA library targeting the E. coli genome was designed and cloned in 

parallel, in the same fashion.    

 

OG Library Construction 

An OG library gene list was compiled by combining the top 150 TUSON-

predicted OGs with a hand-curated list of ~150 putative OGs culled from prior screen 

data (255, 314), genes found in amplification peaks in tumors (21), and annotation as 

oncogenes in prior studies (22, 315).  ORFs corresponding to these genes were 

cherrypicked from the ORFeome v8.1 and Ultimate ORF Collection libraries.  Genes 

obtained from the ORFeome v8.1 collection do not have endogenous STOP codons, so 

endogenous STOP codons were introduced by PCR.  The 150 TUSON-predicted OGs 

were mutated by site-directed mutagenesis to introduce the most frequent point 

mutation observed for that gene across all tumor types (QuikChange II XL Site-Directed 

Mutagenesis Kit, Agilent).  Each point mutant was sequence-verified, arrayed with its 
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corresponding wild-type ORF, and pooled into a total of 6 pools.  Each pool was cloned 

by LR reaction into a pre-barcoded pHAGE-EFS-DEST-3’BC V2 library vector (LR 

Clonase II, Thermo Fisher), along with two additional pools of wild-type OG ORFs.  

The resulting set of 8 pools was then sequenced to link the barcodes with corresponding 

genes: on average, 5 barcodes were mapped to each mutant or wild-type ORF. 

 

In vitro TSG and OG Library Screens 

 CRISPR TSG and ORF OG proliferation screens were performed in HMECs, 

hTERT-IMR90s, HCECs, p53-/- HCECs, HPNEs, and p53-/- HPNEs using the 

following procedure.  Cells were transduced with lentivirus containing either the OG or 

CRISPR TSG library at a multiplicity of infection (MOI) of 0.2 and representation of 

500 cellular integrations per barcode or 1000 cellular integrations per gRNA.  All OG 

library screens were performed in triplicate, and CRISPR screens were performed in 

triplicate with the exception of HPNE and p53-/- HPNE screens, which were performed 

in duplicate. 

 After puromycin selection, initial reference cell pellets were collected.  Cells were 

passaged for 12 population doublings (PDs), and final cell pellets were collected.  In 

many cases, cell pellets were also collected at intermediate time points.  Whenever 

possible, all cell pellets contained a 2-fold excess of cells required to represent the 

original complexity of the library present at the time of infection. 
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 The CRISPR TSG, shRNA TSG, and ORF OG libraries were also screened in 

HMECs for several growth phenotypes of interest.  For this battery of screens, the same 

set of infected cells was exposed to several growth stresses in parallel.  In all cases, 

HMECs were transduced with the corresponding library at an MOI of 0.2, in triplicate, 

at a representation of at least 500 cellular integrations per barcode or 1000 cellular 

integrations per gRNA or shRNA.  Cells were subsequently selected in 1.5-2μg/mL 

puromycin, and a starting cell population was collected for each replicate, to serve as 

the initial reference populations for the subsequent screens performed.  Unless indicated, 

a representation of 500 cellular integration events per barcode or 1000 cellular 

integration events per gRNA or shRNA was maintained throughout the screen. 

For the clonogenic screen, HMECs were seeded on 15cm tissue culture plates at a 

density of 50K cells per plate, maintaining a representation of 200 cellular integration 

events per ORF barcode, gRNA, or shRNA.  Cells were grown to enough confluence to 

collect a representative pellet, and then serially re-plated at this density two more times.  

For the anoikis screen, cells were seeded overnight on ultra-low attachment plates 

(Westnet) at a density of 1x106 cells per 10cm plate and recovered on 15cm plates.  

After sufficient growth to collect a representative pellet, cells were re-plated on ultra-low 

attachment plates and recovered twice more.  For low growth factor conditions, HMECs 

were cultured in modified MEGM medium containing 5% of the concentration of bovine 

pituitary extract (BPE), hydrocortisone, EGF, and insulin typically provided with 
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MEGM medium.  For the H2O2 stress screen, HMECs were serially subjected to 0.5mM 

H2O2 (Sigma), supplemented in the media every 3-4 days.   

For all screens, genomic DNA was isolated from the initial and final cell pellets 

from each screen by two rounds of phenol:chloroform extraction using Phaselock tubes 

(5 PRIME), followed by two rounds of chloroform extraction.  RNase A was added at a 

final concentration of 25μg/mL and incubated for at least 4 hours at 37°C before two 

additional rounds of phenol:chloroform and one additional round of chloroform 

extraction.  DNA was ethanol-precipitated, recovered by centrifugation, washed three 

times with 70% ethanol, and resuspended in 10mM Tris-Cl pH 8.5.  

shRNA half-hairpin (219), gRNA, or barcode sequences were PCR-amplified from 

resuspended genomic DNA and adapted for Illumina sequencing.  This adaptation 

involved the addition of a P5 adapter, a standard Illumina primer binding site, and a 

stagger sequence of variable length (0-8bp) 5’ to the variable sequence of interest (either 

half-hairpin, gRNA, or barcode), followed by a 3’ Illumina index sequence primer 

binding site, a 7 base pair index sequence, and a P7 adaptor.  The relative 

representation of library reagents in each sample was determined by Illumina sequencing 

on a NextSeq500 or HiSeq2000 System. 

 

In vivo TSG Library Screens 

First, a pilot screen was performed to determine if representation of the TSG 

library could be maintained during tumor formation.  Breast adenocarcinoma MDA-
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MB-468 cells were transduced in triplicate in the presence of 8μg/mL polybrene with 

pooled shRNA lentiviral libraries at an MOI of 0.162 and a representation of 1000 

cellular integrations per shRNA.  Negative control shRNA library lentivirus was mixed 

with TSG shRNA library virus prior to transduction.  After 48 hours, cells were split 

into 1μg/mL puro for selection.  Cells were expanded in culture for several weeks in the 

absence of doxycycline prior to injection. 

Tumors were induced by bilateral orthotopic injection into 8 x 6-week-old female 

NOD-scid-gamma mice (NSG, Jackson Labs) of 3x106 MDA-MB-468 cells resuspended 

in 300μL of 50% Matrigel (BD Biosciences).  Mice were not administered doxycycline at 

any point during this pilot experiment.  After 3 weeks, small tumors (~4x5mm) were 

harvested, manually diced with a razor blade, and digested overnight at 55°C in 10mM 

Tris pH 8.0, 10mM EDTA, 0.5% SDS, and 0.5mg/mL Proteinase K.  Genomic DNA 

was isolated and PCRs were performed as described above for in vitro screens.  

Next, two rounds of in vivo CRISPR screens were performed, terminating at 

either an early (4.5 weeks) or late (12 weeks) timepoint.  For both rounds of screening, 

performed in series (not in parallel), MDA-MB-468 cells were transduced in triplicate 

with lentiviral libraries in the presence of 8 μg/mL polybrene at an MOI of 0.2 and a 

representation of 1000 cellular integrations per gRNA.  The top 100 TSG CRISPR 

library and bottom 400 TSG CRISPR library were transduced separately and never 

mixed, though negative control sgRNAs were spiked into each lentiviral pool.  After 48 

hours, cells were split into 1ug/mL puromycin for selection.  After selection, all library-
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infected cells were transduced with an mCherry/Luciferase-expressing lentiviral 

construct (obtained from K. Polyak laboratory via C. Mitsiades laboratory, DFCI) at an 

MOI of 2. 

For both rounds of CRISPR screens, 9 x 6-week-old NSG mice were handled in 

two groups: 3 mice received the top 100 TSG CRISPR library, and 6 mice received the 

bottom 400 TSG CRISPR library.  In each case, tumors were induced by unilateral 

orthotopic injection of 2x106 MDA-MB-468 cells resuspended in 200μL of 50% Matrigel 

(BD Biosciences).  Tumor size was measured and luciferase signal was imaged once per 

week.  After either 4.5 weeks (early timepoint) or 12 weeks (late timepoint), tumors 

were harvested.  For the 12-week time point, additional organs were harvested to assess 

possible metastases: lungs, bone marrow from the femur, brain, liver, spleen, and two 

axillary lymph nodes that harbored visible macrometastases.  For 12-week time point 

samples, small sections of tumors and lungs were fixed, embedded in parafilm, and 

stained with hematoxylin and eosin (H&E).  All tumors were manually diced with a 

razor blade and digested overnight at 55°C in 10mM Tris pH 8.0, 10mM EDTA, 0.5% 

SDS, and 0.5mg/mL Proteinase K.  Organs were digested in the same solution overnight 

at 55°C with the addition of type 2 collagenase (Worthington).  Subsequently, genomic 

DNA was isolated and PCRs were performed as described above for in vitro screens.  
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Analysis of Screen Results 

Sequencing reads were trimmed to isolate half-hairpin, gRNA, or ORF barcode 

sequences as appropriate.  Trimmed reads were aligned to the corresponding reference 

library using Bowtie (308).  CRISPR and shRNA read counts were analyzed by 

MAGeCK (223) to calculate gene rank lists, p-values, and FDRs for each gene.  ORF 

read counts were analyzed by edgeR (224) utilizing camera gene set enrichment analysis 

to calculate gene rank lists, p-values, and FDRs for each gene.   

The log2-fold-change for each TSG and OG in each screen was calculated using 

the following process.  First, all samples were normalized for total read counts.  Next, 

barcodes, gRNAs or shRNAs with low starting read counts were eliminated (typically, 

reagents with the lowest 10% starting read counts were discarded).  The fold-change of 

each barcode, gRNA, or shRNA was then calculated on a log2 scale, averaged for each 

gene, and mean-normalized to facilitate comparison across screens.  When plotted as a 

heatmap, genes were hierarchically clustered using the complete linkage method for 

hierarchical clustering. 

Pathway analysis was performed by downloading the canonical pathway 

annotations from the Pan-Cancer Atlas (1).  These annotations were used to classify all 

genes in the TSG and OG libraries into the 10 canonical signaling pathways.  Gene 

performance in each cell line was scored as a hit if the gene performed with a p-value 

cutoff<0.01 by MAGeCK (223) for CRISPR or edgeR (224) for OGs.  The significance 

of the pathway was calculated with a two-tailed Fisher’s exact test for the proportion of 
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genes in the pathway that were hits, compared to the proportion of genes that were hits 

but not in the pathway.  This calculation was repeated for all pathways and all cell 

lines.  
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Chapter 5: Conclusions and Perspective 

Advances in Genetic Screening Technology 

Genetic screens provide an unbiased method for addressing biological questions of 

interest.  Although a variety of model systems can serve as the contextual basis for 

genetic screens, cultured mammalian cells offer several advantages as a model system, 

particularly in posing questions pertinent to the field of cancer biology.  For example, 

the alternative eukaryotic genetic model S. cerevisiae lacks orthologs of many human 

genes and cellular processes comparable to senescence, oncogenic transformation, and 

tissue-specific differentiation (349, 350). 

Unbiased genetic screening involves systematically perturbing gene function, 

recognizing or selecting for a phenotype of interest, and characterizing the genetic 

perturbations that cause an effect on that phenotype.  This process relies on 

technologies that induce gene perturbations, which represent a broad toolkit including 

transposon-mediated insertional mutagenesis, RNA-interference (RNAi) delivered 

through antisense oligonucleotides (siRNA), lentiviral constructs expressing short 

hairpin RNA (shRNA), chemical inhibition with small molecules, and overexpression of 

open reading frames (ORFs).  To conduct these screens in a pooled format, these 

perturbations must be identifiable from the bulk population, for example through PCR 

amplification of genomically-integrated gene-perturbing reagents or barcodes linked to 

these reagents.  Pooled genetic screens are more efficient and cost-effective than arrayed 
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libraries, and protocols for pooled genetic screens have been streamlined and optimized 

(351-354).  

The watershed discovery that the CRISPR (clustered regularly interspaced short 

palindromic repeat)-Cas9 bacterial immune system can be harnessed to edit the 

mammalian genome (355, 356) significantly expanded this toolkit of genetic 

perturbation technologies.  The Cas9 endonuclease can be directed to create a double-

strand break (DSB) in DNA at a specific genomic locus of interest by a small guide 

RNA (gRNA), resulting predominantly in repair by non-homologous end-joining (NHEJ) 

which generates small insertions and deletions (indels) at the induced DSB breakpoint.  

Particularly if Cas9 introduces this DSB at a region of the gene that is important for 

gene function, the resulting indels impair function of the gene product (357, 358).   

This technological advance added a highly penetrant, specific (359) gene-

targeting tool to the arsenal of machinery that can be used to create perturbations in 

genetic screens.  Rollout of this easily-applied, effective, and inexpensive technology 

occurred rapidly (360).  Shortly thereafter, multiple efforts resulted in variants of the 

original CRISPR-Cas9 system that can also be applied to genetic screening.  For 

example, CRISPRi, a related loss-of-function screening technology, involves fusion of an 

enzymatically dead Cas9 (dCas9) to a Krüppel-associated box (KRAB) transcriptional 

repression domain; this dCas9-KRAB complex does not cleave its target gene, but 

rather transcriptionally represses it by localizing KRAB to the target gene’s 

transcriptional start site (TSS) with a gRNA (361, 362).  Alternatively, fusion of dCas9 
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to transcriptional activators such as VP64 or the p65 activation domain (p65AD) allows 

adaptation of the CRISPR-Cas9 system to gain-of-function screening (361, 363). 

 

Comparison of Tools in the Genetic Screening Toolkit 

Evers et al. performed a direct comparison of three of the aforementioned loss-of-

function screening technologies to interrogate off-target effects, signal-to-noise, and 

consistency of performance (364).  Compared to shRNA and CRISPRi, CRISPR 

exhibited better signal-to-noise (measured by statistical significance determined by 

MAGeCK) and consistency of performance between cell lines.  On the other hand, 

shRNA showed significantly more off-target effects than CRISPRi and classical 

CRISPR; off-targets were estimated by testing a set of a priori known essential and 

non-essential genes.   

We also performed comparisons between shRNA and CRISPR libraries, in our 

BRCA2 synthetic lethal screens and in our HMEC TSG proliferation screens.  Like 

Evers et al., we found better signal-to-noise (statistical significance as determined by 

MAGeCK) from screens with CRISPR libraries versus shRNA libraries.  Likewise, the 

magnitude of log2-fold-change effects we observed from the CRISPR library was greater 

in both cases, and we observed better linear correlations between log2-fold-changes of 

gene performances between replicates (data not shown).   

However, there were certain groups of essential genes from which only shRNA 

libraries could elicit a phenotype.  For example, in our BRCA2 synthetic lethal screens, 
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splicing factors such as SF1 and SF3B2 scored with our shRNA but not our CRISPR 

DNA damage sublibrary.  In our HMEC proliferation screen, the microRNA machinery 

component TNRC6B enhanced proliferation only when depleted by shRNA, not by 

CRISPR.  We also saw stronger depletion of RPL5 and RPL18 in the HMEC TSG 

proliferation screen with shRNA compared with CRISPR-based depletion. 

Morgens et al. previously compared the ability of CRISPR versus shRNA to 

detect essential genes (344).  They found that shRNA outperforms CRISPR at detecting 

certain classes of essential genes including proteasome components, the spliceosome, and 

nuclear pore proteins, while CRISPR outperformed shRNA at detection of metabolic 

genes, mediator, and RNA polymerase.  Our results agree with their observations, in 

that ribosomal and spliceosome genes are detectable with shRNA only. 

Several groups have found that gene copy number affects the results of genome-

scale CRISPR-Cas9 proliferation screens (358, 365).  Increased genomic copy number 

results in increased generation of DSBs, inducing gene-independent cell-cycle arrest and 

false positives in proliferation screen dropouts.  In our BRCA2 synthetic lethality study, 

we performed CRISPR screens in both the pseudodiploid DLD-1 cell line and the 

aneuploid PEO1 cell line.  PEO1 cells have a modal number of 41, but a large number 

of chromosome arm-level copy number alterations (data not shown).  Perhaps unrelated 

to copy number, the DLD-1 cell line was a better application for our CRISPR library, 

yielding stronger log2-fold-changes for both dropout and enrichment.  
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In addition to these loss-of-function technologies, gain-of-function genetic libraries 

can offer a complementary modality to enable unbiased genetic screening approaches.  

An alternative to CRISPRa, discussed above, is ORF overexpression.  Our laboratory 

recently published a genome-scale barcoded human ORFeome library, in a Gateway-

compatible doxycycline-inducible lentiviral expression system (255).  Barcoding ORFs 

obviates the substantial issue of PCR bias that otherwise introduces significant noise 

into data from ORFeome screens (366).   

We applied this genome-scale barcoded ORFeome library to conduct a screen 

that had previously been performed with loss-of-function reagents (262, 367).  In 

screening for genes that positively regulate PD-L1, our gain-of-function screen recovered 

different hits compared with either a CRISPR-based screen (262) or an insertional 

mutagenesis screen in haploid cells (367), although we also recovered CMTM4, a family 

member of the top shared hit from these two screens.  We chose the inverse approach of 

selecting for up-regulation of PD-L1 cell surface expression with a gain-of-function 

library, rather than selecting for down-regulation of PD-L1 cell surface expression with a 

loss-of-function library.  The fact that we uncovered a different gene set highlights the 

complementarity of screening with loss-of-function as well as gain-of-function reagents.  

Our recovery of CLK2 from this screen underscores the utility of gain-of-function 

reagents in addressing cancer-relevant screening questions: genes identified by these 

reagents can be amplified and expressed in tumors. 
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Towards a Comprehensive List of Cancer Drivers 

A wealth of tumor sequencing data has accumulated over the past decade and 

has provided incredibly fine resolution topography of the cancer genome landscape.  

Mutation frequency of driver genes been described as hills and mountains, with 

mountains representing the most frequently mutated genes.  As the number of publicly 

available tumor sequencing datasets from TCGA has grown to include over 11K tumors 

and 33 tumor types, it has been come clear how staggering these mountains truly are; 

sequencing efforts repeatedly recover alterations in the same highly mutated driver genes 

across cancer. 

But with a finer resolution map, one can study the hills: the genes whose 

mutation frequency is not as prominent, but which nonetheless play an important 

functional role in tumorigenesis.  In asking how many genes can potentially drive cancer 

overall, or functionally contribute to tumorigenesis within a single tumor, one must face 

the issue of a cutoff value.  We chose to screen the top 500 genes predicted by TUSON, 

which met an overall p-value<0.01 and q-value<0.38 for their likelihood of being a TSG 

based on tumor sequence data.  However, a stringent threshold may have overlooked 

one of our strongest drivers of proliferation in multiple cell lines, PAWR, which had a 

TUSON p-value=0.003 and TUSON q-value=0.183 (rank=310).   

In screens of TSG and OG libraries across multiple cell lines and hallmark cancer 

phenotypes, we recovered at least 20 driver genes not commonly annotated as drivers by 

public databases, including the final consensus list recently released by the Pan-Cancer 
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Atlas (26).  Recovery of these genes validates TUSON’s ability to predict driver genes 

and shows that functional studies can augment computational approaches in identifying 

hills across the cancer landscape.  Furthermore, functional studies of hallmark cancer 

phenotypes in addition to simple cellular proliferation in vitro can unveil additional 

functional driver genes.  For example, we elicited the Nrf2-Keap1-Cul3 pathway only by 

exposing cells to ROS stress, and we observed the functional importance of IRF6 

through an anoikis bypass screen. 

Assembling a comprehensive list of driver genes may be an attainable goal, 

though our data suggests that functional characterization can augment computational 

approaches in aggregating this driver gene census.  From our TSG and OG screens, we 

can add some genes to the list of commonly-annotated drivers, including AMBRA1, 

TRAF3, KDM3B, PAWR, ZFX, USP28, TAOK1, KIRREL, and SKAP2.  While some 

of these have been reported as drivers in individual reports, with likely mechanisms for 

driving proliferation being known, others are less well characterized. 

After identifying the hills and even the smaller mounds that define the cancer 

landscape, one should not discard the relevance of passenger mutations for in studying 

either tumorigenic mechanisms or questions of therapeutic relevance.  As has been 

demonstrated by characterizing passenger mutations across 21 breast genomes, 

passengers are not merely mutational litter, but rather an accurate historical record of 

the process of tumorigenesis and the defects in DNA repair pathways.  This mutational 
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archive can be used, for example, to predict BRCA1 or BRCA2 defects and response to 

PARP inhibitors, using an algorithm known as HRDetect (368).  

In addition to wild-type drivers, our OG screens provided an opportunity to 

functionally validate tumor-associated point mutations in a systematic fashion.  In 

general, we found that incorporating these point mutations into ORFs enhanced their 

ability to promote proliferation.  A particularly striking example of this effect was the 

MYCN P44L mutation, which had not previously been functionally characterized.  This 

mutant OG was in fact so potent that it partially limited the dynamic range of the rest 

of the reagents in the screen pool.   

Although the compact nature of the TSG and OG libraries enables high-

throughput screening applications, it is important to recall that they represent a 

concentrated set of potent drivers.  Compared to a genome-scale library, in which most 

reagents should behave neutrally, the OG library in particular consists almost entirely of 

potent drivers of proliferation.  Overall, the p-values and dynamic range that are 

observable with a genome-scale library tend to be more favorable.  This represents a 

trade-off in the utilization of these small libraries of potent reagents, compared with 

genome-scale libraries. 

Tumor suppressor genes have been conceptualized as gatekeepers and caretakers, 

with gatekeepers generally restricting growth of aberrant cells and caretakers 

maintaining the integrity of the genome.  We note that we can interpret our TSG 

screens within this framework; gatekeepers such as TP53, CDKN2A, and RB1 enrich in 
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our screens, while caretakers such as ATR and SF1 drop out.  Although most of the 

genes that drop out potently by our CRISPR-mediated TSG library are essential genes, 

we may be able to create a functional classification system for TSGs based on the 

results of our expanded set of phenotypic screens.  It is not clear to us why TUSON 

predicted so many essential genes as potential TSGs, but this may represent a question 

for further investigation 

 

Improving the Durability of Cancer Therapeutic Responses 

Beginning with the incipient mutation that ultimately leads to the formation of a 

tumor, oncogenesis is a process of competitive clonal evolution.  Tumors acquire 

phenotypic heterogeneity through successive genetic and epigenetic alterations, that 

ultimately endows the tumor with a great deal of plasticity.  Studies of intratumor 

heterogeneity before and after chemotherapy have highlighted this plasticity, showing 

efficient clonal evolution in response to treatment with chemotherapeutics (122).  This 

intrinsic heterogeneity and plasticity likely underlie the drug resistance that almost 

invariably develops to targeted therapies such as tyrosine kinase inhibitors (TKIs). 

Targeting a gene such as PARP that is synthetic lethal with the tumor-specific 

alteration represents an alternative therapeutic strategy.  In both TKI therapy and 

synthetic lethal therapy, the tumor is dependent upon the pathway targeted, through 

either oncogene addiction or non-oncogene addiction respectively.  Yet exploiting 

synthetic lethal relationships offers access to drug targets that are not themselves 
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mutant in the tumor.  A priori it is hard to know if this strategy would offer more 

durable clinical responses, but at least in the case of PARP inhibitors in metastatic 

breast cancer, acquired resistance appears to be a common problem. 

It has been suggested that upfront rational polytherapy may be the only way to 

produce a durable clinical response with these types of drugs.  For example, 

administering POLΘ and PARP inhibitors simultaneously, upfront, in patients with 

BRCA-deficient breast or ovarian cancer.  Part of the rationale for this therapeutic 

approach lies in the fact that POLΘ is sometimes overexpressed in tumors (66).  FEN1 

is also sometimes overexpressed in breast and other tumors types, and more often 

amplified than POLΘ in tumors from the METABRIC study (222).  FEN1 inhibitors 

may synergize even more strongly with PARP inhibitors than POLΘ inhibitors: FEN1 

inhibitors should not only hamper MMEJ but may also block the repair of trapped 

PARP through long-patch base excision repair (BER).  For this reason, we are currently 

optimizing drug concentrations to perform a drug synergy study between the FEN1 and 

PARP inhibitors. 

Instead of combating the powerful evolutionary forces that drive drug-resistant 

clones to repopulate a tumor during or after targeted treatment, perhaps the more 

viable path toward attaining durable clinical responses to chemotherapy lies in the 

immunotherapeutic approach.  The long-term study of pooled overall survival data from 

patients with advanced melanoma who received ipilimumab was startling: after 10 years 

of follow-up, the survival curve plateaued (150).  ~20% of patients survived their case of 



 

 171 
 

unresectable or metastatic melanoma for 10 years after immunotherapy, tempting one to 

invoke the word “cure.” 

A path toward durable clinical responses may be to expand this proportion of 

patients, by maximizing the immune system’s capability to combat the tumor.  Perhaps 

there will be a way to introduce benign neoantigenic diversity into tumors, to enhance 

the antitumor immune response.  Personalized cancer vaccines may prompt T-cell based 

immunity toward greater efficacy.  In the meanwhile, a thorough understanding of 

biomarkers that predict response to PD-1-PD-L1 blockade is of paramount importance 

in clinical application of this efficacious therapeutic agent.  Our data suggests that 

CLK2 amplification represents an important risk stratification criterion, and that 

therapeutic responses in these patients may improve with supplementation of CLK2 

inhibitors.  We are pursuing these hypotheses with urgency. 
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Appendix I. Supplemental Figures 

Supplemental Figure S2-1 (related to Figure 2-1). (A) The indicated cell lines were 
passaged in culture for 8 days and counted to determine cumulative population doublings (PDs) 
at an early (3 days) and late (8 days) time point. (B) List of screens performed including the 
isogenic cell line pair background and the number of genes targeted by the indicated sublibrary. 
(C) Distribution of log2-fold-changes (Log2FC) for each shRNA in the primary shRNA screen,
performed in colonic BRCA2 isogenic cell line background. (D) Distribution of log2-fold-changes
(Log2FC) for each shRNA in the secondary shRNA screen, performed in colonic BRCA2 isogenic
cell line background. (E) Distribution of log2-fold-changes (Log2FC) for each sgRNA in the
CRISPR colonic B2SL screen. (F) Distribution of log2-fold-changes (Log2FC) for each sgRNA in
the CRISPR ovarian B2SL screen.
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Supplemental Figure S2-1 (related to Figure 2-1) (Continued). 
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Supplemental Figure S2-2 (related to Figure 2-2). A) Volcano plot for the 
secondary shRNA screen, performed with the colonic BRCA2 isogenic cell line pair. 
Significance (-log10FDR) is plotted against the genetic interaction (GI) score (average log2-
fold-change for each gene in BRCA2 MUT versus BRCA2 WT cells). Genes that met a 
significance threshold of -log10FDR>1 are color-coded as green for relative dropout or red 
for relative enrichment in BRCA2 MUT vs BRCA2 WT cells. (B) Results from the 
secondary shRNA screen in the colonic BRCA2 isogenic background, plotted as the log2-
fold-change in BRCA2 MUT cells against the log2-fold-change in BRCA2 WT cells. (C) 
Comparison of GI score (log2-fold-change for each gene in BRCA2 MUT versus BRCA2 
WT cells) in the ovarian CRISPR screen versus the colonic shRNA screen. (D) Schematic 
depicting the multicolor competition assay (MCA). GFP-labeled BRCA2 MUT cells are 
mixed with DsRed-labeled BRCA2 WT cells. The cell mixture is passaged in the presence 
of a drug or transduced with a virus expressing a gRNA and Cas9. The change in percent 
in GFP+ cells measured by FACS indicates the relative growth of BRCA2 MUT versus 
BRCA2 WT cells in the presence of the relevant treatment.   
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Supplemental Figure S2-3 (related to Figures 2-4 and 2-5). (A-C) MCA assays in which 
ovarian GFP-labeled BRCA2 MUT cells and DsRed-labeled BRCA2 WT cells were mixed and 
co-infected with Cas9 and negative control gRNAs (A), three individual gRNAs targeting POLQ 
(B), or three individual gRNAs targeting UBE2A (C). Negative control gRNAs included gRNAs 
that do not induce cutting by Cas9 in the human genome (targeting E. coli), and gRNAs that cut 
intergenic regions with low predicted off-target cutting (NC-1, NC-2, and NC-3). (D) MCA assay 
in which colonic GFP-labeled BRCA2 MUT cells and DsRed-labeled BRCA2 WT cells were mixed 
and co-treated with the PARP inhibitor olaparib. The percent of GFP+ cells was quantified by 
FACS after 12 days and normalized to DMSO. (E-I) MCA assays in which colonic GFP-labeled 
BRCA2 MUT cells and DsRed-labeled BRCA2 WT cells were mixed and co-infected with Cas9 
and three individual gRNAs to the indicated genes. (J-N) MCA assays in which GFP-labeled 
BRCA1 MUT cells and DsRed-labeled BRCA1 WT cells were mixed and co-infected with Cas9 
and three individual gRNAs to the indicated genes. (P). Dependency of BRCA1/2 MUT or 
BRCA1/2 WT cell lines on POLQ, processed by the CERES computational method from genome-
scale CRISPR-Cas9 essentiality screens across 324 cancer cell lines (236).  
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Supplemental Figure S2-3 (related to Figures 2-4 and 2-5) (Continued). 
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Supplemental Figure S3-1. Performance of barcodes for LPAR family members 
that did not score in the PD-L1 Enrichment screen. (A-C) Normalized read counts 
of barcodes corresponding to LPAR6 from the pre-sorted unstained library population and 
the PD-L1high sorted cell population, for all three replicates. Each line represents an 
individual barcode. (D-F) Normalized read counts as described above, for barcodes 
corresponding to LPAR4. 
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Supplemental Figure S3-2. Ingenuity Pathway Analysis of the PD-L1 Induction 
Screen. (A) Genes that significantly enriched in the PD-L1 Induction Screen (with a p-value of 
<0.01, determined by edgeR) were submitted to Ingenuity for pathway analysis, after filtering 
out all type I interferons (which otherwise predominate the ranked list of pathways). The top 
pathways are listed, ordered and color-coded by the p-value returned by DAVID for their 
enrichment. The percent of genes in the pathway that scored in our screen is plotted on the x-
axis. (B) A top network identified by Ingenuity as enriched in the PD-L1 induction screen. Red 
shading indicates genes that scored with a p-value <0.01 by edgeR in the original screen, and 
the legend identifies the type of protein in the network its shape. 
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Supplemental Figure S3-2 (Continued). Ingenuity Pathway Analysis of the PD-L1 
Induction Screen. 
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Supplemental Figure S4-1. Volcano Plots Summarizing TSG Proliferation Screens.  
Volcano plots depicting MAGECK -log10(p-value) versus log2-fold-change are shown for 
proliferation screens conduced with the CRISPR TSG library in immortalized cell lines of four 
tissue types: pancreas (A), breast (B), colon (C), and fetal lung fibroblasts (D). Each dot 
represents the performance of a single gene and is color-coded according to whether the gene was 
originally ranked in the top 100 TSGs by TUSON or the next 400 TSGs (101-500) by TUSON. 
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Supplemental Figure S4-2. Volcano Plots Summarizing OG Proliferation 
Screens. Volcano plots depicting edgeR -log10(p-value) versus log2-fold-change are shown 
for proliferation screens conduced with the OG library in immortalized cell lines of four 
tissue types: pancreas (A), breast (B), colon (C), and fetal lung fibroblasts (D). Each dot 
represents the performance of a single gene and is color-coded according to whether the 
ORF was mutated by site-directed mutagenesis or remained wild-type in the library. 
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Supplemental Figure S4-3. Volcano Plots Summarizing p53 knockout proliferation 
Screens.  Volcano plots depicting edgeR (A-B) or MAGeCK (C-D) -log10(p-value) versus log2-
fold-change are shown for proliferation screens conduced in p53 knockout cell lines with either 
the OG library (A-B) or CRISPR TSG library (C-D). p53 knockout lines were generated in 
both the colon (A, C) and pancreas (B, D) backgrounds. Each dot represents the 
performance of a single gene and is color-coded according to (A-B) whether ORFs were 
mutated by site-directed mutagenesis or (C-D) whether TSGs were among the top 100 TSGs 
originally predicted by TUSON Explorer. 
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Supplemental Figure S4-4. Combined TSG 
and OG proliferation drivers from cell lines of 
four different tissue types.  TSGs and OGs with 
the most significant p-values in proliferation screens 
across four immortalized cell lines are depicted as a 
combined heatmap. The log2-fold-change of each 
gene is plotted by color-coding on the indicated color 
scale, for statistically significant genes only; log2-fold-
changes that were not statistically significant are 
defaulted to 0 (white). Genes were hierarchically 
clustered using the complete linkage method. 
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Supplemental Figure S4-5. Heatmaps Portraying the Performance of the shRNA 
TSG Library Across Four Different Growth Phenotypes. Heatmap depicting genes 
with the most significant p-values by MAGeCK for enrichment (A) or dropout (B) in HMEC 
CRISPR TSG screens for proliferation, clonogenic growth, anoikis bypass, and growth factor 
deprivation. The p-value of each gene is plotted by color-coding according to the adjacent 
color legend, on a -log10scale. To clarify directionality, this value is plotted as positive for 
genes that enriched in the screen (with a positive log2-fold change) and negative for genes 
that dropped out in the screen (with a negative log2-fold-change. Genes were hierarchically 
clustered using the complete linkage method. 
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Supplemental Figure S4-6. Comparison of Gene Performance in shRNA 
HMEC Phenotypic Screens. Scatterplots comparing the log2-fold-change of each 
TSG in the shRNA TSG library in the HMEC clonogenic (A), anoikis bypass (B), low 
GF (C), or H2O2 bypass (D) screen versus its performance in HMEC proliferation.  
Each gene is represented by a single dot, color-coded by its rank in the original TUSON 
Explorer prediction list and opacified according to the significance of its performance as 
determined by MAGeCK.    
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Supplemental Figure S4-7. Comparison of Gene Performance in CRISPR 
HMEC Phenotypic Screens. Scatterplots comparing the log2-fold-change of each 
TSG in the CRISPR TSG library in the low GF (A) and clonogenic (B) screen versus 
its performance in proliferation. Each gene is represented by a single dot, color-coded by 
its rank in the original TUSON Explorer prediction list and opacified according to the 
significance of its performance as determined by MAGeCK.    
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Appendix II.  Supplemental Tables 

Rank Gene P-Value Gene Name 
1 IFNA14 2.04E-09 interferon alpha 14 
2 IFNA17 1.19E-07 interferon alpha 17 
3 MRGPRX4 2.23E-07 MAS related GPR family member X4 
4 IFNA6 3.00E-07 interferon alpha 6 
5 IFNA4 3.86E-07 interferon alpha 4 
6 SFXN5 9.18E-06 sideroflexin 5 
7 IFNB1 1.32E-05 interferon beta 1 
8 IFNA10 2.83E-05 interferon alpha 10 
9 CELF3 3.37E-05 CUGBP Elav-like family member 3 

10 SERBP1 5.67E-05 SERPINE1 mRNA binding protein 1 
11 LPAR1 7.64E-05 lysophosphatidic acid receptor 1 
12 CD274 8.95E-05 CD274 molecule 
13 CWF19L1 1.31E-04 CWF19 like 1, cell cycle control (S. pombe) 
14 IFNA8 1.43E-04 interferon alpha 8 
15 S1PR2 2.40E-04 sphingosine-1-phosphate receptor 2 
16 CELF5 2.44E-04 CUGBP Elav-like family member 5 
17 BHLHA15 3.17E-04 basic helix-loop-helix family member a15 
18 CRTAC1 3.32E-04 cartilage acidic protein 1 
19 LPAR2 4.00E-04 lysophosphatidic acid receptor 2 
20 ZIC3 4.61E-04 Zic family member 3 
21 PPP4R2 4.77E-04 protein phosphatase 4 regulatory subunit 2 
22 IFNA2 4.88E-04 interferon alpha 2 
23 FCGR2A 5.28E-04 Fc fragment of IgG receptor IIa 
24 LPAR5 5.57E-04 lysophosphatidic acid receptor 5 
25 IFNA1 7.83E-04 interferon alpha 1 
26 ANXA2R 9.31E-04 annexin A2 receptor 
27 POLR3D 9.50E-04 RNA polymerase III subunit D 
28 GPR107 9.51E-04 G protein-coupled receptor 107 
29 IFNA5 1.24E-03 interferon alpha 5 
30 EIF1AY 1.36E-03 eukaryotic translation initiation factor 1A, Y-linked 
31 C15orf59 1.39E-03 chromosome 15 open reading frame 59 
32 C9orf24 1.59E-03 chromosome 9 open reading frame 24 
33 CLDN14 1.73E-03 claudin 14 
34 ILF2 1.88E-03 interleukin enhancer binding factor 2 
35 SERPINA4 1.91E-03 serpin family A member 4 
36 MRPL47 1.98E-03 mitochondrial ribosomal protein L47 

Supplemental Table S3-1. Complete List of PD-L1 Induction Screen Hits.  All 
genes achieving a p-value <0.01 are listed, along with their rank by edgeR, their p-value as 
determined by edgeR, and their full gene name. 



 

 218 
 

37 BZW2 2.02E-03 basic leucine zipper and W2 domains 2 
38 TNRC6A 2.16E-03 trinucleotide repeat containing 6A 
39 PXK 2.26E-03 PX domain containing serine/threonine kinase like 
40 CTDSP2 2.31E-03 CTD small phosphatase 2 
41 CLEC18A 2.35E-03 C-type lectin domain family 18 member A 
42 ARHGEF40 2.61E-03 Rho guanine nucleotide exchange factor 40 
43 FLYWCH2 2.68E-03 FLYWCH family member 2 
44 VIM 2.71E-03 vimentin 
45 EDIL3 2.73E-03 EGF like repeats and discoidin domains 3 
46 P2RY8 2.86E-03 P2Y receptor family member 8 
47 EEF1G 3.05E-03 eukaryotic translation elongation factor 1 gamma 
48 PPP2R2C 3.18E-03 protein phosphatase 2 regulatory subunit B gamma 
49 PIGO 3.44E-03 phosphatidylinositol glycan anchor biosynthesis class O 
50 KIAA1456 3.53E-03 tRNA methyltransferase 9B (putative) 
51 DBH 3.78E-03 dopamine beta-hydroxylase 
52 MAGED4B 3.78E-03 MAGE family member D4B 
53 PGK2 3.98E-03 phosphoglycerate kinase 2 
54 IL22RA1 4.02E-03 interleukin 22 receptor subunit alpha 1 
55 BGN 4.05E-03 biglycan 
56 RHOC 4.34E-03 ras homolog family member C 
57 IFNW1 4.34E-03 interferon omega 1 
58 IFNG 4.38E-03 interferon gamma 
59 MRPS15 4.48E-03 mitochondrial ribosomal protein S15 
60 PPAN 4.50E-03 peter pan homolog (Drosophila) 
61 BMP4 4.72E-03 bone morphogenetic protein 4 
62 RFPL3 4.79E-03 ret finger protein like 3 
63 INSL3 4.93E-03 insulin like 3 
64 DRD3 4.97E-03 dopamine receptor D3 
65 RBM42 5.01E-03 RNA binding motif protein 42 
66 SCNN1B 5.03E-03 sodium channel epithelial 1 beta subunit 
67 RPS10P7 5.08E-03 ribosomal protein S10 pseudogene 7 
68 SYT17 5.11E-03 synaptotagmin 17 
69 ADCK1 5.19E-03 aarF domain containing kinase 1 
70 USE1 5.25E-03 ubiquitin conjugating enzyme E2 Z 
71 SYTL1 5.32E-03 synaptotagmin like 1 
72 SLC25A10 5.44E-03 solute carrier family 25 member 10 
73 LHX4 5.48E-03 LIM homeobox 4 
74 DMTN 5.50E-03 dematin actin binding protein 
75 HHAT 5.53E-03 hedgehog acyltransferase 
76 UNC5CL 5.71E-03 unc-5 family C-terminal like 
77 ATF4 5.80E-03 activating transcription factor 4 
78 C1orf74 6.00E-03 chromosome 1 open reading frame 74 
79 HMBS 6.32E-03 hydroxymethylbilane synthase 
80 ZNF513 6.44E-03 zinc finger protein 513 
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81 TBC1D3C 6.68E-03 TBC1 domain family member 3C 
82 ZNRF1 6.69E-03 zinc and ring finger 1 
83 GPR68 6.74E-03 G protein-coupled receptor 68 
84 GPBP1L1 6.99E-03 GC-rich promoter binding protein 1 like 1 
85 RPL3 7.11E-03 ribosomal protein L3 
86 OR2T33 7.13E-03 olfactory receptor family 2 subfamily T member 33 

87 GTDC2 7.18E-03 
protein O-linked mannose N-acetylglucosaminyltransferase 2 
(beta 1,4-) 

88 TUBGCP4 7.23E-03 tubulin gamma complex associated protein 4 
89 RBMS1 7.36E-03 RNA binding motif single stranded interacting protein 1 
90 NAT16 7.46E-03 N-acetyltransferase 16 (putative) 
91 PLEKHA8P1 7.55E-03 pleckstrin homology domain containing A8 pseudogene 1 
92 MRPL41 7.65E-03 mitochondrial ribosomal protein L41 
93 WNT3A 7.69E-03 Wnt family member 3A 
94 SPSB4 7.71E-03 splA/ryanodine receptor domain and SOCS box containing 4 
95 DPP7 7.77E-03 dipeptidyl peptidase 7 
96 CARKD 8.02E-03 NAD(P)HX dehydratase 
97 CYP2A7 8.12E-03 cytochrome P450 family 2 subfamily A member 7 
98 FUT1 8.29E-03 fucosyltransferase 1 (H blood group) 
99 IFNA13 8.30E-03 interferon alpha 13 

100 RASL12 8.37E-03 RAS like family 12 
101 FAM96A 8.50E-03 family with sequence similarity 96 member A 
102 GATA2 8.58E-03 GATA binding protein 2 
103 BPHL 8.59E-03 biphenyl hydrolase like 
104 ZNF581 8.62E-03 zinc finger protein 581 
105 DPY19L2P2 8.68E-03 DPY19L2 pseudogene 2 
106 HIST1H2BA 8.77E-03 histone cluster 1 H2B family member a 
107 FGG 8.78E-03 fibrinogen gamma chain 
108 KRTAP22-1 8.93E-03 keratin associated protein 22-1 
109 HEXIM2 9.05E-03 hexamethylene bisacetamide inducible 2 
110 TGFB1 9.39E-03 transforming growth factor beta 1 
111 GPR152 9.67E-03 G protein-coupled receptor 152 
112 TEX28P1 9.68E-03 testis expressed 28 pseudogene 1 
113 CMTM4 9.78E-03 CKLF like MARVEL transmembrane domain containing 4 
114 TLE6 9.86E-03 transducin like enhancer of split 6 
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