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Abstract

This document describes a class of computationally-efficient visual depth

sensors. Inspired by the visual system of the jumping spider, these sensors are

thin lens cameras that observe small changes in optical defocus. Differential

defocus changes can be generated by small changes in camera parameters such as

aperture size, lens or photosensor location, optical power, camera position, or a

combination of these parameters.

The defocus brightness constancy constraint describes the resulting differential

change in image values It as a weighted sum of the spatial derivatives of the

blurred image I,

It =[Ix Iy (xIx + yIy) (Ixx + Iyy)] v⃗,

where the weights v⃗ hold information of interest and no knowledge of the

underlying scene’s texture or geometry is required. This equation is a linear

constraint on locally computed image values, so that solving it provides a highly

efficient method for recovering depth and other scene information such as

velocity.

This dissertation introduces the defocus brightness constancy constraint and

describes its usefulness with regard to scene geometry and image content, both

analytically and in practice. It also proves the constraint’s uniqueness as the only
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texture-independent linear constraint on local image quantities for differential

defocus in a coded aperture camera. The “aperture code” required for the

constraint to hold exactly is Gaussian blur, and the method is shown in practice

to be robust to nonidealities including non-Gaussian blur, regions with low

signal-to-noise ratio, and optically complicated scenes involving reflective and

transparent objects. This robustness is demonstrated with a pair of depth from

differential defocus sensor prototypes. The first is a standard unactuated camera

that observes a moving scene and provides patch-wise depth and velocity

measurements. The second contains a lens with electronically-adjustable optical

power, and produces per-pixel depth and confidence measurements at 100

frames per second on a laptop GPU.
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1
Introduction

Differential changes in optical defocus can reveal scene depth from
image pairs through algorithms that require very few adds and multiplies. This
document describes the cooperative design of optics and computation to
develop sensors based on this depth cue. It includes both a theoretical
characterization of the depth from differential defocus cue as well as
experimental results from sensor prototypes. This work was inspired by a
naturally-occurring depth-specialized camera that has been studied for decades
but was recently illuminated by surprising new evidence.

This fascinating camera can be found in the eyes of the jumping spider
(Araneae: Salticidae), shown in figure 1.0.1. This common animal’s name refers
to its ability to jump several times the length of its body to land accurately on
targets such as prey or small platforms, demonstrating excellent depth perception
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that it achieves with a brain the size of a poppy seed. This tiny brain drives
remarkably complex behaviors [41] and its visual processing is backed up by an
impressive optical system. Spiders have several eyes, and in the jumping spider
these can be divided into four to six secondary eyes, which provide low
resolution peripheral vision, and two main eyes in front, which have small,
high-resolution fields of view that can sweep the scene independently [57]. This
anatomy is compatible with stereo or depth from vergence, but behavioral
evidence tells a more complicated story.

Behind each of the main eye’s lenses, where most animals have a single retina,
the jumping spider has a stack of four translucent retinas, each a slightly different
distance from the lens [9, 58]. This intricate anatomy has been studied for half a
century but its purpose is still not well-understood. The two layers closest to the
lens are UV- and polarization-sensitive, and their function remains mysterious,
but a recent behavioral study by Nagata et al. [78], summarized below, indicates
that the two deepest layers are responsible for the jumping spider’s excellent
depth perception.

The photosensors in these layers are primarily sensitive to green light, but also
slightly sensitive to red light. Chromatic aberration in the corneal lens causes
objects that are illuminated with red light to blur as if they were less distant
objects illuminated by green light. When the spiders hunt under green light,
which their green-sensitive photosensors perceive as similar to normal white
illumination, they reliably pounce on their prey, but under red light, they
systematically jump short — by exactly the amount that would be predicted from
the chromatic aberration of the lens [78]. This is powerful evidence that the
jumping spider uses its green-sensitive pair of retinas to perform depth from
defocus.

This is very surprising, because the jumping spider is so different from many
successful depth from defocus systems in computer vision. A major reason is that
its computational resources are extremely limited: the total volume of the
spider’s brain is comparable to a single hypercolumn in human brain area V1,
which we use to preprocess a single pixel of visual input. But artificial depth from
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Figure 1.0.1: The jumping spider. Jumping spiders, like the male Phidip-
pus audax shown in A, have excellent depth perception but a tiny brain. This
brain is supported by an impressive optical system, spread across many eyes.
These eyes can be separated into six secondary eyes and the two main eyes in
front. As shown in B, the low-resolution secondary eyes provide a wide field of
view peripheral vision system, highlighted in blue, while the high-resolution
main eyes have small fields of view that sweep across the scene, shown in
yellow. Within the main eye is a stack of four translucent retinas, shown in
a confocal microscopy image in C and diagrammed in D. Due to the differ-
ence in their location relative to the lens, these retinas receive images with
different amounts of optical defocus. A recent behavioral study has implicated
the change in defocus between the back two layers, indicated in green, as the
source of the spider’s accurate and efficient depth perception. Figure courtesy
of Paul Shamble.
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defocus algorithms are often very computationally intensive. They also are often
assisted by additional hardware, such as coded apertures, that the spider clearly
lacks. And, while traditionally the change in defocus is thought of as the source of
the depth signal and so designed to be large, the spider seems to experience a
small change in defocus across its retinas. These factors suggested that the spider
might be performing depth from defocus in a different and highly efficient way,
which motivated a search for computational shortcuts.

Indeed, my collaborators and I have found that, under a spider-plausible image
formation model, there exists a highly efficient algorithm for extracting scene
depth from simple comparisons of image values between and across retinal
layers. In this model, the point spread function of the spider’s eye is Gaussian,
and the width of this Gaussian shrinks or grows as the imaged object moves into
or out of focus, so that object depth is encoded by blurriness according to the
thin lens equation. This model specifies the image I that would be formed by any
textured plane in the world, and by measuring the small change It between the
retinal layers, and differential changes across a single layer spatially, Ix, Iy, and
∇2
Σ I = α0Ixx + α1Ixy + α2Iyy, depth at the backprojection of each photoreceptor

can be measured from a weighted sum of these derivatives:

Z =
∇2
Σ I

β0∇2
Σ I+ β1(xIx + yIy) + β2It

.

The weights α⃗ and β⃗ are calibrated quantities determined by the dimensions of
the eye, and they describe the relative contribution to image change It from the
magnification change and the defocus change between layers. The magnification
change is proportional to the radial derivative — the spatially-weighted
directional derivative in the radial direction, xIx + yIy. For Gaussian blur, the
defocus change is proportional to the warped image Laplacian∇2

Σ , where weights
α⃗ reflect the covariance of the Gaussian. Solving the equation above in parallel at
all pixels gives a depth map of the scene with very few adds and multiplies.

This algorithm may or may not explain the actual mechanism by which the
spider measures depth, but regardless of biological accuracy it is not very helpful
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for building sensors with today’s technology. The capacity to manufacture
spider-like cameras with stacks of high-quality translucent photosensors at
consumer scale does not currently exist and is unlikely to be developed soon.

Fortunately, the specific optical configuration of the spider’s eye is far from the
only way to measure depth from differential defocus. In addition to sensor
location as in the spider’s eye, chapter 3 describes how to recover depth from
differential changes in: aperture size, as in many classic depth from defocus
methods; optical power of the lens, as in an accommodating human eye; lens
location, as in a cell phone camera; camera location, as in a moving robot; or
from combinations of these changes, as in a cell phone camera held in a moving
hand. This describes the capacity of a wide variety of biological and technological
sensors illustrated in figure 1.0.2. All of these scenarios generate slightly different
equations for depth, but they all follow the same basic paradigm illustrated in
figure 1.0.3: given a differentially defocused image pair, take some set of spatial
and temporal derivatives, and a physical model provides an equation that extracts
depth from the combination of these derivatives.

Specifically, as chapter 3 will show, all of these sensors are governed by a
unifying equation for differential defocus change, named the defocus brightness
constancy constraint. This equation states that the effect of a differential defocus
change on an image can be expressed as a weighted sum of spatial image
derivatives:

It = [Ix Iy (xIx + yIy) (α0Ixx + α1Ixy + α2Iyy)] v⃗.

These four coefficients v⃗ reflect, respectively, the 2D translational motion,
magnification change, and defocus change of the sensor.

In the case of the spider (figure 1.0.2.A), there is no translational motion, the
magnification change is fixed by the geometry of the eye, and the defocus change
reflects depth. In this situation, the first three coefficients are known and the
depth recovery equation reduces to the weighted sum of image derivatives
previously shown.
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Figure 1.0.2: Mechanisms for differential defocus. Many differential
changes to camera parameters cause a defocus change that reveals depth
through the defocus brightness constancy constraint. These parameters in-
clude: A sensor location, as in the spider’s eye; B aperture width, as in many
classic depth from defocus approaches; C optical power, as in the focusing of
the human eye; D lens location, as in a cell phone camera; E camera location,
as in a sensor mounted on a moving platform or observing a moving scene;
and F a combination of factors, such as camera and lens location as in a cell
phone camera held in a shaking hand. Note that depth is not the only scene
property revealed by differential defocus, as velocity can be recovered simulta-
neously in the relevant scenarios.
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Figure 1.0.3: The depth from differential defocus computational
pipeline. A A camera undergoes a differential change in a parameter that
affects defocus, in this case the optical power of the lens (figure 1.0.2.C). B
A pair of differentially-defocused images is collected. Note the change in blur-
riness across the image pair in the highlighted regions. C An appropriate ver-
sion of the defocus brightness constancy constraint is used to estimate depth
and confidence at each pixel, and depth estimates from high-confidence pix-
els are reported, while low-confidence regions are shown in white. Note that
the optically-challenging bubble wrap is recovered well through this passive,
monocular depth cue.
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A richer use of this constraint can be seen in the case of camera motion
(figure 1.0.2.E). For an unactuated camera mounted on a moving platform or
observing a moving scene, the depth and velocity can be measured
simultaneously at the backprojection of each image patch by solving a 4× 4
matrix equation for the full coefficient vector v⃗. As will be shown in section 3.2,
these weights are one-to-one with depth and 3D camera-to-scene velocity. If the
motion is known, this reduces to a per-pixel depth equation as before, but solving
for all four coefficients allows depth and 3D velocity to be recovered
simultaneously.

The form of this constraint, a linear relationship on local image operations,
immediately implies a highly efficient depth sensing algorithm. Section 3.3
proves that for any coded-aperture thin-lens camera, the defocus brightness
constancy constraint is the only equation that takes this form. It requires
Gaussian blur, and for any other blur kernels, no such local linear constraint can
hold exactly. The proof of this uniqueness relies on the theory of distributions,
which allows a simultaneous differential analysis of continuous functions and
discontinuous objects like binary codes in a consistent way.

Putting the theory into practice requires robustness to both physical and
computational non-idealities. Examples of the former include non-Gaussian blur
kernels and non-planar, non-Lambertian scenes. In practice, the lenses of the
prototypes in chapter 4 have highly non-Gaussian blur but reliably produce high
quality depth measurements. This is true even in optically complicated scenes
including shiny or transparent objects, such as the bubble wrap shown in
figure 1.0.3, demonstrating the advantages of a passive and monocular method
like depth from defocus. Examples of the computational challenges include
sensor noise, texture-free patches, and finite spatial and temporal resolution and
bit depth. Chapter 4 describes the computational methods used to improve
robustness with per-measurement confidence estimates, and includes results that
accurately measure optically challenging scenes at 100 frames per second on a
laptop GPU.

While there remains a great deal of room for the development of differential
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defocus sensors, this work demonstrates that depth from differential defocus:

1. can be accomplished in many ways,

2. can reveal more than just depth (notably including velocity),

3. can be well-described analytically, and

4. can be made physically and computationally robust without sacrificing
efficiency.

The computational efficiency of depth from differential defocus suggests that it
could be a valid depth sensing modality for a growing class of microscale sensing
platforms, including microrobots and sensor nodes, which have power budgets
on the order of milliwatts or even fractions of microwatts [29, 52]. The tight
power budgets of these platforms currently put visual sensing out of their reach,
but small-scale, task-specific, computationally-efficient vision is happening all
around us in the natural world. Understanding how this is done may make vision
possible for a new class of microscale devices.
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Relation to Previous Publications

This document includes work that has appeared in three prior publications:

[4] Emma Alexander, Qi Guo, Steven J Gortler, and Todd Zickler. Focal flow:
Measuring distance and velocity with defocus and differential motion. In
European Conference on Computer Vision (ECCV), 2016.

[39] Qi Guo, Emma Alexander, and Todd Zickler. Focal track: Depth and
accommodation with oscillating lens deformation. In International Conference on
Computer Vision (ICCV), 2017.

[5] Emma Alexander, Qi Guo, Sanjeev Koppal, Steven J Gortler, and Todd
Zickler. Focal flow: Velocity and depth from differential defocus throughmotion.
International Journal of Computer Vision, pages 1–22, 2017.

Initial work in [4] considers an unactuated, single-retina camera that
undergoes uncontrolled motion or observes a moving scene. It develops a
limited version of this document’s central equation, the defocus brightness
constancy constraint, and provides a limited proof of its uniqueness as well as a
characterization of inherent sensitivity and results from a proof-of-concept
prototype that measures both depth and velocity. In [5] this proof is generalized
to something that closely resembles the proof in chapter 3, and experimental
results are expanded and improved. Chapter 4 contains experimental work from
these papers as well as [39], which describes a fixed camera with a lens whose
optical power is fluctuated electronically.
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2
RelatedWork

This work rests on and advances several rich lines of work in the study of
depth perception. In addition to the use of defocus in the eye of the jumping
spider, it draws from a number of studies on depth from focus and defocus in
both natural and artificial vision. The main design approach most closely
resembles a line of work in computer vision that can be called differential vision,
which extracts scene properties from the observation of small changes to an
image that is explicitly modeled as a continuous function of the scene.

2.1 Focus andDefocus in Biological Vision

Jumping spiders are far from the only animals that use optical defocus to better
understand their world. Their small brains and complex eyes place tight
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restrictions on how they might collect and process defocus information, which
provides a valuable model for designing power-efficient depth sensors, but there
are many other biological systems for depth from focus and defocus.

Many animals can change where their eye is focused, by reshaping or moving a
lens, in a process known as accommodation. Chapter 4 describes a prototype
that recovers depth from defocus using a differentially-accommodating actuated
lens. Accommodation has been shown to provide depth information to
toads [27], chameleons [40], and barn owls [112], so that putting lenses on the
eyes of these creatures will cause them to systematically misjudge the location of
food during tongue extension or pecking. Humans also accommodate and use
defocus to determine depth, but chromatic aberration contributes more to both
depth perception and accommodation than microfluctuations of the
eye [25, 125]. This suggests that the underlying algorithm for human depth from
defocus differs from the differential monochromatic methods described here,
which do not consider chromatic aberration.

The spider’s eye is unable to accommodate and uses a multilayer retina to
observe a defocus change instead. This structure is unusual but not unique.
Scallops’ small eyes feature two photodetecting layers [56], and multiretinal
tubular eyes are found in several families of deep sea fish [28]. Of the
twenty-eight separate and poorly understood retinas of the sunburst diving
beetle larva, all but two are found within twelve multi-layer eyes [71]. Several of
these retina stacks lie behind bifocal lenses [100], further complicating defocus
information.

Even without these exotic changes to eye structure, optimized defocus blur is
found throughout the animal kingdom in the routine specialization of pupil
shape. Banks et al. show in [8] that pupil shape is highly correlated with
ecological niche: animals with vertical pupils are likely to be ambush predators,
while horizontal pupils are often found in prey animals. They point out that
elongated pupils allow greater light efficiency while minimizing blur on contours
parallel to the pupil, and argue that ambush predators need sharp vertical
contours to judge depth from stereopsis, while prey animals benefit from a
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Figure 2.1.1: A variety of natural pupil shapes. Animal pupils display a
wide variety of shapes, evolved to suit their visual tasks. A shows the eye of a
goat. Its horizontal pupil is typical of a prey species, in contrast to the vertical
pupils of ambush predators like housecats. B shows a gecko pupil, contracted
to its four-pinhole state. Several unconfirmed explanations for this pupil shape
have been proposed. C shows the eye of a skate, a relative of the stingray.
This ornate pupil shape has not been explained. D shows the W-shaped pupil
of a cuttlefish. Like octopi and other cephalopods, they display colorful skin
patterns, and this pupil shape is thought to contribute to their color percep-
tion.

horizontal panorama that assists in predator detection and navigation of uneven
terrain. In many animals, from horses and sheep [8] to snakes, turtles and
crocodiles [42], the eye maintains constant pupil orientation even as head
position changes, highlighting the importance of appropriate blur kernels to
these creatures.

Natural pupil shapes exhibit far more variety than circles and elongated slits.
On land, some frogs show heart-shaped or triangular pupils, and keyhole-shaped
pupils appear in vine snakes. Under bright light, gecko pupils shrink from round
or slit apertures to four pinholes, for unknown reasons perhaps including depth
perception [77], reduction of chromatic aberration [54], or camouflage [92].
Under water, exotic off-axis pupils are common among dolphins, rays, and skates.
Notably, cephalopods such as octopi and cuttlefish demonstrate a remarkable
ability to camouflage themselves by matching their skin to background colors,
despite possessing only a single class of photoreceptor in their eyes, a typical
indicator of colorblindness. It is thought that their color perception is enabled
through an unknown mechanism that relies on their unusual U- or W-shaped
pupils [101]. See figure 2.1.1 for an illustration of some of these pupils.

The cooperative development of optical systems and visual algorithms,
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inherent to the evolution of every biological vision system and highlighted by the
task-specific sensing of small-brained animals like the jumping spider, is known in
artificial vision as computational sensing or computational photography. Within
this field, pupil designs are referred to as aperture codes and a brief summary of
their use is included in the following section. Central to the work described in
this document is a pupil design problem addressed in chapter 3.

2.2 Focus andDefocus in Computer Vision

Optical focus has been used as a depth cue in artificial vision for decades. When
many images are collected under a variety of calibrated camera settings, a search
for the most-in-focus image for every patch will yield depth [38]. This approach
is called depth from focus, and it is reliable but expensive in terms of time and
images captured. It is closely related to the problem of contrast-based autofocus,
which selects the most in-focus setting for a single patch of interest. A defining
component of both of these problems is the method of determining how in-focus
an image patch is.

A review by Pertuz et al. [87] compares many focus measures developed for
shape from focus and autofocus in various imaging settings, and clusters them
into several major categories. Gradient-based operators [31, 36, 79] observe that
full-contrast patches have larger gradient values than blurred patches,
Laplacian-based operators [3, 6, 62, 80, 84, 94, 104, 109] similarly measure edge
strength by the second order spatial derivatives, wavelet-based measures
[121, 122] and discrete cosine transform measures [7, 63, 64, 98] summarize
local frequency content, and statistics-based measures rely on image statistics
such as Chebyshev moments [116, 123], eigenvalues of image covariance
[115–117], variance of gray levels [44, 49, 70, 75, 84], histogram range
[33, 95, 106], and histogram entropy [23, 55]. Pertuz et al. conclude that
Laplacian focus measures provide the best results for normal imaging conditions
but that imaging and texture parameters have a strong effect on a measure’s
performance for a given focal stack, in a way that is difficult to predict.
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Current work on depth from focus includes the ongoing development of focus
measures and their application to data from novel devices. Notably,
Suwajanakorn et al. in [107] describe a depth from focus pipeline for handheld
cameras andmobile phones. While their method requires toomuch computation
to run on current phones, it is able to handle the practical challenges of camera
motion, calibration, and the bright image regions caused by blurred light sources,
which violate standard assumptions for depth from focus methods.

When restricted to a few images, none of which are guaranteed to be in focus, a
depth from defocus algorithm must be used. This approach is more challenging
than a depth-from-focus-style search for the sharpest patch because the
underlying texture is unknown: a sensor cannot tell if it is capturing a blurry
picture of an oil painting or the sharp image of a watercolor. Pentland proposed
the first depth from defocus method in [85], noting that the relative attenuation
of image frequencies in a defocused image pair could disentangle depth and
texture information. These image frequencies can be estimated using spatial
filters, such as the narrowband Laplacian filters used by Pentland or by Watanabe
and Nayar’s carefully-designed broadband filters in [114], or from local Fourier
transforms as in [102, 105]. Other algorithms to detect depth from defocus,
discussed in further detail below, include: optimizing the deconvolved image for
somemetric on image statistics [14, 66, 110, 131], solving a stereo problem based
on off-axis apertures [61, 96, 111], and computationally blurring images to match
each other [30, 108, 120]. This document describes another approach, similar to
that of Farid and Simoncelli in [32] or Subbarao and Surya in [103], where
spatial and temporal derivative filters reveal depth from image values with high
computational efficiency.

Like the specialized animal pupils described in the previous section, depth
from defocus sensor performance improves when well-designed attenuation
patterns are included in the aperture plane. These are called aperture codes and
their design can be optimized for various imaging and vision tasks. Some codes
are designed to improve image quality directly at capture time [76, 118] or with a
deblurring algorithm [130]. Of particular interest are the following aperture code
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pairs, designed to both recover depth and improve image quality in cooperation
with some postprocessing algorithm.

Zhou and Nayar in [131] present a pair of half-ring aperture codes optimized
for statistical recovery of both a depth map and an all-in-focus image. In [65]
Levin shows that these half-rings provide near-optimal depth discrimination for
aperture code pairs, and that annular rings provide near-optimal performance
when more than two non-overlapping codes are allowed. The half-rings, shown
in figure 2.2.1.A and B, resemble more light-efficient versions of two-pinhole
patterns used for depth from defocus. This set-up is used by Schechner and
Kiryati in [96] to describe the fundamental similarity between depth from
defocus and small-baseline stereo, in which a small aperture at either edge of a
lens can be seen as a stereo camera pair where blur kernel size becomes analogous
to stereo baseline. Section 3.2.2 extends this analysis to include depth from
differential defocus, showing that inverse magnification serves the analogous role.

Recent applications of the defocus-as-stereo approach can be seen in many
phase-based autofocus systems, and in the single-shot systems of Wadhwa et
al. [111] and Lee et al. [61]. Wadhwa et al.’s pipeline simulates a wide aperture’s
limited depth of field using a depth map generated from dual pixels on
small-aperture mobile phones. Each dual pixel is split laterally and equipped with
a microlens, so that it receives light from half of the aperture, equivalent to a pair
of semicircular aperture codes. A stereo algorithm is used to recover depth maps
to guide image blurring. Lee et al. present a tricolor pinhole aperture code,
shown in figure 2.2.1.C, which generates a depth-dependent offset between the
color channels of the captured image. By aligning these color channels with
phase correlation [35], scene depth is recovered and used to correct the color
errors in the original image.

As shown by Lee et al., a single exposure can provide both depth and a
simulated large depth-of-field image when an aperture code is paired with an
appropriate inference algorithm. Levin et al. do so in [66] with a binary code,
shown in figure 2.2.1.D, designed so that the structure of zeros in the frequency
domain reveal blur kernel scale and thereby object depth. The image is retrieved
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Figure 2.2.1: Aperture codes for depth from defocus and defocus de-
blurring. These aperture codes are among the many that have been proposed
for improving the performance of depth from defocus methods. Depending
on the image model and type of code allowed, different patterns are opti-
mal. Code types shown here include A and B a complementary pair of codes
from Zhou et al. [131], C a multispectral code from Lee et al. [61], D a binary
code from Levin et al. [66], E a continuous valued but spatially discontinuous
code from Veeraraghavan et al. [110], and F a spectral code from Chakrabarti
and Zickler [14]. Depth from differential defocus is shown in chapter 3 to be
uniquely well-suited to a Gaussian code as shown in G, which is monochro-
matic, continous valued, and spatially continuous.

through deconvolution with a sparse derivatives prior. Veeraraghavan et al.
in [110] consider a wide class of possible cameras. Their analysis of a standard
coded aperture camera optimized for broadband frequencies shows that a
continuous-valued but highly pixelated code, shown in figure 2.2.1.E, can be used
with a kurtosis-based error function to estimate the blur kernel scale for
multilayer scenes, and from this estimated depth map an image is recovered using
the digital photomontage techniques of [2]. Chakrabarti and Zickler in [14]
consider an RGB image taken through an aperture with a purple ring at the edge,
shown in figure 2.2.1.F, so that the green channel is blurred less than the blue and
red channels. They show that depth can be recovered from such an image with a
prior enforcing agreement of gradient profiles across color channels. Their image
recovery, based on efficient deconvolution extending [53], benefits from the
increased light efficiency of this aperture code.

The Gaussian filter, shown in figure 2.2.1.G and proven in chapter 3 to be
uniquely well-suited to depth from differential defocus, differs significantly from
these aperture codes. It is monochromatic, continuous-valued, and spatially
continuous. These properties result directly from design choices made in
chapter 3, which considers a monochromatic camera (significantly weakening the
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effect of filters C and F) with a single aperture filter (ruling out filters A and B),
then specifies a highly-restricted constraint form and requires that this constraint
hold exactly and for any texture. An immediate consequence of the exactness and
universality requirement is that it rules out zero crossings in the frequency
spectrum of the filter (see equation 3.77). This forbids both the scale signature
approach used in designing filter D and the spatial discretization typically used to
make filter optimization problems like those resulting in filters A, B, D, and E
computationally tractable. Gaussian uniqueness arises as a consequence of
algorithm design choices that prioritize computational efficiency over the
statistical robustness offered by other coded aperture approaches.

Because of these differences, and due to the fact that its use is rarely derived
directly as it is in chapter 3, Gaussian blur is not generally considered a coded
aperture model, though it can be expressed as one. And in practice the
prototypes of chapter 4 show that, under the optical non-idealities of a real single
lens system, a bare lens is roughly as effective as one equipped with a
Gaussian-transmittance filter. However, the coded aperture approach greatly
influenced this work. The derivation in chapter 3 of the defocus brightness
constancy constraint results from an aperture code design problem. Using the
theory of distributions, it proves that the Gaussian is the only blur kernel that
enables depth sensing from differential defocus with a local linear constraint, out
of a large class of aperture filters including binary and pixelated codes as well as
continuous functions.

Another unusual feature of depth from differential defocus is its use of small
changes in blur. Section 2.3 details three analyses [32, 50, 102] that also consider
differential blur change, but such approaches are rare. More common is the
recommendation of Rajagopalan and Chaudhuri [88] and Zhou et al. [131] that
aperture size should change by a factor of around 1.7 between captures. Tang et
al. in [108] likewise roughly double their blur kernel scale between captures,
following the analysis of Schechner and Kiryati in [96]. These results are all
based on the frequency response of pillbox kernels, however, and so may not be
expected to hold for Gaussian blur.
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Of these systems, Tang et al. [108] is particularly interesting because they
process image pairs from cell phone cameras using a potentially-efficient
reblurring algorithm, highlighting the possible usefulness of depth from defocus
on restricted platforms. Their reblurring approach, similar to methods seen
in [30, 120], convolves each collected image with a bank of filters. These filters
are calibrated so that some pair will cause the reblurred image pair to match, and
the identity of this kernel pair reveals depth. Tang et al.’s normalized kernels
alleviate frequency-dependent bias, and their computationally intensive pipeline
includes explicit modeling of scene deformation and a densification of the depth
map with several scene priors. They produce high quality full-resolution results
of fine scale structure from cell phone image pairs in under an hour.

It should be noted that the difference in runtime between Tang et al.’s method
and the systems in chapter 4, which are orders of magnitude faster, is not due
primarily to the depth measurement step but instead to their use of priors,
deformation modeling, and densification of the depth map. The prototypes
described in this document only report sparse, high-confidence measurements.
Scene deformation is measured by a passive prototype described in section 4.1
and ignored by a fast (100Hz) actuated prototype in section 4.2. The underlying
depth sensing methods seem to be generally comparable in speed and
performance.

Given its potential efficiency, reblurring is another plausible hypothesis for the
algorithm used by the jumping spider. Other methods based on the application
of local filters such as Pentland’s [85] or Watanabe and Nayar’s [114] hold similar
promise. The only way to determine which computations are performed by these
animals is to analyze neurological readings from live brains, which are extremely
challenging to collect from jumping spiders. Their pressurized bodies quickly fail
when the exoskeleton is pierced, and very little work in this area has succeeded.
Recent methodological advances in this direction [73] promise valuable insight
into the many hyperefficient algorithms the spider must use to perform its
complex behaviors.
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2.3 Differential Vision

This work continues a line of research that extracts scene information from
differential changes in continuously-modeled images. Notable work in this
direction includes differential measurements of optical flow [45, 69, 89], time to
contact and bearings [46, 47], egomotion [90], depth from photometric
stereo [26], depth from defocus [32, 102], shape from shading [11, 126], shape
from specularity [1, 13, 82, 128, 129], and simultaneous recovery of depth,
lighting, and material for scenes of varying complexity [15–21].

Differential brightness constancy constraints for optical flow are perhaps the
most widely known example of differential vision. This classic problem is still an
active area of study; for an example of recent work in this field along with a review
of previous differential approaches to the problem, see [89]. These approaches
consider a model of a pinhole camera observing a moving but
constant-brightness scene. One physical quantity that can be extracted from
optical flow is time to contact, which is the amount of time before the scene and
camera would meet at the center of projection if all velocities remained
constant [48, 60]. This quantity can be calculated from the spatial derivatives of
the optical flow field, but a more stable method is to consider a 3-term version of
the differential brightness constancy constraint, as demonstrated in [46]. This
approach provides time to contact and bearings relative to a front-parallel planar
scene, with a fast and stable computation and without any calibrated parameters.
The defocus brightness constancy constraint developed in this document can be
seen as an extension of optical flow constraints that includes the effect of
brightness change due to defocus, thereby enabling time to contact and direction
of motion to be resolved into depth and, when applicable, 3D velocity.

While defocus or some other depth cue is needed to resolve 3D velocity, there
are advantages to only measuring relative velocity, or egomotion, from pinhole
images. These include independence from calibration [46] and the ability to
generalize to slanted surfaces [47]. Many egomotion methods take a differential
approach. A review by Raudies and Nuemann [90] provides a comprehensive
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comparison of several differential approaches to the problem of egomotion for a
variety of scene and motion types under both Gaussian and outlier noise models.
They unite five constraints under two underlying scene models
(Longuet-Higgins and Prazdny’s model of visual image motion [68]
for [12, 24, 43, 59, 83, 86, 91, 127], or Longuet-Higgins’s stereo model [67]
for [51, 132]), categorize the complexity of their optimization techniques (linear
for [43, 51, 67, 91], nonlinear for[12, 24, 83, 127], and explicit evaluation of an
error function for [59, 86]), and provide guidelines for algorithm selection based
on their simulations of each method. Additional camera models have been
considered for differential egomotion, notably the large-field-of-view systems
in [37, 97], which model the warping of optical flow fields onto curved image
planes in order to apply pinhole egomotion algorithms, so these likewise depend
on brightness constancy constraints.

The model of a moving camera observing a constant-brightness world draws
much of its power from its simplicity, but more complex scenes have also been
considered differentially. By considering more complicated models of the
camera, scene, and lighting, richer information can be extracted from differential
image changes. Examples of this include depth from photometric stereo with a
differentially-moving light source [26], shape from shading [11, 126], and shape
from differential motion of a reflective object [1, 13, 82, 128, 129].

A series of papers from Chandraker and colleagues provide a thorough
theoretical hierarchy of general scene information available from differential
observations for several lighting, material, and camera models. They begin by
considering light source motion and show that two differential image pairs, under
unknown light sources moving on a circle, provide a photometric surface
reconstruction for objects of unknown reflectance [19, 20]. Object motion is
analyzed in [21], which shows that depth can be recovered with a perspective
camera and three object motions (i.e. four images) when the light source is
colocated with the camera, or four object motions under unknown lighting. They
also specify how many object motions are required to recover more limited scene
information (characteristic or level curves) under other lighting and projection
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models. Camera motion is considered in [15, 17], showing that with three
camera motions a perspective camera can recover object depth for objects with a
fabric-like appearance under unknown lighting or objects with metal- or
plastic-like appearance under known light. Additionally, level or characteristic
curves are available to a differentially moving orthographic camera. This is
extended to simultaneous recovery of depth and reflectance for dichromatic
materials like metals, plastics, and paints in [16], which presents a hierarchy of
material types and lighting for scene recovery through differential motion of
either the object or the camera. Similar constraints are considered for lightfield
cameras in [113], showing that glossy objects with spatially varying reflectance
can be constrained so that a quadratic shape prior gives good reconstructions of
shape and reflectance. This significant body of work demonstrates the analytical
power of differential vision on a wide variety of scenes, and provides a
compelling characterization of scene complexity for low-level vision. It does not,
however, consider the effects of optical defocus.

Hwang et al. in [50] analyze differential changes in Gaussian-blurred images
under changes in photosensor location and object distance. The framing of this
work bears significant similarities to section 3.2, except that their model of blur
change is not considered simultaneously with magnification change. As a result,
their method requires a depth-dependent preprocessing step to correct for
magnification, and creates ambiguities in the subsequent computation of depth
from defocus that are not physically inevitable.

Early work by Subbarao considers differential changes in defocus in [102].
This work analyzes the Fourier transform of images under simultaneous changes
in several camera parameters. It points out the inherent side-of-focal-plane
ambiguity in measuring depth from an aperture change, which can only be
addressed by focusing outside the range of interest e.g. at infinity, and does not
arise for other differential camera changes. Subbarao notes that Gaussian blur
provides a neater constraint on depth but suggests using more complicated depth
recovery calculations to account for the non-Gaussian blur kernels found in real
cameras. This deviation from Gaussian blur is also evident in the prototypes in
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chapter 4, but the Gaussian model is sufficient to provide good measurements.
Later work by Subbarao and Surya in [103] extends this analysis into the

spatial domain. They derive a discrete version of equation 3.16 for locally-cubic
textures, radially symmetric blur kernels, and no magnification change. They
implement a pair of prototypes, one with a change in aperture size that produces
a side-of-focal-plane ambiguity, and one producing non-ambiguous results from
a change in lens position. Though their analysis neglects the magnification
change generated by this lens motion, in their experiment the change was small
and the constraint was still able to recover depth.

Another implementation of depth from differential aperture scaling appears
alongside a differential stereo method in [32] from Farid and Simoncelli. They
considered differential changes to the scale and center point of a Gaussian
aperture filter, as discussed in appendix B. Their sensor consisted of a
photosensor and lens, augmented with a small LCD screen which displayed a pair
of filters. Rather than taking a pair of images through slightly different Gaussian
aperture codes, they directly imaged the scene through the equivalent of a
derivative-of-Gaussian filter. This improves the measurement accuracy of image
derivatives through what they term optical differentiation.

This document contains three main contributions to previous work on depth
from differential defocus: a derivation of the relevant constraint directly from a
simple image model in chapter 3, a proof of the uniqueness of Gaussian blur for
depth discrimination also in chapter 3, and a pair of prototypes in chapter 4 that
demonstrate the speed and robustness available from the differential defocus cue
in practice.
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3
Theory

The goal of this theory is to describe the changes that occur in an optically
defocused image over a differential change in that defocus, without requiring
access to an in-focus image of the same scene. A secondary goal is to describe
these changes in a way that enables efficient computation of scene depth. This
computational efficiency results from a severe restriction on image processing:
requiring a linear constraint on locally-computed image quantities, such as spatial
derivatives. For a thin lens camera with an aperture code, there is a unifying
equation that requires Gaussian blur and describes a large class of possible depth
sensors that meet this efficient processing requirement. The equation, named the
defocus brightness constancy constraint, describes image changes as a weighted sum
of spatial image derivatives, where the weights vary by the mechanism of defocus
change and are shown to encode scene geometry and motion.
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Section 3.1 specifies an image formation model, and section 3.2 shows how
differential changes in this image under Gaussian blur can be used to reveal
depth. This section derives the defocus brightness constraint for a camera with
Gaussian blur kernels, shows how it can be used to recover depth for a large class
of sensors, and analyzes the inherent physical sensitivity of differential defocus
change as a depth cue. Section 3.3 proves the uniqueness of the Gaussian-based
defocus brightness constancy constraint under the specified image processing
restrictions.

3.1 Image FormationModel

Image formation is modeled in two steps: the first describes the all-in-focus
image P that would be captured by a pinhole camera, in which an object’s size and
location on the image are determined by its 3D location in the world and the
location of the photosensor within the camera. Next, this sharp image is blurred
by a convolution with a depth-dependent blur kernel. Specifically, this blur
kernel is a stretched and normalized version of an experimenter-designed
aperture filter, where the extent of the scaling is determined by a ray optics model
of an ideal thin lens.

3.1.1 A Simple World

Assume a camera, with its optical center at the origin of the world, observes a
front-parallel plane with a spatially-varying constant-brightness albedo variation,
called texture T. Assume that this textured plane has its origin located at a
position (X, Y,Z) from the optical center of the camera and that it is projected
onto a photosensor an unsigned axial distance f behind the optical center. Note
that this distance fwill be referred to as the photosensor location rather than the
focal length. Focal length is the standard terminology for this quantity in pinhole
camera models, but for a camera with a lens, it can also refer to the optical focal
length of that lens (the inverse of the lens’ optical power). Conflating these two
quantities would be equivalent to focusing the camera at infinity, which would

25



constitute a loss of generality. To emphasize their independence, this document
will not use the term focal length and instead will refer to photosensor location f
and lens optical power p.

3.1.2 All-in-focus Pinhole Image P

First consider the all-in-focus image P that would be captured in this world by a
pinhole at the origin. This image,

P(x, y) = η T
(
−Z

f
x− X,−Z

f
y− Y

)
. (3.1)

is simply a magnified and translated version of the scene texture, scaled overall by
an exposure-dependent parameter η which can, without loss of generality, be
ignored by assuming it is constant and incorporating it into the underlying
albedo T.

3.1.3 Optically-Defocused Image I

Now consider replacing the pinhole with an ideal thin lens, as illustrated in
figure 3.1.1. For a thin lens with optical power p and photosensor location f, the
scene plane will only be imaged in focus if it is at the focal depth Zf, with

p =
1
f
+

1
Zf
, (3.2)

and away from this depth it will be blurred by an amount σ determined (e.g. by a
similar triangles argument) by scene depth Z according to

σ =

(
1
Z
− 1

Zf

)
f (3.3)

=
f
Z
− p f+ 1. (3.4)

In place of the pillbox averaging generally assumed for a thin lens, allow a
transmittance profile κ at the aperture, so that the blur kernels k induced on the
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Figure 3.1.1: Image formation model. A front-parallel planar scene at
depth Z is imaged by a thin lens. The resulting image I is a blurred version
of the all-in-focus image P that would have been collected by a pinhole cam-
era. At the aperture of the lens is a filter with transmittance profile κ, which
is an integrable function R2 → [0, 1], such as a pillbox, a binary code, or a
continuous function. Shown is the Gaussian blur proven in this chapter to be
uniquely suitable for depth from differential defocus. The aperture filter κ in-
duces a blur kernel k that is magnified and normalized by a factor σ. This σ
is determined by the physical parameters of the system: the location f of the
photosensor with respect to the lens, the in-focus depth Zf (determined by f
and the lens’ optical power p according to the thin lens law), and the scene
depth Z.
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image will be replicas of the filter κ, scaled according to the amount of blur σ:

k(x, y) =
κ
( x
σ ,

y
σ

)
σ2

. (3.5)

Then the optically-defocused image I is taken to be the underlying pinhole
image P, blurred by the depth-dependent blur kernel k:

I(x, y) = k(x, y) ∗ P(x, y), (3.6)

where ∗ indicates throughout this document convolution in the spatial
dimensions x and y. In the following section, differential changes to this image
are considered, and Gaussian blur is used to measure depth from the observation
of these changes.

3.2 UsingDifferential GaussianDefocus Change

A differential change in defocus, when the blur kernels are Gaussian, enables
efficient measurement of depth through an equation named the defocus
brightness constancy constraint. This section contains a derivation of the
constraint (additional derivations are provided in appendix A), shows how to
measure depth from Gaussian defocus blur under several kinds of differential
camera changes, and analyzes its inherent sensitivity to physical parameters.

3.2.1 The Defocus Brightness Constancy Constraint

Differential changes in defocus blur scale σ become very useful for depth
perception when the blur kernels are Gaussian. Let the aperture filter κ be a
Gaussian with covariance described by three real numbers a, b, c, with a, c > 0
and 4ac > b2:

κ =e−ax2−bxy−cy2 . (3.7)
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Then the induced blur kernels kwill be scaled and normalized versions of this
filter according to equation 3.5. For a Gaussian filter, this means that a scale
change in the blur kernels will be proportional to the sum of their second spatial
derivatives, adjusted to the width and orientation of the filter:

kσ =
2σ

4ac− b2
(
c kxx − b kxy + a kyy

)
, (3.8)

where subscripts will denote partial derivatives throughout this document. For a
radially symmetric Gaussian, with a = c = 1 and b = 0, this sum of second
derivatives will be the filter’s Laplacian,∇2k = kxx + kyy. In an abuse of standard
terminology, this document will use the term Laplacian to refer to the spatially
warped sum∇2

Σ , with

∇2
Σ =c ∂xx − b ∂xy + a ∂yy, (3.9)

so that with constant weight Σ2,

Σ2 =
2

4ac− b2
, (3.10)

the blur kernel change in equation 3.8 can be expressed as a σ-weighted spatial
derivative of the kernel itself,

kσ =σΣ2∇2
Σ k. (3.11)

This property of the Gaussian, perhaps best known from scale space
analyses [119], reveals scale change from spatial change in a way that can be very
useful for depth sensing. Consider a camera that differentially changes the optical
power of its lens, so that it observes some known blur scale change σ t = −fpt,
while the underlying pinhole image remains the same. In this case, the

29



differential image change over time takes the form

It =kt ∗ P (3.12)

=(kσσ t) ∗ P (3.13)

=(σ tσΣ2∇2
Σ k) ∗ P. (3.14)

Of these quantities, only It can be measured. However, recall that differentiation
commutes with convolution,

Ix =kx ∗ P = k ∗ Px, (3.15)

and that by the assumption of a front-parallel planar world, the blur change σ t is
spatially invariant and can be pulled out of a spatial convolution. Thus, the
unknown blur kernel Laplacian∇2

Σ k convolved with the unknown pinhole image
P gives the measurable image Laplacian∇2

Σ I. It can be seen from this relationship
that the ratio of the temporal and spatial change describes depth at the
backprojection of each pixel:

σ =
1

σ tΣ2
It
∇2
Σ I
, (3.16)

Z =

(
1
Zf

+
σ
f

)−1

. (3.17)

Often a defocus change will come with a change in the magnification of the
underlying sharp image. Examples of this scenario include a moving object
approaching the camera, or the change in photosensor location in the eye of a
jumping spider. When defocus change σ t and underlying image change Pt occur
simultaneously, they will both contribute to the observed image change:

It =kt ∗ P+ k ∗ Pt, (3.18)

and the sources of image change must be disentangled to recover scene
information.
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As before, the blur change can be related to the image Laplacian,

It =σ t σ Σ2 ∇2
Σ I+ k ∗ Pt, (3.19)

where the blur change σ t can be generated by a change in any of its parameters:

σ t =σp pt + σZ Zt + σ f ft (3.20)

=− f pt −
f
Z2 Zt +

( 1
Z
− p
)
ft. (3.21)

Now consider the new source of image change in equation 3.18, k ∗ Pt. The
pinhole image will change with any change in the texture location (X, Y,Z) or the
photosensor location f:

Pt =PX Xt + PY Yt + PZ Zt + Pf ft. (3.22)

With texture derivatives indicated by superscripts, this change takes the form

Pt =− T(1,0) Xt − T(0,1) Yt −
(
x
f
T(1,0) +

y
f
T(0,1)

)
Zt +

(
Zx
f2
T(1,0) +

Zy
f2
T(0,1)

)
ft.

(3.23)

Because spatial derivatives of the texture are simply magnified versions of the
spatial derivatives of the image,

Px =− Z
f
T(1,0), (3.24)

Py =− Z
f
T(0,1), (3.25)

the temporal change Pt of the pinhole image can be described as the following
weighted sum of its spatial derivatives:

Pt =
f
Z

Xt Px +
f
Z

Yt Py +
(
Zt

Z
− ft

f

)
(xPx + yPy). (3.26)
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Note that this is simply the brightness constancy constraint for optical flow, more
typically written as

Pt =ẋPx + ẏPy, (3.27)

with

ẋ =
f
Z

Xt +

(
Zt

Z
− ft

f

)
x, (3.28)

ẏ =
f
Z

Yt +
(
Zt

Z
− ft

f

)
y. (3.29)

This expanded version of the constraint has the advantage of separating image
changes by their cause: the first two terms in equation 3.26 describe image
translation, while the last describes a change in magnification with the expression
xPx + yPy. This quantity is the spatially-weighted directional derivative in the
radial direction, ∇⃗r⃗, and it is maximized by image features moving outward from
the image center, as when the camera approaches a scene.

For the wide-aperture camera, this change Pt, blurred by a thin lens with
Gaussian kernels, is the new source of image change in equation 3.18:

k ∗ Pt =k ∗
(

f
Z
Xt Px +

f
Z
Yt Py +

(
Zt

Z
− ft

f

)
(xPx + yPy)

)
. (3.30)

Again, the spatial invariance assumed of (X, Y,Z) and f and the commutativity of
differentiation with convolution allows the first two terms to be expressed with
quantities directly computable from the defocused image I,

k ∗ Pt =
f
Z
Xt Ix +

f
Z
Yt Iy +

(
Zt

Z
− ft

f

)
(k ∗ (xPx + yPy)), (3.31)

while the x and y in the third term cannot simply be pulled out of the convolution
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with the blur kernel k. Instead, note that

f(x) ∗ (x g(x)) =
∫

f(X)g(x− X)(x− X)dX

=x
∫

f(X)g(x− X)dX−
∫

Xf(X)g(x− X)dX

=x(f(x) ∗ g(x))− (x f(x)) ∗ g(x), (3.32)

so that the blurred radial derivative can be written

k ∗ (xPx + yPy) =x(k ∗ Px)− (x k) ∗ (Py) + x(k ∗ Py)− (y k) ∗ (Py). (3.33)

To understand this expression, recall that Ix = kx ∗ P = k ∗ Px, so that this
expression contains the radial derivative of the image,

x(k ∗ Px) + y(k ∗ Py) =xIx + yIy, (3.34)

and leaves behind a quantity which, by moving the derivatives across the
convolutions, gives an expression,

−(x k) ∗ (Px)− (y k) ∗ (Py) =− (x k)x ∗ P− (y k)y ∗ P (3.35)

=− (2k+ xkx + yky) ∗ P. (3.36)

For Gaussian blur specifically, this can be related back to the image Laplacian,

−(2k+ xkx + yky) ∗ P =σΣ2∇2
Σ k ∗ P = σΣ2∇2

Σ I, (3.37)

so that the blurred radial derivative in equation 3.33 takes the final form

k ∗ (xPx + yPy) =xIx + yIy + σ2Σ2∇2
Σ I. (3.38)

This completes the manipulations required to describe the change in image
value at each pixel over time as a weighted sum of spatial image derivatives, and
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combining equations3.19, 3.31, and 3.38 immediately produces the defocus
brightness constancy constraint:

It =
[
Ix Iy (xIx + yIy) ∇2

Σ I
]
v⃗, (3.39)

with weight vector v⃗:
v1
v2
v3
v4

 =


f
Z Xt
f
Z Yt

Zt
Z − ft

f(
σ t +

(
Zt
Z − ft

f

)
σ
)
σΣ2

 . (3.40)

The values of these weights vary with scene information and can describe a class
of sensors to measure depth and, when applicable, velocity.

In the case of the spider, for example, only the photosensor location f changes,
so that the defocus brightness constancy constraint has weights

v⃗spider =


0
0
− ft

f(
σ f ft − ft

f σ
)
σΣ2

 =


0
0
− ft

f

− ft
f σΣ

2

 , (3.41)

which describe the image change,

It =− ft
f
(xIx + yIy)−

ft
f
σΣ2∇2

Σ I. (3.42)

Note that blur scale σ can be expressed directly in terms of image values:

σspider =
It +

ft
f (xIx + yIy)

− ft
f Σ

2∇2
Σ I

, (3.43)

so that depth at each pixel can be computed from image derivatives and
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calibrated camera parameters:

Zspider =

(
1
Zf

+
σspider
f

)−1

=
ZfΣ2∇2

Σ I
Σ2∇2

Σ I+
Zf
ft
It +

Zf
f (xIx + yIy)

. (3.44)

A more expensive algorithm is needed to compute depth from a defocus
change due to camera or object motion. In this case, the per-pixel depth equation
is replaced with a per-patch depth and velocity equation. The constraint weight
vector takes the form

v⃗motion =


f
Z Xt
f
Z Yt
Zt
Z(

σ t + Zt
Z σ
)
σΣ2

 =


f
Z Xt
f
Z Yt
1
Z Zt

− f
Zf

Zt
Z σΣ

2

 . (3.45)

Note that unlike the previous scenario, in this case v4 cannot reveal depth alone,
because the quantity σ/Z contains both Z−1 and Z−2 terms and so is not
monotonic in depth. However, the ratio v4/v3 is. Specifically,

Zmotion =

(
1
Zf

−
Zf

f2Σ2
v4
v3

)−1

. (3.46)

For unknown motion, depth recovery from v3 and v4 requires solving a 4× 4
matrix multiplication using image derivatives from at least 4 pixels in a patch.
However, once depth has been recovered from v4/v3, the other three weights
reveal 3D velocity:

X⃗t =

(
Z
f
v1,

Z
f
v2,Zv3

)
. (3.47)

Fundamental computational issues arise when an image patch is degenerate,
meaning that the spatial image derivative matrix in equation 3.39 is not full rank.
In this case, only partial scene information can be obtained. For example, a patch
that contains a single-orientation texture and is subject to the classical aperture
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problem gives rise to ambiguities in the lateral velocity (Ẋ, Ẏ), but depth Z and
axial velocity Ż can still be determined. Separately, in the case of zero axial
motion (Ż = 0), there is no change in defocus and the depth signal is lost. In this
case, the third and fourth coefficients will vanish, and the patch can only provide
optical flow. In the most extreme case, texture-free image patches will provide no
information and neither optical flow nor scene depth can be recovered. However,
note that unlike many depth from defocus methods, the combination of
magnification and defocus changes makes this method immune to the
side-of-focal-plane ambiguity when a defocus change can be measured.

Depth equations for combinations of and restrictions on these models of
camera and scene change are straightforward to generate from equation 3.40. The
defocus brightness constancy constraint implies a general algorithm for
recovering depth and velocity for a large class of actuated or moving cameras:
compute spatial and temporal derivatives at each pixel in the patch, solve a least
squares estimation for the weight vector v⃗ that relates these derivatives, and plug
these weights into a physical model to recover scene information.

Table 3.2.1 summarizes depth equations for the physical scenarios discussed
above. It also includes ambiguous depth recovery available from differential
aperture manipulation, such as scaling and rotation analyzed in appendix B.
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scenario change weights v⃗ depth recovery

accommodation pt
[
0, 0, 0, σp pt σΣ2

]
=
[
0, 0, 0, −f pt σΣ2

] Z =
(

1
Zf
− 1

f2ptΣ2
It
∇2
Σ I

)−1

spider ft

[
0, 0, − ft

f , σ f ft σΣ2 − ft
f σ

2Σ2
]

=
[
0, 0, − ft

f , − ft
f σΣ

2
] Z =

(
1
Zf
− 1

Σ2ft

It+
ft
f (xIx+yIy)
∇2
Σ I +

)−1

moving camera X⃗t

[ f
ZXt,

f
ZYt,

Zt
Z , σZ Zt σΣ2 + Zt

Z σ
2Σ2
]

=
[

f
ZXt,

f
ZYt,

Zt
Z , −Zt

Z
f
Zf
σΣ2
] Z =

(
1
Zf
− Zf

f2Σ2
v4
v3

)−1
,

X⃗t =
(

Z
f v1,

Z
f v2,Zv3

)
general hardware X⃗t, pt, ft

[
f
Z Xt,

f
ZYt,

Zt
Z − ft

f ,
(
σZ Zt + σp pt + σ f ft +

(
Zt
Z − ft

f

)
σ
)
σΣ2
]

=
[

f
Z Xt,

f
ZYt,

Zt
Z − ft

f , −
(
f pt +

ft
f +

f
Zf

Zt
Z

)
Σ2
] Z =

(
1
Zf
− 1

f Σ2
v4

f pt+(ft/f)+(fv3+ft)/Zf

)−1
,

X⃗t =
(

Z
f v1,

Z
f v2, Z

(
v3 +

ft
f

))
aperture scaling
and rotation at, bt, ct See appendix B for details. Z =

(
1
Zf
±
√

It−(ΔL)I
−f2∇2

Σ,tI

)−1

side of focal plane ambiguity

Table 3.2.1: Applying the defocus brightness constancy constraint. A summary of section 3.2.1. Differential cam-
era changes reveal depth with high computational efficiency using versions of the defocus brightness constancy constraint
(equation 3.39).
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3.2.2 Inherent Physical Sensitivity of the Constraint

For a camera that observes a blur scale change according to the image model in
section 3.1, the defocus brightness constancy constraint is always true, but it will
not always be useful. For a trivial example, consider a world plane with no spatial
variation in albedo. In this instance any depth from defocus, stereo, or other
triangulation-based method will fail. Texture dependence for a given image pair
on specific hardware is considered in section 4.2.1. However, it is possible to
generalize beyond the reliability of individual depth measurements, to describe
the underlying physical sensitivity of the differential defocus cue.

Even in a world with rich texture available at every location and scale, there will
come a point where the scene is so blurred that the small changes in image values
at a pixel over time and across neighboring pixels will become so small that their
comparison is unstable and cannot be used to recover accurate scene information.

This loss of signal away from the in-focus depth is similar to the expected
performance of stereo or depth from defocus, for which depth accuracy degrades
at large distances. In those cases, accuracy is enhanced by increasing the baseline
or aperture size. In differential defocus, inverse magnification plays an analogous
role.

Following Schechner and Kiryati in [96], a characterization of responses to a
single frequency texture can describe the inherent sensitivity of all three depth
cues. Recall that for a stereo system with baseline b and an inference algorithm
that estimates disparity Δx, depth is measured as

Z =
bf
Δx

, (3.48)

with first-order sensitivity to the disparity estimate∣∣∣∣ dZ
d(Δx)

∣∣∣∣ = ∣∣∣∣ bf
−(Δx)2

∣∣∣∣ = Z2

bf
. (3.49)

Similarly, for a depth from defocus sensor with aperture radius A and an
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Figure 3.2.1: Observation of a single-frequency texture. A When a 1D
pinhole camera observes a world plane with sinusoidal texture, the image is
also a sinusoid (black curve). Motion between the camera and scene causes
the sinusoidal image to change in frequency and phase (blue curve), and these
two pieces of information reveal time to contact and direction of motion. B
When a finite-aperture camera images a similar moving scene, the motion
additionally induces a change in image amplitude, because the scene moves
in or out of focus. This third piece of information resolves depth and scene
velocity. Figure courtesy of Todd Zickler.

algorithm that estimates blur radius Ã, the sensitivity of depth to error in Ã is

Z =
Zf f A

Zf Ã+ f A
, (3.50)∣∣∣∣dZdÃ

∣∣∣∣ = ∣∣∣∣ −Z2
f f A

(Zf Ã+ f A)2

∣∣∣∣ = Z2

Af
. (3.51)

These equations show a fundamental similarity between stereo and depth from
defocus, in which the baseline and aperture size are analogous.

For a toy model of depth from differential defocus, consider images of a
sinusoidal texture under Gaussian blur, illustrated in figure 3.2.1. Blurring only
changes the amplitude of the image, while motion and magnification change the
frequency and phase. Let the texture have frequency ω0, amplitude B0, and
arbitrary phase and orientation. Then, the image captured at time twill have
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frequency ω and amplitude B, which are determined by depth:

ω(t) =
Z
f
ω0, (3.52)

B(t) =max
φ

(k ∗ P) (3.53)

=

∫∫
e
−ax2−bxy−cy2

σ2

σ2
B0 cos(ω(t)x)dxdy (3.54)

=
2π√

4ac− b2
B0e−

c
2Σ

2σ2ω2 . (3.55)

Over time, these quantities will vary with changes in depth Z and camera
parameters, and their relative change will reveal depth.

Regardless of the mechanism of blur change, depth can be measured from
image amplitude, frequency, and their derivatives:

Z =

(
1
Zf

+

(
Bt

cΣ2f2ω2B

)
f

pft + fpt + ωt
ω

f
Zf

)−1

. (3.56)

When image quantities (ω, ωt,B,Bt) are measured within error bounds
(εω, εωt , εB, εBt), a simple propagation of uncertainty bounds the depth error εZ:

εZ ≤

√(
∂Z
∂ω

)2

ε2ω+
(
∂Z
∂ωt

)2

ε2ωt+
(
∂Z
∂B

)2

ε2B+
(
∂Z
∂B1

)2

ε2Bt (3.57)

When no blur change is observed, e.g. in the case of a moving camera with an
accommodating lens that compensates to keep the object at a constant focus, this
error becomes unbounded as the numerical stability of calculations on a tiny Bt

break down. However, for several scenarios, a common quantity can be removed
from the error bound radicand, suggesting an analogy to stereo and depth from
large-scale defocus. For example, in the spider’s eye, where pt = Zt = 0, the
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depth equation simplifies to

Z =

(
1
Zf

+
Bt

−cΣ2fωωtB

)−1

, (3.58)

so that the error bound becomes, after some algebraic manipulation,

εZ ≤
Z|Z− Zf|

Zf

√
4
ε2ω
ω2 +

ε2B
B2 +

ε2Bt
B2
t
. (3.59)

Likewise, for a moving but otherwise unactuated camera, as implemented in
section 4.1, equation 3.57 takes the form

εZ ≤
Z|Z− Zf|

Zf

√
ε2ω
ω2 +

ε2ωt
ω2
t
+

ε2B
B2 +

ε2Bt
B2
t
. (3.60)

And finally, for an accommodating lens on an otherwise unchanging camera, as
implemented in section 4.2,

εZ ≤
Z|Z− Zf|

Zf

√
4
ε2ω
ω2 +

ε2B
B2 +

ε2Bt
B2
t
. (3.61)

In each of these expressions, the sum of error terms in the radicand describes
the relative usefulness of improving accuracy in either brightness or spatial
frequency measurements for a given scene. It could guide the design or selection
of an optimized photosensor, e.g. [124], because when combined with an
appropriate statistical model of the scenes to be imaged, it quantifies the trade-off
between bit depth, which places a lower bound on εB and εBt , and spatial
resolution, which likewise bounds εω and εωt .

Depending on the error model, the radicands in these error bounds could
introduce complex texture and scene dependencies, but in the simplest case, they
are constant. In this case, differential defocus is immediately comparable to
stereo and classic depth from defocus. Just as the sensitivity of those
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measurements goes as depth squared, depth from differential defocus
measurements are sensitive to object distance from both the camera and the focal
plane through the Z|Z− Zf| term. The differential defocus analogue to aperture
size or baseline in this scenario is inverse magnification, the ratio of in-focus
depth Zf to photosensor location f.

3.3 UniquenessoftheDefocusBrightnessConstancyCon-

straint

The family of constraints analyzed above relies on the use of Gaussian blur. This
is more than just a convenient assumption; it turns out to be the only set of blur
kernels that enables differential depth measurement from a blur scale change
using local post-processing operations. In this section, depth from differential
defocus is cast as a coded aperture problem, with the result of a theorem proving
that the Gaussian is the only code that enables constraints of a specific,
computationally-efficient form.

Recall that the image formation model allows the placement of any physical
filter κ at the camera’s aperture, which will generate blur kernels k that are scaled
and normalized versions of that filter. Without the assumption of Gaussian blur,
the differential image change over time can be divided into lateral on-image
motion that is independent of the blur change, similar to optical flow with a
pinhole camera, and the residual brightness change R due to defocus after this
motion has been accounted for:

It =
f
Z
Xt Ix +

f
Z
Yt Iy +

(
Zt

Z
− ft

f

)
(xIx + yIy) + R. (3.62)

The image formation model provides the exact form of this per-pixel residual
brightness change R,

R =−
(
Zt

Z
− ft

f
+

σ t
σ

)
(2k+ xkx + yky) ∗ P, (3.63)
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which involves, from left to right: a combination of scene parameters that are
known or being measured (Z, Zt, f, ft, σ, and σ t), a function of the blur kernels k
generated by the aperture filter, and the underlying pinhole image P, which can
only be accessed indirectly through the defocus blurred image I.

The goal is to co-design an aperture filter κ and a depth-blind post-processing
operationM such thatM[I] is inexpensive to compute (specifically, it is required
to be spatially uniform and apply to a sub-infinite number of pixels at any point)
and produces a quantity proportional to this residual, without resorting to
knowledge of the texture through expressions involving P. As stated in the
following theorem, the Gaussian aperture filter and warped Laplacian operator
turn out to be the only such pair of objects.

Theorem. Let k be induced by some κ : R2 → [0, 1] with κ(x, y), xκ(x, y), and
yκ(x, y) Lebesgue integrable and κ not identically zero. For v ∈ R and
translation-invariant linear spatial operator M with finite support,

v M [k ∗ P] = R(k, P) (3.64)

for all compactly supported P, if and only if there are constants c1 ∈ (0, 1],
c2 ∈ {R− 0} and a real symmetric positive definite matrix Σ such that

κ = c1 e−x⃗TΣ⃗x, (3.65)

M = c2∇2
Σ = c2∂T

x⃗ Σ
−1∂⃗x. (3.66)

This theorem states that, when the filter κ is a Gaussian with covariance matrix
Σ, the residual R is proportional to the image Laplacian of inverse covariance,
M[I] ∝ ∇2

Σ I = Σ−1
11 Ixx + 2Σ−1

12 Ixy + Σ−1
22 Iyy, which is directly observable from

image information. Moreover, the Gaussian is the only aperture filter — out of a
broad class of possibilities including pillboxes, binary codes, and smooth
functions, but excluding pinholes — that permits exact observation by a
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depth-blind, translation-invariant linear operator.

3.3.1 Mathematical Background

The following proofs draw heavily on the theory of distributions, see [93] as a
reference, and on some concepts from complex analysis. This section will briefly
introduce the relevant terms and properties before continuing with the proof of
the theorem.

The theory of distributions generalizes functional analysis beyond the classic
notion of a function. Much of its usefulness comes from extending results from
the study of differential equations to include discontinuous objects whose
derivatives do not exist in the traditional sense, but can nonetheless be abstracted
in consistent and powerful ways. While standard functions and measures can be
treated as distributions, so can more exotic objects like the Dirac delta “function”,
which is the distributional derivative of the discontinuous step function, as well
as its derivatives in turn.

In this context, a distribution is defined as a linear functional that maps some
set of well-behaved functions to the real numbers. Unlike functions, they do not
have values at given points in a domain, though this can be a useful way to
visualize their effect. Any locally-integrable function P can induce a distribution
P̌, indicated by an accent mark, that maps a good test function f (more detail
below) to the reals through integration:

⟨P̌, f⟩ =
∫
Rn

P(⃗x)f(⃗x) d⃗x, (3.67)

while the Dirac delta maps each function to its value at the origin:

⟨δ, f⟩ =f(0). (3.68)

Distributions in this sense should not be confused with probability or frequency
distributions, distributions as defined in differential geometry, or any of the many
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other scientific uses of the term.
Many operations require more care in their application to distributions than to

functions. While distributions can be added together and multiplied with real
numbers or with infinitely differentiable functions, the product of two
distributions, for example, is not well-defined. One of the most useful operations
that can be performed on a distribution is taking its derivative. This operation is
defined by moving the derivative onto the test function (with a sign change), and
allows all distributions to be treated as infinitely differentiable with many of the
properties of classical derivatives. This allows meaningful use of objects like the
nth derivative of the Dirac delta:

⟨δ(n), f⟩ =(−1)n⟨δ, f(n)⟩ = (−1)nf(n)(0). (3.69)

In describing the properties of distributions, it is useful to classify them by the
sets of test functions that they handle gracefully. There are many choices of f that
could lead equation (3.67) to violate the definition of a distribution, such as any
complex-valued function. Typically, test functions are drawn from the space
D(Rn), which is the set of infinitely-differentiable, real-valued,
compactly-supported functions. A distribution must linearly map any member of
this set to a real number. The space of distributions is calledD′(Rn), as the dual
space ofD(Rn).

By considering larger sets of test functions, one can define smaller sets of
distributions that still linearly map all allowed test functions to the reals. Two
such classes are used in this document. The first is the set of tempered
distributions. The test function of a tempered distribution does not have to be
compactly supported, but can be any rapidly-decreasing smooth function. The
space of these test functions is called Schwartz space or S(Rn) and notably
includes Gaussians and their derivatives. By its integrability and boundedness,
the most general form of aperture filter allowed in the proof is a tempered
distribution, and tempered distributions are closed under differentiation:
κ̌ ∈ S′(R2) implies κ̌x, κ̌y ∈ S′(R2).
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A useful subset of the tempered distributions is the set of distributions with
compact support. These distributions map any test function to zero if the support
of that function excludes a certain compact region, called the support of the
distribution. The Dirac delta is a classic example of a compactly-supported
distribution, because any test function with f(0) = 0 is mapped to zero, so
supp(δ) = {0}. The theorem requires the distributions induced by the
post-processing operationm and the pinhole image P to have compact support:
m̌, P̌ ∈ E ′(R2).

All of this is relevant because it establishes when the processed image
M[I] = m ∗ k ∗ P is well-defined. The convolution theorem, which states that
convolution can be performed by multiplication of Fourier transforms, holds for:

1. two L1 functions, producing another L1 function.

2. a tempered distribution and a compactly-supported distribution,
producing a tempered distribution.

3. a rapidly decreasing function with a tempered distribution, producing
another tempered distribution.

The first of these describes the traditional use of the theorem, the second is the
reason that Pmust be compactly supported for general (tempered) κ in the
theorem, and the third allows the assumption of compactness on P (which is
bounded and locally integrable, so P̌ is tempered) to be dropped in the use of the
constraint afterm ∗ κ is shown to be a rapidly-decreasing function.

The proof also makes use of Schwartz’s Paley-Weiner theorem, which states
that the Fourier transform of a compactly-supported distribution on the reals is
an entire function. This is a very powerful result in complex analysis, see [34] for
a reference. Complex analysis extends analysis to functions on the complex
numbers, creating alternate versions of familiar ideas from calculus on the reals.
Several of these appear in the proof, particularly in claims 3 and 4.

Perhaps the most important of these concepts is the complex derivative. This
is defined, just as on the reals, as the limit of the difference quotient, but it will
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exist in far fewer cases. Take, for example, the functionℜ(z), which returns the
real part of its complex input z. Using the standard metaphor ofR2 forC1, one
could imagine this function as having perfectly well-defined partial derivatives: 1
along the real axis, 0 along the imaginary axis. However, because the derivative is
a single limit, which must match from all directions of approach in order to exist,
the functionℜ(z) is in fact nowhere complex differentiable.

As a result of this restrictive definition, differentiable functions are much rarer
in complex analysis, and they have a number of special properties that
real-differentiable functions lack. Functions that are complex differentiable in a
neighborhood, called analytic or holomorphic functions, are, for example,
infinitely differentiable everywhere the first derivative exists.

For complex functions that are holomorphic except at isolated points, there
are three kinds of singularities that can occur: removable singularities, poles, and
essential singularities. A removable singularity is like a patchable hole in the
function — the function is not defined at the point, but it can be continuously
extended to a function that is. A pole is a point at which the function goes to
complex infinity (a quantity with infinite magnitude and indeterminate phase)
but where the product of the function and some polynomial is holomorphic at
that point. Anything more serious, like an oscillating discontinuity or a non-pole
infinity, is called an essential singularity.

A holomorphic function with no singularities at any point other than infinity is
called an entire function. These are very special and arise in the proof of claim 4.
They include polynomials, exponentials, trigonometric functions, and their
sums, products, compositions, derivatives, and integrals. According to Liouville’s
theorem, any entire function whose magnitude is bounded must be constant, so
any non-constant entire function must have a singularity at infinity. If this
singularity is essential, the function is transcendental (e.g. sine or cosine) and if it
is a pole, the function is a polynomial. This restriction, along with Schwartz’s
Paley-Weiner theorem, is used to prove claim 4.
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3.3.2 Proof of the theorem

Several claims will be used to prove the theorem. Briefly, claim 1 establishes,
from the Fourier transform of the residual, a texture-independent relationship
between the spectra of the filter and the operator in the form of a differential
equation, which can be solved with standard methods. Claim 2 restricts the form
of depth-blind operators using a separability argument. Claims 3 and 4 further
restrict this form to ensure that the operator uses a sub-infinite number of pixels.
Claim 5 enforces the non-negativity of the aperture transmittance to complete
the proof.

Begin by noting that the operatorM[I] can be expressed as a convolutionm ∗ I
with some compactly-supportedm. While the standard terms forM andm are an
operator and a filter, respectively, this document will refer tom as an “operation”
rather than a “filter” to emphasize that it is a computational object and to
distinguish it from the physical, light-blocking filter κ at the camera’s aperture.

Claim 1. The blur kernel k and post-processing operation m are related in the
frequency domain by k̂(̂r, θ̂) = f(θ̂)e−w

∫ r̂
0

m̂(s,̂θ)
s ds for w(σ) = Z−Zf

Zt
v and some angular

function f(θ̂).

Proof of Claim 1. The Fourier transform takes the convolution

v m ∗ k ∗ P = R (3.70)

to a multiplication

v m̂ k̂ P̂ = R̂, (3.71)

with hats indicating the Fourier transforms of the original distributions,
expressed in polar coordinates (̂r, θ̂) = (

√
ω2
x + ω2

y, tan−1(ωx, ωy)).
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The Fourier transform of the residual takes the form

R̂ =F
[

Zt

Z− Zf
(2k+ xkx + yky) ∗ P

]
(3.72)

=
Zt

Z− Zf
F [(2k+ xkx + yky)] P̂, (3.73)

where

F [(2k+ xkx + yky)] =2k̂+ i∂ωx(iωxk̂) + i∂ωy(iωyk̂) (3.74)

=− ωxk̂ωx − ωyk̂ωy (3.75)

=− r̂k̂̂r (3.76)

so equation (3.71) can be rewritten as

v m̂ k̂ P̂ =− Zt

Z− Zf
r̂ k̂̂r P̂. (3.77)

This is required to hold for all underlying scene textures by dropping the P̂
term from either side, leaving a simple partial differential equation on k̂.
Compactness ofm guarantees that m̂ is smooth, and integrability of k, xk, and yk
guarantee that k̂, k̂ωx , and k̂ωy are continuous, so this equation can be solved using
integrating factors. □

Claim 2. The Fourier transform of the post-processing operation, m̂, takes the form
g(θ̂)̂rn for some n ∈ C and angular function g(θ̂).

Proof of Claim 2. Recall that the post-processing operation is required to be
depth-blind, so m̂ cannot be a function of the depth-scaling factor σ. However,
equation (3.64) must hold for the entire family of possible blur kernels k, which
are depth-scaled versions of the physical aperture filter κ according to equation
(3.5). In the frequency domain this depth scaling takes the form

k̂(̂r, θ̂) =κ̂(σr̂, θ̂). (3.78)
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This means that it is possible to introduce the functions

α(σr̂, θ̂) = ln

(
κ̂(σr̂, θ̂)
f(θ̂)

)
, (3.79)

β(σ) =− w(σ), (3.80)

γ(̂r, θ̂) =
r̂∫

0

m̂(s, θ̂)
s

ds, (3.81)

and rewrite a slightly rearranged form of claim 1 as

α(σr̂, θ̂) =β(σ)γ(̂r, θ̂). (3.82)

Considering what happens when r̂ = 1, see that

α(σ, θ̂) =β(σ)γ(1, θ̂), (3.83)

so α is separable in θ̂. This separability can be seen in the general-̂r case by
replacing σ with σr̂ for an alternate expression for α:

α(σr̂, θ̂) =β(σr̂)γ(1, θ̂). (3.84)

Taking the r̂ derivative of equations (3.82) and (3.84) and noting that they must
be equal, gives

d
d̂r
(
β(σ)γ(̂r, θ̂)

)
= β(σ)γ(1,0)(̂r, θ̂) (3.85)

=
d
d̂r
(
β(σr̂)γ(1, θ̂)

)
= σβ′(σr̂)γ(1, θ̂), (3.86)

so that again considering the r̂ = 1 case, it can be seen that

β(σ) =
γ(1, θ̂)

γ(1,0)(1, θ̂)
σβ′(σ). (3.87)
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This is a separable ordinary differential equation that has the solution

β(σ) =cσ
γ(1,0)(1,̂θ)

γ(1,̂θ) (3.88)

for some constant c. Because β(σ) cannot change with θ̂, the exponent must also
be a constant n. These forms of β and n allow equation (3.86) to be rewritten

γ(1,0)(̂r, θ̂) =
σβ′(σr̂)
β(σ)

γ(1, θ̂) (3.89)

=n̂rn−1γ(1, θ̂) (3.90)

=r̂n−1γ(1,0)(1, θ̂). (3.91)

This derivative in γ simply removes the integral in equation (3.81), so that the
equation above can be rewritten as

m(̂r, θ̂)
r̂

=r̂n−1m(1, θ̂)
1

. (3.92)

Introducing g(θ̂) = m̂(1, θ̂) completes the proof of the claim. □

Claim 3. The operation exponent n must be a positive integer.

Proof of Claim 3. According to Schwartz’s Paley-Weiner theorem, the Fourier
transform of a compactly supported distribution has continuous derivatives of all
orders at every point. The origin is a location of particular interest, because
almost all choices of g and nwill lead to a discontinuity there.

First note that g(θ̂) cannot vanish everywhere. In this case, the aperture filter
implied by claim 1 would be a Dirac delta pinhole. This corresponds to the
no-residual optical flow case, which cannot reveal depth, and violates the
integrability requirement on κ.

Ifℜ(n) is negative, then r̂n will go to complex infinity at the origin, and if n is
not an integer or has an imaginary part, repeated application of the power rule
shows that some derivative of m̂will have an exponent n′ withℜ(n′) < 0 and the
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same discontinuity will arise. Specifically, the jth-order derivative in r̂ of m̂ is

djm̂
d̂rj

=

0, n ∈ Z+, j > n or n = 0,

g(θ̂) n!
(n−j)! r̂

n−j, else.
(3.93)

As r̂ approaches zero, this derivative approaches complex infinity for
ℜ(n− j) < 0 (unless n is a positive integer or zero), has an essential singularity
when n− j is imaginary, and otherwise goes to zero. So, there is a discontinuity in
some order derivative in r̂ at the origin unless n is a nonnegative integer. Strictly
speaking, it is discontinuities in the derivatives in ωx and ωy that are forbidden,
but these follow directly, e.g. by Faà di Bruno’s formula. Thus, nmust be a
nonnegative integer.

When n = 0, m̂ = g(θ̂)must take a constant value g to avoid a discontinuity at
the origin. Note that k̂ under unit depth scaling (σ = 1) is exactly κ̂, and consider
the corresponding filter implied by claim 1:

κ̂ =f(θ̂)e−w(1)g ln(̂r) = f(θ̂)̂r−w(1)g. (3.94)

Because κ is integrable, the Riemann-Lebesgue lemma states that κ̂must vanish
as r̂ approaches infinity, soℜ(w(1)g)must be positive. However, this implies an
infinite discontinuity at the origin which also violates integrability assumptions:
integrability of κ implies uniform continuity of κ̂. Thus, n ̸= 0. □

Claim 4. m̂ is a homogeneous polynomial of degree n.

Proof of Claim 4. The previous claims show that for some positive integer n,

κ̂(̂r, θ̂) = f(θ̂) e−w(1)g(θ̂)̂rn . (3.95)

By the Riemann-Lebesgue lemma, integrability of κ implies κ̂ vanishes at infinity,
which requiresℜ(w(1)g(θ̂)) > 0 for θ̂ ∈ [−π, π]. Then, g(θ̂) ̸= 0 on [−π, π] and
in both ωx and ωy, m̂ has a pole at (complex) infinity.

Schwartz’s Paley-Wiener theorem states that the Fourier transform of a

52



compactly supported distribution can be extended to an entire function, i.e. one
that is complex differentiable everywhere inC2. Proofs of the previous claims
have used the smoothness of m̂ that this theorem implies over real values of ωx

and ωy, but this is a muchmore restrictive condition, as described in section 3.3.1.
In fact, the only entire functions with a pole at infinity are polynomials. Because
m̂ is degree n along any radial slice, it must also be homogeneous. □

Claim 5. f(θ̂) = a0 ∈ R+ and n = 2.

Proof of Claim 5. The previous claims state that for some positive integer n, and
constants c0, ..., cn ∈ R

κ̂(̂r, θ̂) = f(θ̂) e
−w(1)

∑
j
cjω

n−j
x ωjy

. (3.96)

Integrability of κ implies that κ̂ is uniformly continuous, so f(θ̂)must be a
constant a0 to avoid a discontinuity in κ̂ at the origin, where the exponential term
goes to one. It must be real by the conjugate symmetry of κ̂ induced by reality of
κ, and it cannot be negative or zero without causing κ to be so as well.

The Riemann-Lebesgue lemma implies that n is even, because κ̂must vanish as
each ω approaches either positive or negative infinity while the sign of each cj is
fixed. For n even, each radial slice is an even function:

g(θ̂) =
∑
j

cj cosn−j(θ̂) sinj(θ̂) (3.97)

=
∑
j

cj(−1)n−j cosn−j(θ̂ + π)(−1)j sinj(θ̂ + π) (3.98)

=g(θ̂ + π). (3.99)

Next see that for n ≥ 3, κ̂ along any fixed-θ̂ radial slice is not a positive definite
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function, because with

C(n) =
∑∑

zizja0e−w(1)g(θ̂)|ri−rj|n , (3.100)

z = [1, −2, 1] , (3.101)

r =

[
− n

√
.1

w(1)g(θ̂)
, 0, n

√
.1

w(1)g(θ̂)

]
, (3.102)

it can be seen that

C(n) =6− 8e−.1 + 2e−(.1)(2n), (3.103)

and both C(3) and dC
dn are negative. The Fourier slice theorem [10, 81] states that

each of these angular slices is the one-dimensional Fourier transform of the
projection of κ along the same angle in the spatial domain:

κ̂(̂r, θ0) =F1D

[∫
κ(r cos θ0 + z sin θ0, r sin θ0 − z cos θ0)dz

]
. (3.104)

However, Bochner’s theorem states that the Fourier transform of a nonnegative
integrable function must be positive definite. So for n ≥ 3, all projections of κ,
and therefore the filters κ themselves, fail to meet the requirements of
nonnegativity and integrability. □

Proof of theTheorem. Combining the previous claims shows that

m̂ =c0ω2
x + c1ωxωy + c2ω2

y (3.105)

κ̂ =a0e−w(1)(c0ω2x+c1ωxωy+c2ω2y). (3.106)

Integrability of κ requires that w(1) > 0 and c21 < 4c0c2, so that for

Σ =

[
c2 −c1/2

−c1/2 c0

]
w(1), (3.107)
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the inverse Fourier transforms and basic manipulation prove the theorem. □
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4
Prototypes

A pair of prototype sensors demonstrate the practicality of the depth from
differential defocus cue. The first appears in [4, 5] and is a completely unactuated
camera that observes a moving scene. It accumulates the defocus brightness
constancy constraint over patches of at least four pixels and recovers the depth
and 3D velocity at the back-projection of each patch. The second, seen in [39],
augments the camera with an electronically-controlled deformable lens which
oscillates its optical power over time. This sensor computes depth and
confidence at every pixel without requiring scene or camera motion, and it
dramatically extends its working range through tracking accommodation.

The previous chapter presented a theory that described a large class of depth
sensors but that also depended on several physical and computational
assumptions. Physically, it assumed that the world consists of a single plane that

56



is parallel to the camera sensor, that the brightness of this world plane remains
constant over time, and that the blur kernels of the camera are perfectly Gaussian
and their size is perfectly determined by an aberration-free thin lens model.
Computationally, it assumed that image derivatives would always be both
accurate and useful, implying that the scene would have texture everywhere and
that it could be measured with infinite spatial and temporal resolution, infinite bit
depth, and no noise. Clearly, none of these assumptions are true. This chapter
describes the approaches used to ensure both physical and computational
robustness in moving from theory to practice. In doing so, it demonstrates the
promise of the differential defocus cue for real-world sensing applications.

4.1 Per-PatchDepth and Velocity from an

UnactuatedCamera

The first prototype is targeted to extremely low power applications, such as
microrobots and sensor nodes. These platforms cannot afford to expend power
on camera actuation but may already experience motion in the scenes they need
to measure, either by being attached to a moving chassis or by only needing to
report changes in their inputs.

In the case of an unactuated camera observing a moving scene, the defocus
brightness constancy constraint takes the form

It =
[
Ix Iy (xIx + yIy) (Ixx + Iyy)

]


Ẋf/Z
Ẏf/Z
Ż/Z(

1
Zf
− 1

Z

)
αŻ/Z

 , (4.1)

where Z and (Ẋ, Ẏ, Ż) are the depth and velocity to be recovered, f is the fixed
location of the photosensor relative to the lens and Zf the fixed in-focus depth of
the camera, and α is a calibrated constant determined by the fixed camera
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parameters. Rather than calibrating each camera parameter independently and
combining them according to the physical model, f and α are calibrated directly
to optimize depth-sensing performance on a calibration data set collected by
moving textured planes on a translation stage. For details on the calibration
procedure, see [5].

The algorithm implied by this constraint is simple: accumulate image
derivatives in a patch of at least four pixels, take the least squares estimate of the
four-vector of coefficients that is one-to-one with depth and 3D scene velocity,
and recover the desired quantities using calibrated values for the parameters in
equation 4.1.

This algorithm is applied to image pairs collected under small position changes
using the camera shown in figure 4.1.1. This simple camera consists of a
high-quality monochrome sensor (Grasshopper GS3-U3-23S6M-C from Point
Grey Research), a single thin lens (LA1509-A from Thorlabs), and an optional
apodizing filter (NDYR20B from Thorlabs). The filter is designed to turn the
pillbox blur kernels of an ideal thin lens into Gaussians. From the measured blur
kernels shown in figure 4.1.2, it is clear that the kernels deviate significantly from
theory. Both with and without the apodizing filter, the blur kernels of the sensor
are obviously non-Gaussian.

This indicates a possible problem for the system: the previous chapter proved
that Gaussian blur is the only way to satisfy an analytically exact brightness
constancy constraint. With non-Gaussian blur kernels, only an approximate
constraint could hold. Happily, the results shown in this section demonstrate that
the approximate constraint is sufficient to recover accurate depth and velocity,
with or without the apodizing filter. The prototype shown in figure 4.1.1
measures depth within±6mm over a range of 20cm using a one-inch-diameter
lens. Figure 4.1.3 shows two examples of depth maps measured by this sensor.
The image pairs used to compute these results violated physical assumptions on
both the camera (with its non-Gaussian blur kernels) and the scene (with
multiple and slanted planes), but the depth is still recovered accurately.

Computational robustness is achieved by the simple and well-established
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Figure 4.1.1: An unactuated camera prototype. A simple camera is used
for depth and velocity detection on moving scenes. A monochrome photosen-
sor observes the scene through a single 1”-diameter thin lens held at an ad-
justable location by a lens tube. Optionally, an apodizing filter can be placed
at the aperture to make the blur kernels more Gaussian (see figure 4.1.2), but
this has little effect on the sensor’s results. Figure courtesy of Qi Guo.

Figure 4.1.2: Blur kernels of the unactuated prototype. Blur kernels
measured from the prototype camera shown in figure 4.1.1 from a central im-
age patch as a point light source comes into and out of focus. They show ob-
vious deviations from the Gaussian model, both with and without an apodiz-
ing filter. Figure 4.1.6 demonstrates that the two configurations provide simi-
lar performance. Figure courtesy of Qi Guo.
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Figure 4.1.3: Depth recovered from simple scenes. From left to right:
one frame from an input three-frame image sequence during which the object
was moved on a translation stage; per-pixel depth measured by independent
focal flow reconstruction in overlapping square windows; and true scene shape.
The depth (and velocity) of these scenes is well-recovered despite the theoreti-
cal assumption of a single front-parallel plane. Figure courtesy of Qi Guo.
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Figure 4.1.4: Working range for depth and velocity. Measured depth,
speed, and 3D direction (Ẋ, Ẏ, Ż)/∥(Ẋ, Ẏ, Ż)∥ versus true depth, with markers
colored by true depth. Directions shown by orthographic projection to XY-
plane, where the view direction is the origin. Ground truth is black lines for
depth and speed, and white squares for direction. Two ground truth directions
result from remounting a translation stage to gain sufficient travel. Note that
near the in-focus plane, indicated by yellow, orange, and teal markers, the
depth and velocity are well-recovered, while away from the in-focus plane,
indicated by red and blue markers, the recovered depth tends to the in-focus
distance and the recovered velocity tends to zero. Figure courtesy of Todd
Zickler.

method of increasing the patch size over which the image derivatives are
accumulated. This approach has a long history in the optical flow literature [69].
An appropriate window size for this method can be chosen ahead of time from a
model of the statistics of scenes that a given application is expected to encounter,
or adjusted in response to image input. The window sizes for results shown in this
section were selected by hand during post-processing.

Section 3.2.2 analyzed the breakdown of the differential defocus cue under
large blur. This happens as per-pixel image differences, across neighboring pixels
and within a single pixel over time, fall below the noise level. How quickly the cue
breaks down depends on the amount of contrast available in the scene as well as
the depth of field, time and space resolution, and bit depth of the camera. Figure
4.1.4 demonstrates high-quality recovery of both depth and velocity when objects
are near the in-focus plane, and poor performance away from this region, tending
toward the default solution of an in-focus and unmoving scene under large blur.
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To quantify this behavior, let the working range for this prototype be defined
as the range of depths for which the error in the depth measurement is within 1%
of the in-focus depth Zf. The size and quality of this working range can be
adjusted by changing camera parameters, as shown in figure 4.1.5. Essentially,
there is a fixed amount of signal available in the contrast of a given texture, and
that signal can decay slowly over a large but less precise working range, or it can
decay quickly to provide high quality measurements within a smaller working
range. This tradeoff must be made at design time based on the anticipated
application of the sensor.

Figures 4.1.5 and 4.1.6 show that, for this prototype, the working range is not
particularly affected by the inclusion of an apodizing filter or a standard round
aperture of the same approximate width. However, recall that the blur kernels in
figure 4.1.2 show that both optical configurations produce clear deviations from
the desired Gaussian blur kernels.

This prototype demonstrates that a standard, unactuated wide aperture
camera can be used to detect the depth and 3D velocity of a moving scene
accurately and efficiently within its working range, in spite of physical and
computational nonidealities.

4.2 Per-Pixel Depth andConfidence from an

Accommodating Lens

Two major weaknesses of the previous prototype are its blindness to static scenes
and its fixed working range. Both of these issues can be addressed with a small
additional expenditure of electrical power. This section describes the results of
augmenting the previous sensor with an electronically-controlled deformable
lens. This lens, which is a commercially available component, can be reshaped by
applying an electric current, allowing dynamic control of the optical power of the
lens.

The prototype, shown in figure 4.2.1, consists of a monochrome camera (Point
Grey GS3-U3-23S6M-C) and a deformable lens (Optotune
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Figure 4.1.5: Working range for several lens locations. Adjusting the
distance between the lens and the photosensor changes the in-focus depth,
which moves and scales the working range. This indicates how the working
range can be set at design time as described in section 3.2.2. Shown here are
depth and velocity measurements for several lens locations (indicated by color
with in-focus depth shown with dotted lines) with ground truth on solid lines.
Inset are sample images from the data used to evaluate the system, which
consisted of ten shots averaged to reduce noise. Top row shows results from a
bare lens and the bottom row shows results from images collected through an
apodizing filter. Figure courtesy of Qi Guo.
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Figure 4.1.6: Performance with and without apodizing fiter. The work-
ing ranges for several lens locations are shown. In blue, the lens was aug-
mented with an apodizing filter, designed to transform pillbox kernels to Gaus-
sians. In orange, the apodizing filter was replaced with a standard round aper-
ture. Figure 4.1.2 shows that the point spread functions in both situations are
clearly non-Gaussian, and this data demonstrates that the difference between
the two sets of kernels does not have an appreciable effect on sensor perfor-
mance.
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EL-10-30-C-VIS-LD-MV). This deformable lens has also been used for focal
sweep imaging [74] and multifocal displays [22]. Additionally, a traditional thin
lens provides a constant offset to the focal plane of the deformable lens. Similar
to the effects seen in the previous prototype, this fixed lens provides a degree of
freedom that allows a tradeoff between a large, low-resolution working range, or a
smaller, higher-quality one. The effects of two different offset lenses are
demonstrated later in this chapter.

The lens and camera are connected with control electronics that oscillate the
optical power of the lens with an adjustable midpoint, amplitude, and frequency,
and the peak and trough of this oscillation are synced with image capture. The
plot in the top left of figure 4.2.1 indicates the electrical signal sent to both the
lens and the shutter. It is important to note that the capture time is small with
respect to the oscillation time, so the images received are differentially defocused
image pairs (with Δp = ±.4 diopters) rather than focal sweep images. Also note
that this oscillation allows the optical power of the lens to be driven much faster
than it would be if independent values were requested for each frame, due to the
mechanical settling time of the lens. It is capable of normal-mode oscillations up
to about 100 Hz. This places an upper bound on the frame rate of a focal track
system, but it is likely to increase in the future as deformable lens technology
continues to evolve (e.g. [99]). The blur kernels generated by this liquid lens are
almost pathologically non-Gaussian, as shown in figure 4.2.2, but the defocus
brightness constancy constraint still provides useful depth information.
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Figure 4.2.1: A camera prototype with electronically-driven optical
power. A monochrome camera observes the world through a fixed lens and a
deformable lens. Custom electronics oscillate the optical power of the lens and
synchronize image capture to the peak and trough of each oscillation (plot in
upper left) so that images are captured in differentially-defocused pairs. The
centerpoint of this oscillation is determined by both the fixed lens and the
tracking accommodation of the deformable lens illustrated in figures 4.2.6 and
4.2.7. Figure courtesy of Qi Guo.

4.2.1 Computing Depth and Confidence Maps

In the case of a static scene observed through a radially-symmetric deforming
lens, the defocus brightness constancy constraint takes the form

It =
[
Ix Iy (xIx + yIy) (Ixx + Iyy)

]


0
0
0(

1
Zf
− 1

Z

)
βṗ

 , (4.2)

where, again, Z is the depth to be recovered and Zf the in-focus depth (that is now
varying over time, but assumed to be known), with β a fixed and calibrated
camera parameter and ṗ the rate of change of the optical power. Rather than
suggesting a patchwise matrix measurement of four scene parameters, this
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Figure 4.2.2: Blur kernels of the actuated prototype. Blur kernels of
the actuated lens demonstrate high spatial variation and dramatic deviations
from the Gaussian model. Shown here are the kernels measured for a single
depth across the image plane. They display a great degree of radial distortion,
bottom-heaviness likely due to the effects of gravity, and higher order effects
possibly due to the mechanical oscillation of the lens surface. Figure courtesy
of Dor Verbin.
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constraint immediately implies a per-pixel equation for depth:

Z =
βṗ∇2I

βṗ
Zf
∇2I− It

=
βṗ∇2I

fp−1
f βṗ∇2I− It

. (4.3)

As described in the sensitiyivty analysis of section 3.2.2, the defocus
brightness constancy constraint holds true at every pixel in an image, but it will
not always be useful. In a given natural image, there will be regions where the
described method fails. These include regions showing textureless patches,
objects that are severely out of focus, points near depth discontinuities, and so
on. Any depth from defocus method, stereo approach, or other
triangulation-based algorithm suffers from this weakness. Fortunately, image
content indicates where these difficult regions are likely to be. This can be used to
augment each depth measurement with an estimate of the appropriate
confidence to have in that measurement. These general-purpose confidence maps
can be used in many ways, from discarding low-confidence estimates to fusing
results from different cues or computations.

There are many ways to estimate this confidence. Simple metrics include basic
estimates of the amount of image contrast in the neighborhood, such as |Ix| or
|∇2I|, or a more sophisticated estimate like the focus measures reviewed in [87].
More complex approaches could include training a general neural network to
predict confidence values from the image. It is not yet clear how performance and
computational expense trade off among different confidence estimation
architectures.

The confidence metric used in the results shown here is based on the
observation that the depth equation can be written as a ratio,

Z =
V
W
, (4.4)

V =βṗ∇2I, (4.5)

W =
βṗ
Zf
∇2I− It. (4.6)
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To first order, the variance of the measurement Z from the ratio V/Wwill be

Var[Z̃]≈ E[Ṽ]2

E[W̃]2

(
Var[Ṽ]
E[Ṽ]2

+
Var[W̃]

E[W̃]2
− 2Cov[Ṽ, W̃]

E[Ṽ]E[W̃]

)
. (4.7)

Estimating these expectations and variances would require statistical
measurement over spatiotemporal patches, but experiments below indicate that
reasonable results can be obtained by deriving expressions for Var[Ṽ], Var[W̃],
andCov[Ṽ, W̃] from an additive zero-mean Gaussian image noise model, and
using single measurements ofV andW as proxies for E[Ṽ] and E[W̃]. Performance
would almost certainly improve from properly estimating the expectation values.

Confidence should increase with a decrease in measurement variance. Scaling
the inverse of the estimated variance of Z̃ to the range [0,1], gives a parametric
confidence model with three tuneable parameters, ω0, ω1, ω2:

C =

(
ω0

W2 +
V2ω1

W4 +
Vω2

W3 + 1
)−1/2

, (4.8)

which are determined by the noise level, camera parameters, and computation
details. The depth parameter β and confidence parameters ω⃗ are calibrated
simultaneously on translation stage image data using backpropagation as
described in [39].

Figure 4.2.3 shows the result of applying these two equations at every pixel in a
differentially defocused image pair collected by the sensor. It is apparent that the
correct depth (in red) is only measured in regions with strong texture, while in
texture-free patches the depth equation fails and low values in the confidence
map reflect this poor performance. This depth and confidence map can be used
as the input to a general processing pipeline, for example one that densifies the
depth maps based on confidence and the collected images as in [72]. This work
focuses instead on refining the depth and confidence map through robust
computation, and the results reported here are simply depth maps thresholded to
only include pixels with high confidence.
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Figure 4.2.3: An image pair provides per-pixel depth and confidence.
The image pair on the left is collected by the prototype under a small change
in optical power observing a slanted textured plane. Note that in the first im-
age, the bottom of the shield is blurrier than in the second. Applying equa-
tions 4.3 and 4.8 gives depth and confidence at each pixel. Near texture
edges, the correct depth (red) is recovered, while in texture-free regions the
default solution Zf (green) is returned. Correct depth estimates correspond
to high confidence scores (blue) and incorrect ones to low confidence (red),
but these accurate pixels are sparse, illustrated by the confidence-thresholded
output on the far right.

4.2.2 Computational Robustness

Two main approaches increase the robustness of this sensor’s depth
computation. The first is a standard multiscale image pyramid, where the input
image pair is downsampled several times and per-pixel depth and confidence are
computed at every scale. The other data augmentation technique is the use of
multiple derivative orders. This comes from the observation that the constraint,

It =
(

1
Zf

− 1
Z

)
βṗ∇2I, (4.9)

is spatially invariant, so that

∂x(It) =∂x

((
1
Zf

− 1
Z

)
βṗ∇2I

)
=

(
1
Zf

− 1
Z

)
βṗ ∂x(∇2I), (4.10)

∂y(It) =
(

1
Zf

− 1
Z

)
βṗ ∂y(∇2I), (4.11)

∂xy(It) =
(

1
Zf

− 1
Z

)
βṗ ∂xy(∇2I), (4.12)
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Figure 4.2.4: An illustration of texture-dependent confidence. A. A tex-
ture edge, in black, is viewed under two different blur conditions to generate
the green and blue images. B. The per-pixel difference in these images It,
shown in dashed black, vanishes at the center of the edge, as do the image
Laplacians in blue and green. Depth equation based on ∇2I/It becomes unsta-
ble near this point. C. The spatial derivatives of each of the quantities in B
are nonzero at the edge center and can provide useful depth information from
the quantity ∂x(∇2I)/∂x(It). A combination of these derivative orders based on
local texture content provides robust depth measurements.

and so on. The relationship between, for example, Itx and Ixxx + Iyyx rather than It
and Ixx + Iyy provides high-confidence results at different image locations
because their values will have zero crossings at different locations across a given
texture feature. Though higher-order derivatives are more sensitive to image
noise, in the breakdown locations for lower-order derivatives they may still
produce reliable measurements. Figure 4.2.4 shows the effect of Gaussian blur of
changing scale on an image edge. Notice that at the center of the edge, both the
Laplacian and the image difference go to zero, leading to an instability in the
signal∇2I/It. The breakdown shifts spatially for ∂x(∇2I)/ ∂x(It). This indicates
that a confidence-weighted combination of depth and confidence measurements
from multiple image scales and derivative orders could provide denser and higher
quality depth maps.

The individual depth and confidence maps produce the final output when
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combined with softmax:

(Z,C) =
∑
i,j

γ i,j(Zi,j,Ci,j),

γ i,j =
exp(Ci,j)∑

i,j
exp(Ci,j)

,
(4.13)

where superscript i indicates the image scale and j the derivative order. An
example of confidence-thresholded depth maps computed from several image
scales and derivative orders is shown in figure 4.2.5. Note the insets on the right
that illustrate the texture-dependence of confidence and depth accuracy for
different image feature orientations, and the reduced texture dependency and
increased high-confidence density of the final depth map.

The robust computational pyramid illustrated in figure 4.2.5 provides dense
and accurate depth measurements in textured image regions, and it does so

Figure 4.2.5 (following page): Robust computation through multiple
scales and derivative orders. To generate denser and higher-quality output,
depth and confidence are computed at multiple scales and derivative orders.
The first row, using the original image pair, shows the same depth and con-
fidence computations as in figure 4.2.3 performed on a three-scale pyramid.
High confidence depth measurements are still sparse, and the inset on the
right shows low confidence at edge centers, as expected from the principle
illustrated in figure 4.2.4. The second row shows the results from applying
equations 4.3 and 4.8 to the x derivatives of each of the collected images.
High-confidence pixels now appear in the center of vertical edges. Likewise,
the third row shows the result of computations on the y derivative of the input
images, which gives good results at the center of horizontal edges. Combin-
ing these scales and derivative orders provides robustness to scene texture:
the box at the bottom shows a schematic of the tilted plane scene, the depth
and confidence map created by combining the pyramid of estimates with soft-
max according to equation 4.13, and the final output, which shows accurate
measurements in red near texture edges and does not report depth in low-
confidence textureless regions. This computation includes eighteen parameters
trained with backpropagation and returns 300× 480 pixel results at 100 frames
per second on a laptop GPU.
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without sacrificing the computational efficiency enabled by the differential
defocus approach. In practice, this prototype uses three image scales (1, .5,& .25)
and three derivative orders (I, Ix,& Iy), with a total of eighteen calibrated depth
and confidence parameters, and is able to output full-resolution (300× 480)
depth and confidence maps at 100 frames per second on a laptop GPU.

4.2.3 Physical Robustness

Robust computation architectures do not address the fundamental loss of
contrast away from the in-focus plane, and the sensor still has a finite working
range. However, because the location of the in-focus plane of this sensor is under
active control, the working range can be significantly increased by adjusting the
center point of the focal plane oscillation to match an object of interest in the
scene. Specifically, the PID controller shown in figure 4.2.6 slowly matches the
in-focus plane of the lens to the median of high-confidence depth measurements
while continuing to oscillate the lens power. The advantage of this large-scale
accommodation for depth accuracy can be observed in figure 4.2.7, which shows
an object approaching the camera with and without accommodation.

The working range can also be adjusted by changing the fixed offset lens.
Figures 4.2.7 and 4.2.8 show results using a 10-diopter lens (Thorlabs
LA1509-A), well suited to recover fine details on small objects like children’s
toys, with figure 4.2.8 showing the effect of changes in the confidence threshold.
In this optical configuration, the prototype had a 75 cm range where the mean
depth error was below 4 cm for a confidence threshold of 0.995. Figure 4.2.9
shows results for a larger field of view, accomplished by using a 25-diopter lens
(Thorlabs AC254-040-A-ML) located closer to the sensor. In this configuration,
which is better suited to larger objects such as a gesturing hand, the prototype
had a 1 m range where the mean depth error was below 5 cm for a confidence
threshold of 0.995.

These results show that even with the extremely non-Gaussian blur kernels
shown in figure 4.2.2, the prototype can measure depth accurately, densely, and
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Lens 1

Lens 2 (fixed)

Sensor

Figure 4.2.6: Feedback control for accommodation. The median of the
confidently-measured scene depth feeds back to the lens controller, as a slow-
changing offset to the sinusoidal control signal. This keeps the scene in focus,
where the defocus cue is strongest, for an extended working range. Figure
courtesy of Qi Guo.

efficiently in textured regions with a combination of augmented computation and
physical accommodation. This approach is sufficiently fast and robust that several
of the underlying physical assumptions can be broken.

First, while the depth recovery equation assumes that there is no camera or
scene motion, the high speed of computation means that in practice moving
objects are measured accurately in spite of small frame-to-frame motion. On the
human scale, it takes effort to move an object quickly enough that noticeable
errors in depth measurement occur.

Second, far exceeding the assumption of a single front-parallel
constant-brightness plane, the sensor performs well on highly optically
challenging scenes, including shiny, transparent, and reflective objects with
complicated and discontinuous shapes. Figure 4.2.9 demonstrates the ability of
the sensor to greatly exceed expectations on objects such as bubble wrap,
transparent plastic cups, CDs, and plastic crystals. Note that the edges of
reflective facets are measured as on-object texture, while textured objects seen in
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Figure 4.2.7: Working range extension through accommodation.
Demonstration with (left) and without (right) accommodation for confidence
> 0.995 and depth in meters. The accommodation controller uses a region
of interest that contains the toy but not the tape measure, which is included
to visualize the adapting focal depth. Accommodation more than doubles the
useful range of the sensor. Figure courtesy of Qi Guo.
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reflections result in the optical depth of the object, shown in figure 4.2.9.B. Also
note the recovery of multiple scene planes through a transparent object in
figure 4.2.9.C, which provides a significant argument against the method of
immediately and universally densifying depth maps rather than directly reporting
the per-pixel depth and confidence measurement. These examples demonstrate
that for this passive, monocular depth cue, optical effects such as the edges of
specularities, facets, caustics, and shadows, rather than leading to measurement
errors, can be treated as valuable sources of additional texture on the object.

Figure 4.2.8 (following page): Depth and confidence of everyday ob-
jects. Small objects such as toys and slanted planes were observed by the
sensor. Raising the confidence threshold makes the depth map sparser and
more accurate. Depth shown in meters. Figure courtesy of Qi Guo.
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Figure 4.2.9 (following page): Depth measurement in optically-
challenging scenes. While the theory in chapter 3 assumed the camera
would view a single front-parallel constant-brightness plane, the passive and
monocular nature of depth from defocus allows this cue to apply to a number
of optically challenging objects. Optical effects like reflections, caustics, and
bokeh can be treated as additional sources of on-object texture and actually
improve results. The sensor successfully recovers the depth of: A bubble wrap,
which is a flexible, reflective, transparent, unmarked surface; B a CD show-
ing both highlights from small-facet reflections of scene light, which register
as on-object texture and provide the depth of the CD, as well as a large-facet
reflection of the finger in the foreground, which appears as a more-distant
line within the disc due to the increased optical distance of the reflected light;
C the highlights and markings on a transparent cup simultaneously with the
textured plane behind it, which illustrates a key advantage to the approach
of reporting sparse confident depth maps instead of attempting to densify
them; and D a highly discontinuous, shiny clear object made of crystals held
together in a wire frame, which violates all of the physical assumptions of the
theory but is nonetheless well-reconstructed by the sensor.
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5
OpenQuestions

While many theoretical and practical aspects of differential defocus
have been explored in this document, many more questions remain.

Perhaps the most obvious area for exploration is suggested by the fact that only
two prototypes have been presented, from a wide class of sensors that was
described theoretically. One of these that seems to hold particular promise is the
combination of camera and photosensor motion, which can be used to describe
the moving lens assemblies common in cell phone cameras.

There are also many ways to depart from a simple thin lens camera to optically
collect single-shot defocus pairs. One could imagine a photosensor with a pixel
mosaicking of microlens optical powers, physical pixel depths, or polarization
filters accompanied by a birefringent lens. Promising developments in optical
component manufacturing suggest that diffractive lenses can be designed to
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generate custom blur kernels for different depths, colors, and polarizations.
These lenses can be designed in close cooperation with the post-processing
pipeline to maximize sensor performance.

To make any of these sensors as effective as they could be, several basic
engineering questions would have to be answered. A major area for improvement
in the current prototypes is the slapdash approach to confidence. Good
confidence estimation is key to sensor performance, and a solid characterization
of model- and learning-based confidence architectures could provide a major
performance boost. This would likely be even more important for computational
pipelines that densify the output depth maps to include estimates over
texture-free regions, which this work does not consider.

Another major issue not addressed in this work is its heavy reliance on
calibrated parameters. The prototypes shown here were assembled using high
quality equipment in a controlled environment and then were calibrated by
collecting data sets with known depth. Some relief comes from the fact that
parameters were combined into a small number of needed weights, so that the
full set of parameters was never measured, and that these values were optimized
directly for depth-sensing performance rather than some intermediate camera
model. Still, the calibration procedure was a major effort and highly specific to
each single prototype. For devices that are manufactured with variance in the
camera parameters, or for those that experience change in these parameters over
the course of their use, the lengthy calibration pipelines used in this work would
be completely infeasible. However, just as a moving sensor can recover velocity as
well as depth, it is possible to recover limited camera information efficiently from
image derivatives simultaneously with depth. Because many parameters of
interest appear in conjunction with their derivatives, this limited parameter
recovery combined with principled use of temporal filtering might offer a
practical solution.

Additionally, while both the theory and the prototypes attempt to describe the
effect of camera parameters on sensor performance, a great deal more data and
analysis is needed to be able to answer practical questions about camera design. It
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is not even clear what the optimal blur change should be between image pairs,
which many depth from defocus methods characterize. The ease of finding
camera settings that produced good results discouraged this line of research in
the proof-of-concept stage.

The enormous amount of implementation work that has not yet been done
only highlights the mysterious robustness of the depth from differential defocus
cue. In spite of strict theoretical assumptions — an ideal thin lens with perfectly
Gaussian kernels observing a single front-parallel, constant-brightness plane —
the prototypes were able to successfully recover depth through dramatically
non-Gaussian kernels for optically challenging objects with complex and highly
discontinuous geometries, such as bubble wrap and a wire mesh hung with
plastic crystals. Why does the defocus brightness constancy constraint, when
applied to images with non-Gaussian blur and with no attempt to account for this
discrepancy, perform so well? Why does a blur model based on a single
front-parallel constant-brightness plane apply to objects with complicated
shapes, specularities, interreflections, and caustics? There is currently no
explanation for why this should be possible.

Particularly interesting in this regard are reflective objects. For large shiny
objects like a CD or an etched silver plate, on-mirror texture and highlights
produce the depth of the reflective surface, while reflections of textured objects
give the optical depth to the reflected object. For shiny objects like bubble wrap
or plastic crystals, no clear reflection is formed, and all reflected light contributes
to detection of the surface. It seems that this is related to reflective facet size,
where facet edges provide the depth of the reflector and facet surfaces provide the
depth of the reflected object. This observation suggests one potential way to
characterize the dependence of the differential defocus cue on material
parameters, which might provide far richer insight than the current constant
brightness assumption.

One key optical phenomenon that was completely ignored in this work is the
effect of wavelength. Chromatic aberration is known to assist human depth
perception, and computer vision techniques to recover depth from chromatic
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aberration are plagued by the very small change in defocus that it generates,
which may be an advantage in the differential defocus framework. The ability of
colorblind cephalopods to successfully match the colors of scenes observed
through strangely-shaped pupils suggests that both depth and color may be
recoverable from monochromatic defocus information with appropriate aperture
design, perhaps differentially.

It also remains to be seen how depth from differential defocus sensors can be
optimized for the size and power requirements of the microscale sensing
platforms that inspired them. Many engineering challenges remain in shrinking
and streamlining the optics, electronics, and software that would be required.
However, the efficiency and robustness of the depth sensors shown here, as well
as the use of small defocus changes by the jumping spider, suggest that differential
defocus may create possibilities for depth sensing on highly limited platforms.
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A
Alternative Derivations of the Constraint

Setting aside the question of uniqueness, this appendix assumes Gaussian
blur and provides two additional derivations of the defocus brightness constancy
constraint. These alternatives to section 3.2.1 may provide additional intuition
for how the constraint arises. One of these derivations is based on a truncated
Taylor expansion, mirroring a common derivation for linearized optical flow. The
other is based on sinusoidal textures, as illustrated in figure 3.2.1 and analyzed in
section 3.2.2 for inherent sensitivity.

A.1 FromTaylor Expansion

Following the well-known Taylor series derivation for differential optical flow,
consider the difference in intensity at a pixel between a pair of images taken a
time step Δt apart. Recall that the brightness of the underlying sharp texture does
not change, but the change in defocus blur must be accounted for to use the
real-aperture images.

To do so, assume Gaussian blur kernels k,

k(x, y, σ) =
e−

ax2+bxy+cy2

σ2

σ2
, (A.1)
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and define a reblurring filter b that takes narrow Gaussians to wider Gaussians
under spatial convolution:

k(x, y, σ2) =b (x, y, σ1, σ2) ∗ k(x, y, σ1) . (A.2)

Recall that for Gaussian blur this reblurring filter takes the form of another
Gaussian,

b(x, y, σ1, σ2) =k(x, y,
√

σ22 − σ21), (A.3)

which under no change in blur collapses to a Dirac delta,

b(x, y, σ1, σ1) =k(x, y, 0) = δ(x, y). (A.4)

The all-in-focus unchanging-texture brightness constancy constraint states
that for the pinhole image P,

P(x+ Δx, y+ Δy, t+ Δt) =P(x, y, t), (A.5)

with features moving from (x, y) to (x+ Δx, y+ Δy) on the image. This remains
true after convolving both sides of the constraint by the same Gaussian k, with
blur scale σ(t+ Δt):

k(x, y, σ(t+ Δt)) ∗ P(x+ Δx, y+ Δy, t+ Δt) = k(x, y, σ(t+ Δt)) ∗ P(x, y, t).
(A.6)

Without loss of generality, set the sign of Δt so that that σ(t+ Δt) > σ(t), and
note that the above constraint relates the image taken at time t+ Δt to a
reblurred version of the image taken at time t:

I(x+ Δx, y+ Δy, t+ Δt) =b
(
x, y, σ(t),

(
Z(t+ Δt)

Z(t)
− f(t+ Δt)

f(t)

)
σ(t+ Δt)

)
∗ I(x, y, t), (A.7)

where the Z(t+Δt)
Z(t) − f(t+Δt)

f(t) term accounts for the change in magnification
between images.

Taking the Taylor expansion of both sides and dropping terms above first
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order produces the approximation

I(x, y, t) + IxΔx+ IyΔy+ ItΔt ≈ δ(x, y) ∗ I(x, y, t)+ (A.8)

Δt
(
σ t +

(
Zt

Z
− ft

f

)
σ
)
bσ2(x, y, σ, σ) ∗ I(x, y, t).

Subtracting the I(x, y, t) term from each side, dividing by Δt, and noting that the
reblurring filter collapses to a Dirac delta as

bσ2(x, y, σ1, σ2) =σ2Σ2∇2
Σ b(x, y, σ1, σ2) (A.9)

→ bσ2(x, y, σ, σ) =σΣ2∇2
Σ δ(x, y), (A.10)

the approximate constraint becomes

Ix
Δx
Δt

+ Iy
Δy
Δt

+ It ≈
(
σ t +

(
Zt

Z
− ft

f

)
σ
)
σΣ2∇2

Σ I. (A.11)

In the limit as Δt approaches zero, the ratios
(
Δx
Δt ,

Δy
Δt

)
approach the optical flow

vector (ẋ, ẏ). Separating this flow into translation and magnification terms as in
section 3.2 produces the defocus brightness constancy constraint.

100



A.2 From Single-Frequency Texture

For general sinusoidal texture T,

T(u, v) =B0 sin(ωuu+ ωvv+ φ0), (A.12)

a pinhole camera will record the image P,

P(x, y, t) =B0 sin(ωx(t)x+ ωy(t)y+ φ(t)), (A.13)

ωx =− Z(t)
f(t)

ωu, (A.14)

ωy =− Z(t)
f(t)

ωv, (A.15)

φ =− ωuX(t)− ωvY(t) + φ0. (A.16)

Under Gaussian blur as in equation (A.1), frequency and phase will not change
but amplitude will:

I(x, y, t) =B(t) sin(ωxx+ ωyy+ φ), (A.17)

B(t) =max
φ

(k ∗ P) = B0F [k](ωx, ωy) =
2πB0√
4ac− b2

e−
Σ2σ2
2 (cω2x−bωxωy+aω2x).

(A.18)

The derivatives of this image are as follows, where dots indicate time derivatives:

Ix =ωxB cos(ωxx+ ωyy+ φ), (A.19)
Iy =ωyB cos(ωxx+ ωyy+ φ), (A.20)
Ixx =− ω2

xB sin(ωxx+ ωyy+ φ), (A.21)
Ixy =− ωxωyB sin(ωxx+ ωyy+ φ), (A.22)
Iyy =− ω2

yB sin(ωxx+ ωyy+ φ), (A.23)

It =(φ̇ + ω̇xx+ ω̇yy)B cos(ωxx+ ωyy+ φ)
+ Ḃ sin(ωxx+ ωyy+ φ),

(A.24)
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so that

It =− ωuẊ
ωx

Ix −
ωvẎ
ωy

Iy +
ω̇xx
ωx

Ix +
ω̇yy
ωy

Iy

+
Ḃ
B

cIxx − bIxy + aIyy
(−cω2

x + bωxωy − aω2
y)

(A.25)

=
f
Z
XtIx +

f
Z
YtIy +

(
Zt

Z
− ft

f

)
xIx +

(
Zt

Z
− ft

f

)
yIy

+

(
σ t +

(
Zt

Z
− ft

f

)
σ
)
σΣ2∇2

Σ I. (A.26)

By the linearity of convolution and differentiation, this equation holds for all
sum-of-sinusoid textures, so that the defocus brightness constancy constraint
applies to any natural texture.
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B
Depth fromDifferential Gaussian

ApertureModification

Chapter 3 describes in detail the effect of changes in blur scale, but it does
not discuss the effect of changing the aperture filter between shots, another
common way of of generating a defocus change for depth inference. This
appendix will describe how a differential change in a Gaussian aperture filter can
be used to extract scene information. There are two key differences between the
results in this appendix and those in chapter 3. The first is that the proof of
Gaussian uniqueness does not apply to this scenario, which permits a differential
shift approach that works for any filter. The second is that, unlike the
unambiguous results from the defocus brightness constancy constraint, there is a
side of focal plane ambiguity that arises when recovering depth from such
situations as an overall aperture scaling, a stretching along one axis, rotation of an
anisotropic Gaussian, or a combination of all of these.

In this appendix, the Gaussian filter will be generalized beyond its covariance
(a, b, c) to include a variable mean (μx, μy) and overall transmittance factor d.
That is, it can now stretch, rotate, shift, and dim, according to:

κ(x, y, t) =e−a(t)(x−μx(t))2−b(t)(xμx(t)(y−μy(t))−c(y−μy(t))2−d(t). (B.1)
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From this filter, a corresponding post-processing operation for depth recovery
can be derived. Recall that, with no scene motion or change in camera
parameters, image change It is simply kt ∗ P. The goal is to recover a
depth-dependent scalar v and a depth-blind post-processing operatorm(x, y)
such that

It = v m ∗ I (B.2)

for any underlying pinhole image P. This universality requirement implies that
the operatormmust take the blur kernel k to something proportional to its time
derivative:

kt ∗ P =v m ∗ k ∗ P, ∀P (B.3)
→ kt =v m ∗ k. (B.4)

In the frequency domain, this convolution takes the form of a multiplication, so
that, withF indicating the Fourier transform,

v m =F−1 [F [kt]/F [k]] . (B.5)

Combining equations B.1 and B.5, the general form of vm can be seen to
contain the blur scale σ raised to the zeroth, first, and second powers:

v m =

(
Σ2

2
(bbt − 2act − 2cat)− dt

)
δ − σ(μxt ∂x + μyt∂y) + σ2∇2

Σ,t, (B.6)

where the notation∇2
Σ,t indicates a new warped Laplacian, which now depends

not only on the Gaussian widths a, b, c but also on their time derivatives:

∇2
Σ,t =− Σ4

4
(4c2at − 2bcbt + b2ct) ∂xx

− Σ4

4
(−4bcat + b2bt + 4acbt − 4abct) σ2∂xy

− Σ4

4
(b2at − 2abbt + 4a2ct) σ2∂yy.

(B.7)

The multiple powers of σ in equation B.6 are a problem because it makes the
expression for vm impossible to split into the product of a term v that depends on
σ with a functionm(x, y) that does not. However, this equation can still reveal
depth with some manipulation and by respecting certain physical limitations.
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The first step towards a useful constraint is removing the first,
depth-independent Dirac delta term from vm. This term reflects the overall
change in light efficiency of the aperture as it simultaneously shrinks or broadens
(through at, bt, and ct) while brightening or dimming (through dt). Because the
lightness change ΔL, with

ΔL =
Σ2

2
(bbt − 2act − 2cat)− dt, (B.8)

depends only on known quantities, it can be accounted for with a simple
pre-processing step:

It − (ΔL) I =v′ m′ ∗ I, (B.9)

where v′m′ is a new operator that now contains only σ and σ2 terms:

v′m′ =− σ(μxt ∂x + μyt∂y)− σ2∇2
Σ,t. (B.10)

The combination of σ powers in equation B.10 still prevents the desired
depth-blind factoring into a σ-dependent v′ and a σ-independentm′. It points to
an underlying limitation on the kinds of aperture changes that can reveal depth in
the desired way. Specifically, it leaves two possibilities: 1) when the σ2 term
vanishes, then σ and therefore depth can be recovered from the first spatial image
derivatives, and 2) when the σ term vanishes, then σ2 and therefore depth up to a
side of focal plane ambiguity can be recovered from the second spatial image
derivatives.

In the first case, at = bt = ct = 0, and the aperture filter is a Gaussian that
undergoes a lateral shift (μxt , μ

y
t ). Then the light-efficiency-corrected image

change It − (ΔL)I takes the form

It + dtI =− σ
(
μxt Ix + μyt Iy

)
, (B.11)

which reveals depth directly through the equation

Z =

(
1
Zf

− It + dtI
fμxt Ix + fμyt Iy

)−1

. (B.12)

This is essentially a differential version of depth from stereo, where the baseline is
the σ-magnified filter shift. Depth from defocus and stereo are known to share
fundamental similarities [96], and this approach has been used for pinhole [51]
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and pillbox apertures [111], and would work in the same way for any filter κ.
In the second case, depth can be recovered up to a side of focal plane

ambiguity as long as the Gaussian does not shift laterally (μxt = μyt = 0). Then,
image values are constrained by

It − (ΔL)I = −σ2∇2
Σ,tI, (B.13)

and per-pixel depth is recovered, up to a side of focal plane ambiguity, by

Z =

(
1
Zf

±

√
It − (ΔL)I
−f2∇2

Σ,tI

)−1

. (B.14)

This generalizes the differential change in aperture size used in [32] and [103].
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