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ABSTRACT

As global demand for energy and materials grow while our dependence on petroleum and fossil fuels

declines, it is necessary to revolutionize the way we make new materials. Machine learning provides several

avenues for accelerating the discovery pipeline. Models employing machine learning optimization have

already begun to accelerate materials discovery by identifying new candidates for organic LEDs, and

predicting simple synthetic routes for organic molecules. Furthermore, researchers have used machine

learning models to perform complicated tasks which were previously thought to be only possible by

humans; such models can be leveraged to propose new molecular candidates.

In my PhD work, I have developed machine learning models for three different challenges in chemistry.

1) I developed molecular autoencoders to decode molecular space from an order of 1060 to a

200-dimensional vector. In this vector representation, I demonstrate how we can use gradient descent and

other optimization techniques to explore this space and find molecules that optimize target properties. 2) I

built neural network models for predicting reactions within selected families of molecules, helping us to

characterize the reactivity of a molecule. 3) I also developed a model which can predict electron-ionization

mass spectra for small molecules in milliseconds, making it possible to expand the coverage of mass

spectral libraries and what compounds can be identified with mass spectrometry.

Together, these machine learning models represent a portion of how machine learning can be used to

propose new molecules and to accelerate the identification of new molecules. As the field of machine

learning develops, there will be many other possible applications to help accelerate the materials discovery

platform.
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1
Introduction

Chemistry has given many blessings to mankind, providing drug molecules, plastics and other materials86.

However, the golden age of chemistry, where new promising molecules can easily be found from natural

products, or extracted from petroleum compounds is coming to an end. We have picked all the low hanging

fruit of easy-to-find, easy to synthesize compounds, and for a sustainable, carbon neutral future, we must

quell our dependence on petroleum.

In order to discover new molecules in the 21st century, we must rapidly increase our throughput for

molecular discovery. Machine learning can help us arrive at this destination. Models using machine learning

techniques have already been used to optimize tasks such as playing go and teaching robots to walk109,151.

Machine learning models are even beginning to tackle creative tasks such as producing art and music. It is

not only possible, but critical for machine learning models to be developed towards discovering new

molecules, and optimizing new reactions.

There are a few issues facing the application of machine learning to chemistry. The first issue is that while

there are many of sources of data (from hundreds of years of experiments), there is no central repository for

accessing all of the data. Many of these records are not available to the public. Chemistry publications

reporting new results and new reactions, typically only report the most successful molecule or reaction. The

results do not include negative results. More complete datasets exist at pharmaceutical companies or in other

industries, however, these datasets are treated as proprietary. There are a few public datasets of molecules

and reactions available, as well as other datasets that are available for sale. These datasets enable us to do

some machine learning but come with some limitations. I will discuss some of these datsets in Section 3.1.

The second issue is that the challenges we wish to address in chemistry are not easy to formulate. Often,

decisions in chemistry involve trade offs. Making molecules with a high reduction potential for use in flow

battery may also cause them to be more susceptible to degradation reactions162. Choosing to improve the

yield of a synthesis product by using fewer reaction steps will likely necessitate starting with more

complicated materials, or more toxic reagents. Conversely, choosing to use cheaper starting materials, you
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might have a long synthesis path, requiring multiple purification steps. The choice of how to how to

prioritize these factors is subjective. The optimization should depend on the particular application, as well as

the experiences of the chemists involved.

The third issue is the challenge of molecular representability. When a human chemist sees a molecule,

they infer a lot of things about the molecule, including the electronegativity of regions of the molecule, steric

hindrance, etc. The maxim taught in organic chemistry is "structure dictates function." Because the molecule

is a graph structure, it is difficult to encapsulate this information into a single vector for a molecular input.

In my doctoral research, I developed machine learning models for three applications in chemistry. I

worked with the representations that currently exist to predict reactions and mass spectrometry. I have used

machine learning models to compress the molecular space into a new representation for easier optimization

and new lead selection.

This thesis is divided into two main parts. In the first part, I provide some background for planning

machine learning projects in chemistry. This section covers:

• A heavily abbreviated introduction to machine learning, focusing in particular on architectures

employed in Section II

• A discussion of how to design and set up a machine learning project for chemistry applications. In

particular, I will discuss dataset selection as well as molecule representations commonly used in

machine learning algorithms.

The remainder of this thesis is divided into three different parts, each describing a different application

for machine learning models in chemistry:

• Using reversible, data-driven representations to encode molecules and use these representations to

drive optimization for particular properties

• Predicting organic chemistry reactions using neural networks and molecular fingerprints

• Predicting mass spectrometry spectra for small molecules using neural networks and fingerprint

representations.

I will conclude with an outlook on future directions for machine learning applications to challenges in

chemistry, and discuss some avenues for improving their efficiency in the future.

2



Part I

Part I: Machine Learning and

Cheminformatics Background
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2
A brief introduction to machine learning

ABSTRACT

Machine learning is the practice of identifying useful patterns from a dataset which then can be

transformed into a model. This model can then be used to make predictions given similar types of

inputs, or to generate outputs that are similar to the inputs that were given to the model. Models

that are used to make predictions are known as discriminative models, whereas models that are

used to generate output that is similar to the original dataset is known as a generative models. I will

discuss some applications of machine learning models in Section II. Here, I will outline some

different machine learning model architectures used in the later sections.

2.1 TYPES OF MACHINE LEARNING MODELS

2.1.1 LINEAR REGRESSION

One of the most basic discriminative models is a linear regression model, a model all scientists

become fluent in at a very early stage of their scientific development. Such models take in vector

representations of the data input, and apply a linear transformation to this representation. The

values in the matrix of the linear transformation are known as the parameters of the model, shown

as A in Eq. (2.1):

y = Ax+b (2.1)

5



2.1. Types of Machine Learning Models

To measure the predictive accuracy of the model, it is necessary to set an objective function. In

the case of a regression task, the objective is a function of the difference between the target value

and the value predicted by the model. An example of such a function is the mean squared error.

Then, one can adjust the parameters in order to improve the accuracy.

For a linear regression model, it is possible to determine analytically the best parameters for

fitting the input data. The objective function for a linear regression model can be written explicitly

as a function of the parameters of the model and the input data points. As a result, it is possible to

find the gradient of the objective function with respect to the parameters, and solve for the values

of the parameters when the gradient is 0. Because this objective function is convex in terms of the

parameters, there exists only one set parameters which will provide the smallest prediction error.

An explicit calculation for the weights is shown in Section 5.1.4 of

6



3
A brief introduction to cheminformatics and

molecular represenations

ABSTRACT

There are several important factors to consider when designing a machine learning project in

chemistry. The first is to consider the contents of the dataset to use. The second is to consider

which representation to use when representing the molecules or inputs to the machine learning

model. The third is to consider the objective of the model. Is the goal of the model to predict

certain properties or results? Or is it to generate a new molecule, or perhaps a new synthetic route?

I will discuss the first two points regarding datasets and representation in this introduction. The

third question is a rather open ended question and will depend on the end goal of the users. The

second half of this dissertation explores three different applications with different objectives for

each project.

3.1 CONSIDERATIONS FOR DATASET SELECTION

Despite the vast amount of literature published in chemistry, there are surprisingly only a limited

number of datasets available to the public. There are many considerations that must be made for

selecting a dataset, and in many cases cleaning a dataset for use in machine learning. I will discuss

some considerations when selecting and using a new dataset of molecules.
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3.1. Considerations for Dataset Selection

First, it is important to consider what kind of data is contained in the dataset. Are values

predicted values, or values from an electronic structure calculation or another kind of calculation.

Models trained on datasets containing calculated values alone can only be used to predict other

calculated properties. If one desires to use the model to predict a measured property, then it is

necessary to either use a transfer learning approach, or otherwise calibrate the measured properties

to calculated data.

Second, one must consider the size of the dataset. Many datasets which contain measured

properties typically only contain properties for a few hundred molecules at best. On such a small

dataset, it becomes easy to overfit the model. While it would be possible to develop a model for

predicting this dataset, it may not be very generalizable to other datasets.

A related, important factor to consider is the diversity of molecules in the dataset. Are there only

a few families of molecules represented? Are some families of molecules more heavily represented

than others? Machine learning models are excellent interpolation models, but cannot extrapolate to

examples it has not seen before. In other words, a model that has been trained on only one or two

families of molecules may would be excellent at predicting properties for molecules in these

families, but likely unable to predict properties for molecules outside of this family.

A few large datasets of molecules exist, some with some predicted properties. A more extensive

list is provided in these reviews. Some of the datasets used in these thesis include:

• QM9 : A dataset for molecules with fewer than 9 heavy (non-hydrogen) atoms, containing

calculated properties

• ZINC : A dataset of drug molecules. The entire dataset contains millions of molecules, but

these can be filtered down to a smaller group.

• NIST 17 Mass Spectral Library: This collection of data is not available to the public, but is

accessible to researchers whose institutions have access to mass spectral software.

8



Chapter 3. A brief introduction to cheminformatics and molecular represenations

Once a dataset has been settled upon, typically it is necessary to clean the dataset. Cleaning the

dataset can take on a whole range of tasks. A typical workflow to prepare a new dataset is as

follows: Write a parser to convert the molecule data file into a format readable for machine

learning tasks. Using database visualization tools, examine the dataset for any errors. In particular,

pay attention to any outliers in the dataset, or any values that are unphysical (e.g. a molecule

containing a mass spec intensity peak at an m/z ratio that is much larger than the mass of the

molecule itself). Create a linear regression model or a single layer model for predicting the output

to ensure that everything runs correctly.

Inevitably, for each dataset which contains new properties, it will be necessary to add a few extra

data parsing steps, or add a few more sanity checks into the data processing pipeline. Visualizing

the data and the predictions as often as possible is the key to identifying potential errors in the

dataset.

3.2 MOLECULE DESCRIPTORS

Machine learning models require vectorized information as inputs to the model. The matrix

multiplication operations which underpin the layers of a machine learning model will transform

these input vectors into new features or predictions.

For many problems in machine learning, such as vision recognition, vectorizing inputs is

straightforward. Images are composed of pixels, with an RGB value or greyscale associated with

each pixel, and so these data inputs are already in vectorized form. Converting molecules into a

vector representation is not simple.

One can think of a molecule as a graph, with the atoms as nodes and the bonds between the

atoms as edges. What is the best way to vectorize information from a graph? This depends on what

one wants to learn from the model. For example, if one simply wanted to ’learn’ the molecular
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3.2. Molecule Descriptors

weight given a molecule, then a vector representation that includes all the atoms is sufficient.

If one wanted to optimize for something more complicated, such as which molecule might be

suitable for flow battery applications, then some of the properties one would want the model to

predict include: the reduction potential, the susceptibility of the molecule to reactions with water

and other molecules in the environment162.

To understand what features we’d like to incorporate into our vector representation of a

molecule in order to predict these properties, let’s consider what properties a human organic

chemist would observe in the molecule. Looking at the molecule, a chemist might have an idea of

these properties by examining:

The number of rings contained in a molecule, or the overall stability of the molecule The types

of subgroups that are bound to the ring. In particular, are these fragments electron withdrawing or

electron donating? How many such groups are bound to the molecule? Which positions are

electron donating and accepting? How accessible are these positions to other molecules.

All of these aspects of a molecule cannot be captured by simple atom-level descriptors. Instead

it is necessary for descriptors to consider neighborhoods around atoms.

I will now describe some existing molecule representation methods.

3.2.1 DESCRIPTORS FROM CHEMINFORMATICS

Since the 1960s, chemists have leveraged computable information on molecules towards predicting

properties in drug discovery. This discipline is known as cheminformatics; numerous books and

reviews have been written about this topic21,43,44,174.

The key goal of cheminformatics is to identify quantitative structure property relationships

(QSAR); these relationships are based on the notion that the functionality of a molecule for any

particular application is defined by its structure. As such, by analyzing the structure, either by

using quantum mechanics modeling techniques, or some other data-driven methods, it is possible
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Chapter 3. A brief introduction to cheminformatics and molecular represenations

to determine the molecule’s usefulness for the application. In turn, it is possible to use these

patterns to identify promising candidates for a given application.

The earliest machine-readable representations of molecules were developed from this field.

Most of these descriptors are in the form of some sort of string descriptor. In present research, the

most popular string representations include the SMILES (Simplified Molecular Input Line Entry

Specification) and the INCHI (IUPAC International Chemical Identifier) representations175. Both

SMILES strings and INCHI representation encode not only the atoms present in the molecule, but

also the connections between the atoms in the molecule. Figure 3.1 has an example of a molecule

encoded in SMILES representation, the different colors in the string representing different parts in

the molecule. The INCHI representation also contains additional information about

stereochemistry. A hashed version of the INCHI, known as the INCHIKEY is a common molecule

identifier. The SMILES representation is used heavily in Chapter 4 of this work.

Various descriptors can be derived based on these raw representations; in fact, there are several

software packages which provide hundreds of these descriptors for users98,125. These properties

describe the partial charge of the molecule, the solvent accessible area, etc. Many of these

properties can be calculated using heuristic models, e.g. Gasteiger charges. These descriptors can

in turn be used to model more complicated properties that are more pertinent to the problem that

one wishes to optimize98.

A more abstract molecule descriptor is the family of fingerprint descriptors. Fingerprints capture

local information about the molecule’s structure and encode this information in a vector. The type

of local information varies for each fingerprint.

Morgan fingerprints/Extended Circular Fingerprints104,129 capture the local environment around

each atom, as shown in Figure3.1. This information records all local neighborhoods of molecule

fragments which contain fewer than the maximum bond radius to consider. In order to generate a

11



3.2. Molecule Descriptors

Figure 3.1: SMILES and Circular Fingerprints. Color coding is added as a visual aid, colored portions of the
representation correspond to different parts of the representation. In the SMILES representation, a string is
used to represent the molecular graph. Branching regions are encoded in parenthesis (red) while cycles are
encoded by starting and ending the cyclical region with a number (green). Lower case letters are used to repre-
sent atoms which are in an aromatic ring (green). The Circular fingerprint is a binary vector representation of a
molecule. Molecular subgraphs centered around different atoms are recorded as bits in the fingerprint.

fixed length vector representation, the information about the local structure is hashed into a vector.

Chapters 3 and 5 of this thesis feature applications of this fingerprint.

Other fingerprints vary in their focus on known functional groups within the molecule (e.g.

MACCS Fingerprint)32 or their focus on three dimensional structure (e.g. Topological

fingerprints)107. The precise fingerprint, or combination of fingerprints to use often depends on the

application at hand. It is often useful to test multiple fingerprints, or even combinations of

fingerprints, to determine which might be the best for representing molecules for the given

application76.

3.2.2 CHEMICAL GRAPH THEORY

The subfield of chemical graph theory considers graph-theory based approaches to molecule

representations122. These representations typically describe the whole molecule graph, rather than

12
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describing local fragments or representing some estimated physical properties.

Some of the more common descriptors from this field include the adjacency matrix and the

Coulomb matrix136. Other descriptors include the eigenvalues of the adjacency matrix, path

indices, and topological indices. Path indices describe the longest path between two carbon atoms

present in a molecule122. Topological indices depend on the valences of the constituent atoms in a

bond122.

Descriptors from this field are used less often, they do not enjoy the same level of support in

open source packages as the cheminformatic descriptors. Descriptors from this field have been

used to predict a wide variety of properties, including the boiling points for alkane, amino alkenes,

predicting antihypertensive activity, and NMR shifts122.

3.2.3 DESCRIPTORS DEVELOPED WITH MACHINE LEARNING

In the last two years, researchers have now applied machine learning to propose new molecular

representations. Some of these representations extend the idea of the fingerprint representation as a

two dimensional method for predicting molecules. Known as graph convolutional networks34,47,75,

these representations collect information from smaller subgraphs of the molecular graphs, and

aggregate this information into a single vector. The final output from these models is a continuous

vector representation; this enables the parameters of the model itself to be tuned to predict a

particular property.

New representations have also been developed for three dimensional molecule structures.

Starting with the three dimensional geometries allows for better prediction of some properties such

as energies. In addition to graph convolutional models, wave transform models have been proposed

for modeling the electron densities83. Wavelet scattering representations of the electron density

have also been used as a rotationally invariant representation of a molecule36.
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3.3 AFTERWORD

All of these descriptors have demonstrated their ability to predict energies/calculated properties for

molecules. It is likely that using transfer learning techniques, it would be possible to use these

models to model smaller experimental datasets.

However many of these machine learned representations proceeded the work in this thesis, or

did not have an easily accessible implementation to use. As such, the work that is presented in the

third part of this thesis uses two descriptors from cheminformatics: Morgan fingerprints and

SMILES Representation.
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4
Variational Autoencoders for Optimization in

Molecular Space

Apart from minor modifications, this chapter originally appeared as:

“Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules”.
GÃşmez-Bombarelli, R., Wei, J.N., Duvenaud, D., HernÃąndez-Lobato, J.M.,
SÃąnchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P.,
Aspuru-Guzi, AlÃąn. ACS Cent. Sci.. 4 (2018): 268.

ABSTRACT

We report a method to convert discrete representations of molecules to and from a

multidimensional continuous representation. This model allows us to generate new molecules for

efficient exploration and optimization through open-ended spaces of chemical compounds.

A deep neural network was trained on hundreds of thousands of existing chemical structures to

construct three coupled functions: an encoder, a decoder and a predictor. The encoder converts the

discrete representation of a molecule into a real-valued continuous vector, and the decoder converts

these continuous vectors back to discrete molecular representations. The predictor estimates

chemical properties from the latent continuous vector representation of the molecule.

Continuous representations of molecules allow us to automatically generate novel chemical

structures by performing simple operations in the latent space, such as decoding random vectors,

perturbing known chemical structures, or interpolating between molecules.
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Continuous representations also allow the use of powerful gradient-based optimization to

efficiently guide the search for optimized functional compounds. We demonstrate our method in

the domain of drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

4.1 INTRODUCTION

The goal of drug and material design is to identify novel molecules that have certain desirable

properties. We view this as an optimization problem, in which we are searching for the molecules

that maximize our quantitative desiderata. However, optimization in molecular space is extremely

challenging, because the search space is large, discrete, and unstructured. Making and testing new

compounds is costly and time consuming, and the number of potential candidates is overwhelming.

Only about 108 substances have ever been synthesized,77 whereas the range of potential drug-like

molecules is estimated to be between 1023 and 1060 113.

Virtual screening can be used to speed up this search.19,117,144,150 Virtual libraries containing

thousands to hundreds of millions of candidates can be assayed with first-principles simulations or

statistical predictions based on learned proxy models, and only the most promising leads are

selected and tested experimentally.

However, even when accurate simulations are available,141 computational molecular design is

limited by the search strategy used to explore chemical space. Current methods either exhaustively

search through a fixed library,49,57 or use discrete local search methods such as genetic

algorithms72,108,126,127,134,168 or similar discrete interpolation techniques.6,167,173 Although these

techniques have led to useful new molecules, these approaches still face large challenges. Fixed

libraries are monolithic, costly to fully explore, and require hand-crafted rules to avoid impractical

chemistries. The genetic generation of compounds requires the manual specification of heuristics

for mutation and crossover rules. Discrete optimization methods have difficulty effectively
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searching large areas of chemical space because it is not possible to guide the search with

gradients.

A molecular representation method that is continuous, data-driven, and can easily be converted

into a machine-readable molecule has several advantages. First, hand-specified mutation rules are

unnecessary, as new compounds can be generated automatically by modifying the vector

representation and then decoding. Second, if we develop a differentiable model that maps from

molecular representations to desirable properties, we can enable the use of gradient-based

optimization to make larger jumps in chemical space. Gradient-based optimization can be

combined with Bayesian inference methods to select compounds that are likely to be informative

about the global optimum. Third, a data-driven representation can leverage large sets of unlabeled

chemical compounds to automatically build an even larger implicit library, and then use the smaller

set of labeled examples to build a regression model from the continuous representation to the

desired properties. This lets us take advantage of large chemical databases containing millions of

molecules, even when many properties are unknown for most compounds.

Recent advances in machine learning have resulted in powerful probabilistic generative models

that, after being trained on real examples, are able to produce realistic synthetic samples. Such

models usually also produce low-dimensional continuous representations of the data being

modeled, allowing interpolation or analogical reasoning for natural images120, text12, speech, and

music38,166. We apply such generative models to chemical design, using a pair of deep networks

trained as an autoencoder to convert molecules represented as SMILES strings into a continuous

vector representation. In principle, this method of converting from a molecular representation to a

continuous vector representation could be applied to any molecular representation, including

chemical fingerprints,130 convolutional neural networks on graphs34, similar

graph-convolutions75, and Coulomb matrices135. We chose to use SMILES representation because
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4.1. Introduction

Figure 4.1: (a). A diagram of the autoencoder used for molecular design, including the joint property predic-
tion model. Starting from a discrete molecular representation, such as a SMILES string, the encoder network
converts each molecule into a vector in the latent space, which is effectively a continuous molecular representa-
tion. Given a point in the latent space, the decoder network produces a corresponding SMILES string. Another
network estimates the value of target properties associated with each molecule. (b) Gradient-based optimiza-
tion in continuous latent space. After training a surrogate model f (z) to predict the properties of molecules
based on their latent representation z, we can optimize f (z) with respect to z to find new latent representations
expected to have high values of desired properties. These new latent representations can then be decoded into
SMILES strings, at which point their properties can be tested empirically.

this representation can be readily converted into a molecule.

Using this new continuous vector-valued representation, we experiment with the use of

continuous optimization to produce novel compounds. We trained the autoencoder jointly on a

property prediction task: we added a multilayer perceptron that predicts property values from the

continuous representation generated by the encoder, and included the regression error in our loss

function. We examined the effects that joint training had on the latent space, and tested

optimization of molecules in this latent space. The code and full training data sets is made

available at https://github.com/aspuru-guzik-group/chemical_vae
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4.1.1 REPRESENTATION AND AUTOENCODER FRAMEWORK

The autoencoder in comprised of two deep networks: an encoder network to convert each string

into a fixed-dimensional vector, and a decoder network to convert vectors back into strings (Figure

4.1a). The autoencoder is trained to minimize error in reproducing the original string, i.e., it

attempts to learn the identity function. Key to the design of the autoencoder is the mapping of

strings through an information bottleneck. This bottleneck — here the fixed-length continuous

vector — induces the network to learn a compressed representation that captures the most

statistically salient information in the data. We call the vector-encoded molecule the latent

representation of the molecule.

For unconstrained optimization in the latent space to work, points in the latent space must

decode into valid SMILES strings that capture the chemical nature of the training data. Without

this constraint, the latent space learned by the autoencoder may be sparse and may contain large

“dead areas”, which decode to invalid SMILES strings. To help ensure that points in the latent

space correspond to valid realistic molecules, we choose to use a variational autoencoder (VAE)79

framework. VAEs were developed as a principled approximate-inference method for

latent-variable models, in which each datum has a corresponding, but unknown, latent

representation. VAEs generalize autoencoders, adding stochasticity to the encoder which combined

with a penalty term encourages all areas of the latent space to correspond to a valid decoding. The

intuition is that adding noise to the encoded molecules forces the decoder to learn how to decode a

wider variety of latent points and find more robust representations. Variational autoencoders with

recurrent neural network encoding/decoding were proposed by Bowman et al. in the context of

written English sentences and we followed their approach closely.12. To leverage the power of

recent advances in sequence-to-sequence autoencoders for modeling text, we used the SMILES176

representation, a commonly-used text encoding for organic molecules.
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The character-by-character nature of the SMILES representation and the fragility of its internal

syntax (opening and closing cycles and branches, allowed valences, etc.) can still result in the

output of invalid molecules from the decoder, even with the variational constraint. When

converting a molecule from a latent representation to a molecule, the decoder model samples a

string from the probability distribution over characters in each position generated by its final layer.

As such, multiple SMILES strings are possible from a single latent space representation. We

employed the open source cheminformatics suite RDKit125 to validate the chemical structures of

output molecules and discard invalid ones. While it would be more efficient to limit the

autoencoder to generate only valid strings, this post-processing step is lightweight and allows for

greater flexibility in the autoencoder to learn the architecture of the SMILES.

To enable molecular design, the chemical structures encoded in the continuous representation of

the autoencoder need to be correlated with the target properties that we are seeking to optimize.

Therefore, we added a model to the autoencoder that predicts the properties from the latent space

representation. This autoencoder was then trained jointly on the reconstruction task and a property

prediction task; an additional multi-layer perceptron (MLP) was used to predict the property from

the latent vector of the encoded molecule. To propose promising new candidate molecules, we can

start from the latent vector of an encoded molecule and then move in the direction most likely to

improve the desired attribute. The resulting new candidate vectors can then be decoded into

corresponding molecules. (Figure 4.1b).

Two autoencoder systems were trained; one with 108,000 molecules from the QM9 dataset of

molecules with fewer than 9 heavy atoms121 and another with 250,000 drug-like commercially

available molecules extracted at random from the ZINC database.65. We performed random

optimization over hyperparameters specifying the deep autoencoder architecture and training, such

as the choice between a recurrent or convolutional encoder, the number of hidden layers, layer
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sizes, regularization and learning rates. The latent space representations for the QM9 and ZINC

datasets had 156 dimensions and 196 dimensions respectively.

4.2 RESULTS AND DISCUSSION

REPRESENTATION OF MOLECULES IN LATENT SPACE Firstly, we analyze the fidelity of the

autoencoder and the ability of the latent space to capture structural molecular features. Figure 4.2a)

shows a kernel density estimate of each dimension when encoding a set of 5000 randomly selected

ZINC molecules from outside the training set. The kernel density estimate shows the distribution

of datapoints along each dimension of the latent space. Whereas the distribution of datapoint in

each individual dimension shows a slightly different mean and standard deviation, all the

distributions are normal as enforced by the variational regularizer.

The variational autoencoder is a doubly-probabilistic model. In addition to the Gaussian noise

added to the encoder, which can be turned off by simply sampling the mean of the encoding

distribution, the decoding process is also non-deterministic, as the string output is sampled from

the final layer of the decoder. This implies that decoding a single point in the latent space back to a

string representation is stochastic. Figure 4.2b) shows the probability of decoding the latent

representation of a sample FDA-approved drug molecule into several different molecules. For most

latent points, a prominent molecule is decoded and many other slight variations appear with lower

frequencies. When these resulting SMILES are re-encoded into the latent space, the most frequent

decoding also tends to be the one with the lowest Euclidean distance to the original point,

indicating the latent space is indeed capturing features relevant to molecules.

Figure 4.2c) shows some molecules in the latent space that are close to ibuprofen. These

structures become less similar with increasing distance in the latent space. When the distance

approaches the average distance of molecules in the training set, the changes are more pronounced,
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(a)
(b)

(c)

(d)

Figure 4.2: Representations of the sampling results from the variational autoencoder. (a) Kernel Density Es-
timation (KDE) of each latent dimension of the autoencoder, i.e. the distribution of encoded molecules along
each dimension of our latent space representation; (b) Histogram of sampled molecules for a single point in
the latent space, the distances of the molecules from the original query are shown by the lines corresponding
to the right axis; (c) Molecules sampled near the location of ibuprofen in latent space. The values below the
molecules are the distance in latent space from the decoded molecule to ibuprofen; (d) slerp interpolation be-
tween two molecules in latent space using 6 steps of equal distance.
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eventually resembling random molecules likely to be sampled from the training set. SI Figure 1d)

shows the distribution of distances in latent space between 50,000 random points from our ZINC

training set. We estimate that we can find 30 such molecules in the locality of a molecule, i.e. 30

molecules closer to a given seed molecule from our dataset than any other molecule in our dataset.

As such, we estimate that our autoencoder that was trained on 250,000 molecules from ZINC

encodes 7.5 million molecules. The probability of decoding from a point in latent space is

dependent on how close this point is to the latent representations of other molecules; we observed a

decoding rate of 73-79% for points that are close to known molecules, and 4% for randomly

selected latent points.

A continuous latent space allows interpolation of molecules by following the shortest Euclidean

path between their latent representations. When exploring high dimensional spaces, it is important

to note that Euclidean distance might not map directly to notions of similarity of molecules2. In

high dimensional spaces, most of the mass of independent normally-distributed random variables

is not near the mean, but in an annulus around the mean31. Interpolating linearly between two

points might pass by an area of low probability, to keep the sampling on the areas of high

probability we utilize spherical interpolation177 (slerp). With slerp, the path between two points is

a circular arc lying on the on the surface of a N-dimensional sphere. Figure 4.2d) shows the

spherical interpolation between two random drug molecules, showing smooth transitions in

between. SI Figure 3 shows the difference between linear and spherical interpolation.

Table 4.1 compares the distribution of chemical properties in the training sets against molecules

generated with a baseline genetic algorithm, and molecules generated from the variational

autoencoder. In the genetic algorithm, molecules were generated with a list of hand-designed

rules72,108,126,127,134,168. This process was seeded using 1000 random molecules from the ZINC

dataset, and generated over 10 iterations. For molecules generated using the variational
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Sourcea Datasetb Samplesc logPd SASe QED f % in ZINCg % in
emolh

Data ZINC 249k 2.46
(1.43)

3.05 (0.83) 0.73
(0.14)

100 12.9

GA ZINC 5303 2.84
(1.86)

3.80 (1.01) 0.57
(0.20)

6.5 4.8

VAE ZINC 8728 2.67
(1.46)

3.18 (0.86) 0.70
(0.14)

5.8 7.0

Data QM9 134k 0.30
(1.00)

4.25 (0.94) 0.48
(0.07)

0.0 8.6

GA QM9 5470 0.96
(1.53)

4.47 (1.01) 0.53
(0.13)

0.018 3.8

VAE QM9 2839 0.30
(0.97)

4.34 (0.98) 0.47
(0.08)

0.0 8.9

Table 4.1: Comparison of molecule generation results to original datasets. Column a) describes the source of
the molecules: data refers to the original dataset, GA refers to the genetic algorithm baseline, and VAE to our
variational autoencoder trained without property prediction; b) shows the dataset used, either ZINC or QM9,
c) shows the number of samples generated for comparison, for data, this value simply reflects the size of the
dataset. Columns d) through f) show the mean and, in parenthesis, the standard deviation of selected prop-
erties of the generated molecules and compares that to the mean and standard deviation of properties in the
original dataset. d) shows the water-octanal partition coefficient (logP)178; e) shows the synthetic accessibility
score (SAS)39; and f) shows the Qualitative Estimate of Drug-likeness (QED)10, ranging from 0 to 1; We also
examine how many of the molecules generated by each method are found in two major molecule databases:
ZINC in column g) and E-molecules35 in column h) and compare these values against the original dataset.

autoencoder, we collected the set of all molecules generated from 400 decoding attempts from the

latent space points encoded from the same 1000 seed molecules. We compare the water-octanol

partition coefficient (logP), the synthetic accessibility score (SAS),39 and Quantitative Estimation

of Drug-likeness (QED),10 which ranges in value between 0 and 1, with higher values indicating

that the molecule is more drug-like. SI Figure 2 shows histograms of the properties of the

molecules generated by each of these approaches and compares them to the distribution of

properties from the original dataset. Despite the fact that the VAE is trained purely on the SMILES

strings independently of chemical properties, it is able to generate realistic-looking molecules

whose features follow the intrinsic distribution of the training data. The molecules generated using

the VAE show chemical properties that are more similar to the original dataset than the set of

molecules generated by the genetic algorithm. The two rightmost columns in Table 4.1 report the

fraction of molecules that belong to the the 17 million drug-like compounds from which the
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Database/Property Meana ECFPb CMb GCb 1-hot
SMILESc

Encoderd VAEe

ZINC250k/logP 1.14 0.38 - 0.05 0.16 0.13 0.15
ZINC250k/QED 0.112 0.045 - 0.017 0.041 0.037 0.054
QM9/HOMO, eV 0.44 0.20 0.16 0.12 0.12 0.13 0.16
QM9/LUMO, eV 1.05 0.20 0.16 0.15 0.11 0.14 0.16
QM9/Gap, eV 1.07 0.30 0.24 0.18 0.16 0.18 0.21

Table 4.2: MAE prediction error for properties using various methods on the ZINC and QM9 datasets.
a) Baseline, mean prediction; b) As implemented in Deepchem benchmark (MoleculeNet)180, ECFP-
circular fingerprints, CM-coulomb matrix, GC-graph convolutions; c) 1-hot-encoding of SMILES used
as input to property predictor; d) The network trained without decoder loss; e) full variational autoen-
coder network trained for individual properties.

training set was selected and how often they can be found in a library of existing organic

compounds. In the case of drug-like molecules, the VAE generates molecules that follow the

property distribution of the training data, but are new as the combinatorial space is extremely large

and the training set is an arbitrary sub-sample. The hand-selected mutations are less able to

generate new compounds while at the same time biasing the properties of the set to higher

chemical complexity and decreased drug-likeness. In the case of the QM9 dataset, since the

combinatorial space is smaller, the training set has more coverage and the VAE generates

essentially the same population statistics as the training data.

PROPERTY PREDICTION OF MOLECULES The interest in discovering new molecules and

chemicals is most often in relation to maximizing some desirable property. For this reason, we

extended the the purely generative model to also predict property values from the latent

representation. We trained a multi-layer perceptron jointly with the autoencoder to predict

properties from the latent representation of each molecule.

With joint training for property prediction, the distribution of molecules in the latent space is

organized by property values. Figure 4.3 shows the mapping of true property values to the latent

space representation of molecules, compressed into two dimensions using PCA. The latent space
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generated by autoencoders jointly trained with the property prediction task shows in the

distribution of molecules a gradient by property values; molecules with high values are located in

one region, and molecules with low values in another. Autoencoders that were trained without the

property prediction task do not show a discernible pattern with respect to property values in the

resulting latent representation distribution.

While the primary purpose of adding property prediction was to organize the latent space, it is

interesting to observe how the property predictor model compares with other standard models for

property prediction. For a more fair comparison against other methods, we increased the size of our

perceptron to two layers of 1,000 neurons. Table 4.2 compares the performance of commonly used

molecular embeddings and models to the VAE. Our VAE model shows that property prediction

performance for electronic properties (i.e., orbital energies) are similar to graph convolutions for

some properties; prediction accuracy could be improved with further hyperparameter optimization.

OPTIMIZATION OF MOLECULES VIA PROPERTIES We next optimized molecules in the latent

space from the autoencoder which was jointly trained for property prediction. In order to create a

smoother landscape to perform optimizations, we used a Gaussian process model to model the

property predictor model. Gaussian processes can be used to predict any smooth continuous

function124 and are extremely lightweight, requiring only a few minutes to train on a dataset of a

few thousand molecules. The Gaussian process was trained to predict target properties for

molecules given the latent space representation of the molecules as an input.

The 2,000 molecules used for training the Gaussian process were selected to be maximally

diverse. Using this model, we optimized in the latent space to find a molecule that maximized our

objective. As a baseline, we compared our optimization results against molecules found using a

random Gaussian search and molecules optimized via a genetic algorithm.

The objective we chose to optimize was 5× QED − SAS, where QED is the Quantitative
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Figure 4.3: Two-dimensional PCA analysis of latent space for variational autoencoder. The two axis are the
principle components selected from the PCA analysis, the color bar shows the value of the selected property.
The first column shows the representation of all molecules from the listed dataset using autoencoders trained
without joint property prediction. The second column shows the representation of molecules using an autoen-
coder trained with joint property prediction. The third column shows a representation of random points in the
latent space of the autoencoder trained with joint property prediction; the property values predicted for these
points are predicted using the property predictor network. The first three rows show the results of training on
molecules from the ZINC dataset for the logP, QED, and SAS properties; the last two rows show the results of
training on the QM9 dataset for the LUMO energy and the electronic spatial extent (R2).
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Estimation of Drug-likeness (QED)10, and SAS is the Synthetic Accessibility score39. This

objective represents a rough estimate of finding the most drug-like molecule that is also easy to

synthesize. To provide the greatest challenge for our optimizer, we started with molecules from the

ZINC dataset that had an objective score in the bottom 10%, i.e. were in the 10th percentile.

From Figure 4.4a) we can see that the optimization with the Gaussian process model on the

latent space representation consistently results in molecules with a higher percentile score than the

two baseline search methods. Figure 4.4b) shows the path of one optimization from the starting

molecule to the final molecule in the two-dimensional PCA representation, the final molecule

ending up in the region of high objective value. Figure 4.4c) shows molecules decoded along this

optimization path using a Gaussian interpolation.

Performing this optimization on a Gaussian process (GP) model trained with 1,000 molecules

leads to a slightly wider range of molecules as shown in Figure 4.4a). Since the training set is

smaller, the predictive power of the GP is lower which when optimizing in latent space, and as a

result optimizes to several local minima instead of a global optimization. In cases where it is

difficult to define an objective that completely describes the desirable traits of the molecule, it may

be better to use this localized optimization approach to reach a larger diversity of potential

molecules.
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(a)

(b)

(c)

Figure 4.4: Optimization results for the jointly trained autoencoder using 5× QED − SAS as the objective func-
tion. Part (a) shows a box plot which compares the distribution of sampled molecules from normal random
sampling, SMILES optimization via a common chemical transformation with a genetic algorithm, and from op-
timization on the trained gaussian process model with varying amounts of training points. To offset differences
in computational cost between the random search and the optimization on the gaussian process model, the re-
sults of 400 iterations of random search were compared against the results of 200 iterations of optimization.
This graph shows the combined results of four sets of trials. Part (b) shows the starting and ending points of
several optimization runs on a PCA plot of latent space colored by the objective functon. Higlighted in black is
the path illustrated in c). Part (c) shows a spherical interpolation between the actual start and finish molecules
using a constant step size. The QED, SAS, and percentile score are reported for each molecule.
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4.3 CONCLUSION

We propose a new family of methods for exploring chemical space based on continuous encodings

of molecules. These methods eliminate the need to hand-build libraries of compounds and allow a

new type of directed gradient-based search through chemical space. In our autoencoder model, we

observed high fidelity in reconstruction of SMILES strings and the ability to capture characteristic

features of a molecular training set. The autoencoder exhibited good predictive power when

training jointly with a property prediction task, and the ability to perform gradient-based

optimization of molecules in the resulting smoothed latent space.

There are several directions for further improvement of this approach to molecular design. In

this work, we used a text-based molecular encoding, but using a graph-based autoencoder would

have several advantages. Forcing the decoder to produce valid SMILES strings makes the learning

problem unnecessarily hard since the decoder must also implicitly learn which strings are valid

SMILES. An autoencoder that directly outputs molecular graphs is appealing since it could

explicitly address issues of graph isomorphism and the problem of strings that do not correspond to

valid molecular graphs. Building an encoder which takes in molecular graphs is straightforward

through the use of off-the-shelf molecular fingerprinting methods, such as ECFP130 or a

continuously-parameterized variant of ECFP such as neural molecular fingerprints.34 However,

building a neural network which can output arbitrary graphs is an open problem.

Further extensions of this work to use a explicitly defined grammar for SMILES instead of

forcing the model to learn one82 or to actively learn valid sequences66,67 are underway, as also is

the application of adversarial networks for this task,11,56,137 as well as other reinforcement learning

algorithms which make transformations by adding bonds or removing them.185 Several proceeding

works have further explored the use of Long Short-Term Memory (LSTM) networks and recurrent

networks applied to SMILES strings to generate new molecules146,182 and predict the outcomes of
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organic chemistry reactions.91

The autoencoder sometimes produced molecules that are formally valid as graphs but contain

moieties that are not desirable because of stability or synthetic constraints. Examples are acid

chlorides, anhydrides, cyclopentadienes, aziridines, enamines, hemiaminals, enol ethers,

cyclobutadiene, and cycloheptatriene. One option is to train the autoencoder with to predict

properties related to steric constraints of other structural constraints. In general, the objective

function to be optimized needs to capture as many desirable traits as possible and balance them to

ensure that the optimizer focuses on genuinely desirable compounds. This approach has also been

tested in a few following works works.66,67

The results reported in this work, and its application with carefully composed objective

functions, have already and will continue to influence new avenues for molecular design.

4.4 METHODS

AUTOENCODER ARCHITECTURE Strings of characters can be encoded into vectors using

recurrent neural networks (RNNs). An encoder RNN can be paired with a decoder RNN to

perform sequence-to-sequence learning.160 We also experimented with convolutional networks for

string encoding71 and observed improved performance. This is explained by the presence of

repetitive, translationally-invariant substrings that correspond to chemical substructures, e.g.,

cycles and functional groups.

Our SMILES-based text encoding used a subset of 35 different characters for ZINC and 22

different characters for QM9. For ease of computation, we encoded strings up to a maximum

length of 120 characters for ZINC and 34 characters for QM9, although in principle there is no

hard limit to string length. Shorter strings were padded with spaces to this same length. We used

only canonicalized SMILES for training to avoid dealing with equivalent SMILES representations.
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The structure of the VAE deep network was as follows: For the autoencoder used for the ZINC

dataset, the encoder used three 1D convolutional layers of filter sizes 9, 9, 10 and 9, 9, 11

convolution kernels, respectively, followed by one fully-connected layer of width 196. The decoder

fed into three layers of gated recurrent unit (GRU) networks22 with hidden dimension of 488. For

the model used for the QM9 dataset, the encoder used three 1D convolutional layers of filter sizes

2, 2, 1 and 5, 5, 4 convolution kernels, respectively, followed by one fully-connected layer of width

156. The three recurrent neural network layers each had a hidden dimension of 500 neurons.

The last layer of the RNN decoder defines a probability distribution over all possible characters

at each position in the SMILES string. This means that the writeout operation is stochastic, and the

same point in latent space may decode into to different SMILES strings, depending on the random

seed used to sample characters. The output GRU layer had one additional input, corresponding to

the character sampled from the softmax output of the previous time step and was trained using

teacher forcing.179 This increased the accuracy of generated SMILES strings, which resulted in

higher fractions of valid SMILES strings for latent points outside the training data, but also made

training more difficult, since the decoder showed a tendency to ignore the (variational) encoding

and rely solely on the input sequence. The variational loss was annealed according to sigmoid

schedule after 29 epochs, running for a total 120 epochs.

For property prediction, two fully connected layers of 1000 neurons were used to predict

properties from the latent representation, with a dropout rate of 0.20. To simply shape the latent

space, a smaller perceptron of 3 layers of 67 neurons was used for the property predictor, trained

with a dropout rate of 0.15. For the algorithm trained on the ZINC dataset, the objective properties

include logP, QED, SAS. For the algorithm trained on the QM9 dataset, the objective properties

include HOMO energies, LUMO energies, and the electronic spatial extent (R2). The property

prediction loss was annealed in at the same time as the variational loss. We used the Keras20 and
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TensorFlow1 packages to build and train this model and the rdkit package for cheminformatics125.
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5
Neural Networks for Predicting Reactions

Apart from minor modifications, this chapter originally appeared as:

“Neural networks for the Prediction of Organic Chemistry Reactions”. Wei, J.N., Duvenaud, D.,
Aspuru-Guzik, Alán. ACS Central Science 2(10), 2016. 725-732.

ABSTRACT

Reaction prediction remains one of the major challenges for organic chemistry, and is a

prerequisite for efficient synthetic planning. It is desirable to develop algorithms that, like humans,

"learn" from being exposed to examples of the application of the rules of organic chemistry. We

explore the use of neural networks for predicting reaction types, using a new reaction

fingerprinting method. We combine this predictor with SMARTS transformations to build a system

which, given a set of reagents and reactants, predicts the likely products. We test this method on

problems from a popular organic chemistry textbook.

5.1 INTRODUCTION

To develop the intuition and understanding for predicting reactions, a human must take many

semesters of organic chemistry and gather insight over several years of lab experience. Over the

past 40 years, various algorithms have been developed to assist with synthetic design, reaction

prediction, and starting material selection161,164. LHASA was the first of these algorithms to aid in

developing retrosynthetic pathways29. This algorithm required over a decade of effort to encode
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the necessary subroutines to account for the various subtleties of retrosynthesis such as functional

group identification, polycyclic group handling, relative protecting group reactivity, and functional

group based transforms25–28.

In the late 1980s to the early 1990s, new algorithms for synthetic design and reaction prediction

were developed. CAMEO70, a reaction predicting code, used subroutines specialized for each

reaction type, expanding to include reaction conditions in its analysis. EROS45 identified leading

structures for retrosynthesis by using bond polarity, electronegativity across the molecule, and the

resonance effect to identify the most reactive bond. SOPHIA138 was developed to predict reaction

outcomes with minimal user input; this algorithm would guess the correct reaction type subroutine

to use by identifying important groups in the reactants; once the reactant type was identified,

product ratios would be estimated for the resulting products. SOPHIA was followed by the KOSP

algorithm, and uses the same database to predict retrosynthetic targets139. Other methods generated

rules based on published reactions, and uses these transformations when designing a retrosynthetic

pathway46,148. Some methods encoded expert rules in the form of electron flow diagrams17,18.

Another group attempted to grasp the diversity of reactions by creating an algorithm that

automatically searches for reaction mechanisms using atom mapping and substructure matching85.

While these algorithms have their subtle differences, all require a set of expert rules to predict

reaction outcomes. Taking a more general approach, one group has encoded all of the reactions of

the Beilstein database, creating a ’Network of Organic Chemistry’51,161. By searching this

network, synthetic pathways can be developed for any molecule similar enough to a molecule

already in its database of 7 million reactions, identifying both one-pot reactions that do not require

time-consuming purification of intermediate products54, or full multistep reactions that account for

the cost of the materials, labor, and safety of the reaction161. Algorithms that use encoded expert

rules or databases of published reactions are able to accurately predict chemistry for queries that
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match reactions in its knowledge base. However, such algorithms do not have the ability of a

human organic chemist to predict the outcomes of previously unseen reactions. In order to predict

the results of new reactions, the algorithm must have a way of connecting information from

reactions that it has been trained upon to reactions that it has yet to encounter.

Another strategy of reaction prediction algorithm draws from principles of physical chemistry

and first predicts the energy barrier of a reaction in order to predict its

likelihood123,153,171,172,181,187. Specific examples of reactions include the development of a

nanoreactor for early Earth reactions171,172, Heuristic Aided Quantum Chemistry123, and

ROBIA153, an algorithm for reaction prediction. While methods that are guided by quantum

calculations have the potential to explore a wider range of reactions than the heuristic-based

methods, these algorithms would require new calculations for each additional reaction family, and

will be prohibitively costly over a large set of new reactions.

A third strategy for reaction prediction algorithms uses statistical machine learning. These

methods can sometimes generalize or extrapolate to new examples, as in the recent examples of

picture and handwriting identification59,81, playing video games101, and most recently, playing

Go151. This last example is particularly interesting as Go is a complex board game with a search

space of 10170, which is on the order of chemical space for medium sized molecules128.

SYNCHEM was one early effort in the application of machine learning methods to chemical

predictions, which relied mostly on clustering similar reactions, and learning when reactions could

be applied based on the presence of key functional groups46.

Today, most machine learning approaches in reaction prediction use molecular descriptors to

characterize the reactants in order to guess the outcome of the reaction. Such descriptors range

from physical descriptors such as molecular weight, number of rings, or partial charge calculations

to molecular fingerprints, a vector of bits or floats that represent the properties of the molecule.
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ReactionPredictor73,74 is an algorithm that first identifies potential electron sources and electron

sinks in the reactant molecules based on atom and bond descriptors. Once identified, these sources

and sinks are paired to generate possible reaction mechanisms. Finally, neural networks are used to

determine the most likely combinations in order to predict the true mechanism. While this

approach allows for the prediction of many reactions at the mechanistic level, many of the

elementary organic chemistry reactions that are the building blocks of organic synthesis have

complicated mechanisms, requiring several steps that would be costly for this algorithm to predict.

Many algorithms that predict properties of organic molecules use various types of fingerprints as

the descriptor. Morgan fingerprints and extended circular fingerprints104,131 have been used to

predict molecular properties such as HOMO-LUMO gaps116, protein-ligand binding affinity7,

drug toxicity levels184, and even to predict synthetic accessibility112. Recently Duvenavud et al.

applied graph neural networks34 to generate continuous molecular fingerprints directly from

molecular graphs. This approach generalizes fingerprinting methods such as the ECFP by

parameterizing the fingerprint generation method. These parameters can then be optimized for

each prediction task, producing fingerprint features that are relevant for the task. Other

fingerprinting methods that have been developed use the Coulomb matrix102, radial distribution

functions169, and atom pair descriptors16. For classifying reactions, one group developed a

fingerprint to represent a reaction by taking the difference between the sum of the fingerprints of

the products and sum of the fingerprints of the reactants142. A variety of fingerprinting methods

were tested for the constituent fingerprints of the molecules.

In this work, we apply fingerprinting methods, including neural molecular fingerprints, to

predict organic chemistry reactions. Our algorithm predicts the most likely reaction type for a

given set of reactants and reagents, using what it has learned from training examples. These input

molecules are described by concatenating the fingerprints of the reactants and the reagents; this
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concatenated fingerprint is then used as the input for a neural network to classify the reaction type.

With information about the reaction type, we can make predictions about the product molecules.

One simple approach for predicting product molecules from the reactant molecules, which we use

in this work, is to apply a SMARTS transformation that describes the predicted reaction.

Previously, sets of SMARTS transformations have been applied to produce large libraries of

synthetically accessible compounds in the areas of molecular discovery168, metabolic networks97,

drug discovery159, and discovering one-pot reactions52. In our algorithm, we use SMARTS

transformation for targeted prediction of product molecules from reactants. However, this method

can be replaced by any method that generates product molecule graphs from reactant molecule

graphs. An overview of our method can be found in 5.1, and is explained in further detail in the

Prediction Methods section.

We show the results of our prediction method on 16 basic reactions of alkylhalides and alkenes,

some of the first reactions taught to organic chemistry students in many textbooks170. The training

and validation reactions were generated by applying simple SMARTS transformations to alkenes

and alkylhalides. While we limit our initial exploration to aliphatic, non-stereospecific molecules,

our method can easily be applied a wider span of organic chemical space with enough example

reactions. The algorithm can also be expanded to include experimental conditions such as reaction

temperature and time. With additional adjustments and a larger library of training data, our

algorithm will be able to predict multistep reactions, and eventually, become a module in a larger

machine-learning system for suggesting retrosynthetic pathways for complex molecules. The code

and full training datasets is made available at

https://github.com/jnwei/neural_reaction_fingerprint.git.
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Figure 5.1: An overview of our method for predicting reaction type and products. A reaction fingerprint, made
from concatenating the fingerprints of reactant and reagent molecules, is the inputs for a neural network that
predicts the probability of 17 different reaction types, represented as a reaction type probability vector. The al-
gorithm then predicts a product by applying a transformation that corresponds with the most probable reaction
type to the reactants. In this work, we use a SMARTS transformation for the final step.

5.2 RESULTS AND DISCUSSION

5.2.1 PERFORMANCE ON CROSS-VALIDATION SET

We created a dataset of reactions of four alkylhalide reactions and twelve alkene reactions; further

details on the construction of the dataset can be found in the Methods section. Our training set

comprised of 3400 reactions from this dataset, and the test set comprised of 17,000 reactions; both

the training set and the test set were balanced across reaction types. During optimization on the

training set, k-fold cross-validation was used to help tune the parameters of the neural net. Table 1

reports the cross-entropy score and the accuracy of the baseline and fingerprinting methods on this

test set. Here the accuracy is defined by the percentage of matching indices of maximum values in

the predicted probability vector and the target probability vector for each reaction.

Figure 5.2 shows the confusion matrices for the baseline, neural, and Morgan fingerprinting
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Fingerprint Fingerprint Train Train Test Test
Method Length NLL Accuracy NLL Accuracy
Baseline 51 0.2727 78.8% 2.5573 24.7%
Morgan 891 0.0971 86.0% 0.1792 84.5%
Neural 181 0.0976 86.0% 0.1340 85.7%

Table 5.1: Accuracy and Negative Log Likelihood (NLL) Error of fingerprint and baseline methods

methods respectively. The confusion matrices for the Morgan and neural fingerprints show that the

predicted reaction type and the true reaction type correspond almost perfectly, with few

mismatches. The only exceptions are in the predictions for reaction types 3 and 4, corresponding to

nucleophilic substitution reaction with a methyl shift and the elimination reaction with a methyl

shift. As described in the methods section, these reactions are assumed to occur together, so they

are each assigned probabilities of 50% in the training set. As a result, the algorithm cannot

distinguish these reaction type and the result on the confusion matrix is a 2x2 square. For the

baseline method, the first reaction type, the ’NR’ classification, is often over predicted, with some

additional overgeneralization of some other reaction type as shown by the horizontal bands.

5.2.2 PERFORMANCE ON PREDICTING REACTION TYPE OF EXAM QUESTIONS

Kayala et al.74 had previously employed organic textbook questions both as the training set and as

the validation set for their algorithm, reporting 95.7% accuracy on their training set. We similarly

decided to test our algorithm on a set of textbook questions. To challenge our algorithm, we tested

the performance on textbook problems that an organic chemistry student would see. We selected

problems 8-47 and 8-48 from the Wade 6th edition organic chemistry textbook, copied below in

Figure 5.3170. The reagents listed in each problem were assigned as secondary reactants or

reagents so that they matched the training set. For all prediction methods, our networks were first

trained on the training set of generated reactions, using the same hyperparameters found by the

cross-validation search. The similarity of the exam questions to the training set was determined by

42



Chapter 5. Neural Networks for Predicting Reactions

b)

a)

c)

0.   Null Reaction
1.   Nucleophilic substitution
2.   Elimination
3.   Nucleophilic Substitution with Methyl Shift
4.   Elimination with methyl shift
5.   Hydrohalogenation (Markovnikov)
6.   Hydrohalogenation (Anti-Markovnikov)
7.   Hydration (Markovnikov) 
8.   Hydration (Anti-Markovnikov)
9.   Alkoxymercuration-demercuration
10.  Hydrogenation
11.  Halogenation
12.  Halohydrin formation
13.  Epoxidation
14.  Hydroxylation
15.  Ozonolysis
16.  Polymerization

Figure 5.2: Cross validation results for a) Baseline fingerprint, b) Morgan reaction fingerprint, and c) neural
reaction fingerprint. A confusion matrix shows the average predicted probability for each reaction type. In these
confusion matrices, the predicted reaction type is represented on the vertical axis, and the correct reaction type
is represented on the horizantal axis. These figures were generated based on code from Schneider et al.142.

measuring the Tanimoto5 distance of the fingerprints of the reactant and reagent molecules in each

reactant set. The average Tanimoto score between the training set reactants and reagents and the

exam set reactants and reagents is 0.433, and the highest Tanimoto score oberved between exam

questions and training questions was 1.00 on 8-48c and 0.941 on 8-47a. This indicates that 8-48c

was one of the training set examples. Table ?? show more detailed results for this Tanimoto

analysis.

For each problem, the algorithm determined the reaction type in our set that best matched the

answer. If the reaction in the answer key did not match any of our reaction types, the algorithm

designated the reaction as a null reaction. The higher the probability the algorithm assigned for

each reaction type, the more certainty the algorithm has in its prediction. These probabilities are
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Figure 5.3: Wade problems a) 8-47 and b) 8-48

Figure 5.4: Prediction results for a) Wade Problem 8-47 and b) Wade Problem 8-48, as displayed by esti-
mated probability of correct reaction type. Darker (greener) colors represent a higher predicted probability.
Note the large amount of correct predictions in 8-47
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reported below in Figure 5.4, color-coded with green for probability and yellow/white for low

probability.

In problem 8-47, the Morgan fingerprint algorithm had the best performance with 12 of the 15

correct answers, followed by the neural fingerprint algorithm and the baseline method, both of

which had 11 out of 15 correct answers. Both the Morgan fingerprint algorithm and the neural

fingerprint algorithm predicted the correct answers with higher probability than the baseline

method. Several of the problems contained rings, which weren’t included in the original training

set. Many of these reactions were predicted correctly by the Morgan and neural fingerprint

algorithm, but not by the baseline algorithm. This suggests that both Morgan and neural fingerprint

algorithms were able to extrapolate the correct reactivity patterns to reactants with rings.

In problem 8-48, students are asked to suggest mechanisms for reactions given the both the

reactants and the products. To match the input format of our algorithm, we did not provide the

algorithm any information about the products even though it disadvantaged our algorithm. All

methods had much greater difficulty with this set of problems possibly because these problems

introduced aromatic rings, which the algorithm may have had difficulty distinguishing from double

bonds.

5.2.3 PERFORMANCE ON PRODUCT PREDICTION

Once a reaction type has been assigned for a given problem by our algorithm, we can use the

information to help us predict our products. In this study, we chose to naively use this information

by applying a SMARTS transformation that matched the predicted reaction type to generate

products from reactants. Figure 5.5 shows the results of this product prediction method using

Morgan reaction fingerprints and neural reaction fingerprints on problem 8-47 of the Wade

textbook, analyzed in the previous section. For all suggested reaction types, the SMARTS

transformation was applied to the reactants given by the problem. If the SMARTS transformation
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for that reaction type was unable to proceed due to a mismatch between the given reactants and the

template of the SMARTS transformation, then the reactants were returned as the predicted product

instead.

A product prediction score was also assigned for each prediction method. For each reaction, the

Tanimoto score5 was calculated between the Morgan fingerprint of the true product and the

Morgan fingerprint of the predicted product for each reaction type, following the same

applicability rules described above. The overall product prediction score is defined as average of

these Tanimoto scores for each reaction type, weighted by the probability of each reaction type as

given by the probability vector. The scores for each question are given in Fig. 5.5.

The Morgan fingerprint algorithm is able to predict 8 of the 15 products correctly, the neural

fingerprint algorithm is able to predict 7 of the 15 products correctly. The average Tanimoto score

for the products predicted by the Morgan fingerprint algorithm compared to the true products was

0.793 and the average Tanimoto score between the true products and the neural fingerprint

algorithm products was 0.776. In general, if the algorithm predicted the reaction type correctly

with high certainty, the product was also predicted correctly and the weighted Tanimoto score was

high, however, this was not the case for all problems correctly predicted by the algorithm.

The main limitation in the algorithm’s ability to predict products despite predicting the reaction

type correctly is the capability of the SMARTS transformation to accurately describe the

transformation of the reaction type for all input reactants. While some special measures were taken

in the code of these reactions to handle some common regiochemistry considerations, such as

Markovnikov orientation, it was not enough to account for all of the variations of transformations

seen in the sampled textbook questions. Future versions of this algorithm will require an algorithm

better than encoded SMARTS transformations to generate the products from the reactant

molecules.
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True Product Major Predicted Morgan Weighted Neural Weighted
Product Tanimoto Score Tanimoto Score

a 0.9998 0.3438

b 0.8863 0.9945

c 0.8554 0.9996

d 0.9999 0.9450

e 0.9999 0.9987

f 0.3540 0.3537

g 0.4296 0.4261

True Product Major Predicted Morgan Weighted Neural Weighted
Product Tanimoto Score Tanimoto Score

h 0.8030       0.9921

i 0.9986       0.9991

j 0.3924       0.4026

l 0.8274       0.8270

m 0.9999       0.9627

n 0.3492       0.4029

o 0.9993       0.9957

p 0.9999       0.9999

Figure 5.5: Product predictions for Wade 8-47 questions, with Tanimoto score. The true product is the prod-
uct as defined by the answer key. The major predicted product shows the product of the reaction type with the
highest probability according to the Morgan fingerprint algorithm’s result. The Morgan weighted score and the
neural weighted score are calculated by taking an average of the Tanimoto scores over all the predicted prod-
ucts weighted by the probability of that reaction type which generated that product.

5.3 CONCLUSION

Using our fingerprint-based neural network algorithm, we were able to identify the correct reaction

type for most reactions in our scope of alkene and alkylhalide reactions, given only the reactants

and reagents as inputs. We achieved an accuracy of 85% of our test reactions and 80% of selected

textbook questions. With this prediction of the reaction type, the algorithm was further able to

guess the structure of the product for a little more than half of the problems. The main limitation in

the prediction of the product structure was due to the limitations of the SMARTS transformation to

describe the mechanism of the reaction type completely.

While previously developed machine learning algorithms are also able to predict the products of

these reactions with similar or better accuracy74, the structure of our algorithm allows for greater

flexibillity. Our algorithm is able to learn the probabilities of a range of reaction types. To expand

the scope of our algorithm to new reaction types, we would not need to encode new rules, nor
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would we need to account for the varying number of steps in the mechanism of the reaction; we

would just need to add the additional reactions to the training set. The simplicity of our reaction

fingerprinting algorithm allows for rapid expansion of our predictive capabilities given a larger

dataset of well-curated reactions148,161. Using datasets of experimentally published reactions, we

can also expand our algorithm to account for the reaction conditions in its predictions, and later,

predict the correct reaction conditions.

This paper represents a step towards the goal of developing a machine learning algorithm for

automatic synthesis planning for organic molecules. Once we have an algorithm that can predict

the reactions that are possible from its starting materials, we can begin to use the algorithm to

string these reactions together to develop a multistep synthetic pathway. This pathway prediction

can be further optimized to account for reaction conditions, cost of materials, fewest number of

reaction steps and other factors to find the ideal synthetic pathway. Using neural networks helps

the algorithm to identify important features from the reactant molecules structure in order to

classify new reaction types.

5.4 METHODS

5.4.1 DATASET GENERATION

The data set of reactions was developed as follows: A library of all alkanes containing 10 carbon

atoms or fewer was constructed. To each alkane, a single functional group was added, either a

double bond or a halide (Br, I, Cl). Duplicates were removed from this set to make the substrate

library. Sixteen different reactions were considered, 4 reactions for alkylhalides and 12 reactions

for alkenes. Reactions resulting in methyl shifts, or resulting in Markovnikov or anti-Markovnikov

product were considered as separate reaction types. Each reaction is associated with a list of

secondary reactants and reagents, as well as a SMARTS transformation to generate the product
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structures from the reactants.

To generate the reactions, every substrate in the library was combined with every possible set of

secondary reactants and reagents. Those combinations that matched the reaction conditions set by

our expert rules, were assigned a reaction type. If none of the reaction conditions were met, the

reaction was designated a ’Null Reaction’ or NR for short. We generated a target probability vector

to reflect this reaction type assignment with a one-hot encoding; that is, the index in the probability

vector that matches the assigned reaction type had a probability of 1, and all other reaction types

had a probability of 0. The notable exception to this rule was for the elimination and substitution

reactions involving methyl shifts for bulky alkylhalides; these reactions were assumed to occur

together, and so 50% was assigned to each index corresponding to these reactions. Products were

generated using the SMARTS transformation associated with the reaction type with the two

reactants as inputs. Substrates that did not match the reaction conditions were designated ’null

reactions’ (NR), indicating that the final result of the reaction is unknown. RDKit125 was used to

handle the requirements and the SMARTS transformation. A total of 1,277,329 alkyhalide and

alkene reactions were generated. A target reaction probability vector was generated for each

reaction.

5.4.2 PREDICTION METHODS

As outlined in Figure 5.1, to predict the reaction outcomes of a given query, we first predict the

probability of each reaction type in our dataset occurring, then we apply SMARTS transformations

associated with each reaction. The reaction probability vector, i.e. the vector encoding the

probability of all reactions, was predicted using a neural network with reaction fingerprints as the

inputs. This reaction fingerprint was formed as a concatenation of the molecular fingerprints of the

substrate (Reactant1), the secondary reactant (Reactant2) and the reagent. Both the Morgan

fingerprint method, in particular the extended-connectivity circular fingerprint (ECFP), and the
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neural fingerprint method were tested for generating the molecular fingerprints. A Morgan circular

fingerprint hashes the features of a molecule for each atom at each layer into a bit vector. Each

layer considers atoms in the neighborhood of the starting atom that are less than the maximum

distance assigned for that layer. Information from previous layers is incorporated into later layers,

until highest layer, e.g. maximum bond length radius, is reached131. A neural fingerprint also

records atomic features at all neighborhood layers, but instead of using a hash function to record

features, uses a convolutional neural network, thus creating a fingerprint with differentiable

weights. Further discussion about circular fingerprints and neural fingerprints can be found in

Duvenaud et al34. The circular fingerprints were generated with RDKit, the neural fingerprints

were generated with code from Duvenaud et al34. The neural network used for prediction had one

hidden layer of 100 units. Hyperopt9 in conjunction with Scikit-learn110 was used to optimize the

learning rate, the initial scale, and the fingerprint length for each of the molecules.

For some reaction types, certain reagents or secondary reactants are required for that reaction.

Thus, it is possible that the algorithm may learn to simply associate these components in the

reaction with the corresponding reaction type. As a baseline test to measure the impact of the

secondary reactant and the reagent on the prediction, we also performed the prediction with a

modified fingerprint. For the baseline metric, the fingerprint representing the reaction was a

one-hot vector representation for the 20 most common secondary reactants and the 30 most

common reagents. That is, if one of the 20 most common secondary reactants or one of the 30

most common reagents was found in the reaction, the corresponding bits in the baseline fingerprint

were turned on; if one of the secondary reactants or reagents was not in these lists, then a bit

designated for ’other’ reactants or reagents was turned on. This combined one-hot representation

of the secondary reactants and the reagents formed our baseline fingerprint.

Once a reaction type has been predicted by the algorithm, the SMARTS transformation
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associated with the reaction type is applied to the reactants. If the input reactants met the

requirements of the SMARTS transformation, the products molecules generated by the

transformation is the predicted structure of the products. If the reactants do not match the

requirements of the SMARTS transformation, the algorithm instead guesses the structure of the

reactants instead, i.e. it is assumed that no reaction occurs.

5.5 CURRENT STATE OF SYNTHESIS PLANNING AND REACTION PREDICTION WITH MACHINE

LEARNING

The direction of using machine learning for reaction prediction has exploded over the past two

years; many new methods and reviews have come out since the original publication of this

work24,40,147. Reaction prediction with algorithms has regained significant attention, and I will

outline some general approaches for prediction methods following the one we developed. I will

discuss both synthesis planing, i.e. proposing reaction pathways for synthesizing a molecule, in

addition to reaction prediction, i.e. predicting the resultant molecules given the reactants.

There are a few strategies used for reaction prediction and synthesis planning, they are as

follows:

• Predict reaction steps from reaction templates. That is, one must first encode a set of

reaction templates, and determine which template to use given the starting molecule(s). This

is the technique used by the work described in this chapter. Other methods that also use this

approach include the AlphaChem model of Segler et al.145,147 and by the models developed

by Coley et al. and Jin et al.23,69.

• Predict reaction steps using SMILES based representations of molecules. This approach

treats the task of reaction prediction/synthesis planning as a translation task. The starting

’language’ is the set of starting molecules in SMILES form, and the ending ’language’ set of
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ending molecules, also in SMILES form. Examples of models using this strategy include

Nam et al.106 and also the sequence-to-sequence work of Liu et al.91

• Predict the motions of electrons This technique models the electron pushing mechanisms

that organic chemistry students learn in their classes. This was the approach used by the

ReactionPredict algorithms17,18,73. More recently, groups have generated electron paths

using Bayesian sampling and LSTMs to model the electron steps.13,41 This method is only

been employed so far by reaction prediction methods, but not for synthesis planning

methods.

All of these approaches have high accuracy, achieving 70% accuracy or more for their top

choice in product prediction.

In order to further improve the predictive accuracy of these models and have it output more data,

it is necessary to obtain more experimental data. It is necesary to collect information of not only

reactions that are successful, or published in patent datasets, but also collect information about

reactions that had low yields, or the reaction conditions which led to poor performance. One group

has already started to combine machine learning techniques with data collected from both good

and bad reactions to help predict the results of reactions3,119.
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6
Neural networks for predicting electron

ionization-mass spectrometry spectra of small

molecules

ABSTRACT

When confronted with a substance of unknown identity, researchers often perform mass

spectrometry on the sample and compare the observed spectrum to a library of

previously-collected spectra to identify the molecule. While popular, this approach will fail to

identify molecules that are not in the existing library. In response, we propose to improve the

libraryâĂŹs coverage by augmenting it with synthetic spectra that are predicted using machine

learning. We contribute a lightweight neural network model that quickly predicts mass spectra for

small molecules. Achieving high accuracy predictions requires a novel neural network architecture

that is designed to capture typical fragmentation patterns from electron ionization. We analyze the

effects of our modeling innovations on library matching performance and compare our models to

prior machine learning-based work on spectrum prediction.
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6.1 INTRODUCTION

Mass spectrometry (MS) is an important tool used to identify unknown molecular samples in a

variety of applications, from characterization of organic synthesis products, to pharmacokinetic

studies63, to forensic studies186, to analyzing gaseous samples on remote satellites111.

In electron-ionization mass spectrometry (EI-MS), molecular samples are ionized by an electron

beam and broken into fragments. The resultant ions are separated by an electric field until they

reach a detector. The mass spectrum is a distribution of the frequency or intensity of each type of

ion, ordered by mass-to-charge (m/z) ratio.

A popular method for identifying a sample from its mass spectrum is to look up the sample’s

spectrum in a reference library. Here, a similarity function is used to measure the similarity

between the query spectrum from the sample and each spectrum in the library. If the measurement

noise when obtaining the query spectrum is reasonable, then the library spectrum with the highest

similarity will have the identity of the sample.156,158 A schematic of this process is shown in

Figure 6.1a.

This library matching approach is very popular, but it suffers from a coverage problem: if the

sample consists of a molecule that is not in the library, then correct identification is impossible.

This is an issue in practice, since existing mass spectral reference libraries, such as the

NIST/NIH/EPA MS database157, Wiley Registry of Mass Spectral Data100, and MassBank61 only

contain hundreds of thousands of reference spectra. The coverage problem could be reduced by

recording spectra for additional molecules, but this is time consuming and expensive. For example,

NIST releases updates to its library every 3 years, containing roughly 20,000 new spectra.

Additionally, mass spectra of new molecules are only added to the library if the molecule is of

common interest; molecules for newly synthesized compounds are typically not

incorporated 155,157.
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An alternative solution is to use de novo methods that input a spectrum and directly generate a

molecule, without using a fixed list of molecules (Section 6.2). However, these approaches

currently have low-accuracy and are difficult for practitioners to incorporate into their existing

work-flows.

Another method for alleviating the coverage problem is to augment existing libraries with

synthetic spectra that are generated by a model. Thus far, this approach has not been practical, as

existing spectrum prediction methods are very computationally expensive. These prediction

models use quantum mechanics calculations 8,53,55 or machine learning4 to estimate the

probability of each bond breaking under ionization, and thus the frequency of each ion fragment.

Since these methods must either compute molecular orbital energies with high accuracy using

expensive calculations, or else stochastically simulate the fragmentation of the molecule, the time

needed for each model to make a prediction scales with the size of the molecule, taking up to 10

minutes for large molecules4,8.

In response, we present Neural Electron Ionization Mass Spectrometry (NEIMS), a neural

network that predicts the electron-ionization mass spectrum for a given small molecule. Since our

model directly predicts spectra, instead of bond breaking probabilities, it is dramatically faster than

previously reported methods, making it possible to generate predictions for thousands of possible

candidates in seconds. Furthermore, the approach does not rely on specific details of EI, and thus

our model could be easily retrained to predict mass spectra for other ionization methods.

We test the performance of our model by predicting mass spectra for small molecules from the

NIST 2017 Mass Spectral Library. We find that the predictive capability of our model is similar to

previously reported machine learning models, but requires much less time to make predictions.

Additionally, we report the similarity of the spectra predicted by NEIMS. The code repository for

NEIMS is publicly available at github.com/brain-research/deep-molecular-massspec.
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6.2 RELATED WORK

Several algorithms have been developed previously for either predicting spectra or for predicting

the molecule’s identity given the spectrum. We review some of these techniques here.

DENDRAL One of the earliest efforts in artificial intelligence was a model used to identify

molecules from their mass spectrum. Heuristic DENDRAL (Dentritic Algorithm) was a

collaboration between chemists and computer scientists at Stanford in the 1960s15. This algorithm

used expert rules from chemistry to help identify patterns in the spectra and suggest possible

identities for the molecule. A few years later, Meta DENDRAL was introduced to learn the expert

rules that originally been given to Heuristic DENDRAL89.

De Novo Identification Methods Several models have been reported to predict identities of

samples directly from the spectrum. Many have been developed for tandem mass spectrometry,

where the task is to predict the original peptide sequences from digested fragments given the mass

spectrum37. Some of these methods use machine learning to achieve this task143,165. One work

even uses machine learning models to identify personal characteristics by analyzing

electrospray-ionization mass spectra of samples collected from human fingerprints186.

While this approach is common for prediction of peptide sequences, it is uncommon for

prediction of molecules from spectra. Several previously published models have used neural

network models to predict molecule subgroups from spectra, or the class of the molecule30,118.

One recent work attempts to employ a LSTM sequence-to-sequence model to predict the molecule

directly from its mass spectrum, using the Simplified Molecular Input Line Entry Specification

(SMILES) to output the molecule118. Because of the difficulty of constructing syntactically correct

SMILES, this approach was not able to successfully reconstruct the entire SMILES string for any

of the input spectra.

In this work, we focus on the prediction of spectra from molecules, such that these predicted
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spectra can be used to improve the coverage of library-matching-based identification. The

advantage of this approach over de novo approaches is that new libraries of synthetic spectra can

be easily incorporated into the existing mass spectrometry software used by practitioners.

Quantum Mechanics Spectral Prediction Methods he first prediction methods for EI-MS

spectrum used quantum mechanical simulation techniques to predict fragmentation events. There

are three methods of predicting the mass spectrum using first principles8. The first is to use

quasi-equilibrium theory, also known as Rice-Ramsberger-Kassel-Marcus theory, to estimate the

rate constants for ionization reaction93,94,132. The second is to estimate the bond order energies

within a molecule, and estimate where a molecule may fragment. A related method to this second

method is to calculate the cross-section of molecular orbitals upon electron impact to predict the

molecule’s ionization behavior55,64. The third method uses Born-Oppenheimer Molecular

Dynamics. Quantum Chemistry Electron-Ionization Mass Spectrometry (QCEIMS) is a

particularly recent example of the ab initio molecular dynamics method8,53,149. The trajectories

resulting from this simulation are then analyzed for the presence of ionic fragments. The

distribution of the ion fragments aggregated from all the simulations is then renormalized to

generate a calculated EI-MS spectrum. Each of these methods requires at least 1000 seconds per

molecule4, and may even take days or weeks for molecules of 50 atoms. While these methods may

be fast for methods involving density functional theory, they do not have the speed needed to

rapidly generate a collection of spectra thousands of molecules. Furtermore, some of the basis sets

used for the density functional theory might not support the presence of inorganic atoms.

Machine Learning Spectral Prediction Methods Allen et al.4 introduced Competitive

Fragmentation Modelling-Electron Ioinization (CFM-EI) to predict EI-MS spectra. This

probabilistic model predicts the probability of breaking molecular bonds under electron ionization,

and also predicts the charged fragment that is likely to form. In order to generate the spectra, it is
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necessary to run a stochastic simulation to determine the frequency of each molecular fragment. In

Section 6.4.2, we directly compare this method with our proposed model.
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(a)

(b)

Figure 6.1: Library Matching Task. (a) A depiction of how query spectra are matched to a collection of ref-
erence spectra as performed by mass spectrometry software. (b) Query spectra are compared against a library
comprised of spectra from the NIST 2017 main library and spectra predicted by our model (outlined in blue).
Spectral Images adapted from NIST Webbook90.
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6.3 METHODS

Our goal is to design a model that will accurately predict the EI-MS spectrum for any molecule.

This will be used to produce an augmented reference library containing both predicted spectra and

experimentally-measured spectra. This task is outlined in Figure 6.1b.

We first discuss how similarity metrics for spectra in Section 6.3.1. Next, we describe our

method for spectra prediction in Sections 6.3.2 and 6.3.3. We then explain how we evaluate our

model’s impact on the library matching task more thoroughly in Section 6.3.4.

6.3.1 SIMILARITY METRICS FOR MASS SPECTRA

The ability to a match a query spectrum from a sample to the correct spectrum in the library

depends on the choice of similarity metric between spectra99,158. A weighted cosine similarity is

commonly used by mass spectrometry software. The exact form of the cosine similarity is given

below158:

Similarity(Iq,Il) =
∑

Mmax
k=1 mkI0.5

qk ·mkI0.5
lk∥∥∥∑

Mq
k=1(mkI0.5

qk )2
∥∥∥∥∥∥∑

Ml
k=1(mkI0.5

lk )2
∥∥∥ . (6.1)

Here, Iq and Il are vectors of m/z intensities representing the query spectrum and the library

spectrum respectively, mk and Ik are the mass-to-charge ratio and intensity found at m/z = k, Ml

and Mq are the largest indices of Iq and Il with non-zero values,and Mmax is the larger of Ml and

Mq. The motivation for the weighting by m/z is because the peaks in mass spectra corresponding

to larger fragments are more characteristic and useful in practice for identifying the true molecule.

Other similarity metrics besides cosine distance similarities are also employed. For example,

one other similarity method involves estimating the relative importance of one peak given the other

peaks99. Other methods uses a Euclidian difference between peaks, or use a variation of the
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Hamming distance60,158. Another similarity metric accounts for neutral losses, or the intensity

peaks corresponding to the loss of small, neutral fragments from the original molecular ion103. It is

also possible to use the same form of the similarity function as in (6.1), but with different

weighting given to the intensity or the masses158. In principle, machine learning could be also used

to learn a parameterized similarity metric that yields improved library matching performance.

However, this custom metric would be difficult to deploy, since it would require changing the

software used by practitioners.

We develop our model with the assumption that Eq. (6.1) will be used for the similarity metric in

downstream library matching software that consumes an augmented library.

6.3.2 SPECTRAL PREDICTION

We treat the prediction of mass spectrometry spectra as a multi-dimensional regression task. The

output of our model is a vector that represents the intensity at every integral m/z bin. We use this

discretization granularity for m/z because it is what is provided in the NIST datasets we use for

training our model.

In the NEIMS model (Figure 6.3), we first map molecules to additive Extended Circular

Fingerprints (ECFPs)125. These fingerprints are similar to their binary counterparts129 in that they

record molecular subgraphs made up from local neighborhoods around each atom node in the

molecule, but differ in that they count the occurrences for each subgroup. This information is then

hashed into a vector representation. The difference is that additive fingerprints record the frequency

that each bit is set, rather than just the presence. The RDKit Cheminformatics package125 was

used to generate the fingerprints. These features are then passed into a multi-layer perceptron

neural network (MLP). To account for some of the physical phenomena of ionization, we make

some application-specific adjustments to the prediction from the MLP, described in Section 6.3.3.

In Section 6.4.1 we compare the performance of NEIMS to that of a simple linear regression
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(LR) model. Here, we apply a linear transformation to the ECFP features.

To train the model, we use a modified mean-squared-error loss function. This loss function,

shown below, follows the same weighting pattern as in Eq. 6.1:

L(I, Î) =
M(x)

∑
k=1

(
mkI0.5

k∥∥∑
M
k=1(mkI0.5

k )2
∥∥ − mk Îk

0.5∥∥∑
M
k=1(mk Î0.5

k )2
∥∥
)2

(6.2)

where I is the ground truth spectrum, Î is the predicted spectrum, and M(x) is the mass of the

input molecule. We used stochastic gradient descent to optimize the parameters of the MLP with

the Adam optimizer78. We use Tensorflow1 to construct and train the model.

6.3.3 ADJUSTMENTS FOR PHYSICAL PHENOMENA

In practice, we have found that the conventional MLP described in the previous section struggles to

accurately predict the right-hand side of spectra (Figure 6.2a). Errors in this region, which

correspond to large m/z, are particularly damaging for library matching with the weighting in (6.1).

This section introduces a revised neural network architecture (Figure 6.3) designed to better

model the underlying fragmentation process that occurs in mass spectrometry. We have found that

it improves prediction in the high mass region of the spectrum (Figure 6.2b), which yields

improvements in library matching (Section 6.4.1).

As is standard for MLPs used for regression, the predictions of the above MLP model on an

input molecule x are an affine transformation of a set of features f (x), which are computed by all

but the final layer of the network. For reasons that will become apparent, we refer to the above

MLP as performing forward prediction. At bin m/z = i, we have the following predicted intensity:

p f
i (x) = w f>

i f (x)+b f
i , (6.3)

where w f
i and b f

i are the model’s weights and biases for forward prediction at bin i.
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Figure 6.2: Spectral Prediction with MLP forward Model (a) and MLP bidirectional Model (b). For both spec-
tra plots, the true spectrum is shown in blue on top, while the predicted spectrum is shown inverted in red.
Note that the spectrum predicted by the bidirectional model shows fewer stray peaks than the forward model,
particularly for larger m/z values. These peaks are much easier to predict with the reverse prediction mode.

The input ECFP features, from which f (x) is computed, capture local structures in the molecule,

so generally f (x) will be more accurate in capturing the presence of small substructures of

molecule x. Often, there is a direct correspondence between the presence of such substructures and

spectral peaks with small m/z. For example, in Figure 6.2a a peak occurs at m/z = 35, due to the

presence of chlorine. Therefore an accurate forward prediction model will have a learned weight

w35 that will output a high intensity at i = 35 if there is evidence in f (x) for the presence of

chlorine.

On the other hand, forward prediction often struggles to accurately predict intensities for large

fragments that are the result of neutral losses156. One reason for this is that the composition of

large fragments is not captured well by the ECFP representation. Another reason is that

information learned about the cleavage of a small group does not transfer well across molecules of

different masses. For pentachlorobenzene, which has a molecular mass of 250 Da, the fragment
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that results from the loss of a neutral chlorine atom results in a peak at 215 Da. Meanwhile, for

chlorobenzene, which has a mass of 112 Da, the fragment resulting from a loss of a chlorine atom

would have a peak at 77 Da. Despite the clear relationship between these intensity peaks, the

forward model is not parameterized to capture this pattern.

In response, following the physical phenomenon that created the fragments, we define larger ion

peaks as a function of the residual groups that were broken off from the original molecule.

Referring to our previous example of pentachlorobenzene (M(x) = 250), we can parameterize the

m/z ratio of the fragment which lost a chlorine group as m/z = 250−35 = 215. The

corresponding fragment in chlorobenzene would have a mass of m/z = 215−35 = 77. By defining

the peaks in this way, it is possible for these predictions of spectral intensities to be linked by the

prediction at index 35. This leads to the indexing scheme of our reverse prediction model:

pr
M(x)+τ−i(x) = wr>

i f (x)+br
i , (6.4)

Here, τ > 0 is a small shift that allows for peaks to occur at intensities greater than M(x), due to

isotopes. In practice, reverse prediction is implemented using a copy of the forward model, with

separate sets of parameters for the final affine layer, but shared parameters for f (x). The outputs of

this model are post-processed on a per-molecule basis to obey the indexing in (6.4), which depends

on each molecule’s mass.

Both the forward and reverse predictions are combined to form a bidirectional prediction. That

is, the final prediction at index i is a combination of both p f
i and pr

i . In the case of

pentachlorobenzene, the prediction of spectral intensity at m/z = 215 is a function of p f
215 from the

forward mode and pr
35+τ

from the reverse mode. Instead of simply averaging the two prediction

modes, we have found that small additional performance improvements can be obtained using a
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Figure 6.3: Molecular representations are passed into a multilayer perceptron to generate an initial output.
This output is used to make a forward prediction starting at m/z = 0 and m/z = M and in reverse starting from
m/z = M and ending at m/z = 0. A sigmoid gating is applied to the inputs as shown in Eq. 6.5

coordinate-wise gate. Here, the output pi(x) at position i is given by:

pi(x) = σ(gatei) p f
i (x)+(1−σ(gatei)) pr

i (x), (6.5)

where gatei is an affine transformation of f (x) and σ(·) is a sigmoid function. This approach

echoes the formulation of the Hybrid Similarity Search designed by Moorthy et al., which accounts

for peaks that are created by small fragment ions and those which are created by large fragments

which have lost smaller groups103.

Finally, for all models, we zero out predicted intensities at m/z that are greater than M(x)+ τ .

By adding these features, we incorporate some of the physical phenomena that occur in mass

spectrometry into our model while maintaining the overall simplicity of the MLP. In this way, we

are able to predict the spectrum directly without resorting to sampling bond-breaking events within

the molecule, which requires subsequent stochastic sampling to obtain a spectrum.
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6.3.4 LIBRARY MATCHING EVALUATION

We evaluate NEIMS using an augmented reference library consisting of a combination of observed

spectra and model-predicted spectra, with library matching performance computed with respect to

a query set of spectra. These are from the NIST 2017 replicates library, which is a collection of

noisier spectra for molecules that are contained in the NIST main library. The inconsistencies in

these spectra reflect experimental variation, and make an informative dataset to test our model’s

performance.

To construct the augmented reference library, we edit the NIST main library, removing spectra

corresponding to the query set molecules and replacing them with the predictions from NEIMS.

We then perform library matching and calculate the similarity between each query spectrum and

every spectrum from the augmented library. We record the rank of the correct spectrum, i.e. the

rank of the predicted spectrum corresponding to the molecule which made the query spectrum.

The similarity metric is Eq. (6.1).

For the purposes of tuning model hyperparameters, we chose to optimize recall@10, i.e. the

percentage of our query set for which the correct spectra had a matching rank of less than or equal

to 10 in the library matching task. Half of the replicates library was used for tuning

hyperparameters, and the remaining half was used to evaluate test performance. All models were

trained on the spectra prediction task for 100,000 training steps with a batch size of 100.

During the library match search, we have a mass filtering option. This feature reduces the library

size so it only includes spectra from molecular candidates that have a molecular mass that differ by

a few Daltons from the mass of the query molecule. If the EI-MS analysis is combined with mass

spectrometry techniques using weak ionization methods, it is possible to determine the mass of

molecule being analyzed. In the CFM-EI model, the molecular formula is used to filter the search

library 4. Using the molecular mass to filter the library allows more possible candidate spectra to
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be considered in the search than using a molecular formula filter.

6.4 RESULTS AND DISCUSSION

To analyze the performance of the models, we trained with 240,942 spectra from the NIST 2017

Mass Spectral Main Library. These spectra were selected so that no molecules in the replicates

library have spectra in the training set.

After hyperparameter tuning using Vizier48, we found that the optimal MLP architecture has

seven layers of 2000 nodes, with residual network connections between the layers58, using ReLU

activation and a dropout rate of 0.25.

6.4.1 LIBRARY MATCHING RESULTS

We first examine the effects of our various modeling decisions on performance. Figure 6.4a

compares the performance of forward, reverse, and bidirectional versions of the linear regression

and MLP models on the library matching task. For bidirectional prediction in the linear regression

model, the forward and reverse predictions are simply averaged together, rather than applying the

gate described in (6.5).

The top row of Figure 6.4a shows that it is not possible to achieve perfect recall accuracy on the

library matching task even when using the full NIST main library as the reference library, without

any model-predicted spectra. Observing Figure 6.4b we see that using the NIST main library as the

reference library, we have 86% recall@1 accuracy, and 98.3% recall@10 accuracy. This serves as

a practical upper bound on achievable library matching accuracy and reflects the experimental

inconsistencies between between the main library spectra and replicates spectra155.

The forward prediction mode for both the linear regression model and the multilayer perceptron

(MLP) has poor performance. The linear regression model is improved by 20% when switching to

using reverse mode prediction. Using bidirectional prediction mode improves recall@10 accuracy

68



Chapter 6. Neural networks for predicting electron ionization-mass spectrometry spectra of small
molecules

(a) Library matching performance on different models (b) Recall Results at various levels

Figure 6.4: Performance of different model architectures.

by 30% for both the linear regression and the multilayer perceptron model. This finding suggests

that the bidirectional prediction mode is more effective at capturing the fragmentation events than

the forward-only model.

Figure 6.2 shows the improvement in spectral prediction for pentachlorobenzene using the

bidirectional MLP model. Note that the bidirectional model on the right more accurately models

intensities at larger m/z. The intensity peaks for larger m/z are critical for determining the identity

of a molecule, and are more heavily weighted in Eq. (6.1).

NEIMS achieves 91.7% recall@10 after applying a mass filter. The mass filter was set to a

tolerance of 5 Daltons of the query molecule’s mass; this reduces the size of the library to a median

of 6,696 spectra for each query molecule. In practice, this tolerance window could be set to a

larger window, depending on the uncertainty of the information about the molecular mass of the

ion. For the rest of this report, we will refer to the bi-directional multi-layer perceptron model with

mass filtering of 5 Daltons as the default settings for NEIMS.

From Figure 6.4b we see that while NEIMS has decent performance for recall levels of 10 and

above compared to the NIST spectral library, it has considerably worse performance for recall

values of 1 and 5. This result is unsurprising given that the hyperparmaters of the model were

trained to maximize performance on recall@10. If recall@1 was instead selected to tune the
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6.4. Results and Discussion

Model Recall@1 Recall@10 (%) Average run time (ms)
NIST ’14 Reference Library 77 99* –

CFM-EI 42.6 89* 300,000
NEIMS 54.3 92.7 0.47

Table 6.1: Performance on Library matching task for NIST 17. * indicates that values were estimated from
Figure 4 of Allen et al.4

hyperparameters, the performance accuracy on recall@1 would improve.

6.4.2 COMPARISON TO PREVIOUSLY REPORTED MODELS

We next compared our model’s performance directly to the performance of the CFM-EI model4.

The setup of Allen et al. differs from our current setup in a few ways. First, they evaluate their

model on the NIST ’14 spectral library. Second, for the library matching task, their augmented

reference library contains only spectra predicted by their model, and none from the original NIST

collection. Third, the cosine similarity metric Eq. (6.1) used for evaluation in library matching in

CFM-EI uses a different weighting scheme. In their analysis, the cosine similarity is weighted by

m0.5
k instead of mk in order to de-emphasize the larger peaks in the mass spectrum, as they ran their

experiments on other datasets with a higher proportion of larger molecules4.

To compare the performance of NEIMS to that of CFM-EI, we match their setup identically. We

retrain our NEIMS model on the NIST 14 dataset, and evaluate the performance using the NIST 14

replicates as the query set. For library matching, we incorporate only predicted spectra into our

augmented library, and using the same modified similarity metric.

The library matching performance for CFM-EI and NEIMS are compared against the NIST14

library for library matching performance are reported in Table 6.1. NEIMS performs slightly better

than CFM-EI on the library matching task. More importantly, NEIMS is able to make spectral

predictions orders of magnitude faster than CFM-EI. With NEIMS, it would be possible to

generate spectra for 1 million molecules in 90 min on a CPU, with potential for considerable

70



Chapter 6. Neural networks for predicting electron ionization-mass spectrometry spectra of small
molecules

Figure 6.5: Comparing the similiarity between the predicted spectrum and the ground truth spectrum to the
overall similarity between spectra for the same molecule.

speedup with using GPU.

6.4.3 DISTANCES BETWEEN PREDICTED AND GROUND TRUTH SPECTRA

So far, we have evaluated the quality of the NEIMS predictions indirectly, by way of how they

affect library matching with an augmented library. Next, we assess the prediction accuracy

directly, by measuring the similarity (Eq. 6.1) between spectra in the NIST main library and the

model’s predictions. We refer to this similarity as the predicted similarity.

There is inherent noise in mass spectra due to stochasticity of the underlying physical process

and also to experimental inconsistencies155. The NIST replicates library provides multiple spectra

for each molecule, and we can use these sets of spectra to characterize the scale of this noise for

each molecule. Specifically, we define the inherent noise for a given molecule as the average

pairwise similarity between all corresponding spectra, both in the NIST main library and the NIST

replicates library, and refer to this as the overall similarity.

For each molecule, we compute the ratio of the predicted similarity to overall similarity as a

normalized metric for the quality of our predictions. A ratio of 1.0 would suggest that there are is

limited available headroom for improvements using machine learning, since the model’s errors are
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comparable to the variability in the data.

Figure 6.5 shows the improvement in this ratio for the MLP bidirectional model over the MLP

forward model, confirming that the bidirectional model has better spectral prediction performance.

For the MLP bidirectional model, roughly half of the molecules have a predicted similarity to

overall similarity ratio that is greater than 0.9, indicating that there is potential for further

improvement to the model. Some of these molecules have ratios that are greater than 1, which is

possible if there is more variation between the spectra (i.e. a lower overall similarity) than between

the predicted spectrum and the main library spectrum (i.e. predicted similarity).

6.5 CONCLUSION

We demonstrate that NEIMS achieves high library matching performance on an augmented

spectral library containing predictions for molecules in the query set. The performance of NEIMS

is also slightly better than existing machine learning models for predicting EI-MS spectra, with

significant boost in speed of prediction.

The high performance in library matching is attributable to the bidirectional prediction mode.

The reverse mode in particular allows the model to more accurately to predict intensities for larger

fragments which result from the loss of small neutral subgroups. We observe that the improvement

in the library matching task also corresponds with improvement in the similarity of the predicted

spectra to the ground truth spectra.

Several adjustments could be made to further improve NEIMS. For example, NEIMS currently

does not have a method to model intensity peaks corresponding to isotopes in ion fragments. If we

were to train on spectral data with greater precision in the peaks locations, we might be able to

learn the exact identities of the atoms based on the decimal values of the m/z peak locations.

Mass filtering improved the performance of NEIMS by 6%. This suggests that for experimental
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setups where it is possible to know the molecular mass of the sample with some accuracy, it is

possible to improve the accuracy of matching on the augmented spectral library. It would also be

interesting to explore other settings for mass filtering, such as filtering out spectra which have a

molecular mass that is much smaller than the position of the largest m/z peak.

Different molecular representations could also be tested. The predictions made from ECFP are

limited by the descriptiveness of the fingerprint84. In particular, the overlap in representation for

different molecular features represents a huge limitation to the representation of the molecule.

Additionally, ECFPs are not equipped to represent molecules with multiple stereocenters, which

will have different spectra. It would also be interesting to explore whether a bond-based molecular

fingerprint representation75 or other graph-based molecular representations33,47 may improve

performance.

Combining NEIMS with transfer learning methods could allow for spectral prediction specific to

individual spectrometry machines. A library of such machine-specific spectra would improve

matching155.

The lightweight framework of NEIMS makes it possible to rapidly generate spectral predictions

for large numbers of molecular candidates. This collection of predicted spectra can then be used

directly in mass spectrometry software to expand the coverage of molecules which can be

identified by mass spectrometry. Because the requirements of NEIMS has limited dependence to

EI mass spectrometry, it likely that some of the principles used here could be extended to other

types of mass spectrometry.
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7
Future Directions

Machine learning has already begun to revolutionize the development of new materials. Recent

successes in machine learning have lead to the development of novel blue OLED molecules49.

The methods that I present in Section II are a collection of early works into the next generation

of this direction. New molecules can be proposed from generative model, similar to those proposed

in Chapter 4. The reactivity of these molecules can be predicted with the methods presented in

Chapter 5. Newly synthesized molecules can be verified by with spectroscopy; machine learning

can be used to aid identification by expanding the coverage of existing libraries, as shown in

Chapter 6.

I would like to close my dissertations with three main areas I see for improvement in the

development of machine learning models for chemistry applications.

Better datasets and benchmarks for testing machine learning models. Standardized,

publicly available datasets are needed for the community as the whole to develop new models to

push the capacity of machine learning models. Datasets for molecules are available, and contain

molecules which reflect molecules that are commonly used for drugs. Datasets for reactions are

much more limited. There is one publicly available dataset for reactions, the USPTO dataset95.

However this dataset contains only successful reactions, with numerous issues with the

standardization of the data. Some works have published their datasets splits, which is very helpful

for reproducing results. Ideally however, we would have more datasets, which would include more
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details of the reaction conditions, as well as examples of non-working reactions.

Additionally, there is a need for additional benchmarks for comparing generative models. It is

difficult to measure the relative progress of generative models without some method of comparing

the quality of these datasets. At the time of writing, three works have recently been released

towards this goal14,114,115.

Better molecular representations. The current representations for molecules described in

Chapter 3.1 have been successfully employed in machine learning models to predict a wide range

of properties in chemistry. However, there are some issues with this representations. The SMILES

representation has a few issues when combined with the variational autoencoder. The purpose of a

variational autoencoder is to group similar objects close together in the latent space. However,

SMILES strings that might be similar in terms of edit distances may not actually be close in

molecular space: c1ccccc1 (benzene) will have very different properties from c1ccccn1 (pyridine).

Additionally, even when grammar restraints are incorporated into the generation of the molecule

string82, the model does not have a sense of which molecules are feasible in terms of their valence,

and which molecules are not.

It is therefore necessary to have models which can generate graphs from a vector representation.

Several papers have been developed towards this direction at the time of writing68,92,96,183.

However, none of these representations are invariant to graph isomorphism. That is, a molecule

which was formed starting from one atom will be considered different from a molecule that was

formed starting from another atom. While it is possible to train these representations to be

equivalent, it may lead to inefficiencies in the model. While there are several methods such as

graph convolutional networks for encoding from a graph, there are limited methods for decoding to

a molecule based representation.

Better communication between machine learning experts and chemists. As demonstrated in
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the mass spectrometry project of Chapter 6, the best models arise when the design of the model is

inspired by the physical characteristics of the problems. By reparametrizing the output from the

neural network to account for larger fragments, we were able to improve the performance of

spectral reconstructions significantly. Such design decisions can only be reached when there is

constant dialogue between the two domains. That way, we can ensure that the models that are

developed in the machine learning community are both as accurate and feasible as they can be.

This can also help tailor existing models to the needs of individual groups and projects.

With the development of new machine learning models and further developments in chemistry,

it will be possible to further accelerate the discovery and development of new molecular materials.
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A
Appendix for Part II: Machine Learning

Applications to Chemistry

A.1 SUPPLEMENTARY INFORMATION FOR CHPATER 4: VARIATIONAL AUTOENCODERS FOR

OPTIMIZATION IN MOLECULAR SPACE

This section contains peripheral findings including statistics on the latent space, reconstruction

accuracy, training robustness with respect to dataset size, and more sampling interpolation

examples.

Table A.1.1: Percentage of successfully decoding of latent representation after 1000 attempts for 1000
molecules from the traning set, 1000 validation molecules randomly chosen from ZINC and a 1000 validation
molecules randomly chosen from eMolecules. Both VAEs perform very well for training data, and they are well
transferable within molecules of the same class outside the training data, as evidence by the good validation
performance of the ZINC VAE and the underperformance of the QM9 VAE against real-life small molecules.

Dataset ZINC QM
Training set 92.1 99.6
Test set 90.7 99.4
ZINC 91.0 1.4
eMolecules 83.8 8.8

[h]

Table A.1.2: Percentage of 5000 randomly-selected latent points that decode to valid molecules after 1000
attempts

Dataset ZINC QM
Decoding probability 73.9 79.3
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Table A.1.3: Variational autoencoder performance over different sizes of datasets. Training and tests were
performed using randomly selected molecules from the ZINC dataset, the values reported here are the scores
from the validation set. The categorical accuracy reflects the percentage of characters in the output SMILES
that were accurately reconstructed. Mean Absolute Errors (MAE) are reported for QED and logP properties.
Performance significantly decreases if only 105 molecules are used for training.

Training set size Categorical
Accuracy

logP MAE QED MAE

225,000 99.3% 0.15 0.054
175,000 99.0% 0.18 0.076
125,000 98.5% 0.15 0.076
25,000 91.6% 0.23 0.079

(a) (b)

(c) (d)

Figure A.1.1: Distribution and statistics of (a) the mean of latent space coordinates (b) standard deviation
of latent space coordinates (c) norm of latent space coordinates of the encoded representation of randomly
selected molecules from the ZINC validation set. (d) Distribution of Euclidean distances between random pairs
of validation molecules in the ZINC VAE
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A.1. Supplementary Information for Chpater 4: Variational Autoencoders for Optimization in
Molecular Space

Figure A.1.2: Histograms and KDE plots of the distribution of properties utilized in the jointly trained autoen-
coder (LogP, SAS, QED). Used to further showcase results from Table 2. For each property we compare the
distribution of the source data (ZINC), a generatic algorithm and the VAE.

Figure A.1.3: Comparison of between linear and spherical interpolation paths between two randomly selected
FDA approved drugs. A constant step size was used.
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Figure A.1.4: Molecules decoded from randomly-sampled points in the latent space of the ZINC VAE.
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A.2. Supplementary Information for Chapter 5: Neural Networks for Predicting Reactions

A.2 SUPPLEMENTARY INFORMATION FOR CHAPTER 5: NEURAL NETWORKS FOR PREDICT-

ING REACTIONS

Table A.2.4: The Tanimoto similarity of the training set to problems Wade 8-47 and 8-48 used in the main
article.

Problem number Average Training Set Highest Training Set
Tanimoto Similarity Tanimoto Similarity

8-47a 0.30 0.94
8-47b 0.42 0.74
8-47c 0.47 0.86
8-47d 0.41 0.76
8-47e 0.47 0.88
8-47f 0.47 0.88
8-47g 0.35 0.65
8-47h 0.42 0.75
8-47i 0.43 0.80
8-47j 0.48 0.76
8-47l 0.44 0.77
8-47m 0.43 0.82
8-47n 0.45 0.75
8-47o 0.44 0.75
8-47p 0.44 0.76
8-48a 0.42 0.78
8-48b 0.42 0.77
8-48c 0.31 1.00
8-48d 0.34 0.54
8-48e 0.19 0.71
8-48f 0.20 0.66
8-48g 0.33 0.48

A.3 SUPPLEMENTARY INFORMATION FOR CHAPTER 6: NEURAL NETWORKS FOR PREDICT-

ING ELECTRON-IONIZATION MASS SPECTROMETRY OF SMALL MOLECULES
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(a) (b)

Figure A.3.5: The boxplot for all of the library matching ranks are shown in these figures. (a) shows the box
plot distribution excluding outliers, while (b) shows the box plot distribution for all results including outliers.

(a) (b)

Figure A.3.6: Library matching ranks (y-axis) for all query spectra based on molecular mass (x-axis). (a)
Shows the resulting ranks without the use of the mass filter, while (b) shows the resulting ranks with the mass
filter. The matching rank improves significantly by using the mass filter, as indicated by the clustering of data
towards the x-axis. This is especially the case for those spectra that are in the center of the mass range.
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(a) (b)

(c) (d)

Figure A.3.7: The above shows a collection of similarity plots for each molecule in the query set. The plots
show a hex-bin heatmap, with Library matching rank representing the color of the hexbin for all plots. mea-
suring the distances between spectra. (a) shows the distribution between Overall Similarity (i.e. the similarity
between all recorded spectra for the same molecule) and predicted similarity. The ratio between these values is
shown in Figure 6.5. (b) compares the predicted similarity against the similarity of the main spectrum to the
replicates spectra for the same molecule. This gives an indication of similar the predicted spectra is compared
to the rest of the replicate spectra. (c) shows the distribution between the Predicted Similarity (x-axis) and the
Query Library Match similarity. This gives an indication of how much more similar the query spectrum is to the
library matched spectrum compared against the predicted similarity. (d) compares the similarity between the
predicted similarity and the similarity between the replicates spectra to the library match spectra. The similarity
between the replicates spectra and the library matched spectra gives an indication of the noise in the spectra
for the molecule, and how that might have affect on the similarity matching.
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