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ABSTRACT

At the turn of the 21st century, the study of photonics, plasmonics and subwavelength

phenomena became more and more intense as it became apparent that innovations in these

fields could have important and widespread applications in miniaturizing electronic or

photonic devices. Recent work in the Ham group have shown that the microwave to far

infrared plasmons of 2D electron gases can achieve very small propagation velocities of

< c/100, enabled by large kinetic inductances of the 2D electron gases, which promises

size reduction factors of microwave circuits of 100 times or more.

We will first build and describe simple circuit models of 2D electron gas plasmons, by

computing equivalent capacitance, inductance, and resistances. Building a transmission

line model from these circuit elements allows us to calculate plasmonic wave dispersions.

Modifications to the dispersions are studied, and in particular, we examine how a periodic

geometry can result in a plasmonic crystal. We propose and demonstrate these far infrared

plasmonic crystals using the 2D electron gas in graphene, and we show that concepts from

photonic and electronic crystals such as band engineering and symmetry selection rules

apply.

We also examine in great detail the origin and form of the kinetic inductance, which

is key to the plasmonic response, and calculate the modifications to the Johnson-Nyquist

noise that must necessarily result from any conductor with intrinsic inductance. An under-

standing of the high frequency noise spectrum is necessary to evaluate potential microwave

and far infrared devices using these plasmons.
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Lastly, we show how non-reciprocal plasmons can arise non-magnetically, by simply

applying a drift current to the electrons. The plasmons carried along by the electrons also

drift with the same velocity as the drift velocity, which modifies the plasmon dispersion

non-reciprocally, due to the drift motion being non-reciprocal. This principle may enable

novel devices based on this principle in the future.
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Chapter 1

Introduction

Plasmons are oscillations of the local electron density n(x) of an electron gas. The study of

such plasma oscillations have led to a better understanding of a rich and diverse multitude

of physical phenomena, ranging from the reflectivity and dielectric constant of metals,

radio wave guiding by the ionosphere to astrophysical phenomena. In the most technical

sense, plasmons are the quantum quasiparticle associated with these plasma oscillations,

but as we shall see in the systems we can access experimentally, quantum interference

effects from plasmons will not easily be observed, and so we shall use the term plasmon

to describe the classical excitation of arbitrarily small amplitude. In this introductory

chapter we will attempt to provide an overview of the behaviour of plasmons both from a

pedagogical point of view, and as a background for most of the work in this thesis.
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1.1 Metal plasmonics in 3D

As an example system, we will begin with the semi-classical Sommerfeld model of a

metal. In this model, the ions are fixed, and only the valence electrons of a metal are free

within the surface boundary of the metal, which serve as a quantum well in which the

electrons live. The available states of a single electron thus have energy levels described

by

ε(k) =
h̄2k2

2me

where k is the wavevector of the electron so that its momentum is p = h̄k. These electrons,

are fermions and thus obey the Fermi-Dirac distribution,

f (ε,µ,T ) =
1

1+ exp
(

ε(k)−µ

kBT

)
In the 0-temperature limit, this distribution reduces to the Heaviside step function,

which means that all the electronic states with energies ε < µ are occupied and all elec-

tronic states above ε > µ are empty. Since the free electron dispersion is spherically

symmetric with energy monotonically increasing with k, the distribution describes a so-

called Fermi sphere of electrons in k-space. This is the Sommerfeld model, from which

many electronic properties of a metal such as the Wiedemann Franz law can be derived.

The description of the plasmon will be a direct result of the model when we study the

AC conductivity of the metal using the Sommerfeld model. Assuming some momentum
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relaxation with time τ , the equation of motion of an electron is

dp
dt

= −p(ω, t)
τ
− eE(ω, t)

h̄
dk
dt

= − h̄k(ω, t)
τ

− eE(ω, t)

where we have implicitly taken an average over the electrons to account for the discrete

nature of momentum relaxation. We note thatτ is a phenomenological time constant de-

pending on the details of the scattering, in a typical metal this will be due to impurities

and phonons. For a typical metal, τ ∼ 10−15 s while for very high mobility 2DEG such as

those in an AlGaAs/GaAs heterostructure interface, τ ∼ 10−12 s.

If we have some oscillatory solution for a driving force E(ω, t) = Ee−iωt then the

solutions will also be oscillatory, k = ke−iωt

−iω h̄k1 = − h̄k1

τ
− eE

h̄k =
τeE

iωτ−1

The current is the sum of all the electrons in a small region,

j(ω) = ∑
k
(−e)

h̄k
m

= ∑
k

τe2

m
E

1− iωτ

= E(ω)
ne2τ

m
1

1− iωτ

3



The current is defined j(ω) = σ (ω)E(ω) and thus the AC conductivity is

σ (ω) =
ne2τ

m
1

1− iωτ

The limit at low frequencies reduces to the drude DC conductivity, σ (0) = ne2τ

m while at

high frequencies the conductivity is complex and substantially reduced,

σ (ω)→ i
ne2

mω

One can also rewrite this result in terms of the polarizability, and dielectric constant,

j(ω) =
dP(ω)

dt
=−iωP

P = χE
i
ω

σE = χE

ε (ω) =
D(ω)

ε0E(ω)

= 1+ i
1

ωε0
σ (ω)

= 1− ne2

ε0mω2

= 1−
ω2

p,3D

ω2

4



where we have defined the plasmon frequency ω2
p,3D = ne2

ε0m . The interpretation of this

result is simple, for frequencies much larger than this plasmon frequency, the electron gas

is largely transparent to the propagation of the electromagnetic waves. In most metals, this

frequency is in the visible or UV range, which explains the transparency of metals to UV

or gamma radiation, even though most metals reflects visible light.

1.2 Circuit Model for 2D plasmons: Kinetic Inductance

Things are drastically different in a 2D material, in which a 2D electron gas lives in the

x− y plane. Instead of a single frequency of plasma oscillation, we will be able to find a

dispersion relation for plasmon wave propagation. An alternative, simpler semiclassical

picture allows us to obtain dispersion relations for the plasmon in terms of a transmission

line model, which is useful in that it directly translates to simple design rules capturing the

expected plasmon propagation behaviours that one can use to design experiments.

We envision a one-dimensional transmission line made connected at 2 ends, x = 0 and

x = L. Voltages V (x, t) and currents I (x, t) on the line obey the telegrapher’s equations,

∂V
∂x

= −L
∂ I
∂ t

(1.1)

∂ I
∂x

= −C
∂V
∂ t

(1.2)

whose solutions necessarily also satisfy the wave equation

∂ 2V
∂ t2 − s2 ∂V

∂x2 = 0

5



where s = 1√
LC

is interpreted as the wave velocity. The characteristic impedance of the

line is Z0 =
√

L
C .

Thus we seek to cast the plasmonic wave in similar terms in order to obtain expressions

for L and C. The equation of motion of the electronic fluid in a channel of width W is

∂v
∂ t

= − e
m

E (1.3)(
− 1

Wen

)
∂ I
dt

=
e
m

∂V
∂x

∂V
∂x

= − m
ne2W

∂ I
∂ t

We identify this inductance as the kinetic inductance

Lk =
m

ne2W
(1.4)

. It’s nature is substantially different from that of the magnetic inductance, in which

changes in current are resisted by the driving force having its energy stored in magnetic

fields: Here, the energy is stored in the kinetic energy of the electrons instead. A much

greater detailed description of kinetic inductance and a related concept, plasmonic mass,

is given in Section 4.2.

A comparison between the magnetic and kinetic inductance shows the regimes in

which each is important. For a 3D metal or semiconductor, we can see that kinetic induc-

tance is completely negligible for realistic carrier densities. However, this is the reverse

in 2D conductors: Here, the kinetic inductance is much larger and thus any study of 2D

plasmons are kinetic inductance driven: in plasmonic waves, the energy density oscillates

6



between kinetic and potential energies (as compared to a photonic wave, whose energy

density oscillates between magnetic and electrostatic potential energies).

1.3 Circuit Model for 2D plasmons: Capacitance

In much of this work, we will be working with gated plasmons. In this case, the gate acts

as the ground so that the capacitance can be related to the local density by

n(x) =
CgV (x)

e

where Cg is the geometric capacitance. The continuity equation can then be identified as

the second part of the telegraphers equation,

∂V
∂ t

+
∂V v
∂x

= 0

nWe
∂V
∂ t

+V0
∂ I
∂x

= 0

∂ I
∂x

== −CgW
∂V
∂ t

Comparing this to Eq. 1.2, we see that the geometric capacitance is exactly the capacitance

that appears in the wave equation.

The plasmonic line’s characteristic impedance is

Z0 =
√

Lk/C

7



LK =
m∗

n0e2
1

W

This means that if we want a 50 ohm line, the widths have to follow this relation,

Z0 =

√
m∗

n0e2Ca

1
W 2

W =
1
Z0

√
m∗

n0e2Ca

This relationship is satisfied for W = 20 um wide sample at 0.2 V back gate, or a density

of 1.6× 1011 cm2. Using the transmission line velocity we get v = 7.2× 105 m/s, which

is much smaller than the speed of light c. It is this small velocity, or equivalently ultra-

subwavelength, propagation of plasmons that drives much of the research into this field.

1.4 Circuit Model for 2D plasmons: Resistance

Plasmon propagation almost invariably is plagued with loss and the understanding of the

plasmon loss mechanisms is especially crucial in the systems we will be studying experi-

mentally, where the quality factor can be on the order of 10 or less. In fact, we will note

here that the loss naturally appears in the model when we consider the AC conductivity of

an electron gas since some kind of loss or scattering mechanism is explicitly required in

order for the electron gas to even be conducting in the usual sense, as a lossless crystal will

undergo Bloch oscillations instead of allowing the electrons to propagate uniformly[1].

The usual model for a lossy transmission line is and RLGC transmission line, which

is similar to an LC transmission line described by the telegrapher’s equations but with

8



R in series with the inductance and G in parallel with the capacitance. In this case, the

characteristic impedance is still approximately Z0 and the wave speed is still approximately

s. However as the wave propagates, there will be an attenuation α ∝ R.

The main component of plasmon loss comes from the conductor loss R and not the

dielectric loss G, so we will assume that G = 0 for the remainder of this thesis. In fact we

can explicitly obtain the model by adding a damping term to the equation of motion (Eq.

1.3) to obtain
∂n
∂ t

+
∂ (vn)

∂x
= 0

∂v
∂ t

+ v
∂v
∂x

+
e

me
E +

v
τp

= 0

Now we proceed to linearize these equations about U = U0, v = 0, corresponding to

some density and no flow. Also, we make the substitution n =CU/e.

∂v
∂ t

+
e
m

∂U
∂x

+
v
τp

= 0

∂U
∂ t

+U0
∂v
∂x

= 0

Solving this we get the very familiar wave equation, with wave velocity c =
√

eU0
m

∂ 2v
∂ t2 +

e
m

∂ 2U
∂x∂ t

+
1
τ

∂v
∂ t

= 0

∂ 2U
∂ t∂x

+U0
∂ 2v
∂x2 = 0

∂ 2v
∂ t2 +

1
τ

∂v
∂ t

=
e
m

U0
∂ 2v
∂x2
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Assume v = vAei(kx−ωt), we can get a dispersion relation, which allows us to solve,

ω
2 +

1
τ

iω− e
m

U0k2 = 0

ω =
− i

τ
±
√

4e
m U0k2− 1

τ2

2

= ±
√

e
m

U0k2− 1
4τ2 −

i
2τ

Plugging back into our solution, we see that

v = vAe
i(kx−

√
e
mU0− 1

4τ2 t)
e−

t
2τ

How does this apply to the case of a transmission line? Rearranging,

±

√√√√ m
eU0

[(
ω +

i
2τ

)2

+
1

4τ2

]
= k

k = ±

√
m

eU0

[
ω2 +

i
τ

ω

]

The solution is thus

v = vAei(krex−ωt)e−kimx
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For large enough τ , both kim and kre have the same sign, which describes the prop-

agation of decaying waves decaying waves. The propagation constant in a transmis-

sion line is γ = ±
√

(rs + iωL)(iωC) = α + iβ = ±ik =
√
− m

eU0

[
ω2 + i

τ
ω
]
. Com-

paring coefficients, iωrsC = − imω

τeU0
and LC = m

eU0
. Note the sign convention, which

arises from the convention of phasors in electrical engineering going as eiωt , instead of

e−iωt . In the more familiar physics convention if we had used e−iωt the constant would

be γ = ±
√
(rs− iωL)(−iωC) = ±ik =

√
− m

eU0

[
ω2 + i

τ
ω
]
, and comparing coefficients,

LC = m
eU0

and Crs =
m

eU0τ
. Unsurprisingly, the resistance is directly given by the scattering

time constant τ and thus, in this model, is directly given by the mobility of the system.

1.5 Structure of the Dissertation

The key concepts of kinetic inductance and quantum and geometric capacitances in the

context of 2D conductors has been introduced. In the next chapter, we will study the

dispersion relations of 2D plasmons in greater detail, to try to tease out corrective and

additional terms that may arise. In Chapter 3 we demonstrate the use of these plasmons

in band engineering plasmonic crystals made with graphene. In Chapter 4, we examine

how kinetic inductance applies to 2D conductors in the calculation of the noise spectrum

with the fluctuation dissipation theorem. The work in Chapters 3 and 4 have been largely

published in references [2] and [3] respectively. Lastly, in Chapter 5, we will describe
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the measurement of nonreciprocal plasmons in a drifting electron gas, using the ultrahigh-

mobility GaAs / AlGaAs heterostructure as an example system in which such nonrecipro-

cal plasmons can be measured. We will also discuss the possibility of obtaining reflection

gain of drifting plasmons, and possibilities of measuring this phenomenon in graphene.
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Chapter 2

2D Plasmons: Dispersion Relations,

Corrections and Additional Terms

In the previous chapter, we have derived plasmon dispersion relations even in the pres-

ence of loss, which we assume to be small, even though this assumption is not always

experimentally true. In this section, we study several other terms which we expect to con-

tribute to the plasmonic dispersion relations, some of which will be too small to cause an

experimentally observable effect on the dispersion relation.

2.1 Hydrodynamic Terms

The equations of motion are

∂n
∂ t

+
∂ (vn)

∂x
= 0

13



∂v
∂ t

+
∂x
∂ t

∂v
∂x

+
e

me
E +

v
τp

= 0

Define U to be the local gate voltage relative to the channel, which means E = ∂U
∂x without

the minus sign. Substituting n = CU
e .

∂v
∂ t

+ v
∂v
∂x

+
e
m

∂U
∂x

+
v
τp

= 0

∂U
∂ t

+
∂Uv
∂x

= 0

First we do the steady state under a constant drift current I0. In this case there is no time

dependence, so the second line gives U0v0 = const = en0
C v0 =− I0

AC . So we can rewrite the

first equation by using v0 =
Q
U0

v0
∂v0

∂x
+

e
m

∂U0

∂x
+

v0

τp
= 0

−Q2

U3
0

∂U0

∂x
+

e
m

∂U0

∂x
+

Q
U0τp

= 0

∂U0

∂x
= − Q

τpU0

(
e
m −

Q2

U3
0

) =−
QU2

0

τp
( e

mU3
0 −Q2

)
This equation cannot be solved analytically. However, in the triode regime, we can simply

take dU0
dx to be constant
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U0(x) = U0(0)+
dU0

dx
x

v0(x) =
Q

U0(0)+
dU0
dx x

dv0

dx
=

Q(
U0(0)+

dU0
dx x
)2

dU0

dx

The linearized equations about U =U0 +u1, v = v0 + v1 are

∂v
∂ t

+ v0(x)
∂v
∂x

+ v
∂v0

∂x
(x)+

e
m

∂U
∂x

(x)+
v
τp

= 0

∂U
∂ t

+U0(x)
∂v
∂x

+U
∂v0

∂x
(x)+ v0(x)

∂U
∂x

+ v
∂U0

∂x
(x) = 0

∂v
∂ t

+

(
v0(0)−

1
U2

0

∂U0

∂x
x
)

∂v
∂x
− v
(

1
U2

0

∂U0

∂x

)
+

e
m

∂U
∂x

(x)+
v
τp

= 0

∂U
∂ t

+

(
U0(0)+

∂U0

∂x
x
)

∂v
∂x
− 1

U2
0

∂U0

∂x
U +

(
v0(0)−

1
U2

0

∂U0

∂x
x
)

∂U
∂x

+ v
∂U0

∂x
(x) = 0

This has solutions given by substituting v = ṽei(kx+ωt) and U = Ũei(kx+ωt) (note the time

dependence, which is the convention we choose so that negative impedance is capacitive

and positive is inductive) to get a matrix equation, and using the slowly varying envelope

approximation, where we throw away all the terms of ∂k
∂x .

∂U
∂x

= i
(

k+ x
∂k
∂x

)
Uei(kx+ωt)
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Using the slowly varying envelope approximation,

iω ṽ+ v0ikṽ+ ṽ
∂v0

∂x
+ ik

e
m

Ũ +
ṽ
τp

= 0

iωŨ + ikU0ṽ+Ũ
∂v0

∂x
+ ikv0Ũ + ṽ

∂U0

∂x
= 0 iω + ikv0 +

∂v0
∂x + 1

τp
ik e

m

ikU0 +
∂U0
∂x iω + ikv0 +

∂v0
∂x

 ·
 ṽ

Ũ

 = 0

Solving this characteristic equation gives the dispersion relation.

det

 iω + ikv0− Q
U2(x)

∂U0
∂x + 1

τp
ik e

m

ikU0 +
∂U0
∂x iω + ikv0− Q

U2(x)
∂U0
∂x

 = 0

The characteristic equation gives the dispersion relation that is quadratic in k and is easily

solved. While the solution will have many terms due to the additional terms with deriva-

tives of U0, in the lossless case where τ → ∞, we can simplify this greatly by noting that

∂U0
∂x = 0 which means that the electron density is constant across the electron gas. We also
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use the substitution s =
√

eU0
m ,

 iω + ikv0 ik e
m

ikU0 iω + ikv0

 ·
 ṽ

Ũ

 = 0

−(ω + kv0)
2 + k2s2 = 0

ω + kv0 = ±ks

−v0± s =
ω

k

The situation is thus that of waves traveling as velocity s, being carried along by an

additional velocity v0. We can rewrite this for convenience, k± = ω/(−v0± s) where

s =
√

eU0
m . Thus the general solution is

U = U+ei(k+x+ωt)+U−ei(k−x+ωt)

ωŨ + kU0ṽ+ kv0Ũ = 0

ωŨ + kU0ṽ− iŨ
∂v0

∂x
+ kv0Ũ +−iṽ

∂U0

∂x
= 0

So the general solution is

U(x, t) =−
k+v0 +ω− i∂v0

∂x

k+U0− i∂U0
∂x

U+ei(k+x+ωt)−
k−v0 +ω− i∂v0

∂x

k−U0− i∂U0
∂x

U−ei(k−x+ωt)

In this description the wavenumbers k+ describes waves that are propagating backwards,

while k− describes waves that are propagating forwards.
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This observation that the system admits waves with different propagation velocities in

the forwards and backwards directions is significant: the transmission line is nonrecipro-

cal and may be used as the key nonreciprocal component in devices such as microwave

gyrators or isolators. We have experimentally observed this in the GaAs / AlGaAs het-

erostructure and and will explore this further in chapter 5.

2.2 Quantum Capacitance

In this discussion, quantum capacitance refers to the capacitance that arises due to an aver-

age increase in the electron energy levels as the system becomes more and more populated

with electrons. This increase in energy necessary to add an electron to the system mani-

fests itself as a capacitance which is in series with the geometric capacitance (an example

1D system to show this is discussed in appendix C). In typical 3D semiconductor systems,

this effect is entirely negligible (i.e. the quantum capacitance is extremely large) because

most of the valence band electrons live near the band edge and occupy about the same en-

ergy states. However, for lower dimentional systems with low density of states, we expect

that the quantum capacitance can be small enough for its effect to be measureable.

To compute the quantum capacitance of a 2D electron gas, we only need to calculate

the total individual electron energy and take the appropriate derivative. If we consider just

a isotropic parabolic 2DEG with effective mass m∗e with constant density of states is given

by gm∗e
2π h̄2 , we can find the chemical potential by solving the equation

n =
∫

D(E) f (E,µ,kBT )dE
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for some fixed electron density n. In experiment, this n might be fixed by a voltage applied

to the gate. Then the total energy per unit area of the system is given by

E =
∫

E ·D(E) f (E,µ,kBT )dE

and the capacitance is dE/dQ = Q
C =⇒ C = Q

dE/dQ . At zero temperature, we can see that

it reduces to the analytic result C =
gm∗ee2

π h̄2 .

2.3 Magnetic Field

In this section we study the case of a plasmon with magnetic field. We expect that the mag-

netic field can perturb the motion of electrons, which could imply a change in the plasmon

propagation characteristics. In particular, it is well known that magnetic materials are also

nonreciprocal, so we might anticipate some novel interactions between the magnetic field

and the non-magnetic nonreciprocity of the electron gas with drift. In this case the electron

equations of motions are

∂n
∂ t

+∇ · (nv) = 0

∂v
∂ t

+(v ·∇)v+
e

me
(E+v×B) = 0

Suppose v is small so that we can ignore the convective terms for now. Then

∂n
∂ t

+∇ · (nv) = 0
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∂v
∂ t

+
e

me
(−∇U +v×B) = 0

Without applying an electric field, E = −∇U , and n = −CU
e . With these definitions we

require U,U0 < 0. So if we linearize,

∂U
∂ t

+U0∇ ·v = 0

∂v
∂ t

+
e

me
(−∇U +v×B) = 0

Now put in some time dependence, following the EE convention,v = ṽei(k·x+ωt) and U =

Ũei(k·x+ωt),

iωŨ + iU0k · ṽ = 0

iω ṽ+
e

me

(
−ikŨ +B0ṽ× ẑ

)
= 0

Let us expand this into scalar equations,

ωŨ
U0

+(kxvx + kyvy) = 0

ωvx +
e

me

(
−kxŨ− iB0vy

)
= 0

ωvy +
e

me

(
−kyŨ + iB0vx

)
= 0

The determinant of the matrix must be 0,

−
B2

0e2

m2
e

+
eU0

me
k2 +ω

2 = 0
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This is the case with no drift, where there is an additional term that arises from the mag-

netic field. A plot of this is shown in Fig. 2.1.

Now if we put back the convective terms,

∂U
∂ t

+∇ · (Uv) = 0

∂v
∂ t

+(v ·∇)v+
e

me
(E+v×B) = 0

Linearizing around nonzero v0 and without loss of generality setting v0to be in the x di-

rection,

∂U
∂ t

+U0∇ ·v+v0 ·∇U = 0

∂v
∂ t

+(v0 ·∇)v+
e

me
(−∇U +v×B) = 0

Put in time dependence,

iωŨ + iU0k · ṽ+ iŨv0kx = 0

iω ṽ+ v0ikxṽ+
e

me

(
−ikŨ +B0ṽ× ẑ

)
= 0

Expanding into scalar equations,

(ω + v0kx)Ũ
U0

+(kxvx + kyvy) = 0

ωvx + v0kxvx +
e

me

(
−kxŨ− iB0vy

)
= 0

ωvy + v0kxvy +
e

me

(
−kyŨ + iB0vx

)
= 0
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Figure 2.1: Plots showing the dispersion along the kx direction for the case with drift and
without. The 2DEG is assumed to have a density of 1.6× 1011 cm−1, which gives an
s = 7.2×105 ms−1.

Now this is simply a replacement of ω with ω+v0kx from the previous equations. Solving,

we get that the dispersion relation is

−
B2

0e2

m2
e

+
eU0

me
k2 +(ω + v0kx)

2 = 0

Again, we can plot this dispersion relation, which is similar to the case with no drift.

However, interestingly, there is a region of negative dispersion very close to k = 0, but it

remains to be seen if this is experimentally feasible.
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Chapter 3

Graphene Plasmonic Crystals

In this chapter we will study graphene plasmon crystals, which are sheets of graphenes

in which the plasmon dispersion has been modified by a structural periodicity. We intro-

duce such periodicity by patterning a hexagonal array of apertures in a graphene sheet.

The interaction of the plasmons with the graphene periodicity forms a plasmonic band

structure. This is demonstrated by resonantly coupling a far-infrared light into particular

plasmonic modes belonging to a unique set of plasmonic bands, where the light selects

these specific modes because the spatial symmetry of the radiation field matches that of

the plasmons within those modes. This work is a step toward graphene plasmon band

engineering, paving avenues for novel graphene plasmonic devices by demonstrating the

applicability of concepts from photonic crystals such as the possibility of plasmon band

engineering and utilization of symmetry-based plasmon band selection rule.

One can imagine a variety of ways to introduce structural periodicity in a continuous

graphene medium. The hexagonal lattice of apertures in our work is one proof-of-concept
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realization of the medium periodicity. We fabricate four graphene plasmonic crystals,

which we call GPC1 to GPC4 (Figure 1a), by etching out hexagonal lattices of circular

(GPC1) or hexagonal shape apertures (GPC2 to GPC4) via photolithography in four sepa-

rate regions of the same 1.5×1.5 cm2) graphene sheet. This graphene sheet, which is grown

by chemical vapor deposition (CVD) and is transferred onto a 289 nm SiO2/381 μm Si sub-

strate, exhibits the typical Raman spectrum (Figure 1b) of monolayer graphene [4, 5]. The

hexagonal lattice geometry of each plasmonic crystal occupying an area of 2×2 mm2 is

characterized by the lattice constant a, the aperture shape that is circular or hexagonal, and

the aperture size (diameter D in case of circular apertures, edge-to-opposite-edge distance

D′ in the case of hexagonal apertures). The geometric parameters are in the micrometer

range; for instance, a ranges from 3 to 6 μm. An optical micrograph and a scanning elec-

tron microscopy (SEM) image of GPC1 (a ~ 3 μm; D ~ 2 μm) are in Figures 1c,d. The

map of the integrated Raman 2D peak intensity [4, 6] from 2630 to 2730 cm−1 (Figure 1e)

also confirms the hexagonal lattice in the graphene.

We also leave a certain region unpatterned (area: 1.0×0.5 cm2) in the same graphene

sheet, as its interaction with far infrared light provides a comparison to the interaction of

plasmonic crystals with far infrared light. On this unpatterned graphene, we also perform

a Hall transport measurement via the four-probe Van der Pauw method from which we de-

termine the charge carrier type (holes), its concentration n = 1.1×1013 cm−2, and mobility

µ = 1360 cm2/Vs. These values correspond to a Fermi level EF = −0.38 eV and car-

rier scattering time τ = 5×10−14 s. EF and τ are important characteristics that influence

the detailed behavior of graphene plasmons. While EF and τ spatially vary in large-area

graphene14 and also may assume degraded values in the patterned graphene plasmonic
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Figure 3.1: a. Illustration (not drawn to scale) of our graphene sample on SiO2/Si sub-
strate, containing four graphene plasmonic crystals: GPC1 (a ~ 3 μm, D ~ 2 μm), GPC2
(a ~ 4 μm, D′~ 3 μm), GPC3 (a ~ 5 μm, D′~ 4 μm), GPC4 (a ~ 6 μm, D′~ 5 μm), an
unpatterned graphene region, and bare SiO2/Si region uncovered by graphene. T [T0] is
the light intensity transmitted through a crystal [bare SiO2/Si] in FTIR. b. Typical Raman
spectrum of the graphene sample in the unetched area. c. Optical image, d. SEM image
e. integrated graphene Raman 2D peak intensity map from 2630 to 2730 cm−1 of GPC1,
with dark areas indicating apertures.
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crystals due to the edge disorder introduced at the boundaries of the apertures [7], their

grossly measured values in the unpatterned region give a rough feel for their values in the

crystal regions and signify certain characteristics of the graphene sample. For instance,

our graphene sample is strongly doped (with holes), and plasmonic quality Q = ωτ ∼ 2 at

6 THz.

The length scales of the hexagonal lattice parameters a, D, and D′ are comparable

to the graphene plasmonic wavelengths in the far-infrared region, where graphene plas-

mons emerge conspicuously [8]. Hence, plasmons are scattered by the lattice, and their

dispersion relation is transformed from the continuous dispersion curve of unpatterned

graphene16 into a plasmonic band structure, as seen theoretically [9, 10]. We first show

the plasmonic band structure of our hexagonal lattice by simulation, by solving Maxwell’s

equations via the finite element method with appropriate boundary conditions using COM-

SOL Multiphysics. Here graphene is modeled as a 0.5 nm thick conducting boundary layer

with a conductivity corresponding to the intraband transitions at room temperature:

σ (ω,EF ,τ) =−i
e2EF

π h̄2
1

ω− i/τ

Bloch boundary conditions were used to represent the periodic structure. The mate-

rial properties of the substrate are obtained from tabulated data.19 The simulated band

structure for GPC1 is displayed in Figure 2a (horizontal axis: plasmonic wavenumber,

kp; vertical axis: frequency, f ), where the 11 lowest lying bands are shown along the

high-symmetry points in reciprocal space. For this particular simulation, we use EF =

−0.38 eV, obtained in the unpatterned region, as the exact value of EF of the crystal is
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unknown. Simulations with differing EF values reveal that the band diagram scales verti-

cally in proportion to
√
|EF |, which is a key signature of graphene plasmons [8, 11]. For

example, Figure 2b shows this EF dependency of the degenerate mode frequency of plas-

monic bands 5 and 6 at the Γ-point. To demonstrate the plasmonic band formation in the

graphene plasmonic crystal, we perform Fourier transform infrared spectroscopy (FTIR)

at room temperature by normally irradiating an unpolarized far-infrared plane wave along

the zaxis onto the device lying in the x−y plane. The wave vector k of the normally incident

light has no component in the plane of the graphene, yet the corresponding kx = ky = 0 line

can still excite plasmonic modes at the Γ point (kp = 0) on the bands; such phase-matching

and resultant plasmonic excitation would not be possible in unpatterned graphene, which

exhibits a continuous plasmonic dispersion relation with no plasmonic band formation.

Among all available Γ-point plasmonic modes, only two pairs of degenerate Γ-point

modes belonging to bands 5 and 6 and bands 10 and 11 can be excited because the spatial

symmetry of these specific plasmonic modes matches the spatial symmetry of the fields

of the normally incident plane waves [12, 13]. All other Γ-point modes behave differently

than the radiation fields under symmetry operations (such as reflections with respect to

planes parallel to the z-axis or rotations about the z-axis) and thus cannot be excited despite

their phase matching to the normally incident wave. To help appreciate this, we illustrate

the symmetries of all Γ-point plasmonic modes of the 11 lowest-lying bands by displaying

the simulated spatial profiles of their electric field in the z-direction, Ep,z, just above the

graphene (Figure 2c). The Γ-point plasmonic mode belonging to band 7, for example,

has a 120° rotational symmetry about the z-axis, a symmetry that radiation fields do not

possess, and thus it cannot be excited.
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Figure 3.2: a. Simulated band structure of GPC1 (EF = −0.38 eV) along high symmetry
points of a hexagonal reciprocal lattice (inset). b. Simulated frequencies of degenerate
Γ-point plasmonic modes on bands 5 and 6 with varying EF and a least-squares fit to
f ∝

√
|EF |. c. Simulated Ep,z, just above graphene for each Γ-point mode. Color bar

shows normalized field strength. d. Simulated extinction spectra of GPC1 for various τ

values. For (c) and (d) EF = −0.38 eV is used as in (a).

This symmetry-based selection rule can be formally proved. The hexagonal lattice

possesses the C6v point group symmetry, and thus, each Γ-point mode hosted by the lat-

tice exhibits definite symmetry transformation properties under any symmetry operation

belonging to the C6v group. However, one can show that the symmetry transformation
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properties of only the degenerate Γ-point modes on bands 5 and 6 and those on bands 10

and 11 match the symmetry transformation properties of normally incident plane waves,

being described by the same irreducible representation of the C6v group [13, 14]. A more

detailed explanation is given in B.

Simulation supports this selective plasmonic excitation. We solve Maxwell’s equations

with a plane-wave excitation to obtain the extinction, 1− T/T0 (T and T0are the light

intensity transmitted through the on-substrate graphene device of concern and through

the substrate only, respectively; Figure 1a), which indicates the degree of absorption or

reflection by the device. Figure 2d displays simulated extinction spectra of GPC1 with

EF = −0.38 eV for differing values of τ . Simulation with either x- or y-polarized excitation

light gives the same result. For τ = 5× 10−12 s this relatively long scattering time is

feasible with high-mobility exfoliated graphene and the extinction spectrum exhibits two

peaks, confirming the selective excitation; the tall 6.8 THz peak (small 8.6 THz peak)

is due to the excitation of the degenerate Γ-point plasmonic modes exactly at the same

frequency on bands 5 and 6 (bands 10 and 11) in Figure 2a. These peaks, which can

also be designed to occur in the mid-infrared [15], are due to Fano resonances between

the plasmon modes and direct transmission through the graphene, similar to the Fano

resonance in photonic crystal slabs [16]. With decreasing τ that lowers the plasmon quality

factor[17, 18], each peak grows shorter and broader in simulation. For τ = 5× 10−14 s

that is commensurate with the mobility of our CVD-grown graphene, the peak due to the

degenerate Γ point on bands 5 and 6 remains observable at a slightly lowered frequency

(6.7 THz), while the peak due to the degenerate Γ point on bands 10 and 11 is unresolvable.

Simulated extinction spectra with different geometric parameters show the same behavior;
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in the low scattering regime, the extinction shows multiple peaks corresponding to a subset

of Γ-point plasmonic modes allowed by the symmetry selection rule; in the high scattering

regime (as in CVD graphene), a single broad peak appears, typically around the originally

dominant peak.

Our work employs lower-mobility CVD graphene with τ = 5× 10−14 s, for its large

area is amenable to maximal coupling with the far-infrared beam from an Ever-Glo IR

source (beam diameter: ~8.75 mm). To ensure the measurement of only one particular

plasmonic crystal under test, a mask with a pinhole (diameter ~2 mm) is aligned right

behind the particular crystal to permit only its signal transmitted. Thus, we expect from

the simulation that the extinction spectrum will exhibit a single broad peak. In fact, the

measured spectrum (Figure 3a, blue) of a GPC1 in the frequency range of 3−14 THz

(above the lower cutoff frequency of a Thermo Fisher FTIR6700 system used and below

the absorption bands of SiO2) exhibits a single broad peak near 6 THz with an overall

decreasing background, in agreement with the shape of the extinction spectrum simulated

with τ = 5×10−14 s. (The measurement is done in a nitrogen atmosphere with a polyethy-

lene windowed far-IR deuterated triglycine sulfate detector; the transmission spectrum of

nitrogen is separately measured, and this background spectrum is subtracted from every

device spectrum.) This peak is due to the excitation of the degenerate Γ-point plasmonic

modes on bands 5 and 6. The emergence of the peak demonstrates the band structure

formation by the periodic structuring. This is because in unpatterned graphene the plas-

monic dispersion curve does not form bands and thus cannot meet with the kx = ky = 0

line representing the normally incident light. This lack of coupling between the light and
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plasmons in unpatterned graphene is clearly seen in the measured extinction of the unpat-

terned graphene region (Figure 3a, red). The monotonic spectrum is due to the background

interaction between the light and graphene free carriers [11]; no peak is observed due to

the lack of light−plasmon coupling.

We can obtain the extinction peak frequencies by fitting the experimental spectra to a

single-peak Fano resonance line shape

1− T
T0

= ATB (ω)

(
q f +

2(ω−ω0)
ΓP

)2
+b

1+
(

2(ω−ω0)
ΓP

)2

where fitting parameters are A (amplitude), q f (Fano parameter), Γp(plasmon damp-

ing rate), ω0 (natural frequency), and b (screening parameter). Here TB is the back-

ground extinction spectrum obtained experimentally from transmission through unpat-

terned graphene (Figure 3a, red). This single Fano resonance fit well approximates the

single broad extinction peak in each graphene plasmonic crystal in the heavy carrier scat-

tering regime (Supporting Information), and the R2 statistics of the fits are in the range of

0.88−0.95. The peak frequency obtained this way, 6.3 THz, is close to the simulated peak

frequency at 6.7 THz. The ~5% difference from the simulation is largely due to spatial

variations in EF ; that is, EF = −0.38 eV used in the simulation is from the unpatterned

graphene region, while the crystal region under test in general assumes a different EF

value.

The observation of a single plasmon peak is robust across the remaining three plas-

monic crystals with differing hexagonal lattice geometries (Figure 3b−e), further affirm-

ing the formation of the plasmonic band structure by the periodic patterning. As expected,
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Figure 3.3: a. Extinction spectra of unpatterned graphene (red) and GPC1 (blue), mea-
sured by FTIR spectroscopy. b−e. Extinction spectra (blue) of GPC1−GPC4, least-squares
fits (black) to an expression based on a Fano resonance. The grossly estimated value of
EF by simulation peak fitting (main text) is indicated for each crystal. The insets are SEM
images of the crystals.
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the peak frequency varies from device to device because the band structure is altered with

the lattice geometry. In our setup, the dependency of the peak frequency solely on ge-

ometric parameters (Supporting Information) cannot be closely examined, due in part to

the photolithographic inaccuracy in controlling the geometric parameters to submicrome-

ter precision and more fundamentally because EF varies from device to device and from

region to region even within a single device (spatial variations of EF on CVD graphene

can be on the order of 0.1 eV [19, 20]). In fact, we estimate the gross effective EF of

each plasmonic crystal by matching the peak frequency between the measured and sim-

ulated spectrum, where the simulation uses EF as a fitting variable and size and shape

of the apertures estimated from the SEM as fixed parameters (τ is kept at ~5 × 10−14 s

in this simulation because extinction peak frequencies are not sensitive to τ, as far as τ

varies within the range expected for CVD graphene); the device-to-device variation of EF

so estimated is up to ~0.1 eV (Figure 3b−e).

We further confirm the plasmonic origin of the observed peak by upshifting the overall

|EF | distribution across the entire sample containing the four crystals via global chemical

doping of holes and by verifying if the peak frequency of each crystal increases. This

method is beneficial in the face of the device-todevice variation of EF since it does not

require the exact knowledge of the spatial distribution of EF . After chemically hole-doping

the sample by exposure to 70% HNO3 vapor for 1 min, which increases the measured

EF from −0.38 to −0.55 eV in the unpatterned region, the measured peak frequency in

every crystal shifts upward consistently (Figure 4), reaffirming the plasmonic origin of

the spectral peaks. Incidentally, the frequency upshift factor indicated in Figure 4 is not

constant among the devices because the predoping EF spatial profile is nonuniform, doping
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itself may not be perfectly uniform, and the ex situ doping procedure may cause a slightly

different crystal position to be probed by the FTIR before and after doping.

Figure 3.4: Extinction spectra (thin lines) of the four graphene plasmonic crystals before
(black) and after (red) hole doping. The factor by which the peak frequency increases
is shown for each crystal. Bold lines are least-squares fits to an expression based on the
Fano resonance. A vertical cumulative offset of 10% is added between the spectra from
different crystals for clarity.
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Chapter 4

Plasmonic Mass and Fluctuation

Dissipation Theorem

4.1 Introduction

The phenomenon of Johnson-Nyquist noise [21, 22] is not only of great importance for

its own sake, but it also offers a prominent example of fluctuation-dissipation relation

[23, 24]. The fluctuation-dissipation theorem dictates that the power spectral density of

the Johnson-Nyquist current noise in a conductor is given by[23, 24]

SI(ω) = 4kBT ℜ{Y (ω)} h̄ω/kBT
exp(h̄ω/kBT )−1

, (4.1)

where Y (ω) is the complex admittance that represents the conductor’s linear response.

Y (ω) is a frequency-dependent, complex quantity, and reactive elements such as magnetic

self-inductance and capacitance (either electrostatic or quantum) can in general affect the
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noise current spectrum [25]. However, even in the most intrinsic case (i.e., after excluding

these parasitic reactive elements), Y (ω) must still be frequency-dependent, because the

current response to an applied voltage entails not only the electron scattering (resulting

in a ohmic resistance R) but also the collective inertial acceleration of electrons, which

manifests as a kinetic inductance LK [26]. For a conductor with an arbitrary single-electron

energy dispersion ε(k), LK can be obtained by calculating the ac conductivity or dielectric

function within the linear response framework [1, 27, 28]. In particular, the semi-classical

approximation yields [1, 28]

LK =
l

W
h̄2

ge2

[∫∫ ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k))
]−1

, (4.2)

for a conductor with length l along x-axis—along which Y (ω) and SI(ω) are

measured—and cross-sectional width or area W depending on conductor dimen-

sion d = 2 or 3. g accounts for degeneracy (e.g., due to spin and valley) and

f (ε) = [1+ exp{(ε−µ)/(kBT )}]−1 is Fermi-Dirac distribution (µ: chemical poten-

tial). Then

Y (ω) = (R+ iωLK)
−1, (4.3)

with LK and R in series. The corresponding circuit model is in Fig. 4.1(a). At low fre-

quencies, Eq. (4.1) reduces to the familiar 4kBT/R. In the classical regime (h̄→ 0), Eq.

(4.1) reduces to

SI(ω) = 4kBT ℜ{Y (ω)}. (4.4)
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Integrating Eq. (4.4) over the frequency yields

〈
I2〉= ∫ ∞

0
SI(ω)

dω

2π
=

kBT
LK

. (4.5)

In other words, in the classical regime, the current noise follows the equipartition theorem,

storing a mean thermal energy of kBT/2 into the collective degree of freedom associated

with LK.

So in principle the collective inertial effect LK must influence the thermal noise spec-

trum. But little attention has been paid to this effect, as it is not too conspicuous—if not

negligible—in most traditional conductors. To see this, note that the Planck factor in Eq.

(4.1) rolls off with frequency with a characteristic cutoff ωq ≡ kBT/h̄, while ℜ{Y (ω)}

rolls off with a characteristic cutoff ωp ≡ R/LK = τ−1 (τ: electron momentum relaxation

time), where R/LK = τ−1 is from the semiclassical calculation of the ac conductivity[1].

In traditional conductors, ωq tends to be smaller than, or at best comparable to, ωp across

a broad temperature range, rendering the LK effect masked in the spectrum. Further-

more, LK is usually smaller than the usual magnetic self-inductance Lm. However,

in recently advanced nanoscale or low-dimensional conductors such as graphene, τ

is large enough that ωp� ωq and LK� Lm is possible[29, 28], in which case the LK

effect will dominate the spectrum roll-off.

The purpose of work is to highlight this collective inertial effect on thermal noise

spectrum from both fundamental microscopic and practical modeling points of view. In

Sec. 4.2, we will delineate the effect from a microscopic standpoint. The collective ex-

citation of electrons, macroscopically represented by LK, exhibits a well-defined collec-

tive mass [30, 28, 26]. Since its acceleration is essential for propagating the plasmonic
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wave[31, 19, 2, 26, 28, 32, 18], we will call this collective mass, normalized to the num-

ber of electrons, as plasmonic mass mp. We will elucidate that the correct mass to use in

describing the microscopic dynamics of thermal fluctuation is not the single-electron ef-

fective mass m∗ but the plasmonic mass mp. In fact, this essential link between mp (or LK)

and thermal noise is subsumed by, and thus a natural consequence of, the linear response

theory; i.e., both the fluctuation-dissipation theorem and mp are attained from the same

linear response framework applied to the collection of electrons [23, 24]. In Sec. 4.3, we

will elaborate on how the plasmonic roll off can take over the Planck (quantum) roll off in

the noise spectrum for large enough τ . Section 4.4 will use graphene as an example con-

ductor and develop its thermal noise model, considering the plasmonic mass effect from

both electron and hole bands that co-exist.

4.2 Collective Mode & Noise: Microscopic View

4.2.1 Plasmonic Mass

We first detail the concept of plasmonic mass [28] that is paramount in this paper. If

we collectively displace each electron in a conductor—e.g., by applying an electric field

and setting a current—by δ in the kx direction, the total energy of the electron system is

increased. The increase amount is the collective kinetic energy EK corresponding to the

38



current; it is given by

EK = Wl
∫∫ ddk

(2π)d gε(k+δ k̂x) f (ε(k))

−Wl
∫∫ ddk

(2π)d gε (k) f (ε(k)), (4.6)

where the integration is over the conduction band—up to Sec. 4.3, we focus on a conductor

with a single conduction band—and k̂x is a unit vector along the kx axis. For a small

enough δ which is practically always the case, we can write Eq. (4.6) in powers of δ

EK = δ ×Wlg
∫∫ ddk

(2π)d
∂ε

∂kx
f (ε(k))

+
δ 2

2
×Wlg

∫∫ ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k))+ ... (4.7)

If we assume inversion symmetry, ε(k) = ε(−k), met by many lattice types, the first term

vanishes. But more broadly, since the first term is proportional to the integration of the

group velocity, vx(k) = (1/h̄)(∂ε/∂kx), weighted by the Fermi-Dirac distribution, if it did

not vanish, there would be a spontaneous current; we do not consider such a case here,

and set the first term to zero. Now, as δ and collective crystal momentum P are related by

P = nWl× h̄δ—here, n =
∫∫
(ddk/(2π)d)g f (ε(k)) is electron number density per area or

volume (d = 2 or 3)—, Eq. (4.7) becomes

EK =
P2

2
× g

h̄2n2Wl

∫∫ ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k)). (4.8)
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So EK ∝ δ 2 ∝ P2 regardless of ε(k). This quadratic relation is expected as EK is minimum

at δ = 0 (whether electrons move to right or left, EK increases). As EK ∝ P2 is Newtonian,

the collective inertia is

M =
P2

2EK
=

h̄2n2Wl
g

[∫∫ ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k))
]−1

. (4.9)

Collective mass per electron—plasmonic mass—is then

mp =
h̄2n
g

[∫∫ ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k))
]−1

(4.10)

which is the harmonic mean of the effective mass tensor component h̄2 [M−1 (k)
]

xx =

∂ 2ε/∂k2
x . For later use, we re-express Eq. (4.10) after integration by parts:

mp =
n
g

[∫∫ ddk
(2π)d v2

x (k)
(
−∂ f

∂ε

)]−1

. (4.11)

We now make a few key observations about mp.

Plasmonic Mass vs Effective Mass For a general ε(k), mp differs from the single-

electron effective mass, m∗ = [1/h̄2× ∂ 2ε(k)/∂k2
x ]
−1. mp is k-independent, while m∗

is generally k-dependent. mp generally varies with T and n, for it arises from the col-

lective excitation, while m∗ does not. In the special case of ε(k) ∝ k2 (k ≡ |k|), m∗ is a

well-defined, k-independent constant and m∗ = mp, as seen from Eq. (4.10) in connection

with n =
∫∫
(ddk/(2π)d)g f (ε(k)).
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Plasmonic Mass vs Cyclotron Mass Consider a 2D conductor at T = 0 with an

isotropic single-electron dispersion, ε(k) = ε(k). Integrations in Eq. (4.10) and n =∫∫
(d2k/4π2)g f (ε(k)) for |k| ≤ kF yield mp(T = 0) = h̄2kF(dk/dε)k=kF (kF: Fermi

wavenumber). On the other hand, the cyclotron mass for electrons that orbit around

the Fermi surface enclosing the k-space area of A(ε) is mc = h̄2/(2π) [(d/dε)A(ε)]
ε=εF

[1, 33], which, for isotropic 2D conductors, is

mc =
h̄2

2π

[
dk
dε
· d(πk2)

dk

]
k=kF

= h̄2kF

(
dk
dε

)
k=kF

. (4.12)

Thus, for a 2D isotropic conductor, mp(T = 0) = mc. This also applies to 3D conductors

with ε(k) = ε(k).

Plasmonic Mass vs Kinetic Inductance The current due to the collective shift of elec-

trons is an integral over the perturbed group velocity, vx(k+δ k̂x):

I =W
∫∫ ddk

(2π)d gevx(k+δ k̂x) f (ε(k)), (4.13)

which, to the first order of δ , is

I = δ ×Wge
h̄

∫∫ ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k)). (4.14)
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Thus EK ∝ δ 2 ∝ I2, and we identify the constant of proportionality as LK/2 = EK/I2.

Using Eqs. (4.8) and (4.14), we have:

LK =
l

W
h̄2

ge2

[∫∫ ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k))
]−1

. (4.15)

This is identical to Eq. (4.2) obtained from the semiclassical calculation of the ac conduc-

tivity [1]. Finally, from Eq. (4.10) and Eq. (4.15), we obtain

LK =
l

W
mp

ne2 . (4.16)

This establishes the link between macroscopic LK and microscopic mp. Eq. (4.16) is the

generalization of the more familiar expression for LK derived from the Drude model for

the special case of ε(k) ∝ k2 and mp = m∗.

4.2.2 Graphene as example

While m∗ = 0, mp 6= 0. As graphene is isotropic with ε(k) = h̄vFk, mp(T = 0) = mc =

εF/v2
F like the rest mass in relativity (εF and vF are Fermi energy and velocity). mc was

measured from Shubnikov-de Haas oscillations [34, 35]. mp was hinted at from the mea-

sured plasmonic dispersion [11, 8], and was recently directly measured by accelerating it

with a microwave field [28]. In this measurement, the sample was found to have a kinetic

inductance three orders of magnitude larger than the magnetic inductance.
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4.2.3 From Macroscopic to Microscopic Picture

We established the macroscopic energy equipartition in the classical regime, Eq. (4.5); the

noise current I stores a thermal energy of kBT/2 into LK. We now convert this macroscopic

energy equipartition to a microscopic form applicable to the thermal fluctuation velocity

vfl—along the x-axis where noise is measured—for an individual electron. As each elec-

tron contributes a fluctuating current of vfle/l, 〈I2〉= 〈v2
fl〉e2/l2×nWl. By combining this

with Eq. (4.5) and Eq. (4.16), we obtain

〈v2
fl〉=

kBT
mp

, (4.17)

which holds for arbitrary ε (k). While the thermal motions of electrons are not apparently

collective, the fluctuating velocity stores a thermal energy of kBT/2 into the plasmonic

mass mp—as opposed to the single-electron effective mass m∗—with the plasmonic mo-

tion being an appropriate degree of freedom to apply the energy equipartition to at the

microscopic level. We emphasize that the energy equipartition does not apply generally to

m∗, i.e.,
〈
v2

fl
〉
6= kBT/m∗, in general. While

〈
v2

fl
〉
= kBT/m∗ is valid when ε(k) ∝ k2 and

m∗ = mp, it faces a problem for a general, non-parabolic ε(k), where m∗ is dependent on

k. A more dramatic example where
〈
v2

fl
〉
= kBT/m∗ fails is the case of graphene, where

m∗ = 0. In sum, the proper mass to use in describing thermal noise dynamics is not m∗ but

mp. In the time-domain description, the Langevin equation [23] should use mp, not m∗.
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4.2.4 From Microscopic to Macroscopic Picture

The foregoing discussion started by integrating the power spectral density of Eq. (4.4)

into the macroscopic equipartition of Eq. (4.5) and subsequently obtained the microscopic

equipartition of Eq. (4.17). We may reverse this chain of processes, and derive first the

microscopic equipartition by enumerating and averaging the effect of each individual elec-

tron based on the Fermi-Dirac statistics.

To this end, for a k-state, we define a unitless random variable sk, which assumes

a value of 1 with probability f (ε (k)) and a value of 0 with probability 1− f (ε (k)).

That is, sk = 1 means that the k-state is occupied by an electron, while sk = 0 signifies

the emptiness of the k-state. Then, the sum of the x-component group velocities of all

electrons in the conductor can be written as

vsum = ∑
k

vx(k)sk, (4.18)

which itself is a random variable. Its variance, which represents the fluctuation in the

velocity sum, must be related to the above-discussed 〈v2
fl〉 by:

nWl×〈v2
fl〉= 〈v2

sum〉−〈vsum〉2. (4.19)
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We evaluate each term on the right hand side by using Eq. (4.18). The first term is

〈v2
sum〉 =

〈(
∑
k

vx(k)sk

)2〉
= ∑

k
v2

x(k)〈s2
k〉+ ∑

k 6=k′
vx(k)vx(k′)〈sksk′〉

= ∑
k

v2
x(k) fk + ∑

k6=k′
vx(k)vx(k′) fk fk′ ,

where fk is a shorthand notation for f (ε (k)), and we have used 〈sksk′〉 = 〈sk〉〈sk′〉 for

k 6= k′, 〈sk〉= 1 · fk +0 · (1− fk) = fk, and 〈s2
k〉= 12 · fk +02 · (1− fk) = fk. Similarly,

〈vsum〉2 =

(
∑
k

vx(k)〈sk〉

)2

= ∑
k

v2
x(k) f 2

k + ∑
k6=k′

vx(k)vx(k′) fk fk′ .

By plugging these two results into Eq. (4.19), we obtain

〈v2
fl〉 =

1
nWl ∑

k
v2

x(k) fk (1− fk) . (4.20)

In the special case where there is inversion symmetry in the single-electron energy

dispersion, i.e., ε(k) = ε(−k) and vx(k) =−vx(−k), Eq. (4.20) has a particularly simple

interpretation. In this case, if a k-state and a −k-state are both occupied, the group veloci-

ties of the two occupant electrons cancel each other due to the symmetry, not contributing

to the fluctuation. Thus to evaluate 〈v2
fl〉 in this special case, one has to enumerate only

those situations where k-state is occupied while −k-state is not. The corresponding prob-

ability is then fk (1− f−k) = fk (1− fk), and hence Eq. (4.20). However, in attaining Eq.
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(4.20), we have not imposed any condition on ε(k)—such as the inversion symmetry—,

and hence, Eq. (4.20) is generally valid.

Converting Eq. (4.20) into an integral and using f (ε(k))[1 − f (ε(k))] =

−kBT (∂ f/∂ε), we obtain

〈
v2

fl
〉

=
1
n

∫∫ ddk
(2π)d gv2

x(k) f (ε(k))[1− f (ε(−k))]

=
gkBT

n

∫∫ ddk
(2π)d v2

x(k)
(
−∂ f

∂ε

)
=

kBT
mp

, (4.21)

where we have taken the last step by using Eq. (4.11). As seen, the microscopic equipar-

tition with mp resurfaces but this time via the ab initio calculation, which reaffirms the

critical relevance of mp to noise dynamics.

Eq. (4.16) with 〈I2〉= 〈v2
fl〉e2/l2×nWl transforms this microscopic equipartition into

the macroscopic equipartition, Eq. (4.5). We can subsequently work out the noise power

spectral density: as 〈I(0)I(t)〉 = 〈I2〉e−|t|/τ [23], SI(ω) = 4
∫

∞

0 dt 〈I(0)I(t)〉cos(ωt) =

4〈I2〉×τ/(1+ω2τ2); by using Eq. (4.5) and τ = Lk/R, we obtain the noise power spectral

density of Eq. (4.4).

The power spectral density derivation above tacitly assumed frequency-independent τ

and R. But even when τ and R are frequency dependent, we can still derive the power

spectral density from the microscopic equipartition 〈v2
fl〉 = kBT/mp by using the general-

ized Langevin equation of Kubo’s linear response theory [23], where (and importantly) mp

is to be used instead of m∗.
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4.3 High-Frequency Behavior of SI(ω)

With Y (ω) = (R+ iωLK)
−1, Eq. (4.1) is written out as

SI(ω) = 4kBT · R
R2 +ω2L2

K
· h̄ω/kBT

exp(h̄ω/kBT )−1
. (4.22)

The second factor is ℜ{Y (ω)} and the third Planck factor is due to the radiation quanti-

zation. With frequency, the Planck factor starts rolling off at around the ‘quantum cutoff’,

ωq = kBT/h̄; at T = 300 K, ωq/(2π) ∼ 6.25 THz. On the other hand, ℜ{Y (ω)} starts

rolling off at around the ‘plasmonic cutoff’, ωp = R/LK = 1/τ . In most typical conductors

with τ between∼ 10−14 s and∼ 10−16 s, ωp tends to be larger than, or at best comparable

to, ωq. So the noise spectrum roll-off due to LK (or mp) is typically masked (or at best

blurred) by that due to the Planck factor.

By contrast, recent advances in nanoscale or low-dimensional conductors such as

graphene have greatly increased τ so that ωp� ωq is possible[29, 28], with which Y (ω)

becomes substantially inductive at GHz to THz frequencies and the spectrum roll-off due

to LK kicks in before the Planck factor suppresses the spectrum. To show this concretely,

Fig. 4.1(b) plots Eq. (4.22)—noise spectrum vs. frequency—for various values of τ .

For τ = 0 (black curve), the noise spectrum starts decreasing around at ωq; this is the

noise suppression due purely to the Planck factor. As τ is increased and ωp becomes in-

creasingly smaller than ωq, the high-frequency suppression of the noise spectrum becomes

increasingly dominated by the LK effect; compare the blue, green, and red curves—τ in-

creasing in that order—against the black curve. For such large τ values, the LK effect on
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Figure 4.1: a. Circuit model for the Johnson-Nyquist noise, including the kinetic induc-
tance effect. b. Current noise power spectral density for various τ values at T = 300
K.

thermal noise is critical to model in. This effect may also be exploited to infer the optical

(plasmonic) properties from the noise spectrum.

To further highlight the critical role of LK in the noise spectrum for large τ , we compute

〈I2〉 by integrating Eq. (4.22) across the entire frequency:

〈
I2〉= kBT

Lk
× 2

π

∫
∞

0

a
a2 + x2

xdx
ex−1

(4.23)

where a ≡ ωp/ωq = Rh̄/(kBT LK) = h̄/(kBT τ) and x ≡ h̄ω/(kBT ). This generalizes Eq.

(4.5) by including the Planck quantization. 〈I2〉 vs. a is in Fig. 4.2. For a→ ∞ (τ → 0;

ωp� ωq), the Planck quantization effect takes precedence over the LK effect, and 〈I2〉 �
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I2〉 normalized to kBT/LK vs. a≡ ωp/ωq.

kBT/LK. In fact, in this case, Eq. (4.23) is reduced to

〈
I2〉= kBT

LK
× 2

πa

∫
∞

0

xdx
ex−1

=
π(kBT )2

3Rh̄
(4.24)

where LK disappears. In contrast, for a→ 0 (τ → ∞; ωp� ωq), we have

〈
I2〉= kBT

LK
× 2a

π

∫
∞

0

1
a2 + x2 dx =

kBT
LK

, (4.25)

recovering the macroscopic equipartition, Eq. (4.5). I.e., in this case, the spectrum roll-off

is entirely governed by LK with the Planck quantization effect masked.

4.4 Thermal Noise Model for Graphene

Graphene is an ideal system to apply the foregoing formalism to and to derive a thermal

noise model from for a few reasons. First, in high-quality graphene, τ ∼ 10−12 s [29,
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28], corresponding to the green curve of Fig. 4.1(b), and hence, the effect of LK (or mp)

dominates over the Planck quantization effect in the noise spectrum. Second, in graphene,

m∗ = 0 yet mp 6= 0, and hence mp varies with n and T , enriching the noise behaviors

(in contrast, in conductors with ε(k) ∝ k2 and mp = m∗ 6= 0, mp is independent of n and

T ). Third, since in graphene both conduction and valence bands contribute to electronic

conduction, LK (or mp) from both bands should be considered, which further complicates

the noise behaviors.

First consider a fictitious graphene with only conduction band, held at a constant

charge density by a gate bias. With only the electron band, the constant charge density

means a constant electron number density n. Suppose µ (T = 0) = εF = 0.1 eV. With

g = 4, n =
∫
(d2k/π2) f (ε(k))|µ=εF,T=0 = ε2

F/(π h̄2v2
F). As n is T -independent in our sce-

nario,

n =
∫ d2k

π2 f (ε(k))|µ,T =
1
π

ε2
F

h̄2v2
F
, (4.26)

from which µ(T ) is determined (Fig. 4.3(a), blue curve). Using this µ(T ) in Eq. (4.10),

we evaluate mp. As n is constant, LK ∝ mp (Eq. (4.16)). Figure 4.3(b) shows LK and mp as

functions of T ; both increase with T . This contrasts the case of a conventional conductor

with parabolic dispersion, for which mp (and LK with the fixed n with the gate biasing) is

independent of T .

A real graphene sample where electron and hole bands co-exist exhibit even richer

behaviors. We again assume a constant charge density held by a gate bias and suppose

µ (T = 0) = εF = 0.1 eV. At T = 0, graphene is electron-doped. As T rises, both the

electron number density ne and hole number density nh—subscript ‘e’ and ‘h’ signify
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Figure 4.3: a. µ(T ) for fictitious graphene (blue curve) and real graphene (red curve),
shown with electronic band structures. εF = 0.1 eV for both. Inset: ne for both systems. b.
mp, LK vs. T for fictitious graphene. m0 is intrinsic electron mass. c. mp in each band vs.
T for real graphene. d. LK in each band vs. T for real graphene. LK,e||LK,h is also shown.
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electron and hole bands—can vary (this contrasts the fictitious case where the electron

number density is fixed) while the total charge density −ene + enh is fixed. Formally:

ne(µ,T )−nh(µ,T ) =
1
π

ε2
F

h̄2v2
F
, (4.27)

where

ne(µ,T ) =
∫

e

d2k
π2 f (ε(k))|µ,T , (4.28)

nh(µ,T ) =
∫

h

d2k
π2

[
1− f (ε(k))|µ,T

]
. (4.29)

This leads to a markedly different behavior for µ (T ) with µ → 0 for T → ∞ (Fig. 4.3(a),

red curve), as compared to the case of the fictitious graphene (Fig. 4.3(a), blue curve).

Once µ(T ) is evaluated, ne(T ) and nh(T ) follow from Eqs. (4.28) and (4.29). Also with

µ(T ), we can evaluate mp,e and mp,e,

mp,e =
h̄2ne

g

[∫∫
e

ddk
(2π)d

∂ 2ε

∂k2
x

f (ε(k))|µ,T
]−1

, (4.30)

mp,h =
h̄2nh

g

[∫∫
h

ddk
(2π)d

∂ 2ε

∂k2
x

[
1− f (ε(k))|µ,T

]]−1

, (4.31)

which are variations of Eq. (4.10). Finally, using the results above in Eq. (4.16), we can

compute the kinetic inductance LK of each band separately.

Figures 4.3(c) and (d) plot the resulting mp and LK in each band as functions of T .

They again exhibit conspicuous T dependency just like in the fictitious case. However,

the T -dependency of LK,e with a maximum value (Fig. 4.3(d)) markedly differs from the

52



monotonically increasing T -dependency of LK,e of the fictitious case (Fig. 4.3(b)). LK,e ∼

mp,e/ne (Eq. (4.16)) exhibits the maximum value in the real graphene due to competing

effects of mp,e and ne. For small T , nh� ne ≈ constant so LK,e increases with T as mp,e

increases with T . This is just like in the fictitious case. In contrast, for large T , ne grows as

T 2 (as does nh to keep the overall charge density constant), which is faster than the growth

of mp,e with T (compare Fig. 4.3(a) inset and Fig. 4.3(c)); therefore, LK,e ∼ mp,e/ne

decreases for large T .

~

LK,h

~

LK,e

Rh

Re

I te ( )

~

LK,h

~

LK,e

Rh

Re

I th ( )

I te ( )

I th ( )(a) (b)

Figure 4.4: a. Circuit noise model for graphene. b. For τe = τh.

The circuit noise model of the real graphene is shown in Fig. 4.4(a), where the LK

effect from both bands is explicitly modeled in. The total power spectral density of the

current noise is given by

SI(ω) = 4kBT

[
Re

R2
e +ω2L2

K,e
+

Rh

R2
h +ω2L2

K,h

]

× h̄ω/kBT
exp(h̄ω/kBT )−1

(4.32)

assuming no correlation between the electron band noise and hole band noise. Due to

the dominance of LK,e and LK,h in spectrum roll-off over the Planck quantization effect

(in high-quality graphene) and due also to the rich T -dependencies of LK,e and LK,h, the
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noise power spectral density in graphene exhibits very different characteristics from that in

traditional conductors in terms of both frequency and temperature dependency. Whether

the electron and hole band noise are correlated or not is an open question; such correlation,

if extant and conspicuous, would further enrich the noise spectrum. Also note that we have

ignored inter-band transitions, because they are minimal at our frequencies of interest (up

to THz) for this relatively highly doped sample.

If τ is the same for both bands, i.e., if LK,e/Re = LK,h/Rh, Eq. (4.32) is reduced to

SI(ω) = 4kBT
Re||Rh

(Re||Rh)2 +ω2(LK,e||LK,h)2

× h̄ω/kBT
exp(h̄ω/kBT )−1

(4.33)

where (Re||Rh)
−1 = R−1

e +R−1
h and (LK,e||LK,h)

−1 = L−1
K,e+L−1

K,h. That is, the circuit model

of Fig. 4.4(a) can be reduced to Fig. 4.4(b) with the resistors from both bands and the

kinetic inductors from both bands are each connected in parallel, with Re||Rh and LK,e||LK,h

in series serving as overall resistor and inductor. For the T -dependency of LK,e||LK,h, see

Fig. 4.3(d).

In general LK,e/Re 6= LK,h/Rh, but even in such a case, LK,e||LK,h considered right

above is still of great relevance to the noise dynamics. This is because 〈I2〉 = 〈I2
e 〉+ 〈I2

h 〉=

kBT/LK,e + kBT/LK,h or,

〈I2〉= kBT
LK,e||LK,h

. (4.34)

That is, the total integrated current noise fluctuation follows the energy equipartition,

with the mean thermal energy of kBT/2 stored onto the macroscopic degree of freedom

associated with LK,e||LK,h. Since this parallel inductance exhibits the T dependency as
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shown in Fig. 4.3(d), 〈I2〉 in graphene is no longer proportional to T , which is the case

with conductors with quadratic single-electron energy dispersion held with a gate bias.

4.5 Conclusion

Recent advances in low-dimensional materials have blurred the traditional boundary be-

tween photonics and electronics. A prominent example is plasmonics in 2D conductors

(e.g., graphene); while plasmonic excitation occurs traditionally in the realm of photonics,

in 2D materials it can occur at THz and GHz frequencies, reaching into the electronics

realm.

This paper offered another example that highlights such merger of photonics-

electronics boundaries. Concretely, we investigated how plasmonic response (tradition-

ally studied in photonics) can significantly alter the Johnson-Nyquist thermal noise dy-

namics (traditionally studied in electronics). The intrinsic connection between plasmonics

and Johnson-Nyquist noise is in fact a natural consequence of the linear response the-

ory: that is, both plasmonic properties and fluctuation-dissipation relation (of which the

Johnson-Nyquist noise is a prominent example) are obtained from the same linear response

framework applied to the collection of electrons. But in traditional conductors with short

electron scattering times, the Planck quantization effect has masked the plasmonic effect

in the noise spectrum. On the other hand, in 2D materials like graphene where electron

scattering time has been greatly elongated, the plasmonic effect can take the precedence

over the Planck quantization effect, significantly altering the thermal noise spectrum. We
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demonstrated that this effect is not only of great importance for practical noise modeling,

but it also provides an opportunity to delineate some fundamental concepts, in particular,

the critical role that the plasmonic mass (as opposed to the single-electron effective mass)

plays in thermal fluctuation dynamics of electrons.
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Chapter 5

Nonreciprocal Plasmons

We have shown in Section 2.1 that 2DEGs that have a current applied to them and whose

constituent electrons have an averaged drift velocity v0 support plasmons that have propa-

gation velocities

s =±ω

k
+ v0 (5.1)

The plus sign corresponds to the plasmon co-propagating with the drift velocity, while the

minus sign correponds to the plasmon propagating against the drift velocity. This has a

very simple interpretation: from the frame that is co-propagating with same velocity v0,

the plasmon dispersion is the bare, non-drifting plasmon dispersion, and the plasmons do

not ’feel’ the effect of the motion of the lattice ions. Thus, in moving back to the lab frame

that is fixed with zero velocity, one only needs to add the difference in velocities, which is

v0. This results in a very curious system, in which the waves propagate non-reciprocally

without a magnetic field. In this case, the time-reversal symmetry is broken by the drift

current instead of a magnetic response. This breaking of time-reversal symmetry could
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allow for useful circuits such as isolators to be constructed using this principle, instead of

having to use magnetic materials. There is also the possibility of obtaining reflection gain

from such non-reciprocal plasmons, which would allow new classes of oscillators to be

designed, potentially with much higher frequency cutoffs. This possibility was discussed

first by Dyakonov and Shur in 1993 [36] but even now has not been conclusively shown

to be feasible. This chapter first demonstrates that such nonreciprocal plasmons exist in

section 5.1, and in section 5.2 the reflection gain mechanism is studied in detail. Finally,

in section 5.3 we describe a measurement of graphene plasmons.

5.1 Nonreciprocal plasmons in AlGaAs/GaAs

In typical 3D conductors, the effect of the nonreciprocal plasmons entirely unnoticeable:

typical drift velocities in metals (less than a m/s) are orders of magnitude smaller than the

electromagnetic waves propagating in the metals, which is on the order of the speed of

light (~108m/s). In order to observe this effect, we need a system where these velocities

can be made as close to each other as possible. The 2D plasmon in the ultra high mobility

AlGaAs/GaAs heterostructure 2DEG is an ideal candidate, because its very large kinetic

inductance LK allows microwave frequency plasmon propagation at extremely low veloc-

ities down to c/1000 ∼ 3×105 m/s [18]. Furthermore, the low electron density and high

fields in semiconductors mean that electrons drift with very large velocities (up to the sat-

uration velocity, ~1×105 m/s)[1]. It is this relative similarity in magnitudes of these two

velocities enables this effect to be measured. Indeed, this phenomenon has been observed

before by indirect raman measurement of the 2DEG plasmons [37]. This motivates us to
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attempt a direct measurement of the propagation of the ultrasubwavelength plasmons, and

show that the dispersion relation is modified by the drift current following Eq. 5.1.

5.1.1 Device Structure and Fabrication

The fabrication of the samples that enabled this measurement began with our collabora-

tors Kenneth West and Loren Pfeiffer from Princeton University who provided us with the

ultra-high mobility heterostructure grown on a standard semi-insulating GaAs substrate

using molecular beam epitaxy (MBE), with a 75nm Al0.3Ga0.7As layer and 5nm GaAs

cap layer above the active GaAs layer. These layers will act as the gate dielectric, with a

dielectric constant of 12 and a capacitance per unit area of 0.13 µF/cm2. After measure-

ment and verification of the mobility (>1,000,000 cm2/Vs) and quality of the unprocessed

wafer, the subsequent microfabrication steps to obtain a measurement sample were all per-

formed at the cleanroom at the Harvard Center for Nanoscale Systems. First, a rectangular

mesa to define the 2DEG boundaries were first made using photolithography and wet-

etching. Next, the contact metal alloy (6 nm Ni / 30 nm Au / 60nm Ge / 20nm Ni / 150 nm

Au) was deposited two sides of the rectangular square, and thermally annealed at 460 ◦C

to allow the formation of ohmic contacts to the underlying 2DEG. These contacts serve a

dual purpose of allowing us to couple microwave signals into and out of the 2DEG, while

at the same time allowing for a DC voltages (and currents) to be applied to the 2DEG.

Subsequently, the gate, microwave transmission lines and contact pads areas were de-

fined with photolithography in a single step and finally 400nm deposited and lifted off

to complete the samples and for reference, a top-down optical image of the completed

sample is shown in Fig. 5.1a. The 2 ohmic contacts are connected to 2 tapered coplanar
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waveguide (CPW) transmission lines to allow the sample to be probed by a 100-um pitch

GSG probe. The CPW ground lines are also connected to the gate above the 2DEG so that

the gate acts as a microwave ground, while the CPW signal lines are connected to each

other only through the 2DEG, so that the 2DEG acts as the microwave signal line. Thus,

the sample functions as a CPW coupling to a short microstrip section made from a 2DEG,

coupled to another CPW. This simple structure allows it to be modeled very simply using

the circuit models described in Chapter 1.

5.1.2 Measurement and analysis

The measurements were performed in a cryogenic probe station (Lakeshore TTP4), which

uses liquid helium to cool the sample stage down to a temperature of 4K while support-

ing stable microwave connections to test equipment. This was necessary to obtain the

maximum electron mobility in the GaAs, which directly reduces the plasmonic loss due

to ohmic resistance and increase the quality factor Q. The samples were contacted with

two 100-um pitch GSG probes which were mounted on arms with micromanipulators to

enable probing of multiple samples as well as a calibration substrate in a single cooling

cycle. The signal lines were connected to a 50 GHz network analyzer (Keysight E8364A)

which had internal bias tees. The bias tee DC outputs were connected to 2 Keithley 2400

sourcemeters to source and measure the DC voltage and currents passing through the de-

vice. These sourcemeters apply voltages V1 and V2 directly to each of the 2 ohmic contacts.

Since the gate of the device directly DC coupled to the CPW ground lines, the gate was al-

ways held at a DC potential of 0V, and changing the bias V1 =V2 6= 0V together allows for

the 2DEG layer to be charged as the carrier and the gate acts as a parallel plate capacitor.
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Figure 5.1: (a) Optical micrograph showing top down view of the the completed device.
The yellow regions are the gold contact pads, transmission lines, and top gate. A schematic
of the cross section at the blue dashed line is shown in (b). The 2DEG is denoted by the
black dashed line, with its boundaries defined by a mesa 145 µm long and 85 µm wide.
5 µm wide ohmic contacts to the 2DEG were made on 2 sides of the mesa.

However, if V1 6=V2, then a DC current flows between the ohmic contacts of the device and

so the electrons in the 2DEG are set to drift. This current I is measured with each of the

sourcemeters, and if the carrier density is also known, the drift velocity is easily obtained

via I = nWev.

The microwave measurements also require very precise calibration of the network an-

alyzer, which was performed using the multiline-TRL method using a custom calibration
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substrate[38]. The calibration procedure effectively moves the measurement plane of the

network analyzer from its port outputs to the probe tips, which means that a microwave

measurement only includes the device s-parameters and between the probe tips, and effects

from the cables, probe arms, bias tee connections, etc. are subtracted out.

The measured S-parameters as a function of frequency are shown in Fig. 5.2a. First,

we note that S11 and S22 magnitudes are typically much larger than S12 and S21, which

represents much larger reflection signals than transmission signals through the 2DEG.

This implies that the 2DEG is not well-matched to the 50-Ω transmission line. Even

though the 2DEG characteristic impedance be tuned by changing its width, it is still not

trivial to match the device to the 50-Ω line due to the ohmic contact resistance, which

in my experience was very difficult to control. Small changes in the conditions of the

annealing temperatures and times and cleanliness of the wafer surface resulted in ohmic

contact resistances that varied greatly.
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Figure 5.2: (a) Calibrated 2-port S-parameter network analyzer measurements of the de-
vice as a function of frequency from 0 to 50 GHz. The rows show the magnitude and
angle of the S-parameters, while the columns are the 4 S-parameters (S11, S12, S21, S22)
respectively. b) Carrier density of the 2DEG as a function of the applied gate voltage
−V1 =−V2. The solid circles are measurements from the plasmon velocity, while the line
is the expected electron density using n =C |V1|
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In spite of this, we could still observe clean transmission signals (See Fig. 5.2a).

In particular, we note that the angle of S21 and S12 showed a very large gradient with

frequency. This gradient is in fact the direct measurement of the plasmon velocity. To see

this, we note that the phase delay, φ , as the plasmon propagates through a section of length

l is

φ = arg(S12,21) =−
2πl
λ

=−2πl
s

f

with a minus sign chosen to be commensurate with the definitions of the S-parameters.

Furthermore, this measurement of s also gives us a measurement of the electron density

independent from the actual gate voltage applied, since LK = 1
s2C , and LK is directly related

to the electron density (Eq. 1.4),

n =
m∗e

LKe2W
=

m∗e
s2e2CW

. The measured n are shown in Fig. 5.2b, together with the theoretical values only using

the applied voltage and capacitance C |V1|. The excellent agreement between the 2 mea-

surements demonstrates the robustness of the measurement and suggests the accuracy of

the device parameters such as the capacitance and 2DEG lengths.

Next, we applied a drift current to the sample by letting varying V1 and V2 around an

average 0.68 V. While ideally we would try to keep the electron density constant while

we vary the current, this is not possible as the electron density no longer remains constant

across the whole length of the 2DEG transmission line. This is because of resistive losses

in the line, which necessitates a varying local potential and thus varying electron density.

Thus, in practise, we vary the current by tuning V1 and V2 while keeping the measured
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average phase velocity in the forward and backward directions, φ f and φr, constant, which

translates to increasing V1 above 0.68 V while decreasing V2, or vice-versa.

Figure 5.3: (a) Phase delay difference between the forward and backward directions as
increases as current increases. b) Drift velocity extracted from the microwave phase dif-
ference φ f −φr, shown as discrete data points. The error bars indicate uncertainty due to
the fits required to obtain c = s± v0. The solid line is the prediction for the drift velocity
using I = nWev

65



Figure 5.3a shows the resulting measurement. One clearly sees that as current is in-

creased, φ f and φr begin to diverge from each other, and further, that this divergence

increases roughly linearly with frequency. This can be understood simply by noting that

for small v0 compared with s,

φ f −φr =
2πl

s+ v0
f − 2πl

s− v0
f

=
4πl
s2 v0 f

Thus, the slope of the graph of φ f − φr against frequency f gives a measurement of the

drift velocity v0. Therefore, fitting the measuredφ f and φr to a straight line to obtain the

slopes allows a separate measurement of v0 that does not require knowledge of the actual

current flowing in the 2DEG, in contrast to the usual way of determining drift velocity

using the equation I = nWev. Figure 5.3b shows the excellent agreeement between the 2

methods.

We believe that these measurements are an unequivocal demonstration of the modifi-

cations of the plasmon velocity due to drift velocity. Nevertheless, the large plasmonic

losses observed suggests limitations to the possible device designs. The 2 main sources of

loss are the resistive losses in the plasmons, and the losses due to the contact resistance.

Further complicating this is the difficulty in separating the 2 sources of loss, since contact

resistance is generally unknown until measured, and we do not have a good circuit model

for the contact resistance, capacitances and inductances. Furthermore, we observed that

while the largest drift velocity possible is the saturation velocity of ∼ 105m/s, in practice

resistive losses increases as the current and drift velocity increased. This results in a much
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lower maximum current and drift velocity that can be achieved while still being able to

observe plasmon propagation.

5.2 Reflection Gain from Nonreciprocal Plasmons

The experimental confirmation of the existence of nonreciprocal plasmons allows a novel

method to achieve gain in an active semiconductor device. It turns out that in a 2DEG

electron gas with drift, the forward and backward propagating waves not only have dif-

ferent speeds as described in the previous section, but also different absolute values for

their wave impedances as well. At a boundary which has its load impedance fixed by the

external circuit, the difference in wave impedances requires the wave amplitudes to be

different. More importantly, the voltage reflection coefficient of the waves at the bound-

ary can even be greater than 1, even from a passive, lossy load with an impedance with

positive real part, which implies that the waves reflect off the load with some voltage gain.

This possibility was first described in [36] by Dyakonov and Shur, who proposed utilizing

this method to build an oscillator that makes use of such a gain mechanism. In this section

we will study this mechanism in detail and describe attempts to measure its effect.

5.2.1 Nonreciprocal wave impedances

First, we to obtain expressions for the wave impedances, we need to write down the cur-

rents in a 2DEG including the case in which the current drifts with velocity v0. This can be

written to first order in densities (n(x, t) = n0+ ñ(x, t)) and velocities (v(x, t) = v0+ ṽ(x, t))
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as

I(x, t) = nWev = eW (ñ+n0)(ṽ+ v0)

= eWn0v0 + eWñv0 + eWn0ṽ

= I0 + eWv0
C
e

(
A1ei(k+x+ωt)+A2ei(k−x+ωt)

)
+eAn0

√
e

mU0

(
−A1ei(k+x+ωt)+A2ei(k−x+ωt)

)
I(x, t)− I0 =

(
eAv0

C
e
− eAn0

√
e

mU0

)
A1ei(k+x+ωt)

+

(
eAv0

C
e
+ eAn0

√
e

mU0

)
A2ei(k−x+ωt)

Here, we have decomposed the waves into a forward propagating part A1 and backward

propagating part A2. We have also not included the loss terms. A more detailed calculation

is possible with these terms, but it does not substantially affect the subsequent conclusions.

Firstly, we might rewrite the equations in terms of s=
√

eU0
m , which is the plasmon velocity

in the case without drift, using n0 =
CU0

e ,

I(x, t)− I0 =

(
eAv0

C
e
− eAn0

s
U0

)
A1ei(k+x+ωt)+

(
eAv0

C
e
+ eAn0

s
U0

)
A2ei(k−x+ωt)

= AC (v0− s)A1ei(k+x+ωt)+AC (v0 + s)A2ei(k−x+ωt)

In the case of no drift the current is

I =− 1
Z0

A1ei(k+x+ωt)+
1
Z0

A2ei(k−x+ωt)
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which reduces to the usual case for a transmission line with characteristic impedance Z0 =

1
ACs . By extension, we can identify the forward and backward wave impedances as

Z± =
1

AC(v0± s)

and crucially, has different magnitude between the forward and backward propagating

waves.

This is significant because the impedance looking into the 2DEG that is terminated by

some boundary is fixed by an external circuit. Suppose we have a 2DEG sample of length

L from x =−L to x = 0, terminated at the x = 0 end with an impedance ZBC. The voltage

at the end of the 2deg (x = 0) is given by

V (x = 0) = v+ei(k+x+ωt)+ v−ei(k−x+ωt)

= v++ v−

The currents at the end are (dropping the time dependence for convenience)

I(x = 0) = AC (v0− s)v++AC (v0 + s)v−
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The boundary has an load (shunt) impedance of ZBC, which means V (x= 0) = ZBCI(x= 0)

and equivalently

v++ v− = ZBC (AC (v0− s)v++AC (v0 + s)v−)

v+ =

(
ZBCAC (v0 + s)−1
1−ZBCAC (v0− s)

)
v−

Γ≡ v+
v−

=

(
(s+ v0)− 1

ACZBC

(s− v0)+
1

ACZBC

)
(5.2)

We can identify this as the voltage reflection coefficient. If the magnitude of ZBC is large

enough (which corresponds to an external open circuit), this reduces to

Γ≡ v+
v−
→ s+ v0

s− v0

and thus we see that these nonreciprocal plasmons reflect off the open circuit with a voltage

gain |Γ|> 1 if v0 is positive.

Now the voltages and currents at the start of the transmission line (x =−L) is

V (x =−L) = v+e−ik+L + v−e−ik−L

I(x =−L) = AC (v0− s)v+e−ik+L +AC (v0 + s)v−e−ik−L
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Then we have

Zin =
V (x =−L)
I(x =−L)

=
v+e−ik+L + v−e−ik−L

AC (v0− s)v+e−ik+L +AC (v0 + s)v−e−ik−L

=
(ZBCAC (v0 + s)−1)e−ik+L +(1−ZBCAC (v0− s))e−ik−L

AC (v0− s)(ZBCAC (v0 + s)−1)e−ik+L +AC (v0 + s)(1−ZBCAC (v0− s))e−ik−L

This is the most general result. Take the limit when ZBC→ ∞,

Zin =
(v0 + s)e−ik+L− (v0− s)e−ik−L

(v0− s)(AC (v0 + s))e−ik+L +(v0 + s)(−AC (v0− s))e−ik−L

=
1

AC
(
v2

0− s2
) v0e−ik+L + se−ik+L− v0e−ik−L + se−ik−L

e−ik+L− e−ik−L

=
1

AC
(
v2

0− s2
) (v0 + s

e−ik+L + e−ik−L

e−ik+L− e−ik−L

)
=

1
AC
(
v2

0− s2
) (v0 + iscot

(
ωsL

s2− v2
0

))
=

1
AC
(
s2− v2

0
) (−v0− iscot

(
ωsL

s2− v2
0

))

When v0 is positive, i.e. carriers are drifting into the boundary, the real part of the

impedance term −v0
AC(s2−v2

0)
becomes negative and appears as a gain element, at the end

of the 2DEG opposite to the open circuit where the gain actually happens, and thus, the

2DEG as a whole (looking in from the x < 0 direction) looks like an element with gain.

For comparison, if we look as the case where v0 = 0, we get

Zin =−
i

ACs
cot
(

ωL
s

)
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which is the usual expression for an transmission line open circuit stub, if we identify

Z0 =
1

ACs .

5.2.2 Reflection Gain Device and Measurements

In an attempt to verify the voltage reflection gain Γ, we designed and fabricated a series of

devices on the same GaAs/AlGaAs platform using the ultrahigh-mobility heterostructure

wafers provided by Kenneth West and Loren Pfeiffer from Princeton University. We wish

to replicate the situation described in the previous section as closely as possible, where we

have the plasmon signal being reflected off an open circuit boundary, while the reflection

coefficient is measured from the other. In the previous section, we calculated the reflection

coefficient 5.2 and noticed that a key requirement for the voltage gain |Γ| > 1 is that ZBC

is as large as possible, i.e. the reflecting boundary is as close to an open circuit as possi-

ble. This may seem incongruent with the fact that one also needs to push a large current

to enable large electron drift velocities so that the reflection coefficient is greater than 1.

However, this situation is in fact achievable, because ZBC is in general frequency depen-

dent, and one can have a low load DC resistance, while having a large AC impedance. This

function is exactly what microwave filters and bias tees provide, being able to selectively

filter out certain frequencies and absorbing / reflecting others.

Therefore, the first step was to design a high-Q microwave filter with a large impedance

at ~50 GHz and a low impedance at DC. The filter design I chose was based on quarter

wave stubs, and designed and simulated using SONNET, a commercial microwave 2.5D

simulation software. The filter design can be seen in Fig. 5.4. In this design, 4 symmetrical

quarter wave open-circuit stubs cause the center of the filter to behave as a virtual AC
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short. Thus, the ends of the filter appears as an AC open circuit. This particular design

was chosen because of the extremely high ZBC that it could achieve, due to the large

quality factor of the quarter wave stubs. This design was fabricated and tested on blank

GaAs wafers, and the performance was found to match the simulation very closely, with

a |ZBC| > 4000 Ω at the resonance frequency of 42 GHz, which can be seen in Fig 5.4a.

Furthermore, by placing it as close as possible to the 2DEG when using the filter for the

gain measurement, one ensures that losses from any gold transmission lines are minimized.

The steps to fabricate a device to measure the gain was virtually identical to that of

the devices used to measure the nonreciprocity. After designing the masks, the rectangular

mesas to define the 2DEG boundaries were made, and Ni/Au/Ge contacts were deposited

and annealed. Here, we required an additional etch step to remove the 1 µm GaAs/AlGaAs

buffer layers underneath the active GaAs layers (which were grown to trap propagation of

defects during the heterostructure growth process) and the gold transmission lines and

microwave filters were deposited using e-beam evaporation and lifted off. The additional

etch step was found to be necessary as the buffer layers were found to cause a significant

loss in performance of the microwave filters.

Measurements of the fabricated circuits were made in the Lakeshore probe station

with a network analyzer, with 2 Keithley 2400 source measure units (SMUs) providing

DC biases for the each of the 2 ends of the 2DEG. The probe station was cooled to 10

K to increase the mobility of the 2DEG and the network analyzer calibrated using a the

multi-line TRL calibration method [38]. In principle, the S-parameter measurements that

the network analyzer reads are the reflection and transmission coefficients of the circuit,

by accounting for losses in the biasing circuit, contacts, and 2DEG itself accurately, would
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Figure 5.4: a) Figure showing graphene device designed to measure reflection gain. b)
Circuit model for the device showing the contact impedances Z1 ≈ R1 and Z2 ≈ R2, which
are largely resistive. c) Graph showing the performance of the microwave filter, which
had a resonance frequency at 42 GHz. At resonance, the input impedance of the filter was
|ZBC|> 4000 Ω.
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translate to the reflection coefficients of the plasmons in the 2DEG. By changing the bias

voltages to the 2DEG and applying a drift current, we aimed to directly measure these

reflection coefficients.

Fig. 5.4b shows the simplest circuit model including the contact resistances and the

parasitic pad capacitances. The challenge is that while we want to measure Γ, the reflection

coefficient calculated in the previous subsection, we can only directly measure Γ′′ = S11,

and thus some further analysis of the data is necessary to see the behaviour of Γ, and the

analysis necessarily involves knowing the various circuit parameters in the model accu-

rately. In general, the DC contact resistances we managed to achieve were on the order

of ∼ 50 Ω for a 20 µm×20 µm contact, while we estimate the parasitic pad capacitances

to be smaller than 0.1pF, which means that the bulk of the effect of the contact should be

resistive and in practice the parasitic capacitance could be ignored. By fitting the mea-

sured S-parameters as a function of frequency to this circuit model, we could extract the

2DEG mobility (equivalently, plasmon scattering time τ), density n0 and contact resistance

parameters R1 and R2. This fit to determine the circuit model parameters was necessary

because there was no independent way of obtaining the contact resistances, which could

differ greatly from device to device. Using these parameter fits, one could extract the mea-

sured Γ′ by using the known circuit model for the contact. The data from a representative

device, DEV3, is shown in Fig. 5.5. Near the resonance point of 42GHz, as the magnitude

of the current is increased, Γ′ universally decreases as the magnitude of current I increases.

However, depending on the direction of the current I, the decrease of the reflection coef-

ficient Γ′ was asymmetric with respect to the 0 current case: there was a smaller decrease

in Γ′ when the drift current flow direction was expected to show gain, |Γ|> 1 when I > 0

75



. These results suggest qualitatively that some voltage gain is indeed happening in the

2DEG system, manifesting itself as an asymmetric behaviour of the plasmonic response

when it is subject to drift currents going into the filter, and out of the filter.

Unfortunately, the fits obtained did not allow us to extract the contact resistances ac-

curately enough to obtain a clear measurement of the plasmon reflection gain Γ. The first

problem is that loss from both the contact resistance R1 and the plasmon scattering time

τ lead to a similar outcome, namely a reduction in the absolute value of the measured

S11 that was frequency independent. Thus, it was difficult for the model fit to separate

these 2 effects, leading to a large uncertainty in the extracted model parameters R1 and

τ . Secondly, changing the bias to increase a current causes the mobility of the 2DEG

to decrease, reducing the plasmon scattering time τ and lowering the measured reflected

signal S11, which further increases the uncertainty of the measurement. Further, it was

unclear if we could rely on the assumption that R1 remained constant as the bias current

through the device increases. Lastly, the curve fitting to the S-parameter data were not

always satisfactory with small R2 values indicating poor fits to the circuit model, with the

results somewhat dependent on choice of parameters to include in the circuit model (for

example, R2 is not expected to affect the results very strongly as it is in series with a very

large impedance ZBC, but in practice the results might depend on the form of R2). This

suggests that some degree of overfitting to the data may be occurring, even for the sample

DEV3 whose results were shown in Fig. 5.5.
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Figure 5.5: Graphs showing extracted Γ′ from a representative sample (DEV3) for varying
bias currents I. Each of the graphs shows the behaviour of Γ′ as the I is changed from
negative to positive. Near the resonance point of 42GHz, as the current is increased, Γ′

decreases as the magnitude of current I increases, reflecting the decrease in mobility of the
2DEG, although the decrease is asymmetric with respect to I = 0.
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5.3 Nonreciprocal plasmons in graphene

In this section, we will study the possibility of measuring similar nonreciprocal plasmons

in graphene. Since it is also a 2D electron gas with a large LK[28], its plasmons at mi-

crowave and THz frequencies can also be relatively slow (∼ c/100). While this may seem

to be much larger than the velocities possible in the high mobility 2DEG described in the

previous section, the advantage is that the high mobilities can persist even at room tem-

peratures when the graphene is suspended or encapsulated by an ultraclean hBN surface.

Thus, it should be possible to measure plasmons with quality factors Q = ωLK/R > 1

at mm-wave frequencies, which would be much more difficult to achieve in a cryogenic

environment.

5.3.1 Graphene Device Fabrication

In order to maximize this quality factor, we fabricated samples using exfoliated graphene

and hBN crystals. The steps largely follow that of the fabrication of the GaAs/AlGaAs

samples, although the recipes may differ completely. These crystals were stacked together

using a dry transfer process (see AppendixA.3) and its edges etched to expose a small 1D

surface to make ohmic contacts. The contact metal (Cr/Pd/Au) was deposited with e-beam

evaporation, covering the exposed graphene edges and completing the contact. Part of

the gate was also deposited at the same lithographic step, due to challenges aligning the

write layers repeatably. Finally, the CPW lines, gate, and pads were deposited. An optical

micrograph of the device is shown in Fig. 5.6a.
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Figure 5.6: a) Optical Micrograph of the graphene device. b) Raman image of the graphene
before patterning of the contacts and CPW lines. The non-ideal shape of the graphene is
clearly visible as well as an air bubble trapped in the stack.

There are several key differences. The first was the much smaller active 2DEG area,

only 7 µm by 5 µm , due to the size limitations of exfoliated samples. The second is the

much longer coplanar waveguides, which extended 200µm away from the sample in each

side. This was necessary to reduce cross-talk between the probe heads, which limited our

first attempts at successful calibration. Lastly, we note that the graphene sample shown is

not perfectly rectangular, but rather trapezoidal in shape, with an air bubble that is visible

both optically and in the Raman image taken at the 2630 to 2730 cm−1 (Fig. 5.6b). These

air bubbles were a common result of the stacking process, and may sometimes be mitigated

by high-temperature annealing, but in this case it did not improve the sample.

5.3.2 Measurement and Analysis

Due to the mm-wave frequencies necessary to obtain a plasmon with Q > 1, we used

Virginia Diode VNA extenders mounted on a Cascade Microtech PM8 probe station that
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allow us to make vector network measurements of the graphene devices at up to 330GHz

at room temperature. As in the case of GaAs/AlGaAs before, bias tees built-in to the

waveguide probe heads were used to separate the mm-wave and DC excitation of the

device, with 2 Keithley 2400s controlling the DC biases. Preliminary measurements of

the graphene plasmon velocity have been made, demonstrating the gate dependence of the

graphene plasmon velocity using methods similar to the previous section.

A graph of the measured plasmon velocity is shown in Fig. 5.7. From the measurement

results, we see that at gate voltages within 1V of the dirac point, there is a large apparent

divergence of the plasmon velocity. However, at these gate voltages, the graphene is very

resistive and the transmission signal S21 is very small, so that the data is spurious and

largely due to some parasitic transmission. Even if these points are disregarded, the mea-

sured plasmon velocities appear to follow a trend consistent with the theory with increas-

ing plasmon velocity for increasing electron density. However, the values of the velocity

appear to be off by a factor of 1.5. This could arise from a number of inaccuracies, mainly

in the measurements of the graphene dimensions and hBN thicknesses.
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Figure 5.7: Measured plasmon velocity (red circles) vs the theory with no fit parameters
(blue line). A better fit includes a factor of 1.53, which might account for possible de-
viations of the actual measurement device geometry from the idealized theory due to the
non-ideal shape of the graphene.
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Appendix A

Microfabrication Details and Recipes

This section documents the steps used in the fabrication of the samples, which were per-

formed at the Center for Nanoscale Systems (CNS) cleanroom at Harvard University. Spe-

cial credit for the initial development of these recipes goes Shannon Harvey and her co-

workers in the Yacoby group for the fabrication of contacts on GaAs wafers, and many

members of the Kim lab including Shi Jing, Laurel Anderson, Hiroshi Idzuchi and Carlos

Forsythe for recipes involving the fabrication of graphene samples.

A.1 Lithography Processes

These were useful for both GaAs and Si wafers, although some dose testing was typically

necessary due to process and tool variations. In particular, the size and shape of the wafer

sections on which the samples were fabricated on has a surprisingly large influence on the

thickness of the resist films due to variations in air flow around the wafer sections as it is

82



spin-coated. In this work, I used 8mm square GaAs wafer sections and 10mm square SiO2

wafer sections.

A.1.1 S1805 single layer process

This is a general purpose resist recipe resulting in a film 480nm thick. This can be used

to lift-off metal films up to ~100nm relatively easily ( this is dependent on the size of the

features).

1. Spin-coat S1805 at 4000 RPM

2. 60 s soft-bake on a hotplate at 115 ◦C. This should result in a film ~480nm

3. Expose using the Heidelberg Maskless Aligner, or MLA (Dose: 70 mJ/cm2 with

405 nm laser)

4. Develop in CD-26 60s

5. Rinse with deionized water

6. 60s hard-bake 115 ◦C

Alternatively, if writing using a hard mask, MJB4 mask aligner can be used (Dose: 3

seconds at 15 mW lamp power) with a 9 second develop in MF319. If the resist is to be

used as a mask for a wet etch, one can consider a longer hard-bake e.g. 10 min at 100 ◦C .
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A.1.2 AZ5214E Image Reversal process

This is used to obtain a lithographic pattern with a slight undercut, to enable deposition of

metal films up to ~400nm thick. This recipe and undercut is usually fairly consistent, and

allows for liftoff in acetone to be complete in half an hour.

1. Spin-coat S1805 at 4000 RPM

2. 60 s soft-bake on a hotplate at 100 ◦C.

3. Expose on either the MLA (Dose: 25 mJ/cm2 with 405 nm laser)

4. 60 s reversal bake on a hotplate at 120 ◦C.

5. Flood exposure 45 seconds on the MJB4.

6. Develop in AZ726 MIF developer for 25 s.

7. Rinse with deionized water

Alternatively, one can expose with the MJB4 (Dose 0.4 s at 15.1 mW lamp power)

A.1.3 E-beam PMMA single layer process

This is a general purpose resist recipe resulting in a film 400nm thick. This can also be

used for liftoff of <100nm films and the pattern edges are relatively clean and ear-free for

~5-10 µm features.

1. Spin-coat PMMA 950K C4 at 4000RPM

2. Bake at 180 ◦C for 60 s.
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3. Expose on Elionix F125 125 keV e-beam writer, dose 1800 µC/cm2 at 1nA, usually

using 500 µm field size and 200 000 dots.

4. Develop 30s in MIBK:IPA 1:3

5. Rinse off with IPA

A.1.4 E-beam PMMA/MMA Bilayer process

This is used to obtain a lithographic pattern with a large undercut to allow deposition of

thicker metal films. Unfortunately the amount of undercut is difficult to control and very

highly dependent on the development time, and so is not suitable for very fine (<2 µm)

patterns.

1. Spin-coat MMA (8.5) MMA at 4000RPM

2. Bake at 150 ◦C for 90 s.

3. Spin-coat PMMA 950K C4 at 4000RPM

4. Bake at 180 ◦C for 90 s.

5. Expose on Elionix F125 125 keV e-beam writer, dose 1800 µC/cm2 at 5nA, usually

using 500 µm field size and 50 000 dots.

6. Develop 20s in MIBK:IPA 1:3

7. Rinse off with IPA
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A.2 GaAs-specific Recipes

A.2.1 Mesa Etching

S1805 spun at 4000 RPM was used as an etch mask to define GaAs mesas. The GaAs

was etched in a well mixed dilute acid mixture H3PO4:H2O2:H20 1 : 1 : 25 which has an

etch rate of ~2000 Å/min. The GaAs samples I received from Kenneth West had the active

layer 80 nm under the surface, so an etch for 30 seconds is usually enough to etch past

the unmasked AlGaAs/GaAs layers. This etch rate was not very constant (probably due to

different AlGaAs and GaAs etch rates) and so should be checked with a profilometer.

A.2.2 Contact formation

After mesas were etched, n-type contacts to the GaAs/AlGaAs electron gas were defined

by photolithography by using AZ5214E. The surface was de-scummed and cleaned with

the barrel plasma asher (30 sccm O2, 100W, 1 minute). This was followed by a quick 15

s dip in a 1:1 HCl : H2O solution to remove any surface oxide, rinsed in dionized water,

blow dried with N2 and immediately put into an evaporator. The evaporator should be

loaded with materials and prepared earlier to minimize the time exposed to atmosphere

after the oxide removal step, as the surface oxide formation happens within minutes on

contact with O2 in the air. Ni/Au/Ge/Ni/Au with thickesses of 6 nm / 30 nm / 60nm /

20nm / 150 nm was thermally evaporated in as low a pressure as possible. I took note to

use a new boat for Ni evaporation for every run, as melted Ni is chemically reacts with

the tungsten boats, making them brittle and a very high chance of cracking in subsequent

runs.
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After liftoff in acetone for half an hour, rinsing and blow-drying with isopropyl alco-

hol (IPA), the contacts were annealed in a rapid thermal annealer for 20s at 460 ◦C in a

forming gas atmosphere. This should result in contact metal surface taking on a mottled

appearance, as the Au/Ge eutectic melts and forms spikes into into the GaAs.[]

A.3 hBN-Graphene-specific recipes

A.3.1 Exfoliation

Graphene and hBN crystals were mechanically exfoliated onto 280nm SiO2 wafers. An

optical resonance allows suitable flakes of crystals to be easily identified by eye using an

optical microscope and characterized, most often using a Veeco AFM to check a clean flat

surface on the hBN and a WITec Raman confocal microscope to check that the graphene

was single layer.

A.3.2 Crystal Stacking

After the appropriate hBN and graphene flakes were identified, they were stacked using

a dry-transfer method using a modified probe station. A small 4 mm × 4 mm PDMS

stamp (1 mm thick) was placed onto a glass slide, and heated to 180 ◦C for it to adhere

to the transparent glass slide. A thin film of PC polymer (2mm × 2mm) was placed onto

the PDMS stamp and the stack held in place with a micropositioner. With the aid of the

probe station microscope looking through the glass slide / PDMS / PC, the PC was put

into contact with the wafer section near a clean hBN flake. Then, the wafer substrate was

slowly heated to 80◦C, causing it expand pushing it into the PC and PDMS and causing
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the flake to be slowly engulfed by the PC. The higher temperature also causes the PC to be

more sticky, and the micropositioner can then be raise to lift off the flake from the substrate

surface.

The aforementioned process can then be repeated with subsequent flakes on the same

PC piece, with the different crystals stacked on top of each other since one can use the

microscope to align the crystals as they come into contact. In fact, after initial pickup of

the first hBN crystal, subsequent crystals are more easily picked up due to the strong Van

der Waals forces between hBN and graphene.

After successfully stacking the hBN and graphene crystals, the whole stack was put

into contact with a fresh new substrate (in this work, we used High-Resistivity Float Zone

(HRFZ) silicon with 280nm of oxide, which was necessary to reduce mm-wave substrate

losses). The substrate was heated to 140◦C , causing the PC to undergo a plastic transition,

releasing it from the PDMS and leaving it behind on the fresh substrate. The PC was then

dissolved in Chloroform for 5 min, rinsed with isopropyl alcohol and blow dried. Lastly,

the stack was annealed in a vacuum at 350◦C for 1 hour. This reduces the number of

bubbles and defects in the stack.

A.3.3 Graphene Edge Contacts

Electrical contact to the graphene was made using 1D edge contacts[39]. Electron beam

lithography (See A.1.3) was used to define an etch mask, and the hBN-graphene-hBN

stack was dry-etched to expose edges of the graphene. The dry etching was performed

in a Surface Technology Systems Inductively Coupled Plasma etch system, with 10 sccm

CHF3, 5 sccm Ar and 2 sccm O2. The exposed wafer was immediately placed into an
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evaporator, and 2nm Cr / 10nm Pd / 80nm Au was deposited at about a 30◦ angle to cover

the exposed graphene sidewall edge.
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Appendix B

Applications of Group Theory to

Plasmonic Crystals

This section will provide an overview to of how group theory applies to symmetries of

electromagnetic waves. In particular, we wish to answer these questions:

1. What does it mean to classify solutions to the electromagnetic wave equations

according to irreducible representations of a symmetry group?

2. What restrictions on the coupling coefficients does group theory predict?

B.1 Key concepts and definitions

A representation, RG , of a group, G , is a group of square matrices D(A) that is ho-

momorphic to the abstract group G . Homomorphic means that the mapping preserves

the algebraic structure. Stated more simply, each element of G (let’s call them A) has a
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corresponding square matrix D(A) such that D(A)D(B) = D(AB). A trivial representation

is the matrix D(A) = (1), which is obviously true for any symmetry group G .

Representations are not unique! Firstly, we note that the trivial representation is al-

ways a possible representation. Example: given a representation RG whose elements are

D(A), a ’similarity transformation’ UD(A)U−1 results in another set R ′G that is also a

representation.

Even the dimension of D is not unique. Given two representations RG and R ′G with

elements D(A) and D′ (A) respectively, we can generate another representation using the

matrices  D(A) 0

0 D′ (A)


This matrix is ’block-diagonal’, i.e. it has submatrices on the diagonal in blocks.

The concept of a representation’s irreducibility is overcomes this non-uniqueness.

Definition: if one can use a similarity transformation to put a representation’s matrices

into block-diagonal form, then the representation is reducible. Otherwise, it is irreducible,

which means that it cannot be expressed in terms of representations with lower dimension-

ality.
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B.2 Application to the wave equation

The wave equation we want to solve to obtain the is is the stationary time-harmonic electric

fields is the wave equation

∇× (∇×E) = k2
0µ0

(
εr−

jσ
ωε0

)
E

This is basically an eigenvalue equation in E(r), ignoring some nonlinearity introduced

by the frequency dependent conductivity.

F (E(r)) = ω
2E(r)

F encodes all the information about the structure and excitations of our system. If there

is symmetry in F , we may write [
F , P̂R

]
= 0

where the P̂R form a symmetry group. Since the system is invariant under the action of P̂R,

the eigenfunctions cannot be changed under the operation of P̂R. If F (En (r)) = ω2
n En (r)

is a solution, then

F
(
P̂REn (r)

)
= ω

2
n P̂REn (r)

In other words, P̂REn (r) is an equally valid solution with the SAME eigenvalue ω2
n .

What happens for degeneracies? Suppose n is a k-fold degenerate level. Then any

linear combination of En1 (r) to Enk (r) is a solution to the wave equation (this is the basis
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for the representation). We claim that applying the symmetry operation gives

P̂REnα (r) = ∑
j

En j (r)×
[
D(n) (R)

]
jα

where
[
D(n) (R)

]
jα

are elements of the irreducible representation of the group of P̂R, i.e.

R. The outline of the proof is to consider the action of

P̂RP̂SEnα (r) = ∑
k

Enk (r)
[
D(n) (R)D(n) (S)

]
jα

which is equal to P̂RSEnα (r) = ∑ j En j (r)×
[
D(n) (RS)

]
jα

.

The dimension of the irreducible representation dim(D) is equal to the degeneracy of

the eigenvalue ω2
n .

B.3 Classification of eigenmodes

The reasoning is as follows:

1. The symmetry operations P̂R commute with the operator F .

2. These symmetry operations form an abstract symmetry group, G with elements R.

3. If En is an eigenfunction with eigenvalue ω2
n then P̂REn is also an eigenfunction

with the same eigenvalue. If ω2
n is k-fold degenerate,

P̂REnα (r) = ∑
j

En j (r)×
[
D(n) (R)

]
jα
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4. It can be shown that the
[
D(n) (R)

]
jα

is itself a group representation of G . There are

several irreducible representations of G , so every En (r) must correspond to one of these.

B.4 Application to graphene plasmonic crystals

Our graphene plasmonic crystals are hexagonal and therefore have the C6v point group

symmetry, meaning that they have a 6-fold rotation axis and 6 mirror planes. Accord-

ing to group theory[13], the eigenfunctions (which are the stationary solutions to the 3D

electromagnetic wave equations in a region with C6v symmetry) can be classified into an

irreducible representation of this group. In other words, each of the eigensolutions that we

find from the finite element method, Ep,z(r), where r is the real-space coordinate, must

be classified into one of the 6 irreducible representations of the C6v group which we call

A1, A2, B1, B2, E1, E2, following typical crystallographic conventions . Furthermore, the

action of each of the group elements, R (such as rotations or reflections), on one of these

solutions must return an electric field distribution that is itself a solution to the wave equa-

tion.

For example, consider the electromagnetic modes of GPC1, with a = 3 µm and D =

2 µm (Fig. 2a, 2c of main text). The fourth band crosses the Γ point at 5.7 THz, i.e.

there is an eigensolution at that frequency. If we denote rotation by 60◦ as RC6 , we find

that RC6(Ep,z(r)) =−Ep,z(r), and reflection along the y-axis has the following relationship

Rσy(Ep,z(r)) = Ep,z(r). These are both possible solutions to the wave equation. For non-

degenerate modes, the coefficient in front of the right hand side tells us the character,

χφ (R), of the representation, φ . By examining the known character table for the C6v group
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Figure B.1: Figure showing the reflection axes of the hexagonal lattice.

(Table S1), the only representation that responds to the symmetry operations in this way is

B1, and so the mode at 5.7 THz is a B1 mode.

C6v E 2C6 2C3 C2 3σy 3σx

A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 -1
E1 2 1 -1 -2 0 0
E2 2 -1 -1 2 0 0

Table B.1: Character Table for the C6v group. The entries are values of the charac-
ter, χφ (R), of symmetry transformations, R (columns), when they act on the irreducible
representations, φ (rows).

This identification can also be extended to doubly degenerate modes. As before, we

examine how the electric field changes under a transformation R, i.e.

R

 Ep,1,z (r)

Ep,2,z (r)

= A

 Ep,1,z (r)

Ep,2,z (r)


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where Ep,1,z(r) and Ep,1,z(r) are the 2 degenerate eigensolutions. The character is defined

to be χφ (R) = Tr(A). Identifying the character under each of the transformations allows

us to classify each of the electromagnetic modes found by the finite element method solver

at the Γ point into the right representation (Table S2).

Furthermore, electromagnetic waves propagating in free space are also solutions of the

wave equation, and so we must be able to classify it as one of the irreducible represen-

tations of the C6v point group in exactly the same manner as above. Firstly, it is doubly

degenerate due to the two polarizations, and secondly, 180◦ rotations (C2) flip the sign of

the fields,

R

 E1,z (r)

E2,z (r)

=−

 E1,z (r)

E2,z (r)


which means that the character is χφ (RC2) = −2. Using the character table, we conclude

that free space radiation propagating in the z- direction has the E1 representation.

With this machinery we can now fully appreciate why certain electromagnetic modes

do not couple to the free-space radiation, even when the in-plane wave vectors are con-

served. Spatial symmetry requirements demand that the electromagnetic modes for both

the graphene plasmonic crystals and free space respond in the same way under the action

of the symmetry operations, and so only E1 modes of the graphene plasmonic crystals can

couple to free space, which for this particular graphene plasmonic crystal are modes 5, 6,

10 and 11.
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Mode Number 2 3 4 5 6 7 8 9 10 11
Irreducible Representation E2 E2 B1 E1 E1 B2 E2 E2 E1 E1

Table B.2: Classification of the electromagnetic modes of the GPC1 with a = 3 µm
and D = 2 µm. Only the modes 5, 6, 10 and 11 have the same irreducible representation
as free-space radiation and can couple to it.
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Appendix C

Quantum Capacitance of 1D Electrons

Consider N free electrons in a 1D box of length L. The total energy of electrons is given

by

E = ∑
|k|<kF

h̄2k2

2m

=
L

2π

∫ kF

−kF

h̄2k2

2m
dk

=
h̄2k3

FL
6πm

=
h̄2

π2N3

6mL2

Now consider a 1D box of length 2L divided by a wall into two parts with N free electrons

in each part. If we displace the wall from the middle point of the box by some distance x,

the total energy is

E(x) =
h̄2

π2N3

6m

(
1

(L+ x)2 +
1

(L− x)2

)
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The force corresponding to this energy term is

F =−∂E
∂x

=
h̄2

π2N3

3m

(
1

(L+ x)3 −
1

(L− x)3

)

=
h̄2

π2N3

3mL3

(
−6x

L

)
= −2π2h̄2N3

mL4 x

Now if we wish to model this system by a quantum capacitance per unit length cq, we

would have an energy term

E(x) =
N2e2

2cq

(
1

L+ x
+

1
L− x

)

which leads to a restoring force

F(x) =
N2e2

2cq

(
1

(L+ x)2 −
1

(L− x)2

)

=
N2e2

2cqL2

(
−4

x
L

)
= −2N2e2

cqL3 x

Comparing coefficients of the restoring force, we obtain

cq =
e2mL

h̄2
π2N
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Now, what if the system also has an electrostatic capacitance ces per unit length? Then the

total energy is given by

E(x) =
h̄2

π2N3

6m

(
1

(L+ x)2 +
1

(L− x)2

)
+

N2e2

2ces

(
1

L+ x
+

1
L− x

)
F(x) = −2π2h̄2N3

mL4 x− 2N2e2

cesL3 x

= −2N2e2

cqL3 x− 2N2e2

cesL3 x

= −2N2e2

L3

(
1
cq

+
1

ces

)
x

Thus the corresponding total capacitance is 1
ce f f

= 1
cq
+ 1

ces
. This calculation shows that the

quantum capacitance is in series with the electromagnetic capacitance, which means that

the smaller of the capacitances dominate. In most normal materials, cq is large enough that

ces is entirely dominant. However, in 2D materials, the quantum capacitance can be made

small enough due to the small density of states that its effects can be measured.
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