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Abstract

This dissertation consists of essays on economic behavior and design, with an emphasis on

understanding how people make decisions in labor markets and social programs.

The first two chapters, written jointly with Linh T. Tô, examine how reference points

influence behavior. The first chapter studies the dynamics of reference dependence by

asking how the timing of earnings within a day affects labor supply decisions. We find

that money is not fungible over time, inconsistent with a standard neoclassical model of

intertemporal optimization as well as alternative behavioral models invoking daily income

targets. We reconcile these views by proposing a model of adaptive reference points. The

second chapter empirically investigates the speed of adjustment of the reference point, a

key degree of freedom in models of reference dependence. We show that reference points

tend to adjust more readily in the direction of gains rather than losses. Our results are

inconsistent with the idea of reference points based on rational expectations, which would

imply no such asymmetry in reference-point adjustment.

The final chapter explores the design of policies for allocating public housing. I present

a model of public-housing allocation and investigate the design of allocation mechanisms

that are strategy-proof, or not subject to strategic manipulation. I characterize a new

mechanism—the Multiple-Waitlist Procedure (MWP)—which allows applicants to optimally

trade off their preferences for different units and waiting times by choosing among a set of

waiting lists. Using estimates of preferences for public housing in Pittsburgh, I find that

a counterfactual change from existing allocation mechanisms to the MWP would lead to

substantial welfare gains.
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Chapter 1

Daily Labor Supply and Adaptive

Reference Points1

1.1 Introduction

Reference dependence plays a contentious role in labor supply. Ever since Camerer et al.

[1997] showed a negative relationship between average daily wages and the number of

hours worked each day for taxi drivers in New York City, studies on the daily labor-supply

decisions of workers who can flexibly choose their work hours have fallen into a clear

dichotomy. The suggestion that workers may have a daily income target led to studies

that either support the reference-dependence model if there is evidence of such a target, or

uphold the neoclassical model with the rejection of an income target. This paper bridges

these perspectives through the notion of adaptive reference points and quantifies the speed

of reference-point adjustment.

We find two main empirical results by analyzing a dataset consisting of all New York

City (NYC) cab fares in 2013 using non-parametric methods. First, we document excess

sensitivity of labor-supply decisions to daily earnings. A driver who has already worked for

8.5 hours, for example, is on average 3 percent more likely to end a shift when cumulative

1Co-authored with Linh T. Tô
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daily earnings are 10 percent higher. This is contrary to the prediction of the neoclassical

model that small windfalls should only trivially affect the marginal utility of lifetime wealth

and therefore should leave labor-supply decisions unchanged. Second, we find stronger

labor-supply reductions in response to earnings that accumulate more recently. One might

naturally expect that the timing of income is economically irrelevant—an extra dollar earned

at 12 pm is no different from an extra dollar earned at 11 am from the perspective of a

driver at 1 pm—or, if anything, recent earnings might be more informative about future

earnings opportunities, which should make a driver less likely to end a shift in response

to more recent earnings. However, we find that a driver who has already worked for 8.5

hours, for example, responds seven times more strongly to an additional dollar earned in

the eighth hour of the shift compared to one earned in the fourth hour. The patterns persist

for stopping decisions at different hours throughout the shift as well as for shifts that start

at different hours of the day. We use an empirical Monte Carlo exercise to highlight the

importance of the non-parametric methodology, as prior methods can yield spurious results

due to functional-form assumptions.

We interpret these facts as evidence of a daily income effect and a violation of fungibility

of money over time, even within a single day. We consider a number of alternative expla-

nations including learning about future earnings, option value, and liquidity constraints,

and show that these explanations cannot account for the patterns we observe. Furthermore,

the income effect does not decrease with experience. We also consider the possibility that

daily earnings are correlated with unobserved determinants of labor supply such as effort

or fatigue and show that the results hold when using instrumental-variables strategies that

rely on variation in earnings due to distance or tips.

The findings are not only inconsistent with the neoclassical model but also with canonical

behavioral explanations, necessitating an alternative formulation. Existing work, which

invokes reference dependence and loss aversion to explain income-targeting behavior, does

not account for the violation of fungibility for money earned at different times within a

day. To the extent that a reference level influences decisions, our findings imply that the

2



reference level must adjust within a day. A daily-level target for income does not permit

stronger reactions to more recent earnings, and a reference level that adjusts instantaneously

likewise does not make any distinction based on the timing of income, producing under

some specifications behavior that resembles the neoclassical prediction. Our formulation

consists of a slow-adjusting reference point, which incorporates experiences earlier in the

day to a greater extent and results in stopping behavior that depends more strongly on

recent earnings.

We explore several classes of models that can potentially explain the patterns of behavior

that the data reveal. We develop structural models of daily labor supply and use the

data on stopping decisions to estimate the parameters using maximum likelihood. As a

benchmark, we consider models based on income targeting, expectations-based loss aversion

[Kőszegi and Rabin, 2006], and salience [Bordalo et al., 2015], which can account for income

effects but not the violation of fungibility within a day. We then propose two models that

incorporate adaptive reference points, one based on loss aversion and one based on salience,

and estimate the parameters of these extended models. We assess these explanations by

comparing the estimated models’ predictions about the magnitude and timing pattern of

the income effect, as well as by deriving and testing an additional prediction about how the

magnitude of the income effect changes around the reference point. Both models capture

the main qualitative features of the data, namely that labor supply reduces in response

to earnings with stronger effects for more recent earnings. However, our model of loss

aversion tends to overstate some of the quantitative features, as the maximum likelihood

estimate of the coefficient of loss aversion implies a magnitude of the income effect and

a change in behavior around the reference point that exceed what we observe in the data.

We discuss how the results suggest an important role for stochastic reference points and

provide support for models that predict a lower degree of loss aversion over money such as

the notion of news utility in Kőszegi and Rabin [2009].

We highlight the implications of our findings for three different areas of work: daily

labor supply, structural behavioral economics, and reference dependence.
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The main empirical contribution of this paper is to provide evidence of daily income

effects and a violation of fungibility by studying how workers adjust labor supply in

response to small changes in accumulated daily earnings. By contrast, most studies in

settings where workers can choose their own daily hours focus on the effects of transitory

wage changes on labor supply. Camerer et al. [1997] present evidence of negative wage

elasticities in two out of three samples of NYC cabdrivers, but the findings in this literature

are mixed.2 Two recent papers revisit the setting of cabdrivers in NYC using a more

comprehensive dataset: Morgul and Ozbay [2014] estimate elasticities for each of four

months in 2013 using data from all trips taken in all taxi cabs in NYC and find a negative

elasticity during only one of the months; Farber [2015] uses a sample of 13 percent of

all cabdrivers between 2009 and 2013 and finds negative elasticities for only one-third of

day-shift drivers and one-seventh of night-shift drivers. One potential concern with elasticity

estimates in this setting is the implicit assumption that cabdrivers treat the average daily

wage as parametric to their labor-supply decisions. Farber [2005] argues that the assumption

of a parametric daily wage rate is unreasonable and instead proposes a model in which

cabdrivers decide whether to stop working at the end of each trip. The stopping model

serves as a starting point for our analysis, as we share the focus on daily income effects

rather than elasticity estimates.

Despite the growing number of papers estimating high-frequency labor-supply elastici-

ties, few authors investigate daily income effects. Using trip-level data for 21 cabdrivers,

Farber [2005] concludes based on the stopping model that cumulative daily earnings do not

significantly influence labor-supply decisions.3 Due to the limited sample, however, Goette

2Papers finding negative elasticities include: Chou [2002] and Agarwal et al. [2015] on taxi drivers in
Singapore; Ashenfelter et al. [2010] and Doran [2014] on taxi drivers in NYC; Dupas et al. [2016] on bicycle-taxi
drivers in Kenya; Chang and Gross [2014] on pear packers in California; and Nguyen and Leung [2015] on
swordfish fishermen in Hawaii. Papers finding positive elasticities include: Jonason and Wållgren [2013] on taxi
drivers in Stockholm; and Stafford [2015] on lobster fishermen in Florida.

3Also see recent field experiments by Andersen et al. [2014] in India, which concludes that the labor supply
of vendors in their Betel Nut Experiment remains unchanged in response to unexpected cash windfalls in the
morning, and Dupas et al. [2016] in Kenya, which examines the effects of unexpected cash windfalls on a group
of workers who have daily cash needs.
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et al. [2004] express concerns about the ability to identify income effects, which our paper

addresses by using comprehensive administrative data. In addition, we document biases

that arise due to functional-form assumptions in the stopping model (see Section A.3.2). We

circumvent these biases using a non-parametric methodology and, contrary to the result

in Farber [2005], find evidence of substantial daily income effects. Moreover, we find that

income effects depend on recency: a worker is disproportionately more likely to end a shift

in response to a dollar received later in the shift than if the same dollar were received earlier

in the shift.

As a second contribution of the paper, our model-comparison exercises provide a

detailed comparison between different behavioral mechanisms that can potentially explain

our findings. An emerging body of work in structural behavioral economics generally

focuses on estimating the parameters of a single behavioral model to test the null hypothesis

of the neoclassical model.4 Our structural models of daily labor supply serve several

purposes: testing against the neoclassical model, testing whether reference points adjust,

comparing the magnitudes of the income effects that the estimates predict, and testing

an additional implication about moments of the data that the models were not designed

to fit. Our results highlight that rejecting the neoclassical prediction does not imply

a validation of a particular alternative. The few existing papers that analyze multiple

behavioral theories generally reject the neoclassical model and broadly conclude support for

the behavioral alternatives. Hastings and Shapiro [2013] find that consumers substitute to

lower octane gasoline to an extent that cannot be explained by income effects when prices

rise, consistent with their implementations of both loss aversion [Kőszegi and Rabin, 2006]

and salience [Bordalo et al., 2013]. Busse et al. [2014] analyze the effect of weather on car

purchases and obtain results predicted by projection bias [Loewenstein et al., 2003] and also

consistent with salience theory [Bordalo et al., 2013]. Barseghyan et al. [2013] demonstrate

the importance of probability weighting for explaining observed levels of risk aversion in

4See, for example, Conlin et al. [2007], Crawford and Meng [2011], DellaVigna et al. [2012], Grubb [2012],
and Laibson et al. [2015].
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insurance deductible choices, but cannot conclude whether loss aversion [Kőszegi and Rabin,

2006] or disappointment aversion [Gul, 1991] also plays a role. The present paper highlights

the link between features of the data and assumptions of various behavioral models.

Prior work on daily labor supply tends to equate the question of whether workers behave

according to the predictions of the neoclassical model with the sign of a single parameter,

the elasticity of labor supply with respect to average daily wages, interpreting a positive

elasticity as evidence in favor of the neoclassical model and a negative elasticity as evidence

in favor of reference dependence and loss aversion. We depart from this paradigm for

three reasons: first, within-day variation in the wage rate can bias elasticity estimates in

either direction (see Section A.2); second, reference dependence does not imply negative

labor-supply elasticities if changes in wages are anticipated [Kőszegi and Rabin, 2006];

third, simply rejecting the neoclassical prediction does not imply a validation of a particular

alternative theory.

A third contribution of the paper is to provide field evidence on reference-point formation

and adjustment. A growing body of work shows that reference dependence influences

behavior in a variety of settings.5 However, much of the existing evidence on how reference

points adjust comes from decisions in game shows and lab experiments [Post et al., 2008,

Gill and Prowse, 2012, Song, 2016]. More recently, DellaVigna et al. [2017] find evidence of

reference-point adjustment in the context of job search over a horizon of several months.

By contrast, the use of high-frequency labor-supply data allows us to detect the speed of

reference-point adjustment at the daily level. Moreover, while the model in DellaVigna et al.

[2017] involves a reference-dependent utility function with a backward-looking reference

point, a number of recent papers provide evidence for forward-looking expectations-based

reference points.6 We take expectations-based reference points as a benchmark and express

5See, for example, Barberis et al. [2001], Fehr and Goette [2007], Card and Dahl [2011], and Allen et al.
[2016].

6For example, see lab evidence from Abeler et al. [2011], Gill and Prowse [2012], Karle et al. [2015], and
Sprenger [2015] as well as field evidence from Post et al. [2008], Card and Dahl [2011], Ericson and Fuster [2011],
and Pope and Schweitzer [2011].
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updated reference points as a function of lagged expectations. Our formulation remains

consistent with the notion of reference points as recent expectations in Kőszegi and Rabin

[2006] but generates some backward-looking features, which can also account for empirical

results that find an influence of past prices on behavior in various settings [Odean, 1998,

Genesove and Mayer, 2001, Hastings and Shapiro, 2013].

1.2 Data

1.2.1 Background

Our study uses trip-level data provided by the New York City Taxi and Limousine Com-

mission (TLC) for every fare served by NYC medallion taxicabs in 2013. The “trip sheets”

consist of detailed information about each fare, including identification numbers for the

driver and car, start and end times for each trip, pick-up and drop-off locations, tips paid by

credit card, and the fare charged. These data are collected and transmitted electronically in

accordance with the Taxicab Passenger Enhancements Project (TPEP).7

Prior to TPEP, cabdrivers were required to fill out trip sheets by hand to record and store

information on paper about each fare. By 2008, all medallion taxicabs had implemented

a series of technology-based service improvements—including credit/debit card payment

systems, passenger information monitors, text messaging between TLC and drivers, and

automated trip sheet data collection—due to a March 2004 mandate by the Board of

Commissioners of the TLC. Along with these service improvements, the automated trip

sheet data include Global Positioning System (GPS) coordinates for pick-up and drop-off

locations, which are available for over 98 percent of the data.

In each trip, the fare is determined by the meter. The standard city rate is calculated by

combining a base rate of $2.50, any surcharges, and an additional amount that depends on

7Haggag and Paci [2014] use the TPEP data in a study on default tip suggestions, which analyzes fares
that were paid with a credit card and not subject to any surcharges. Farber [2015] also uses these data in a
replication and extension of Camerer et al. [1997].
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Figure 1.1: Supply of cabs throughout the day
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Note: The figure depicts the average number of cabs that are on the road at any given minute of the day in our
cleaned data. The solid line depicts the supply pattern of cabs searching or carrying passengers. The dashed
line depicts the supply pattern of cabs with passengers.

the distance/time driven.8 Prior to September 4, 2012, the fare increases by $0.40 per unit

(approximately 0.2 miles); afterwards the incremental charge is $0.50 per unit.9

Figure 1.1 depicts the average number of cabs that are on the road working during

each minute of the day. The systematic drops in the number of cabs available in the early

morning and early evening reflect the common institutional arrangement whereby two

drivers share the same cab (typically switching at 5 am and 5 pm). The TLC regulates the

maximum amount that can be charged to lease a cab for a twelve-hour shift, with a “lease

8The TLC reports three categories of surcharges: New York State Tax Surcharge of $0.50 for every ride on or
after November 1, 2009; Night Surcharge of $0.50 between 8 pm and 6 am; and Peak hour Weekday Surcharge
of $1.00 between 4 pm and 8 pm. Source: http://www.nyc.gov/html/tlc/html/passenger/taxicab_
rate.shtml.

9More precisely, the TLC defines a unit as follows: driving one-fifth of one mile at a speed of at least 6 miles
per hour; or 60 seconds when the cab is not in motion or is traveling at less than 12 miles per hour. Source:
http://www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml.
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cap” of roughly $130 depending on the day of the week and the time of the shift.10

In addition to institutional constraints, weather can potentially affect labor-supply

decisions. Our study uses minute-level weather data (temperature, precipitation, and wind

speeds) from the National Centers for Environmental Information collected at five locations

around NYC. We match each trip from the TPEP data with the weather conditions at the

closest station during the minute when the trip ends.

1.2.2 Descriptive Statistics

The raw data consist of information on about 41,000 unique drivers and 14,000 taxicabs

taking around 173 million trips in 2013. To study cabdrivers’ labor-supply decisions, we

group trips into shifts. As in Haggag and Paci [2014], a shift is a sequence of consecutive

trips that are not more than six hours apart from each other. In other words, a given trip is

the last one in its shift if and only if it is followed by a period of at least six hours during

which the driver does not pick up any more passengers. As in Farber [2005], we define a

break as a long waiting time between fares: at least 30 minutes between a fare that ends in

Manhattan and a fare that starts in Manhattan (over 85 percent of trips); at least 60 minutes

between fares that start or end outside Manhattan but do not end at an airport; or at least

90 minutes between a fare that ends at an airport and the next fare. After eliminating shifts

with missing or inconsistent information (described in Section A.1), about 75 percent of the

observations (over 5.8 million shifts by over 37,000 drivers) remain, comprising over $1.5

billion in transactions for cab fares.

Table 1.1 provides summary statistics at the trip level. Over 85 percent of all trips start

and end in Manhattan, and the median ride is 10 minutes long. The median fare is about

$9.5, with 90 percent of fares falling below $22. We observe tips for the 54 percent of fares

that are paid using a credit card. A driver collects an average of $2.48 in tips per trip, but

10During our sample period, the lease caps for standard vehicles were $115 for all am shifts, $125 for
Sunday-Tuesday pm shifts, $130 for Wednesday pm shifts, and $139 for Thursday-Saturday pm shifts. The lease
caps for hybrid vehicles are $3 higher. Cabs can also be leased on a weekly basis, with a lease cap that is about
six-sevenths of the sum of the daily lease caps. Source: http://www.nyc.gov/html/tlc/downloads/

pdf/lease_cap_rules_passed.pdf.
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Table 1.1: Trip-level summary statistics

Median Mean Standard deviation

Ride duration (minutes) 10 12.6 9.2
Wait duration (minutes) 5 11.3 19.6
Fare (dollars) 9.5 12.2 9.4
Tip ratio (percent) 20 19.3 12.3

Note: This table reports summary statistics at the trip level for all 127 million NYC
taxi trips in 2013 in the cleaned data (see Section A.1). Ride duration is the number
of minutes between pick-up time and drop-off time. Wait duration is the number of
minutes between dropping off a passenger and picking up a new passenger. Fare is
the amount earned not including tips. Tip ratio is the tip divided by the fare, which is
available for the 54% of trips with credit card as the payment type.

Figure 1.2: Tip distribution by fare

Note: The figure depicts the distribution of tips by fare in the sample for which we observe a tip when tips are
between 0 and 20 dollars and fares are between 0 and 60 dollars. The level of darkness represents the density of
the points.
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Figure 1.3: Shift-level summary statistics
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and hour 23. For each clock hour, the distribution of duration of shifts starting at that hour is depicted by the
bar graph, with the mean and interquartile range.

there is substantial variation in the rate of tipping, as Figure 1.2 shows. Given any fare

between the minimum fare of $2.5 and $60, the associated tip can take any value between

$0.50 and $20, with higher concentrations of rounded tips or fixed fraction of the fare,

anywhere between 10 percent and 35 percent. Around 65 percent of shifts contain a tip of at

least $5, and 20 percent of shifts contain a tip of between $10 and $20. Haggag and Paci

[2014] provide further evidence on variation in the rate of tipping.11

Figure 1.3 displays the fraction of shifts starting at each hour of the day as well as the

distribution of work hours. A typical shift consists of 22 trips, with 75 percent of shifts

exceeding 7.2 hours. About 64 percent of the time in an average shift is spent with a

11For cabs that are equipped with credit-card machines from the largest vendor (accounting for 50 percent
of cabs in NYC), there is a discontinuity in suggested tips when the fare reaches $15; Haggag and Paci [2014]
exploit this discontinuity to show that default suggestions influence passenger tipping behavior.
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Figure 1.4: Pattern of wages throughout the day
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Note: The figure depicts the average market wage every minute throughout the day from hour 0 to hour 23.
The market wage in each minute is the average of the per-minute wages of all drivers working during that
minute, where a driver’s per-minute wage is the ratio of the fare (not including tips) to the number of minutes
spent searching for or riding with passengers for their current trip. Gray lines are one-standard-deviation
bounds over the course of the year 2013.

passenger in the cab, 26 percent of the time is spent searching for the next passenger, and 13

percent of the time is spent on break.

The market wage varies considerably throughout the day. For each minute that a driver

spends searching for or riding with passengers, we define the driver’s per-minute wage as

the ratio of the fare they earn for that trip to the number of minutes spent working (i.e.,

searching and riding). We define the market wage in each minute as the average of the

per-minute wages of all drivers working during that minute. Figure 1.4 depicts the average

wage during each minute of the day, and Figure A.1 shows how the wage pattern differs

between weekdays and weekends.12 The highest wages occur during the two hours with

12Section A.2 documents that the pattern of wages throughout the day can be a source of bias for elasticity
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Figure 1.5: Autocorrelation of residualized hourly market wage
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Note: The figure depicts the autocorrelation of hourly market wages indexed by hour of the calendar year 2013.
The hourly market wage is the sum of the minute market wage in each hour, with the minute market wage
computed as in Figure 1.4. The hourly market wage is residualized from a regression on a set of time and
weather effects: an interaction between the hour of day and day of week, the week of the year, an indicator for
federal holidays, an indicator for whether it rains during that hour, and indicators for high (over 80 degrees
Fahrenheit) and low (under 30 degrees Fahrenheit) average hourly temperature. The shaded region denotes a
95-percent confidence band.
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the lowest number of drivers, i.e., the transitions between am and pm shifts each day (see

Figure 1.1).13 A cabdriver earns an average wage of about $31 per hour, which amounts

to a gross income (excluding tips) of about $280 per shift, from which drivers may pay

leasing fees and gasoline costs.14 Figure 1.5 investigates the predictability of hourly wages.

Residualizing hourly wages on a set of time effects (an interaction between the hour of day

and day of week, the week of the year, and an indicator for federal holidays) and weather

effects, which represent a substantial component of the variation in hourly wages but do

not reflect transitory daily variation, the figure shows a positive autocorrelation.

1.3 Tests of Income Effects

A neoclassical model of intertemporal utility maximization predicts that daily hours of work

do not respond to small changes in accumulated daily earnings. As Section A.3.1 discusses

in more detail, we model the decision of a driver at the end of each trip to stop working or

to continue working. After completing t trips in hi,n,t hours, driver i decides to end shift n

when the disutility of effort for completing an additional trip outweighs the expected fare.15

A key prediction of the model is that there are no daily income effects: cumulative daily

earnings yi,n,t do not affect the decision to end a shift.

Letting di,n,t indicate the decision to stop working, we test the prediction that daily

income effects are inconsequential by expressing the probability that driver i ends shift t at

estimates.

13This corroborates the criticism due to Goette et al. [2004] that controlling for clock-hour effects removes
much of the variation in earnings and quitting in the data from Farber [2005] because wages are highest precisely
during the hours when many cabdrivers are required to end their shifts.

14A medallion-cab lessor may agree to provide gasoline to drivers at no more than $21 per shift (or $126 per
week). Source: http://www.nyc.gov/html/tlc/downloads/pdf/lease_cap_rules_passed.pdf.

15This assumption follows Farber [2005, 2008] and Crawford and Meng [2011], who suggest that not explicitly
modeling option value is behaviorally reasonable. Moreover, for convex disutility of effort, this trip-by-trip
stopping rule is consistent with maximizing the static objective function as long as the wage rate y0n(hn) does
not increase too rapidly. The pattern in Figure A.1 suggests that the stopping model may not apply to pm shifts
on weekends, a point that we revisit when discussing empirical results in Section 1.3.1.
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trip n non-parametrically as

Pr(di,n,t = 1) = Â
j

h�
f j(hi,n,t) + gjyi,n,t + Xi,n,tb j + µi,j

�
1{hi,n,t2Hj}

i
+ ei,n,t, (1.1)

where X consists of controls for location, time, and weather which can potentially be related

to variation in earnings opportunities from continuing to work; f (h) is a function of work

hours; µ absorbs differences in drivers’ baseline stopping tendencies; and Hj partitions

the minutes of the shift into intervals to allow a time-varying relationship between each

of the covariates and the probability of stopping. The parameters gj capture the effect of

an additional dollar on the probability of stopping during the jth time interval under the

assumption that cumulative daily earnings are uncorrelated with unobserved determinants

of the value of stopping (such as effort or fatigue) or the value of continuing (such as

future earnings opportunities) conditional on the full set of time-varying covariates, which

Section 1.3.4 discusses in more detail. The model predicts that gj = 0 for all j, i.e., that the

decision to end a shift is unrelated to cumulative daily earnings. Incorporating positively

autocorrelated hourly wages as in Figure 1.5 would yield the prediction that gj  0, as

greater recent earnings may indicate higher continuation values.

By interacting all covariates with a fine partition of the minutes in the shift, the regression

does not impose functional-form assumptions that constrain the relationship between

stopping and its potential determinants. For instance, this enables the relationship between

hours and the probability of stopping to be driver specific, whereas a parametric model

with driver fixed effects would force that for any pair of drivers one of them has a uniformly

higher or lower predicted probability of stopping at the end of any given trip conditional

on the other covariates. As another example, a standard fixed-effects model might suggest

that drivers are more likely to stop at 4 pm, when it rains, or when a trip ends near the

taxi garage regardless of how many hours they have worked, whereas the non-parametric

formulation allows the marginal effect of each variable on the probability of stopping to

vary flexibly throughout the shift. Section A.3.2 conducts an empirical Monte Carlo exercise

that validates this approach and demonstrates that stopping models estimated in prior work

15



can yield spurious results.

1.3.1 Estimation of the Stopping Model

This section evaluates the prediction of the neoclassical model that cumulative daily earnings

do not affect labor supply decisions. We partition the shift into 10-minute intervals and

estimate the stopping model using Equation (1.1).16 Table 1.2 presents the results, with

each row corresponding to a more comprehensive set of controls than the previous one.

To interpret the magnitude of the income effect, the table reports the marginal effect of a

10 percent increase in cumulative earnings on the probability of ending a shift at 8.5 hours,

which is approximately the median stopping time. The estimates in column (1) use variation

in earnings conditional on an extensive set of covariates that capture the value of stopping

(hours worked so far on the shift) and the value of continuing (expectations about future

earnings possibilities). Columns (2) and (3) contain estimates from an alternative estimation

strategy that uses distance between pick-up and drop-off locations to instrument for earnings,

which we discuss further in Section 1.3.4.

All specifications consist of controls for minutes spent working, including indicators for

the number of minutes with passengers in each hour. The specification in row 1 with no

additional controls shows that higher cumulative daily earnings are associated with greater

stopping probabilities, contrary to the prediction of the neoclassical model. Row 2 shows

that using within-driver variation in earnings only strengthens the estimated effect. This

contrasts with the results from Farber [2005], in which the positive effect of cumulative

daily earnings on the probability of ending a shift becomes insignificant after accounting for

interdriver differences in stopping probabilities. Section 1.3.3 discusses and compares the

magnitudes in more detail.

In the remaining specifications, we include precisely measured controls to account for

additional factors that can potentially affect labor supply and find that the income effect

persists. To address the possibility that a driver is more likely to end a shift when a trip

16All of the results are unchanged if we instead partition the shift into 30-minute intervals.
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Table 1.2: Stopping model estimates: Income effect at 8.5 hours

(1) (2) (3)

Baseline IV: GPS
distance

IV: Odometer
distance

Dependent variable: Indicator for stopping
Controlling for

Hours 0.1442 0.2993 0.4516
(0.0351) (0.0459) (0.0498)

& Drivers 0.6632 0.9145 0.9974
(0.0282) (0.0373) (0.0354)

& Location 0.0930 0.1898 0.1789
(0.0270) (0.0360) (0.0334)

& Time 0.3787 0.3987 0.4141
(0.0266) (0.0361) (0.0330)

& Weather 0.3798 0.3983 0.4137
(0.0266) (0.0361) (0.0330)

Mean stopping probability: 13.627%
Number of drivers: 36, 900

Note: This table reports in each cell an estimate of the percentage-point increase in the probability of
ending a shift at 8.5 hours when cumulative earnings is 10 percent higher. Each row specifies an
additional set of controls and provides results under three different estimation strategies. Column (1)
presents baseline estimates from Equation (1.1), with Hj partitioning the shift into 10-minute
intervals. Columns (2) and (3) instrument for cumulative earnings based on cumulative distance
using GPS coordinates and odometer miles, respectively. All specifications control flexibly for
minutes spent working, including indicators for the number of minutes with passengers in each
hour. Location controls consist of neighborhood fixed effects and an indicator for being in the zip
code where the cab must be returned interacted with hour of the day. Time controls include an
interaction between the hour of day and day of week, the week of the year, and an indicator for federal
holidays. Weather controls consist of the indicators for precipitation, wind speed, and temperature in
the minute that a trip ends. Drivers denotes fixed effects for 36,900 unique driver’s license numbers.
Standard errors reported in parentheses are adjusted for clustering at the driver level.
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ends in a convenient location (e.g., near the driver’s home, or near a location where the

cab can be transferred to another driver), the specification in row 3 includes indicators

for the 195 Neighborhood Tabulation Areas (NTA) in NYC where a trip may end and an

indicator for being in the zip code where the cab must be returned interacted with hour of

the day.17 Figures 1.1 and 1.4 show a systematic pattern that many shifts end in the early

evening, coinciding with a period of higher average wages, which reflects an institutional

feature of the market that am-shift drivers transfer shared cabs to pm-shift drivers and

are therefore unable to serve passengers during that time. The estimates in row 4 include

an interaction between clock hour and day of week as well as indicators for week of year

and federal holidays. Row 5 uses high-frequency data from five stations in the NYC area

to account for variation in stopping due to weather conditions. Farber [2015] points out

that rainfall reduces the number of cabs on the street due to added disutility of driving

in the rain. More generally, since adverse weather conditions can affect the labor-supply

decisions of cabdrivers, we include the following indicators measured in the minute when a

trip ends: precipitation, wind speed on the Beaufort scale, temperature above 80 degrees

Fahrenheit, temperature below 30 degrees Fahrenheit. Under the full set of controls, a

10 percent increase in cumulative earnings corresponds to about a 3 percent increase in the

probability of ending a shift (0.4 percentage-point increase relative to a baseline stopping

probability of 13.6 percent) at 8.5 hours. Across all specifications, the data reveal a clear

pattern of significant labor-supply reductions in response to cumulative daily earnings.

Figure 1.6 shows using the full specification (with driver fixed effects and controls

for location, time, and weather) that the magnitude of the income effect from Table 1.2,

evaluated at 8.5 hours of work, persists throughout the shift. The figure plots the income

effect and probability of stopping every thirty minutes over a five hour period, roughly

corresponding to the 10th and 90th percentile of the distribution of stopping times. As the

average stopping probability varies from 4 percent to 27 percent, the magnitude of the

17We map the GPS coordinates of the drop-off location of each trip to the NTA, which is an aggregation of
the census tracts. Source: http://www.nyc.gov/html/dcp/html/census/nyc_cff_faqs.shtml.
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Figure 1.6: Stopping model estimates: Income effect throughout the shift
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income effect increases accordingly. Figure A.7 plots the percent change in the probability

of stopping estimated on four separate groups of shifts: day-weekday shifts, day-weekend

shifts, night-weekday shifts, and night-weekend shifts.18 While the day shifts and the

night-weekday shifts exhibit positive income effects consistent with our estimates from

the full sample, the night-weekend shifts stands out with significant negative magnitudes.

As Section A.3.1 points out, the trip-by-trip stopping model relies on the assumption that

the option value of continuing to drive is sufficiently small (or that drivers ignore option

value), and the pattern in Figure A.1 suggests that this assumption may not be reasonable

for night-weekend shifts, when wages rise substantially and predictably over time. This

observation explains a potential discrepancy with the results in Farber [2015] that hours of

work are roughly unaffected by income during night shifts.

1.3.2 The Role of Timing

This section provides a test of the fungibility of money within a shift by evaluating whether

daily labor supply responds to the timing of earnings. The previous section tests for daily

income effects but implicitly makes a standard economic assumption of fungibility, which in

this case entails that the effect of income on the probability of stopping at any point during

the shift depends only on cumulative earnings and not on how recently the dollars are

received within a shift. We relax the assumption that the probability of stopping does not

depend on the timing of earnings by augmenting Equation (1.1) to express the probability of

stopping as

Pr(di,n,t = 1) = Â
j

" 
f j(hi,n,t) + gj,k Â

k
yi,n,t,k + Xi,n,tb j + µi,j

!
1{hi,n,t2Hj}

#
, (1.2)

where yi,n,t,k denotes earnings accumulated in hour k of the shift. If money is fungible

throughout the shift, then the impact of an additional dollar on the probability of ending

a shift would be independent of when the dollar is earned (i.e., that gj,k is independent

18Following Farber [2015], we define a day shift as one that starts between 4 am and 10 am and a night shift
as one that starts between 2 pm and 8 pm. We classify night shifts on Friday and Saturday as well as day shifts
on Saturday and Sunday as weekend shifts.
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Figure 1.7: Stopping model estimates: Income effect at 8.5 hours—Timing pattern
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Note: The figure depicts the percent change in the probability of ending a shift at 8.5 hours in response to a
$10 increase in earnings accumulated at different times in the shift. Estimates obtain from Equation (1.2) with
controls for location, time, and weather (see Table 1.2 for details) and fixed effects for 36,900 drivers.

of k). A hypothesis based on the pattern of positively autocorrelated hourly wages in

Figure 1.5 would be that gj,k is decreasing in k since greater recent earnings indicate higher

continuation values.

Figure 1.7 plots the estimated effect of an additional $10 earned at various times in the

shift on the probability of ending a shift at 8.5 hours using the full set of controls. The

estimates provide evidence against fungibility: the effect that an additional dollar has on

labor supply depends on how recently the dollar is received within a shift. The effect of

an additional dollar on the probability of stopping is greater if the dollar is earned more

recently. The magnitude is substantial, with an additional dollar accumulated one hour

earlier increasing the probability of ending a shift by seven times more than an additional

dollar accumulated five hours earlier. Based on the positive autocorrelation in earnings
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Figure 1.8: Stopping model estimates: Income effect throughout the shift—Timing pattern
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Note: The figure depicts the effect of an additional $10 in earnings accumulated at different times in the shift
(vertical axis) on the probability of stopping at various times throughout the shift (horizontal axis). Each square
has area proportional to the corresponding percent change in the probability of stopping. Estimates obtain
from Equation (1.2) with controls for location, time, and weather (see Table 1.2 for details) and fixed effects for
37,460 drivers.

from Figure 1.5, higher recent earnings should, if anything, be associated with a higher

value of continuing to work. However, holding total earnings fixed, the probability of

ending a shift at the end of a given trip depends on the path of earnings throughout the

shift in the opposite direction of this prediction: a driver is more likely to stop working

after accumulating earnings at a higher rate toward the end of a shift. While additional

earnings accumulated within the first three hours of the shift do not significantly impact the

probability of stopping at 8.5 hours, drivers appear to respond strongly to income earned

more recently in the shift by reducing labor supply.

Figure 1.8 shows that the violation of fungibility from Figure 1.7, evaluated at 8.5 hours

of work, persists throughout the shift. The columns of the figure correspond to different
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Figure 1.9: Stopping model estimates: Income effect at 8.5 hours—Timing pattern by shift start hour

2

4

6

8

22−4 4−10 10−16 16−22

Clock hour of shift start

H
o

u
r 

w
h

e
n

 t
h

e
 $

1
0

 is
 e

a
rn

e
d

Percent change in stopping probability 2 4 6

Sign negative positive

Note: The figure depicts the effect of an additional $10 in earnings accumulated at different times in the shift
(vertical axis) on the probability of stopping at 8.5 hours for groups of shifts that start in different hours
(horizontal axis). Each square has area proportional to the corresponding percent change in the probability of
stopping. Estimates obtain from Equation (1.2) with controls for location, time, and weather and driver fixed
effects (see Table 1.2 for details).
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times during the shift between hour 6 and hour 11. Within a given column (i.e., fixing a point

in time during the shift), each row depicts the effect of an additional $10 accumulated in a

particular hour on the probability of stopping: additional earnings accumulated early in the

shift do not substantially affect the probability of stopping, but drivers are consistently more

likely to end a shift in response to more recent earnings. The result that the timing pattern

holds throughout the shift suggests an interpretation based on recency. The estimates in

Figure 1.9 further confirm that time-of-day effects do not drive these patterns. The figure

separates shifts into four groups based on start hour: morning (4 am–10 am), afternoon (10

am–4 pm), evening (4 pm–10 pm), and night (10 pm–4 am). Each column depicts the effect of

an additional $10 earned at various times in the shift on the probability of ending a shift at

8.5 hours for a different group of shifts, demonstrating a timing pattern consistent with our

estimates from the full sample.

1.3.3 Discussion of Magnitudes

To provide a better understanding of the size of the income effect, consider the estimates in

Table 1.2. A 10 percent increase in cumulative earnings (an average of $26.67) corresponds

to a 2.8 percent increase in the probability of ending a shift at 8.5 hours under the baseline

specification with the full set of controls. If the additional earnings arrive in the eighth

hour of the shift, then the estimates in Figure 1.8 imply a 10.12 percent increase in the

probability of stopping. For comparison, an additional 10 minutes of work (i.e., the median

trip duration) increases the probability of ending a shift by 5.96 percent.

Most investigations of daily labor-supply decisions focus on the question of how workers

adjust labor supply in response to wage changes. However, the few studies that examine

daily income effects generally find that cumulative daily earnings do not affect labor

supply.19 Farber [2005] finds an insignificant effect of earnings, though the point estimate

19Farber [2005] analyzes income effects using observational data, while Andersen et al. [2014] and Dupas
et al. [2016] use field experiments. Andersen et al. [2014] conduct a field experiment on vendors in an Indian
open-air market and find that vendors do not adjust labor supply in response to an overpayment early in the
day. As a possible resolution to the apparent inconsistency between the results of our observational study and
their field experiment, our Figure 1.7 suggests that workers may adjust labor supply disproportionately in
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implies that a 10 percent increase in cumulative earnings corresponds to an increase in the

probability of ending a shift of 1.2 percent, which is less than half of the magnitude we

find.20

We find not only that cumulative daily earnings influence labor-supply decisions but

also that the income effect depends on recency. The impact of a dollar earned in the eighth

hour of a shift is seven times greater than that of a dollar earned four hours earlier, which

implies a violation of fungibility of money earned within a shift. Our results complement

existing studies on mental accounting, which tends to focus on how consumers treat money

from different sources, by demonstrating violations of fungibility based on earnings accrued

at different times within a single day.21

1.3.4 Alternative Explanations

The evidence shows substantial changes in labor supply in response to small changes in

wealth, and the magnitude of the reduction in labor supply depends on the timing of

changes in wealth. This section addresses potential challenges to the modeling assumptions

by considering the possibility that cumulative earnings are correlated with unobserved

determinants of the stopping decision such as effort or fatigue, or that cumulative earnings

convey information about future earnings opportunities. We also assess whether the

relationship between cumulative earnings and stopping arises due to other factors such as

option value, liquidity constraints, and inexperience.

response to recent changes in cumulative earnings, resulting in labor-supply responses that depend not only on
the amount of income but also on the timing of income. Dupas et al. [2016] find evidence of income effects in a
sample of Kenyan bicycle-taxi drivers who have daily cash needs and conduct a field experiment to evaluate the
effect of unexpected windfalls on daily labor-supply decisions.

20Table 5 in Farber [2005] reports that an additional dollar increases the probability of ending a shift by
0.011 percentage points at 8 hours under the full set of controls. With a mean income of $161.33, an additional
10 percent in earnings corresponds to a 16.13 · 0.011 ⇡ 0.18 percentage-point increase in the probability of
stopping relative to a baseline of 14.67 percent. The income effect is neither significantly different from zero nor
significantly different from the point estimate we find in Table 1.2.

21Hastings and Shapiro [2013], for example, find that households respond over 15 times more to a reduction
in real income through an increase in the price of gasoline than an equivalent reduction in income.
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Table 1.3: Stopping model estimates: Income effect at 8.5 hours—Subsamples

(1) (2) (3)
Night weekday Medallion owners Top decile experience

Panel A
Income effect 0.3564 0.5421 0.4625

(0.0473) (0.1548) (0.0805)

Panel B
Income in hour 2 0.0725 -0.1175 -0.0130

(0.0742) (0.2351) (0.1236)
Income in hour 4 0.0077 0.0282 0.3062

(0.0717) (0.2269) (0.1284)
Income in hour 6 0.2645 0.2363 0.3309

(0.0732) (0.2389) (0.1267)
Income in hour 8 0.3270 0.5714 0.5580

(0.0752) (0.2246) (0.1335)

Note: Panel A reports estimates from Equation (1.1) of the percentage-point increase in the probability
of ending a shift at 8.5 hours when cumulative earnings is 10 percent higher. Panel B reports
estimates from Equation (1.2) of the percentage-point change in the probability of ending a shift at
8.5 hours in response to a $10 increase in earnings accumulated at different times in the shift. The
columns correspond to different sample restrictions: (1) trips on Friday and Saturday after 5 pm,
(2) cabdrivers who operate exactly one cab and no other driver shares that cab, and (3) the latest
10 percent of shifts for drivers with over 100 shifts. The control variables consist of the full set from
Table 1.2. Standard errors reported in parentheses are adjusted for clustering at the driver level.
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Effort

We interpret the increase in the probability of ending a shift in response to higher cumulative

earnings as evidence of a daily income effect exhibited by a reduction in labor supply. A

potential concern with this conclusion is that labor supply consists of multiple dimensions,

some of which are unobserved. If the reduction in hours coincides with an increase in the

intensity of work, then the overall effect on labor supply would be unclear. We suggest

three ways to address this: by using an instrumental-variable (IV) strategy, by constructing

a proxy for effort, and by analyzing income effects and recency effects in the earlier hours

of the shift.

First, columns (2) and (3) of Table 1.2 present IV estimates to address a possible correla-

tion between cumulative daily earnings and unobserved determinants of the decision to

end a shift such as effort or fatigue.22 Since a cabdriver legally cannot refuse passengers

because of destination, we instrument for cumulative earnings using the cumulative distance

between pick-up and drop-off locations.23 The magnitude of the income effect does not

significantly change, measuring distance either by GPS coordinates (column 2) or by odome-

ter miles (column 3).24 Additionally, Section A.4.1 provides an alternative IV strategy that

exploits variation in income due to tips. To the extent that tips may be indicative of effort, a

larger magnitude of the IV estimate might suggest an upward bias in the magnitude of the

income effect. However, the IV analysis results in somewhat smaller estimates, consistent

with our interpretation of the effect of cumulative earnings on the probability of stopping as

representing an income effect. Moreover, estimating Equation (1.1) using either the distance

or tip instruments (see Figure A.4) produces the same timing pattern of the income effect as

22Although we do not report first-stage regressions, the F-statistics are sufficiently large for all of the IV
specifications.

23Camerer et al. [1997] argue based on a survey that driving passengers to a specific destination requires less
effort than driving while searching for potential passengers.

24Since we control for the amount of time spent riding with passengers, variation in distance can reflect
differences in driving speed. To alleviate concerns about a possible correlation between driving speed and
unobserved determinants of the decision to end a shift, Section A.4.1 shows that the results hold using trips
that stay within the dense streets of Manhattan, where variation in driving speed plausibly arises due to traffic
conditions unrelated to the driver’s decisions to exert additional effort.
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in Figure 1.7, suggesting that the income effect does not reflect recent effort expended.

Second, although our dataset does not contain a direct measure of effort, we use as a

proxy how quickly a driver finds the next passenger. Drivers spend 38 percent of their

working hours searching for passengers during shifts in the bottom decile of earnings,

compared with only 35 percent of working hours during shifts in the top decile. Part of

the relationship reflects the mechanical fact that drivers likely earn more money during

shifts that have a higher fraction of the time riding with passengers. Despite this mechanical

effect, the data show only a weak relationship between earnings and the fraction of time

spent searching (correlation of �0.10), suggesting a small role, if any, for adjustments along

the effort dimension.25

Third, Figures 1.6 and 1.8 show consistent and sizable income effects and recency

effects throughout the shift, which poses a difficulty for fatigue-based explanations. An

additional 10 percent in earnings corresponds to an increase in stopping probability of at

least 2.5 percent with a significantly stronger response to recent earnings, even in the early

hours of a shift. Furthermore, to the extent that drivers face an increasing marginal disutility

of effort, we would expect much larger magnitudes of the income effect in the later hours

of a shift (e.g., after working 10 hours compared to 8 hours) if effort poses a confound for

estimating the effect of cumulative earnings. Using a non-parametric formulation mitigates

the scope for the estimated income effect to reflect a response to fatigue, as Equation (1.1)

allows for a driver-specific relationship between work hours and the probability of stopping

and allows for a flexible relationship between the effect of work conditions on the probability

of stopping.26

25In addition, Figure 1.2 provides suggestive evidence of low returns to effort in terms of tips. Although the
figure does not condition on any trip characteristics, the mass of points at a fare of exactly $52 represents trips
between Manhattan and JFK International airport and shows substantial variation in tips, ranging from $1 to
$20.

26Specifically, note that all controls and driver fixed effects interact with a fine partition of the minutes in
the shift. This allows us to account for the effects of fatigue due to work hours and driving conditions as well
as to accommodate neoclassical patterns of behavior such as quitting after a target number of hours without
incorrectly attributing these to effects of income.
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Learning about future earnings

Another potential concern with interpreting the effect of earnings on stopping behavior is

that accumulated earnings may convey additional information about future opportunities,

either within the same shift or across shifts.

If higher cumulative earnings or higher recent earnings indicate lower expected earnings

from continuing conditional on all the covariates, then the estimated relationship between

earnings and quitting would overstate the income effect. The pattern in Figure 1.5, however,

suggests the opposite.

Likewise if higher earnings correlate with plentiful opportunities on the next day, then

drivers may engage in intertemporal substitution, quitting during times of high earnings to

conserve energy for the next shift. The evidence in Section A.4.2 suggests a limited role for

this channel, as earnings do not appear predictive of market conditions on subsequent days.

Option value

The model in Section A.3.1 posits that at the end of each trip, drivers decide whether to

end the shift or continue working for one more trip. In practice, however, a driver who

believes that the wage will rise later in the shift might decide to continue working, and

driver who explicitly solves the dynamic optimization problem might appear to have a low

probability of ending a shift in response to low cumulative daily earnings. Neglecting option

value would be problematic if the rate of increase in the wage exceeds that of the monetary

equivalent of the disutility of effort (see Section A.3.1).27 Column (1) of Table 1.3 restricts

the analysis to trips on Friday and Saturday after 5 pm, when the typical wage profile is

nonincreasing (see Figure A.1), and reports a positive relationship between earnings and

stopping that does not significantly differ from the estimate using the full sample.

27As Figures A.1 and 1.4 show, wages typically do not rise sufficiently rapidly to justify concerns about this
assumption, with the exception of night-weekend shifts which we highlight in Figure A.7.
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Liquidity constraints

Liquidity constraints often pose a challenge for identifying income effects. Johnson et al.

[2006] and Parker et al. [2013], for example, find that household consumption exhibits excess

sensitivity to small changes in wealth due to fiscal stimulus, but their results suggest an

important role for liquidity constraints. Our work, by contrast, detects persistent income

effects in labor-supply decisions at a high frequency, which limits the plausibility of an

explanation based on liquidity constraints. Dupas et al. [2016] argue that bicycle-taxi drivers

in Kenya set income targets as a commitment device to exert enough effort to meet daily

needs, also pointing toward liquidity constraints. Such explanations in our setting would

necessitate a consistent inability of NYC cabdrivers to smooth consumption across days.28

The result that drivers react differently to earnings accrued over different hours of the shift

would be particularly difficult to rationalize based on liquidity constraints.

Although such effects are less plausible in our setting, we replicate our analysis on a

sample of drivers for whom liquidity constraints likely do not bind. Specifically, we estimate

the stopping model restricted to owner-drivers, as such drivers possess enough borrowing

power or wealth to purchase an independent medallion to operate a taxicab.29 Although our

data do not include information on ownership, we classify a driver as an owner-driver if (i)

the driver operates exactly one cab, and (ii) no other driver shares that cab.30 The estimates

in column (2) of Table 1.3 suggest that liquidity constraints do not confound the income

effects we observe.

28Camerer et al. [1997] argue that this seems unlikely because almost all lease-drivers pay their weekly fees
in advance, and fleet drivers pay their daily fees at the end of the day or can pay late.

29The average price of an independent medallion in 2013 was approximately $967,000. Source: http:

//www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf.

30Our classification yields a subsample of owner-drivers, as we exclude those who lease to another driver.
See Farber [2015] for additional institutional details on regulations concerning medallions in NYC.
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Experience

A hypothesis based on findings in related settings would be that the positive relationship

between earnings and stopping reflects a failure to optimize by inexperienced drivers.

Camerer et al. [1997] present evidence that more experienced drivers exhibit more positive

wage elasticities of labor supply, which Farber [2015] corroborates. Recent work by Haggag

et al. [2017] documents using the TPEP data from 2009 that productivity differences between

new and experienced drivers vanish after 17 to 62 shifts (depending on the difficulty of the

situations). Given that performance improves quickly with experience, drivers might also

learn to supply labor more efficiently by ignoring daily earnings.

To consider the possibility of heterogeneity in income effects based on experience,

column (3) of Table 1.3 restricts to the latest 10 percent of shifts in the sample for drivers

with over 100 shifts. We find similar magnitudes of income effects as drivers gain more

experience, with the full set of results that includes income effects at all deciles of experience

in Table A.4.

Measurement error

At least two issues arise when measuring work hours in this setting. First, the data do not

contain an explicit measure of break times. Second, the data do not distinguish between a

driver who ends a shift immediately after dropping off their last passenger and a driver who

spends time searching for another fare unsuccessfully. Section A.4.5 shows that accounting

for the first issue does not change the magnitude of the income effect, and the second issue,

if anything, biases the results against finding income effects.

1.4 Discussion

This paper documents violations of fungibility for money earned at different times. Contrary

to the neoclassical prediction, drivers treat an additional dollar on one day as being different

from a dollar on another day, resulting in a daily income effect whereby labor supply
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decreases in response to accumulated daily earnings. Moreover, drivers are more likely

to stop working in response to earnings accumulated more recently within the same day.

These facts taken together are inconsistent with a notion of income targeting in which

drivers reduce labor supply after earning a particular amount each day. However, models of

reference-dependent preferences can explain both facts with a reference level that adjusts

within the day. As reference levels take time to adjust in response to recent changes in

expectations, earlier experiences within the day become incorporated into the reference

point, thereby moderating the income effect, while recent experiences induce stronger

behavioral responses. Our findings provide field evidence for reference dependence and

reference-point adjustment that persist in the face of experience and high stakes in a familiar,

recurring setting.
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Chapter 2

Asymmetric Reference Point

Adjustment1

2.1 Introduction

A substantial body of work documents that reference points have an influence on behavior.

While the predictions of reference dependence depend on how reference points are formed

and how they adjust, reference points are typically assumed to coincide with rational

expectations. This chapter investigates how reference points adjust. Our results indicate

that reference points tend to adjust more readily in the direction of gains rather than losses,

contrary to the canonical view of reference points based on rational expectations.

The previous chapter provides evidence of excess sensitivity of labor-supply decisions

to daily earnings, with a magnitude and timing pattern that a neoclassical model of labor

supply cannot explain. This chapter estimates and compares alternative models which can

potentially generate the income effects that the data reveal. In Section 2.2, we present a

neoclassical model of labor supply as well as three behavioral models: income targeting,

loss aversion, and salience. Section 2.3 extends the loss aversion and salience models to

incorporate reference point adjustment, which we demonstrate is crucial for understanding

1Co-authored with Linh T. Tô
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the violation of fungibility shown in Section 1.3.2. The structural-estimation exercise in

Section 2.4 yields two conclusions. First, the estimates reject the neoclassical model against

several alternatives. Second, the models with adaptive reference points and asymmetric

adaptation provide a better fit of the data than the corresponding models with static

reference points.

Existing work that uses structural estimation to test a behavioral theory largely focuses

on the objective of testing the null hypothesis of the neoclassical model, with a rejection of

the neoclassical model interpreted as evidence in favor of a particular behavioral alternative.

Section 2.5 departs from that paradigm by using the structural estimates to compare the

models’ implications with the goal of adjudicating between the behavioral mechanisms.

First, we compare the magnitude and timing pattern of the income effect predicted by each

of the models. Second, we derive and test an additional prediction about moments of the

data that the models were not designed to fit, namely how the magnitude of the income

effect changes around the reference point.

2.2 Behavioral Models of Daily Labor Supply

The neoclassical model in Section A.3.1 posits that the marginal utility of lifetime income—

and hence labor supply—does not vary in response to small, within-day changes in wealth.

We assume the objective function for a driver with earnings It and hours of work Ht takes

the form

v(It,Ht) = vI(It) + vH(Ht)

= It �
y

1+ n

H1+n

t , (2.1)

where y parameterizes the disutility of work and n is the elasticity parameter.

The stopping decision depends on the next trip’s expected fare Et[ ft+1] and duration

Et[ht+1]. A driver with earnings It and hours of work Ht at the end of trip t decides to end
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a shift if the driver expects that completing an additional trip results in lower utility:

Et[v(It+1,Ht+1)]� v(It,Ht) + #t < 0, (2.2)

where It+1 = It + Et[ ft+1], Ht+1 = Ht + Et[ht+1], and #t are independent and normally

distributed with mean zero and variance s

2. While the objective function depends explicitly

on cumulative daily earnings It, quasi-linearity implies that cumulative daily earnings do

not affect the decision to end a shift.

To explain the results in Section 1.3, a model must allow for non-trivial within-day

changes in the marginal utility of income. We analyze three different behavioral distortions

that can create such income effects: income targeting, expectations-based loss aversion,

and salience. Each of the models we consider makes an implicit assumption of narrow

bracketing, that decision makers evaluate utility at the daily level.

Income targeting

This section formulates an ad-hoc model of daily income targeting in which the marginal

utility of income declines substantially around the level of average daily earnings. As

Camerer et al. [1997] suggest, a model in which drivers dislike falling short of their target

more than they like exceeding it provides one possible explanation for the concavity in

utility necessary for daily income effects.

The following objective function introduces a parameter a � 0 to allow for a change in

marginal utility at the target T:

vIT(It,Ht) = v(It,Ht) + a(It � T)1{It<T}. (2.3)

We interpret this as a model of reference-dependent preferences with a fixed reference

point.2 The model implies a coefficient of loss aversion—the ratio between utility from

losses and gains—of 1+ a. Farber [2015] tests the neoclassical model against this alternative

2DellaVigna [2009] describes a model of this form as a simplified version of prospect theory [Kahneman
and Tversky, 1979] that incorporates reference dependence and loss aversion without diminishing sensitivity
and probability weighting.
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hypothesis.

Expectations-based loss aversion

The theory of reference-dependent preferences due to Kőszegi and Rabin [2006] provides

the leading explanation in the literature for the mixed evidence on behavior in daily labor-

supply decisions.3 In their model, utility depends not only on a standard outcome-based

consumption component but also on a gain-loss component which captures how decision

makers assess choices relative to a reference point. Kőszegi and Rabin [2006] assume that

rational expectations endogenously determine the reference point, consistent with laboratory

experiments and field evidence in various settings.4

Our primary analysis of loss aversion involves a simplified version of the model from

Kőszegi and Rabin [2006], in which the objective function of the driver takes the following

form:

vLA(It,Ht) = (1� h)v(It,Ht) + h Â
x2{I,H}

n(xt | xrt), (2.4)

where Ir and Hr denote the reference levels for income and hours (i.e., the driver’s expected

earnings and hours for the shift), and the gain-loss utility is given by

n(x | xr) =
�
1{x>xr} + l1{x<xr}

�
(vx(x)� vx(xr)),

where h determines the relative weight on gain-loss utility, and l � 1 parameterizes

the degree of loss aversion. This coincides with the neoclassical model when there is no

difference in utility from gains and losses (i.e., l = 1 or h = 0). Despite adding two

parameters to Equation (2.1), the model consists of only one additional degree of freedom

since h and l are not separately identifiable: behavior depends only on the ratio between

3The survey by DellaVigna [2009] discusses this, but also see more recent work by Crawford and Meng
[2011].

4For example, see lab evidence from Abeler et al. [2011], Gill and Prowse [2012], Karle et al. [2015], and
Sprenger [2015] as well as field evidence from Post et al. [2008], Card and Dahl [2011], Ericson and Fuster [2011],
and Pope and Schweitzer [2011].
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utility from losses and gains, namely

L =
(1� h) + hl

(1� h) + h

= 1+ (l � 1)h.

This formulation makes two simplifying assumptions about the gain-loss component of

utility. First, the reference levels represent a driver’s point expectations for income and

hours on a given shift, abstracting from stochasticity whereby the reference levels represent

the full distribution of potential earnings and hours for that particular shift. Second, the

piecewise-linear gain-loss function rules out diminishing sensitivity, the observation that

decision makers experience smaller marginal changes in gain-loss sensations further away

from their reference levels. While these assumptions follow the implementation from

Crawford and Meng [2011], we relax both of them in Sections 2.4 and 2.5.

The Kőszegi and Rabin [2006] model features two important differences from the income-

targeting model. First, drivers experience losses from working longer than their “hours

target,” analogous to the losses from earning less than their “income target.” In other words,

the separable gain-loss function indicates that drivers exhibit loss aversion not only over

income but also over effort, with the same coefficient of loss aversion l on both dimensions.

Second, utility depends on expectations, as the reference points vary across drivers and

across days. Section 2.3 discusses expectations and the specification of the reference point in

more detail.

Salience

We adapt a model of salience based on Bordalo et al. [2015] to daily labor-supply decisions.

The model combines two elements: (i) an evoked set determines the choice context and

hence the salience of each attribute (income and hours), and (ii) decision makers place

greater weight on the more salient attribute.5

5Bordalo et al. [2012] develop a theory of choice under risk in which decision makers overweight states
that are more salient. Bordalo et al. [2013] extend this concept to riskless choice among goods with multiple
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In this model, context influences decisions by distorting the relative weights that a driver

places on income and leisure. A decision problem brings to mind an evoked set of options,

each with an associated level of availability. The availability-weighted average of the options

comprising the evoked set determines the normal levels of income and hours. The extent to

which an attribute varies within the evoked set relative to the normal level determines the

salience of that attribute. Drivers place greater weight on the more salient attribute—income

or hours—of their decision problem. In describing the components of the model more

formally, we start with the salience distortions, taking the normal levels of income and

hours as given, and then address how to determine the normal levels.

The objective function consists of a weighted sum

vS(It,Ht) = Â
x2{I,H}

w(s(xt, xnt ), d)
Ây2{I,H} w(s(yt, ynt ), d)

vx(xt), (2.5)

where the relative weight w(s(x, xn), d) on the utility for a given attribute increases in the

salience s(x, xn) of that attribute, xn denotes the normal level of the attribute, and d  1

parameterizes the degree of distortion. We adopt the continuous salience weighting function

from Bordalo et al. [2013]:

w(s(x, xn), d) =
[1+ s(x, xn)]1�d

2
,

where the case d = 1 embeds the neoclassical model without context dependence, and

the salience function s(·, ·) is a symmetric and continuous function that satisfies ordering

and diminishing sensitivity conditions. The ordering condition requires that moving an

attribute further apart from the normal level increases its salience. Diminishing sensitivity

expresses the idea that increasing the normal level renders a given difference between an

attribute and the normal level less salient.6 Section 2.3 discusses the importance of these

attributes (e.g., quality and price), where consumers place more weight on more salient attributes, but take the
evoked set as exogenous. Our formulation of salience follows Bordalo et al. [2015] which models the evoked set
explicitly.

6Note that the salience model defines diminishing sensitivity relative to zero, whereas the loss aversion
model refers to diminishing sensitivity relative to the reference point.
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two properties for explaining the pattern of income effects. For a continuous and symmetric

salience function satisfying these properties, Bordalo et al. [2012, 2013] suggest

s(x, xn) =
|x� xn|
|x|+ |xn| ,

which Hastings and Shapiro [2013] also use in empirical work.

To complete the description of the model, we discuss how to specify the evoked set and

availability, which determine the normal levels of income and hours. We assume that the

evoked set consists of the choices, stop or continue, and that the availability at of stopping

at the end of trip t depends on how much more the driver must earn to reach the income

target.7 We then define the normal level of an attribute as the availability-weighted average

of the level of that attribute from stopping or continuing:

In = at It + (1� at)It+1

Hn = atHt + (1� at)Ht+1

where at increases in It, decreases in Irt , and lies between 0 and 1. Intuitively, as earnings

accumulate up to and beyond the income target, the decision to stop becomes more typical

and thus comes to the top of the driver’s mind. For estimation, we assume that the

availability of stopping corresponds to the predicted probability of ending a shift based on

It and Irt from a logistic regression.8 We isolate the channel by which earnings influences

stopping behavior through It and Irt , though in principle other factors could could be

included as well, which we discuss in Section 2.5.

The idea that choice context influences how decision makers weight different attributes

of a decision problem appears in a number of recent economic models (e.g., salience [Bordalo

et al., 2013], focusing [Kőszegi and Szeidl, 2013], and relative thinking [Bushong et al., 2016])

which take the choice context as a degree of freedom called the evoked set, consideration

7This assumption is based on Bordalo et al. [2015], who posit that availability is a map from past experiences
and objective probabilities into a weight that reflects what comes to the decision maker’s mind.

8We obtain similar results if we use different functional forms.
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set, or comparison set. These models conceptually distinguish between the choice set and

the evoked set but equate them when deriving predictions. If the normal levels were an

unweighted average of the elements in the evoked set as in [Bordalo et al., 2013], then

assuming that the two sets coincide would fail to produce the pattern of income effects from

Section 1.3 because doing so imposes fungibility: in such a model, the behavioral distortion

only depends on cumulative earnings, independent of the timing of earnings. One way to

proceed would be to make ad hoc assumptions about which additional options enter the

evoked set.9 Instead, we assume the evoked set consists of the choices stop and continue,

but we put structure on the components of the evoked set using a notion of availability

based on Bordalo et al. [2015].

2.3 Adaptive Reference Points

In this section, we discuss how each of the behavioral models can potentially account for

the evidence in Section 1.3. With the exception of the income-targeting model, which takes

each driver’s target to be fixed across all shifts, the predictions depend crucially on the

reference level. As a starting point, we take each driver’s reference level for each shift to be

their rational expectations of income and hours for that particular shift. Under this view, the

models of expectations-based loss aversion and salience yield daily income effects but treat

money as fungible within the shift. By allowing for reference points that adjust within a

shift, both models can generate the violations of fungibility necessary to explain the timing

pattern of the income effect.

Consider the case of reference points based on rational expectations that represent

drivers’ steady-state beliefs about earnings and hours. Under this view, reference points

can be thought of as drivers’ targets for income and hours formed at the daily level, as in

9To explain observed gasoline-grade choice in 2006–2009, Hastings and Shapiro [2013] estimate a model of
salience in which the evoked set consists of the current choices along with the grades of gasoline at the national
mean prices from one week earlier. To improve fit, they propose an extended salience model in which the
evoked set consists of the current choices along with the three grades of gasoline at prices $1.00, $1.10, and
$1.20.
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Crawford and Meng [2011]: reference points vary across but not within shifts. We denote

these ex ante expectations of shift-level earnings and hours by Ir0 and Hr
0. The model based

on Kőszegi and Rabin [2006] generates daily income effects through loss aversion, whereby

the marginal utility of income decreases once earnings exceeds the reference point. The

same mechanism applies in the income-targeting model. The model based on Bordalo

et al. [2015] generates daily income effects through the diminishing-sensitivity property of

salience: the driver perceives the value of an additional fare less intensely at higher levels of

daily earnings. Each of these models, despite generating income effects, treats money as

fungible within the shift. Given the static reference point, the behavioral distortions depend

on cumulative daily earnings in a shift, without scope for recent earnings to have a stronger

influence on stopping decisions.

Suppose reference points adjust instantaneously to new information about how much the

driver will earn by the end of the shift. In this case, if hourly earnings exhibit no substantial

within-day autocorrelation, the driver updates expectations about earnings for the shift

by immediately incorporating any difference between realized and expected earnings.

Predictions of the Kőszegi and Rabin [2006] model approach those of the neoclassical model

as reference-point adjustment becomes instantaneous. Intuitively, since rational expectations

about daily earnings fully adjust, deviations from expectations no longer bring cumulative

daily earnings closer to or further from the reference point. While the salience model

continues to predict income effects due to diminishing sensitivity, no timing pattern emerges

because instantaneous adjustment does not create a distinction between earnings at different

times.10

Stronger income effects in response to recent earnings requires a slow-adjusting reference

point. Letting Dt denote the difference between realized and expected earnings in trip t, we

model the reference point in this case as a convex combination of the lagged reference point

10With a positive autocorrelation of hourly earnings as in Figure 1.5, higher recent earnings should if
anything affect the reference point more strongly and hence affect the stopping decision less strongly. This
implies a higher probability of ending a shift in response to less recent earnings.
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and the expectation that obtains under full adjustment:

Irt = q Irt�1 + (1� q)

 
Ir0 +

t

Â
t=1

D
t

!
, (2.6)

where 0  q  1, with q = 1 corresponding to a static reference point and q = 0 correspond-

ing to a reference point that adjusts instantaneously. The recursive formulation produces a

reference point based on lagged expectations:

Irt = Ir0 +
t

Â
t=1

(1� q

t+1�t)D
t

.

The expression highlights that the reference point for income incorporates less recent

earnings to a greater extent, consistent with the idea that reference points take time to

adjust in response to recent changes in expectations. This generates a violation of fungibility

under both loss aversion and salience. Under loss aversion, the gain-loss component of

utility depends on the difference between earnings and its reference level, and the reference

point adjusts to a lesser extent in response to more recent earnings. The same applies to

availability in the salience model, reflecting the intuition that recent earnings bring stopping

closer to the top of the driver’s mind, which makes leisure relatively more salient due

to the ordering property of salience.11 The qualitative predictions of both models under

a slow-adjusting reference point corresponds to the following intuition about reacting to

surprises: unexpected earnings constitutes a surprise, but surprises wear out over time so

that quitting depends to a greater extent on recent earnings.

11When the availability of stopping increases, the normal levels In and Hn move away from the levels of
these attributes under continuing (It+1 and Ht+1). By the ordering property, this increases the salience of both
income and hours, with the salience of hours increasing to a greater extent because of convexity in the disutility
of work hours.
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2.4 Structural Estimation

We use the data on stopping decisions to estimate the models via maximum likelihood

under alternative specifications of the reference point.12 Each behavioral model produces a

stopping rule analogous to Equation (2.2), resulting in likelihood functions of the following

form:

Â logF
✓
v(It,Ht)�Et[v(It+1,Ht+1)]

s

◆
. (2.7)

As a benchmark, we consider the case of static reference points based on rational

expectations, proxying for expectations using the sample average of income and hours

by driver and day of week (excluding the current shift) as in Crawford and Meng [2011].

Although we estimate the parameters jointly for each of the models, the following intuition

describes the main sources of identification. The disutility of effort y is primarily identified

by variation in work hours, and the elasticity parameter n is primarily identified by variation

in expected wages from continuing. The behavioral parameter in each model (a for income

targeting, L for expectations-based loss aversion, and d for salience) is primarily identified

by variation in cumulative earnings, which explains why we do not estimate a single model

that nests and tries to distinguish multiple behavioral mechanisms. For the purpose of

estimation, as in Section 1.3, we allow the parameters to be time-varying to avoid imposing

any particular functional form on the relationship between work hours and quitting behavior.

In what follows, we report estimates that reflect behavior after 8.5 hours of work using the

same sample as in Table 1.2.

In Table 2.1, columns (2) to (4) report estimates of the three behavioral models corre-

sponding to the objective functions from Equations (2.3) to (2.5). Each of these models nests

the neoclassical model from Equation (2.1) with no income effects, reported in column (1).

A likelihood ratio test in each case rejects the null hypothesis of the neoclassical model

(i.e., a = 0, L = 1, and d = 1). The results in column (3) relate to the main analysis

in Crawford and Meng [2011], which also consists of a model of loss aversion with static

12Recall, however, that the income-targeting model depends on a fixed reference point, the driver’s mean
earnings.
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Table 2.1: Maximum likelihood estimates: Static reference points

(1) (2) (3) (4)
Baseline Income targeting Loss aversion Salience

Disutility of trip 0.0240 0.0332 0.0450 0.0706
(0.0021) (0.0023) (0.0027) (0.0040)

Error term distribution s 0.0580 0.0644 0.0642 0.0688
(0.0041) (0.0049) (0.0019) (0.0054)

Income targeting 1+ a 1.3014
(0.0031)

Loss aversion L 1.3578
(0.0025)

Salience d 0.3590
(0.0224)

Log-likelihood -493,669 -474,985 -451,678 -469,585
Likelihood ratio test: baseline < 0.001 < 0.001 < 0.001

Note: This table presents maximum likelihood estimates of Equation (2.7) for different specifications of the
objective function under the restriction of static reference points. The estimation sample consists of over
1.2 million shifts from 36,900 drivers. The columns correspond to the objective functions in Equations (2.1)
and (2.3) to (2.5), and the rows correspond to parameters. The row labeled ‘disutility of trip’ reports a
combination of the elasticity parameter n and the disutility of effort y given by y

1+n

(H1+n

t+1 � H1+n

t ). The
last row contains the p-value from a likelihood ratio test which takes the neoclassical model in column (1) as
the null hypothesis.
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Table 2.2: Maximum likelihood estimates: Adaptive reference points

(1) (2)
Loss aversion Salience

Disutility of trip 0.0412 0.0694
(0.0027) (0.0041)

Error term distribution s 0.0623 0.0702
(0.0020) (0.0010)

Loss aversion L 1.3273
(0.0022)

Salience d 0.3290
(0.0227)

Adjustment q 0.9548 0.9672
(0.0012) (0.0018)

Log-likelihood -449,346 -465,204
Likelihood ratio test: q = 1 < 0.001 < 0.001

Note: This table presents maximum likelihood estimates of Equation (2.7) for different
specifications of the objective function under adaptive reference points. The estimation
sample consists of over 1.2 million shifts from 36,900 drivers. The columns correspond
to the objective functions in Equations (2.1) and (2.3) to (2.5), and the rows correspond
to parameters. See the note to Table 2.1 for additional details. The last row contains
the p-value from a likelihood ratio test which takes the corresponding model with a static
reference point as the null hypothesis.

reference points.13 The income targeting model in column (2) implies a smaller change in the

marginal utility of income at the target level. To the extent that the income targeting model

mis-specifies the reference point, we would expect to underestimate degree of loss aversion;

however, the model does not consist of an hours target and hence may mis-attribute loss

aversion over hours to income. The model of expectations-based loss aversion appears to

provide the best statistical fit of the data based on the log-likelihood, though the models are

not nested and thus cannot be directly compared using this criterion.

Relaxing the assumption of a static reference point, we estimate models of expectations-

based loss aversion and salience with adaptive reference points. We allow the reference

13Our analysis uses fewer parameters than Crawford and Meng [2011] because they also estimate a set of
control variables. We account for the control variables from Section 1.3 by residualizing the income variable and
verified that this choice does not affect any of the results.
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point to vary within a shift by introducing a new parameter, the adjustment term q, and

defining the reference level Ir according to Equation (2.6). This specification nests the static

reference point above (q = 1) as well as a reference point that adjusts instantaneously (q = 0).

Both extreme cases correspond to the fungibility of money within a shift, with 0 < q < 1

indicating a violation of fungibility. The speed of adjustment is primarily identified by

variation in the timing of income. Table 2.2 reports results consistent with a violation

of fungibility, highlighting the importance of within-day adjustments. The estimate of q

differs significantly from 0 and 1 in both models, and a likelihood ratio test rejects the

restriction to a static reference point. While q appears close to 1 in both cases, its magnitude

depends on the definition of a period. Estimating the speed of reference point adjustment

at a lower frequency (e.g., defining a period as an hour instead of a trip) would result in a

smaller magnitude of q. The remaining parameters do not substantially differ from their

counterparts in Table 2.1.

The structural estimates for both models provide empirical support for the notion of

adaptive reference points. One interpretation of the evidence suggests a departure from

rational expectations as the reference point. Rational expectations derive from a steady-state

distribution of potential earnings, and a given shift constitutes a particular realization from

that distribution. This view of rational expectations predicts a static reference point (q = 1),

which the evidence rejects.14 Under an alternative interpretation, rational expectations

incorporate new information within a shift, which leads the reference point to adjust. While

this does not require that expectations or beliefs adjust slowly to new information, the

evidence does suggest that preferences do not instantaneously change, consistent with

the idea from Kőszegi and Rabin [2006] that preferences depend on lagged expectations.

Relaxing the assumption that the reference point adapts symmetrically, we estimate a

model of expectations-based loss aversion with asymmetric reference point adjustment. We

augment Equation (2.6) by allowing the speed of adjustment to differ for gains (q+) and

14The results in Section A.5 also reject a reference point that does not adjust (i.e., q = 1) if we allow for
stochastic reference points that capture the distribution of potential earnings and hours.
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Table 2.3: Maximum likelihood estimates: Asymmetric adaptation

Parameter Asymmetric

Disutility of effort 0.0559
(0.0077)

Elasticity 0.2412
(0.0371)

Error term distribution s 0.0611
(0.0172)

Loss aversion l 1.4578
(0.0223)

Adjustment q+ 0.8527
(0.0122)

Adjustment q� 0.9454
(0.0122)

Likelihood ratio test: q+ = q� < 0.001

Note: This table presents maximum likelihood estimates of Equation (2.7)
for the objective function in Equation (2.4) under adaptive reference
points with asymmetric adaptation. The estimation sample consists of
over 1.2 million shifts from 36,900 drivers. The last row contains the
p-value from a likelihood ratio test which takes the model with symmetric
adaptation as the null hypothesis.
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losses (q�). The estimate of q+ differs significantly from that of q�, and a likelihood ratio

test rejects the restriction to a reference point with symmetric adaptation. Our results in

Table 2.3 indicate that reference points tend to adjust more readily in the direction of gains

rather than losses, contrary to the canonical view of reference points based on rational

expectations.

2.5 Comparison of Models

This section provides a more detailed comparison between the models of expectations-based

loss aversion and salience by exploring their implications for explaining the patterns of

stopping behavior in the data.

Magnitude of income effect

This section assesses whether drivers who behave according to the estimates in Table 2.2

exhibit a relationship between earnings and quitting that conforms to the results from

Section 1.3. Figure 2.1 shows the timing pattern of the income effect under the estimated

models of expectations-based loss aversion and salience with adaptive reference points. For

each model, the figure plots the predicted effect of an additional $10 earned at various

times in the shift on the probability of ending a shift at 8.5 hours, with the estimates from

Figure 1.7 providing a benchmark for comparison. As Section 2.3 highlights, adaptive

reference points in each case lead to a violation of fungibility, with stronger labor-supply

reductions in response to more recent earnings.

Although both models predict income effects that are qualitatively consistent with the

pattern in Figure 1.7, the models make different predictions about the magnitude. The

salience model from Equation (2.5) produces income effects that largely coincide with the

reduced-form estimates. However, the loss-aversion model from Equation (2.4) leads to

magnitudes that consistently exceed the income effects from the data. Re-estimating the

model after relaxing the simplifying assumptions from Section 2.2 by allowing for stochastic

reference points or curvature in the gain-loss function does not change this result (see
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Figure 2.1: Stopping model estimates: Income effect at 8.5 hours—Data and models
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Note: The figure compares the predicted income effects from models of expectations-based loss aversion and
salience estimated in Table 2.2 with the income effects estimated using Equation (1.2). The confidence interval
displays the estimates from Figure 1.7 of the percent change in the probability of ending a shift at 8.5 hours in
response to a $10 increase in earnings accumulated at different times in the shift. The gray square and black
diamond represent the predictions of the loss-aversion model and the salience model, respectively.
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Table 2.4: Maximum likelihood estimates: Loss aversion over income and hours

Estimates

Disutility of trip 0.0309
(0.0030)

Error term distribution s 0.0557
(0.0015)

Loss aversion over income LI 1.1037
(0.0016)

Loss aversion over hours LH 1.8628
(0.0094)

Adjustment q 0.8949
(0.0022)

Log-likelihood -437,900
Likelihood ratio test: LI = LH < 0.001

Note: This table presents maximum likelihood estimates of Equa-
tion (2.7) for the model of expectations-based loss aversion under
adaptive reference points. The estimation sample consists of over
1.2 million shifts from 36,900 drivers. The objective function modifies
Equation (2.4) by allowing for a separate coefficient of loss aversion
on each dimension (income and hours). See the note to Table 2.1 for
additional details. The last row contains the p-value from a likeli-
hood ratio test which takes the model with a single coefficient of loss
aversion as the null hypothesis.

Section A.5).

As a possible explanation for the large estimated magnitudes, note that the Kőszegi

and Rabin [2006] model assumes a constant coefficient of loss aversion across different

dimensions of utility. To test whether this affects the results, we relax the assumption implicit

in Equation (2.4) to allow for a different coefficient of loss aversion on each dimension (LI

for income and LH for hours). The assumption of a “universal gain-loss function,” designed

to avoid introducing additional degrees of freedom, does not appear consistent with the

estimates in Table 2.4. Although the estimates reveal a significant degree of loss aversion

on both dimensions, a likelihood ratio test rejects the restriction that LI = LH. The degree

of loss aversion over income is significantly smaller, consistent with the claim from Farber

[2015] that the patterns in the data suggest a larger role for reference dependence in daily
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hours compared to income. The coefficients of loss aversion in Tables 2.1 and 2.2 attempt to

simultaneously fit behavior over both of these dimensions, thereby overstating the degree of

loss aversion over income.

This observation highlights the importance of analyzing the reduced-form implications

of estimated models. A likelihood ratio test would simply lead to the conclusion that the

behavioral models provide a better fit for the data than the neoclassical model. This says

little about the ability of the models to explain the patterns of interest, especially those that

are not directly matched. The exercise of checking what the parameter estimates imply

about the underlying behavior that the model intends to capture leads to richer conclusions

beyond statistical measures of fit.

While much of the motivation for studying daily income targeting stems from the

observation that under some circumstances workers appear to work less when they can earn

more, various forces naturally push in the opposite direction, each of which poses challenges

for uncovering the role of reference dependence in earnings. Higher expected wages lead

drivers to work more both in the neoclassical model and in the reference-dependent model

[Kőszegi and Rabin, 2006]. Moreover, as Section 2.3 highlights, reference-point adjustment

modulates the effects of loss aversion. Finally, if money constitutes news about future utility

rather than contemporaneous consumption utility, then loss aversion over income can play a

less pronounced role [Kőszegi and Rabin, 2009]. We address the first by analyzing behavior

through the stopping model and the second by explicitly evaluating the role of timing.

Under the view that our estimate of loss aversion over income is attenuated by news utility,

the results provide an even stronger demonstration of reference dependence, though a better

understanding of the relative importance of loss aversion over monetary outcomes remains

a topic for future research.

Change in behavior at the reference point

This section considers an additional implication of the behavioral models from Section 2.2.

Loss aversion and salience posit different mechanisms by which the income effect arises.
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Figure 2.2: Stopping model estimates: Income effect at 8.5 hours—Distance from income and hours targets
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Note: The figure depicts the percentage-point increase in the probability of ending a shift at 8.5 hours when
cumulative earnings is $10 higher. Estimates obtain from Equation (1.1) extended to include interactions
between income, twelve 20-minute intervals based on distance from the hours target, and twelve $10 intervals
based on distance from the income target, with controls for location, time, and weather (see Table 1.2 for details)
and fixed effects for 36,900 drivers. A darker shade represents a larger magnitude.

Loss aversion invokes a sharp change in behavior near the reference levels. The model

in Section 2.2 predicts, holding fixed income and hours, that the effect of income on the

probability of stopping changes significantly when income is below the target compared to

when income is above the target. The model of salience in Section 2.2, on the other hand,

predicts a smooth change as income varies. The income effect arises through diminishing

sensitivity, leading the driver to undervalue additional fares at higher levels of income,

without a substantial change near the income target.

To directly test these predictions about how reference points influence stopping behavior,

we re-estimate the marginal effect of earnings on the probability of stopping at 8.5 hours

by extending Equation (1.1) to allow the income effect to vary based on distance from the
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income and hours target. We consider the set of trips that fall within $60 of the income target

and within 2 hours of the hours target and categorize trips into 144 groups: twelve 20-minute

intervals based on distance from the hours target interacted with twelve $10 intervals based

on distance from the income target. Figure 2.2 depicts the effect of an additional $10 for

each of these groups, with rows representing distance from the income target and columns

representing distance from the hours target. Within each column, holding fixed the distance

from the hours target but varying the distance from the income target, the income effect

appears relatively stable. The magnitude of the income effect increases gradually with

distance from the hours target but does not vary with distance from the income target.

Analyzing stopping behavior near the target helps to evaluate the simplifying assump-

tions in the model of loss aversion from Section 2.2. Once the level of income exceeds its

target, the effect of an additional dollar on the probability of stopping under the assumption

of a piecewise-linear gain-loss function becomes zero, which does not hold in the data.

Models based on prospect theory [Kahneman and Tversky, 1979, Kőszegi and Rabin, 2006]

typically posit a value function that exhibits diminishing sensitivity (convexity in losses and

concavity in gains), but convexity in losses would predict a negative marginal effect of earn-

ings on the probability of ending a shift below the income target. Relaxing the assumption

that Ir and Hr denote the driver’s point expectations for a given shift, a stochastic reference

point [Kőszegi and Rabin, 2006] which represents the full distribution of a driver’s potential

earnings for that particular shift yields a smoother relationship between the income effect

and distance from the target. For a driver who experiences gain-loss utility relative to the

full distribution of potential earnings, additional income constitutes a partial mitigation

of loss whether accumulated daily earnings fall above or below the target level. Finding

positive income effects that do not change with distance from the income target therefore

suggests an important role for stochastic reference points.15

The relationship in Figure 2.2 also clarifies the role of the assumptions in the salience

15The estimates in Section A.5 of the loss-aversion model with stochastic reference points show a substantial
improvement in the log-likelihood compared to the model with point expectations as the reference level.

53



model from Section 2.2. In the salience model, the availability of stopping increases

continuously as income accumulates up to and beyond the income target. For simplicity,

our model of salience assumes that availability depends on income but not hours. Since

the normal levels of both income and hours depend on availability, the marginal effect of

earnings on the probability of stopping in the salience model varies with distance from

the income target but not distance from the hours target. The pattern in the data that the

magnitude of the income effect increases as the driver approaches or passes the hours target

points toward hours as a key determinant of availability.

2.6 Discussion

The mechanisms explored in our setting may also be relevant for labor supply decisions more

generally, especially with the rise of alternative work arrangements [Katz and Krueger, 2016].

A model of adaptive reference points could explain why cumulative earnings from fares may

create a daily income effect while surge pricing generates the opposite behavior, as drivers’

reference points for income quickly adjust upward to reflect higher anticipated earnings

from future trips due to surge pricing. Further research can investigate the role of reference

dependence and asymmetric adaptation in flexible work relationships as self-employment

and contract work are becoming increasingly prevalent.

More broadly, the mechanisms behind the violations of fungibility could have impli-

cations for the design of government tax and transfer systems. For example, marginal

propensities to consume may respond to the timing of income through institutional fea-

tures such as tax withholding [Shapiro and Slemrod, 1995, Feldman, 2010]. Violations of

fungibility via the timing of income could also help create and understand effective policy

instruments for encouraging retirement savings or providing fiscal stimulus [Shefrin and

Thaler, 1988, Souleles, 1999]. Future work can explore the influence of adaptive reference

points and asymmetric adaptation in these as well as other field settings.
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Chapter 3

The Public Housing Allocation

Problem

3.1 Introduction

The efficacy of the public sector depends not only on the supply of public services but also

on the design of systems for provision. While the former receives considerable attention

from policymakers, poor design can entail substantial welfare losses. The market for public

housing exemplifies this phenomenon. Tenants of public housing throughout the world—

from approximately 1.2 million households in the United States to about one-third of all

households in Hong Kong and Romania—express little choice in their place of residence,

resulting in suboptimal allocations [Lui and Suen, 2011, Schwartz, 2010, Soaita, 2012].

Consistent with the idea of spatial mismatch, public-housing residents are less mobile

than their private-housing counterparts, are less likely to work near where they live, and

are more likely to move farther away from their original place of residence conditional on

moving [Lui and Suen, 2011]. To the extent that housing is misallocated, designing improved

allocation mechanisms can lead to substantial welfare gains. In the private-housing market,

Glaeser and Luttmer [2003] argue that rent controls contribute to inefficient allocations, but

a corresponding analysis of the market for public housing would require a model of how
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tenants are matched with apartments.

This paper models public-housing allocation as a matching problem in which units

arrive stochastically over time and are assigned to applicants on a waiting list. Under

this framework, we investigate the design of strategy-proof allocation mechanisms (i.e.,

those that are not subject to strategic manipulation) and explore whether these mechanisms

can satisfy additional efficiency and fairness properties. Although there does not exist a

mechanism that achieves these properties ex-post, we introduce a new mechanism—the

Multiple-Waitlist Procedure (MWP)—which satisfies these properties ex-ante. Under MWP,

applicants begin on a centralized waiting list in order of priority; a unit that arrives is

offered to the agent at the top of the centralized waiting list, who can accept the offer or

commit to a site-specific waiting list for another unit of their choice.

Mechanisms generally used in practice fail to satisfy desirable properties. Most public-

housing agencies employ a take-it-or-leave-it procedure to allocate units to households on a

priority-ordered waiting list.1 A simple example with two buildings, two applicants, and

two periods illustrates the possibility of unfair and inefficient allocations. Assume that

household 1 has higher priority and that in period k 2 {1, 2} a unit in building bk becomes

available with certainty. Further assume that household 1 strictly prefers to wait for b2 and

that household 2 prefers b1 to b2. The take-it-or-leave-it mechanism assigns b1 to household

1 and b2 to household 2. The allocation is “unfair” in the sense that the higher-priority

applicant prefers the assignment of the lower-priority applicant (i.e., the mechanism fails

to eliminate justified envy); additionally, since household 2 also prefers the allocation of

household 1, the mechanism is inefficient.2 MWP satisfies both of these properties by giving

applicants the opportunity to decline an offer and join a First-In/First-Out (FIFO) waiting

list for the building of their choice.

To evaluate the performance of MWP in practice, we use a structural model of household

1Table 3.1 in Section 3.4.1 provides further details about public-housing agencies in the US and the
procedures for allocating housing.

2These issues persist under a common variant of the take-it-or-leave-it mechanism that permits a household
to decline some number of offers without forfeiting its position in the waiting list, as Section 3.4.1 explores.
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preferences for public housing due to Geyer and Sieg [2013] and find that a counterfactual

change in the allocation mechanism achieves substantial welfare gains. We estimate an

arrival process for housing units using aggregate data from the Housing Authority of the

City of Pennsylvania, and we obtain a sample of households eligible for public housing in

Pittsburgh with preferences given by the Geyer-Sieg estimates using data from the Survey of

Income and Program Participation. We simulate allocations under MWP as well as various

alternative mechanisms that are currently being used to allocate public housing, some of

which have support in the literature, to compare ex-post welfare. As a lower bound, we

find that changing the allocation mechanism in Pittsburgh to MWP improves welfare by an

average of $6,429 per household. Thus, MWP performs well ex-post, attaining 75 percent

of an idealized benchmark defined as the maximum possible welfare gain that could be

achieved if the realization of the arrival process were known in advance. Moreover, MWP

increases the benefit of public housing by almost 20 percent without affecting its cost.

While several studies find evidence of the misallocation of private housing [Glaeser and

Luttmer, 2003, Wang, 2011], empirical work related to public-housing allocation is more

limited.3 Recent work by Van Ommeren and Van der Vlist [2016] estimates the marginal

willingness to pay for public-housing characteristics in Amsterdam and finds little welfare

loss due to distortions in housing supply; they argue that deadweight loss mainly results

from the inefficient match between households and apartments. Our paper complements

these approaches by exploring the design aspect of public-housing allocation.4 Geyer and

Sieg [2013] develop an equilibrium framework for estimating household preferences for

public housing under supply-side restrictions, which our paper uses to analyze welfare.

Our framework for studying the design of public-housing allocation mechanisms consists

of a model of matching in a dynamic setting. Standard models from matching theory, such

3As Geyer and Sieg [2013] note, this is largely because “public housing agencies are not willing to disclose
detailed micro-level data on wait lists.”

4Recent work by Galiani et al. [2015] also studies the design of housing-assistance programs by using
estimates from a structural model of neighborhood choice to simulate the effects of counterfactual housing-
voucher policies.

57



as the canonical “house allocation problem” due to Hylland and Zeckhauser [1979], typically

describe static situations; problems such as public-housing allocation, however, involve the

feature that units arrive stochastically over time.5 We develop a model that is based on

existing static frameworks yet is rich enough to shed light on the operation of basic concepts

from market design such as stability and efficiency in an environment with uncertainty.

Instead of analyzing a fully dynamic problem, which would result in technical complications

that are not relevant for the motivating application, we introduce a simple framework that

maintains the key aspects of public-housing allocation. Specifically, our model incorporates

the following features: (i) units are allocated dynamically as they arrive over time, (ii)

there is uncertainty about the availability of the units, and (iii) applicants have preferences

over waiting times. The robust policy recommendation that emerges from this framework

involves households choosing among a set of waiting lists rather than only choosing to

accept or reject units after they arrive. Leshno [2015] also studies an allocation problem

with stochastic arrival and looks at a utilitarian objective in a simplified setting, while the

present paper takes an axiomatic approach to a more general setting. Related work on

dynamic assignment problems by Schummer [2016] and Bloch and Cantala [2017] analyzes

selectivity thresholds for agents to accept or reject objects. While these papers also mention

the allocation of public housing as a motivating example, they abstract away from the

problem of eliciting waiting costs. The mechanism-design problem in the present paper, by

contrast, permits heterogeneity in preferences over object types as well as over the amount

of time spent waiting for an allocation. Furthermore, our results apply for any underlying

stochastic process that governs the arrival of units.

A growing literature in market design uses simulations for welfare analysis, though

much of this work focuses on the school-choice problem and involves randomly generated

preference data.6 Our work is among the first to use estimated preferences from data on

5For a survey treatment of the house allocation problem, see Sönmez et al. [2011].

6See, for example, Erdil and Ergin [2008], Dur [2011], Hafalir et al. [2013], Morrill [2013], Abdulkadiroğlu
et al. [2015b], and Kesten and Ünver [2015].
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real-world assignment procedures to quantify welfare gains due to adopting alternative

mechanisms.7 The counterfactual simulations are based on a model of preferences for public

housing by Geyer and Sieg [2013], and we discuss in detail how their assumptions and our

implementation all lead to an underestimate of the welfare gains from changing existing

public-housing allocation mechanisms to MWP.

The paper is organized as follows. Section 3.2 describes the dynamic allocation problem

and introduces various properties. Section 3.3 characterizes the Multiple-Waitlist Procedure

and discusses the main theoretical results and extensions. Section 3.4 applies the framework

to the allocation of public housing and uses estimates from a structural model to evaluate

welfare. Section 3.5 concludes. Proofs can be found in Chapter B.

3.2 A Model of Public-Housing Allocation

Consider the problem that a public-housing agency faces in assigning units from apartment

buildings that vary based on location to applicants on a long waiting list. Applicants have

heterogeneous preferences over apartment buildings, as they may prefer to live closer to

their respective workplaces, and heterogeneous waiting costs.8 The public-housing agency

ranks applicants based on priority; housing authorities typically rank applicants based on

a coarse point system with ties broken based on waiting time, resulting in a strict priority

ordering [Greely, 1977]. A unit must be allocated in the period in which it arrives. Although

the period in which a given unit becomes available is not known in advance, the distribution

of waiting times is known [Kaplan, 1986]. With this example in mind, we now proceed to

introduce the components of the model more formally.

A public-housing allocation problem is a five-tuple hA, B,�B,�A,pi, where A is a set

7In the literature on school choice, some recent papers estimate preferences using data from school districts:
He [2012] in Beijing, China; Agarwal and Somaini [2014] in Cambridge, MA; Calsamiglia et al. [2016] in
Barcelona, Spain; and Abdulkadiroğlu et al. [2015a] in New York City, NY.

8As a starting point, assume that units within each apartment building are identical. In practice, apartment
buildings contain units of different sizes (i.e., as measured by the number of bedrooms); however, public-housing
agencies administer separate waiting lists for units of different sizes.
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of applicants, B is a finite set of buildings; �B = (�b)b2B is a profile of the buildings’

strict priority relations over the set of applicants; �A = (�a)a2A is a profile of applicants’

preference relations over building-time pairs B ⇥ R+; and p =
�
pb,t̂

�
·
�� ht

��
b2B,t,t̂2N is

an arrival process that specifies, conditional on the history ht, a probability distribution

over the number of units in building b that arrive at time t̂. A history is a map ht : B ⇥

{t̃ 2 N : t̃  t} �! N that specifies the number of units in each building that have arrived

in the previous periods. We make no specific assumptions about the underlying stochastic

process which governs the arrival of units but will find it convenient to denote by tb,t(r) the

expected waiting time of the rth unit in building b to become available (counted from the

beginning of time), conditional on the history ht.

To denote applicant a being matched with the rth unit to arrive in building b, we write

µ(a) = hb, ri, where we refer to the map µ

t : A �! (B⇥N) [ {∆} as an assignment in

period t and we refer to the collection µ = (µ1, µ2, . . . ) of assignments in each period as an

assignment. Agent a can be thought of as being on a waiting list for building b if the rth

unit is not yet available: given the history ht of the arrival process, the unit is expected to

arrive in tb,t(r) periods. If tb,t(r) = 0, then this waiting list is degenerate, so the applicant

receives the unit immediately in period t. We use the word allocation to refer to an agent’s

realized assignment, i.e., the applicant receives an allocation when the assigned unit arrives

or becomes available.

A unit cannot be unmatched after the period in which it becomes available and cannot

be reallocated in the future. The assumption that units must be allocated irreversibly upon

arrival mirrors the corresponding assumptions in Gershkov and Moldovanu [2009] for the

case of agents arriving sequentially. More importantly, this assumption captures a realistic

institutional feature of public-housing allocation [Navarro, 2015].

To simplify the exposition, we assume that preferences are dynamically consistent and

that waiting is costly. Preferences satisfy the dynamic-consistency condition if (b, t) �a (b0, t0)

implies (b, t+ t̂) �a (b0, t0 + t̂) for every t̂ > 0. Preferences satisfy the costly-waiting condition

if t < t0 implies (b, t) �a (b, t0). These assumptions yield for each applicant a constant
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per-period waiting cost. Equivalently, the preference relation over B ⇥R+ reduces to a

ranking over buildings and a vector in R
|B|
+ : for each building b, this representation encodes

the greatest number of periods that the applicant is willing to wait before receiving a unit

in her most-preferred building rather than receiving a unit in building b immediately. In

addition, we assume that applicants are risk neutral with respect to preferences over waiting

times. After stating the main result, Section 3.3.1 discusses how these assumptions can be

relaxed.

Recall that preferences are defined over building-time pairs: (b, t) �a (b0, t0) if and only

if applicant a prefers to receive a unit in building b in period t over a unit in building

b0 in period t0. However, an assignment µt(a) consists of a building b 2 B and a unit

indexed by r 2 N (i.e., the rth unit that becomes available in building b). An agent a who is

assigned µ

t(a) in period t expects to wait tb,t(r) periods for the unit to become available. The

assumption of risk neutrality with respect to waiting times implies that applicants evaluate

assignments based on expected waiting times: in particular, µt(a) = hb, ri is preferred to

(µ0)t
0
(a) = hb0, r0i if and only if (b, t+ tb,t(r)) �a (b0, t0 + tb0,t0(r0)).

An allocation mechanism j is a procedure that uses reported preferences, the exogenous

priority orderings, and the history to choose an assignment µt in each period t. Let q

0
a denote

the reported preferences of applicant a 2 A, and let q

0
�a be the profile of reported preferences

of all applicants except a. An allocation mechanism induces a preference-revelation game in

which the set of players is A, the strategy space for player a is the set of preferences Q, and

each player a 2 A has true preference qa 2 Q.

We say that a mechanism j is strategy-proof if deviation from truthful preference revela-

tion is not profitable along any possible arrival history. Various authors have emphasized

the desirability of strategy-proofness because of fairness (agents who lack information or

sophistication are not at a disadvantage) and robustness (the equilibrium does not depend

on beliefs about other agents’ information or preferences). Another justification for strategy-

proofness in our dynamic setting is that the social planner may make costly investments
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(though not modeled here) based on reported preferences.9

Next we define a property that can be interpreted as a form of fairness. An assignment

µ eliminates justified envy or is free of justified envy if an applicant who prefers an alternate

assignment does not have higher priority than the applicant to whom the other unit is

assigned. Legal scholars posit this principle in the context of public-housing allocation,

noting that “selection. . . would be by priority of application. . . to meet certain ‘entitlements’

arising out of a sense of fairness” [Greely, 1977]. A literature in market design that studies

allocation problems with priorities, starting with the student placement model of Balinski

and Sönmez [1999], employs this property as an analogue of stability. In our dynamic

setting, whether an applicant prefers an alternate assignment depends on the timing of the

match and the information available at the time. We say that an applicant a envies another

applicant a0 if given the information available at the time when a was matched a would have

preferred the assignment of a0; we say that this envy is justified if a has higher priority than

a0 for the building with which a0 is matched.

Definition 1. An assignment µ eliminates justified envy if whenever a is assigned hb, ri in

period t and a0 is assigned hb0, r0i in period t0, we have

�
b0, t+ tb0,t

�
r0
��

�a (b, t+ tb,t(r)) =) a0 �b0 a.

An ex-post variant of this no-envy condition would state that an applicant who prefers

another unit to her own, given the realized arrival times of their respective units, cannot

have higher priority than the applicant to whom the other unit is assigned.

An assignment µ is efficient if any reassignment µ0 that one agent strictly prefers would

make another agent strictly worse off (where, as before, we consider the information

available at the time of the match). We refer to this as an ex-ante notion of efficiency because

agents only take into account information that is available at the time when they are matched

9A housing agency may use reported preferences to determine where to construct a new building. In a
separate context, Abdulkadiroğlu et al. [2009] point out that lack of demand as determined by reported student
preferences under a strategy-proof mechanism contributed to the closing of an unpopular New York City high
school in 2006.
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and are evaluating their expected (rather than realized) arrival times.

Definition 2. An assignment µ is efficient if for any feasible assignment µ0 6= µ for which

there exists some a (who is assigned hba, rai in period ta under µ and is assigned hb0a, r0ai

in period t0a under µ0) such that
�
b0a, ta + tb0a,ta(r

0
a)
�
�a

�
ba, ta + tba,ta(ra)

�
, there exists some

a0 2 A such that
⇣
ba0 , ta0 + tba0 ,ta0

(ra0)
⌘
�a0

⇣
b0a0 , ta0 + tb0a0 ,ta0

�
r0a0
�⌘

An alternate notion of efficiency would be ex-post efficiency: any way of redistributing

units that have already arrived (among the agents to whom they are assigned) cannot strictly

improve the allocation of one applicant without making another strictly worse off.

We say that a mechanism satisfies a given property if the equilibrium allocations in the

induced preference-revelation game satisfy that property. The following result shows that

no allocation mechanism satisfies the ex-post variants of the properties introduced above.

Proposition 1. There does not exist an allocation mechanism that is ex-post efficient or ex-post free

of justified envy.

The proof in Section B.1 consists of a simple example to demonstrate the impossibility

of designing an allocation mechanism that guarantees these ex-post properties in an envi-

ronment with stochastic arrival because the realization of the arrival process may be such

that neither can possibly hold. Motivated by this result, our theoretical analysis in the next

section focuses on the ex-ante properties defined above. Nevertheless, the empirical analysis

in Section 3.4 uses ex-post welfare as a criterion for comparing mechanisms.

3.3 Multiple-Waitlist Procedure

3.3.1 Common priorities

We begin by considering the case that the buildings share a common priority ordering, i.e.,

that there exists �⇤ such that �⇤ =�b for all b 2 B. We introduce the Multiple-Waitlist

Procedure (MWP) and characterize the matching that results from this mechanism.

63



Figure 3.1: Multiple-Waitlist Procedure

Step 0 Proceed to the next period.
Step 1 If there are no more available units this period: return to Step 0. Otherwise:

choose a unit randomly from the set of units that are available this period.
Step 2 If the building in which the unit belongs has a non-empty FIFO queue: allocate

the unit to the applicant at the top of the queue, and return to Step 1. Otherwise:
offer the unit to the applicant at the top of the centralized waiting list.

Step 3 If the applicant accepts: allocate the unit to the applicant, and return to Step 1.
Otherwise: the applicant chooses a different building and joins the associated
FIFO queue to receive the next available unit in that building; return to Step 1.

Under MWP, all applicants begin on a centralized waiting list, and associated with each

building there is a separate First-In/First-Out (FIFO) queue. A unit that becomes available

in a given building belongs to the applicant at the top of the queue for that building. If

the queue is empty, then the unit is offered to the applicant with the highest priority on

the centralized waiting list. Given information about the distribution of arrival times, the

applicant can either accept the offer or opt to join the FIFO queue for the next available unit

in a different building of the applicant’s choice. Note that if a0 has higher priority than a,

then a0 receives an assignment (i.e., a unit or a place on some waiting list) before a does.

Figure 3.1 describes MWP more formally.

The following proposition characterizes the main properties of this mechanism.

Proposition 2. MWP satisfies the following properties: (i) strategy-proofness, (ii) efficiency, and

(iii) elimination of justified envy.

The following arguments summarize the formal proof in Section B.2. Note that an

applicant receives an assignment after reaching the top of the centralized waiting list once a

unit becomes available. The period when an applicant is matched depends on the choices

of higher-priority applicants (and on the realization of the arrival process) but not on the

agent’s own reported preferences (and not on the choices of lower-priority applicants). In

particular, since the priority ordering is fixed and independent of the agents’ strategies,
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no agent can obtain a match sooner by misreporting preferences. Moreover, since the

assignment is chosen to maximize the applicant’s reported preference ordering (given the

choices of the agents who have already been assigned, but independent of the choices of the

agents who have not yet been assigned), the applicant cannot gain by deviating from truth

telling. This argument suggests not only that MWP is strategy-proof but also that it satisfies

a stronger condition, namely obvious strategy-proofness, which implies that the equilibrium

prediction extends to agents with certain cognitive limitations [Li, 2015].10

The observation that the match of each applicant maximizes reported preferences (given

the information available at the time of the match) also implies that all units assigned to

lower-priority applicants are available but not chosen. Since priority orderings are common

across buildings and no higher-priority applicant prefers the assignment of a lower-priority

applicant, the allocation is efficient and free of envy. The results continue to hold after

relaxing several assumptions in the framework as follows.

Risk neutrality An applicant who has risk-neutral preferences with respect to waiting

times evaluates units based on expected arrival times and would have no use for additional

moments of the distribution. A social planner can (i) implement MWP as a direct mechanism

by eliciting preferences ex-ante, or (ii) disclose the expected arrival times and implement

MWP as an indirect mechanism by making offers as in Figure 3.1. This holds more generally

when the applicants have homogeneous risk preferences that the planner knows, as long

as the planner can disclose certainty equivalents under the indirect mechanism. A planner

with information about the applicants’ risk preferences and the full distribution of waiting

times can implement the direct mechanism, and a planner that can disclose the distribution

of waiting times can implement the indirect mechanism without knowing the applicants’

10A mechanism is obviously strategy-proof if it has an equilibrium in obviously dominant strategies; truth
telling is obviously dominant if the best-possible outcome from deviating is no better than the worst-possible
outcome from reporting truthfully. Li [2015] notes that these notions also apply to the case that the set of
outcomes of the mechanism consists of lotteries, so obvious strategy-proofness applies in our setting where an
outcome is a unit in a building (which may consist of a distribution of waiting times). Under this view, MWP
continues to implement the desired outcome when agents correctly perceive randomization by nature but use
simplified mental representations of the other agents’ strategies.
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risk preferences.

Costly waiting The mechanism as described in Figure 3.1 moves an applicant who declines

an offer from the top of the centralized waiting list to the end of a FIFO queue, thereby

allocating the applicant with the next available unit in the chosen building. However, MWP

can accommodate richer time preferences by allowing an applicant who prefers to wait

longer (e.g., if moving costs change over time) to choose any unoccupied position in the

queue.11 In other words, the applicant can select any unassigned unit within the chosen

building rather than the next available unassigned unit.

Static set of applicants The model captures the idea of an overloaded waiting list.12 Under

MWP, the centralized waiting list consists of the fixed priority-ordered set of applicants

taken as a primitive of the model. Without any modification, the mechanism applies under

an alternative formulation that involves an arrival process for applicants. The newly arrived

applicants can be of any priority level and correspondingly can be added anywhere in the

centralized waiting list. The mechanism likewise allows for departures from the centralized

waiting list of applicants at any priority level. Insofar as the applicants’ strategies do not

influence such waiting-list dynamics, MWP satisfies all of the same properties since the

procedure once an agent reaches the top of the centralized waiting list remains the same.

Static priorities We can interpret the exogenous priority ordering as reflecting the social

planner’s objective determined by verifiable information about the applicants. These

priorities may change over time, for example, due to changes in the applicants’ circumstances

such as disability status or homelessness. The mechanism can incorporate any such changes,

as the discussion above suggests for the case of applicants arriving or departing from the

waiting list, by modifying the order of the applicants on the centralized waiting list. This

11In the context of public-housing allocation, for example, a household with an existing lease elsewhere may
prefer a later allocation due to early-termination costs.

12See Leshno [2015] for a related allocation problem with two kinds of objects and an overloaded waiting list.
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approach requires the planner to remain committed to allocating units that have not yet

arrived to agents on the FIFO waiting lists. An alternative that also preserves the properties

of the mechanism would be to allow applicants to become critical exogenously and alter the

mechanism so that critical types receive an allocation immediately. The social planner can

therefore accommodate situations such as domestic abuse or natural disasters by allowing

such applicants to bypass the FIFO queues. The mechanism proceeds by adjusting the

expected waiting times accordingly to account for the arrival process of critical agents.

Identical units The mechanism instantiates a separate FIFO queue for each building,

where a “building” refers to an exogenously specified collection of identical units. If the

classification of units into buildings were too fine, then an applicant who is indifferent

between the units in two separate buildings would choose the building with the lower

expected waiting time. Similarly, if the classification were too coarse (e.g., with unobserved

heterogeneity in the applicants’ preferences for units within a building), the applicant at the

top of the centralized waiting list could still choose a FIFO queue to maximize expected

utility, with the expectation taken over the distribution of unit quality in addition to waiting

time.

We have shown that MWP satisfies several desirable properties and continues to do so

in a more general setting. MWP satisfies additional regularity conditions discussed more

formally in Section B.3: non-bossiness (no applicant can change another’s allocation without

changing her own allocation) and neutrality (the allocation does not depend on the labeling

of the units). The next result complements our characterization of MWP by describing the

sense in which MWP is unique. The uniqueness result does not rely on any of the efficiency

or fairness properties introduced in Section 3.2.

Recall that a unit must be allocated in the period when it arrives. Under MWP, applicants

at the top of the centralized waiting list receive offers (and move to their chosen FIFO

queues if they decline) until no units available in the current period remain unallocated.

Proposition 2 also applies to extended versions of this procedure that may place additional
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applicants from the top of the centralized waiting list in FIFO queues, even after allocating

all units available in the current period. The following proposition states that under the

regularity conditions, this class of extended multiple-waitlist procedures consists of all

strategy-proof allocation mechanisms.

Proposition 3. Any strategy-proof, non-bossy, and neutral allocation mechanism is an extended

multiple-waitlist procedure.

Section B.3 contains a formal proof of this result. Under the alternative procedures,

the planner makes commitments before receiving information—even though waiting is

feasible—that the planner may not have made after receiving the information. At an extreme

lies the serial dictatorship: all applicants on the overloaded waiting list sequentially choose

units in the initial period based on expected arrival times. Among this class of strategy-proof

mechanisms, MWP uses the most information from the arrival process and requires the

fewest promises about future allocations. Accordingly, MWP is most conducive to the more

general setting highlighted above, which allows for time-varying priorities, risk preferences,

and changes in the set of agents over time.

3.3.2 Heterogeneous priorities

Although our empirical analysis in Section 3.4 focuses on a case with common priority

orderings, applications of our framework may not satisfy this restriction. Housing authorities

often assign higher priority to elderly, disabled, or homeless applicants, as well as victims

of natural disasters or domestic abuse. In some cases, however, priorities may differ across

apartment buildings. For example, certain communities may be designated for specific

groups such as seniors. For the general case that priority orderings are not common across

object types, we provide a necessary and sufficient condition for the existence of a strategy-

proof allocation mechanism that satisfies the ex-ante efficiency and fairness properties. The

existence of such a mechanism depends on a property that can be interpreted as a measure

of similarity between the priority orderings. Suppose a1 has strong priority over a3 at
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building b1 in the sense that there is some a2 such that a1 �b1 a2 �b1 a3. We say that the

priority orderings are acyclic if this implies a1 has priority over a3 at all buildings.

By defining the priority ordering over the set of applicants A, the framework implicitly

assumes complete priority lists, i.e., that all applicants are acceptable to all buildings. The

assumption is without loss of generality for the case of common priority orderings, as an

unacceptable applicant can effectively be removed from the set A. With heterogeneous

priority orderings, however, there may be applicants who are only acceptable to some

buildings. In this case, an acyclic priority ordering satisfies the following condition: if a1

has strong priority over a3 at some building where a3 is acceptable, then a1 has priority

over a3 at any building where a1 is acceptable. This property, adapted from Ergin [2002], is

formalized as follows.

Definition 3. The collection of priority orderings �B contains a cycle if there exist a1, a2, a3 2

A and b1, b2 2 B such that a1 �b1 a2 �b1 a3 �b1 ∆ and a3 �b2 a1 �b2 ∆. The collection �B is

acyclic if it does not contain a cycle.

A complete priority ordering is acyclic if and only if the following property holds: for

any applicant, there is no more than one other applicant who has higher priority at some

buildings but lower priority at other buildings. In the context of public-housing allocation,

the acyclicity condition can be satisfied by an agency that administers multiple programs

which share a ranking over applicants but have some discretion on final priorities based

on interviews.13 The acyclicity condition is more permissive when priority orderings differ

in terms of which applicants are acceptable. For example, the case of a public-housing

agency that uses a common point scale to determine priorities but restricts access to certain

buildings (e.g., senior housing) satisfies the acyclicity condition. We will show that a

generalized version of MWP satisfies the properties in Proposition 2 for acyclic priority

orderings.

The generalized Multiple-Waitlist Procedure is similar to MWP except that the order

of the applicants’ turns may be switched when one applicant prefers a building which

13See, for example, the allocation procedure in the District of Columbia.
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Figure 3.2: Generalized Multiple-Waitlist Procedure

Step 0 Proceed to the next period.
Step 1 If there are no more available units this period: return to Step 0. Otherwise:

choose a unit randomly from the set of units that are available this period.
Step 2 If the building in which the unit belongs has a non-empty FIFO queue: allocate

the unit to the applicant at the top of the queue, and return to Step 1. Otherwise:
offer the unit to the applicant (among those who have not yet been assigned a
unit) with the highest priority for that building.

Step 3 If the applicant accepts: allocate the unit to the applicant, and return to Step 1.
Otherwise: the applicant specifies a different building and requests to join the
associated FIFO queue.

Step 4 If another applicant has the highest priority at the specified building: move
that applicant to the top of the priority list for every building, and return to
Step 2. Otherwise: the applicant joins the specified FIFO queue to receive the
next available unit in that building; return to Step 1.

gives another applicant higher priority. In particular, an applicant who refuses an offer and

prefers to join a waiting list for a different building must wait for the applicant (among

those who have not yet been assigned a unit) with the highest priority at that particular

building to choose first. In the language of Abdulkadiroğlu and Sönmez [1999], one way to

describe this mechanism would be “you request my building—I get your turn.” Figure 3.2

provides a more formal description of the generalized MWP.

The following result, shown formally in Section B.4, characterizes the generalized MWP

under acyclic priority orderings.

Proposition 4. If the priority orderings are acyclic, then the generalized MWP satisfies (i) strategy-

proofness, (ii) efficiency, and (iii) elimination of justified envy.

By exhibiting a mechanism that satisfies the three properties for acyclic priority orderings,

this result demonstrates constructively that the acyclicity condition is sufficient for the

existence of a mechanism that satisfies the desired properties. Additionally, the acyclicity

condition is necessary for the existence of such a mechanism: to show this, Section B.4

provides an example of a deterministic arrival process (in an environment with two buildings
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that have cyclic priorities over three applicants) such that every possible allocation exhibits

inefficiency or justified envy. The following proposition summarizes these findings.

Proposition 5. There exists a strategy-proof allocation mechanism that is efficient and free of justified

envy if and only if the priority orderings are acyclic.

Recall from the framework that a mechanism assigns a particular unit in a particular

building to each applicant. A natural question that arises is whether the characterization

holds more generally for stochastic allocation mechanisms, i.e., mechanisms that assign a lottery

over units to each applicant. Under this more general class of mechanisms, the concept of

elimination of justified envy from Definition 1 does not apply since lotteries do not have

priority orderings over applicants.

To address this issue, we use the notion of strong stability first introduced by Roth et al.

[1993] and adapted by Kesten and Ünver [2015] in the context of school-choice lotteries.14

We say that an applicant a0 strongly envies another applicant a if there is a unit r in building

b such that a can be assigned to hb, ri with positive probability while a0 can be assigned

to a less desirable unit (for her) than hb, ri with positive probability, and we say that this

strong envy is justified if a0 has higher priority than a for building b. A stochastic allocation

mechanism is strongly stable if it eliminates justified strong envy.15

As the following result demonstrates, the characterization in Proposition 5 extends to

stochastic allocation mechanisms.

Proposition 6. There exists a strategy-proof stochastic allocation mechanism that satisfies efficiency

and strong stability if and only if the priority orderings are acyclic.

Even when considering the more general class of stochastic allocation mechanisms, the

proof in Section B.5 shows that the presence or absence of cycles in the priority orderings

fully characterizes the possibility for a strategy-proof allocation mechanism to satisfy

14Kesten and Ünver [2015] refer to this notion as ex-ante stability and provide a more general formulation
that allows for weak priorities.

15Under non-stochastic allocation mechanisms, strong stability coincides with the elimination of justified
envy because only a single unit is assigned to each agent with positive probability.
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efficiency and the elimination of justified envy.

Due to the incompatibility between efficiency and the elimination of justified envy in the

absence of acyclic priority orderings, we suggest strategy-proof allocation mechanisms for

arbitrary priority orderings that satisfy each of these criteria separately (see Thakral [2015]

for more detail).

A simple variation of MWP that satisfies efficiency would be to choose any ordering of

the applicants and apply MWP as if this ordering were the common priority ordering. The

ordering can be dynamically constructed, e.g., by choosing the applicant with the highest

priority at the building that becomes available. This class of procedures produces efficient

allocations: no applicant would benefit from an alternate allocation since each chooses her

most-preferred unit at the time of assignment. However, these procedures do not eliminate

justified envy since an applicant may choose a place on a waiting list for a building at which

her priority is low.

A modified version of MWP can achieve the elimination of justified envy by constructing

the priority ordering dynamically (as described above) but restricting the set of waiting lists

that an applicant may join. A procedure that only allows an applicant to join a given queue

if the applicant has top priority at the associated building satisfies the no-envy condition

since any household that envies the applicant necessarily has lower priority. The mechanism

permits inefficiencies since applicants who prefer units in buildings at which their respective

priorities are low may benefit from switching their assignments.

3.4 Comparison of Allocation Mechanisms

We begin by evaluating the theoretical properties of mechanisms that are used to assign

public housing and then proceed to investigate public-housing allocation mechanisms

empirically. Using estimated preferences for public housing from a structural model due

to Geyer and Sieg [2013], we find substantial ex-post welfare gains from changing the

existing public-housing allocation mechanism to the Multiple-Waitlist Procedure described

in Section 3.3.
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3.4.1 Existing mechanisms

Public-housing applicants throughout the world express little choice in their place of

residence under the most widely used allocation mechanisms. Applicants receive offers after

units become available and can refuse only a limited number of times before forfeiting their

position on the waiting list. This section provides institutional details on public-housing

allocation in the United States (see Thakral [2017] for more details) and characterizes existing

mechanisms.

A Public Housing Authority (PHA) is a state-run or locally-run entity that administers

federal housing assistance programs. There are about 3,300 such agencies in the United States

with approximately 1.2 million households living in public housing. The US Department of

Housing and Urban Development (HUD) authorizes and funds PHAs and suggests two

types of procedures that a PHA may use to allocate units, both of which involve finding

the highest-priority applicant who is willing to accept the available unit rather than refuse.

Under Plan A, the PHA offers a unit that becomes available to the applicant with the highest

priority; if the applicant refuses, then the applicant is removed from or placed at the bottom

of the waiting list. Under Plan B, an applicant who refuses a unit receives another offer, up

to a limit of two or three total offers [Devine et al., 1999]. More generally, letting k 2 N

denote the maximum total number of units that the PHA offers to a given applicant, we

refer to these procedures as PHA-k mechanisms. The top panel of Table 3.1 shows the

number of housing agencies using these procedures. PHA-1 corresponds to Plan A, the

take-it-or-leave-it procedure in which no applicant can refuse an offer without losing their

position on the waiting list.

As mentioned in the introduction, the take-it-or-leave-it mechanism can lead to unfair

and inefficient allocations. This observation applies more generally to the entire class of

PHA-k mechanisms.

Proposition 7. The PHA-k mechanisms are inefficient and do not eliminate justified envy.

Section B.6 provides two separate proofs of this result, each consisting of an example

of a deterministic arrival process for which the mechanism results in justified envy and

73



Table 3.1: Distribution of allocation procedures by size of housing agency

Small Medium Large Extra-large Total

PHAs making 1 or 2 offers 430 114 71 3 618
PHAs making more than 2 offers 446 96 40 7 589

Small Medium Large Extra-large Total

Centralized waiting list 929 179 117 9 1, 234
Non-centralized waiting list 293 70 14 7 384

Note: Data are from the Division of Program Monitoring and Research, US Department of Housing
and Urban Development, 1998. The top frame shows the relationship between housing-agency size and
the maximum number of offers an applicant can receive before being removed from the waiting list.
The bottom frame shows the relationship between housing-agency size and waiting-list method. Small:
between 100 and 500 units. Medium: between 500 and 1,250 units. Large: between 1,250 and 6,600
units. Extra-large: 6,600 units or more. From the universe of over 3,100 housing agencies, those that
operate fewer than 100 units are excluded, leaving a set of agencies that accounts for 94 percent of all
public-housing units.

inefficiency. The first example contains only two buildings, and an applicant who refuses

an offer from one building may receive another offer from the same building. The second

example, in which the number of buildings depends on k, applies even if the mechanism

requires that an applicant who refuses an offer does not receive another offer from the same

building. Note from the top panel of Table 3.1, which displays the number of PHAs using

the PHA-k mechanism for k 2 {1, 2} and for k > 2, that k is typically small in practice.

The first-come-first-served (FCFS) allocation mechanism can be thought of as a PHA-k

mechanism with k �! •. Although not widespread in practice, this mechanism appears in

several theoretical papers [Su and Zenios, 2004, Bloch and Cantala, 2017, Schummer, 2016].

Declining an offer creates a positive externality by reducing other agents’ waiting time, but

the agent at the top of the waiting list prefers to receive an allocation sooner due to private

waiting costs.16 Van Ommeren and Van der Vlist [2016] present empirical evidence from

Amsterdam that the FCFS mechanism for allocating public housing produces an inefficient

matching.

16As Su and Zenios [2004] argue, FCFS allocation mechanisms lead to an “inherent inefficiency [because of
their] inability. . . to contain the externalities generated by [applicants’] self-serving behavior.”
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The properties of the PHA-k mechanisms also depend on the format of the waiting

list. Under a centralized waiting list system, the applicant with the highest priority can be

offered a unit in any building that becomes available. A non-centralized waiting list is either

site-specific or sub-jurisdictional, depending on whether an applicant can only be assigned

a unit in a particular building or in a group of buildings. The bottom panel of Table 3.1

shows the prevalence of centralized waiting lists. MWP uses both types of waiting lists: the

PHA offers one unit to a household on the centralized waiting list and moves them to their

chosen site-specific waiting list if the offer is refused. An alternative mechanism that places

applicants on two (or more) site-specific waiting lists and then makes take-it-or-leave-it

offers would fail to be strategy-proof. Consider an applicant with low waiting costs and a

strong preference for a particular building: to maximize the chance of receiving a unit in

that building, the applicant may report as her second choice a popular building with a long

waiting list (even if the popular building lies at the bottom of her true preference ordering).

Details about how the waiting lists are constructed can affect applicants’ incentives, and

procedures that are generally used in practice for assigning applicants to non-centralized

waiting lists tend not to be strategy-proof.17

A potential justification for the use of the take-it-or-leave-it mechanism and its variants

might be that these mechanisms act as screening devices, but several facts about housing

policy suggest otherwise. First, the application process itself functions as a screening

device: applications are costly to fill out, housing authorities verify the information reported

on applications to determine priorities, and many housing authorities conduct in-person

interviews of households that approach the top of the waiting list.18 Second, some housing

authorities use mechanisms that offer no additional screening benefit: FCFS allocation

mechanisms, for example, do not remove applicants from the waiting list after declining

17The New York City Housing Authority, which uses sub-jurisdictional waiting lists (one for each of the five
boroughs), asks applicants to report their first and second borough choice and explicitly advises applicants to
“select their first borough choice carefully.”

18See HUD [2009] for more details.
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an offer.19 Third, housing authorities typically aim to minimize the length of time required

to fill a vacant unit: this is perhaps the most likely justification for using procedures in

which each applicant receives a limited number of offers. MWP requires that the housing

authority makes only a single offer to each applicant and thus performs equally as well as

the take-it-or-leave-it procedure (and better than its variants) by this measure.

3.4.2 Estimation of welfare gains

Although the theoretical results establish that MWP is ex-ante efficient, a question that

remains is whether the choice of an allocation mechanism affects ex-post welfare in real-

world settings. We address this question by investigating the allocation of public housing

using a sample of 215 eligible households in Pittsburgh, PA from the 2001 Survey of

Income and Program Participation (SIPP) collected by the US Census Bureau. The model

of household preferences consists of a standard random-utility specification as in Geyer

and Sieg [2013]. Our goal is to quantify the welfare gains from changing the allocation

procedure by simulating arrival processes and matchings under counterfactual mechanisms.

Buildings

Buildings are classified by size (small, fewer than 40 units; medium, between 40 and 100

units; or large, more than 100 units) and community type (family, senior, or mixed). In

practice, any applicant can reside in any building. The 34 buildings operated by the Housing

Authority of the City of Pittsburgh (HACP) in 2001 fall within six categories based on size

and community type: family large, family medium, family small, mixed, senior large, and

senior small. Buildings have a common priority ordering over applicants.

Table 3.2 displays the number of units in each building category that became available

over a five-year period. From these data we estimate a binomial arrival process.20 In any

19The City of Toronto adopted a FCFS allocation mechanism in July 2014. Similar mechanisms are also used
in Britain and the Netherlands.

20Kaplan [1984] argues that the length of time that a household lives in public housing follows an exponential
distribution; in a discrete-time setting (where the length of time in public housing follows a geometric
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Table 3.2: Arrivals by building type

Building category Number of buildings Number of arrivals

Family large 12 677
Family medium 6 144
Family small 1 24
Mixed 4 300
Senior large 3 59
Senior small 8 191

Note: This table shows the number of units that arrive for each building category
from June 2001 to June 2006. Data on the number of arrivals are from the
HACP, as reported in Table 3 of Geyer and Sieg [2013].

given building, a unit arrives with an estimated probability of approximately 0.17 each

week.21

Applicants

The utility of applicant i 2 A living in building j 2 B at time t 2 N is given by

ui,j,t = b log yi,t + gj + kxi � c1{di,t 6=di,t�1} + # i,j,t, (3.1)

where yi,t denotes net income; gj is a building-category fixed effect; xi is a vector of

demographic characteristics, namely indicators for female, nonwhite, senior, and children;

di,t 2 B [ {0} denotes the residence and c is a moving-cost parameter; and # i,j,t captures

idiosyncratic tastes for public housing. We normalize the utility of living in private housing

(j = 0) to be

ui,0,t = log yi,t � c1{di,t 6=di,t�1} + # i,0,t. (3.2)

distribution), the “moveout process” follows a binomial distribution.

21The results in this section are unaffected if we simulate a daily or monthly arrival process.
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Following McFadden [1973], we assume that the idiosyncratic components are independently

and identically distributed according to a standard type-I extreme-value distribution.22

A household that lives in private housing does not necessarily prefer to live there over

public housing. Due to supply-side restrictions, households exhibit preferences for public

housing by joining the waiting list.23 A simple logit demand model based on observed

choices would therefore fail to capture the reality of strong preferences for public housing.

Geyer and Sieg [2013] develop an equilibrium framework that incorporates rationing and

excess demand to model public-housing allocation. They identify the structural parameters

of the utility function above using household exit behavior.24 Table 3.3 reproduces estimates

of the structural parameters from Geyer and Sieg [2013], which are based on household-level

data from the HACP and the SIPP.25

Using a sample of low-income households eligible for public housing in Pittsburgh

from the SIPP, we construct preferences based on the structural model above.26 Since

equations (3.1) and (3.2) describe the utility of living in a given building in a given period,

a complete description of preferences requires assumptions about the discount factor and

the match duration. Given our objective of measuring the welfare gains from using a

mechanism that provides agents more choice at the cost of additional waiting time, we

make conservative assumptions which cause our estimates to understate the true gains.

A low discount factor increases the cost of waiting for a more preferred building, and a

low match duration decreases the benefit of being matched with a more-preferred building.

22Geyer and Sieg [2013] find that using a nested logit specification designed to account for correlation in
unobserved preferences among public-housing communities does not improve the fit of the model.

23A household in Pittsburgh typically waits between 14 and 22 months for a unit [Geyer and Sieg, 2013].

24Identification relies on the assumption of voluntary exit. The fact that housing authorities do not evict
“over-income households” (i.e., those that exceed income thresholds) supports this assumption.

25The estimates suggest that minorities and female-headed households with children exhibit stronger
preferences for public housing than other households. The fact that the coefficient b on log income is less than
one suggests that an increase in income makes public housing less desirable than the outside option, consistent
with the fact that a household residing in public housing pays 30 percent of its income as rent.

26Annual gross income in an eligible household must fall below 80 percent of the Area Median Income
(AMI).

78



Table 3.3: Parameter estimates for public-housing preferences

Parameter Mean Standard error

Income 0.329 (0.028)
Moving cost 3.186 (0.017)
Demographics

Nonwhite, nonsenior 1.222 (0.071)
White, senior 0.209 (0.113)
Nonwhite, senior 1.000 (0.101)
Children �0.315 (0.123)
Female 0.053 (0.061)
Female, senior �0.174 (0.094)
Female, children 0.426 (0.130)

Fixed effects
Family large 4.217 (0.254)
Family medium 4.848 (0.261)
Family small 4.604 (0.277)
Mixed 4.394 (0.260)
Senior large 4.626 (0.263)
Senior small 4.907 (0.258)

Note: This table reports estimates of the parameters from the utility function in equations (3.1) and (3.2).
Parameter estimates are from the model with supply-side restrictions in Table 10 of Geyer and Sieg [2013],
estimated using household-level data from the HACP and the SIPP.
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We assume that applicants maximize a discounted sum of utilities with a weekly discount

factor of d ⇡ 0.99. Moreover, every match lasts for three years, so the applicant resides

in private housing in all periods except for the three years immediately after moving into

public housing. Section 3.4.3 provides further discussion on these assumptions.

Mechanisms

For each simulated arrival process, we determine the allocations that would result under

each of the following mechanisms: MWP, PHA-1, PHA-2, and PHA-•. During the sample

period, the existing housing-allocation procedure is the take-it-or-leave-it mechanism (PHA-

1).

MWP allows applicants to choose which site-specific waiting list to join based on

information about the arrival process. Since the arrival time of the rth unit in a building

follows a negative binomial distribution, we use closed-form expressions to compute the

expected utilities from joining waiting lists.

Under PHA-1, each applicant receives only one offer and faces the straightforward

decision problem of accepting a unit if and only if the outside option provides lower utility.

PHA-2 gives applicants the opportunity to refuse an offer once. This decision depends

on the applicant’s beliefs about the households on the waiting list that have higher priority.

We assume that the applicant knows how many households are ahead on the waiting

list but does not know their preferences; instead, the applicant knows the distribution

of preferences.27 We use numerical approximations, drawing from the distributions of

preferences and future arrivals, to compute the expected utility of refusing an offer.

PHA-• (FCFS) allows applicants to refuse an unlimited number of offers. We do not at-

tempt to characterize equilibrium behavior under this mechanism; Bloch and Cantala [2017]

study a model in which agents have private values and ultimately focus on equilibrium

behavior under the two-agent case due to difficulties in providing a general characterization.

27The applicant also knows that any households that are ahead on the waiting list will accept the next offer
if and only if the unit is acceptable (since they have already declined an offer).
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For a given applicant, a state can be described by the number of households that are ahead

in the waiting list and the number of offers that each of them has already refused. Any

subset of the households ahead in the waiting list can still be on the waiting list by the time

the applicant gets another offer, and each refusal reveals some additional information about

the preferences of those households. This yields a number of states that is exponential in

the size of the waiting list, which creates difficulties in trying to approximate equilibrium

behavior. One way to proceed would be to introduce some heuristics by which applicants

make such complex decisions. However, the resulting estimates would only provide a lower

bound for welfare under the mechanism, as the heuristics might be too simplistic. Instead of

assuming that applicants make suboptimal decisions, we make generous assumptions about

the environment to obtain an upper bound for welfare under this mechanism. Specifically,

we assume that applicants know the realization of the arrival process in advance and have

complete information about the preferences of other households.28 We denote the resulting

upper bound on welfare by PHA-max.

Welfare

Our counterfactual simulations provide evidence that the welfare gain from changing the

public-housing allocation mechanism to MWP is substantial. We convert the difference

in utilities between each mechanism and PHA-1 to monetary values by computing the

equivalent variation (EV), i.e., the transfer that the applicant would have to receive when

public housing is assigned by PHA-1 that would give the applicant the same lifetime

utility as the assignment under the new mechanism. Table 3.4 reports the average of the

present-discounted values of these payments for PHA-2, PHA-max, and MWP.

Our estimates suggest that a change from PHA-1 to MWP improves the welfare of

the average applicant who receives a housing assignment by an amount equivalent to a

28This assumption could in theory lead to an underestimate of welfare if lower-priority applicants have
stronger preferences for public housing, but this concern does not arise in our setting: first, priorities are
randomly drawn in each simulation; second, the model incorporates limited heterogeneity in household
preferences, as Section 3.4.3 discusses in more detail.
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Table 3.4: Welfare gain relative to PHA-1 mechanism

Mechanism Mean EV 95% Confidence Interval

PHA-2 $3,866 [$3,589, $4,158]
MWP $6,429 [$6,153, $6,705]

PHA-max $6,779 [$6,503, $7,053]
Ex-post optimum $8,505 [$8,212, $8,800]

Note: This table contains the results of 100 counterfactual simulations. In each
simulation, we compute the average across all applicants of the equivalent variation
(EV) of changing the allocation mechanism from PHA-1. The second column reports
the mean of present-discounted values (with an annual discount factor of 0.6).
The final column provides lower and upper bounds of the bootstrapped 95-percent
confidence interval (based on 10,000 replications). PHA-max denotes an upper
bound for welfare under PHA-• in which applicants know the realization of the
arrival process in advance and have complete information about the preferences of
other households. The bottom row displays the maximum possible gain that could
be achieved by a social planner that knows the complete realization of the arrival
process in advance.

one-time transfer payment of between $6,100 and $6,700.29 Providing applicants with some

choice in the allocation process by using PHA-2 rather than PHA-1 achieves 60 percent

of this gain. By allowing applicants to express additional choice, MWP provides further

improvement and falls within about 5 percent of PHA-max. Based on these estimates, we

conclude that MWP outperforms PHA-•. Recall that PHA-max is an idealized bound which

assumes that applicants have complete information about other households’ preferences

and perfect foresight about the realization of the stochastic arrival process, which cannot

be attained in practice. Although a precise prediction about welfare under PHA-• would

require assumptions about applicants’ strategies, the difficulty in characterizing equilibrium

behavior suggests that real-world decision making under PHA-• would be far from optimal.

Note that the welfare measure only accounts for matches and ignores the costs of

processing refusals and leaving units vacant. In our simulations, the next agent on the

waiting list receives an offer immediately after a refusal. In practice, however, housing

29We exclude applicants at the top of the centralized waiting list (before more than one applicant accepts an
offer in the present period), as these applicants may benefit from facing empty site-specific waiting lists when
our simulation begins.
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authorities typically provide three to five days for applicants to respond to an offer, which

leads to longer vacancies. Due to underutilization, a mechanism such as PHA-2 or PHA-•

that makes multiple offers to each applicant produces lower social welfare than our estimates

suggest.

3.4.3 Interpretation of magnitudes

Given that a typical Pittsburgh household living in public housing earns less than $15,000

annually, MWP substantially improves ex-post welfare.30

As one way to assess the economic significance of the welfare gain, we compare our result

with estimates of the benefits and costs of public housing. We measure the benefit of living

in public housing using the equivalent variation, i.e., the transfer that each applicant would

have to receive in private housing to give the applicant the same utility as the public-housing

assignment under PHA-1. According to this measure, living in public housing is equivalent

to a $14,412 increase in annual income. The gain from changing the allocation mechanism to

MWP corresponds to an annual transfer payment of $2,572, which represents an 18 percent

increase in the benefit of public housing. Moreover, the change in the allocation mechanism

increases the cost effectiveness of public housing by 14 percentage points.31

As another way to evaluate the magnitude of the gain, we express the estimates relative

to commuting times. The welfare gain corresponds to a daily transfer payment of $9, or

equivalently 105 minutes at the minimum hourly wage ($5.15 from 2001 to 2006). According

to the 2000 Census, a low-income worker in Pittsburgh spends on each working day an

average of 46 minutes commuting by car or 83 minutes commuting by public transit. In that

sense, the gain from changing the allocation mechanism exceeds the gain from eliminating

30The median total annual income (which includes means-tested transfers) of households eligible for public
housing in our sample is $14,184. Households living in public housing earn an average of $9,082 in the HACP
data as reported by Geyer and Sieg [2013].

31Using data from New York City, Olsen and Barton [1983] estimates a resource cost for providing a public-
housing unit—consisting of loan payments for initial development costs, property taxes, operating costs—of
$18,049 (inflated to 2006 dollars using the Consumer Price Index, and adjusted for administrative costs as
pointed out by Olsen [2003]).
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commuting times.

Finally, we compare the welfare gain to the maximum possible gain that could be

achieved by a social planner that knows the complete realization of the arrival process in

advance. As the bottom panel of Table 3.4 shows, the ex-post optimal allocation would result

in an average welfare gain of $8,505, which provides an upper bound for the maximum

possible gain that any mechanism can reach. MWP attains 75 percent of this perfect-foresight

optimal-allocation benchmark.

We interpret our welfare estimates as providing a lower bound on the gains from

changing the allocation mechanism to MWP, as discussed below.

First, the assumptions about timing in the simulations lead to an underestimate of the

welfare gains. Note that households in our simulations spend three years in public housing,

compared to almost seven years according to the HACP data as reported by Geyer and

Sieg [2013]. A low match duration decreases the benefit of being matched with a more

preferred building. If households with higher utility from public housing spend more time

living in public housing, then using a fixed match duration further understates the average

gains. Next note that the weekly discount factor of about 0.99 corresponds to an annual

discount factor of 0.6, which falls below most estimates in the literature. A low discount

factor increases the cost of waiting for a more preferred building. Both assumptions about

timing lead to smaller estimated gains from a mechanism that allows applicants to wait

longer for better matches.

Second, the measure of welfare places equal weight on all households. This might not

be the most realistic welfare objective because of the fact that housing authorities assign

priorities to each applicant. Under an objective that gives more weight to higher-priority

applicants, the welfare gains are even larger.

Third, the structural model understates the extent of heterogeneity in preferences. Note

that the model only includes six building-category fixed effects instead of a full set of

building-specific fixed effects. Moreover, equation (3.1) does not contain any interaction

between household characteristics and the building-category fixed effects, which implies
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that building categories are vertically differentiated and households on average only differ

in terms of waiting costs. Some forms of heterogeneity depend on persistent idiosyncratic

factors: applicants may prefer to live closer to their respective workplaces, allowing them to

reduce commuting time and travel costs [Lui and Suen, 2011]. A more realistic model would

consist of more heterogeneity in preferences from serially correlated error terms. Applicant

characteristics also contribute to heterogeneity: households with children may prefer units

that are located near better schools, and seniors may prefer units that have access to certain

amenities. Using a model that incorporates these aspects, the estimated gain from using an

allocation mechanism that improves match quality would be even larger.

Finally, the magnitude of our welfare estimate does not arise due to assumptions about

unobserved heterogeneity in preferences. The idiosyncratic preference component can only

affect the decision to accept an offer versus join a waiting list—but not which waiting list to

join—because households can only condition on the realization of the idiosyncratic shock

for the present period. Intuitively, the situation when the idiosyncratic term can affect

decisions arises only when a household is on the margin of accepting an offer, when the

difference in utilities is smallest. Additional simulations confirm that the estimates are not

sensitive to assumptions about functional forms. Taking the extreme approach of entirely

omitting idiosyncratic preferences, the point estimate for the welfare gain of MWP still

lies within the 95 percent confidence interval presented in Table 3.4 at approximately the

lower bound. Therefore we conclude that the estimated welfare gains are not driven by the

extent of unobserved heterogeneity imposed by the structural model. To the extent that

households’ preferences in the real world do exhibit significant unobserved heterogeneity

that the model does not capture, this further suggests that our results underestimate the

actual welfare gains.

3.5 Discussion

We conclude with a discussion of practical matters pertaining to MWP in the context of

public-housing allocation.
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First, with over 1.2 million households living in public housing in the US alone, the

overall gains from improved matching are substantial. Using a sample of households

eligible for public housing in Pittsburgh, we find a lower bound to the welfare gains from

changing the most commonly used take-it-or-leave-it allocation mechanisms to MWP of

$6,429 per applicant.32 Although our theoretical analysis does not focus on ex-post welfare

maximization, which may require specific assumptions about the arrival process, MWP

performs well relative to the ex-post optimal allocation.

Second, MWP allows applicants to express choice without creating additional delays.

Expanding choice by allowing applicants to refuse multiple offers creates delays in filling

vacancies, which in practice results in welfare losses. The media often publicizes the average

number of days that units remain vacant because vacancies lead to losses in rent, which

imposes a burden on taxpayers when the federal government has to subsidize housing

authorities for repairs and other operating costs. As a recent example, rent losses due to

vacancies in New York City exceed $8 million [Navarro, 2015]. Under MWP, households

choose among a set of waiting lists rather than accept or reject units after they arrive. By

only requiring housing authorities to make a single offer to each applicant, MWP provides

both choice and utilization.

Third, households face a simple decision problem under MWP, which is strategy-proof.

In the direct mechanism, an applicant must report (i) a ranking over buildings, and (ii) for

each building, the number of periods the applicant would be willing to wait to receive a unit

in her most-preferred building rather than receiving a unit in that building immediately.

In the indirect mechanism, an applicant must select among a set of units associated with

expected waiting times given information about the arrival process, which a housing

authority can provide [Kaplan, 1986]. Existing mechanisms, by contrast, require difficult

computations for agents to behave optimally.

Finally, although the model involves various stylized assumptions, the general lessons

32These measures do not account for objectives such as racial or economic integration of housing projects;
Kaplan [1987] discusses how priority-assignment policies can achieve such goals.
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apply in more realistic situations. The main results hold when we relax assumptions about

time or risk preferences as well as in the presence of unobserved heterogeneity in applicants’

preferences over units. Moreover, if additional applicants can join the waiting list or the

priority ordering can change over time, a housing authority can implement MWP without

any modification.
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Appendix A

Appendix to Chapters 1 and 2

A.1 Data

As in Haggag and Paci [2014], we first process the data by dropping data errors including

those resulting from electronic tests.

1. If the drop-off time is before the pick-up time in a trip, then we swap the drop-off time

and pick-up time: 0.01 percent of the trips.

2. If the same driver or the same car’s drop-off time is after the pick-up time of a

subsequent trip, then we set the drop-off time to be equal to the pick-up time of the

subsequent trip: 0.06 percent of the trips.

We flag trips that have any of the inconsistencies outlined below:

1. Trips that have distance of zero: 0.65 percent of the trips.

2. Trips that have ride duration of zero: 0.3 percent of the trips.

3. Trips with payment type recorded as “No Charge” or “Dispute”: 0.42 percent of trips.

4. When fare is too high or too low compared to distance and time and locations: 0.16

percent of the trips.

5. When fare is too low compared to distance and time and locations: 0.25 percent of the

trips.
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6. Trip time as indicated by the pick-up and drop-off timestamps and the recorded ride

duration do not match: 0.20 percent of the trips.

7. Outliers with trip durations longer than 3 hours or trip distance longer than 100 miles:

0.65 percent of the trips.

8. Trip between Manhattan and an airport in under 5 minutes: 0.07 percent of the trips.

9. Trip between Manhattan and JFK International airport in under 10 miles: 0.06 percent

of the trips.

10. When a ride lasts fewer than ten seconds, or fewer than one minute and costs over $10:

0.68 percent of the trips.

11. When a ride lasts fewer than ten seconds, or fewer than one minute and costs over $10:

0.49 percent of the trips.

12. When average speed during a trip exceeds 80 miles per hour: 0.39 percent of the trips.

13. Trips belonging to truncated shifts (those that start before the first day or end after the

last day of the year): 0.09 percent of the trips.

We then remove shifts with trips that have been flagged with errors or shifts that are are

outliers:

1. Trips in the same shift but with more than one cars: 0.40 percent of the shifts.

2. Shifts that are longer 18 hours: 1.12 percent of the shifts.

3. Shifts that are shorter than two hours: 2.31 percent of the shifts.

4. Shifts by drivers with under 100 rides on record (may be electronic tests sent by TLC or

the vendors): 0.12 percent of the shifts.

5. Shifts with fewer than three trips: 1.5 percent of the shifts.

As many of the analyses require that trips are in successive order, we remove the whole

shift when one trip is questionable, and the process reduces our sample by approximately 24

percent. After cleaning out shifts, we remove drivers with under ten shifts, or an additional

0.1 percent of the observations. We are left with a sample of 127 million observations from

over 37,000 drivers in over 5.8 million shifts. Finally, in many of the analyses, we restrict our
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sample to shifts that stay within the five boroughs in NYC, consisting of 94 percent of the

remaining shifts.

A.2 Elasticity Estimates

In this section, we discuss how the wage profile can potentially lead to mechanical biases of

wage-elasticity estimates. To illustrate how elasticities can be biased in the positive direction,

consider a hypothetical driver who supplies labor inelastically, with some noise around

the optimal stopping time. If the wage increases throughout each shift, then a regression

of log hours on log wages will have a positive coefficient on log wages since longer shifts

mechanically have higher average earnings.

We provide suggestive evidence that this bias might be present in the setting of cabdrivers

in NYC by estimating elasticities on subgroups of shifts with different wage patterns. To

estimate wage elasticities, we follow the approach by Camerer et al. [1997] and Farber [2015],

regressing the logarithm of the total working hours in a shift on the logarithm of the average

earnings per hour in that shift, with time controls (indicators for day of week, week of

year, and federal holidays) and driver fixed effects. We also use average market wage of a

non-overlapping sample of drivers to instrument for a driver’s wage.

Figure A.1 displays the pattern of average wages on weekdays and on weekends. Though

the patterns are similar across am shifts, they diverge significantly between 10 pm and 1:30

am when the average wage is rising for weekend shifts but falling for weekday shifts.

As around half of the cabdrivers who work during the pm shift stop during this period,

this distinction may have a nontrivial impact on the elasticity estimates. For each type

of shift (day or night), we estimate the wage elasticity of weekday shifts and weekend

shifts separately, restricting the sample to drivers who appear in both groups to avoid

compositional differences in responsiveness to wage changes. The estimates in Table A.1

confirm that while wage elasticities across weekdays and weekends are similar for am shifts,

they are substantially higher during weekends for pm shifts, consistent with the pattern of

increasing average wages on weekend nights. Instrumental-variable estimates would imply
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Figure A.1: Pattern of wages: Weekday versus weekend
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The figure depicts the average market wage every minute throughout the day, separated into weekdays and
weekends. The market wage in each minute is the average of the per-minute wages of all drivers working
during that minute, where a driver’s per-minute wage is the ratio of the fare (not including tips) to the number
of minutes spent searching for or riding with passengers for their current trip. Weekend is defined as 5 pm
Friday through 5 pm Sunday. Weekday is defined as 5 pm Sunday through 5 pm Friday.
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Table A.1: Wage elasticity estimates: Weekday versus weekend

Shift Time OLS IV

Day Weekday -0.1636 0.2632
(0.0031) (0.0074)

Day Weekend -0.1214 0.0076
(0.0040) (0.0293)

Night Weekday -0.3546 0.3067
(0.0027) (0.0083)

Night Weekend -0.1418 1.3085
(0.0041) (0.0260)

Each cell presents elasticity estimates from a regression of log hours on log
wages, with time controls (indicators for day of week, week of year, and federal
holidays) and driver fixed effects (21,244 for night-shift drivers and 18,569 for
day-shift drivers). Day shifts start between 4 am and 10 am, and night shifts
start between 2 pm and 8 pm. Weekend shifts consist of night shifts on Friday
and Saturday as well as day shifts on Saturday and Sunday. For each shift type
(day or night), the sample consists of drivers who appear in both the weekday
and weekend group. The IV column instruments for wages using the average
hourly wage from a non-overlapping sample of 2,108 drivers on the same day.
Standard errors reported in parentheses are adjusted for clustering at the driver
level.
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striking differences in behavior between weekdays and weekends for pm shifts, with an

elasticity of 0.3067 on weekends and 1.3085 on weekdays, and no such difference in behavior

for am shifts. As the direction of these estimates coincides with predictions based on daily

wage patterns, our results suggest that within-day variation in wages can lead to biases in

elasticity estimates.

A.3 Model and Estimation

A.3.1 A Model of Daily Labor Supply

We begin by presenting a neoclassical model of intertemporal utility maximization with

time-separable utility. We then formulate testable predictions about daily labor-supply

decisions and proceed to evaluate these predictions using data on the labor supply of NYC

cabdrivers.

An individual maximizes lifetime utility given by

U =
N

Â
n=0

r

nu(cn, hn),

where r is the discount factor, cn is consumption in period n, hn is hours worked in period

n, and u(·) is a per-period utility function which is increasing in consumption, decreasing

in hours worked, and concave in both arguments. The lifetime budget constraint is given by

N

Â
n=0

(1+ r)�1(yn(hn)� pncn) = 0,

where pn denotes the price of consumption, r denotes the interest rate, and daily earnings

yn(·) is an increasing function of labor supply. The first-order conditions for this intertempo-

ral maximization problem equate the marginal utility of lifetime income with the marginal

utility of consumption and the marginal disutility of effort per unit of wage.

The problem of maximizing lifetime utility is equivalent to that of maximizing a static

one-period objective function

v(hn) = lyn(hn)� g(hn,lpn), (A.1)
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where the monetary equivalent of the disutility of effort g(·) is convex and l is the lifetime

marginal utility of income along the optimal path.1 Taking one period to be a shift, we

model the decision of a driver to continue working or to stop working at the end of each

trip. To evaluate whether to continue working, drivers must form expectations about the

additional income earned from and the additional time spent on a prospective trip.

A driver decides to end a given shift when the disutility of effort for completing an

additional trip outweighs the expected fare.2 As in Farber [2015], the stopping model can be

thought of as a reduced form of a forward-looking dynamic optimization model based on

expected future earnings opportunities, hours worked so far, and income earned so far. After

completing t trips in hi,n,t hours, driver i decides to end shift n if v(hi,n,t) exceeds the value

v(hi,n,t+1) + # i,n,t of continuing to work for one more trip, where the error terms # i,n,t are

independently drawn from a distribution F. We define d⇤i,n,t = v(hi,n,t+1) + # i,n,t � v(hi,n,t) as

the latent value of continuing for another trip and let di,n,t = 1{d⇤i,n,t<0} indicate the decision

to stop working. A key prediction of the model is that there are no daily income effects:

cumulative daily earnings yi,n,t := yn(hi,n,t) do not affect the decision to end a shift. Taking

a reduced-form approximation for the value of continuing, we test the prediction that daily

income effects are inconsequential by expressing the probability that driver i ends shift t at

trip n non-parametrically as

Pr(di,n,t = 1) = Â
j

h�
f j(hi,n,t) + gjyi,n,t + Xi,n,tb j + µi,j

�
1{hi,n,t2Hj}

i
+ ei,n,t, (1.1)

where X consists of controls for location, time, and weather which can potentially be related

to variation in earnings opportunities from continuing to work; f (h) is a function of work

hours; µ absorbs differences in drivers’ baseline stopping tendencies; and Hj partitions the

minutes of the shift into intervals to allow a time-varying relationship between each of the

1See the online appendix of Fehr and Goette [2007] for a derivation following Browning et al. [1985].

2This assumption follows Farber [2005, 2008] and Crawford and Meng [2011], who suggest that not explicitly
modeling option value is behaviorally reasonable. Moreover, for convex disutility of effort, this trip-by-trip
stopping rule is consistent with maximizing the static objective function as long as the wage rate y0n(hn) does
not increase too rapidly.
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covariates and the probability of stopping. The model predicts that gj = 0 for all j, i.e., that

the decision to end a shift is unrelated to cumulative daily earnings.

A.3.2 Simulation Exercise

To evaluate various approaches for estimating stopping behavior, we conduct a set of

empirical Monte Carlo studies [Stigler, 1977, Huber et al., 2013]. The data for our simulations

consists of a sample of over 3 million trips from 1,000 drivers. The first set of simulations

considers stopping decisions that do not depend on earnings. The second set of simulations

considers stopping decisions that depend on cumulative daily earnings but not on the

timing of earnings. We find that the non-parametric approach in the present paper produces

the expected result across all of the simulations, whereas alternative approaches from the

literature may yield a significant positive or negative effect of earnings (and the timing of

earnings) on stopping.

We follow the notation in Section A.3.1, where di,n,t denotes the decision to stop working,

yi,n,t denotes cumulative earnings, and hi,n,t denotes the number of hours driver i has worked

at the end of t trips in shift n. Letting F denote the standard normal cumulative distribution

function, we consider regression equations of the following forms:

Pr(di,n,t = 1) = Â
j

h�
ajhi,n,t + gjyi,n,t + µi,j

�
1{hi,n,t2Hj}

i
+ ei,n,t (TT)

Pr(di,n,t = 1) = F(ahi,n,t + gyi,n,t + µi) (F-1)

Pr(di,n,t = 1) = F

 

Â
j

aj1{hi,n,t2Hj} + gyi,n,t + µi

!
(F-2)

Pr(di,n,t = 1) = F

 

Â
j

aj1{hi,n,t2Ĥj} + Â
j

gj1{yi,n,t2Ŷj} + µi

!
(F-3)

Pr(di,n,t = 1) = F

 

Â
j

aj1{hi,n,t2Ĥj} + Â
j,`

dj,`1{hi,n,t2Ĥj}1{yi,n,t2Ŷ`} + µi

!
. (F-4)

Equation (TT) corresponds to Equation (1.1) in Thakral and Tô [2018], excluding the

control variables, with Hj partitioning the shift into 10-minute intervals. Equation (F-

1) resembles the probit model from Farber [2005] and Crawford and Meng [2011], in
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Table A.2: Simulated stopping model: Decision rule independent of income

Simulation 1: stop at 9.5 Simulation 2: stop at H̄i

Effect of 20%
increase in
income

p-value:
income coefs.

= 0

Effect of 20%
increase in
income

p-value:
income coefs.

= 0

Non-parametric model
TT -0.0041 0.1979 -0.0058 0.9368

(0.0030) (0.0043)

Linear probability model
F-1 -0.0083 0.0000 -0.0269 0.0000

(0.0005) (0.0006)
F-2 0.0005 0.2329 -0.0116 0.0000

(0.0004) (0.0006)
F-3a 0.0017 0.0000

F-3b 0.0436 0.0000 -0.0202 0.0000
(0.0056) (0.0110)

F-4 -0.0054 0.0000 0.0112 0.0000
(0.0052) (0.0186)

Probit model
F-1 -0.0081 0.0000 -0.0317 0.0000

(0.0005) (0.0009)
F-2 0.0004 0.2467 -0.0207 0.0000

(0.0003) (0.0013)
F-3a 0.0303 0.0000

F-3b 0.0185 0.0000 -0.0189 0.0000
(0.0029) (0.0114)

Each row corresponds to a different regression equation defined in Section A.3.2. The row F-3a corresponds to
Equation (F-3) with the partitions Ĥ and Ŷ over hours and income defined as in Farber [2005], and the row F-3b
corresponds to Equation (F-3) with the partitions defined as in Farber [2015]. Simulation 1 denotes a stopping rule
in which all drivers end their shifts after exceeding 9.5 hours with some noise in the stopping decision prior to that.
Simulation 2 denotes a stopping rule in which all drivers end their shifts after exceeding a driver-specific quantity of
hours with some noise in the stopping decision prior to that. The top panel reports estimates from Equation (TT) of
the percentage-point increase in the probability of ending a shift at 8.5 hours when cumulative earnings is 20 percent
higher. The middle panel reports results from Equations (F-1) to (F-4) estimated as a linear probability model. The
bottom panel reports results from the probit models in Equations (F-1) to (F-4). The income effect (columns 1 and 3)
reports the estimated effect of a 20% increase in cumulative daily earnings on the probability of ending a shift after
working 8.5 hours and earning $300. The income effect for the model in F-3a mechanically does not predict any
effect of income on the probability of stopping after earning $300 because of how the partition is defined. The p-value
(columns 2 and 4) presents the result of an F-test (Panels A and B) or c

2-test (Panel C) of the null hypothesis that the
income-related coefficients are jointly zero. The test imposes 1 restriction for Equations (F-1) and (F-2), 9 restrictions
for Equation (F-3), 72 restrictions for Equation (F-4), and 59 restrictions for Equation (TT) in Simulation 1, and 78
restrictions for Equation (TT) in Simulation 2.
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Table A.3: Simulated stopping model: Decision rule independent of timing of income

Simulation 3: Pr(stop)
increases in income

Effect of 20% increase
in income

TT
Income in hour 1 0.0474

(0.0207)
Income in hour 2 0.0243

(0.0218)
Income in hour 3 -0.0012

(0.0223)
Income in hour 4 0.0102

(0.0225)
Income in hour 5 0.0215

(0.0227)
Income in hour 6 0.0241

(0.0212)
Income in hour 7 0.0285

(0.0208)
Income in hour 8 0.0157

(0.0228)

p-value: income coefs. = 0 0.0000
p-value: Equality of income coefs. 0.8464

Each row reports the estimated percentage-point change in the probability of ending
a shift at 8.5 hours in response to a $60 increase in earnings accumulated at different
times during the shift from Equation (TT⇤). Simulation 3 denotes a stopping rule in
which all drivers end their shifts after exceeding 9.5 hours, prior to which the drivers
probability of ending a shift is an increasing function of cumulative daily earnings
but does not depend on the timing of those earnings. The penultimate row presents
the result of an F-test of the null hypothesis that the income-related coefficients
are jointly zero. The last row tests the null hypothesis that the gj,k coefficients in
Equation (TT⇤) are independent of k (for every j).

104



Figure A.2: Simulated stopping model: Distribution of p values for non-parametric specification
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The figure depicts the results from using Equation (TT) to test the null hypothesis that income has no effect
on stopping decisions in Simulation 1 and Simulation 2 repeated 1,000 times each. Simulation 1 denotes a
stopping rule in which all drivers end their shifts after exceeding 9.5 hours with some noise in the stopping
decision prior to that. Simulation 2 denotes a stopping rule in which all drivers end their shifts after exceeding
a driver-specific quantity of hours with some noise in the stopping decision prior to that. The curve represents
the cumulative distribution of p-values.
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which income and hours are constrained to enter linearly. Equation (F-2) relaxes the

constraint by allowing for a non-parametric relationship between hours and the probability

of stopping. Equation (F-3) corresponds to the alternative specification in Farber [2005]

when we take Ĥ and Ŷ to partition the shift at {180, 360, 420, 480, 540, 600, 660, 720} minutes

and {25, 50, 75, 100, 125, 150, 175, 200, 225} dollars, respectively. The main specification in

Farber [2015] corresponds to Equation (F-3) and the more flexible specification in Farber

[2015] corresponds to Equation (F-4) (both estimated as linear probability models) when we

take Ĥ and Ŷ to partition the shift at {180, 360, 420, 480, 540, 600, 660, 720, 780} minutes and

{100, 150, 200, 225, 250, 275, 300, 350, 400} dollars, respectively.

We consider the following stopping rules in which decisions do not depend on earnings:

Simulation 1: End the shift with certainty at the end of a trip if hours exceeds 9.5, and

stop with independent probability 0.05 at the end of any given trip that ends before

9.5 hours.

Simulation 2: Driver i ends the shift with certainty at the end of a trip if hours exceeds a

driver-specific level of hours H̄i, and stops with independent probability 0.05 at the end

of any given trip that ends before H̄i hours, where we define H̄i as one less than the

mean hours across all of driver i’s shifts in the data.

Table A.2 reports the estimated income effects in both simulations from Equation (TT),

from Equations (F-1) to (F-4) estimated as linear probability model, and from Equations (F-1)

to (F-3) estimated as a probit model. We refer to the specification in Farber [2005] as

F-3a, and the specification in Farber [2015] as F-3b. Equation (TT) produces the expected

result in both simulations that we cannot reject the null hypothesis that the income-related

coefficients are jointly zero. Using Equation (F-1), Equation (F-3), or Equation (F-4) leads

to the incorrect conclusion in both simulations that income significantly influences the

probability of stopping, even though the data are generated precisely so that income has

no effect. By controlling flexibly for hours in Equation (F-2), we cannot reject the null

hypothesis of no income effects in Simulation 1 since the probability of ending a shift as a

function of hours is generated to be identical across drivers; in Simulation 2, however, we
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incorrectly reject the null hypothesis.

We repeat the exercise 1,000 times for each simulation. While the parametric specifica-

tions overwhelmingly produce false positives by incorrectly rejecting the null hypothesis of

no income effects, Equation (TT) rejects this null hypothesis at the x percent significance

level about in about x percent of simulations for all x 2 (0, 1). Figure A.2 shows this by

plotting the distribution of p-values from the non-parametric specification.

Next, we extend Equation (TT) to allow for the probability of stopping to depend on the

timing of earnings, analogous to Equation (1.2):

Pr(di,n,t = 1) = Â
j

" 
ajhi,n,t + gj,k Â

k
yi,n,t,k + µi,j

!
1{hi,n,t2Hj}

#
+ ei,n,t (TT⇤)

We simulate a stopping rule in which income does affect stopping decisions, but the

timing of income is irrelevant (i.e., money is fungible).

Simulation 3: End the shift with certainty at the end of a trip if hours exceeds 9.5, and stop

with independent probability 0.05 · yi,n,t at the end of any given trip that ends before

9.5 hours, where yi,n,t denotes cumulative daily earnings.

Table A.3 reports the estimated effects of earnings in each hour from Equation (TT).

An F-test rejects the hypothesis that the income-related coefficients are jointly zero (i.e.,

gj,k = 0 for all j, k) but fails to reject the hypothesis that the timing of income is irrelevant

(i.e., gj,k1 = gj,k2 for all j, k1, k2).

A.4 Robustness

A.4.1 Effort

Section 1.3.4 discusses IV estimates for the income effect, instrumenting for earnings with the

cumulative distance between pick-up and drop-off locations (in GPS distance or odometer

miles).

As an alternative estimation strategy, we instrument for cumulative daily earnings using

cumulative tips from credit-card transactions. Figures A.3 and A.4 reproduce Figures 1.6
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Figure A.3: Stopping model IV estimates: Income effect throughout the shift
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(b) IV: GPS distance
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(c) IV: Odometer distance
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(d) IV: Tips

The bars, corresponding to the scale on the left, show the probability that a driver ends a shift at the specified
number of hours. The solid lines, corresponding to the scale on the right, depict the marginal effect of an
additional 10 percent in earnings on the probability of stopping at various times throughout the shift. Estimates
obtain from Equation (1.1) with controls for location, time, and weather (see Table 1.2 for details) and fixed
effects for 37,460 drivers. The dashed lines represent the 95-percent confidence interval, with standard errors
adjusted for clustering at the driver level.
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Figure A.4: Stopping model IV estimates: Income effect at 8.5 hours—Timing pattern
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(b) IV: GPS distance
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(c) IV: Odometer distance
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(d) IV: Tips

The figure depicts the percent change in the probability of ending a shift at 8.5 hours in response to a $10
increase in earnings accumulated at different times in the shift. Estimates obtain from Equation (1.2) with
controls for location, time, and weather (see Table 1.2 for details) and fixed effects for 36,900 drivers.
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and 1.7, respectively, using the three IV strategies and find consistent income effects

throughout the shift as well as the timing pattern across all specifications. The results in

Figures A.3d and A.4d show smaller point estimates of the income effect, consistent with

our interpretation of the effect of cumulative earnings on the probability of stopping as

representing an income effect.

Figure A.5 restricts the analysis to trips that stay within Manhattan and demonstrates

that the income effect persists. To understand the effect of cumulative earnings on stopping,

this restriction serves several purposes. First, even though the baseline estimates contain an

extensive set of controls for location (195 NTA fixed effects and an indicator for being in the

zip code where the cab must be returned interacted with hour of the day), the estimates

from this subsample ensure that income effects do not only appear when drivers end a trip

in one of the outer boroughs (e.g., near the garage where they return the cab or their home).

Second, given the dense streets of Manhattan, the variation in earnings due to distance

based on differences in driving speed plausibly arises due to traffic conditions unrelated to

the driver’s decisions to exert additional effort.

A.4.2 Learning

Within-day learning

The results in Figures 1.7 and 1.8 suggest that drivers react differently to money earned in

different hours of the shift, which we interpret as a violation of fungibility. Differences in

behavior due to timing of payment could also result from learning. To explain the timing

pattern with a learning story, we would have to assume that drivers tend to ignore recent

experiences in the market and instead rely on earnings earlier in the shift to predict future

opportunities. The data do not support the view that more recent market conditions are less

relevant for predicting future market conditions (see Figure 1.5).3 Instead, a more plausible

learning effect would bias the results away from finding stronger effects on stopping in

3We compute an autocorrelation using market wages, as driver-specific wages are endogenous to their
stopping decisions.
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Figure A.5: Stopping model IV estimates: Income effect at 8.5 hours—Timing pattern for Manhattan trips
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The figure depicts the effect of an additional $10 in earnings accumulated at different times in the shift (vertical
axis) on the probability of stopping at 8.5 hours for trips that start and end within Manhattan under various
estimation strategies. Estimates obtain from Equation (1.2) with controls for location, time, and weather and
driver fixed effects (see Table 1.2 for details). Each square has area proportional to the corresponding percent
change in the probability of stopping.
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response to more recent earnings. Insofar as within-day learning influences behavior, the

estimated violation of fungibility understates the true effect.

Across-day learning

In the model from Section A.3.1, earnings on one day convey no information about earnings

on another day, so intertemporal optimization is equivalent to maximization of a static

one-period objective function. If higher earnings correlate with plentiful opportunities on

the next day, then a driver may decide to work less on one day to conserve energy to work

more on the next day. The insignificant autocorrelation in the transitory component to daily

wages in Figure A.6 suggests little scope for this type of intertemporal substitution to drive

the relationship between earnings and quitting.

In a related setting, Agarwal et al. [2015] find that daily income distributions for

Singaporean cabdrivers are independent of income shocks in the previous days, which

suggests a limited role for intertemporal substitution.

A.4.3 Option value

The trip-by-trip stopping model relies on the assumption that the option value of continuing

to drive is sufficiently small (or that drivers ignore option value). The pattern in Figure A.1

suggests that this assumption may not be reasonable for night-weekend shifts, when wages

rise substantially and predictably over time, but may be quite reasonable for night-weekday

shifts, when the typical wage profile is nonincreasing. Figure A.7 plots the percent change in

the probability of stopping estimated on four separate groups of shifts (day-weekday shifts,

day-weekend shifts, night-weekday shifts, and night-weekend shifts). We see a significant

negative effect of earnings on quitting for night-weekend shifts, for which the assumptions

of the stopping model likely do not apply, and significant positive income effects for day

shifts and night-weekday shifts, for which the assumptions of the stopping model likely do

apply.
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Figure A.6: Autocorrelation of residualized daily market wage
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The figure depicts the autocorrelation of daily market wages indexed by day of the year in 2013. The daily
market wage is the sum of the minute market wage in each calendar day, with the minute market wage
computed as in Figure 1.4. The daily market wage is residualized from a regression on a set of time and weather
effects: day of week, week of year, an indicator for federal holidays, an indicator for whether it rains during that
day, and indicators for high (over 80 degrees Fahrenheit) and low (under 30 degrees Fahrenheit) average daily
temperature. The shaded region denotes a 95-percent confidence band.
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Figure A.7: Stopping model estimates: Income effect by shift type
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The figure depicts the percent change in the probability of stopping at various times throughout the shift in
response to a 10 percent increase in cumulative earnings. Each line represents estimates of Equation (1.1) (see
Figure 1.6 for details) restricted to the corresponding group of shifts: day-weekday, day-weekend, night-weekday,
and night-weekend. Day shifts start between 4 am and 10 am, and night shifts start between 2 pm and 8 pm.
Weekend shifts consist of night shifts on Friday and Saturday as well as day shifts on Saturday and Sunday.

114



A.4.4 Experience

To investigate the effects of experience, Table A.4 restricts the sample to drivers with over

100 shifts and separates each driver’s shifts into deciles based on the date. The first row

corresponds to the first 10 percent of each driver’s shifts, while the last row corresponds

to the last 10 percent of each driver’s shifts. The estimates show consistent magnitudes of

the income effects as well as violations of fungibility across all levels of experience. For

comparison, Haggag et al. [2017] document significant learning among cabdrivers in a

relatively short time horizon, with productivity differences between new and experienced

drivers vanishing after 17 to 62 shifts.

A.4.5 Measurement Error

Observability of shift ending

Our empirical approach reveals a decrease in labor supply under the assumption that all

shifts end as soon as the driver drops off the last passenger. However, the data do not

distinguish between a driver who ends a shift immediately after dropping off their last

passenger and a driver who spends time searching for another fare unsuccessfully. The

conclusion that drivers respond to higher cumulative earnings with a reduction in labor

supply might be overstated if drivers spend relatively more time searching before quitting

in high-income shifts.

Explaining the patterns in our data by the fact that drivers may spend unrecorded

amounts of time searching before quitting would require that finding a passenger is more

difficult at the end of a shift in which the driver earns more. As noted in the discussion

of unobserved effort in Section 1.3.4, however, a high-income shift is more likely to be

one in which the driver generally spends less time searching for passengers. The negative

correlation between the share of working hours spent searching for passengers and total

earnings in a shift provides suggestive evidence that drivers are unlikely to spend relatively

more time searching for a passenger before ending a shift when earnings are high. As an
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Table A.4: Stopping model estimates: Income effect at 8.5 hours—Within-driver experience

(1) (2)

Overall Hour 2 Hour 4 Hour 6 Hour 8

0–10% shifts 0.2883 0.2984 -0.1003 0.0515 0.1307
(0.1056) (0.1558) (0.1655) (0.1633) (0.1723)

10–20% shifts 0.1874 -0.0933 -0.2133 0.0919 0.5044
(0.1085) (0.1516) (0.1568) (0.1568) (0.1622)

20–30% shifts 0.4576 -0.1167 0.1844 0.3713 0.4914
(0.1077) (0.1528) (0.1590) (0.1590) (0.1673)

30–40% shifts 0.4760 0.0993 -0.1107 0.1451 0.4835
(0.1085) (0.1588) (0.1662) (0.1597) (0.1655)

40–50% shifts 0.3911 0.2189 0.0388 0.1822 0.7382
(0.1131) (0.1618) (0.1719) (0.1711) (0.1781)

50–60% shifts 0.1848 -0.0180 0.0700 0.1722 0.4549
(0.1152) (0.1674) (0.1751) (0.1758) (0.1840)

60–70% shifts 0.3531 0.2247 0.1595 0.2413 0.5915
(0.1130) (0.2247) (0.1595) (0.2413) (0.5915)

70–80% shifts 0.3097 0.0959 0.0022 0.5388 0.4347
(0.1162) (0.1647) (0.1727) (0.1678) (0.1765)

80–90% shifts 0.5603 0.0479 0.3023 0.4168 0.6786
(0.1150) (0.1638) (0.1698) (0.1689) (0.1783)

90–100% shifts 0.4625 -0.0130 0.3062 0.3309 0.5580
(0.0805) (0.1236) (0.1284) (0.1267) (0.1335)

Specification (1) reports estimates from Equation (1.1) of the percentage-point
increase in the probability of ending a shift at 8.5 hours when cumulative earnings
is 10 percent higher. Specification (2) reports estimates from Equation (1.2) of the
percentage-point change in the probability of ending a shift at 8.5 hours in response
to a $10 increase in earnings accumulated at different times in the shift. Each row
corresponds to a different level of experience, with the last row denoting shifts with
the greatest experience for each driver. The control variables consist of the full set
from Table 1.2. Standard errors reported in parentheses are adjusted for clustering
at the driver level.

116



alternative measure of the difficulty of searching at the end of a shift, we use the amount of

time that the driver spent searching for the last passenger. Indeed we find a similar pattern:

drivers spend an average of 11.2 minutes searching for their last passenger among shifts in

the bottom decile of earnings, compared with only 10.1 minutes among shifts in the top

decile.4

The evidence suggests that the income effect does not emerge from the fact that our

dataset does not report the amount of time that a driver spends working at the end of a

shift. If anything, drivers may spend relatively more minutes working after dropping off the

last passenger on a low-wage shift, which would imply that the reduction in labor supply

that we observe in response to higher cumulative earnings underestimates the true income

effect.5

Taking breaks

Figure A.8 classifies breaks as long periods of time without a passenger and presents

estimates of the stopping model from Equation (1.2) with additional controls for minutes

spent on break. Farber [2005] uses the following thresholds to classify waiting times

as breaks: 30 minutes between Manhattan fares; 60 minutes between non-airport, non-

Manhattan fares; 90 minutes between airport fares. We test the sensitivity of the income

effect by uniformly adjusting the thresholds of waiting time for defining breaks by 15

minutes in either direction. Figure A.8 verifies that the results remain unchanged using

these definitions of breaks.

Instead of directly controlling for break time as in Farber [2005] (e.g., if taking breaks

constitutes an outcome of earnings), we can re-estimate the stopping model using breaks

as the dependent variable. A decrease in the probability of taking a break in response to

4The result is also similar if we measure the difficulty of finding a passenger after a given trip by computing
the number of minutes spent searching averaged across all drivers whose trips end in the same minute.

5The concern that shift ending times are unobservable might be more relevant for elasticity-based analyses
of daily labor-supply decisions, since the fact that drivers spend more unrecorded minutes searching for
passengers during shifts with lower average wages could bias elasticity estimates in the positive direction.
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Figure A.8: Stopping model estimates: Income effect at 8.5 hours—Timing pattern with alternative definitions
of breaks
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The figure depicts the effect of an additional $10 in earnings accumulated at different times in the shift (vertical
axis) on the probability of stopping at 8.5 hours from Figure 1.7, with controls for break time under various
definitions of breaks (horizontal axis). The first column replicates the baseline specification, which controls for
minutes spent working, including indicators for the number of minutes with passengers in each hour. The
second column uses the following minimum thresholds to classify time spent without a passenger as breaks: 15
minutes between Manhattan fares; 45 minutes between non-airport, non-Manhattan fares; 75 minutes between
airport fares. The third column uses the following thresholds: 30 minutes between Manhattan fares; 60 minutes
between non-airport, non-Manhattan fares; 90 minutes between airport fares. The fourth column uses the
following thresholds: 45 minutes between Manhattan fares; 75 minutes between non-airport, non-Manhattan
fares; 105 minutes between airport fares. Each square has area proportional to the corresponding percent change
in the probability of stopping.
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Table A.5: Maximum likelihood estimates: Loss aversion—Stochastic reference points

Estimates

Disutility of trip 0.0348
(0.0022)

Error term distribution s 0.0578
(0.0031)

Loss aversion over income LI 1.1164
(0.0280)

Loss aversion over hours LH 6.3827
(0.0978)

Adjustment q 0.9060
(0.0141)

Log-likelihood -350,205
Likelihood ratio test: LI = LH = 1 ¡0.001
Likelihood ratio test: q = 1 ¡0.001
Likelihood ratio test: LI = LH ¡0.001

This table presents maximum likelihood estimates of Equation (2.7) for the
objective function in Equation (2.4) with stochastic reference points. The
estimation sample consists of over 1.2 million shifts from 36,900 drivers.
See the note to Table 2.1 for additional details. The last three rows contain
the p-value from likelihood ratio tests of the following null hypotheses: (i)
the baseline model, (ii) a static reference point, and (iii) a single coefficient
of loss aversion.

additional earnings might lead to concerns that the stopping model incorrectly attributes

the effect of hours worked to the effect of income, but the evidence points against this. We

find that an additional 10 percent in earnings corresponds to an increase of 0.0072 to 0.0756

percentage points in the probability of taking a break at 8.5 hours. We find an increase in

the probability of taking a break at earlier hours of the shift and no significant change in the

probability of taking a break at later hours of the shift.

A.5 Additional results for structural estimation

The model of loss aversion in Section 2.2 makes two simplifying assumptions: first, the

targets Ir and Hr represent point expectations, and second, utility is piecewise linear in

gains and losses. A stochastic reference point would consist of the distribution of earnings
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Table A.6: Maximum likelihood estimates: Loss aversion—With diminishing sensitivity

Estimates

Disutility of trip 0.0816
(0.0082)

Error term distribution s 0.0795
(0.0031)

Loss aversion over income LI 1.2763
(0.0170)

Loss aversion over hours LH 2.6971
(0.0239)

Log-likelihood -459,015
Likelihood ratio test: LI = LH = 1 ¡0.001
Likelihood ratio test: LI = LH ¡0.001

This table presents maximum likelihood estimates of Equation (2.7) for the
objective function in Equation (2.4) with diminishing sensitivity in the
gain-loss function. The estimation sample consists of over 1.2 million shifts
from 36,900 drivers. See the note to Table 2.1 for additional details. The
last two rows contain the p-value from likelihood ratio tests of the following
null hypotheses: (i) the baseline model, and (ii) a single coefficient of loss
aversion.
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and hours for each shift. We approximate this by using quartiles of the distribution of

earnings and hours for each driver and day of the week. The results in Table A.5 show a

larger coefficient of loss aversion but still an important role for adaptive reference points

and a smaller degree of loss aversion over income. Allowing for diminishing sensitivity

corresponds to an objective function that exhibits convexity in losses and concavity in gains.

We use the power function

n(x | xr) =
�
1{x>xr} + l1{x<xr}

�
(vx(x)� vx(xr))z ,

where we follow Hastings and Shapiro [2013] by calibrating the parameter z to 0.88 [Kahne-

man and Tversky, 1979]. Table A.6 re-estimates the loss-aversion model with diminishing

sensitivity. Overall we find that relaxing the simplifying assumptions in the loss-aversion

model does not change the conclusions about the importance of adaptive reference points

and the smaller degree of loss aversion over income.
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Appendix B

Appendix to Chapter 3

B.1 Ex-post impossibility

Proof of Proposition 1. We will show by example that no mechanism can guarantee ex-post

efficiency or ex-post elimination of justified envy for every arrival process.

Consider the following example with three periods (0, 1, and 2), three buildings (a, b,

and g), and three applicants (a, b, and c).

Assume that each building gives applicant a the highest priority. The applicants’

preferences are given in Table B.1.

Let the arrival process be specified as follows. In each period, a unit becomes available

with certainty: the unit that becomes available in period 0 is in building a; the unit that

becomes available in period 1 is equally likely to be in building b or in building g; and the

unit that becomes available in period 2 is equally likely to be in the building from which no

unit has become available yet or in building a.

Suppose applicant a is assigned building a in period 0. With probability 1/2, building b

becomes available in period 1. There are two cases to consider. First, suppose b is assigned

to applicant b. Then with probability 1/2, building g arrives in period 2 and is allocated to

applicant c. Notice that the allocation is ex-post inefficient because applicants a and b prefer

to switch: since (b, 1) �a (a, 1) and (a, 1) �b (b, 1), we see that a and b prefer to leave
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Table B.1: Preferences for applicants a, b, and c in Proposition 1

�a �b �c

(b, 0) (a, 0) (a, 0)
(b, 1) (a, 1) (a, 1)
(g, 0) (g, 0) (g, 0)
(a, 0) (a, 2) (a, 2)
(b, 2) (b, 0) (b, 0)
(g, 1) (g, 1) (g, 1)
(a, 1) (b, 1) (b, 1)
(g, 2) (g, 2) (g, 2)
(a, 2) (b, 2) (b, 2)

Preferences for applicants a, b, and c listed in order from most-preferred
to least-preferred. Agent a’s preference can be generated by the utility
function ua(b, t) = f (b)� 3t, where f (a) = 1, f (b) = 6, f (g) = 2;
applicant b’s and applicant c’s preference can be generated by the utility
function ub(b, t) = uc(b, t) = g(b)� 3t, where g(a) = 8, g(b) = 1,
g(g) = 3.

their assigned buildings to switch with each other in period 1 (or any subsequent period).

Second, suppose building b is assigned to applicant c when it becomes available in period

1. Then with probability 1/2, building g arrives in period 2 and is allocated to applicant b.

Again, the allocation is ex-post inefficient because applicants a and c prefer to switch.

The analysis is similar if applicant b or applicant c is assigned building a in period

0. Regardless of which applicant is assigned building a in period 0, there is always

some realization of the arrival process in which a Pareto improvement can be found. The

remaining cases of the argument are summarized in Table B.2.

In each case, there is justified envy since applicant a (who has the highest priority)

prefers another applicant’s allocation.

B.2 Properties of MWP

Proof of Proposition 2. (i) Consider the strategy of applicant a 2 A. We will show that truthful

preference revelation is weakly dominant. Since the order in which allocations are made

123



Table B.2: Example used in proof of Proposition 1

Period 0 Period 1 Period 2 Switch Envy

a a b b g c a, b a, b
a a b c g b a, c a, c
a b g a b c a, c a, c
a b g c a a a, c a, c
a c g a a b a, b a, b
a c g b b a a, b a, b

An example in which any assignment rule can lead to a violation of ex-post
efficiency and ex-post elimination of justified envy. Buildings are denoted a, b,
and g. Agents are denoted a, b, and c, and their preferences are given in Table B.1.
Each building gives applicant a the highest priority. The penultimate column
specifies which applicants could trade to obtain a Pareto improvement in each
setting, and the last column specifies whether some applicant justifiably envies
another.

depends only on the priority ordering and not on the applicants’ preferences, we restrict

our attention to the step in which applicant a has the highest priority among those who are

unmatched. In this step, we see that a is assigned her most-preferred unit among those that

have not yet been assigned. Therefore there is no incentive to misreport preferences.

(ii) Let the allocation resulting from MWP be given by µ and consider a reallocation µ

0.

It suffices to show that there is some applicant who prefers the original allocation µ. Denote

the set of applicants whose allocations differ across µ and µ

0 by A0 = {a : µ0(a) 6= µ(a)}.

Let a0 denote the applicant who is assigned first among the applicants in A0. For any

a0 2 A0 with a0 6= a0, the unit hba0 , ra0 i is assigned at a later step than hba0 , ra0i is assigned.

Since MWP is strategy-proof by (i), applicant a0 strictly prefers the original allocation
⇣
ba0 , t0 + tba0 ,t0(ra0)

⌘
over

⇣
ba0 , t0 + tba0 ,t0(ra0)

⌘
as desired.

(iii) Suppose applicant a0 has higher priority than another applicant a. According to

MWP, a0 receives an assignment (i.e., a unit or a place on some waiting list) before a does.

This implies that hba, rai is available when hba0 , ra0 i is assigned. By strategy-proofness, we

have that a0 prefers hba0 , ra0 i to the unit assigned to a. In other words, a0 does not envy the

lower priority applicant a.
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B.3 Uniqueness

For a given history ht of arrivals up to time t, a preference profile � over building-time

pairs induces a profile of rankings �0 =(�t)t over units, where we denote the profile of

period-t rankings by �t. Given an arrival history and the rankings over units induced by

reported preferences, a mechanism j specifies an allocation µ

t
� in each period.

A mechanism j is non-bossy if for any agent a and any pair of preference profiles �

and �̂, we have µ�̂a,��a = µ� whenever µ�̂a,��a(a) = µ�(a). In a non-bossy mechanism, no

agent can change the allocation without changing her own assignment.

Let �t be a ranking over units in period t, and let p

t

be any permutation over the set

of units. Define �̂t = p

t

�t and �̂t= �t for t 6= t. We say that j satisfies within-period

neutrality if µt

�̂0(a) 6= ∆ implies µt

�̂0(a) = p

t

µ

t

�0(a). Now let p be any permutation over the

set of units, and define �̃t =p�t. We say that j satisfies across-period neutrality if µ�̃0 = pµ�0

whenever �t is independent of t. A mechanism is neutral if it satisfies both within- and

across-period neutrality.

For any unit x and a history ht, let Lt�a(x) =
�
y : x �t

a y
 
denote the lower contour set

of x under ranking �t
a. We say that x is relatively better under �0

a than under �a conditional

on history ht if the lower contour set expands when the preference changes from �a to �0
a,

i.e., if Lt�a(x) ✓ Lt�0
a
(x).

A mechanism j is monotonic if Lt�a(µ�(a)) ✓ Lt�̂a
(µ�(a)) implies µ

t
� = µ

t
�̂. In other

words, if for every agent the mechanism yields under preference profile � an allocation in

period t which is relatively better under �̂, then the mechanism yields the same allocation

under �̂.

Proposition 3 states that any strategy-proof, non-bossy, and neutral mechanism is an

extended multiple-waitlist procedure. As Thakral [2016] notes, the proof is related to that

of an analogous result due to Svensson [1999] for a setting in which objects do not arrive

stochastically.

Proof of Proposition 3. Denote the set of all units by X. Fix a history of arrivals, and let Xt
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denote the set of units that arrive in period t. The proof uses the following lemmas, which

will be proven afterward.

Lemma 1. If j is strategy-proof and non-bossy, then j is monotonic.

Lemma 2. When all agents’ preferences are identical, the allocation under a strategy-proof, non-bossy,

and neutral mechanism is ex-ante Pareto efficient.

First suppose the preferences are such that the induced rankings over units are common

(i.e., identical across agents) and persistent (i.e., identical across time): �t
a = �⇤ for all a

and all t. By Lemma 2, the assignment µ� is efficient. Without loss of generality, label the

agents so that i < j whenever (i) T(ai) < T(aj), i.e., whenever ai is matched before aj; or

(ii) T(ai) = T(aj) =: T and µ

T
�(ai) �⇤ µ

T
�(aj), i.e., ai and aj are matched in the same period

but the unit assigned to ai is preferable. Since j is neutral, for any profile �0 in which

preferences are common and persistent, the order is preserved: µ�0(a1)�⇤ µ�0(a2)�⇤ · · · .

Now consider an arbitrary preference profile B. Given a sequence t(j), let yj be the

most-preferred unit among X \
�
yj0
 
j0<j under ranking Bt(j)

aj . Choose the mapping t so that

(i) t(j) � t(j� 1); and (ii) t(j) > t(j� 1) only if
S

t<t(j) Xt ✓
�
yj0
 
j0<j. Define the ranking

�̂⇤ by yj �̂⇤ yj+1 for all j, and let �̂0 be the corresponding profile of common and persistent

rankings. By the result above from Lemma 2, we have that µ�̂0(aj) = yj for all j.

The above shows that under common and persistent rankings, a non-bossy and strategy-

proof allocation mechanism is an extended multiple-waitlist procedure. The conditions

on t(·) require that all elements of Xt (and perhaps more units) are assigned in period t.

We will proceed to show that by imposing neutrality, this characterization extends to the

arbitrary profile of rankings.

Suppose x satisfies µ⌫̂0(aj) �̂⇤ x. Then by construction x 2 X \
�
yj0
 
j0<j, so we have

µ�̂0(aj)Dt(j)
aj x. Hence, by Lemma 1, we have µB0 = µ�̂0 as desired.

Proof of Lemma 1. Consider a preference profile �0 such that for each agent a, the allocation

µ�(a) is relatively better under �0 than under �. To prove that j is monotonic, it suffices to

show that µ�0 = µ�.
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We start by showing that µ�0
a,��a = µ� for any agent a. Since j is strategy-proof, agent

a reports her preference truthfully, so we have µ�(a) ⌫a µ�0
a,��a(a). Now since µ�(a) is

relatively better under �0,

µ�(a) ⌫0
a µ�0

a,��a(a).

Again by strategy-proofness, we have

µ�0
a,��a(a) ⌫0

a µ�(a).

The strategy-proofness condition thus implies that a is indifferent between µ�0
a,��a and µ�.

From non-bossiness we obtain the result that µ�0
a,��a = µ�.

Repeating the argument for each of the remaining agents gives the desired result that

the mechanism yields the same allocation under �0.

Proof of Lemma 2. Let �⇤ denote the common preference. Without loss of generality, label

the agents so that i < j whenever (i) T(ai) < T(aj), i.e., whenever ai is matched before aj; or

(ii) T(ai) = T(aj) =: T and µ

T
�(ai) �T

⇤ µ

T
�(aj), i.e., ai and aj are matched in the same period

but the unit assigned to ai is preferable.

Suppose on the contrary that µ� is not efficient. This implies that there exists a unit

x = hxb, xri such that (i) x is ranked higher in period t than the unit that ai is assigned for

some i, i.e., x �t
⇤ µ�(ai), where t := T(ai); and (i) x is not assigned to any agent in period t,

i.e., x 6= µ

t
�(a) for any a.

Define n = min
�
i : x �t

µ

t
�(ai) 6= ∆

 
to be the agent who receives the most-preferred

unit among those which are ranked below x but still allocated under µ�. Let �̂t
⇤ be a

ranking over units that induces a ranking over units which coincides with that of �t
⇤ except

that µ�(an) �̂t
⇤ x (i.e., the order of x and µ�(an) is switched). Denote by pt the permutation

that switches the rankings of x and µ�(an) so that �̂t = pt�t.

The argument consists of two steps. First we will use Lemma 1 to show that the

assignments under � and �̂ must be identical. Next, using the neutrality property, we will

obtain a contradiction.

We begin by showing that µt
�(a) is relatively better under �̂t than under �t in period
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t for every a. Let x satisfy µ�(a) ⌫⇤ x. If x = µ�(an) and a = an, then trivially we have

µ�(ai) ⌫̂⇤ x, so suppose otherwise. By construction, note that (i) �t and �̂t produce identical

rankings over the units excluding x and µ�(an), and (ii) µ�(a) is either ranked higher than

both x and µ�(an) or neither of them. This implies µ�(a) ⌫̂
t
⇤ x. Since j is monotonic by

Lemma 1, we have that µ� = µ�̂.

Now since j satisfies within-period neutrality, we have µ

t
�̂(an) = x, which contradicts

the result from Lemma 1. Therefore we conclude that µ� is efficient.

B.4 Acyclicity and Generalized MWP

Proof of Proposition 4. (i) We will show that truthful preference revelation is weakly dominant

for each applicant a 2 A. Since the priority ordering is acyclic, there is at most one applicant

â who has higher priority than a at some buildings but lower priority at the others. If

there is no higher-priority applicant, then applicant a receives her most-preferred unit

(among those that are available) when she reaches the top of the centralized waiting list.

Otherwise, if there is a higher-priority applicant, then a receives her most-preferred unit

unless â prefers the same unit and has higher priority for the building. In that case, a is

assigned her most-preferred unit among those that remain after â selects a unit. Since the

event that a receives her most-preferred unit among those that are available depends only

on the priorities and the other applicants’ stated preferences, there is no incentive for a to

misreport preferences.

(ii) For any reallocation µ

0, it suffices to show that there is some applicant who prefers the

original allocation µ resulting from the generalized MWP. Let a0 denote the applicant who

is offered a unit first among the set of applicants A0 = {a : µ0(a) 6= µ(a)} whose allocations

differ across µ and µ

0. There is at most one applicant â0 who has higher priority than a0

at some buildings but lower priority at the others. If such â0 does not exist, or if a prefers

a unit in a building at which â0 does not have higher priority, then the proof proceeds

as in Proposition 2. Otherwise, â0 receives her most-preferred unit among those that are

available at the time of assignment, which implies that â0 prefers the original allocation
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⇣
bâ0 , t0 + tbâ0 ,t0

(râ0)
⌘
over

⇣
ba0 , t0 + tba0 ,t0(ra0)

⌘
for any a0 2 A0 as desired.

(iii) Suppose applicant a0 has higher priority than another applicant a at the building ba

(where a is assigned), and consider the time at which a0 receives an assignment. If a0 prefers

a unit in a building at which she has has the highest priority, then the proof proceeds as in

Proposition 2: a0 receives an assignment under generalized MWP before a does, so hba, rai is

available when hba0 , ra0 i is assigned, which means that a0 prefers hba0 , ra0 i to the unit assigned

to a. Now suppose that a0 prefers a unit in a building at which another applicant â0 has

higher priority.1 In the case that â0 6= a, the argument is the same as before because a0

receives an assignment before a does. Otherwise, we have â0 = a, i.e., that a has higher

priority than a0 at some building. Since a0 prefers a unit in a building at which a has higher

priority, a receives an assignment before a0 does. However, hba, rai was available to a0 (since

a0 has higher priority at ba by assumption) but not chosen, which implies that a0 prefers

hba0 , ra0 i. In all cases, a0 does not envy the lower priority applicant a.

Proof of Proposition 5. Proposition 4 implies that the acyclicity condition is sufficient for the

existence of an allocation mechanism that is strategy-proof, efficient, and eliminates justified

envy. We now show that if the priority orderings violate the acyclicity condition, then there

does not exist a strategy-proof allocation mechanism that satisfies both efficiency and the

elimination of justified envy.

If �B does not satisfy the acyclicity condition, then there exist buildings a and b such

that the priority orderings form a cycle; that is, there exist applicants a, b, and c such that:

a �
a

b �
a

c,

and c �
b

a.

Let the applicants’ preferences be as given in Table B.3. Consider the following deter-

ministic arrival process: from building a, a unit becomes available in period 0 and another

unit becomes available in period 2; from building b, a unit becomes available in period 1.

1As noted earlier, acyclicity implies that there is at most one such applicant.
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Table B.3: Preferences for applicants a, b, and c in Proposition 5

�a �b �c

(b, 0) (a, 0) (b, 0)
(b, 1) (a, 1) (a, 0)
(a, 0) (b, 0) (b, 1)
(b, 2) (a, 2) (a, 1)
(a, 1) (b, 1) (b, 2)
(a, 2) (b, 2) (a, 2)

Preferences for applicants a, b, and c listed in order from most-preferred
to least-preferred. Agent a’s preference can be generated by the utility
function ua(b, t) = f (b)� 2t, where f (a) = 1 and f (b) = 4; applicant
b’s preference can be generated by the utility function ub(b, t) = g(b)�
2t, where g(a) = 4 and g(b) = 1; applicant c’s preference can be
generated by the utility function uc(b, t) = h(b)� 2t, where h(a) = 1
and h(b) = 2.

Suppose applicant a is assigned building a in period 0. If b is assigned b in period 1,

then the allocation is inefficient because a and b prefer to switch. Likewise, if c is assigned

b in period 1, then the allocation is inefficient because a and c prefer to switch.

The analysis is similar if applicant b or applicant c is assigned building a in period 0.

Regardless of which applicant is assigned building a in period 0, either there is a Pareto

improvement or some applicant justifiably envies another. The remaining cases of the

argument are summarized in Table B.4.

This demonstrates the necessity of the acyclicity condition.

B.5 Stochastic mechanisms

Proof of Proposition 6. Necessity can be demonstrated using the same preferences and arrival

process as in the proof of Proposition 5. Assume �B does not satisfy acyclicity so that there

exist buildings a and b, and applicants a, b, and c such that a �
a

b �
a

c and c �
b

a. The

applicants’ preferences are given in Table B.3. As before, the arrival process is deterministic:

a unit in building a arrives in period 0; a unit in building b arrives in period 1; and another

unit in building a arrives in period 2.

130



Table B.4: Example used in necessity proof of Proposition 5

Period 0 Period 1 Period 2 Switch Envy

a a b b a c a, b �
a a b c a b a, c �
a b b a a c � c, a
a b b c a a � a, b
a c b a a b � b, c
a c b b a a � a, c

An example in which no assignment rule can satisfy Pareto efficiency and the
elimination of justified envy when priority orderings violate acyclicity. Buildings
are denoted a and b. Agents are denoted a, b, and c, and their preferences are
given in Table B.3. Building a ranks applicant a above c, with b in between; but
building b ranks c above a. The penultimate column specifies which applicants
could trade to obtain a Pareto improvement in each setting, and the last column
specifies whether some applicant justifiably envies another.

We begin by determining the assignment of applicant a. If a is assigned a positive

probability of (a, 2), then a would justifiably lottery-envy any applicant who is assigned a

positive probability of (a, 0). If a is assigned a positive probability of (b, 1), then c must

assigned positive probability of either (a, 0) or (a, 2): in the former case, b has justified

lottery-envy towards c; and in the latter case, c has justified lottery-envy towards a. This

leaves us with the conclusion that a must be assigned (a, 0) with certainty.

Now either b is assigned (a, 2) with certainty or b is assigned a positive probability of

(b, 1): in the former case, the assignment is inefficient since a and c would prefer to switch;

in the latter case, b has justified lottery-envy towards c.

This establishes the necessity of acyclicity. Sufficiency follows from the same construction

as in Proposition 4.

B.6 PHA-k mechanisms

Proof of Proposition 7. Consider the following example with 2 buildings, B = {b0, b1}, each

with one unit; k+ 2 applicants, A = {ai}k+1
i=0 ; and k+ 2 periods.

Assume that the buildings’ common priority list ranks applicant ai higher than applicant
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Table B.5: Preferences for each applicant ai in Proposition 7

�a0 �a1 · · · �ak�1 �ak �ak+1

(bk+1, k+ 1) (bk, k) · · · (b2, 2) (b1, 1) (b0, 0)
(bk, k) (bk�1, k� 1) · · · (b1, 1) (b0, 0) (bk+1, k+ 1)

(bk�1, k� 1) (bk�2, k� 2) · · · (b0, 0) (bk+1, k+ 1) (bk, k)
...

... . . . ...
...

...
(b2, 2) (b1, 1) · · · (b5, 5) (b4, 4) (b3, 3)
(b1, 1) (b0, 0) · · · (b4, 4) (b3, 3) (b2, 2)
(b0, 0) (bk+1, k+ 1) · · · (b3, 3) (b2, 2) (b1, 1)

Preferences for applicants {ai}k+1
i=0 listed in order from most-preferred to least-preferred.

The most-preferred unit for applicant ai is in building bk�i+1 which arrives in period
k� i+ 1. Each applicant ai prefers the unit in building br over the unit in building
br�1 for all r 6⌘ �i (mod k+ 2).

ai+1 for all i.

Units arrive deterministically: in periods 0 through k, a unit in building b1 becomes

available with certainty; in period k + 1, a unit in building b0 becomes available with

certainty.

Applicant a0 prefers the unit in building b0 that arrives in period k+ 1, and all other

applicants prefer units that arrive earlier.

Since applicant a0 cannot attain any unit outside building b1, she refuses no offers and

receives a unit in building b1 immediately. Applicants a1 through ak+1 also do not refuse

any offers, as they prefer units that arrive earlier.

Applicant a0 prefers the unit in building b1 and therefore justifiably envies ak+1. Matching

applicant a0 with the unit in building b0 and matching each of the remaining applicants

with the room that arrives one period earlier would be a Pareto improvement.

Proof of Proposition 7. Consider the following example with k + 2 buildings, B = {bi}k+1
i=0 ,

each with one unit; k+ 2 applicants, A = {ai}k+1
i=0 ; and k+ 2 periods.

Assume that the buildings’ common priority list ranks applicant ai higher than applicant

ai+1 for all i. The applicants’ preferences are given in Table B.5.

Units arrive deterministically: in period i, the unit in building i becomes available with
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certainty.

Applicant a0 refuses k offers and receives a unit in building bk, since all units that

become available sooner are less desirable. For i = 1, . . . , k� 1, applicant ai refuses k� i

offers; her first-choice unit (in building k� i+ 1) will be taken by applicant ai�1, who has

higher priority, so applicant ai receives her second-choice unit (in building bk�i). Likewise,

applicant ak accepts the offer of a unit in building b0, since ak�1 will accept the unit in

building 1. This leaves the unit in building bk+1 for applicant ak+1. The allocation procedure

concludes with each applicant receiving her second-choice unit.

Since it is possible to redistribute the units so that each applicant receives her most-

preferred unit, the assignment is inefficient. Furthermore, the procedure fails to eliminate

justified envy since applicant a0 has the highest priority but prefers the unit assigned to

applicant ak+1.
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