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Abstract

While the air pollution concentrations in the United States continue to decrease, one

important and politically charged question remains: Is long-term exposure to low levels

of air pollution still harmful? Several approaches have been developed to estimate the

relationship between exposure to particulate matter with diameter at most 2.5 microm-

eters (PM2.5) and various health outcomes. However, none of these approaches account

for the fact that different variables might act as confounders of the exposure response

relationship at different exposure levels.

In chapter 1, we developed a Bayesian methodology for the estimation of the causal

exposure-response curve for exposure to PM2.5 on cardiovascular hospitalizations. This

method allows for flexible estimation of the shape of the exposure-response relationship,

and for differential confounding adjustment at different levels of the exposure. More-

over, it provides a principled way to identify the confounding importance of different

predictors at different exposure levels.

Over the last few decades, there have been various regulations in the Unites States

aiming to reduce emissions from power plants with the ultimate goal of reducing am-

bient air pollution concentrations and pollution-related hospitalizations. However, the

effectiveness of these regulations has not been adequately studied. Since nitric oxide and

nitrogen dioxides (NO
x

) are important precursors of ozone formation, we focused on the

comparative effectiveness of a class of NO
x

emission reduction technologies against al-

ternatives on ambient ozone concentrations.

In chapter 2, we developed causal inference methodology rooted in propensity score

matching to adjust for unobserved spatial confounding, such as unmeasuredweather and
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atmospheric conditions. We showed that unobserved confounding by spatial variables is

likely to be present, and that incorporating spatial proximity in the matching of treated

units to control units returns effect estimates that are more in line with subject-matter

knowledge.

In chapter 3, we addressed the issue of interference in the studies of air pollution

regulations. The movement of emissions and air pollution leads to interference, since in-

terventions that take place at one power plant can affect air pollution levels in the area

surrounding other power plants. In more detail, assuming that the power plants can be

clustered in groups within which there is interference but not across them, we defined

new estimands for causal inference with interfering units that correspond to quantities of

interest under realistic treatment allocation programs. Consistent estimators and asymp-

totic results were derived and were employed to quantify the comparative effectiveness

of NO
x

emission control technologies.
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1.1 Introduction

As air pollution levels decrease and air quality interventions become more costly, epi-

demiological evidence of the potential public health benefits of further reductions have

become the subject of intense scrutiny. The literature on the harmful effects of air pollu-

tion is very extensive (Dominici et al., 2002; Eftim et al., 2008; Zeger et al., 2008; Zanobetti

and Schwartz, 2007), but significant substantive and methodological gaps remain. In fact,

there is a need for methods for causal inference that allow estimation of a flexible expo-

sure response (ER) function coupled with robust methods for confounding adjustment.

Parametric and semi-parametric regression modelling approaches for ER estimation have

been proposed in the literature in the context of clinical trials data (Babb et al., 1998), tox-

icology (Scholze et al., 2001), and air pollution research (Bell et al., 2006; Daniels et al.,

2000; Dominici et al., 2002; Schwartz et al., 2002; Shi et al., 2016). Regression and semi-

parametric modeling approaches for ER estimation such as Generalized Linear Models

or Generalized Additive Models (Hastie and Tibshirani, 1986; Daniels et al., 2004; Shad-

dick et al., 2008; Shi et al., 2016; Dominici et al., 2002), generally make the following as-

sumptions: 1) the same potential confounders are considered when estimating the health

effects across all exposure levels (i.e. global confounding adjustment); 2) the set of po-

tential confounders that are included into the regression model among a potentially large

set of available covariates is specified a priori; 3) these pre-selected potential confounders

are included into the model as linear or spline terms for confounding adjustment (i.e.

parametric/semi-parametric adjustment for confounding bias); and 4) the shape of the

ER function is modelled as a spline, a polynomial, or linear with a threshold.

In the causal inference literature, Hirano and Imbens (2004) introduced the generalized

propensity score (GPS) in order to adjust for confounding when estimating the causal ef-

fects of a continuous exposure. More recently Kennedy et al. (2017) introduced a doubly

robust approach for estimating the causal ER function. Although these approaches are re-

ally promising, they still rely on global confounding adjustment of pre-selected potential

confounders, and do not provide guidance of the covariates’ confounding importance at

different exposure levels.
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However, there is evidence that the relationship between exposure to air pollution (fine

particulate matter PM2.5) and health outcome (rate of hospitalization for cardiovascular

diseases) might be confounded by a different set of covariates at the low exposure levels

versus at the high exposure levels, as we will demonstrate in Section 1.2. We refer to this

differential confounding across exposure levels as local confounding, since different sets

of covariates confound the air pollution effects “locally”. In simulation studies, we will

demonstrate that when local confounding is present, common approaches for ER estima-

tion lead to biased estimates. We argue that –especially in the context of estimating causal

effects at low levels of exposure– local confounding adjustment is deemed necessary.

To target local confounding, one could model data separately at different exposure levels,

including all potential confounders. However, even if the exposure levels with differen-

tial confounding were known, inclusion of all covariates in an outcome model could lead

to inefficient estimation of causal effects at exposure levels with a small sample size. This

is particularly true in our data application where the estimation of effects at low expo-

sures coincides with a small number of observations at that level. Data driven methods

to select the minimum necessary set of covariates to be included into an outcome model

for estimation of causal effects have been proposed (Luna et al., 2011; Wang et al., 2012;

Wilson and Reich, 2014), but to our knowledge, they have not been extended to the con-

text of ER estimation and local confounding adjustment.

In addition, although parametric or semi-parametric modelling of the ER are attractive

for their flexibility in identifying different shapes (see for example Dominici et al. (2002);

Daniels et al. (2000); Scholze et al. (2001); Schwartz et al. (2002); Govindarajulu et al.

(2009); Shaddick et al. (2008)), they have the drawback of heavy reliance on the model

specification when extrapolating evidence on health effects at the very low exposure lev-

els. For example, smooth functions do not allow a hockey stick shape of ER curve by

construction, which is one of our key epidemiological questions.

In this paper, we introduce a Bayesian framework for the estimation of a causal ER curve

termed LERCA (Local Exposure Response Confounding Adjustment). LERCA aims to

overcome some of the challenges described above. We introduce the concept of experi-

ment configuration which consists of s = (s0, s1, . . . , sK+1), where [s

k�1, sk) denotes a spe-

3



cific range of exposure values. We use the term experiment for the hypothetical assignment

of a unit to exposure value within [s

k�1, sk). Within each experiment, i.e. locally in the ex-

posure range [s

k�1, sk), we assume that: 1) ER is linear; and 2) the potential confounders

of the exposure-outcome relationship are unknown but measured. Importantly, the exper-

iment configuration s is unknown and it will be estimated from the data. LERCA allows for

local confounding adjustment, and provides guidance related to the observed covariates’

importance as confounders or outcome predictors at different exposure levels, which is a

key question in epidemiological studies of air pollution.

In Section 1.2 we introduce the dataset, and we illustrate the issue of differential con-

founding at the different exposure levels. In Section 1.3, we introduce the notation used

and the assumptions on which LERCA relies. LERCA is presented in Section 1.4, and in

Section 1.5 it is illustrated and compared to alternative methods in the presence of local or

global confounding through extensive simulations. Finally, we apply LERCA to estimate

the causal ER function of long term exposure to PM2.5 on cardiovascular hospitalization

rates in Section 1.6. Limitations and potential extensions are discussed in Section 1.7.

1.2 Data description and illustration of local confounding

We assemble a data set where the unit of the observation is the zip code i, with sample size

N = 5, 362. For each zip code, we calculate: 1) y
i

defined as log hospitalization rate for

cardiovascular diseases (codes ICD-9 390 to 459) amongMedicare participants residing in

the zip code i in the year 2013; 2) x
i

defined as average exposure to air pollution obtained

by averaging ambient PM2.5 levels for the years 2011 and 2012 from EPAmonitoring sites

within 6 mile radius of zip code i’s centroid. The values of x
i

vary across zip codes from

min = 2.7 to max = 18.3µg/m

3. Figure 1.1 shows the locations of the zip codes’ centroids

and the corresponding exposure values for PM2.5. Our final data set includes 27 potential

confounders, with C

j

denoting variable j = 1, 2, . . . , p and p = 27. These variables include

demographics from the US Census Bureau, climate data from the Automated Surface Ob-

serving System of the National Oceanic and Atmospheric Administration, and covariate

information from the Behavioral Risk Factor Surveillance System and the Dartmouth atlas

4



5

10

15

2011−2012 ZIP code average PM2.5

Figure 1.1: Values of PM2.5 calculated as the average of the 2011, 2012 values at monitoring
sites within 6 miles of a zip code’s centroid, for all zip codes in the continental US that
were linked to at least one PM2.5 monitor.

of health care. Section 1.8.1 includes details regarding the assembling and linkage of the

spatially misaligned data, and covariates’ description, source, and descriptive statistics.

To motivate our methodological development, we now illustrate that –in this data set–

different sets of covariates are imbalanced when we restrict the analysis at low exposure

levels (3�8µg/m

3; 816 observations) versus whenwe restrict the analysis at high exposure

levels (12 � 13µg/m

3; 324 observations). For each of these two groups of zip codes we

introduce binary treatments (T
i1 and T

i2 accordingly) defined as follows:

1. T
i1 = 0 if 3 < x

i

 7

2. T
i1 = 1 if 7 < x

i

 8

3. T
i2 = 0 if 12 < x

i

 12.5

4. T
i2 = 1 if 12.5 < x

i

 13.

Within each of the two exposure levels, and for each covariate C

j

, we calculate the ab-

solute standardized difference of means (ASDM) based on the binary treatments T1, T2.

Figure 1.2 shows ASDM when comparing group 2 with group 1 and when comparing

group 4 with group 3, separately. Visual inspection of Figure 1.2 indicates that different

variables are imbalanced at the low versus the high exposure levels. For example, me-

dian house value (in logarithm – House Value) is highly imbalanced when considering

5
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Figure 1.2: Absolute standardized difference of means of binary treatment defined within
the low (3� 8µg/m

3) and high (12� 13µg/m

3) exposure levels. Covariates are ordered in
increasing ASDM values for the experiment at low levels.

zip codes at higher exposure values, whereas is not when considering zip codes at lower

levels. The opposite is true for other variables such as the proportion of population that

is white (% White), or has less than high school education (% Below HS).

1.3 Notation and Assumptions

We follow the potential outcome framework introduced by Neyman (1923), formalized

by Rubin (1974), and extended by Hirano and Imbens (2004) to accommodate continuous

exposures. Let X be the set of possible exposure values. Under SUTVA (Rubin (1980); no

interference, no hidden versions of the treatment) let Y
i

(x) denote the potential outcome

for observation i at exposure x 2 X . Then the set {Y
i

(x), x 2 X} represents the individual

ER curve, and {Y (x) = E[Y

i

(x)], x 2 X} the population average ER curve. Assuming

sufficient smoothness of Y (x) as a function of x, define the instantaneous causal effect

�(x) = lim

h!0

Y (x+ h)� Y (x)

h

.
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�(x) describes the presence of an effect of the exposure on the outcome since �(x) 6= 0

implies that variation in the exposure in a neighborhood of x has an effect on the expected

outcome. Based on �(x) other causal quantities can be defined, such as the effect of an

exposure shift from x to x+ �, CE

�

(x) = Y (x+ �)� Y (x) =

R

x+�

x

�(t)dt.

The observed values of the outcome, exposure, and pmeasured covariates for observation

i are denoted as Y
i

, X
i

, and C
i

= (C

i1, Ci2, . . . , Cip

) accordingly. Then Y

i

= Y

i

(X

i

), that is

the observed outcome is equal to the potential outcome under the observed exposure.

Assuming a random numbering of observations, the subscript i is dropped hereafter.

1.3.1 Experiment configuration, global and local ignorability assump-
tion

The weak ignorability assumption for a continuous exposure (Hirano and Imbens, 2004)

states that the treatment is as if randomized conditional on observed covariates

X q Y (x)|C, x 2 X , (1.1)

and every subject in the population can experience any x 2 X . Consider a minimal

confounding adjustment set C⇤ ✓ C such that X q Y (x)|C⇤
, x 2 X . Such sets have been

previously discussed in the literature (Luna et al., 2011; Wang et al., 2012; Vansteelandt

et al., 2012), and they are such that the independence assumption in (1.1) does not hold

for any strict subset of C⇤.

However, the minimal sufficient adjustment set C⇤ might vary across exposure levels if

different variables confound the exposure-response relationship at different levels of the

exposure. We formalize this by introducing the experiment configuration. Let K denote

a fixed positive integer, min = min x

i

and max = max x

i

the minimum and maximum

values of the observed exposure, and s̄ = (s0 = min, s1, s2, . . . , sK , sK+1 = max) a known

partition of the exposure range in K + 1 experiments g
k

= [s

k�1, sk), k = 1, 2, . . . , K + 1.

In Figure 1.3, a hypothetical exposure response function is plotted where s̄ defines a total

of 4 experiments (K = 3). Then, a minimal sufficient adjustment set C⇤ can be written as

C⇤
= [K+1

k=1 C
⇤
k

, where C⇤
k

is a minimal sufficient adjustment set for treatment assignment
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Figure 1.3: Hypothetical ER curve. The exposure range is partitioned by ¯s in 4 experi-
ments.

in experiment k, and therefore satisfies

X q Y (x)|C⇤
k

, x 2 g

k

. (1.2)

The sets C⇤
k

can be overlapping (or even identical) if the same variable is necessary for

confounding adjustment at more than one experiment. Note that if (1.2) is satisfied, then

(1.1) is also satisfied.

Given s̄ and assuming that sets C⇤
k

satisfying (1.2) exist, model choice can be performed

locally within each experiment g
k

. Thus, local model selection allows for the identification

and adjustment for a different set of confounders at different exposure levels.

1.4 ER estimation in the presence of local confounding

LERCA (Local Exposure Response Confounding Adjustment) is presented for a fixed and

unknown experiment configuration s̄ in Section 1.4.1 and Section 1.4.2 respectively. In

Section 1.4.3 we describe the MCMC scheme to sample from the posterior distribution of

all parameters, for which convergence diagnostics and posterior inference are discussed

in Section 1.4.4. Finally, in Section 1.4.5, we discuss the use of WAIC (Watanabe, 2010;

Gelman et al., 2014) for choosing the value ofK.
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1.4.1 Known experiment configuration

Locally, that is for X
i

2 g

k

, k = 1, 2, . . . , K + 1, we assume the following pair of exposure

and outcome models:

p(x|C = c, x 2 g

k

) / �

�

x; �

X

k0 +
P

p

j=1↵
X

kj

�

X

kj

c

j

, �

2
k,X

�

p(y|X = x,C = c, x 2 g

k

) = �

�

y; �

Y

k0 + �

k

(x� s

k�1) +
P

p

j=1↵
Y

kj

�

Y

kj

c

j

, �

2
k,Y

�

(1.3)

where �(·;µ, �2
) denotes the normal density with mean µ and variance �

2, ↵X

kj

= 1 in-

dicates that covariate C

j

is included into the exposure model of the k

th experiment, and

↵

X

kj

= 0 is not. The parameter ↵Y

kj

has the same interpretation, but for the outcome model.

The parameter �
k

denotes the instantaneous change in the expected outcome associated

with a local variation in exposure for x 2 g

k

. Model (1.3) allows for a different set of vari-

ables and variables’ coefficients for different experiments.1 If the minimal confounding

adjustment set for experiment k is included in the outcome model and the mean func-

tional form is correctly specified, �
k

is an unbiased estimator of the instantaneous effect

�(x), for x 2 g

k

.

Below we discuss how the prior distributions on all parameters are chosen to target con-

founding adjustment and continuous ER estimation. More details on the prior specifica-

tions can be found in Section 1.8.2.

Prior distribution on inclusion indicators

We build upon the work by Wang et al. (2012, 2015) and Antonelli et al. (2017b) to assign

an informative prior on (↵

X

kj

,↵

Y

kj

). This prior choice ensures that model averaging assigns

high posterior weights to outcome models including a minimal confounding adjustment

set, and specifies

P (↵

Y

kj

= 1|↵X

kj

= 1)

P (↵

Y

kj

= 0|↵X

kj

= 1)

= ! where ! > 1, iid 8 j, k. (1.4)

By specifying (1.4), a variable C

j

is assigned high prior probability to be included into

the outcome model of experiment k if it is also included in the exposure model of the
1Note that the coefficients and variance terms depend on the inclusion indicators of the corresponding

model. For notational simplicity, we do not explicitly state this dependence.
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same experiment (x
i

2 g

k

& ↵

X

kj

= 1). Wang et al. (2012) and Antonelli et al. (2017b)

show that this informative prior leads to outcome models that include the minimal set

of true confounders with higher posterior weights than model selection approaches that

are based solely on the outcome model. In our context, this experiment-specific prior

specification ensures that, locally, covariates in the minimal set C⇤
k

are included in the

outcome model of experiment k with high posterior probability.

Prior distribution on outcome model intercepts and exposure coefficients for ER conti-
nuity

If no structure is assumed on the model (1.3) across experiments, continuity of the es-

timated ER function at the points of the experiment configuration s

k

is not guaranteed.

However, in the estimation of the causal effect of exposure to PM2.5 on hospitalization out-

comes it is expected that the ER function is continuous throughout the exposure range.

If the covariates C
j

are centered to have mean 0, continuity of the estimated ER function

is ensured by assuming a point-mass recursive prior on the intercepts �Y
k0, k � 2 for the

outcome model. That is,

lim

x!s

+
k

E[Y |X = x] = lim

x!s

�
k

E[Y |X = x] () �

Y

k0 = �

Y

(k�1)0 + �

k�1(sk � s

k�1). (1.5)

In other words, the outcome model intercept of experiment k � 2 is a deterministic func-

tion of the outcome model intercept of the first experiment �Y10, and slopes �1, �2, . . . , �k�1.

These parameters are assigned independent non-informative normal prior distributions.

Prior distributions of the remaining coefficients

Prior distributions on the remaining regression coefficients (exposure model coefficients,

outcome model covariates’ coefficients) and variance terms are chosen such that they

lead to known forms of the full conditional posterior distributions to alleviate sampling,

as discussed closer in Section 1.4.3. We assume independent non-informative Inverse

Gamma prior distributions on �

2
k,X

, �

2
k,Y

. Non-informative normal prior is chosen for the

exposure model intercept �X
k0. Conditional on the inclusion indicators, the prior on the

regression coefficient �Y
kj

is a point mass at 0, or a non-informative normal distribution

10



when ↵

Y

kj

is equal to 0 or 1 accordingly. Similarly for the exposure model covariates’

coefficients �X
kj

.

1.4.2 Unknown experiment configuration

For a fixed experiment configuration s̄, each experiment is treated separately in terms of

confounder selection and strength of the confounding adjustment. However, the configu-

ration itself is a key component of the fitted exposure response curve, and fixing it a priori

could lead to bias and uncertainty underestimation.

LERCA is extended to allow for unknown experiment configuration s̄, while carry-

ing all the merits described above. The locations of the experiment configuration s =

(s1, s2, . . . , sK) are, a priori, assumed to be distributed as the even-numbered order statis-

tics of 2K + 1 samples from a uniform distribution on the interval (s0, sK+1). This prior

choice of s discourages specifications of s that include values that are close to each other

(Green, 1995). The prior is augmented by indicators that consecutive points s
k

, s

k+1 can-

not be closer than some distance d
k

. Conditional on s, we follow the model specification

and prior distributions described in Section 1.4.1.

1.4.3 MCMC scheme and computational challenges

The factorization of the full data likelihood over experiments and exposure/outcome

models and the choice of the prior distributions lead to full conditional posterior dis-

tributions of coefficients �

X

k0, �
X

kj

, �

Y

kj

, and variance terms �

2
k,X

, �

2
k,Y

of known forms. The

variance terms and exposure model intercepts have inverse Gamma and normal full con-

ditional posterior distributions accordingly, whereas the distributions of �X
kj

, �

Y

kj

are either

point mass at 0 or normal, based on whether the corresponding ↵ is 0 or 1.

Since �

Y

k0, k � 2 is a deterministic function of �10, �1, �2, . . . , �k�1, and the points

s0, s1, . . . , sk, the full conditional posterior distribution of �10 depends on data across all

experiments, and that of �
k

on data from experiment k and onwards. Since the data like-

lihood in all experiments is normal and we have assumed normal prior distributions,

the full conditional posterior distributions are also normal. After each update, intercepts

�

Y

k0, k � 2 need to be updated from (1.5) to ensure ER continuity.
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s0 s4s1 s2 s3

α1 α2 α3 α4

(a) Current state

s0 s4s1 s2 s*

α1 α2 α3 α4

(b) Separate

s0 s4s1 s2 s*

α1 α2 α3* α4*

(c) Jump within

s0 s1 s2s* s4

α1*α2*α3*=α2 α4*

(d) Jump over

Figure 1.4: Proposed state for the separate, jump within and jump over moves are de-
picted schematically for a hypothetical experiment configuration with K = 3. In all pro-
posed states, new slopes are proposed to ensure continuity of the ER. (a) The current
state of the MCMC. s3 is chosen to be updated. (b) Separate: A new point s⇤ is proposed
within (s2, s4) with the corresponding ↵ parameters constant. (c) Jump within: Simul-
taneous move of the experiment configuration and the corresponding ↵’s within (s2, s4).
(d) Jump Over: The proposed point s⇤ is located outside the interval (s2, s4) and new
↵’s are proposed for the experiment that was split (s0, s1), and the experiments that were
combined (s2, s4).

In order to avoid the need of proposing values for the covariates’ coefficients and variance

terms in the update of the experiment configuration, these parameters are integrated out

from the data likelihood and the Bayes factors are approximated using the BIC (Raftery,

1995). Updates of the experiment configuration and inclusion indicators are performed

most of the times using a “separate”, and sometimes using a “jump over” or “jump

within” move, depicted in Figure 1.4. Note here that an update in s needs to be accompa-

nied with an update of the coefficients �Y
k0 and �

k

to ensure ER continuity.

When the experiment configuration and inclusion indicators are updated separately, the

update of s is performed using Metropolis-Hastings (Metropolis et al., 1953; Hastings,

1970) where a point s
k

is proposed to be moved to s

⇤ 2 (s

k�1, sk+1). New values for

�

k

and �

k+1 are also proposed to ensure ER continuity, as shown in Figure 1.4(b). After

acceptance or rejection of this move, the inclusion indicators are updated from

p(↵

Y

kj

= ↵|Data, A⇤
,↵

X

kj

) /
p(�

Y

kj

= 0|↵Y

kj

= ↵)p(↵

Y

kj

= ↵|↵X

kj

)

p(�

Y

kj

= 0|↵Y

kj

= ↵,Data, A⇤
)

, ↵ 2 {0, 1}, (1.6)

where A⇤ are all parameters but ↵X

kj

, ↵Y

kj

and �

Y

kj

.

In order to improve mixing of the MCMC, s, and↵⇠
X

,↵⇠
Y are sometimes updated simulta-

neously implementing a “jump within” or “jump over” Metropolis-Hastings move with

which the proposal maintains or not the order of the experiment configuration. The as-
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signment of proposed values for the inclusion indicators is probabilistic based on their

current values, encouraging the inclusion of a covariate in the proposed state to resem-

ble that of the current state. For example, in the “jump within” move depicted in Fig-

ure 1.4(c), ↵⇤
3,↵

⇤
4 should resemble ↵3,↵4 since they refer to similar exposure ranges. At the

same time, coefficients �
k

are proposed such that they lead to unaltered likelihood of the

unaffected experiments. Figure 1.4(c) depicts random draws for proposed ER states.

Section 1.8.3 includes an in-depth description of the MCMC scheme.

1.4.4 Posterior inference and MCMC convergence

Due to the update of the experiment configuration, commonly used convergence diagnos-

tics such as trace plots are not appropriate since parameters (e.g., �
k

) may correspond to

a different range of exposure values at different iterations. Therefore, convergence must

be examined in the context of quantities that are detached from the experiment configu-

ration.

Posterior inference and estimation of causal quantities of interest is performed over a set

of potential exposure values G ⇢ X . For every x 2 G, a posterior sample of the mean

response at exposure x is equal to �

Y

k

x

0 + �

k

x

(x � s

k

x

�1), where k

x

is the experiment in

which x belongs to at the specific iteration. Based on the posterior samples of the mean

ER, the potential scale reduction factor (PSR; Gelman and Rubin (1992)) is calculated, and

MCMC convergence is evaluated based on |PSR� 1| < c for all x 2 G. More details about

MCMC diagnostics can be found in Section 1.8.3.

1.4.5 Choosing the number of points in the experiment configuration

LERCA requires the specification of the number of points K in the experiment configu-

ration. Since the number of parameters grows with K, possible values for K could be

bounded by considering the maximum number of coefficients we are willing to entertain.

Cross validation methods are commonly used in order to choose values of key tuning

parameters, but are often infeasible in the Bayesian framework due to time and compu-

tational resources constraints. In a comprehensive review, Gelman et al. (2014) discusses

various methods of estimating the expected out of sample prediction error for Bayesian

13



methods.

We use the widely-applicable information criterion (WAIC; Watanabe (2010)) to acquire

an estimate of the out-of-sample prediction error. LERCA is fit for different values of

K, and K is chosen as the value that minimizes the WAIC. The WAIC combines the log

point-wise posterior predictive density (lppd) and a penalty term for over-fitting p

WAIC

,

WAIC = �2 (lppd� p

WAIC

) , where

lppd =

n

X

i=1

logE

post

p(x

i

, y

i

|✓)

and

p

WAIC

=

n

X

i=1

var

post

(log p(x

i

, y

i

|✓)) ,

for ✓ = (s,↵⇠
X

,↵⇠
Y

,�
⇠
, �⇠

X

, �⇠
Y

,�⇠
2
X

,�⇠
2
Y

) and E

post

, var
post

denoting expectation and variance

over the posterior distribution. All expectations can be estimated using the posterior

samples of one MCMC run. For example,

d

lppd =

1

T

n

X

i=1

T

X

t=1

log p(x

i

, y

i

|✓(t)),

where ✓(t) is the value of the parameters at iteration t.

1.5 LERCA illustration and performance evaluation in the
presence of local confounding

1.5.1 Data generation

Data generation in the presence of local confounding is complicated and is described

in detail in Appendix 1.8.4. Here, we present a simulation scenario where: (a) lo-

cal confounding is present, and (b) the true shape of the ER is quadratic. We assume

that exposure values x

i

range from 0 to 10, and the true experiment configuration is

s̄ = (0, 2, 4, 7, 10). Table 1.1 summarizes which of the 8 potential confounders are pre-

dictive of the exposure and/or the outcome within each experiment (correlations and

regression coefficients are summarized in Table 1.3). The adjusted R-squared of the true

exposure and outcome models within each experiment varied between 0.64 and 0.88. We

simulate 400 data sets of 800 observations each.
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1.5.2 Goal of the simulations

We illustrate that commonly-used approaches for ER estimation are not appropriate for

confounding adjustment in the presence of local confounding. For the methods utilizing

the generalized propensity score (gps), a model of exposure linear in all the covariates is

adopted. The approaches considered are:

1. Generalized Additive Model (GAM): Regressing the outcome Y on the exposure X

and all potential confounders with 4 degrees of freedom for every covariate.

2. Spline Model (SPLINE): Additive spline estimator described in Bia et al. (2014). The

dose response function is estimated as splines of the exposure and the gps.

3. The Hirano and Imbens estimator (Hirano and Imbens, 2004) (HI-GPS): ER esti-

mation is based on an outcome model regression including quadratic terms for the

exposure and the gps, and their interaction.

4. Inverse Probability Weighting estimator (IPW): The generalized propensity score is

used to weigh observations in an outcome regressionmodel that includes linear and

quadratic terms of exposure.

The R packages gam and causaldrf were used (Hastie, 2017; Schafer, 2015).

Additionally, we compare the root mean squared error (rMSE) of all methods in estimat-

ing the mean exposure response curve Y (x). Finally, was also assess whether LERCA can

Table 1.1: Representation of which covariates are predictive of the exposure and / or the
outcome within each experiment (denoted by a X). Covariates with Xin both models
within the same experiment are local confounders.

Experiment Model C1 C2 C3 C4 C5 C6 C7 C8

1 X|C X X X
Y |X,C X X X

2 X|C X X X
Y |X,C X X X

3 X|C X X X
Y |X,C X X X

4 X|C X X X
Y |X,C X X X
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recover the correct experiment configuration, identify the true confounders within each

experiment, and choose the true value forK.

1.5.3 Simulation Results

For every simulated data set, LERCA was fit for K 2 {2, 3, 4}, for which the ER was

estimated over an equally spaced grid over the interval (0, 10) denoted by G. Results are

presented for the simulated data sets for which the MCMC converged for all choices ofK

(for convergence diagnostics, see Section 1.4.4; c = 0.05).

Figure 1.5 shows LERCA simulation results including the estimated ER, experiment con-

figuration, and posterior inclusion probabilities of covariates C1, C4 in the outcomemodel

as a function of exposure x 2 (0, 10). Figure 1.6 shows the estimated ER curve for the four

LERCA

0.0 2.5 5.0 7.5 10.0

Ex
pe
ct
ed
 R
es
po
ns
e

True ER

Mean Estimated

Experiment Configuration

0.0 2.5 5.0 7.5 10.0

Po
st
er
io
r D

en
si
ty

C1 C4

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
0.00

0.25

0.50

0.75

1.00

O
ut
co
m
e 
M
od
el
 In
cl
us
io
n

Figure 1.5: LERCA results. (Left) Mean ER estimates. (Center) Posterior density dis-
tribution of the experiment configuration s. (Right) Outcome model posterior inclusion
probability of C1 and C4. Gray lines correspond to results per simulated data set, and
black solid lines correspond to summaries across data sets.
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Figure 1.6: The true mean ER function (dashed line), posterior mean ER functions from
each simulated data set (gray), and the mean of the estimated ER functions (solid lines)
using all alternative methods.
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alternative methods described above. Grey lines correspond to results from individual

data sets, whereas black solid lines correspond to averages across simulated data sets.

LERCA discovers the correct shape of the exposure-response function as depicted in Fig-

ure 1.5, even though the true ER is quadratic and LERCA is formulated as piece-wise

linear. The alternative methods return biased results across the exposure range (as shown

in Figure 1.6), indicating that they are not appropriate for ER estimation in the presence

of local confounding. In fact, the root MSE of LERCA was consistently lower than the

alternative methods at low exposure levels (Figure 1.11), and across exposure values in G

it ranged from 0.1–1.24 for LERCA, followed by GAM at 0.13–2.5.

Moreover, usingWAIC to choose the value ofK led to choosing the correct value ofK = 3

40% of the times, and K = 2 58% of the times indicating that WAIC tends to heavily pe-

nalize large values of K. However, the correct points of the experiment configuration

s = {2, 4, 7} are identified and are located at the modes of the posterior distribution as

shown in Figure 1.5. By examining the posterior inclusion probabilities of C1, C4, we ob-

serve that instrumental variables (e.g., C1 in experiments 2 and 3) are often included in

the outcome model. However, LERCA includes the minimal confounding set within each

experiment with very high probability. On average (across the points in G and simu-

lated data sets) the minimal confounding set was included in the adjustment set 99% of

the times (ranging from 89-100% across simulated data sets), indicating that the variables

necessary for confounding adjustment are almost always included in the adjustment set.

Lastly, the point-wise 95% and 50% credible intervals cover the true mean ER values 84%

and 39% of the times accordingly. The under-coverage is largely due to the underestima-

tion of K.

1.5.4 Simulation results in the absence of local confounding

The previous data simulation scenario compared the performance of LERCA in the pres-

ence of local confounding. In Section 1.8.5, methods’ performance was compared under

global confounding (same confounders across exposure levels) and a quadratic ER rep-

resenting scenarios that current methods are developed to address. LERCA with K = 3

(fixed) performed similarly in terms of root MSE compared to GAM, and better than all
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other alternative methods. These results indicate that LERCA offers a protection against

bias arising from local confounding, while not sacrificing much when local confounding

is not present.

1.6 Data Application

We applied LERCA to estimate the ER curve between exposure to PM2.5 during the years

2011-2012 and log cardiovascular hospitalization rates at the zip code level in 2013, as

discussed in Section 1.2. The full set of zip code level covariates are described in Table 1.2.

LERCA was fit for K 2 {2, 3, . . . , 6} and results presented correspond to K = 3 which

returned the lowest WAIC.

Figure 1.7 shows (a) mean ER estimates and 95% credible intervals for exposure to PM2.5

and log cardiovascular hospitalization rates, (b) mean and 95% credible interval for the

coefficient �
k

, the estimator of the instantaneous effect for which a 95% credible inter-

val including only positive values implies that a local increase in PM2.5 exposure would

lead to a significant increase in hospitalization rates, (c) the posterior distribution of the

experiment configuration, and (d) the observed distribution of PM2.5.

An overall increasing trend in the ER is observed, and for PM2.5 < 9.9µg/m

3, an increase

in PM2.5 exposure leads to a significant increase in log hospitalization rates, as indicated

by the credible intervals on ˆ

�(x). For values of PM2.5 � 9.9µg/m

3, 95% posterior credible

intervals of the ˆ

�(x) cover 0. These results are in accordance with the scientific belief that

the effect of exposure to PM2.5 is smaller at higher exposure levels. Lastly, the posterior

distribution of s, shows that observations below 8µg/m

3 and over 11.5µg/m3 are always

grouped together. This could be due to limited sample size at the extreme exposures, as

depicted by the bottom panel of Figure 1.7.

As done in the simulation study, the covariates’ posterior inclusion probability can be

plotted as a function of the exposure. Figure 1.8 shows the posterior exposure and out-

comemodel inclusion probability for median house value, Medicare female rate and pop-

ulation density, which presented differential imbalances at low and high exposure levels

in Section 1.2. We see that the posterior inclusion probabilities for these variables are in
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Figure 1.7: From top to bottom: Mean ER curve of PM2.5 exposure (x-axis) on log all-
cause cardiovascular hospitalizations (y-axis) –solid line– with 95% pointwise credible
intervals. The posterior mean and 95% credible interval of the � coefficient as a function
of exposure. The posterior distribution for s. Observed PM2.5 values in the data.
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Figure 1.8: Posterior inclusion probability of zip code median house value, Medicare fe-
male rate, and population density in the exposure and outcome model at different expo-
sure levels.
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concordance to the explanatory analysis presented in Figure 1.2. For example, Figure 1.2

and Figure 1.8 agree that the median house value is a predictor of exposure for high ex-

posure values, while it’s not predictive of exposure at low levels.

However, the posterior inclusion probability of several variables does not agree with the

ASDM of Figure 1.2. This could happen because 1) the ASDM is calculated based on a

categorized treatment, and 2) the inclusion probabilities represent a more localized im-

portance measure than ASDM.

1.7 Discussion

We have introduced an innovative Bayesian approach for flexible estimation of the ER

curve in observational studies that has the following important features: 1) let the data

inform the experiment configuration; and given the experiment configuration 2) allows

for the possibility (which is a reality in our data example, see Section 1.2) that different sets

of covariates are indeed confounders at different exposure levels; 3) allows for varying

confounding effect across levels of the exposure; 4) performs covariate selection, locally,

that it, within each exposure range to increase efficiency, especially at low exposure levels;

5) propagates model uncertainty for the experiment configuration and covariate selection

in the posterior inference on the whole ER curve; 6) reduces sensitivity related to the

choice of the shape of the ER curve; 7) provides important scientific guidance related to

which covariates are confounders at different exposure levels; and finally, 8) allows for

the estimation of a potentially flat ER function at the very low levels of exposure, thus

allowing for the identification of a threshold.

However, the proposed approach also has some draw backs. First, within each experi-

ment, we assume linearity for both the outcome and the exposure model. If this relation-

ship is specified incorrectly, unbiasedness of the results is not guaranteed. Even though

linearity of the exposure in the outcome model could be easily relaxed by using higher

order splines, we considered it of high importance to accommodate the “absence of an ef-

fect” scenario at low exposure levels. Furthermore, if linearity is strongly not supported

from the data, we expect that the experiment configuration s will adapt to accommodate
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non-linearity.

Second, the informative prior on the inclusion indicators could lead to the inclusion of

instrumental variables in the outcome model with high posterior probability, which will

not lead to bias, but will decrease the efficiency of our estimators. However, in the study

of air pollution, strong instrumental variables are not expected to be present.

Dependence of model parameters across different experiments was limited to outcome

model intercepts to ensure continuity of the estimated ER. However, imposing additional

structure could be easily incorporated. For example, it might be reasonable to assume

that a variable is more likely to be included in the exposure model of an experiment if it

is also included in the exposure model of a neighboring experiment. Such structure could

be incorporated by reformulating the prior on the inclusion indicators (1.4) to allow

P (↵

X

kj

= 1|↵X

k�1,j = 1)

P (↵

X

kj

= 0|↵X

k�1,j = 1)

= ✓ > 1, for k � 2

Alternatively, reformulation of the independent prior distributions of �
k

could incorpo-

rate cross-experiment dependence by specifying �

k

⇠ N(�

k�1, �
2
�

), k � 2. We believe that

this is an exciting line of research for future work.

Although non-parametric and varying coefficient approaches (Hastie and Tibshirani,

1993) for ER estimation could, in theory, allow for differential confounding effect across

different exposure levels, none of the existingmethods for ER estimation explicitly accom-

modates differential confounding sets for different exposure levels, nor provides guid-

ance for which covariates are confounders of the effect of interest at different levels of

the exposure. Furthermore, the use of non-parametric methods to estimate a generalized

propensity score or model the outcome of interest could prove unfruitful in situations

where most of the available data are over a specific range of the exposure variable, or the

number of potential confounders is large, and interest lies in the estimation of causal ef-

fects for change in the exposure in the tails of the exposure distribution. In such situations,

LERCA provides a way to model the outcome acknowledging that the exposure-response

relationship might be confounded by different covariates at different exposure levels.
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1.8 Appendix

1.8.1 Data details

We constructed counts corresponding to the cardiovascular-specific (CVD) number of

hospitalizations for Medicare enrollees aged at least 65 years during 1999-2013 for a total

of 42,139 zip codes across the continental US. Hospitalization rates were based on the to-

tal number of personal years for Medicare enrollees for a zip code on a given year. CVD

hospitalizations were considered on the basis of primary diagnosis according to Interna-

tional Classification of Diseases, Ninth Revision (ICD-9) codes (ICD-9 390 to 459). The

analysis was restricted to 2013 and on the continental US leading to 34,897 zip codes with

hospitalization information.

Population demographic information was acquired using the 2000 Census with infor-

mation on over 400 variables, although a lot of them are highly correlated. We further

used linearly extrapolated Census variables for 2013. Census information is provided at

a ZCTA level, and we use a crosswalk to map ZCTA to zip code. Weather information

including temperature, relative humidity and dew point is acquired from the National

Oceanic and Atmospheric Administration (NOAA) Automated Surface Observing Sys-

tem (ASOS), and is linked to zip codes within 150 kilometers.

Lastly, zip code PM2.5 exposure is assigned using the US EPA monitoring sites. By EPA

recommendations, monitoring sites with less than 67% of scheduled measurements ob-

served are excluded. For every monitor, the average of the 2011-2012 average annual

value of PM2.5 is calculated, and the monitor is linked to all zip codes with centroids

within 6 miles. Then, the zip code exposure is set equal to the average over all linked

monitors. Since monitoring sites are preferentially located near populated areas or points

of interest, many zip codes in remote areas are not linked to anymonitor and are therefore

dropped from the final data set.

Figure 1.9 shows maps pf zip code centroids before linkage to EPA monitoring sites, as

well as maintained zip code centroids after 3 different linkage procedures corresponding

to different specifications of the linkage distance, as well as whether a monitor can be

linked to more than one zip code. We visualize how linkage can affect the final data set:
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(a) All zip codes in Medicare. (b) Zip codes with PM monitor within 6
miles. Linkage not unique.

(c) Zip codes with PM monitor within 6
miles. Unique linkage.

(d) Zip codes with PM monitor within 60
miles. Linkage not unique.

Figure 1.9: (a) All zip codes with available Medicare information. (b) Zip codes with
available exposure information after performing linkage within 6 miles and monitors are
allowed to be linked to more than one zip code. (c) Zip codes with available exposure
information after performing linkage within 6 miles where each monitor is only linked to
up to one zip code. (d) Zip codes with available exposure information after linkage with
monitors within 60 miles and every monitor can be linked to more than one zip code.

• Distance: As the distance of allowed linked zip codes and monitors increases, we

expect that more zip codes will be linked to at least one monitor. However, the

assigned values of PM2.5 will be more uncertain in areas where monitors are located

at long distances.

• Number of links: Allowing a monitor to be linked to multiple zip codes increases

the number of zip codes with PM2.5 information. However, this can lead to adjacent

zip codes with very similar or identical PM2.5 measurements.

Table 1.2: Available demographic and weather information

Source Name Description Mean SD
2000
Census % White Percentage of White Population 0.71 0.25
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Table 1.2 (Continued.)

% Hisp Percentage of Hispanic Population 0.12 0.18

% HS Percentage of population that
attended high school 0.27 0.10

% Poor Percentage of impoverished
population 0.14 0.11

% Female Percentage of female population 0.51 0.04

% Moved in 5 Percentage of population that has
lived in the area for less than 5 years 0.50 0.12

Avg Commute Mean Travel Time to Work 24.22 5.92

Population/SQM Population per square mile
(logarithm) 7.53 1.52

Total Population Total population (logarithm) 9.71 1.12

Low Occupied Indicator. “=1” if the percent of
occupied population is at most 90%. 0.211 0.408

High Occupied Indicator. “=1” if the percent of
occupied population is over 95%. 0.416 0.493

Low Hispanic
Indicator. “=1” if the percent of
Hispanic population is at most
0.02%

0.317 0.465

High Hispanic Indicator. “=1” if the percent of
Hispanic population is over 20% 0.197 0.398

Census
Extrapola-
tion

% Below HS
Population percent with less than
high school education (above age of
65)

23.24 14.85

% Own
Households

Percentage of occupied housing
units in 2013 0.58 0.2

Low Poverty
Indicator. “=1” if the percent of the
population below the poverty line
in 2013 is at most 5%

0.196 0.397

High Poverty
Indicator. “=1” if the percent of the
population below the poverty line
in 2013 is over 15%

0.244 0.429

Census
combina-
tion
2

House Value Median value of owner occupied
housing (USD) (logarithm) 12.65 0.63

Household
Income

Median household income (USD)
(logarithm) 11.40 0.42

BRFSS BMI Average BMI in 2013 27.65 1.32
Smoking Rate Ever smoke rate (2013) 0.45 0.06

2The 2000 Census is combinedwith the 2013 extrapolated values of the same variable by taking themean
of the variable across the two years.
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Table 1.2 (Continued.)

Weather Avg Temp Average temperature (F) 55.35 7.47
Avg Dew Point Average Dew Point (F) 44.09 7.50
Avg Humidity Average Relative Humidity (%) 70.41 8.34

Medicare Avg Age Average Medicare Age 74.89 1.66
Female Rate Percentage of Female Beneficiaries 0.55 0.06

Dual Rate Percentage of Dual Eligible
Beneficiaries 0.22 0.15

1.8.2 Prior specifications for regression parameters and experiment
configuration

Regression coefficients and residual variance

Prior independences of all parameters are expressed in the following representation
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We assume non-informative normal priors on �

k

, k = 1, 2, . . . , K + 1, and �

Y

10. The prior

distribution on the regression coefficients is a mixture of non-informative normal dis-

tribution and point-mass at 0. Non-informative inverse gamma prior distributions are

assumed on �

2
k,X

, �

2
k,Y

. Specifically

• �

k

⇠ N(µ0, �
2
0), �10 ⇠ N(µ0, �

2
0).

• �

X

kj

|↵X

kj

⇠ ↵

X

kj

N(µ0, �
2
0) + (1� ↵

X

kj

) 10(�
X

kj

),where 10(�
X

kj

) is a point-mass distribution

at 0. Similarly for �Y
kj

|↵Y

kj

.

• �

2
k,X

⇠ IG(a0, b0), and similarly for �2
k,Y

.

The hyper-parameters µ0, �
2
0, a0, b0 can be chosen differently for different variables.

Experiment configuration

The prior on the points s = (s1, s2, . . . , sK) defining the experiment configuration is set

as the even ordered statistics of (2K + 1) samples from a uniform distribution over the

observed exposure range. Compared to a uniform prior distribution on s, this choice of
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a prior discourages the existence of points s
i

, s

j

in the experiment configuration that are

very close to each other.

LetK and the exposure range (s0, sK+1) be fixed. Let Zi

⇠ U(s0, sK+1), i = 1, 2, . . . , 2K+1

and denote the even ordered statistics asW
j

= Z(2j), j = 1, 2, . . . , K. Then,

f

W1,W2,...,W
K

(w1, w2, . . . , wK

) =

f

W1(w1)fW2|W1(w2|w1) . . . fW
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SinceW1 is th 2nd order statistic of 2K + 1 samples from U(s0, sK+1), we know that
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Given W1 = w1, W2 acts like the second order statistic of 2K � 1 uniform samples from a

uniform distribution over (w1, sK+1). Therefore, we similarly get that

f

W2|W1(w2|w1) =
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(s
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Iteratively, we have that
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Therefore, the prior distribution on s with minimum distance of consecutive points

s

k

, s

k+1 being d

k

is defined as

f
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1.8.3 Sampling from the posterior distribution

The parameters included in the model are: s (the exposure values in the experiment con-

figuration), ↵⇠
X , ↵⇠

Y (the vectors of length p including the covariates’ inclusion indicators

in the exposure and the outcome model for each experiment), �
⇠
= {�

k

}K+1
k=1 (coefficients

of exposure in the outcome model), �⇠
X

, �⇠
Y (intercepts and coefficients of the covariates in

the exposure and outcome model of each experiment), �⇠
2
X

= {�2
k,X

}K+1
k=1 ,�⇠

2
Y

= {�2
k,Y

}K+1
k=1

(residual variance of the exposure and outcome within each experiment).
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Likelihood factorization

We start by noting that the full conditional data likelihood factorizes to components for

different experiments and the exposure and outcome models. If Y ,X denote the vectors

of outcomes and exposures for all units in the sample, and Y k

,Xk denote the vectors of

outcomes and exposures in experiment k, then
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where we denote p

k

(·1|·2) as the density of ·1 conditional on ·2 in experiment k and �⇠
Y

k

includes the intercept �Y
k0.

Next, we note that if we consider the marginal likelihood integrating out 1) exposure

model regression coefficients including the intercept, 2) outcome model covariates’ re-

gression coefficients, and 3) all variance terms, then the likelihood still factorizes in a

similar manner. In fact
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This can be easily shown3:
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3In the following, �⇠
X includes the exposure model intercepts, but �⇠

Y includes only the coefficients of
the covariates.
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Note that all likelihoods in (1.11) are marginal densities of linear regression models

over the regression coefficients and variance terms with Normal-Inverse Gamma pri-

ors. Raftery et al. (1997) provided closed form calculations of this marginal likelihood.

However, this calculation requires the inversion of a matrix with dimension equal to the

number of observations, and is computationally intensive. Since the marginal likelihood

is only used in the calculation of Bayes factors, we approximate the Bayes factors when

necessary using the BIC (Raftery, 1995).

Sampling all model parameters using MCMC

Sampling the regression coefficients and residual variance terms It is worth noting

that centering the covariates C
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is an important component of LERCA, since it allows

the outcome model intercepts �
k0 to depend solely on �10, �k

and s, and not on �
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simplifies the form of the full conditional distribution for many coefficients.
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The parameter �Y10 is included in the mean structure of the outcome model for all experi-

ments. Its full conditional posterior distribution is �Y10|Data, · ⇠ N(µ, �
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Sampling the experiment configuration and inclusion indicators The experiment con-

figuration and inclusion indicators can be updated separately, or simultaneously. We first

describe the separate update of s and (↵⇠
X

,↵⇠
Y

), and afterwards wewill discuss why occa-

sional simultaneous sampling was deemed necessary. One of the three moves (separate,

jump over, jump within) is performed at every iteration with probability 0.8, 0.1, and 0.1

accordingly.

(separate) The experiment configuration and inclusion indicators are updated sepa-

rately and conditionally on each other. For the update of the experiment configuration

s, the full conditional likelihood in (1.9) is used. k is chosen uniformly over {1, 2, . . . , K}

and s

⇤ ⇠ U(s

k�1, sk+1) is drawn. Alternatively, s⇤ could be sampled from a truncated nor-

mal distribution centered at s
k

. If s⇤ violates s
k+1 � s

⇤ � d

k

or s⇤ � s

k�1 � d

k�1, the move

is automatically rejected.
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Current MCMC state

s4s2 s3s*

Current State
Limits of proposal

Figure 1.10: Values of �
k

, �

k+1 for the separate move shown in Figure 1.4 are proposed
such that the estimated ER are within the limits shown in dashed green lines. The black
solid line correspond to the current state of the ER.

Otherwise, the move s ! s⇤ = (s1, s2, . . . , sk�1, s
⇤
, s

k+1, . . . , sK) is proposed with all other

parameters (excluding �
⇠
) fixed to their current values. New values of �

⇠
are necessary

to ensure that the ER is continuous at the proposed state. All coefficients but �
k

, �

k+1

are fixed to their current values, and new values for �
k

, �

k+1 are proposed such that the

intercepts of the adjacent experiments are also fixed. If s⇤ < s

k

, the proposed value �

⇤
k+1

is sampled from a uniform distribution between the values �
k+1 (current state) and

˜

�

k+1 = (s

k+1 � s

⇤
)

�1
�

�

Y

(k+2)0 � �

Y

k0 � �

k

(s

⇤ � s

k�1)
�

,

where ˜

�

k+1 is the slope that would connect the value of the ER at point s
k+1 with the value

of the ER at point s⇤ at the current state. Figure 1.10 shows the the limits of the proposed

ER. Based on the sampled value for �⇤
k+1, the proposed value for �

k

is

�

⇤
k

= (s

⇤ � s

k�1)
�1
�

�

Y

(k+2)0 � �

Y

k0 � �

⇤
k+1(sk+1 � s

⇤
)

�

.

Similarly for s⇤ > s

k

by sampling �

⇤
k

from a uniform that has similar properties.

Since the likelihood factorizes as shown in (1.9) the likelihood ratio of the Metropolis-

Hastings acceptance probability includes terms only for experiments k, k + 1. The prior

ratio includes terms for the experiment configuration distribution in (1.8), and the prior

for �
k

, �

k+1. If a uniform distribution is used to sample s

⇤, the proposal for the cutoffs

is symmetric, and the proposal ratio corresponds to the proposal ratio for coefficients

�

k

, �

k+1. This is equal to |�
k+1 � ˜

�

k+1|/|�⇤
k

� ˜

�

⇤
k

|, where �⇤
k

is the proposed value and ˜

�

⇤
k

is
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the one boundary of the proposal distribution for �
k

in the reverse move.

After we accept or reject the move s ! s⇤, we update the inclusion indicators based on

their full conditional (1.6), which we show here. Let A⇤ be all parameters but ↵X

kj

, ↵Y

kj

and

�

Y

kj

. For ↵ 2 {0, 1}

p(↵

Y

kj

= ↵|Data, A⇤
,↵

X

kj

) =

p(�

Y

kj

= 0,↵

Y

kj

= ↵|Data, A⇤
,↵

X

kj

)

p(�

Y

kj

= 0|↵Y

kj

= ↵,Data, A⇤
,↵

X

kj

)

=

p(Data, A⇤|�Y
kj

= 0,↵

Y

kj

= ↵,↵

X

kj

)p(�

Y

kj

= 0,↵

Y

kj

= ↵|↵X

kj

)

p(Data, A⇤|↵X

kj

)p(�

Y

kj

= 0|↵Y

kj

= ↵,Data, A⇤
,↵

X

kj

)

/
p(�

Y

kj

= 0|↵Y

kj

= ↵,↵

X

kj

)p(↵

Y

kj

= ↵|↵X

kj

)

p(�

Y

kj

= 0|↵Y

kj

= ↵,Data, A⇤
,↵

X

kj

)

=

p(�

Y

kj

= 0|↵Y

kj

= ↵)p(↵

Y

kj

= ↵|↵X

kj

)

p(�

Y

kj

= 0|↵Y

kj

= ↵,Data, A⇤
)

, ↵ 2 {0, 1}, (1.12)

where the numerator consists of the product of two prior probabilities, and the denom-

inator consists of the posterior probability that �Y
kj

= 0. This has been seen previously

in a different context (Antonelli et al., 2017a), and consists a computational improvement

over previous implementations of this prior distribution that utilized the MC3 algorithm

(Madigan et al., 1995; Wang et al., 2012).

However, sampling the inclusion indicators and experiment configuration separately

can lead to slow convergence. For example, consider our simulation scenario where the

true experiment configuration is (2, 4, 7), and starting values randomly set to (0.5, 2, 7).

Based on the separate move point s1 is always proposed to be updated between s0, s2 = 2,

which can lead to slow mixing. The jump over and jump within moves are meant to

alleviate such issues. In both situations, sampling of s,↵⇠
X

,↵⇠
Y

,�
⇠
is performed using the

marginalized likelihood (1.10)

p(s,↵⇠
X

,↵⇠
Y

,�
⇠
|Data, �Y10) / p(Y ,X|s,↵⇠

X

,↵⇠
Y

,�
⇠
, �

Y

10,C) p(s) p(↵⇠
X

,↵⇠
Y

) p(�
⇠
).

Integrating all other parameters out allows us to perform sampling of the experiment

configuration without heavy fine tuning of proposal distributions.

(jump over) This move is designed to alleviate the MCMC issue described above by

proposing a simultaneous move of (s,↵⇠
X

,↵⇠
Y

,�
⇠
). k 2 {1, 2, . . . , K} is again chosen uni-
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formly, but now a new location of the experiment configuration s

⇤ is generated uni-

formly over (s0, sK+1) \ [s

k�1, sk+1] (necessarily not between s

k

, s

k+1). The move s !

s⇤ = (s1, s2, . . . , sk�1, sk+1, . . . , sj�1, s
⇤
, s

j

, . . . , s

K

) proposes a combination of experiments

k, k + 1 and a split in some randomly chosen experiment j. For example, in Figure 1.4(d),

the proposed move splits the first experiment (s0, s1) in two (s0, s
⇤
), (s

⇤
, s1), and combines

the experiments (s2, s3), (s3, s4).

The inclusion indicators of the unchanged experiments remain to their current values, but

new values need to be proposed for the combined or split experiments. If in the current

state a variable is included in the model of both experiments, the proposed inclusion indi-

cators should reflect the intuition that the variable is potentially important in the model of

the combined experiments. Therefore, the inclusion of a variable in the combined experi-

ment is proposed with very low, mediocre and very high probability if none, one or both

of the current experiments include it. The values chosen were (0.01, 0.5, 0.99) accordingly.

Similarly, two sets of inclusion indicators need to be proposed for the split experiment.

A variable is proposed to be included in the model of one of the two experiments with

lower and higher probability if the variable was included in the initial model or not. The

values chosen were (0.2, 0.95).

Values for �
⇠
are proposed to ensure that the proposed state corresponds to a continuous

ER. Unchanged experiments remain the same. Experiments are combined by connecting

the edges of the two linear segments, and values of the split experiments are proposed

using a normal perturbation of the current value with variance �2
tune

. Figure 1.4(d) shows

proposed states of the ER.

The move is accepted or rejected with probability equal to the product of the following:

1. The likelihood ratio for split and combined experiments approximated using the

BIC for the exposure model and the outcome model (regressing Y k � (1,Xk �

s

k�11)(�Y
k0, �k

)

T on Ck without an intercept).

2. The prior ratio for the experiment configuration (1.8), and for the inclusion indica-

tors (1.4) and the coefficients �
k

for the combined and split experiments.
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3. The proposal ratio for s, �
k

and (↵⇠
X

,↵⇠
Y

)

(s

K+1 � s0)� (s

j

� s

j�1)

(s

K+1 � s0)� (s

k+1 � s

k�1)
exp

⇢

u

2 � u

⇤2

2�

2
tune

�

Y

l2{0,1,2}
m2{0,1}

(p

c

lm

)

n

s

ml

�n

c

lm

Y

l2{0,1}
m2{0,1,2}

(p

s

lm

)

n

c

ml

�n

s

lm

,

where p

c

lm

is the probability that of proposing ↵ = m 2 {0, 1} in the combined

experiment when l 2 {0, 1, 2} of the two initial experiments had ↵ = 1, ps
lm

is the

probability of proposing ↵ = 1 in m 2 {0, 1, 2} of the two experiments when the

initial experiment chosen to be split had ↵ = l 2 {0, 1}, and n

c

lm

, ns

lm

is the number

of times that each event occurred when moving from the current to the proposed

state. Lastly, u is the difference of the slope for the experiment that was split from

the slope of the first split experiment in the proposed state, and u

⇤ is the difference

of the slope in the first of the experiment that is combined from the slope of the

combined experiment in the proposed state.

(jump within) This move is similar to the “jump over” but maintaining the ordering

of the locations in s. k 2 {1, 2, . . . , K} is again chosen uniformly, and a new value s

⇤

is proposed within the interval (s
k�1, sk+1). New values for the coefficients �

k

, �

k+1 are

proposed as in the separate move. New values of the inclusion indicators are also pro-

posed for the experiments k, k + 1. In fact, C
j

is proposed to be included in the outcome

model of an experiment with high probability if both current models include it, mediocre

probability if only one of the models include it, and low probability if none of the models

include it. Similarly for the inclusion indicators of the exposure model. The acceptance

probability of this move is similar to the one described above, and is omitted here.

MCMC convergence

One quantity that we use for convergence inspection is themean exposure response curve

calculated over a set of exposure values within the exposure range. Such a set might be

an equally spaced grid of points over the interval (s0, sK+1), denoted by G. For each

value x 2 G and MCMC iteration t identify the experiment k = k

t

(x) that x belongs to.

Then, for observation i calculate the expected response at value x, by defining w̃

i

(x) =

(1, x, C

i1, . . . , Cip

)

T and calculating bY
it

(x) = w̃

i

(x)

T

�

kt

where �
kt

is the posterior sample of
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(�

Y

k0, �k

, �

Y

k1, . . . , �
Y

kp

)

T in iteration t. Finally, the t-posterior sample of the mean response at

point x 2 G is the average of the expected responses over the individuals in the sample
b

Y

t

(x) =

1
n

P

n

i=1
b

Y

it

(x).

Convergence could be examined by visual inspection of trace plots of bY (x) for all x 2 G.

Based on multiple chains of the MCMC, we calculate the potential scale reduction factor

(PSR) for the mean response at every point x 2 G (Gelman and Rubin, 1992). We consider

that the MCMC has converged if |PSR�1| < c for all x 2 G. An alternative quantity based

on which MCMC convergence can be examined is ˆ

�(x) = �

k

x

.

1.8.4 Simulating data with differential confounding at different expo-
sure levels

In simulation studies, data are most often simulated in the following order: covariates

C1, C2, . . . , Cp

, exposure X given a subset of C1, C2, . . . , Cp

, and outcome Y given X and

a potential different subset of C1, C2, . . . , Cp

. Data with differential confounding at differ-

ent exposure levels could imply, in its most generality, that the exposure X is generated

with different predicting variables at different exposure levels. Generating data with such

structure is complicated since the actual X values define the exposure level that an ob-

servation belongs to, and the exposure level in which an observation belongs to defines

the set of predictors. For that reason, instead of following the C, X|C approach to data

simulation, we generate the exposure valuesX first, andC is generated conditional onX ,

ensuring that the target experiment-specific mean and variance of X,C, and correlation

of all variables remain the same, as if the data were generated with the typical C, X|C

order. Generating the outcome with different predictors at different exposure model is

straightforward by including terms of the form �

⇤
j

C

j

I(X � s

k

), or by using a separate

outcome model within each experiment. In all situations, one should ensure that data are

generated in such a way that the true ER is continuous.

The “target” data generating mechanism

Given K, s, we would like the exposure X to be generated such as E(X) and V ar(X) are

controllable quantities, since they are closely related to the exposure range of each experi-
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ment, and we would like to to ensure that simulation results are not driven by the inherit

variability inX . Furthermore, we would like to ensure that V ar(C

j

) is approximately the

same across experiments and across covariates, such that the the magnitude of �Y
kj

has

similar interpretation in terms of correlation.

As discussed above, data (X,C) are usually generated in the order C followed by

X|C, using a model for which E(X|C) = �0 +

P

p

j=1 �jCp

. Instead of setting target

values for �

j

, we set target correlations Cor(X,C

j

) and calculate the �

j

’s that corre-

spond to these correlations. Alternatively, one could specify target �
j

’s ensuring that

V ar(X) �
P

p

j=1 �
2
j

V ar(C

j

).

We require thatE(C

j

|X = x) is continuous in x to ensure that the joint distribution (X,C

j

)

is realistic, and does not have “jumps” at the points of the experiment configuration.

Based on the above, the following represent the target quantities of our data generation:

• V ar(X), E(X) are fixed,

• C

j

are independent random variables with known variance within each experiment,

• Cor(C

j

, X) are fixed and �

j

can be calculated, using Cor(X,C

j

) = �

j

s

V ar(C

j

)

V ar(X)

,

• The function E(C

j

|X = x) is continuous in x.

Ensuring that E(C

j

|X = x) is continuous in x across experiments is performed in the

following way: Given V ar(X), a model for C|X that gives rise to data with the target

V ar(C

j

), Cor(X,C

j

) is considered. The variance-covariance targets do not impose any

restrictions on the model intercept. For the first experiment, the intercept can be cho-

sen arbitrarily, and for the subsequent experiments intercepts are chosen to ensure that

lim

t!x

�
E(C

j

|X = t) = lim

t!x

+
E(C

j

|X = t) at all points x.

Generating the data set maintaining target quantities

As discussed above, Cor(X,C

j

), V ar(C

j

), and V ar(X) are considered known, fromwhich

we can derive Cov(X,C

j

). We generate data with the following order:

1. X is generated from a distribution with mean E(X), and variance V ar(X). In our

simulations X is uniform over the exposure range.
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2. Taking advantage of the laws of the multivariate normal distribution we generate

C|X ⇠MVN

p

(µ̄,

¯

⌃), where

µ̄ =E(C) +

Cov(C, X)

V ar(X)

(X � EX), and

¯

⌃ =diag(V (C))� 1

V ar(X)

Cov(C, X)Cov(C, X)

T

,

where Cov(C, X) = (Cov(C1, X), Cov(C2, X), . . . , Cov(C

p

, X))

T , and diag(V (C)) is

a diagonal p⇥ p matrix with entries V ar(C

j

), j = 1, 2, . . . , p.

3. The marginal means of each variable C

j

within each experiment is calculated by

ensuring that the function E(C

j

|X = x) which corresponds to the j

th entry of the

vector µ̄ is continuous at the points of experiment change.

4. Covariates C
j

are subtracted their overall mean.

A simple linear regression form is used to generate the outcome within each experiment.

In experiment k, the outcome is simulated from a model Y |X,C ⇠ N(⇠

k0 + ⇠

k1�(X) +

P

p

j=1 ⇠k(j+1)Cj

, �

2
k,Y

), where �() is a continuous function, and the residual variance �

2
k,Y

is set equal across k. We ensure that the true ER function E(Y |X) is continuous in X by

appropriately setting the intercept values ⇠
k0. The intercept in experiment 1 is decided,

and for each experiment onwards we set ⇠
k0 such that

lim

x!s

�
k

E[Y |X = x] = lim

x!s

+
k

E[Y |X = x] () ⇠(k+1)0 = ⇠

k0 + (⇠

k1 � ⇠(k+1)1)sk.

1.8.5 Additional simulation results

Simulations in the presence of local confounding

Table 1.3 shows the correlation of the covariates with the exposure and the coefficients

of the covariates in the outcome model for the data simulating scenario with local con-

founding: different confounders at different levels of the exposure.

Figure 1.11 shows the the root MSE (rMSE) as a function of the exposure value x 2 (0, 10).

LERCA has the lowest rMSE at the low exposure levels followed by GAM. All methods

are comparable for the middle exposure values, and GAM performs slightly better than

LERCA at high levels.
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Table 1.3: Correlation between the covariates and exposure, and outcome coefficients in
each experiment, for scenarios with local confounding.

Covariate - Exposure Covariate - Outcome
x 2 g1 x 2 g2 x 2 g3 x 2 g4 x 2 g1 x 2 g2 x 2 g3 x 2 g4

C1 0.423 0.525 0.402 0 0.641 0 0 0
C2 0.524 0.572 0 0.503 0.962 0.919 0.593 0.651
C3 0.522 0 0.447 0 0.646 0.643 0.616 0.58
C4 0 0.528 0 0 0 0.633 0 0
C5 0 0 0.533 0.539 0 0 0.658 0
C6 0 0 0 0.509 0 0 0 0.52
C7 0 0 0 0 0 0 0 0
C8 0 0 0 0 0 0 0 0
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Figure 1.11: Mean Root MSE as a function of the exposure x 2 (0, 10).

Simulations in the presence of global confounding

Briefly, data are generated with covariates C1, C2, C3 as predictors of exposure and

C2, C3, C4 as predictors of the outcome and the adjusted R-squared of the true expo-

sure and outcome models was 0.73 and 0.94 accordingly. Table 1.4 shows the correlation

of covariates with the exposure and the outcome model coefficients in the data simu-

Table 1.4: Correlation between the covariates and exposure, and outcome coefficients in
each experiment, for scenario with global confounding.

C1 C2 C3 C4 C5 C6 C7 C8

Exposure 0.423 0.524 0.522 0 0 0 0 0
Outcome 0 0.812 0.93 0.82 0 0 0 0
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lating scenario with global confounding (same confounders with constant confounding

strength across exposure levels) and true quadratic ER. Figure 1.12 shows the estimated

ER for each data set and the average estimated ER based on LERCA and alternative meth-

ods. In Figure 1.13, the root MSE for all methods is plotted as a function of the exposure

x 2 (0, 10).

LERCA GAM SPLINE HI−GPS IPW
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Figure 1.12: Simulation results in the presence of global confounding. Grey lines corre-
spond to estimated ER for each simulated data set, dashed lines correspond to the mean
ER over all simulated data sets, and the solid line corresponds to the true ER.
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Figure 1.13: Root MSE of all methods in the presence of global confounding as a function
of the exposure x 2 (0, 10).
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2.1 Introduction

Methods based on propensity score matching are widely used to estimate causal effects

with observational data. Such methods rely crucially on the assumption of no unmea-

sured confounding. In settings of spatially-indexed data, unobserved confounders may

exhibit a spatial pattern, inviting the use of spatial information to serve as proxy for simi-

larity of units with respect to unmeasured confounding factors. Methods for confounding

adjustment with spatially-indexed data have been most often considered in the context

of regression adjustment, as in Paciorek (2010) and in related work that does not tar-

get confounding adjustment per se, but has been used for modeling spatially correlated

residuals via spatial random effects (Hodges and Reich, 2010; Lee and Neocleous, 2010;

Lee and Sarran, 2015; Chang et al., 2013; Congdon, 2013).

In this paper, we unite the use of spatially-indexed data with propensity score match-

ing while preserving the most salient benefits of using propensity scores. These benefits

include the explicit comparison of treatments or policy interventions to estimate policy-

relevant estimands such as the Average Treatment Effect on the Treated, as well as the

oft-cited virtues of propensity score analysis related to the hypothetical “design” of a ran-

domized study, for example, the ability to check observed covariate balance and overlap

(Rubin, 2008). Augmenting such benefits with the notion that geographically closer units

may exhibit similar unmeasured confounding profiles presents a methodological chal-

lenge.

The methods here are motivated by the threat of unmeasured spatial confounding that

arises in studies of air pollution, where complex climatological and atmospheric processes

are known to vary spatially and have strong associations with ambient air pollution, but

are often unmeasured. For example, consider ambient ozone pollution, which has been

previously linked to adverse health outcomes (Bell et al., 2004; Jerrett et al., 2009). A va-

riety of regulatory strategies in the U.S. are designed to reduce ambient ozone pollution

through incentivizing power-generating facilities (i.e., “power plants”) to reduce emis-

sions of nitric oxide and nitrogen dioxides (NO
x

). When combined with sunlight and

in the presence of available volatile organic compounds, NO
x

emissions initiate atmo-
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spheric chemical reactions to form ambient ozone pollution (Allen, 2002). What’s more,

regions where conditions tend to encourage the formation of ozone might be more likely

to impose stricter rules on NO
x

emissions. Thus, evaluating the effectiveness of emission-

control strategies installed at power plants is met with the challenge that complete data

on all relevant climatological, atmospheric, and regulatory confounders is almost never

available but are expected to vary spatially. The goal of this paper is to employ amatching

procedure anchored to the propensity score to investigate whether, among coal or natural

gas power plants, installation of selective catalytic or selective non-catalytic (SCR/SNCR)

NO
x

emission control technologies is more effective than alternatives for reducing ambi-

ent ozone. The treatment assignment and outcome of interest are depicted in Figure 2.1.

Propensity scores are particularly useful for this type of policy evaluation because of the

ability to adjust for confounding without strong reliance on a parametric model and the

ability to empirically assess covariate balance and overlap. However, unmeasured spa-

tial confounding presents a strong threat to the validity of a standard propensity-score

analysis.

To confront these challenges, we present a new methodology, termed Distance Adjusted

Propensity Score Matching (DAPSm) which incorporates information from spatially-

indexed data with the known virtues of propensity score matching. DAPSm incorpo-

rates observations’ spatial proximity into a matching procedure designed to adjust for

SnCR

Treated

Control

Treatment Assignment

0.01

0.02

0.03

0.04

0.05

4th maximum ozone value

Figure 2.1: Map of facilities, colored by whether they are treated (yellow) or control (red),
and map of ozone concentration surrounding power plants.
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observed confounders while adjusting for unmeasured spatial confounders by emphasiz-

ing, to varying degrees governed by a tuning parameter, the spatial proximity of matches.

The central challenge of incorporating spatial proximity into propensity score matching

is that proximity is a relative measure between two units, not a unit-specific measure like

a confounder or the propensity score itself.

DAPSm shares important commonalities with the recently-proposed work of Keele et al.

(2015) in that both are matching methods that aim to leverage spatial proximity of units.

We evaluate DAPSm relative to the method of Keele et al. (2015) throughout, but note

here that, despite similar conceptual goals, these methods are not directly comparable.

The most salient difference has to do with reliance on the propensity score; DAPSm com-

bines spatial proximity with propensity scores, whereas Keele et al. (2015) provides an

integer programing method that matches directly on covariates (i.e., not using propensity

scores). Our goal here is not to investigate the relative merits of exact vs. propensity score

matching, but rather to isolate features related specifically to methods’ account of spatial

confounding. DAPSm offers a tuning parameter governing the relative prioritization of

observed covariate distances (measured through similarity of propensity score estimates)

and spatial proximity. Keele et al. (2015) entails a tuning parameter that governs the trade

off between spatial proximity of matches and the number of matches selected within a

certain tolerance of observed covariate balance.

Both DAPSm and the method of Keele et al. (2015) are evaluated in a simulation study

alongside several other reasonable alternatives for incorporating spatial information into

propensity score analysis. The methods are then deployed to compare the effective-

ness of SCR/SNCR, relative to other strategies, for reducing NO
x

emissions and ambi-

ent ozone measured across 473 power plants and 921 air pollution monitoring locations

in the United States. Ultimately, we show that incorporating spatial information in the

matching can lead to substantively different conclusions when evaluating interventions

on spatially-indexed observational units.
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2.2 Notation, estimand of interest, and outline of propen-
sity score matching

Let Z
i

denote the indicator of whether the i

th of n observations is subject to treatment,

for example, the indicator of whether a power plant is treated with SCR/SNCR (Z
i

= 1)

or not (Z
i

= 0). Let Y
i

be a continuously-scaled outcome, for example, ambient ozone

concentration in the area surrounding power plant i.

Each unit or observation is assumed to have two potential outcomes (Rubin, 1974), one

under each value of the treatment. We denote Y
i

(0), Y

i

(1) as the potential outcome of am-

bient ozone concentration in the area around unit i under value of z = 0, 1 respectively.

Assuming that the indexing of the observations is done at random, the index i is sup-

pressed. Interest often lies in the estimation of the average treatment effect in the treated

population, defined as ATT = E[Y (1)� Y (0)|Z = 1].

Among the assumptions required to estimate the ATT with observational data is that

of “ignorable treatment assignment”, stating that observed covariates are sufficient to

adjust for confounding of the treatment-outcome relationship. More formally, let C be a

minimal set of confounding variables such as power plant characteristics, weather and

atmospheric variables, and area-level demographics. The assumption of ignorability can

be stated as:

Y (z)q Z|C, (2.1)

under which the ATT can be estimated with observed-data comparisons between out-

comes on treated and untreated units, conditional on C. Since C is assumed minimal,

the ignorability assumption in (2.1) does not hold for any strict subset of C, implying

that observed-data comparisons will not estimate the ATT when conditioning on a strict

subset of C.

As the dimensionality of C increases, investigators often use the propensity score to con-

dense the information in C into a “balancing score” that can be used to adjust for con-

founding when comparing treated and untreated units. The propensity score is defined

as the conditional probability of receiving treatment given the covariates, P (Z

i

= 1|C
i

).

The balancing property of the propensity score (Rosenbaum and Rubin, 1983) implies that
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the ignorability assumption in (2.1) can be translated to Y (z)q Z|P (Z = 1|C).

An overview of the various ways in which propensity scores can be used for confounding

adjustment can be found in Stuart (2010), but we discuss methods in the context of 1:1

matching without replacement using a caliper. Such a procedure uses propensity score

estimates to match one treated unit to one control unit with a similar propensity score

estimate. A threshold, called a “caliper,” can be used to avoidmatching observations with

insufficiently similar propensity scores. For example, specifying a caliper of 0.1 prevents

the matching of any two observations with propensity scores that differ by more than 0.1

standard deviations of the propensity score distribution. Matching produces a data set

of matched treated and control observations with similar propensity score distributions,

and thusmore similar distributions of the covariates inC and a treatment indicator that is,

under ignorability, unconfounded. The resultingmatched data set can be used to estimate

the ATT provided that all elements ofC are observed and used to construct the propensity

score.

However, it is often the case with observational data that the vector of true confounders

C can be partitioned into two categories, C = (X,U), where X denotes the confounders

available in the observed data, and U denotes confounders that are unobserved. In the

presence of unobserved confoundersU, the ignorability assumption in (2.1) cannot be sat-

isfied by conditioning solely on the observed X, and the treatment effect is not identifiable

from the data.

In many settings it is expected that some elements of U vary spatially so that locations

that are geographically close are similar with regard to U. In this sense, the notion of pri-

oritizing spatial proximity of matches has points of contact with the notion of a spatial

“bandwidth” in a geographic regression discontinuity design (such as that in Keele et al.

(2015)), where only observationswithin the bandwidth are regarded as comparable on ob-

served (and unobserved) factors. The method outlined below regards U as unmeasured

variables with a distribution over the whole geography of interest that is continuous as a

function of space, with closer observations having more similar U.
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2.3 Distance Adjusted Propensity Score Matching

Wepropose a procedure that is anchored to the propensity score formatching on observed

confounders, but augments confounding adjustment by incorporating spatial (geograph-

ical) information as a proxy for unobserved spatial variables, U, such as weather and

atmospheric conditions. In the presence of such U, prioritizing matched units that are

geographically close to each other could yield better covariate balance on all C = (X,U),

thus (approximately) recovering the ignorability assumption and reducing bias of causal

estimates. Formally, the variables U 2 U are such that 8✏ > 0 and point s0 in the geogra-

phy of interest 9N
✏

(s0) open set including s0 such that |U(s)� U(s0)| < ✏, 8s 2 N
✏

(s0).

We define the Distance Adjusted Propensity Score (DAPS) as a new quantity for iden-

tifying good matches between treated and control units. In contrast to the propen-

sity score which has a value for each unit, the DAPS is defined for every (i, j) pair

of treated, control observations. Specifically, for treated unit i and control unit j, the

DAPS combines propensity score estimates and relative distances to define: DAPS

ij

=

w ⇤ |PS

i

� PS

j

| + (1 � w) ⇤ Dist

ij

, where w 2 [0, 1], PS

i

, PS

j

are propensity score esti-

mates from modeling the treatment conditional on the observed confounders, and Dist

ij

is a distance measure capturing the proximity of units i, j. DAPS is a weighted average of

the propensity score difference used in “standard” propensity score matching and a mea-

sure of the distance between treated-control pairs. Therefore, it is a transparent measure

of similarity between treated and control units, with an (i, j) pair having small DAPS
ij

regarded as comparable on the basis of a combination of propensity score difference and

spatial proximity.

2.3.1 Choosing the weight w

Setting w = 1 corresponds to setting DAPS equal to the absolute propensity score dif-

ference, and similarity of treated and control units is based solely on the observed con-

founders, without regard to spatial proximity. Settingw = 0 ignoresX, defining similarity

of units based solely on distance. In practice, w could be specified in the range [0, 1] de-

pending on contextual prioritizaiton of observed confounding and the threats due to any
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suspected unobserved spatial confounding, with values closer to 0 for settings where un-

observed spatial confounding is of particular concern. Data-driven procedures, such as

the one described in Section 2.3.5 can be useful in choosing a w.

2.3.2 Choosing the distance measure

The quantityDist

ij

could be specified in manyways to quantify spatial proximity of units

i and j. A natural distance measure is the geographical distance between units i, j. A key

consideration in choosing a distance measure is that its scale must be made comparable

to that of the propensity score to ensure that one quantity does not arbitrarily dominate

the calculation of DAPS. Since the absolute propensity score difference of two units can

vary across the range [0, 1], the distance measure should also vary between 0 and 1, or

on a range similar to the range of estimated propensity score differences. (Alternatively,

instead of standardizing Dist

ij

, one could scale w.)

One distance measure we consider is the standardized Euclidean distance (for simula-

tions) or the standardized geo-distance (for the application). Specifically, if i 2 S

t

=

{1, 2, . . . , N
t

} is a treated unit, and j 2 S

c

= {1, 2, . . . , N
c

} is a control unit, the standard-

ized distance of i, j is defined as:

Dist

ij

=

d

ij

�min

TC

d

max

TC

d�min

TC

d

, (2.2)

where d

ij

is the Euclidean (or geo) distance between i, j, and min

TC

d,max

TC

d are the

minimum and maximum distances of all the treated-control pairs.

Other choices of distance measure can also arise in practice. For example, only permitting

matches within certain boundaries (e.g., within states) corresponds to setting Dist

ij

= 1

for i, j located in different states. Section 2.7.1 presents an alternative definition relying

on the empirical CDF of treated-control pairwise distances.

2.3.3 Selecting matches

We provide an R package that performs matching based on DAPS using an optimal or a

greedy algorithm. The optimal algorithm uses the optmatch R package, and the greedy

algorithm is described in Section 2.7.2. Gu and Rosenbaum (1993) found that optimal
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matching performed better than greedy matching in returning matched pairs with small

Mahalanobis covariate distance, but returned similarly balanced matched data sets.

2.3.4 Specifying Calipers

In DAPSm, a caliper can be defined as the number of DAPS standard deviations beyond

which a value of DAPS is deemed too large to produce an appropriate match. In this sit-

uation, a treated-control pair cannot be matched if the corresponding DAPS of the pair is

larger than the caliper. That is, the caliper is directly applied to the entire DAPS quantity.

Calipers could be alternatively defined to pertain separately to each component of DAPS.

For example, one type of caliper could prevent any match with propensity score differ-

ence exceeding some threshold regardless of DAPS value, with an analogous caliper de-

fined only for distance.

Note that when a caliper is not used, there is an equivalence between DAPSm with w = 1

and standard 1-1 nearest neighbor propensity score matching. When a caliper is specified

these procedures may not be exactly equivalent due to the definition of the caliper for

the two procedures. Standard matching uses the standard deviation of propensity score

estimates, while DAPSm uses the standard deviation of DAPS w=1
= |PS difference|.

2.3.5 Data-driven choice of w

In DAPS, there is a transparent interplay between distance of observed covariates (asmea-

sured through the difference in the propensity score estimates) and distance of matched

pairs. Automated data-driven procedures may be useful for selecting an appropriate

value of w. We implement an automated procedure that re-calculates DAPS and performs

matching across a range of possible w. As w increases, balance of the observed covariates

can be assessed, and the smallest value of w that maintains the absolute standardized

difference of means (ASDM) of the observed confounders below a pre-specified cutoff is

used. A different balance criterion can also be used. This choice of w assigns the largest

possible weight to proximity (and, by extension, to the unmeasured spatial confounders),

while still maintaining balance of the observed confounders.

Even though this choice of w is such that it ensures observed covariate balance with re-
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spect to a specific criterion, w can be specified alternatively if subject-matter knowledge

is available on an unmeasured spatial confounder. For example, there may be a known

but unmeasured confounder (e.g., volatile organic compounds, baseline NO
x

emissions

in an air pollution study) that is regarded as more important than any measured variable.

The value ofw could be chosen such that DAPSm prioritizes spatial proximity of matched

pairs to maximize the chance of balancing the unmeasured spatial confounder, even at the

cost of balance on observed covariates. Ability to make such a judgment transparently is

a key feature of DAPSm.

2.4 Simulation and Comparison with Alternatives

We conduct a simulation study to explore the performance of DAPSm and several rea-

sonable alternatives for incorporating spatial information, with a focus on how different

methods perform across a variety of unmeasured spatial confounding settings, as dic-

tated by the spatial surface of simulated unmeasured confounding. We evaluate methods

with respect to mean squared error (MSE) of ATT estimates, balance of observed and un-

observed confounders, and number of matches. Data are simulated across the locations

of 800 power generating facilities to represent a realistic spatial patterning of units reflect-

ing that of the study of power plant emissions and ozone. Specifically, for each simulated

data set, each of 800 fixed locations are simulated to have one unmeasured confounder

U generated as a Gaussian Process with Matérn correlation function, four observed con-

founders X
i

, i = 1, 2, 3, 4 uncorrelated with U , binary treatment Z, and continuous out-

come Y . The specifics of the data generating mechanism can be found in Section 2.7.3.

TheMatérn correlation function of the spatial confounder is governed by two parameters,

the smoothness, ⌫, and range, r. The range, r, measures how quickly the correlation of

U between two locations decays with distance. When ⌫ is small, the spatial process is

rough, andwhen it is large the process is smooth. SeeMinasny andMcBratney (2005) for a

detailed description. Section 2.7.4 shows four generated surfaces of a spatial variable with

Matérn correlation function for combinations of small and large values of smoothness and

range.
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The situation presented here assumes that U is uncorrelatd with X to highlight the impact

of completely unobserved spatial confounders. Situations where U is simulated to have

correlation with X produce similar results with less pronounced gains of incorporating

spatial information.

2.4.1 Methods for Comparison with DAPSm

We consider alternative approaches belonging to two general strategies for incorporating

spatial information with propensity scores: a) incorporating spatial information in the

matching procedure, and b) incorporating spatial information in the propensity score es-

timates themselves. The former methods estimate the propensity score usingX, then per-

formmatching based in part on distance, as done in DAPSm. The latter methods estimate

propensity scores that vary according to a spatial pattern by construction, then matches

on these “spatial propensity scores”. After matching is performed, ATT estimates are

acquired through a difference in means of the matched pairs. Further regressions adjust-

ments could be performed in practice.

The previously described method of Keele et al. (2015) is one method that incorporates

spatial information in the matching. Even though Keele et al. (2015) advocate for match-

ing directly on covariates, in the simulation study this method was implemented per-

forming exact matching on 5 categories of the propensity score, such that any difference

in performance could be attributed solely to themethods’ ability to adjust for unmeasured

spatial confounding. Simulation results for this method implemented to match directly

on covariates are shown in Section 2.7.5.

We further considered another method that incorporates spatial information into the

matching procedure, which we refer to as “Matching within Distance Caliper". For this

method, a distance caliper is chosen as the maximum distance of potential matched pairs.

Within the distance caliper, matching is performed based solely on the propensity score

estimated withX. A caliper on the propensity score can be used in addition.

Methods that incorporate spatial information into the propensity score estimates include

parametric and non-parametric incorporation of spatial information in the treatment as-

signment model. A simple approach is the introduction of fixed effects for locations’
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latitude and longitude coordinates in the propensity score, in addition to the observed

covariates. We refer to this as “Naïve with Coordinates”. A more flexible extension is to

use Gradient Boosting Models (GBM; Friedman (2001)) to estimate the propensity score,

including the coordinates and the observed covariates X. Estimation of the model is per-

formed using the gbm R package (Ridgeway, 2007).

While the “Naïve with Coordinates” and GBM approaches are not spatial methods per se,

an alternative approach is to augment the propensity score model with a spatial random

effect, as implemented using the spBayes R package (Finley et al., 2007). Specifically, the

propensity score is estimated by fitting P (Z = 1|X) = f(X,W ; ✓

W

), W ⇠ GP (0, C),

where C = C(�) is the spatial random effect correlation matrix with parameters �. Such

approach was not pursued in detail here due to its computational intensity and its poor

performance in initial investigations.

We compare the propensity score matching with spatial information methods to the gold

standard which uses the data generating outcome model, and the gold standard propen-

sity score (“Gold PS”) which uses the true propensity score model conditional on X and

U . Finally, the naïve approach performs propensity score matching using estimates from

a model solely on the observed confoundersX.

All methods are implemented with 1-1 nearest neighbor optimal matching without re-

placement. For DAPSm, we present results for the definition of standardized distance

defined in (2.2). For GBM, we considered 3rd degree interactions. Results for Matching

within Distance Caliper are presentedwith the distance caliper equal to the 10th percentile

of pairwise treated-control distances (themethod indicated sensitivity to the choice of dis-

tance caliper, other specifications were considered, but are not shown here). The method

of Keele et al. (2015) was implemented across a range of values for �, representing dif-

ferent compromises between the number of returned matches and the distance between

matched pairs. As Keele et al. (2015) do not provide specific guidance on the selection

of �, we present results for two values meant to represent two different points in the

space of compromises between distance and the number of matches: � = 0.382, the me-

dian pairwise distance of treated and control units (as done in Keele et al. (2015)), and

� = 0.05 which was determined in simulation to yield fewer matches and lower MSE for
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this range of simulation scenarios. For implementing DAPSm, w was chosen based on

the algorithmic procedure described in section 2.3.5.

2.4.2 Simulation Results

Figure 2.2 shows the relative MSE of the effect estimates calculated with a subset of the

methods with respect to the Gold PS and for different specifications of smoothness and

range of U . MSE is calculated over the subset of simulated data sets for which each

method returned matches. Table 2.1 describes the percentage of simulated data sets for

which no matching was achieved for each of the methods. As expected, the naïve ap-

proach has the highest relative MSE ranging from 24.4 to 46.6. Relative MSE for the gold

standard varied from 0.16 to 0.32, indicating that specifying the correct outcome model is

more efficient than using the correctly specified propensity score. These approaches did

not indicate patterning when varying the spatial structure. Relative MSE for the Naïve

Naive
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Figure 2.2: Estimates of relative mean squared error over 100 simulated data sets for
each specification of smoothness ⌫ (x-axis) and range r (y-axis) for the Matérn correlation
function of the unobserved confounder. The baseline MSE corresponds to the Gold PS.
Printed values are rounded to the first decimal.
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Table 2.1: Percentage of simulated data sets that each method returned no matches (%
fail), average number of treated units that were dropped when matches where returned
(Dropped), the Interquartile range of number of dropped treated units (IQR), and average
distance of matched pairs (Distance).

Gold PS Naïve N.Coords GBM DistCal 10% DAPSm Keele-0.05 Keele-0.382
% fail 1.5 0.5 0.96 27.67 33.29 0.04 0 0
Dropped 0.06 0.06 0.06 0.23 0 0 55.98 2.11
IQR (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (50,62) (0,3)
Distance (⇥100) 37.4 40.5 36.4 36.1 8.4 2.6 1.9 3.7

with coordinates ranged from 6 to 41.3, and indicated similar patterning as the other spa-

tial methods with respect to the smoothness and range of U , but performed worse in

terms of MSE than its more flexible form (GBM) and is emitted from Figure 2.2.

For all methods incorporating spatial information, relative MSE decreases as the surface

gets smoother (larger values of smoothness ⌫) or the spatial correlation remains positive

at longer distances (larger values of range r). Similar results are observed for the abso-

lute bias. Among the methods considered based on propensity scores, DAPSm had the

lowest MSE across all specifications of range and smoothness, apart from the method of

Keele et al. (2015) when � = 0.05 was chosen such that it reduces simulation-based MSE

compared to � = 0.382. Results for the method of Keele et al. (2015) implemented to

match directly on the observed covariates, instead of the propensity score, can be found

in Section 2.7.5, and showed lower relative MSE than the methods presented here.

We also evaluated methods with respect to the balance of observed and unobserved co-

variates. Figure 2.3 shows the standardized difference of means of X1, X2, U (balance of

X3, X4 was similar to the balance of X1, X2) for the scenarios where ⌫ = r = 0.1 (rough

uneven surface), and ⌫ = 1.46, r = 1 (smooth surface). First, the full data ASDM shows

that all variables were imbalanced in most simulated data sets. Using the correctly spec-

ified propensity score model (Gold-PS) achieved balance of all confounders at the 0.1

cutoff. The naïve approach does not incorporate any spatial information, and the unob-

served confounder remains imbalanced. Incorporating coordinates in the estimation of

the propensity score improves on balancing U , especially in smoother surfaces. Matching

within Distance Caliper performed similarly to Naïve with coordinates in the rough sur-

face. In smooth surfaces Matching within Distance Caliper performed well in balancing
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Figure 2.3: Average and (2.5%, 97.5%) intervals of standardized difference of means of
(X1, X2, U) for the scenarios where ⌫ = r = 0.1 (top), and ⌫ = 1.46, r = 1 (bottom) over
100 Monte Carlo simulations.
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both X and U , although the balance of U is sensitive to the choice of the distance cutoff.

The GBM approach exhibited poor balance for all covariates in both scenarios. DAPSm

with weight w chosen as described in section 2.3.5 balanced all observed covariates, while

improving balance of U in both rough and smooth surfaces. The method of Keele et al.

(2015) for � = 0.382 returned matches for which balance of the observed variables was

better than for � = 0.05, but � = 0.05 returned matched data sets with better balance on

U .

Lastly, the methods considered exhibited substantial variability in terms of the number

of achieved matches. Optimal matching algorithms often return no matched pairs. Table

2.1 shows the percentage of simulated data sets that each method failed to return any

matches, and the average and IQR of number of treated units that were dropped when

matching was achieved. GBM and matching in distance calipers had a high probability

of failing to return matches, but when matching was achieved, they failed to match, on

average, less than 1, or 0 treated units accordingly. DAPSm failed to return matches

for 0.04% of simulated data sets, but matched all treated units otherwise. On the other

hand, Keele et al. (2015) returned matches with a significant amount (� = 0.05) or a small

number (� = 0.382) of dropped treated units. Differences in the number of obtained

matches should be viewed in light of the fact that confining effect estimation to subsets of

the available data can change the causal estimand of interest.

2.5 Comparing the effectiveness of SCR/SNCR emission
reduction technologies for reducing NO

x

emissions
and ambient ozone

Regulatory strategies impacting U.S. power plants are predicated on the knowledge that

reducing NO
x

emissions reduces ambient ozone, prompting many policies that incen-

tivize the installation of emission control technologies at power plant smokestacks. While

many technologies are available, Selective Catalytic Reduction (SCR), and Selective Non-

Catalytic Reduction (SNCR) technologies are believed to be among the most efficient

for reducing NO
x

. However, no study has, to our knowledge, empirically compared
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the effectiveness of these strategies to evaluate whether the supposed efficiency gains of

SCR/SNCR for reducing NO
x

emissions actually translate to greater reductions into am-

bient ozone concentrations.

We compiled a national data source linking information on power plants, ambient pol-

lution, population demographics, and weather. The resulting data set consists of 473

power generating facilities powered by either coal or natural gas during June, July and

August 2004, which represents the peak ozone season in a year following the institution

of important NO
x

and ozone regulations. Covariate information (X) on each facility in-

cludes power plant operating characteristics such as operating capacity and heat input, as

well as area level characteristics such as temperature and population demographics. As a

measure of ozone in the area surrounding each power plant (Y ), we use the fourth high-

est daily ozone concentration, averaged across all monitoring locations within a 100km

radius. This measure is chosen to mimic the National Ambient Air Quality Standard

for ozone, which is based on the annual fourth-highest daily maximum 8-hour average

ozone concentration. Section 2.7.6 has a detailed description on the exact construction of

the data set used in the final analysis, including references to publicly-available raw data

sets and R scripts used for data construction and linkage.

We consider as “treated” the power plants for which at least 50% of the heat input is to

facility units with at least one SCR or SNCR technology installed (Z = 1, 152 facilities),

with the remaining plants regarded as untreated (Z = 0, 321 facilities). 67.7% of facilities

have either 0% or 100% of their heat input used by units with installed SCR or SNCR

control technologies, suggesting robustness to the 50% cutoff. Figure 2.1 shows maps of

the power plants’ treatment assignment and ozone measurements for the surrounding

area, and Section 2.7.6 discusses the emission control actions of the control group Z = 0.

To estimate the effect of SCR/SNCR technologies relative to alternatives, we implement

the “naïve” approach, Matching within Distance Caliper (distance caliper was set to 354

miles, the 15th percentile of all treated-control distances), GBM, the method of Keele et al.

(2015), and DAPSm (with standardized geo-distance). While the method of Keele et al.

(2015) was implemented with the propensity score for the performance comparison in

Section 2.4, here it is implemented in a manner more consistent with the intent of integer
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programming methods, matching directly on covariates. The tolerance level for Keele

et al. (2015) was set to 0.15 standard deviations for all continuous covariates. Multiple

values were tried for the tuning parameter �, and results are presented with � = 800 (41st

quantile of pairwise distances) such that the number of matched pairs will be similar to

that of DAPSm. The caliper used for each method was decided such that methods would

balance observed covariates, where “balance” is judged by an ASDM less than 0.15 (the

same value used as the tolerance for the method of Keele et al. (2015)).

The variables that are included in the propensity score model are listed in Figure 2.4 and

Section 2.7.7. Characteristics of the power plants (e.g. energy consumed, compliance

scheme) are not expected to exhibit strong spatial patterns, but characteristics of the sur-

rounding areas (e.g., temperature, population demographics) are.

2.5.1 Covariate balance, number and distance of matched pairs

Covariate balance was assessed by comparing the covariate distribution of treated and

control units. Without adjustment, 10 out of 18 covariates were imbalanced between

the treated and control facilities, as evidenced by the leftmost values of each panel in

Figure 2.4. DAPSm was performed with values of w ranging from 0 to 1, with covari-

ate balance evaluated for each w, and depicted in the remaining portions of Figure 2.4.

Note the change in covariate balance between the unadjusted setting and the setting

with DAPSm(w = 0), which matches observations based solely on proximity. Most area

level characteristics achieve balance when matching only on proximity, but imbalance for

power-plant level characteristics persists. Increasing values of w place more emphasis

on observed propensity score differences, and balance for covariates representing power-

plant characteristics improves, without a strong sacrifice in balance for the area-level co-

variates. Using the procedure described in Section 2.3.5, w ⇡ 0.513 was chosen for the

analysis. Table 2.2 summarizes the covariate balance for all methods. GBM failed to re-

turn balanced matched samples, and is excluded from the results.

Table 2.2 also presents the number and mean distance of matched pairs. Number of

matches ranged between 116 and 137, indicating that not all of 152 treated units were

matched. Nonetheless, all methods should closely approximate the ATT in a manner that
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Figure 2.4: Absolute standardized difference of means for covariates that are included in
the propensity score model for the full data before any matching, and for various spec-
ification of the DAPSm weight. Balance of covariates on power plant characteristics is
described on the left, and balance of area-level variables is shown on the right.

Table 2.2: Balance of covariates assessed by the absolute standardized difference of means
(ASDM)

Naive Distance Caliper Keele et al DAPSm Full-data
Number of imbalanced variables 0 0 0 0 10

Mean ASDM 0.067 0.052 0.065 0.045 0.189
Max ASDM 0.148 0.134 0.145 0.150 0.480

Number of matches 137 116 124 124
Mean distance (in miles) 1066 198 146 141

is comparable across methods since most treated units are matched in all implementa-

tions. Characteristics of the matched population according to each method can be found

in Section 2.7.8. Dropped treated units were smaller, mostly gas-operating facilities in ur-

ban areas compared to the matched treated units. Maps of the matched pairs are shown

in Figure 2.5.

2.5.2 Effect estimates for NO
x

and ozone

We evaluate the effectiveness of SCR/SNCR technology for reducing NO
x

emissions and

ambient ozone. Since emissions are measured at the power plant, the analysis of NO
x

emissions is not expected to suffer from unmeasured spatial confounding. Since the for-

mation of ambient ozone in the areas surrounding power plants is determined in part by

57



Naive pairs Distance Caliper pairs

Keele et al pairs DAPSm pairs

Figure 2.5: Maps of matched pairs for naïve, distance caliper, Keele et al. (2015), and
DAPSm approaches. Each line segment connects one treated power plant to its matched
control.

atmospheric conditions, the analysis of ozone is expected to be susceptible to unmeasured

spatial confounding. Confidence intervals are constructed conditional linear models fit to

the matched data sets (Ho et al., 2007). Results from all methods are reported in Table 2.3

and Figure 2.6.

Effects of SCR/SNCR on power plant NO
x

emissions

Point estimates for the effect of SCR/SNCR on NO
x

emissions were below zero across all

methods, with the naïve and DAPSm returning significant results at the 95% confidence

level. Power plants with installed SCR/SNCR emission control technologies emitted on

average 205 tons of NO
x

less (95% CI: 4 to 406 tons of NO
x

according to DAPSm) than

what they would have had emitted had they adopted an alternative NO
x

control strategy.
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Effects of SCR/SNCR on ambient ozone

In the analysis of ambient ozone concentrations, for which unmeasured spatial confound-

ing is a concern, the naïve approach estimates a significant positive effect of SCR/SNCR

installation on ambient ozone, which is inconsistent with the knowledge that SCR/SNCR

reduces NO
x

emissions and the documented relationship between NO
x

and ozone. This

result corroborates suspicion of unmeasured confounding. In contrast, estimates from

all methods that incorporate spatial information provide estimates very close to zero

(DAPSm: -0.27 parts per billion, 95% CI: -2.1 - 1.56), indicating that SCR/SNCR does

not reduce ambient ozone more than alternative strategies. For reference, these effect es-

timates can be compared against the national ozone air quality standard of 70 parts per

billion.
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−300

−200

−100

0

Naive Distance Caliper Keele et al DAPSm

SCR/SNCR on NOx emissions

−0.002

0.000

0.002

Naive Distance Caliper Keele et al DAPSm

SCR/SNCR on 4th maximum ozone

Figure 2.6: Effect estimates and 95% confidence intervals for SCR/SNCR emission control
technology installation on NO

x

emissions and 4th maximum ozone concentration during
June-August 2004, using the naïve, Matching within Distance Caliper, Keele et al. (2015),
and DAPSm approaches.

Table 2.3: Estimates and 95% confidence intervals for the effect of SCR/SNCR on total
NO

x

emissions (in tons) and 4

th maximum ozone measurement (in parts per billion).

NO
x

emissions Ozone
LB Estimate UB LB Estimate UB

Naive -343.7 -187.9 -32.0 0.26 1.97 3.68
Distance Caliper -449.6 -224.6 0.4 -2.04 -0.24 1.55

Keele et al -250.9 -90.5 70 -1.88 -0.06 1.76
DAPSm -406.1 -205.1 -4.1 -2.1 -0.27 1.56
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Comparison of effect estimates across methods

As mentioned earlier, since NO
x

emissions are measured at the power plants’

smokestacks, we do not expect unobserved spatial predictors of the outcome for this anal-

ysis. In fact, estimates across all methods are similar.

However, in the analysis of ozone concentrations, we see that the spatial methods return

results that are inconsistent with the naïvemethod. In Section 2.7.9, we provide additional

evidence of the potential of unobserved spatial confounding in the analysis of ozone, by

performing a sensitivity analysis of the DAPSm effect estimates as a function of w. The

sensitivity analysis corroborates the existence of an unmeasured spatial confounder, with

effect estimates that increase with w (for w > 0.513) and approach the estimates from the

naïve analysis when w = 1 and no adjustment for spatial proximity is made. In contrast,

the sensitivity analysis of the effect of SCR/SNCR onNO
x

emissions indicates that spatial

confounding is not an issue.

2.6 Discussion

Unobserved confounding is a ubiquitous issue in the analysis of observational studies.

Settings with spatially-indexed data provide an opportunity to recover information on

unobserved spatial confounding, but most methods have been confined to regression-

based approaches. We propose a method that extends the benefits of propensity score

matching procedures to settings with spatially-indexed data and provide a transparent

and principled framework for assessing the relative trade offs of prioritizing observed

confounding adjustment and spatial proximity adjustment.

The simulation study showed the potential for DAPSm to recover information on unob-

served spatial confounding. When deployed to evaluate the effectiveness of emission con-

trol technologies, DAPSm balanced all observed covariates in the resulting matched data

set while providing protection against the existence of unobserved spatial confounders.

The importance of incorporating spatial information was underscored by the ability of

DAPSm (and other methods accounting for proximity) to return estimates that are more

in line with subject-matter knowledge, in contrast to the naïve approach that ignores the
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possibility of spatial confounding. Whereas the naïve approach indicated that clear re-

ductions in NO
x

were accompanied by increases in ambient ozone, analysis with DAPSm

(and other methods) provided the more credible result that SCR/SNCR do not decrease

ambient ozone more than other strategies.

While we compare DAPSm against Keele et al. (2015) for illustration, it is improtant to re-

member the important fundamental distinction between these methods: DAPSm uses the

propensity score while Keele et al. (2015) propose an integer programming method that

matches on covariates directly. While a comparison between propensity score methods

and integer programing methods is not the goal of this paper, it is worth noting that the

most salient operational difference of the two methods relates to their respective tuning

parameters that govern the amount of emphasis placed onmatching observations that are

geographically close. DAPSm involves the tuning parameter (w) that offers a characteri-

zation of the price paid (in terms of observed covariate distance) by increasing emphasis

on spatial proximity. This was evident in the ability to offer a practicable way to select

a value of w (as described in Section 2.3.5), and the transparent trade off between spatial

proximity and observed covariate distance is an important feature of DAPSm that aligns

with a scientific goal at the forefront of air pollution (and other) studies. On the other

hand, the method of Keele et al. (2015) entails a tuning parameter (�) that balances em-

phasis on spatial proximity against number of obtained matches for a fixed tolerance of

covariate imbalance. Keele et al. (2015) provide an approach where, for a fixed tolerance,

� could be chosen to obtain a target number of matches. Further extensions growing from

the mixed integer programing literature could give rise to alternative ways of prioritizing

covariate balance, the number of matches, and the relative proximity of matches.

Furthermore, we evaluated the method of Keele et al. (2015) in simulations and in com-

parison with other reasonable approaches, in addition to DAPSm. These simulations

showed that, across a variety of spatial confounding surfaces, DAPSm with an appro-

priately chosen w performed comparably or better than the method of Keele et al. (2015)

based on the propensity score, at least for some choices of �.

While the comparison of different methods in the analysis of power plant emission con-

trols highlights the potential for DAPSm to adjust for unmeasured spatial confounding,
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there are several important limitations to the analysis. First, unmeasured (spatial or non-

spatial) confounding may persist due to power plant or area level characteristics not con-

tained in the data sources used. Second, we considered an “active control” group of

power plants that did not install SCR/SNCR, but may have employed other strategies

that could, in principle, be installed alongside SCR/SNCR (211 out of 311 control units

employed a NO
x

control strategy other than SCR/SNCR). Finally, the analysis relied on

a simplification that linked each power plant to ambient ozone concentrations within a

100km radius. Importantly, this does not fully capture the phenomenon of long-range

pollution transport whereby emissions from a particular source travel across large dis-

tances during conversion to ambient pollution. Thus, installation of control technologies

at a given power plant could affect ambient pollution concentrations around power plants

located at distances greater than 100km, a phenomenon referred to as “interference”.

While interference is not expected in the analysis of NO
x

emissions, ignoring interference

in the analysis of ozone concentrations has potential consequences. The simplifications

used here are expected to yield estimates that are closer to zero than any true effect of

SCR/SNCR on ambient ozone, as installation of these technologies is likely to reduce am-

bient ozone even around power plants that were considered in the “control group” for

this analysis. Methods for causal inference with interference have been recently consid-

ered with spatially-indexed data (Verbitsky-Savitz and Raudenbush, 2012; Zigler et al.,

2012), including our own current work on methods advances to address interference in

this specific setting (Papadogeorgou et al., 2017). Furthermore, the analysis relies on some

extent on correct specification of the propensity score model, and King and Nielsen (2016)

argue against the use of propensity score for matching altogether. For that reason, check-

ing covariate balance in the design phase (Rubin, 2008) without evaluating outcomes, is

an important component of propensity score matching.
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2.7 Appendix

2.7.1 Alternative definition of standardized distance

Another specification of the distance measure in DAPS could be the empirical CDF of all

treated-control pairwise distances. Using this definition, treated unit i and control unit j

have distance defined as:

Dist

ij

=

P

k2S
t

,l2S
c

I{d
kl

 d

ij

}
N

t

⇥N

c

. (A.1)

With both definitions of the distance measure, Dist

ij

2 [0, 1] for every i treated, and j

control.

In the simulations, the performance of DAPSmwas similar with respect to MSE, absolute

bias, number of matches, and balance of observed and unobserved covariates for the two

specifications of standardized distance. In general, specifying distance as in (A.1) led

to a smaller w chosen than the specification of (2.2). However, this is expected when

examining the relationship between the two distance measures.

2.7.2 Greedy DAPSm algorithm

Consider the DAPS table of all pairs defined as:

Table 2.4: The matrix of calculated DAPS for treated-control pairs.

Controls
1 2 . . . Nc

1 DAPS11 DAPS12 . . . DAPS1Nc

Treated 2 DAPS21 DAPS22 . . . DAPS2Nc

...
...

Nt DAPSNt1 DAPSNt2 . . . DAPSNtNc

Entries are set to infinity if the DAPS value of the pair is larger than the caliper.

The minimum element of each row is identified. These minimum values correspond to

the minimum DAPS for every treated unit across all controls, and rows with minimum

value equal to infinity are dropped (treated units without any control within the caliper).
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The matrix is reordered in increasing order of these minimum values, and the controls

that acheive them are identified for every treated unit.

If there is no overlap in the control units, all treated units are matched to the controls with

the smallest corresponding DAPS value. Otherwise, treated units are matched up to the

first control that is repeated. In that case, the new minimum DAPS values are calculated

over the rows of the new matrix (with matched rows and columns dropped), and the

procedure is repeated.

For data sets large enough to preclude the practicality of employing DAPSm with many

values of w, an algorithmwhich is based explicitly on assuming a non-increasing trend of

ASDMwith w and uses fewer fits of DAPSm can be employed. The procedure is initiated

at w = 0.5 (step k = 1). If balance is achieved at step k � 1, w is decreased by 1/2

k+1 and

balance is re-accessed. If balance is not achieved at step k � 1, w is increased by 1/2

k+1.

The procedure is iterated and it stops at the value w for which the step size is smaller than

a pre-specified tolerance level.

2.7.3 Data generating mechanism for simulation study

For every pair of ⌫, r of the spatial variable, we simulate 100 data sets. For each data set,

each of 800 fixed locations are simulated to have:

1. One unmeasured confounder, U , generated as a Gaussian Process with a

Matérn(⌫, r) correlation function, normalized to have mean 0 and variance 1.

2. Four observed confounders, X
i

, simulated as independent normal variables with

mean 0, variance 1, and Cor(U,X

i

) = 0, i = 1, 2, 3, 4.

3. Treatment, Z, generated as a binary variable with

logitP (Z = 1) = �0.85 + 0.1 X1 + 0.2 X2 � 0.1 X3 � 0.1 X4 + 0.3 U

This generative model for the treatment gives rise to data sets with approximately

30% of observations treated.

4. Outcome, Y , generated as:

Y = Z + 0.55 X1 + 0.21 X2 + 1.17 X3 � 0.11 X4 + 3 U + ✏, ✏ ⇠ N(0, 1)
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2.7.4 Surfaces of Matérn spatial variable
ν = 0.1, r = 0.1 ν = 1.46, r = 0.1

ν = 0.1, r = 1 ν = 1.46, r = 1

Figure 2.7: Surfaces of spatial variables withMatérn correlation functionwith smoothness
⌫ and range r. Points represent 800 power plant locations. These plots correspond to the
four extreme simulation scenarios.

2.7.5 Simulation results for the method of Keele et al. (2015) matching
directly on covariates

In section 2.4 of the main text, we implement a simulation study to examine the perfor-

mance of various methods incorporating spatial information. Most methods considered

use the propensity score to adjust for observed confounders.

In the simulation study of the main text, the method of Keele et al. (2015) was imple-

mented by matching exactly on 5 categories of the propensity score. However, Keele

et al. (2015) propose their method within an integer-programming context and argue for

matching directly on covariates using, for example, moment matching on continuous co-

variates and exact matching on discrete variables. Here, we present the relative MSE of

Keele et al. (2015) for matching on covariatesX1, X2, X3, X4 using moment matching with

tolerance equal to 0.1 standard deviations, and a few specifications of the parameter �.
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Figure 2.8: MSE of the method of Keele et al. (2015) with respect to the gold standard
propensity score matching approach for values of � 2 {0.05, 0.1, 0.382}. Moment match-
ing was performed for the continuous observed variables with tolerance set to 0.1 stan-
dard deviation.

The mean (IQR) number of dropped treated units for values of � 2 {0.05, 0.1, 0.382} was

11.7 (8,15), 2.2 (0,3), and 0.02 (0,0) accordingly.

2.7.6 Constructing the analysis data set

All tools and data sets required to construct the analysis data set are publicly available

and easily accessible. They include:

1. Raw data files (AMPD-EIA on power plants, AQS temperature data, AQS

ozone data, Census 2000 data) available at https://dataverse.harvard.edu/

dataverse/dapsm.

2. The DAPSm R Package (available at https://github.com/gpapadog/DAPSm)

3. The AREPA R Package (available at https://github.com/czigler/arepa)

4. R scripts that perform the data manipulation and linking of the raw data sets (avail-

able at https://github.com/gpapadog/DAPSm-Analysis).

A power plant can consist of more than one energy generating unit (EGU). We restrict

our analysis to power generating units that are using coal or natural gas as one of their

primary fuels. Power plant covariate information is monthly and measured for each of

its EGUs. EGUs that were retired, not operating, not yet operating during June, July and
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August of 2004, or did not have any data before or started having data after this time

period were dropped.

A key covariate measured at the EGU level is heat input describing the energy used by

the power plant unit for operation, and is therefore a good predictor of its size. Over

the period of three months (June, July, August 2004), 14% of all entries lack heat input

information. 82% of the missing data was imputed using heat input information from

other years (2003, 2002, 2005, 2006) (R squared of the models used ranges between 89.8-

94.7%). 25% of predicted heat input observations were estimated to close to zero but

negative. These values were set to 0. Monthly unit level data were afterwards aggregated

to the facility level and over the June-August 2004 period. 68 (5%) facilities were dropped

because of missing heat input.

For each ozone monitoring site, temperature information was assigned as the average

temperature over all temperature monitoring sites within 150 kilometers. Population de-

mographics for the year 2000 for the surrounding area were assigned to each ozone mon-

itor as aggregated zip code-level Census variables with centroids located within 6 miles

of the monitor. The resulting data set includes ozone, temperature and demographics

measured at or around ozone monitoring sites.

Finally, ozone, temperature and population demographics were assigned to power plants

as the average over ozone monitors within 100 kilometers. Each monitor was only al-

lowed to contribute to the closest power plant. A monitor site is not linked to any power

plant if there is no power plant within 100 kilometers. A power plant is not linked to any

ozone monitor, if there is no ozone monitor within 100 kilometers without another power

plant closer.

The resulting data set consists of 483 power plants linked to a total of 937 ozone monitors.

10 additional facilities are dropped due to missing Census information, or missing per-

cent capacity, resulting to 473 facilities in our final data set linked to a total of 921 ozone

monitoring sites.

A facility is considered treated if at least 50% of its heat input is used by EGUs with

at least one SCR/SNCR installed. 1,230 out of 2,964 EGUs in control facilities have no

NO
x

emission control technologies installed, while 33 have one of SCR/SNCR installed
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(amounting to less than 50% of the facility’s heat input). The remaining units that con-

stitute the facilities in the control group have some other type of NO
x

control installed

such as a low NO
x

burner, an overfire reduction system, an ammonia injection system, a

modified combustion method, water injection system, or some other non-specified con-

trol. All of these alternative strategies in the control group are designed to reduce NO
x

,

but are widely regarded as less efficient than SCR/SNCR. Note that it is very common

for EGUs (treated or control) to follow more than one NO
x

emission control strategies,

implying that even EGUs in the control group having other NO
x

control strategies might

still be candidates for additional installation of SCR/SNCR.

2.7.7 Data application covariate description

Table 2.5: Power plant and area level characteristics before matching

Name Description Units Treated Control ASDM
% Capacity Percentage of operating capacity - 0.42 (0.28) 0.42 (0.3) 0.026

Heat Input Amount of fuel energy burned for power
generation (logarithm) log MMBtu 14.3 (1.97) 14 (1.96) 0.156

Phase 2 ARP Phase 2 indicator - 0.86 (0.35) 0.77 (0.42) 0.252
Gas Mostly gas burning power plant - 0.77 (0.42) 0.57 (0.5) 0.48
Small sized Power plants consisted by 1 or 2 EGUs - 0.62 (0.49) 0.52 (0.5) 0.195
Medium sized Power plants consisted by 3, 4, or 5 EGUs - 0.33 (0.47) 0.36 (0.48) -0.069

Temperature 4th maximum temperature over study
period Fahrenheit 70.7 (8.1) 69.5 (7.7) 0.158

% Urban Percentage of population in urban areas - 0.76 (0.32) 0.72 (0.34) 0.131
% White Percentage of white population - 0.77 (0.17) 0.80 (0.17) -0.171
% Black Percentage of black population - 0.08 (0.09) 0.11 (0.14) -0.368
% Hispanic Percentage of hispanic population - 0.16 (0.18) 0.09 (0.14) 0.389

% High School Percentage of population that attended
high school - 0.29 (0.08) 0.31 (0.08) -0.244

Household Income Median household income USD 44,721 (12,456) 43,386 (12,223) 0.107
% Poor Percentage of impoverished population - 0.13 (0.06) 0.12 (0.06) 0.105
% Occupied Percentage of occupied population - 0.91 (0.11) 0.91 (0.1) 0.031

% MovedIn5 Percentage of population that has lived in
the area for less than 5 years - 0.48 (0.08) 0.47 (0.09) 0.083

House value Median house value USD 148,394 (97,144) 115,510 (57,472) 0.339
Population density Population per square mile (logarithm) log # / mile2 6.19 (1.68) 6.02 (1.71) 0.105

2.7.8 Description of matched and dropped treated units

In Table 2.6 we show the mean and standard deviation of the matched and dropped

treated units for each method. The mean and standard deviation of the treated units

in the full data can be found in Table 2.5.
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Table 2.6: Covariate mean and standard deviation for matched and dropped treated units
for the Naïve, Matching in Distance Caliper, Keele et al. (2015), and DAPSm.

Naïve Distance Caliper Keele et al. (2015) DAPSm
Matched units
% Capacity 0.43 (0.29) 0.4 (0.27) 0.36 (0.27) 0.42 (0.28)
Heat Input 14.4 (1.96) 14.1 (1.98) 13.8 (2.07) 14.3 (2.05)
Phase 2 0.85 (0.36) 0.86 (0.35) 0.91 (0.29) 0.82 (0.38)
Gas 0.69 (0.46) 0.81 (0.39) 0.85 (0.36) 0.73 (0.45)
Small sized 0.58 (0.5) 0.72 (0.45) 0.70 (0.46) 0.59 (0.49)
Medium sized 0.36 (0.48) 0.25 (0.43) 0.26 (0.44) 0.36 (0.48)
Temperature 70.1 (7.59) 70.8 (7.79) 71.5 (7.72) 70.6 (8.59)
% Urban 0.79 (0.29) 0.78 (0.31) 0.79 (0.3) 0.72 (0.34)
% White 0.77 (0.17) 0.76 (0.17) 0.75 (0.18) 0.79 (0.16)
% Black 0.08 (0.1) 0.06 (0.07) 0.06 (0.06) 0.08 (0.1)
% Hispanic 0.15 (0.19) 0.18 (0.19) 0.20 (0.21) 0.13 (0.17)
% High School 0.30 (0.08) 0.28 (0.08) 0.28 (0.08) 0.31 (0.08)
Household Income 44166 (10964) 45430 (11994) 45846 (11748) 44496 (12654)
% Poor 0.12 (0.06) 0.13 (0.06) 0.13 (0.06) 0.12 (0.06)
% Occupied 0.92 (0.05) 0.93 (0.05) 0.92 (0.06) 0.90 (0.12)
% MovedIn5 0.48 (0.07) 0.49 (0.07) 0.49 (0.07) 0.47 (0.08)
House value 142750 (79501) 155577 (83956) 161888 (86553) 137894 (98511)
Dropped units
% Capacity 0.42 (0.27) 0.44 (0.28) 0.47 (0.28) 0.44 (0.25)
Heat Input 14.25 (2) 14.51 (1.96) 14.69 (1.83) 14.25 (1.63)
Phase 2 0.87 (0.34) 0.86 (0.35) 0.81 (0.39) 1 (0)
Gas 0.87 (0.34) 0.73 (0.44) 0.71 (0.46) 0.96 (0.19)
Small sized 0.67 (0.47) 0.53 (0.5) 0.56 (0.5) 0.75 (0.44)
Medium sized 0.28 (0.45) 0.4 (0.49) 0.38 (0.49) 0.18 (0.39)
Temperature 71.5 (8.7) 70.7 (8.39) 70.19 (8.38) 71.52 (5.46)
% Urban 0.72 (0.35) 0.75 (0.32) 0.74 (0.33) 0.92 (0.11)
% White 0.77 (0.17) 0.78 (0.17) 0.78 (0.16) 0.65 (0.16)
% Black 0.07 (0.09) 0.09 (0.11) 0.1 (0.11) 0.06 (0.07)
% Hispanic 0.17 (0.17) 0.14 (0.18) 0.13 (0.16) 0.29 (0.17)
% High School 0.28 (0.08) 0.3 (0.08) 0.31 (0.08) 0.23 (0.04)
Household Income 45425 (14180) 44131 (12871) 43858 (12976) 45719 (11702)
% Poor 0.13 (0.06) 0.13 (0.06) 0.13 (0.06) 0.14 (0.05)
% Occupied 0.89 (0.15) 0.9 (0.14) 0.9 (0.13) 0.95 (0.02)
% MovedIn5 0.48 (0.08) 0.48 (0.08) 0.47 (0.08) 0.53 (0.04)
House value 155557 (115989) 142424 (107020) 138040 (103856) 194898 (76283)

2.7.9 DAPSm effect estimates as a function of the tuning parameter

We investigate the sensitivity of the DAPSm results to the specification of w, by plot-

ting the estimates and 95% confidence intervals of the “effect” estimates as a function of

w. First, note the number of imbalanced covariates is generally decreasing as a function

of w (Figure 2.9), indicating that a weight over the chosen 0.513 is necessary to balance
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Figure 2.9: Number of imbalanced variables as a function of w in DAPSm.
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Figure 2.10: Estimates and 95% confidence intervals using DAPSm as a function of w for
the NO

x

emissions (left) and O3 (right) analyses. The red point corresponds to the effect
estimate based on w = 0.513.

all observed covariates. Therefore, the estimates for small values of w are not necessar-

ily interpretable, since residual confounding might still be present. As the value of w

increase above the chosen value, balance of observed covariates is almost always main-

tained, while less weight is given to achieving matches at close proximity. As w tends

to 1, DAPSm resembles simple propensity score matching and incorporates a decreased

amount of spatial information.

As mentioned on the main text, unobserved spatial confounding is unlikely to be present

in the analysis of NO
x

emissions, since NO
x

emissions are measured directly at the plant’s

smokestacks, and area-level characteristics are unlikely to be predictors. In the left panel
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of Figure 2.10, we see that the effect estimates for the NO
x

analysis remain more or less

constant for values of w � 0.513, indicating that as long as observed covariates are bal-

anced, the effect estimates will be similar and independent of the chosen value of w.

However, in the right panel of Figure 2.10, we see a very different result. Specifically,

the effect estimates are increasing for values of w greater than 0.513. This might imply

that, when observed covariates are balanced, matching on spatial proximity is an impor-

tant component of acquiring unbiased effect estimates. Specifically, it indicates that there

might be an unobserved spatial confounder, which leads to positive bias when it is not

adjusted for.
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3.1 Introduction

Most causal inference literature assumes that a unit’s potential outcome depends solely

on its treatment, and does not depend on the treatments of other units in the population.

However, this assumption is often not reasonable. Perhaps the most classical example

arises in vaccination studies (Ali et al., 2005; Hudgens and Halloran, 2008) where a unit’s

disease status depends on their own vaccination status but also on the vaccination status

of others in their social network. The presence of interference can lead to misleading

results for familiar causal estimands (Sobel, 2006), or estimands that lack clear causal

interpretation (Tchetgen Tchetgen and VanderWeele, 2012), but can also introduce new

estimands of intrinsic scientific interest.

Sobel (2006) defined estimands for interference when the population can be partitioned

into clusters for which a unit’s potential outcomes depend only on the treatment of units

within the same cluster. Such assumption is called partial interference, and the interference

clusters are also called interference groups. Hudgens and Halloran (2008) formalized

causal inference in the presence of interference in the context of two-stage randomization

designs, which was extended to observational studies by Tchetgen Tchetgen and Vander-

Weele (2012), and Perez-Heydrich et al. (2015).

In order to continue development in the context of observational studies, we highlight a

key distinction that arises when formulating average potential outcomes in the presence

of interference, which generally requires consideration of vectors of treatment assign-

ments. We use the term treatment allocation strategy to refer to a process giving rise to

either observed or hypothesized vectors of treatment assignments. The observed treatment

allocation strategy refers to that which gives rise to observed treatments. The counterfac-

tual treatment allocation strategy refers to how treatments may have been assigned in some

hypothesized counterfactual world for which causal contrasts can be considered. This

distinction between observed and counterfactual treatment allocation programs helps il-

luminate that existing causal estimands, such as those in Tchetgen Tchetgen and Vander-

Weele (2012), are limited to counterfactual treatment allocation programs that remain ag-

nostic with regard to covariate information (as would be the case in a two-stage random-
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ized study). These estimands ignore the possible role of unit-level covariates that relate

to treatment adoption, implicitly assuming an intervention manipulating each individ-

ual unit’s treatment propensity. Consequently, these estimands pertain to counterfactual

worlds where, for example, treatments are allocated to units according to a Bernoulli dis-

tribution with equal probability for each unit within a cluster.

In many settings, however, treatment allocations corresponding to unit-level manipula-

tion are difficult to conceive. For example, policy interventions may be designed to in-

crease the prevalence of a treatment without direct control over the individual treatment

propensity. In such settings, individual treatment adoption might generally depend on

unit-level covariates or the treatment status of neighboring units. To address such set-

tings, we develop new causal estimands anchored to counterfactual treatment allocations

that are conceived at the cluster level, where a particular allocation strategy dictates the

cluster-average propensity of receiving treatment without directly specifying individual-

level treatment propensities. Specifically, under the assumption of partial interference,

we introduce estimands for counterfactual treatment allocation programs which 1) do

not assume unit-level manipulation of treatment propensities; 2) but allow for correlation

of treatment assignment within a cluster; and 3) unit-level propensity of treatment that

depends on individual and group level covariates. Note that, in focusing on new esti-

mands for covariate-dependent counterfactual treatment allocations programs, our work

has commonalities with independent ongoing work in Barkley et al. (2017).

Causal inference may also be motivated to investigate interventions on the distribution

of cluster-average treatment propensities. Such may be the case when evaluating policies

that are not designed to manipulate individual or cluster-average treatment propensity,

but rather change the distribution of cluster-average propensities of receiving treatment

by, for example, providing a population-wide incentive to adopt treatment. Accordingly,

we also define estimands for counterfactual treatment allocation strategies defined at the

population level that shift the distribution of the cluster-average propensity of receiving the

treatment, without specifying the average treatment propensity of any specific cluster.

Definition of the new causal estimands described above is accompanied here by new

estimators and derivation of corresponding asymptotic properties as the number of clus-
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ters grows. Related work can be found in Ferracci et al. (2014). Other relevant work in-

cludes Liu andHudgens (2014) where asymptotic results are derived for growing number

of clusters or number of individuals within clusters, Perez-Heydrich et al. (2015) where

large sample variance estimators for the estimator of Tchetgen Tchetgen and VanderWeele

(2012) are derived, and Liu et al. (2016), where estimands and estimators are extended to

the case of a network where partial interference does not hold, but asymptotic results are

derived under the assumption of partial interference.

The motivating context for this work is the evaluation of interventions to limit harmful

pollution from power plants that are geographically clustered. The movement of air pol-

lution through space leads to interference: intervening on one power plant can affect the

air pollution surrounding nearby power plants. Existing estimands such as those in Tch-

etgen Tchetgen and VanderWeele (2012) represent quantities for counterfactual treatment

allocations in two steps where 1) a constant treatment probability governs the proportion

of power plants that would be “treated” within a cluster, and 2) based on that prob-

ability, power plants within the cluster are randomly and independently assigned the

treatment. However, this structure does not cohere to that of air pollution regulations,

where, in reality, the adoption of treatments at power plants is not directly mandated

and is heavily influenced by power-plant characteristics (e.g., the size or operating ca-

pacity of the plant). Instead, regulatory programs often work by incentivizing regions

of power plants to adopt certain technologies (e.g., by changing the penalties for over-

emission), but which power plants actually adopt them is highly dependent on covari-

ates and may be spatially correlated. Thus, new estimands for counterfactual treatment

allocations where individual-level treatment adoption depends on covariates - subject to

a cluster average treatment propensity - coheres more closely to the realities of air pollu-

tion regulations. Additionally, estimands at the population level of clusters could refer

to counterfactual situations where some higher level of government (e.g., federal) issues

additional incentives for power plants to install the technologies, but cannot mandate

installation, and different regions can comply to different degrees. The new estimators

are deployed here to an analysis of U.S. power plants investigating the comparative ef-

fectiveness of Selective Catalytic or non-Catalyitic Reduction systems (relative to other
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strategies) for reducing ambient ozone pollution. A preliminary investigation of these

same data in Papadogeorgou et al. (2018) ignored interference and indicated that these

systems causally reduced NO
x

emissions (an important precursor to ozone pollution) but

did not lead to a reduction in ambient ozone. The analysis here to address the possibility

of interference produces meaningfully different results that are more consistent with the

literature relating NO
x

emissions to ambient ozone pollution. Note that, despite the focus

on air pollution interventions, similar considerations could be construed in more classical

interference settings such as vaccine studies, where certain types of community members

might be more likely to receive the vaccine and vaccine programs may be designed to

increase vaccine coverage at the community, or national level.

In Section 3.2 we introduce the notation and the new estimands for the cluster-level in-

tervention, for which estimators are presented in Section 3.3, along with unbiasedness,

consistency and asymptotic distribution results for an increasing number of clusters. In

Section 3.4, the estimand for interventions at the population of clusters level is introduced.

The rest of the paper presents some simulations in Section 3.5, our data application in Sec-

tion 3.6 and concludes with some discussion on the limitations and future directions of

this paper in Section 3.7.

3.2 Estimands under partial interference

We adopt the notation used in Tchetgen Tchetgen and VanderWeele (2012). Let N be the

number of clusters, and n

i

the number of units in cluster i, i 2 {1, 2, . . . , N}. Furthermore,

denote A
i

= (A

i1, Ai2, . . . , Ain

i

) 2 A(n

i

) to be the cluster treatment vector, and A
i,�j

=

(A

i1, Ai2, . . . , Aij�1, Aij+1, . . . , Ain

i

) 2 A(n

i

� 1) to be the treatment of all units in cluster

i apart from unit j, where A(n) = {0, 1}n. Furthermore, let L
ij

be a vector of individual

and cluster-level covariates, and L
i

= (L

i1, Li2, . . . , Lin

i

) be the collection of covariates of

all units within a cluster.

Under the assumption of partial interference, the potential outcome of unit j in cluster

i may depend on the treatment of units in cluster i, but not on the treatment of units in

different clusters. For every i we postulate the existence of group i’s potential outcomes
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Y
i

(·) = {Y
i

(a
i

),a
i

2 A(n

i

)}, where Y
i

(a
i

) = (Y

i1(ai

), Y

i2(ai

), . . . , Y

in

i

(a
i

)).

3.2.1 Average potential outcome

Under the assumption of partial interference, we define the individual average potential

outcome for a counterfactual treatment allocation strategy with two features: 1) treat-

ment assignment for units within a cluster is unlikely to be independent, and 2) indi-

vidual covariates can be predictive of a unit’s treatment probability. Let P
↵,L

represent

the (arbitrarily specified) counterfactual treatment allocation program, specified specifi-

cally to depend on covariates and/or allow correlated assignments within clusters. P
↵,L

is governed by parameters ↵, which represent features of the counterfactual treatment

allocation program of interest. For the purpose of this paper, we consider ↵ to represent

the cluster-average propensity of treatment.

The individual average potential outcome is defined as:

Y

L

ij

(a;↵) =

X

s2A(n
i

�1)

Y

ij

(A

ij

= a,A
i,�j

= s)P
↵,L

(A
i,�j

= s|A
ij

= a,L
i

), (3.1)

and represents the expected outcome for unit j in cluster i in the counterfactual world

where treatment is assigned with respect to P

↵,L

, but the treatment of unit j is fixed to

a. This estimand is well-defined for any fixed choice of P
↵,L

. Based on the individual

average potential outcome, group and population average potential outcomes are defined

as

Y

L

i

(a;↵) =

1

n

i

n

i

X

j=1

Y

L

ij

(a;↵), (3.2)

Y

L

(a;↵) =

1

N

N

X

i=1

Y

L

i

(a;↵). (3.3)

3.2.2 The counterfactual treatment allocation in existing literature

As mentioned previously, P
↵,L

can be arbitrarily chosen and represents the process with

which treatment is assigned in the counterfactual world, driving the interpretation of all

estimands. The above development has left unspecified the term P

↵,L

in (3.1) providing
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relative weights to different cluster treatment vectors in the individual average poten-

tial outcomes. The estimands in Tchetgen Tchetgen and VanderWeele (2012) and Perez-

Heydrich et al. (2015) correspond to counterfactual treatment strategies P

↵,L

(a
i

|L
i

) =

⇡(a
i

;↵) =

n

i

Y

j=1

↵

a

ij

(1�↵)

1�a

ij , giving equal probability to all cluster-treatment vectors with

the same number of treated units, irrespective of which those units are. For this choice of

P

↵,L

the estimands represent quantities in counterfactual worlds where individual treat-

ment probability can be manipulated and units are assigned to treatment independently

and with equal probability ↵.

3.2.3 Realistic counterfactual treatment allocation program

However, in some situations, counterfactual treatment allocations can only be realistically

conceived if allowed to depend on covariates or if they incorporate correlation between

treatment of units in the same cluster. In the study of power plant interventions on am-

bient air quality, the decision of whether to “treat” a power plant is at the discretion of

the power company and heavily influenced by power plant covariates. Therefore, a hy-

pothesized counterfactual treatment allocation is realistic only when such covariates are

incorporated.

As an example, consider the power-plant level covariate ‘heat input’, a proxy for the size

of the power plant, and let L
ij

be the heat input of power plant j in cluster i. Then, one

specification of a counterfactual treatment allocation strategy that would acknowledge

that different-sized power plants are more or less likely to adopt treatment is:

logitP

↵,L

(A

ij

= 1|L
ij

) = ⇠

↵

i

+ �

L

L

ij

,

for some fixed, pre-specified value of �
L

, and ⇠

↵

i

such that

1

n

i

n

i

X

j=1

expit (⇠

↵

i

+ �

L

L

ij

) = ↵.

The value �
L

here could be specified according to knowledge of how the size of the power

plant is expected to impact the propensity to adopt treatment. Based on this specification

of P
↵,L

, the estimands of interest correspond to quantities in a hypothesized world where
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treatment is assigned independently across units with treatment propensity that depends

on L

ij

, but is on average equal to ↵. A data-driven way to choose P

↵,L

is presented in

Section 3.6.

This fully specifies the probability of the cluster treatment vector under the counterfac-

tual treatment allocation P

↵,L

(A
i

= a
i

|L
i

) for all a
i

, and therefore specifies P
↵,L

(A
i,�j

=

s|A
ij

= a,L
i

) for all s 2 A(n

i

� 1) giving relative weights in the specification of the

individual average potential outcome (3.1).

Alternatively, a counterfactual treatment allocation strategy can also be defined to incor-

porate dependence of treatments in the same cluster. For example, consider

logitP

↵,L

(A

ij

= 1|L
ij

) = ⇠

↵

i

+ �

L

L

ij

+ ✓

ij

,

where ✓

ij

is a mean 0 spatial random effect with fixed correlation matrix decaying with

distance. This choice of P
↵,L

corresponds to a counterfactual treatment allocation program

that depends on covariates and incorporates dependent treatment assignment of units

within a cluster.

3.2.4 Direct and indirect effects

Different contrasts of average potential outcomes can be considered to characterize how

treatment affects the outcome of interest. For counterfactual allocation strategy P

↵,L

, di-

rect effects represent contrasts in average potential outcomes when only the individual

treatment changes. On the other hand, indirect effects contrast average potential out-

comes for a fixed level of individual treatment, but different specification of the param-

eter ↵ governing the counterfactual allocation program. For that reason, indirect effects

represent expected changes in potetntial outcomes for changes only in the “treatment of

neighbors”, and they can be thought of as a measure of interference. Indirect effects are

also known in the literature as spillover effects.

Based on the individual, group and population average potential outcomes, one can de-

fine the individual, group and population direct effects as

DE

L

ij

(↵) =Y

L

ij

(1;↵)� Y

L

ij

(0;↵),
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DE

L

i

(↵) =Y

L

i

(1,↵)� Y

L

i

(0;↵) =

1

n

i

n

i

X

j=1

DE

L

ij

(↵)

DE

L

(↵) =Y

L

(1,↵)� Y

L

(0;↵) =

1

N

N

X

i=1

DE

L

i

(↵)

accordingly. Similarly, the individual indirect effect is defined as

IE

L

ij

(↵1,↵2) = Y

L

ij

(0,↵2)� Y

L

ij

(0,↵1),

based on which group and population indirect effects can be defined. Indirect effects

could be alternatively defined for individual treatment assignment a = 1, but here our

focus is on the effect of neighbors’ treatment in the areas surrounding untreated power

plants. Contrasts other than the difference can also be considered. Based on these esti-

mands, total effects can be defined as the sum of direct and indirect effects (Hudgens and

Halloran, 2008), while similar development can lead to the definition of overall effects.

3.3 Estimating the population average potential outcome

For a fixed choice of P
↵,L

, we provide estimators of the population average potential out-

come in (3.3), unbiasedness and consistency results, and derive the estimator’s asymp-

totic distribution when the number of clusters increases to infinity, for a known or cor-

rectly specified parametric cluster-propensity score model (defined below). Based on

these, estimators and asymptotic distributions for the estimands in Section 3.2.4 can be

acquired as demonstrated in Example 1. Proofs are in Section 3.8.3.

We start by making the sample cluster-level positivity, and ignorability assumptions:

Assumption 1. Positivity. For i 2 {1, 2, . . . , N}, the probability of observing cluster treatment

vector a
i

given cluster covariates L
i

is denoted by f

A|L,i

(A
i

= a
i

|L
i

) and is positive for all

a
i

2 A(n

i

). f
A|L,i

is the cluster-propensity score.

Assumption 2. Ignorabililty. For i 2 {1, 2, . . . , N}, the observed cluster treatment A
i

is condi-

tionally independent of the set of cluster potential outcomes Y
i

(·) given the covariates L
i

, denoted

asA
i

q Y
i

(·)|L
i

.
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3.3.1 Estimators of the group and population average potential out-
come

Let
b

Y

L

i

(a;↵) =

1

n

i

n

i

X

j=1

P

↵,L

(A
i,�j

|A
ij

= a,L
i

)

f

A|L,i

(A
i

|L
i

)

I(A

ij

= a)Y

ij

(3.4)

b

Y

L

(a;↵) =

1

N

N

X

i=1

b

Y

L

i

(a;↵) (3.5)

where f

A|L,i

(A
i

|L
i

) is the cluster-level propensity score for the observed treatment, and

P

↵,L

(A
i,�j

|A
ij

= a,L
i

) is the probability of the observed treatment on units other than j

given A

ij

= a, under the counterfactual treatment allocation program.

Assuming that the group level propensity score f
A|L,i

(·|L
i

) is known, and Assumptions 1,

2 hold, then bY L

i

(a;↵), bY L

(a;↵) are unbiased for Y L

i

(a,↵), Y

L

(a,↵) accordingly. Unbiased-

ness is derived for a fixed set of clusters with respect to the distribution of the observed

treatment assignment.

The population average potential outcome (3.3) is defined as the average of the group

average potential outcomes. Alternative definitions could weigh each cluster by cluster

sample size (which is what the population average potential outcome of Liu et al. (2016)

simplify to under the assumption of partial interference). In Section 3.8.5, we discuss this

distinction and provide an argument why an equal-weight estimand and the correspond-

ing estimator (3.5) might be preferable.

3.3.2 Asymptotic results for bY L

(a;↵) for known propensity score

We derive the asymptotic properties of the estimator in (3.5) for an increasing number of

clusters N , denoted by bY L

N

(a;↵). Let bY L

N

(↵) =

⇣

b

Y

L

N

(0;↵),

b

Y

L

N

(1;↵)

⌘

T

.

Assume that the N clusters are a sample of an infinite superpopulation of clusters from

which they are sampled randomly. Therefore (Y
i

(·),A
i

,L
i

) are now independent and

identically distributed random vectors, whose distribution is denoted as F0. (For nota-

tional simplicity, n
i

is included inL
i

.) The sample positivity and ignorability assumptions

are translated to their super-population counterparts.
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Assumption 3. Super-population positivity. There exists 9⇢ > 0 such that f
A|L,i

(A
i

|L
i

) > ⇢

with probability 1.

Assumption 4. Super-population ignorability. For F0, Ai

q Y
i

(·)|L
i

.

Theorem 1. Let µ0 = (µ

0
0, µ

1
0)

T where µ

a

0 = E

F0

h

Y

L

i

(a;↵)

i

. Under Assumptions 3, 4, for

known propensity score, and bounded outcome (there exists M > 0 : |Y
ij

| < M with prob-

ability 1), bY L

N

(↵) is consistent for µ0 and asymptotically normal with limiting distribution
p
N

⇣

b

Y

L

N

(↵)� µ0

⌘

d! N(0, V (µ0)), where
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P
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= a,L
i

)

f

A|L,i

(A
i

|L
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)

I(A

ij

= a)Y

ij

� µ

a

0.

The above theorem leads to the approximation bY L

N

(↵)

approx⇠ MVN2

�

µ0, N
�1
V (µ0)

�

for

large number of clusters. Even if assumptions about F0 are made, the elements of

V (µ0) = Cov

F0

h

�

Y

i

(0,↵), Y

i

(1,↵)

�

T

i

(proof in Section 3.8.4) are often hard to calculate

analytically. Instead, the asymptotic variance of bY L

N

(↵) can be estimated using the empir-

ical expectation

b

V (µ) =
1

N

N

X

i=1

⇥

 (Y
i

,L
i

,A
i

;µ) (Y
i

,L
i

,A
i

;µ)T
⇤

,

evaluated at µ =

b

Y

L

N

(↵). Under regularity conditions, discussed in Iverson and Randles

(1989), bV
⇣

b

Y

L

N

(↵)

⌘

will be consistent for V (µ0). Using Theorem 1 one can acquire the

asymptotic distribution of a contrast between bY L

(0;↵), bY L

(1;↵) specifying a direct effect,

by an application of the multivariate delta method, as shown in Example 1.

3.3.3 Asymptotic results for bY L

(a;↵) for estimated propensity score
from a correctly-specified parametric model

However, most of the times the propensity score is not known, and has to be estimated

using the observed data. In the next theorem, we provide the asymptotic distribution

of bY L

N

(↵) when the propensity score is estimated using a correctly specified parametric
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propensity score model. In this case, the cluster-propensity score for the observed treat-

ment vector will be denoted by f

A|L,i

(A
i

|L
i

;�) where � are the model parameters.

Theorem 2. Assume that assumptions 3, 4 hold, the outcome is bounded with probability

1 (as in Theorem 1) and the parametric form of the propensity score model indexed by �,

f

A|L,i

(a
i

|l
i

;�), is correctly specified and differentiable with respect to �. Let µ0 be as in Theo-

rem 1, and bY L

N

(a,↵) calculated using consistent estimates b� of the propensity score f
A|L,i

. Let

 
�

(l
i

,a
i

;�) = @

@�

T

log f(a
i

|l
i

;�) be the score functions. Assume that:

1. �0 is in an open subset of the Euclidean space

2. � !  
�

(l
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;�) is twice continuously differentiable 8(l
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)

3. E
F0 k �

(L
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,A
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;�0)k22 < 1
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5. 9 measurable integrable function
··
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(l
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i

) fixed such that
··
 

�

dominates the second partial

derivatives of  
�

for all � in a neighborhood of �0.

where �0 are the true parameters of the propensity score model, and
·
 

�

(l
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,a
i

;�) is the ma-

trix of partial derivatives of  
�

(l
i

,a
i

;�) with respect to �. Then,
p
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⇣
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evaluated at (�0,µ0),  a

=  

a,↵

(Y
i

,A
i

,L
i

;µ

a

0) and V (µ0) is that of Theorem 1.

W (�0,µ0) can be easily estimated using cW
⇣

b�, bY L

N

(↵)

⌘

, where cW (�,µ) is the matrix

W (�,µ) where all expectations are substituted with the empirical expectations. For ex-

ample, bB11 =
1
N

P

N

i=1  �

(L
i

,A
i

;�) 
�

(L
i

,A
i

;�)T .

Next, we derive the asymptotic distribution for bµIE

=

⇣

b

Y

L

N

(0;↵0),
b

Y

L

N

(0;↵1)

⌘

T

for the

estimated propensity score from a correctly specified parametric model.
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Theorem 3. Denote µIE

0 =

⇣

E

F0

h

Y

L

i

(0,↵0)

i

, E

F0

h

Y

L

i

(0,↵1)
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T

, and assume that the As-

sumptions of Theorem 2 hold. Then,
p
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�

bµIE � µIE

0

�

! N(0, Q(�0,µ0)), where

Q(�,µ) = D22 + C21B
�1
11 C

T

21 + C21B
�1
11 D12 +
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(0,↵1), Y
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 0,↵1 , �

 0,↵2 ] ,

C21 = E
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@ 0,↵1/@� @ 0,↵2/@�
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,

and B11 as in Theorem 2.

3.4 Counterfactual distribution of cluster-average treat-
ment propensity

In Section 3.2 we defined the individual average potential outcome for unit j in cluster

i (and other estimands based on it) when the cluster-average propensity of treatment ↵

is fixed to a counterfactual value. Those estimands correspond to quantities of interest

in counterfactual worlds were one intervenes at the level of the cluster, but units within

the cluster are still allowed to choose their own treatment. In this section, new individual

average potential outcomes are defined, when the unit’s treatment is set to a, but the

cluster average propensity of treatment is not fixed to a specific value ↵ but arises from a

hypothesized distribution.

These estimands play an important role for policy interventions that occur at a high (vs.

local) administrative level. For example, consider an observed distribution of cluster-

average treatment propensity bF
↵

, and an intervention that takes place over all clusters

incentivizing the increase of cluster treatment coverage. This intervention does not en-

force a specific average propensity of treatment for each cluster separately, but leads to

an overall shift in the distribution of cluster average propensity of treatment.

Let F
↵

(·) denote the observed or a hypothesized distribution of cluster-average propen-

sity of treatment. Then, define the F
↵

-individual potential outcome as

Y

L

ij

(a;F

↵

) =

Z

Y

L

ij

(a;↵) dF

↵

(↵) (3.6)

=

X

s2A(n
i

�1)

Y

ij

(A

ij

= a,A
i,�j

= s)

Z

P

↵,L

(A
i,�j

= s|A
ij

= a,L
i

) dF

↵

(↵).
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Thus, Y L

ij

(a;F

↵

) describes the average potential outcome of unit j in cluster i, for clus-

ter average probability of treatment arising from F

↵

. Consequently, the F

↵

-group and

population average potential outcomes are defined as
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)

accordingly. Although the above estimands are well-defined for a distribution F

↵

dif-

ferent than the observed one, F
↵

needs to have overlapping support with the empirical

distribution bF
↵

in order to reliably estimate such quantities.

Similar arguments to the ones in Section 3.3 lead to estimators of the F

↵

-group and pop-

ulation average potential outcome as
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accordingly, where P
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Even though direct effect estimands based on the F

↵

-population average potential out-

come can easily be defined as DE(F

↵

) = Y

L

(1;F

↵

) � Y

L

(0;F

↵

), the contrast of F

↵

-

population average potential outcomes is more interesting for the indirect effect. For

two hypothesized distributions of cluster-average propensity of treatment F 1
↵

, F

2
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, define

IE
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Then, IE (F
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) represents the expected outcome change for control units when the

distribution of cluster-average propensity of treatment changes from F

1
↵

to F

2
↵

.

Assume that F 1
↵

, F

2
↵

represent discrete distributions with values ↵1,↵2, . . . ,↵K

2 (0, 1) and

probability p1k and p2k of assigning value ↵
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to a cluster accordingly, such that
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k=1 pjk =
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Clearly, a consistent estimator for IE (F

1
↵

, F

2
↵

) is

c

IE

�
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, F
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↵

�

=

K

X

k=1

(p2k � p1k)
b

Y (0,↵
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).

Acquiring the asymptotic distribution of cIE (F

1
↵

, F

2
↵

) is straightforward following similar

arguments to the ones in Theorem 3 to acquire the asymptotic distribution of
�

b

Y (0,↵1),

b

Y (0,↵2), . . . ,
b

Y (0,↵

K

)

�

T and applying the multivariate delta method.

3.5 Simulations

We generate a fixed population of 2,000 clusters including 14 to 18 units each, resulting

to a total of 31,553 units. Four independent N(0, 1) covariates were generated, and are

denoted as L1, L2, L3, L4. For every individual in the population (unit j in cluster i), the

potential outcomes under all possible treatment allocations were generated, following a

model Y ⇠ Bernoulli(expit(l
Y

)) where

l

Y

= 0.5� 0.6a� 1.4

a+ k

n

i

� 0.098L1ij � 0.145L2ij + 0.1L3ij + 0.3L4ij + 0.351a

a+ k

n

i

, (3.9)

L1ij, L2ij, L3ij, L4ij are the values of the covariates for observation j of cluster i, a is the

individual treatment, k is the number of treated neighbors, and (a+k)/n

i

is the percentage

of units in the cluster that are treated.

3.5.1 A simulated data set

The simulations test the operating characteristics of the estimator in (3.5) using the true

and estimated propensity score in terms of the re-sampling of the observed treatment

vector. Specifically, each simulated dataset includes the whole population, but a different

set of potential outcomes is observed according to a treatment vector generated as A
ij

⇠

Bernoulli(expit(l
A

)) where

l

A

= �0.2 + b

i

+ 0.3L1ij � 0.15L2ij + 0.2L3ij � 0.18L4ij, bi ⇠ N(0, 0.5

2
). (3.10)

Once the observed treatment is generated, the observed outcome is the corresponding

value of the potential outcomes. Clusters with all treated or all control units are dropped.

86



b
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(a;↵) is estimated from (3.4) for counterfactual treatment allocation described in Sec-

tion 3.5.2, and
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known

and equal to the coefficients in (3.10), or the maximum likelihood estimates from the cor-

rectly specified propensity score model.

We calculate the population average potential outcomes, direct and indirect effects, and

the corresponding asymptotic variances.

3.5.2 Covariate-dependent counterfactual treatment allocation

The counterfactual treatment allocation P

↵,L

is allowed to depend on the same covariates

that are included in the observed propensity score, using the log odds coefficients used to

generate the observed treatment. Specifically, for a fixed ↵ 2 (0, 1),

logitP

↵,L

(A

ij

= 1|L
ij

) = ⇠

↵

i

+ 0.3L1ij � 0.15L2ij + 0.2L3ij � 0.18L4ij,

for ⇠↵
i

satisfying 1
n

i

P

n

i

j=1 P↵,L

(A

ij

= 1|L
ij

) = ↵. (Description of how ⇠

↵

i

is calculated can

be found in Section 3.8.6.)

3.5.3 Calculating the true average potential outcomes

For every observation j in cluster i, the individual average potential outcome for individ-

ual treatment a and for cluster-average propensity of treatment ↵ is calculated based on

(3.1). Based on the individual average potential outcome, the true group and population

average potential outcome are calculated according to (3.2), (3.3).

3.5.4 Simulation results

We present results for values of alpha between 0.3 and 0.6 corresponding to the 20

th and

80

th quantiles of the distribution of the observed treatment proportions across clusters
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and simulated data sets. As expected, the estimator based on the true propensity score is

unbiased, while the estimator based on the estimated propensity score, which is consis-

tent but not unbiased, indicates small biases. Figure 3.1 shows the mean estimate across

500 simulated data sets for the population average potential outcome for a = 1 (results

were similar for a = 0), direct and indirect effect, and Table 3.1 shows the coverage range

over different values of ↵ of the population average potential outcome, direct and indirect

effect.

Moreover, Figure 3.5 in Section 3.8.1 shows the mean of the estimated variance based

on the asymptotic results, against the variance of the estimates calculated over the 500

simulated data sets. The points (one for each value of ↵) lie mostly on the 45 degree
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Figure 3.1: Mean estimate of population average potential outcome, direct, and indirect
effect over 500 simulated data sets for the true or the correctly specified propensity score.

Table 3.1: Range of percent coverage over 500 simulated data sets for the population
average potential outcome, direct and indirect effects for the true or the correctly specified
propensity score.

Y

L

(0;↵) Y

L

(1;↵) DE

L

(↵) IE

L

(↵1,↵2)

True PS 94.4 - 96.2 % 94.4 - 97.2 % 94.4 - 95.6 % 92 - 97.2 %
Estimated PS 86.6 - 96 % 92.8 - 96.6 % 91.6 - 96 % 78.4 - 95.6 %
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line indicating that, on average, the variance based on the asymptotic theory is a good

approximation of the true variance.

3.6 Application: Effectiveness of Power Plant Emissions
Controls for Reducing Ambient Ozone Pollution

Limited literature exists in the evaluation of U.S. air pollution regulations in a causal infer-

ence framework. Power plant regulations for the reduction of NO
x

emissions have been

predicated on the knowledge that reducing NO
x

emissions would lead to a subsequent

reduction in ambient ozone. Among various NO
x

emission reduction strategies, SCR and

SNCR are believed to be the most effective in reducing emissions. While work in Papado-

georgou et al. (2018) corroborated this effectiveness of SCR and SNCR in an analysis for

NO
x

emissions, the analysis of ambient ozone pollution in that paper ignores the possi-

bility of interference and estimates a null effect on ambient ozone. However, interference

is a key component in the study of air pollution: ambient pollution concentrations near

a power plant will depend on the treatment levels of other nearby power plants. Causal

estimands tailored to settings of interference can answer important questions related to

the effectiveness of interventions in the presence of long-range pollution transport.

We use the same data as in Papadogeorgou et al. (2018) to estimate direct and indirect ef-

fects of SCR/SNCR against alternatives on ambient ozone under realistic counterfactual

programs. The publicly-available data set includes 473 coal or gas burning power gen-

erating facilities in the U.S. operating during June, July and August 2004, with covariate

information on power plant characteristics, weather and demographic information of the

surrounding areas. For every power plant, the value of ozone is calculated as the average

across EPA monitoring locations within 100km of the 4th highest ozone measurements.

See Papadogeorgou et al. (2018) for a full description of the data set and linkage.

Power plant facilities are grouped into 50 clusters according to Ward’s agglomerative

clustering method (Ward, 1963) based on coordinates. The grouping and treatment of

facilities are depicted in Figure 3.2. 10 out of 50 clusters were excluded from the analysis

because they included only control power plants.

89



Other

SCR/SNCR

Figure 3.2: Treated (SCR/SNCR) and control (Other) power plant facilities during June,
July, August of 2004. Shaded areas depict the interference clusters according to the ag-
glomerative clustering method.

3.6.1 Plausibility of the ignorability and positivity assumption

While regulatory programs provide incentives to install emission-control technologies,

power plants have latitude to select which (if any) technology to adopt. Such decisions are

largely determined by the plant’s characteristics such as plant size and operating capacity,

as well as by factors related to local or regional air pollution incentives that are influenced

by area-level characteristics such as population density and urbanicity. To capture such

factors, 18 covariates are included in the data set describing power plant, weather, and

demographic characteristics, based on which ignorability is expected to hold. The vari-

ability in the observed proportion of treated power plants across clusters provides an

additional indication that the positivity assumption is plausible. Based on these covari-

ates, the propensity score wasmodeled as in Papadogeorgou et al. (2018) augmentedwith

a cluster-specific random effect

logitP (A

ij

= 1|L
ij

) = �0 + b

i

+ L

T

ij

�, b
i

⇠ N(0, �

2
b

). (3.11)

3.6.2 Counterfactual treatment allocation for the installation of
SCR/SNCR emission control technologies

Recall from Section 3.2.3 that P
↵,L

governing treatment assignment in the counterfactual

allocation programs of interest must be specified. To specify counterfactual treatment

allocations that reflect realistic relationships between covariates and the propensity to
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adopt treatment, we specify P

↵,L

such that the log-odds of treatment installation related

to individual covariates are as observed in the propensity score model for the observed

treatment in (3.11). Even though this choice of P
↵,L

depends on the data through the

estimated log-odds, the corresponding estimands are well-defined and the asymptotic

results are valid for P
↵,L

fixed across replications of the sampling or an increasing number

of clusters.

Values of ↵ were considered between the 20

th and 80

th quantiles of the observed cluster

treatment proportions, corresponding to ↵ 2 [0.141, 0.508]. Figure 3.3 shows the popula-

tion direct effect DE(↵), and population indirect effect IE(↵1,↵2) for a subset of values

of ↵1 (for presentation simplicity). The direct effect is significantly negative for all values

of ↵, but has a somewhat increasing trend, implying that in a world where the average

probability of SCR/SNCR among power plants in a cluster is fixed, the installation of

SCR/SNCR at one power plant would lead to significant reductions in ozone concentra-

tions in the surrounding area, but these reductions are smaller when the cluster average

propensity of treatment is high (larger number of treated neighbors).

The indirect effect is, in a way, a measure of pollution transport since it quantifies the

effect of changes in the cluster average propensity of treatment on ozone concentrations

near control power plants. For all values of ↵1, IE(↵1,↵2) is decreasing in ↵2, and almost

all contrasts considered were significant at the 0.05 significance level. The decreasing

trend in IE(↵1,↵2) for a fixed value of ↵1 implies that higher cluster-average SCR/SNCR
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Figure 3.3: Direct effect of control versus treated power plants on ozone concentrations
as a function of ↵, and indirect effect where the first value of ↵ is fixed to a specific value.
Ozone is measured in parts per million.
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Figure 3.4: Observed cluster treatment proportions (“Observed”), and two discrete hy-
pothesized distributions of cluster-average probability of treatment. One corresponds to
the observed restrictedwithin the 20th and 80

th quantiles of the observed cluster treatment
proportions (“Observed-restricted”), and the other one (“Counterfactual”) corresponds
to the observed (or the Observed-restricted) further restricted between the 50

th and 80

th

quantiles of the observed cluster treatment proportions.

propensity leads to further decrease in ambient ozone concentrations in the surrounding

area of control power plants.

Next, we considered estimating the effect of hypothesized federal regulations that would

shift the distribution of cluster-average propensity of treatment. F 1
↵

(F 2
↵

) was assumed to

be a discrete distribution within the 20th (50th) and 80

th quantiles of the observed cluster-

treatment proportions. In Figure 3.4, we show the empirical probability mass function,

as well as the two counterfactual treatment allocations. IE (F

1
↵

, F

2
↵

) was estimated to be

�0.0162 parts per million (95% CI: �0.0252 to �0.007) implying that federal regulations

that encourage the installation of SCR/SNCR andwould lead to cluster average treatment

probabilities like F

2
↵

would reduce ambient ozone concentrations in the surrounding ar-

eas of control power plants by 0.0162 parts per million compared to similar regulations

that would lead to F

1
↵

. For reference, these effect estimates can be compared against the

national ozone air quality standard of 0.07 parts per million.

We explored the sensitivity of the data application results to the choice of hierarchical

clustering method and number of clusters, and saw that the qualitative results for the

effectiveness of SCR/SNCR emission reduction technologies are mostly consistent. We

further estimated the estimands of Tchetgen Tchetgen and VanderWeele (2012) that as-

sume manipulation of individual power-plant treatment propensities and ignore the fact
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that covariates can be important predictors of the treatment received by power plants.

These estimators returned results with similar pattern as the ones in Figure 3.3, but of

smaller magnitude. Therefore, the potential benefits of SCR/SNCR would be under-

stated, if counterfactual scenarios of independent and identically distributed treatment

assignment was considered. These results can be found in Section 3.8.2, along with links

to the publicly available data set, R package and scripts.

3.7 Discussion

Analyzing data in the context of interference disentangles the effect of the individual

treatment from the treatment of one’s neighbors. New estimands in the presence of in-

terference were proposed for counterfactual strategies that manipulate treatment at the

cluster-level, or at the level of population of clusters. These new estimands represent sce-

narios where individual treatment in the counterfactual world is allowed to depend on

covariates and the treatment of one’s neighbors. Such estimands are relevant for public

health interventions that do not manipulate treatment at the unit level.

For the estimands referring to interventions at the population level, the counterfactual

distribution F

↵

represented the distribution of the cluster-average propensity of treat-

ment, and each cluster was assumed to be equally likely to receive ↵ from F

↵

. However,

F

↵

could be alternatively defined to depend on cluster-level covariates that act as predic-

tors of cluster-average propensity of treatment.

Consistent estimators were proposed for which the asymptotic distribution was derived.

These estimators were employed in the comparative effectiveness of power plant emis-

sion control strategies on ambient ozone, and showed the potential of a set of emission

reduction technologies in reducing ozone concentrations. These results are more in line

with subject-matter knowledge than results from a previous study that assumed no in-

terference. Through comparison with existing estimands in the literature, this analysis

also highlighted the potential gains of the proposed estimands in a setting where rel-

evant counterfactual treatment allocations depend on covariates, showing that existing

estimands would understate the potential benefits of treatment.
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Even though the data application showed the potential for causal inference methods for

interference to lead to important results in air pollution research, there are several limita-

tions to the analysis. First of all, the number of clusters was low, raising questions for the

appropriateness of use of asymptotic distributions to acquire variance estimates. Further-

more, in air pollution studies the assumption of partial interferencemay be violated, since

pollution from one power plant can travel long distances and affect ozone concentrations

within a different cluster. However, we considered it important to analyze air quality

data, which in our knowledge have not been previously analyzed to acknowledge inter-

ference. Despite the approximation entailed by the partial interference assumption, we

believe this is an important advance for studies of air pollution interventions, and meth-

ods relaxing the assumption of partial interference for unknown networks are the topic

of future research.

3.8 Appendix

3.8.1 Simulation results
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Figure 3.5: Mean estimated variance from the asymptotic distribution, and Monte Carlo
variance of the estimates. The diagonal lines correspond to the 45 degree line, and each
point corresponds to a value of ↵.
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3.8.2 Data application

Link to the publicly available data, the R package implementing the estimators, and

scripts replicating the results of the data analysis are available at https://osf.io/

7dp8c/.

Sensitivity of data application results to the choice of clustering

Rows correspond to the direct effect DE(↵) and the indirect effects IE(↵1,↵2) for ↵1 2

{0.32, 0.41}. Columns correspond to the clustering method and correspond to Ward’s

Ward (1963) method for 30 and 70 clusters, and complete clustering with 50 clusters. The

increasing trend in the indirect effect persists for all clustering specifications, while the

direct effect results are sensitive to the specification of the hierarchical clustering method

used.

Ward 30 Ward 70 Complete 50
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Figure 3.6: Direct and indirect effect of SCR/SNCR on ambient ozone using different clus-
tering of power plants. Methods for clustering from left to right include Ward’s method
for 30 and 70 clusters, and complete clustering using 50 clusters.
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Estimates and confidence intervals of the direct and indirect effect under an indepen-
dent Bernoulli treatment allocation

We estimate the direct and indirect effects under the counterfactual scenario found in

Tchetgen Tchetgen and VanderWeele (2012) that considers assigning treatment to units

independently and with equal probability. Confidence intervals are based on asymptotic

distributions derived as in Theorems 2, 3.

The results’ pattern is similar to the ones in Figure 3.3, but all estimates are closer to 0. This

implies that basing our inferences on estimands in unrealistic counterfactual treatment

allocation programs would underestimate the potential benefits of SCR/SNCR.
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Figure 3.7: Direct and indirect effect estimates and confidence intervals for the estimands
defined in Tchetgen Tchetgen and VanderWeele (2012).

3.8.3 Proofs of unbiasedness, consistency and asymptotic normality

Unbiasedness

Theorem 4. If f
A|L,i

(·|L
i

) is known, and Assumptions 1, 2 hold, then bY L

i

(a;↵) is an unbiased

estimator for the group average potential outcome, and bY L

(a;↵) is an unbiased estimator of the

population average potential outcome for individual treatment a and cluster average propensity of

treatment ↵.

Proof. All expectations are taken with respect to the conditional distribution A
i

|L
i

,Y
i

(·),

where Y
i

(·) are all the potential outcomes for all units in cluster i. Y
i

j, Y
i

denote the ob-

served individual outcome, and the vector of observed outcomes in cluster i accordingly.
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By linearity of expectations, the proof for the population average potential outcome is

trivial.

Proofs of asymptotic results for known propensity score

For notational simplicity, denote ˜O
i

= (A
i

,L
i

), O
i

= (Y
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,A
i

,L
i

), ˜o
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(·),A
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) in the superpopulation.
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Proof of Theorem 1. First, we will show that bY L

N

(↵) is consistent for µ0. For this proof, we

use an alteration of Lemma A in section 7.2.1 of Serfling (1980).
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Note that  
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;µ) is monotone in µ with
·
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fore,  
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which also establishes convergence in probability.

Now we will show that bY L

N

(a;↵) has an asymptotically univariate normal distribution,

for a = 0, 1, and afterwards we extend this to showing that bY L
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(↵) has an asymptotically

bivariate normal distribution.

Univariate result
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So  0 is linear in µ and therefore differentiable everywhere, with  

0
0(µ) = �1 6= 0.

Proof of (iii)
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We have shown that the conditions of Theorem A (section 7.2.2 of Serfling (1980)) are

satisfied, and therefore
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, since  0
0(µ0) = �1.

Bivariate result

We will use Theorem 5.41 of van der Vaart (1998). The assumptions of this theorem are

the so-called “classical” conditions, and are stricter than necessary to prove asymptotic
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normality. However, this theorem is often used in practice, since the conditions are some-

times easy to prove, as they are here.

We denote  (o
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;µ) = ( 0,↵(oi

;µ

0
), 1,↵(oi
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similarly as above, but for the vector  .

It was shown that µ0 satisfies  0(µ) = 0, and that bY L
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(↵) is a consistent estimator of µ0.

In order to apply Theorem 5.41, we show that
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Proof of (i). It has already been shown that  
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continuously differentiable with respect to µ for every vector (o
i

).

Proof of (ii).

E

F0k (Oi

;µ0)k22 =E

8

<

:

X

a2{0,1}

"

1

n

i

n

i

X

j=1

P

↵,L

(A
i,�j

|A
ij

= a,L
i

)

f

A|L,i

(A
i

|L
i

)

I(A

ij

= a)Y

ij

� µ

a

0

#2
9

=

;

=

X

a2{0,1}

E

"

1

n

i

n

i

X

j=1

f

A|L,i,↵

(A
i,�j

|A
ij

= a,L
i

,↵)

f

A|L,i

(A
i

|L
i

)

I(A

ij

= a)Y

ij

� µ

a

0

#2

2c

2 (because of (3.12))

Proof of (iii).
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where the diagonal elements of partial derivatives are calculated in the proof of consis-

tency, and the non-diagonal elements are clearly 0 since the functions do not include the

corresponding components of µ.
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Proof of (iv). Based on equation (3.13), we have that all second order derivatives are equal

to 0, and are therefore dominated by the integrable function
··
 (o
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) = 0.

From Theorem 5.41 of van der Vaart (1998), we have that
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Example 1. We provide an example of the application of the delta method on the result

of Theorem 1. Consider the direct effect defined as DE
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(↵) = Y

L

(0;↵) � Y

L

(1;↵). Then
d

DE

L

(↵) =

b

Y

L

(0;↵) � b

Y

L

(1,↵) is a consistent estimator, and can be written as g(

bµ) for

g((x1, x2)
T

) = x1 � x2. From the Delta method, we know that

p
n

⇣

d

DE

L

(↵)�DE

L

(↵)

⌘

! N(0, �

2
)

for �2
= rg(µ0)

T

V (µ0)rg(µ0), where rg((x1, x2)
T

) = (

@g

@x1
,

@g

@x2
)

T

= (1,�1)

T

, and V (µ0)

is as in Theorem 1.

Proofs of asymptotic results for correctly specified propensity score

Lemma 1. If condition 3 of Theorem 2 holds, then E [ 
�

(L
i

,A
i

;�0)] < 1

Proof of Lemma 1. Denote  
�

= ( 

1
�

, 

2
�

, . . . , 

p

�

)

T . Then,

E

2
F0

�

 

k

�

�

 E

h

�

 

k

�

�2
i


p

X

l=1

E

h

�

 

l

�

�2
i

= E

2
F0

k 
�

(L
i

,A
i

;�)k2 < 1 ) E

F0

�

 

k

�

�

< 1

where the first inequality uses Jensen’s inequality for g(x) = x

2. From this, we see that

the score functions are integrable with finite expectation.

Lemma 2. Assuming that the conditions of Theorem 2 hold, the estimator bY L

N

(↵) using the esti-

mates of the correctly specified propensity score model is consistent for µ0.
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Proof of Lemma 2. Consider the augmented estimated equations defined as  

n

(✓) =

P

N

i=1  (Y
i

,A
i

,L
i

;✓), where

 (Y
i

,A
i

,L
i

;✓) =

0

@

 
�

(L
i

,A
i

;�)
 0,↵(Yi

,A
i

,L
i

;µ

0
,�)

 1,↵(Yi

,A
i

,L
i

;µ

1
,�)

1

A

(p+2)⇥1

where ✓ = (�T

, µ

0
, µ

1
)

T and p is the number of parameters of the parametric propensity

score model. Note that  
a,↵

is now a function of � since it uses the estimated propensity

score. Denote the vector that solves  

n

(✓) = 0 as b✓. The first p elements of b✓ corre-

spond to estimators of the propensity score model parameters, which are consistent for

�0. Since bY L

N

(↵) based on the true propensity score is consistent, f(a
i

|l
i

;�) is differen-

tiable in � and therefore continuous, and �
p! �0, the last two elements of b✓ which corre-

spond to bY L

(0,↵),

b

Y

L

(1,↵) using the estimated propensity score are consistent estimators

of Y L

(0,↵), Y

L

(0,↵).

Proof of Theorem 2. We will again use Theorem 5.41 of van der Vaart (1998). Since con-

sistency has been established in Lemma 2, showing the four conditions stated in the

proof of Theorem 1 for the augmented  will establish asymptotic normality. Denote

✓0 = (�T

0 ,µ
T

0 )
T .

Proof of (i). By the conditions of the theorem, � !  
�

(l
i

,a
i

;�) is twice continuously dif-

ferentiable. This implies that  
a,↵

(y
i

, l
i

,a
i

;µ

a

0,�), a = 0, 1 are three times continuously

differentiable with respect to �. Therefore, the second order partial derivatives with re-

spect to � exist and are continuous. Moreover, since  
�

(l
i

,a
i

;�) is not a function of µa,

and using (3.13), the second partial derivatives with respect to elements of µ = (µ

0
, µ

1
)

exist and are continuous. Lastly, all second order derivatives with respect to an element

of µ and an element of � exist and are 0, and therefore continuous. This shows that

✓ !  (y
i

, l
i

,a
i

;✓) is twice continuously differentiable.

Proof of (ii). We want to show that E
Y

i

,L

i

,A

i

k (Y
i

,L
i

,A
i

;✓0)k22 < 1. But

E

Y

i

,L

i

,A

i

k (Y
i

,L
i

,A
i

;✓0)k22 =

E

L

i

,A

i

k 
�

(L
i

,A
i

;�0)k22 +
X

a2{0,1}

E

Y

i

,L

i

,A

i

k 
a,↵

(Y
i

,A
i

,L
i

;µ

a

0)k2,
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where the first term is finite from the assumptions on the propensity score model, and the

terms in the summation are finite from (3.12).

Proof of (iii). We want to show that the matrix E

Y

i

,L

i

,A

i



·
 (y

i

, l
i

,a
i

;✓0)

�

exists and is non

singular. We have

·
 (y

i

, l
i

,a
i

;✓) =

0

@

@

@�

T

 
�

(L
i

,A
i

;�)
p⇥p

0

p⇥1 0

p⇥1
@

@�

T

 0,↵(Yi

,L
i

,A
i

;µ

0
,�)1⇥p

�1 0

@

@�

T

 1,↵(Yi

,L
i

,A
i

;µ

1
,�)1⇥p

0 �1

1

A

,

where the the 0’s in the top row are because  
�

is not a function of µ

0
, µ

1.

We have assumed that E

h

@

@�

T

 
�

(L
i

,A
i

;�0)

i

exists and we will show that

E

h

@

@�

T

 

a,↵

(Y
i

,L
i

,A
i

;µ

a

0,�0)

i

exists for a = 0, 1.

Showing that E
h

@

@�

T

 

a,↵

(Y
i

,L
i

,A
i

;µ

a

0)

i

< 1 for a = 0, 1.

Note that even if the estimates of � were used to define the counterfactual treatment

allocation P

↵,L

(A
i,�j

|A
ij

= a,L
i

), it is considered fixed as a function of �, since it is used

to represent a fixed realistic treatment allocation program.

@

@�

k

 

a,↵

(O
i

;µ

a

,�) =

 

1

n

i

n

i

X

j=1

P

↵,L

(A
i,�j

|A
ij

= a,L
i

)I(A

ij

= a)Y

ij

!

✓

@

@�

k

1

f

A|L,i

(A
i

|L
i

)

◆

=�
 

1

n

i

n

i

X

j=1

P

↵,L

(A
i,�j

|A
ij

= a,L
i

)I(A

ij

= a)Y

ij

! 

@

@�

k

log f

A|L,i

(A
i

|L
i

)

f

A|L,i

(A
i

|L
i

)

!

=�  

k

�

⇣

˜O
i

;�
⌘

 

1

n

i

n

i

X

j=1

P

↵,L

(A
i,�j

|A
ij

= a,L
i

)

f

A|L,i

(A
i

|L
i

)

I(A

ij

= a)Y

ij

!

, (3.14)

where  

k

�

⇣

˜O
i

;�
⌘

is the k

th component of  
�

⇣

˜O
i

;�
⌘

for which E

F0

h

 

k

�

⇣

˜O
i

;�0

⌘i

< 1

(Lemma 1). Also,
�

�

�

P

↵,L

(A
i,�j

|A
ij

=a,L

i

)
fA|L,i

(A
i

|L
i

) I(A

ij

= a)Y

ij

�

�

�

< M/�

o

using the conditions of Theo-

rem 1. So, we have shown that E
h

@

@�

T

 

a,↵

(Y
i

,L
i

,A
i

;µ

a

0)

i

< 1.

From this, we conclude that E
F0



·
 (y

i

, l
i

,a
i

;✓)

�

exists. Furthermore, from the theorem

assumptions we have that E
h

@

@�

T

 
�

(L
i

,A
i

;�0)

i

is non-singular and the rows of @ 
�

/@�

T

are linearly independent. The bottom two rows are linearly independent to the rest since

they are the only ones to include non-zero elements in the last two columns. From this, we

conclude that the rows of E


·
 (Y

i

,L
i

,A
i

;✓0)

�

are linearly independent, and the matrix is

full rank and non-singular.
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Proof of (iv). We need to show that 9 integrable function ↵(o
i

) fixed, such that ↵(o
i

) domi-

nates all the second order partial derivatives of  (o
i

;✓). Therefore, we need to show that

for k, l 2 {1, 2, . . . , p}, a 2 {0, 1}:

1.
�

�

�

�

@

2 
�

(

˜o
i

;�)

@�

k

@�

l

�

�

�

�

 ↵
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(o
i

),

2.
�

�

�

�

@

2 
�

(

˜o
i

;�)

@�

k

@µ

a

�

�

�

�

 ↵

a

k

(o
i

),

3.
�

�

�

�

@

2 
�

(

˜o
i

;�)

@µ

a1
@µ

a2

�

�

�

�

 ↵

a1a2
(o

i
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4.
�

�

�

�

@

2
 

a,↵

(o
i

;µ

a

,�)

@µ

a1
@µ

a2

�

�

�

�

 ⇠

a1a2
(o

i

),

5.
�

�

�

�

@

2
 

a,↵

(o
i

;µ

a

,�)

@µ

a1
@�

k

�

�

�

�

 ⇠

a1
k
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i
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6.
�

�

�

�

@

2
 

a,↵

(o
i

;µ

a

,�)

@�

k

@�

l

�

�

�

�

 ⇠

kl

(o
i

),

for ✓ in a neighborhood of ✓0, where ↵

kl

(o
i

),↵

a

k

(o
i

),↵

a1a2
(o

i

), ⇠

a1a2
(o

i

), ⇠

a

k

(o
i

), ⇠

kl

(o
i

) are

F0-integrable. If we show the above, by setting ↵(o
i

) = max

k,l,a

{↵
kl

(o
i

),↵

a

k

(o
i

),↵

a1a2
(o

i

),

⇠

a1a2
(o

i

), ⇠

a

k

(o
i

), ⇠

kl

(o
i

)} we have that all second order partial derivatives are dominated

by the F0 integrable ↵(oi

).

Since 
�

(

˜o
i

;�) is not a function of µa, conditions 2, 3 are easy to satisfy by setting ↵

a

k

(o
i

) =

↵

a1a2
(o

i

) = 0. The same is true for conditions 4, 5, since @ 
a,↵

(o
i

;µ

a

,�)/@µa1
= �I(a = a1)

and therefore all second order derivatives that include at least one derivative with respect

to µ

a1 will be equal to 0. So we can set ⇠a1a2(o
i

) = ⇠

a

k

(o
i

) = 0.

From the assumptions of the theorem, we know that 9
··
 

�

(l
i

,a
i

) integrable such that
�

�

�

�

@
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�

(l
i

,a
i
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··
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), for all � in a neighborhood of �0. Then, ↵
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(o
i

) =

··
 

�

(o
i

)

satisfy condition 1. Since �0 is in an open subset of the Euclidean space, there ex-

ists ✏ > 0 such that the second partial derivatives of  
�

are dominated by
··
 for all

� 2 N ✏

(�0) = {� : k� � �0k < ✏}, subset of the parameter space. Let N ✏/2
(�0) = {� :

k� � �0k  ✏/2} ⇢ N ✏

(�0). Then, N
✏/2

(�0) is a compact subset of the Euclidean space.
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We will show that for � 2 N ✏/2
(�0) the second order partial derivatives in 6 are bounded

by an integrable function. First, let’s acquire their form:
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where the first and third equation use (3.14), and the second equation is an application of

the chain rule. Then
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(3.15)

For all k, l 2 {1, 2, . . . , p},  l

�

⇣

˜O
i

;�
⌘
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@�
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l

�

⇣

˜O
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⌘

are differentiable and therefore con-

tinuous in �, implying that the function on the right-hand side of (3.15) is continuous in

�.
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. Then g(�) is continuous in �.

But since N ✏/2
(�0) is a compact set, g(�) is bounded in N ✏/2

(�0), and in fact achieves a

maximum. Let

⇠
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)}, and all second

order partial derivatives are dominated by the F0-integrable ↵(oi

), for all ✓ 2 N ✏/2
(✓0) =

{✓ : k✓ � ✓0k < ✏/2}.
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From Theorem 5.41 of van der Vaart (1998), we have that

p
n

⇣

b

✓ � ✓0

⌘

N!1! N(0, Q(✓0)),

where

Q(✓0) = A(✓0)
�1
B(✓)[A(✓0)
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, and B(✓0) = E

⇥
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T

⇤

.

However, we are only interested in the bottom-right 2 ⇥ 2 submatrix of Q(✓0) which cor-

responds to the asymptotic variance of (bµ0, bµ1)
T when the propensity score model is esti-
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3.8.4 Asymptotic variance of the population average potential outcome
estimator

Denote [V (µ0)]ij the ij element of the covariance matrix, and remember that µ
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3.8.5 Population average potential outcome definitions in the literature

Assuming partial interference, Hudgens and Halloran (2008), and Tchetgen Tchetgen and

VanderWeele (2012) defined the population average potential outcome as an average of

the group-level potential outcomes Y (a;↵) =

1
N

P

N

i=1 Y i

(a;↵). On the other hand, Liu

et al. (2016) define the population average potential outcomes without assuming partial

interference (and therefore without assuming the existence of interference clusters) as the

average of the individual average potential outcomes. However, their asymptotic results

are based on the assumption of partial interference, under which the population average

potential outcome can be written as

Y

Liu

(a;↵) =

1

P

N

i=1 ni

N

X

i=1

n

i

X

j=1

Y

ij

(a;↵) =

N

X

i=1

n

i

P

N

i=1 ni

Y

i

(a;↵).
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Therefore, the estimand of Liu et al. (2016), if partial interference is assumed, is equal to a

weighted average of the group average potential outcomes with weights proportional to

the number of individuals in the cluster.

Estimators for both quantities can be written in the form

b

Y (a;↵) =

N

X

i=1

d

i

P

N

i=1 di

b

Y

i

(a;↵), d

i

> 0, (3.16)

where bY
i

(a;↵) is an unbiased estimator of the group average potential outcome for cluster

i. The difference of the population average estimators lies in the specification of d
i

, where

d

i

= 1 and d

i

= n

i

accordingly, for the two definitions of population average potential

outcome.

Proposition 1. Under the assumption of partial interference (which is also assumed by Liu et al.

(2016) in their asymptotic results), all population average potential outcome estimators of the form

(3.16) for which d

i

> 0 does not depend on N , E
F0 [di] < 1, and d

i

q Y

i

(a;↵) are consistent for

E

F0

⇥

Y

i

(a;↵)

⇤

.

Proof of Proposition 1. This can be shown by considering the estimating equation
P

N

i=1 Gi

(Y
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,L
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The solution to this equation is
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since d
i

q Y

i

(a;↵).

Since G

i

is monotone in µ, both
P

N

i=1 Gi

and
R

G

i

are monotone in µ which implies

uniqueness of the roots and establishes bµ p! µ0.
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Based on this, assuming n

i

qY

i

(a;↵) both estimators are consistent for the same quantity.

However, when the propensity score is known, the weighting scheme d

i

= c, constant,

leads to the asymptoticallymost efficient estimator among all of the estimators of the form

(3.16), based on the following proposition. Since two estimators using d

i

and d

0
i

= cd

i

are

exactly the same, the estimator (3.16) for d
i

= 1 is the asymptotically efficient estimator.

Proposition 2. Assuming that the conditions of Theorem 1 and Proposition 1 hold, and 9M
d

such

that d
i

< M

d

, 8i, then bY (a;↵) =

1
N

P

N

i=1
b
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(a;↵) is the asymptotically most efficient estimator

of E
F0
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Y
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among all estimators of the class (3.16).

Proof of Proposition 2. Based on Proposition 1, bµ
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] 6= 0. Lastly,

from (3.12) and d

i

< M

d

we have that
R

G

2
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is bounded byM

2
d

c

2. We can straightforwardly

use M-estimation theory to acquire the asymptotic variance. Lemma A in section 7.2.1 of

Serfling (1980),
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1, where �2

1 is the asymptotic variance of the estimator for d
i

= 1. From Jensen’s

inequality, and since �(x) = x

2 is a convex function, we have that E2
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]  E

F0 [d
2
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], which

establishes �2
d

� �

2
1. Equality holds if and only if all values d

i

are equal.

3.8.6 Calculating cluster-intercept for a specific cluster average propen-
sity of treatment

As described in section 3.5.3, ⇠↵
i

is chosen such that
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where logitP
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predictors of the propensity score model. Then, (3.17) can be rewritten as
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Since the only unknown is ⇠↵
i

, we use optimization techniques and set ⇠↵
i

to be the value

⇠ at which the function
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is minimized.

Product of small numbers

Calculating the estimator (3.4) above can lead to problems since it includes (both in the

numerator and the denominator) products of probabilities. This can be simplified by

rewriting the estimator as:
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which is much more stable to calculate.
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Stata Journal 14 580–604.

CHANG, H. H., REICH, B. J. and MIRANDA, M. L. (2013). A spatial time-to-event ap-

proach for estimating associations between air pollution and preterm birth. Journal of

the Royal Statistical Society. Series C, Applied statistics 62 167–179.

CONGDON, P. (2013). Assessing the impact of socioeconomic variables on small area

variations in suicide outcomes in england. International Journal of Environmental Research

and Public Health 10 158–177.

DANIELS, M. J., DOMINICI, F., SAMET, J. M. and ZEGER, S. L. (2000). Estimating Par-

ticulate Matter-Mortality Dose-Response Curves and Threshold Levels: An Analysis

of Daily Time-Series for the 20 Largest US Cities. American Journal of Epidemiology 152

397–406.

DANIELS, M. J., DOMINICI, F., ZEGER, S. L. and SAMET, J. M. (2004). The National

Morbidity, Mortality, and Air Pollution Study. Part III: PM10 concentration-response

curves and thresholds for the 20 largest US cities. Research report (Health Effects Institute)

1–21; discussion 23–30.

DOMINICI, F., DANIELS, M., ZEGER, S. L. and SAMET, J. M. (2002). Air Pollution and

Mortality: Estimating Regional and National Dose-Response Relationships. Journal of

the American Statistical Association 97 100–111.

EFTIM, S. E., SAMET, J. M., JANES, H., MCDERMOTT, A. and DOMINICI, F. (2008). Fine

Particulate Matter andMortality: A Comparison of the Six Cities and American Cancer

Society Cohorts With a Medicare Cohort. Epidemiology 19 209–216.

FERRACCI, M., JOLIVET, G. and VAN DEN BERG, G. J. (2014). Evidence of Treatment

Spillovers Within Markets. Review of Economics and Statistics 96 812–823.

112



FINLEY, A. O., BANERJEE, S. and CARLIN, B. P. (2007). spBayes: An R Package for

Univariate and Multivariate Hierarchical Point-referenced Spatial Models. Journal of

statistical software 19 1–24.

FRIEDMAN, J. H. (2001). Greedy function approximation: A gradient boosting machine.

The Annals of Statistics 29 1189–1232.

GELMAN, A., HWANG, J. and VEHTARI, A. (2014). Understanding predictive information

criteria for Bayesian models. Statistics and Computing 24 997–1016.

GELMAN, A. and RUBIN, D. B. (1992). Inference from Iterative Simulation UsingMultiple

Sequences. Statistical Science 7 457–511.

GOVINDARAJULU, U. S., MALLOY, E. J., GANGULI, B., SPIEGELMAN, D. and EISEN,

E. A. (2009). The comparison of alternative smoothing methods for fitting non-linear

exposure-response relationships with Cox models in a simulation study. The interna-

tional journal of biostatistics 5 Article 2.

GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrica 82 711–732.

GU, X. S. and ROSENBAUM, P. R. (1993). Comparison of Multivariate MatchingMethods:

Structures, Distances, and Algorithms. Source Journal of Computational and Graphical

Statistics 2 405–420.

HASTIE, T. (2017). gam: Generalized Additive Models.

HASTIE, T. and TIBSHIRANI, R. (1986). Generalized Additive Models. Statistical Science 1

297–318.

HASTIE, T. and TIBSHIRANI, R. (1993). Varying-Coefficient Models. Journal of the Royal

Statistical Society. Series B 55 757–796.

HASTINGS, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika 57.

113



HIRANO, K. and IMBENS, G. W. (2004). The Propensity Score with Continuous Treat-

ments * .

HO, C., DANIEL, E., IMAI, G., KING, E. and STUART (2007). Matching as Nonparametric

Preprocessing for Reducing Model Dependence in Parametric Causal Inference. Politi-

cal Analysis 15 199–236.

HODGES, J. S. and REICH, B. J. (2010). Adding Spatially-Correlated Errors Can Mess Up

the Fixed Effect You Love. The American Statistician 64 325–334.

HUDGENS, M. G. and HALLORAN, M. E. (2008). Toward Causal Inference With Interfer-

ence. Journal of the American Statistical Association 103 832–842.

IVERSON, H. K. and RANDLES, R. H. (1989). The Effects on Convergence of Substituting

Parameter Estimates into U-Statistics and Other Families of Statistics. Probability Theory

and Related Fields 81 453–471.

JERRETT, M., BURNETT, R. T., POPE III, C. A., ITO, K., THURSTON, G., KREWSKI, D.,

SHI, Y., CALLE, E. and THUN, M. (2009). Long-Term Ozone Exposure and Mortality.

N Engl J Med 360 1085–95.

KEELE, L., TITIUNIK, R. and ZUBIZARRETA, J. (2015). Enhancing a Geographic Regres-

sion Discontinuity Design Through Matching to Estimate the Effect of Ballot Initiatives

on Voter Turnout. Journal of Royal Statistical Society A 178 223–239.

KENNEDY, E. H., MA, Z., MCHUGH, M. D. and SMALL, D. S. (2017). Non-parametric

methods for doubly robust estimation of continuous treatment effects. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 79 1229–1245.

KING, G. and NIELSEN, R. (2016). Why Propensity Scores Should Not Be Used forMatch-

ing .

URL https://gking.harvard.edu/files/gking/files/psnot.pdf

LEE, D. and NEOCLEOUS, T. (2010). Bayesian quantile regression for count data with

114



application to environmental epidemiology. Journal of the Royal Statistical Society: Series

C (Applied Statistics) 59 905–920.

LEE, D. and SARRAN, C. (2015). Controlling for unmeasured confounding and spatial

misalignment in long-term air pollution and health studies. Environmetrics 26 477–487.

LIU, L. and HUDGENS, M. G. (2014). Large sample randomization inference of causal

effects in the presence of interference. Journal of the American Statistical Association 109

288–301.

LIU, L., HUDGENS, M. G. and BECKER-DREPS, S. (2016). On inverse probability-

weighted estimators in the presence of interference. Biometrika 103 829–842.

LUNA, X. D., WAERNBAUM, I. and RICHARDSON, T. S. (2011). Covariate selection for

the nonparametric estimation of an average treatment effect. Biometrika 98 861–875.

MADIGAN, D., YORK, J. and ALLARD, D. (1995). Bayesian Graphical Models for Discrete

Data. International Statistical Review 63 215–232.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H. and

TELLER, E. (1953). Equation of State Calculations by Fast Computing Machines. The

Journal of Chemical Physics 21 1087–1092.

MINASNY, B. and MCBRATNEY, A. B. (2005). The Matérn function as a general model for

soil variograms. Geoderma 128 192–207.

NEYMAN, J. (1923). On the Application of Probability Theory to Agricultural Experi-

ments. Essay on Principles. Section 9. Statistical Science 5 465–480.

PACIOREK, C. J. (2010). The importance of scale for spatial-confounding bias and preci-

sion of spatial regression estimators. Statistical Science 25 107–125.

PAPADOGEORGOU, G., CHOIRAT, C. and ZIGLER, C. M. (2018). Adjusting for unmea-

sured spatial confounding with distance adjusted propensity score matching. Biostatis-

tics 00 1–17.

115



PAPADOGEORGOU, G., MEALLI, F. and ZIGLER, C. (2017). Causal inference for interfering

units with cluster and population level treatment allocation programs .

URL https://arxiv.org/pdf/1711.01280.pdf

PEREZ-HEYDRICH, C., HUDGENS, M. G., HALLORAN, M. E., CLEMENS, J. D., ALI, M.

and EMCH, M. E. (2015). Assessing Effects of Cholera Vaccination in the Presence of

Interference. Biometrics 33 395–401.

RAFTERY, A. E. (1995). Bayesian Model Selection in Social Research. Sociological Method-

ology 25 111–163.

RAFTERY, A. E., MADIGAN, D. and HOETING, J. (1997). Bayesian model averaging for

linear regression models. Journal of the American Statistical Association 92 179–191.

RIDGEWAY, G. (2007). Generalized Boosted Models: A guide to the gbm package .

ROSENBAUM, P. R. and RUBIN, D. B. (1983). The Central Role of the Propensity Score in

Observational Studies for Causal Effects. Biometrika 70 41–55.

RUBIN, D. B. (1974). Estimating causal effects of treatments in randomized and nonran-

domized studies. Journal of Educational Psychology 66 688–701.

RUBIN, D. B. (1980). Randomization Analysis of Experimental Data: The Fisher Random-

ization Test Comment. Source Journal of the American Statistical Association 75 591–593.

RUBIN, D. B. (2008). For objective causal inference, design trumps analysis. Annals of

Applied Statistics 2 808–840.

SCHAFER, J. (2015). causaldrf: Tools for Estimating Causal Dose Response Functions.

SCHOLZE, M., BOEDEKER, W., FAUST, M., BACKHAUS, T., ALTENBURGER, R. and

HORST, L. (2001). A general best-ft method for concentration-response curves and

the estimation of low-effect concentrations. Environmental Toxicology and Chemistry 20

448–457.

116



SCHWARTZ, J., LADEN, F. and ZANOBETTI, A. (2002). The Concentration-Response Rela-

tion between PM2.5 and Daily Deaths. Environmental Health Perspectives 110 1025–1029.

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. NewYork: Wiley.

SHADDICK, G., LEE, D., ZIDEK, J. V. and SALWAY, R. (2008). Estimating exposure re-

sponse functions using ambient pollution concentrations. Annals of Applied Statistics 2

1249–1270.

SHI, L., ZANOBETTI, A., KLOOG, I., COULL, B. A., KOUTRAKIS, P., MELLY, S. J. and

SCHWARTZ, J. D. (2016). Low-Concentration PM2.5 and Mortality: Estimating Acute

and Chronic Effects in a Population-Based Study. Environmental health perspectives 124

46–52.

SOBEL, M. E. (2006). What Do Randomized Studies of Housing Mobility Demonstrate?

Journal of the American Statistical Association 101 1398–1407.

STUART, E. A. (2010). Matching methods for causal inference: A review and a look for-

ward. Statistical Science 25 1–21.

TCHETGEN TCHETGEN, E. J. and VANDERWEELE, T. J. (2012). On causal inference in the

presence of interference. Statistical Methods in Medical Research 21 55–75.

VAN DER VAART, A. W. (1998). Asymptotic statistics. Cambridge University Press.

VANSTEELANDT, S., BEKAERT, M. and CLAESKENS, G. (2012). On model selection and

model misspecification in causal inference. Statistical methods in medical research 21 7–30.

VERBITSKY-SAVITZ, N. and RAUDENBUSH, S. W. (2012). Causal Inference Under Inter-

ference in Spatial Settings : A Case Study Evaluating Community Policing Program in

Chicago. Epidemiologic Methods 1 105–130.

WANG, C., DOMINICI, F., PARMIGIANI, G. and ZIGLER, C. M. (2015). Accounting for

uncertainty in confounder and effect modifier selectionwhen estimating average causal

effects in generalized linear models. Biometrics 71 654–665.

117



WANG, C., PARMIGIANI, G. and DOMINICI, F. (2012). Bayesian Effect Estimation Ac-

counting for Adjustment Uncertainty. Biometrics 68 661–671.

WARD, J. H. J. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal

of the American Statistical Association 58 236–244.

WATANABE, S. (2010). Asymptotic Equivalence of Bayes Cross Validation andWidely Ap-

plicable Information Criterion in Singular Learning Theory. Journal of Machine Learning

Research 11 3571–3594.

WILSON, A. and REICH, B. J. (2014). Confounder selection via penalized credible regions.

Biometrics 70 852–861.

ZANOBETTI, A. and SCHWARTZ, J. (2007). Particulate air pollution, progression, and

survival after myocardial infarction. Environmental health perspectives 115 769–75.

ZEGER, S. L., DOMINICI, F., MCDERMOTT, A. and SAMET, J. M. (2008). Mortality in

the Medicare population and chronic exposure to fine particulate air pollution in urban

centers (2000-2005). Environmental health perspectives 116 1614–9.

ZIGLER, C. M., DOMINICI, F. andWANG, Y. (2012). Estimating causal effects of air quality

regulations using principal stratification for spatially correlated multivariate interme-

diate outcomes. Biostatistics 13 289–302.

118




