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Abstract

This dissertation studies how the estimation of first-stage nuisance parameters associated

with control and instrumental variables affects second-stage estimation of treatment-effect

parameters.

Chapter 1 approaches the analysis of experimental data as a mechanism-design problem that

acknowledges that researchers choose between estimators according to their own preferences.

Specifically, I focus on covariate adjustments, which can increase the precision of a treatment-

effect estimate, but open the door to bias when researchers engage in specification searches. I

establish that unbiasedness is a requirement on the estimation of the average treatment effect

that aligns researchers’ preferences with the minimization of the mean-squared error relative

to the truth, and that fixing the bias can yield an optimal restriction in a minimax sense. I

then provide a characterization of unbiased treatment-effect estimators as sample-splitting

procedures.

Chapter 2 gives two examples in which we can improve estimation by shrinking in high-

dimensional nuisance parameters while avoiding or even reducing the bias in a low-dimensional

target parameter. I first consider shrinkage estimation of the nuisance parameters associated

with control variables in a linear model, and show that for at least three control variables

the standard least-squares estimator is dominated with respect to variance in the treatment

effect even among unbiased estimators when treatment is exogenous. Second, I consider

shrinkage in the estimation of first-stage instrumental variable coefficients in a two-stage

linear regression model. For at least four instrumental variables, I establish that the standard

two-stage least-squares estimator is dominated with respect to bias.
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Chapter 3 (with Alberto Abadie) considers regression analysis of treatment effects after

nearest-neighbor matching on control variables. We show that standard errors that ignore the

matching step are not generally valid if the second-step regression model is misspecified. We

offer two easily implementable alternatives, (i) clustering the standard errors at the level of the

matches, or (ii) a nonparametric block bootstrap procedure, that produce approximations to

the distribution of the post-matching estimator that are robust to misspecification, provided

that matching is done without replacement.
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Introduction

In many empirical applications, we are interested in a (typically low-dimensional) target

parameter in the presence of a (sometimes high-dimensional) nuisance parameter. In my

dissertation, I consider the estimation of treatment effects after a pre-processing step involving

nuisance parameters associated with control or instrumental variables. I am particularly

interested in how model selection in the first stage can improve the estimation of the target

parameter, how we can avoid second-stage biases when researchers engage in first-stage

specification searches, and how second-stage inference is affected by the first stage.

In the first chapter, I consider the estimation of an average treatment effect in an experiment

in a world where researchers have discretion over estimators and engage in specification searches.

Econometric analysis typically focuses on the statistical properties of fixed estimators and

ignores researcher choices. In this chapter, I approach the analysis of experimental data as

a mechanism-design problem that acknowledges that researchers choose between estimators,

sometimes based on the data and often according to their own preferences. Specifically, I focus

on covariate adjustments, which can increase the precision of a treatment-effect estimate, but

open the door to bias when researchers engage in specification searches.

Having set up the estimation of the average treatment effect as a principal–agent problem,

I characterize the optimal solution of a designer who puts restrictions on the estimation, as

well as the second-best estimator given the designer’s restrictions. First, I establish that

unbiasedness is a requirement on the estimation of the average treatment effect that aligns

researchers’ preferences with the minimization of the mean-squared error relative to the

truth, and that fixing the bias can yield an optimal restriction in a minimax sense. Second,
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I provide a constructive characterization of all treatment-effect estimators with fixed bias

as sample-splitting procedures. Third, I show that a researcher restricted specifically to

the class of unbiased estimators of the average treatment effect solves a prediction problem.

The equivalence of unbiased estimation and prediction across sample splits characterizes

all admissible unbiased procedures in finite samples, leaves space for beneficial specification

searches, and offers an opportunity to leverage machine learning. As a practical implication, I

describe flexible pre-analysis plans for randomized experiments that achieve efficiency without

bias.

In the second chapter, I consider shrinkage in high-dimensional nuisance parameters

associated with control or instrumental variables when we care about the bias properties of a

(typically low-dimensional) target parameter. Shrinkage estimation usually reduces variance at

the cost of bias. But when we care only about some parameters of a model, I give two examples

where we can improve estimation by shrinking in high-dimensional nuisance parameters while

avoiding or even reducing the bias in the low-dimensional target.

Specifically, I consider two types of two-step estimators, showing in both cases how shrinkage

in the first stage can improve estimation in the second. I first consider shrinkage estimation

of the nuisance parameters associated with control variables, and show that the standard

least-squares estimator is dominated with respect to squared-error loss in the treatment effect

even among unbiased estimators when treatment is exogenous. Second, the two-stage least-

squares (TSLS) estimator is known to be biased when its first-stage fit is poor, and I show

that shrinkage in the first stage of a two-stage linear regression model reduces the bias of the

standard TSLS estimator. Both estimators apply James–Stein-type shrinkage in first-stage

high-dimensional Normal-means problems, and provide dominance in finite samples under

linearity, homoscedasticity and Normality assumptions.

In the third chapter (with Alberto Abadie), we consider regression analysis of treatment

effects after matching on control variables. Nearest-neighbor matching (Cochran, 1953; Rubin,

1973) is a popular nonparametric tool to create balance between treatment and control groups

in observational studies. As a preprocessing step before regression analysis, matching reduces
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the dependence on parametric modeling assumptions (Ho et al., 2007). Moreover, matching

followed by regression allows estimation of elaborate models that are useful to describe

heterogeneity in treatment effects. In current empirical practice, however, the matching step

is often ignored for the estimation of standard errors and confidence intervals. That is, to do

inference, researchers proceed as if matching did not take place.

In this chapter, we offer tools for valid inference after matching. Specifically, we show that

ignoring the matching first step results in asymptotically valid standard errors if matching

is done without replacement and the regression model is correctly specified relative to the

population regression function of the outcome variable on the treatment variable and all

the covariates used for matching. However, standard errors that ignore the matching step

are not valid if matching is conducted with replacement or, more crucially, if the second

step regression model is misspecified in the sense indicated above. We show that two easily

implementable alternatives, (i) clustering the standard errors at the level of the matches, or (ii)

a nonparametric block bootstrap procedure, produce approximations to the distribution of the

post-matching estimator that are robust to misspecification, provided that matching is done

without replacement. These results allow robust inference for post-matching methods that use

regression in the second step. A simulation study and an empirical example demonstrate the

empirical relevance of our results.

As we work with increasingly high-dimensional, “big” data, and more and more methods

from machine learning proliferate empirical work, the question of how we can employ machine-

learning tools designed for big-data prediction in causal estimation has become a central

challenge in econometrics. In this dissertation, I aim to provide some insights into how

first-stage nonparametric estimation can affect and improve second-stage estimation of low-

dimensional target parameters.

But as complex machine-learning methods proliferate data-driven decision making, there

is also a risk that more flexible and less transparent methods increase biases from misspecified

models and specification searches. While these methods promise to “let the data speak,” they

may also exacerbate p-hacking and publication biases. In my dissertation, I therefore develop

3



a decision-theoretic principal–agent perspective on estimation that explicitly considers the

preferences and degrees of freedom of the analyst. I thus hope to contribute to integrating

specification searches into causal inference while avoiding biases from human and machine

choices.
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Chapter 1

Optimal Estimation with Misaligned

Preferences

1.1 Introduction

There is a tension between flexibility and robustness in empirical work. Consider an investigator

who estimates a treatment effect from experimental data. If the investigator has the freedom

to choose a specification that adjusts for control variables, her choice can improve the precision

of the estimate. However, the investigator’s specification search may also produce an estimate

that reflects a preference for publication or ideology instead of a more precise guess of the

truth.1 To solve this problem, we sometimes tie the investigator’s hands and restrict her to

a simple specification, like a difference in averages. In contrast, this chapter characterizes

flexible estimators that leverage the data and researchers’ expertise, and do not also reflect

researchers’ preferences.

To characterize optimal estimators when researcher and social preferences are misaligned,

1A literature in statistics dating back to at least Sterling (1959) and Tullock (1959), and most strongly
associated with the work of Edward Leamer (e.g. Leamer, 1974, 1978), acknowledges that empirical estimates
reflect not just data, but also researcher motives. Fears of biases have been fueled more recently by replication
failures (Open Science Collaboration, 2015), anomalies in published p-values (Brodeur et al., 2016), and
empirical evidence for publication biases (Andrews and Kasy, 2017). This concern is also evident in the
American Economic Association’s 2012 decision to establish a registry for randomized controlled trials.
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I approach the analysis of experimental data as a mechanism-design problem.2 Concretely,

I consider a designer and an investigator who are engaged in the estimation of an average

treatment effect. As the designer, we aim to obtain a precise estimate of the truth (which I

capture in terms of mean-squared error). I assume however that the investigator may care

about the value of the estimate and not only its precision. For example, the investigator

may have a preference for large estimates in order to get published. The investigator picks

an estimator based on her private information about the specific experiment. The designer

chooses optimal constraints on the estimation by the investigator.3

First, I argue that we should not leave the decision over the bias of an estimator to

the investigator, and motivate a restriction to estimators with fixed bias. More precisely, I

prove that setting the bias aligns the incentives of the investigator and the designer and is a

minimax optimal solution to the designer’s problem under suitable assumptions on preferences.4

Allowing the investigator to choose the bias can, in principle, improve overall precision through

a reduction in the variance. But an investigator could use her control over the bias to reflect

her preferences rather than her private information. Among unbiased estimators, for example,

even an investigator who wants to obtain an estimate close to some large, fixed value will still

choose an estimator that minimizes the variance.

Second, having motivated a bias restriction, I prove that every estimator of the average

treatment effect with fixed bias has a sample-splitting representation. As the starting point

for this representation, consider a familiar estimator that is unbiased, namely the difference

in averages between treatment and control groups. We can adjust this estimator for control

variables by a procedure that splits the sample into two groups. From the first group, we

2 Like Leamer (1974, 1978), I explicitly consider researchers’ degrees of freedom. Like Glaeser (2006), I
also model their preferences. Like Schorfheide and Wolpin (2012, 2016), I employ a principal–agent perspective
to justify data-splitting procedures.

3Abstractly, the designer could represent professional norms. Concretely, it could represent a journal
setting standards for the analysis of randomized controlled trials, or the U.S. Food and Drug Administration
(FDA) imposing rules for the evaluation of new drugs.

4This result echoes Frankel’s (2014) characterization of simple delegation mechanisms that align an agent’s
choices with a principal’s preferences by fixing budgets. In Section 1.5, I explore the similarities of my solution
to results in the mechanism-design literature on delegation that goes back to Holmström (1978, 1984), and I
exploit these parallels in the proof of my minimax result.
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calculate regression adjustments that we subtract from the outcomes in the second group.

The updated difference in averages is still unbiased by construction. Though this procedure

appears specific, I prove that any estimator with fixed bias can be represented by multiple

such sample-splitting steps. Unbiased estimators, for example, can differ from a difference in

averages only by leave-one-out or leave-two-out regression adjustments of individual outcomes.5

Third, I focus specifically on estimation with zero bias, and show that an investigator

restricted to unbiasedness will solve a prediction problem. By the sample-splitting representa-

tion, I can write every unbiased estimator of the average treatment effect in terms of a set of

regression adjustments. When choosing from this restricted set of estimators, the investigator

picks regression adjustments that minimize prediction risk for a specific loss function. Each

optimal adjustment predicts the outcomes of one or two units from other units in the sample.

The investigator’s solution reveals a finite-sample complete-class theorem that characterizes

all admissible unbiased estimators of an average treatment effect as solutions to out-of-sample

prediction problems. Since my results hold exactly without taking large-sample limits or

relying on other approximations, I obtain a general duality between unbiased estimation and

prediction without putting any essential restrictions on the distribution of the data other than

random assignment of treatment. Any admissible unbiased estimator corresponds exactly to a

set of admissible prediction solutions.

As a practical implication, my results motivate and describe flexible yet robust pre-analysis

plans for the analysis of experimental data.6 Having established that unbiased estimation is

equivalent to a set of prediction tasks, there are two types of flexible pre-analysis plan that

achieve precise estimation of treatment effects without leaving room for bias from specification

searches. In the first type, the investigator commits to an algorithm that predicts outcomes

from covariates. This algorithm can engage in automated specification searches to learn a

5In particular, for known treatment probability, I show that all unbiased estimators of the sample-average
treatment effect take the form of the “leave-one-out potential outcomes” (LOOP) estimator from Wu and
Gagnon-Bartsch (2017), which is a special case of Aronow and Middleton’s (2013) extension of the Horvitz and
Thompson (1952) estimator.

6Coffman and Niederle (2015), Olken (2015), and Heckman and Singer (2017) discuss the benefits, costs,
and limitations of pre-analysis plans. I resolve an implicit flexibility-robustness tradeoff for one specific setting.
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good model from the data.7 Adjusting outcomes by its fitted out-of-sample predictions will

yield an unbiased estimator.

There is a second, more flexible type of pre-analysis plan that achieves unbiased and precise

estimation without the investigator committing to her specification searches in advance. In

this second type of pre-analysis plan, the investigator only commits to splitting the data and

distributing subsamples to her research team. Each researcher then engages in specification

searches on a part of the data and reports back a prediction function. As my fourth main result,

I characterize all unbiased estimators of the treatment effect that delegate the estimation

of some or all regression adjustments in this way. Delegation to one researcher improves

over simple pre-analysis plans.8 Delegation to at least two researchers asymptotically attains

the semi-parametric efficiency bound of Hahn (1998) under assumptions that apply to most

parametric and many semi- and non-parametric estimators of the regression adjustments.

The results in this chapter relate to the practice of sample splitting in econometrics,

statistics, and machine learning. From Hájek (1962) to Jackknife IV (Angrist et al., 1999),

model selection (e.g. Hansen and Racine, 2012), and time-series forecasting (see e.g. Diebold,

2015; Hirano and Wright, 2017), sample splitting is used as a tool to avoid bias by construction.

Wager and Athey (2017) highlight the role of sample splitting in the estimation of heterogeneous

treatment effects. Chernozhukov et al. (2018) show its relevance in achieving valid and efficient

inference in high-dimensional observational data. My results show that sample splitting is not

just an ad-hoc tool, but a feature of optimal estimators.9 I establish that sample splitting is a

necessary restriction on the investigator’s estimator to achieve fixed bias and align incentives.

Moreover, I build upon an active literature in statistics on regression adjustments to

experimental data. Freedman (2008) and Lin (2013) discuss the bias of linear-least squares

7In a similar spirit, Balzer et al. (2016) propose a data-adaptive procedure that selects among specifications
to minimize the variance of treatment-effect estimators in experiments.

8My hold-out approach is similar to Dahl et al. (2008), Fafchamps and Labonne (2016) and Anderson
and Magruder (2017), who all propose split-sample strategies to combine exploratory data analysis with valid
inference. Dwork et al. (2015) propose a protocol to reuse the hold-out data to improve efficiency. I show that
in my setting simple hold-out procedures are dominated when data can be distributed to multiple researchers.

9A rationale for holding out data in policy evaluation from randomized experiments has also been formalized
by Schorfheide and Wolpin (2012, 2016).
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regression adjustments. Most closely related to the investigator’s solution in my paper, Wu

and Gagnon-Bartsch (2017) propose the “leave-one-out potential outcomes” (LOOP) estimator

that yields regression adjustments without bias, which coincides with the variance-minimizing

unbiased estimator chosen by the researcher in my setting for the case of known treatment

probability. Wager et al. (2016) propose a similar sample-splitting estimator based on separate

prediction problems in the treatment and control groups. Relative to this literature, I motivate

a bias restriction and fully characterize estimators with given bias. Specifically, I show that

in my setting and the case of known treatment probability any variance-minimal unbiased

estimator can be written in the form of Wu and Gagnon-Bartsch’s (2017) LOOP estimator,

where the adjustment terms solve a prediction problem in finite samples.

Relatedly, this chapter contributes to a growing literature that employs machine learning

in program evaluation. Supervised machine learning algorithms solve prediction problems like

those that I show to be equivalent to unbiased estimation (see e.g. Mullainathan and Spiess,

2017). As in Wager et al. (2016) and Wu and Gagnon-Bartsch (2017), the sample-splitting

construction allows researchers to leverage machine learning in estimating average treatment

effects in experimental data. Bloniarz et al. (2016) specifically use the LASSO to select among

control variables in experiments. Athey and Imbens (2016) use regression trees to estimate

heterogeneous treatment effects. Chernozhukov et al. (2017) estimate treatment effects from

high-dimensional observational data. I contribute a finite-sample principal–agent framework for

integrating machine learning, which is mostly agnostic about specific algorithms or asymptotic

approximations.

My analysis is limited in three ways. First, I assume randomization, and thus that

identification is resolved by design. My findings extend to known propensity scores, stratified

and conditional randomization, and corresponding identification from quasi-experiments.10

Second, I focus on the analysis of a single experiment, and neither on repeated interactions

10When treatment is not random, endogeneity creates auxiliary prediction tasks in the propensity score
that interact with fitting regression adjustments (Robins and Rotnitzky, 1995; Chernozhukov et al., 2018).
Finite-sample unbiased estimation may then be infeasible absent strong parametric assumptions, and inference
may be invalid when these additional prediction tasks are ignored (Belloni et al., 2014).
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between designer and investigator, nor on the publication policies that may shape investigators’

preferences. Third, I characterize optimal estimators in terms of prediction tasks, but I do

not discuss in depth the solution to these prediction problems. A large and active literature

that straddles econometrics, statistics, and machine learning provides guidance and tools to

provide efficient prediction functions.

The remaining chapter is structured as follows. Section 1.2 introduces the main ideas behind

my theoretical results in a stylized example. In Section 1.3, I formally lay out the specific

estimation setting and my mechanism-design approach. I preview my main theoretical results

in Section 1.4. In Section 1.5, I solve for optimal restrictions on the investigator’s estimation.

Section 1.6 characterizes unbiased estimators and solves for the investigator’s second-best

choice. For the case that full ex-ante commitment is infeasible or impractical, Section 1.7

considers unbiased estimators that permit ex-post researcher input. In the Conclusion, I

discuss extensions. In the Appendix, I collect the proofs of my main results and discuss

asymptotic inference.

1.2 A Simple Example

I consider the estimation of a sample-average treatment effect. But the main features of my

analysis are already apparent when we focus on a single unit within that sample. As an

example, I discuss the estimation of the effect of random assignment to a job-training program

on the earnings of one specific worker.11

1.2.1 Estimating the Unit-Level Causal Effect

The causal effect on unit i is τi = yi(1)− yi(0), where yi(1), yi(0) are the potential outcomes

when assigned to treatment or control, respectively. For assignment to a job-training program,

yi(1) = $1, 190 could be the earnings of worker i when he is offered the training program, and

yi(0) = $1, 080 the earnings of the same worker without access to this training, so τi = $110.

11Throughout, I focus on intent-to-treat effects, so I do not consider take-up or the use of random assignment
as an instrument.
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We do not observe both potential outcomes for one unit simultaneously, but observe only the

treatment status di and the realized outcome

yi =


yi(1), di = 1,

yi(0), di = 0.

But since treatment is assigned randomly (with probability p = P(di = 1)), we can still obtain

an unbiased estimate of the unit treatment effect.12 Indeed, I will note below that di−p
p(1−p)y

is an unbiased estimator for τi. (Throughout, by “unbiased” I mean that, for fixed potential

outcomes yi(1) and yi(0), the treatment-effect estimator averages out to yi(1) − yi(0) over

random draws of treatment di.)

In addition to the realized outcome yi and treatment status di, I assume that we also

have access to some pre-treatment characteristics xi of unit i. Estimating the treatment

effect τi = yi(1) − yi(0) for, say, a treated unit (di = 1) amounts to imputing the missing,

counterfactual control outcome yi(0). When we have additional information about that

unit, we can hope to use it together with the outcome, treatment, and characteristic data

z−i = (yj , dj , xj)j 6=i of all other units to estimate yi(0), and thus τi. The investigator could,

for example, run a linear regression of earnings on treatment, pre-assignment earnings, and

some basic demographic characteristics to impute the counterfactual outcome yi(0). She could

then estimate that worker’s treatment effect by the difference between realized and imputed

earnings.

If we do not put any restriction on estimation and investigator and social preferences agree,

then the investigator’s estimator will represent her expertise as well as the data. I model the

investigator’s expertise as a prior distribution π over potential outcomes yi(1), yi(0) given

12 Here, I assume that we know that treatment has been assigned with known probability p = P(di = 1).
Throughout the remaining chapter, I also consider random assignment with a fixed number of treated units
rather than a known ex-ante probability of treatment. The case of known number n1 of treated units has
structurally similar features, but is not the same as the case with known probability p = n1

n
. The reason for

the difference is that knowledge of all other units’ treatment status is not informative about a given unit’s
treatment status for known p, but perfectly determines the left-out unit’s treatment status for known n1.
Instead of leave-one-out regression adjustments, for fixed n1 I therefore show in Section 1.6 that leave-two-out
regression adjustments fully characterize treatment-effect estimators with given bias.
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characteristics xi. (To be more precise, this prior will be over the joint distribution of the

potential outcomes of all units given all their controls.) If the investigator aims to minimize

the average mean-squared error Eπ(τ̂i − τi)2, then for di = 1 she will estimate τi by

τ̂i = Eπ[τi|yi, di, xi, z−i] = yi(1)︸ ︷︷ ︸
observed

−Eπ[

unobserved︷ ︸︸ ︷
yi(0) |yi(1), xi, z−i].

This estimator represents the investigator’s best guess of the treatment effect given her prior

and all information in the data. In the training-program example, one specific prior could

imply the use of Mincer polynomials in imputing the missing counterfactual outcome by its

posterior expectation Eπ[yi(0)|yi(1), xi, z−i].

1.2.2 Specification Searches and Optimal Restrictions on Estimation

If investigator and social preferences are misaligned, then the investigator’s estimator may

represent her incentives more than her expertise and the data. Even if the investigator commits

to an estimator ex-ante, she could still choose one that is biased towards her preference rather

than her prior. As the designer, we therefore should not only require that the investigator

commits to an estimator before she has seen all of the data, but also restrict the estimators

the investigator can choose from.

We face a tradeoff between flexibility and robustness. Constraints that are too permissive

may lead to publication bias. One extreme solution would restrict the investigator to simple

specifications that do not use control covariates, or use them only in simple linear regressions.

Conventional pre-analysis plans often take this form. But restricting the investigator to a

few estimators may forfeit experiment-specific knowledge about the relationship of control

variables to outcomes in the prior, which I assume encodes the private information of the

investigator.

I show that fixing the bias is a restriction on estimation that resolves this tradeoff. The

bias of the first-best optimal estimator usually varies with the prior. Indeed, the posterior

expectation of the treatment effect τi is usually biased towards the investigator’s prior expecta-

tion Eπτi. But when we leave the decision over bias to the investigator, then the investigator
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may shrink her estimator to her preferred estimate instead of her prior.

Once we restrict the investigator to, say, unbiased estimators of τi, even an investigator who

wants to minimize mean-squared error relative to some fixed target τ̃i (rather than the true

treatment effect) will minimize average mean-squared error relative to the true treatment effect

among unbiased estimators, since the investigator’s average risk (or cost in the nomenclature

of mechanism design) is then

Eπ(τ̂i − τ̃i)2 = Eπ(τ̂i − τi)2︸ ︷︷ ︸
social preference

+

unaffected by investigator choice︷ ︸︸ ︷
Eπ(τi − τ̃i)2 .

My first main result is that fixing the bias represents an optimal restriction in a minimax

sense (Theorem 1.1) over a set of investigator preferences that generalize this risk function

(Assumption 1.5). That is, the designer’s average mean-squared error is minimal for an

investigator that minimizes mean-squared error relative to some worst-case target, given some

(hyper-)prior over the investigator’s private information. Specifically, if an uninformed designer

has little systematic information about the location of the treatment effect, they may want to

set the bias close to zero.

1.2.3 Optimal Unbiased Estimation

Now that investigator and social preferences are aligned, how can the investigator choose

an estimator with given bias and low variance? Focusing on the case of zero bias, a simple

unbiased estimator of the unit-level treatment effect τi is available. Indeed, as e.g. noted by

Athey and Imbens (2016) (where τ̂i is called the “transformed outcome”), the estimator

τ̂i =
di − p
p(1− p)

yi =


+1
pyi di = 1,

− 1
1−pyi di = 0,

is unbiased because E[τ̂i] = p1
pyi(1)− (1− p) 1

1−pyi(0) = τi. But this estimator can have very

high variance. Assume that job training is assigned with probability p = .5, and that the
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potential earnings are yi(1) = $1, 190 and yi(0) = $1, 080. Then

τ̂i =


+$2, 380 di = 1,

−$2, 160 di = 0,

is an unbiased, but extremely variable estimator of the treatment effect τi = $110. Indeed, the

variance of τ̂i under treatment assignment is

Var(τ̂i) = p(1− p)(τ̂i(di = 1)− τ̂i(di = 0))2,

so in the example the standard error amounts to
√

Var(τ̂i) = $2, 270.

We can modify this estimator by regression adjustments ŷi to obtain

τ̂i =
di − p
p(1− p)

(yi − ŷi). (1.1)

As long as ŷi only uses information from xi and z−i = (yj , dj , xj)j 6=i, and not the outcome yi or

treatment effect di, τ̂i will still be unbiased. Averaging over all τ̂i and for an appropriate choice

of the adjustments, Wu and Gagnon-Bartsch (2017) introduce this estimator as the “leave-one

out potential outcomes” (LOOP) estimator. My second main result shows that all estimators

of the treatment effect with a given bias can be written in this way (Lemma 1.1). Concretely,

any unbiased estimator of the sample-average treatment effect is the average over estimators τ̂i

for all i that each include an adjustment that uses data only from all other units. All unbiased

estimators are thus equivalent to a repeated sample-splitting procedure. Conversely, if ŷi is

fitted, for example, by a regression of y on x that violates the sample-splitting construction by

also including yi, then overfitting of ŷi to yi would bias the treatment-effect estimate towards

zero.

Among unbiased estimators, which regression adjustment minimizes variance? As Wu and

Gagnon-Bartsch (2017) also note, the investigator would optimally set ŷi to (1−p)yi(1)+pyi(0),

since this leads to τ̂i = τi. But without using yi(1) or yi(0), the investigator’s best choice is
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the posterior expectation

ŷi = Eπ[(1− p)yi(1) + pyi(0)|xi, z−i].

In the example, if the investigator’s best guess of the expected potential earnings, yi(1)+yi(0)
2 ,

based on her prior and data on all other units is ŷi = $1, 100, then

τ̂i =


+2($1, 190− $1, 100) = $180 di = 1,

−2($1, 080− $1, 100) = $40 di = 0

is still unbiased for τi = $110, but has much lower variance (the standard error is now√
Var(τ̂i) = $70). My third main result shows that among unbiased estimators the investigator’s

solution for the regression adjustments in general takes this form (Theorem 1.2), and as a

corollary that all admissible (non-dominated) unbiased estimators can be achieved by exactly

these regression adjustments (Theorem 1.3).

1.2.4 Machine Learning

By construction, the estimator in (1.1) of the unit-level treatment effect τi is unbiased whatever

the regression adjustment is. In particular, the sample-splitting construction ensures that prior

information only affects variance. Even a misspecified or dogmatic prior does not systematically

bias what we learn about τi. As also used in Wager et al. (2016) and Wu and Gagnon-Bartsch

(2017), this robust construction offers an opportunity to leverage tools that produce good

predictions of potential outcomes even when they come with little guarantees that would

otherwise ensure unbiasedness.

The optimal regression adjustments ŷi = Eπ[(1 − p)yi(1) + pyi(0)|xi, z−i] solve an out-

of-sample prediction problem. Take the special case p = .5.13 Then f̂i(xi) = Eπ[.5yi(1) +

.5yi(0)|xi, z−i] minimizes average prediction risk for the loss (f̂i(xi)−yi)2 where f̂i uses outcome

and treatment data from all other units only. This is a regression problem where the quality of

13When treatment is not balanced, p 6= .5, additional weights in the prediction loss express that adjustments
for the smaller group effectively get weighted up in (1.1). For details, see (1.2) in Section 1.6.
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fit is measured at a new sample point, and not inside the training sample. Supervised machine-

learning algorithms are built to solve exactly such out-of-sample prediction problems. For

example, shrinkage methods like ridge regression of the LASSO can have better out-of-sample

prediction performance than a linear least-squares regression that optimizes the in-sample fit.

I also obtain an intuitive formula for calculating standard errors. The variance of τ̂i is the

expected loss in predicting the weighted potential outcome sum (1− p)yi(1) + pyi(0) by the

adjustment ŷi, which can be estimated from the realized outcome yi that has been excluded

from the construction of ŷi. When units are sampled randomly, I show that, under mild

conditions on the construction of regression adjustments, standard errors can be calculated

from estimated prediction loss.

1.2.5 Unbiased Estimation without Pre-Specification

Regression adjustments incorporate flexibly the investigator’s expertise as well as the data,

but to ensure that they do not add bias, the investigator must commit to their construction

in advance. Indeed, once the investigator has seen the full sample data, she cannot credibly

claim that some adjustment uses data only from other units. Practically, the investigator

could pre-specify a machine-learning algorithm that learns regression adjustments from the

data. But that may be impractical when the construction of adjustments requires input by

the researcher.

However, complete pre-specification is not necessary to ensure unbiasedness (or, more

generally, a given bias). Instead the investigator could commit to splitting and distributing

the sample. Assume there is a researcher in the investigator’s research team that has not

yet seen the data. To obtain a regression adjustment for unit i, the investigator could give

that researcher access to data only from all other units. That researcher then takes the

subsample, solves a prediction problem to obtain a good adjustment ŷi, and returns that

regression adjustment to the investigator, who estimates the treatment effect according to

(1.1). In that case, that researcher’s choice will not introduce bias even if the researcher does

not commit to the construction of the regression adjustments in advance.
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Of course, estimating the average treatment effect on all n sample units in this way would

require a team of n researchers. But my fourth main result characterizes all estimators with

given bias that remain feasible without detailed pre-specification and when only K researchers

are available (Corollary 1.1). Even ex-post analysis by a single researcher improves over simple

pre-analysis plans without the need for detailed pre-specification. I also show that delegating

estimation to two researchers approximates optimal estimation in that it ensures asymptotic

efficiency under mild conditions.

1.3 Setup

Having given a simple example, I now lay out formally how I approach causal inference as a

mechanism-design problem. A designer delegates the estimation of an average treatment effect

in a randomized experiment to an investigator. The investigator receives a private signal about

the distribution of potential outcomes, but has unknown preferences that can be biased. The

designer does not analyze the dataset herself, but instead sets constraints on the investigator’s

estimator.

In this section, I first define the data-generating process and target parameter before

introducing the investigator’s and designer’s problems. To simplify the further analysis, I then

argue that we can restrict the analysis to direct restrictions by the designer on the space of

estimators the investigator commits to.

1.3.1 Target Parameter

Following Neyman (1923), I am interested in the average treatment effect

τθ =
1

n

n∑
i=1

(yi(1)− yi(0))︸ ︷︷ ︸
=τi

θ = (yi(1), yi(0))ni=1

in a given sample of n units. In the Rubin (1974, 1975, 1978) causal model interpretation,

yi(di) is the potential outcome of unit i had they received treatment status di ∈ {0, 1}, and τi

the respective causal effect.
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The n units may be randomly sampled from a population distribution,

(yi(1), yi(0), xi)
iid∼ P,

with pre-treatment characteristics xi ∈ X . In this case, my analysis will extend to the

estimation of the population-average treatment effect τ = E[yi(1)− yi(0)] and the conditional

average treatment effect (given characteristics x ∈ X n) 1
n

∑n
i=1 E[yi(1)− yi(0)|xi]. My main

analysis is conditional on (yi(1), yi(0), xi)
n
i=1 and therefore focuses on the sample-average

treatment effect τθ, but I will return to τ when I discuss inference.

1.3.2 Experimental Setup

I assume that treatment is assigned randomly to overcome the missing-data problem central

to causal inference (Holland, 1986). For a unit with treatment status di, we only observe

the realized outcome yi = yi(di). But because I assume that the distribution of treatment

assignment d ∈ {0, 1}n does not vary with the potential outcome vectors y(1), y(0) ∈ Rn

(Cochran, 1972), we can estimate the treatment effect without bias. The stable-unit treatment

effect assumption (Rubin, 1978) of no interference between units is implicit.

Assumption 1.1 (Random Treatment). Given potential outcomes θ = (yi(1), yi(0))ni=1, the

data z = (yi, di)
n
i=1 is distributed according to Pθ as follows. d is generated from a known

distribution over {0, 1}n that does not depend on (y(1), y(0)) and is one of:

1. Each unit is independently assigned to treatment with known probability p = P(di = 1)

(where 0 < p < 1).

2. d is drawn uniformly at random from all assignments with known number n1 =
∑n

i=1 di

of treated units (where 0 < n1 < n).

Given d, yi = yi(di) for all i ∈ {1, . . . , n}.

In this notation, I do not explicitly include the covariates x1, . . . , xn in the data z, since

I condition on the controls and therefore treat (xi)
n
i=1 as a constant and not as a random

variable. While neither of the distributions of d depends on the controls, my results will extend
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to distributions that are known functions of xi if they ensure identification of τθ. These include

stratified or conditional random sampling, and sampling according to known propensity scores.

1.3.3 Covariate Adjustments

How can we estimate the sample-average treatment effect τθ from data (yi, di, xi)
n
i=1? Since

treatment is exogenous, the average difference

τ̂∗(z) =
1

n1n0

∑
di=1,dj=0

(yi − yj) =
1

n1

∑
di=1

yi −
1

n0

∑
di=0

yi

between treatment and control outcomes is an unbiased estimator of τθ conditional on the

number n1 of treated units (provided 0 < n1 < n).

Of course this difference in averages τ̂∗ leaves information in the covariates x1, . . . , xn on

the table and is likely inefficient. In econometric practice, τθ is therefore often estimated from

a linear regression of the outcome on treatment and controls. But the researcher’s choice

of control strategy can bias published results. First, implicit model assumptions may bias

estimates. Even simple linear regressions can be biased (Freedman, 2008), although this bias

vanishes asymptotically if interactions are included (Lin, 2013). Second, if the investigator

does not document that she picked among multiple covariate adjustments, an unsuspecting

observer’s inference may be biased towards stronger treatment effects and unjustified confidence

(Lenz and Sahn, 2017).

1.3.4 Estimation Preferences

I explicitly consider the choice of the control specification in a mechanism-design framework.

A designer and an investigator face a choice of an estimator

τ̂ : Z → R

that maps experimental data z = (y, d) ∈ (Y × {0, 1})n = Z into an estimate τ̂(z) of the

sample-average treatment effect τθ. Since my analysis is conditional on the control covariates,

this estimator encodes in particular how the estimate of the treatment effect is adjusted for
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the realizations x1, . . . , xn of the control variables.

Designer and investigator preferences are expressed by risk functions rD, rI : Θ× RZ → R

that encode the expected loss rDθ (τ̂), rIθ(τ̂) of an estimator τ̂ ∈ RZ given the full matrix

θ = (y(1), y(0)) ∈ Y2n = Θ of 2n potential outcomes in the sample at hand. Both designer and

investigator aim to minimize their respective risk given the potential outcomes θ. Throughout

this chapter, I specifically assume that the designer’s risk function expresses a social desire to

obtain precise estimates of the true treatment effect τθ.

Assumption 1.2 (Social risk function). The designer’s risk for an estimator τ̂ : Z → R is

the estimator’s mean-squared error

rDθ (τ̂) = Eθ[(τ̂(z)− τθ)2],

where the expectation averages over random treatment assignment given potential outcomes

θ ∈ Θ.

Notably, I do not assume that the designer has an inherent preference for unbiased

estimators.14 While my characterization results will depend on this specific form of the

social risk function, the general mechanism-design approach extends to alternative risk (or

equivalently utility) functions.

The investigator’s risk function can differ from the designer’s risk function. For example, I

will later consider risk functions that include rIθ(τ̂) = Eθ[(τ̂(z)− τ̃)2], which expresses a desire

to obtain a certain estimate τ̃ irrespective of the true treatment effect τθ. The designer knows

only that rI ∈ R for some set of risk functions.

1.3.5 Prior Information

Since generally no single estimator τ̂ minimizes risk for all potential outcomes θ ∈ Θ and θ

is not known, a good estimator has to trade off risk performance across different draws of

14Still, the minimization of squared-error loss is associated with unbiasedness, as e.g. in Lehmann and
Romano (2006, Example 1.5.6).
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potential outcomes. Following Wald (1950), I assume that a prior distribution π over potential

outcomes governs this tradeoff.15

The investigator receives the prior distribution π over potential outcomes θ as a private

signal before the data z is realized. This private information models researcher expertise. For

example, the investigator may have run previous studies or a pilot and synthesize relevant

results in the literature. The investigator therefore has a sense which variables are important

and which regression specifications are more likely to work well.

The uninformed designer does not observe the prior π, but only has a diffuse (hyper-)prior

η for π. The designer therefore designs a mechanism that elicits the investigator’s prior

information. Optimally, the designer would want to obtain an estimator that minimizes

average mean-squared error given the investigator’s private prior, but since the investigator’s

preferences may differ from the designer’s, the latter cannot generally achieve a first-best

estimator.

1.3.6 Mechanism Structure and Timeline

I assume that the designer has the authority to set rules in the form of a mechanism without

transfers. The designer cannot verify the investigator’s risk type or private prior information.

The investigator follows whatever mapping from investigator decisions to final estimator the

designer sets, and the designer follows through on the mapping she commits to. Similar to

Frankel’s (2014) delegation setup, the game between designer and investigator plays out in the

following steps:

1. The designer chooses a mechanism that consists of a message space M and a mapping

from messages m into estimators τ̂m : Z → R.

2. The investigator observes the prior distribution π and sends a message m(rI , π).

15One alternative approach to finding a good estimator would involve putting restrictions on the distribution
of potential outcomes and discussing efficient estimators under some large-sample approximation. But since
researchers may reasonably disagree about these choices, this would itself add an additional degree of freedom
to estimation. I instead consider estimation in an exact finite-sample decision-theoretic framework that does
not restrict the distribution of potential outcomes.
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3. The potential outcomes θ are realized, the data z drawn according to the experiment,

and the estimate τ̂m(rI ,π)(z) formed.

In econometric terms, I think of the investigator’s message as a modelling decision. The

designer then restricts the space of models the investigator can choose from.

For simplicity, I assume that the investigator’s message given her risk type and private

information and the mapping of her message to the final estimator are deterministic, but

the setup extends to stochastic actions as in Frankel (2014). By the revelation principle,

the specific form of the mechanism is not a substantial restriction, since it includes direct

mechanisms in which the investigator reveals her risk type and her private information (as e.g.

in Holmström, 1984).

Since the investigator controls the estimator with her choice of message, we can assume

without loss of generality that the message space is a set of estimators (and the mapping from

message to estimator the identity). Indeed, take any estimator that is an outcome for some

message. Since neither risk type nor prior are verifiable, the investigator can always choose

that message to obtain said estimator.

estimate τ̂ I(z)
realized

designer sets
restriction CD
on estimation

investigator
chooses

estimator τ̂ I ∈ CD

data z
uncovered

(ex-post
analysis)

baseline
x1, . . . , xn
available

Figure 1.1: Estimation timeline

Hence, the designer directly restricts estimators to some set CD. Subject to the constraint,

the investigator specifies an estimator τ̂ I ∈ CD before data becomes available. Once the

data z ∈ Z is realized, the investigator reports the estimate τ̂ I(z) (Figure 1.1). Since my

econometric analysis is conditional on the control variables x1, . . . , xn, this baseline information

can be available to the investigator and inform her choice of estimator.

Optimal estimation in this framework will require some degree of commitment by the
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investigator before the data is available. Otherwise, any restriction on estimation would be

cheap talk, since the investigator could choose an estimator ex post that justifies their preferred

estimate at the realized data. But I will show that optimal commitment is less constraining

than restricting the investigator to pre-analysis plans with simple specifications that are chosen

ex ante. First, the investigator’s estimator can still contain (automated) specification searches.

Second, in Section 1.7, I show that it is not generally necessary to specify the full estimator ex

ante, and that additional exploratory analysis after the data has become available can improve

estimation.

1.3.7 Investigator and Designer Choices

Having set up the actions available to the investigator and designer, I now describe their

preferences. The investigator chooses an estimator to minimize average risk subject to her

prior.

Assumption 1.3 (Investigator’s choice). Given the prior distribution π over potential outcomes

θ ∈ Θ, the investigator minimizes average risk subject to the constraint CD ⊆ RZ set by the

designer,

τ̂ I = τ̂ I(CD, π) ∈ arg min
τ̂∈CD

Eπ[rIθ(τ̂)].

The designer does not know the risk function of the investigator, but only assumes that it

falls within some set R of risk functions. Adapting the maxmin criterion from the mechanism-

design literature (e.g. Hurwicz and Shapiro, 1978; Frankel, 2014; Carroll, 2015), I assume that

the designer chooses a constraint that minimizes average risk at a worst-case investigator type.

Definition 1.1 (Designer’s minimax delegation problem). Given some set R of investigator

risk functions, the designer picks a constraint CD ⊆ RZ to minimize average mean-squared

error,

CD = CD(R, η) ∈ min
C⊆RZ

sup
rI∈R

Eη[rDθ (τ̂ I)],

where I assume that the investigator breaks ties in the designer’s favor.
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The minimax criterion can be seen as a game between designer and nature. For every

choice of restriction that the designer picks, nature responds with an investigator who produces

maximal average mean-squared error. In this game, the designer picks a constraint that ensures

that the average risk at a worst-case outcome is minimal.

Without constraints, the investigator’s estimator may be a poor fit from the designer’s

perspective. But if the constraints are too restrictive, for example if we reduce the allowed

set of estimators to the difference in averages τ̂∗, we will use the investigator’s expertise

inefficiently. I therefore solve for constraints CD that resolve this tradeoff between flexibility

and robustness optimally.

1.3.8 Support Restriction

Throughout this chapter, I assume that the support of (potential) outcomes is finite, for three

reasons. First, I adapt results from the mechanism-design literature that involve finite sums.

Second, I use and provide complete-class theorems that fully characterize admissible (non-

dominated) estimators provided their support is finite. Third, I derive intuitive combinatorial

proofs for my characterization results.

Assumption 1.4 (Finite support). The support Y of potential outcomes yi(1), yi(0) is finite.

Since the number of support points is otherwise unrestricted, the finite-support assumption

allows for flexible approximations to arbitrary distributions.

1.4 Overview of Main Results

In this section, I preview my main theoretical results. Under specific restrictions on investigator

preferences, I show that fixing the bias is a minimax optimal constraint on estimation. I

then present a representation of treatment-effect estimators with given bias, characterize the

investigator’s optimal choice from this restricted class for the case of unbiased estimators, and

extend the analysis to estimators with limited pre-specification.
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I assume that investigator risk functions express mean-squared error relative to some target

which may not be the true treatment effect.

Assumption 1.5 (Investigator risk restriction). The investigator has a risk function from the

set

R∗ = {rI ; rIθ(τ̂) = Eθ[(τ̂(z)− τ̃θ)2] for some τ̃ : Θ→ R}.

The target function τ̃θ is unrestricted in this definition. For example, the investigator may

want to achieve a constant target no matter what the true potential outcomes are (τ̃θ = const.).

Or the investigator may prefer to obtain estimates above the true treatment effect (τ̃θ = τθ+ε).

In any of these cases, restricting investigators to unbiased estimators (or more generally,

estimators with given bias, Eθ[τ̂(z)] = τθ+βθ) ensures that they choose among these estimators

as if they had the designer’s preference, i.e. they minimize average variance. Once I have

established tools for asymptotically valid inference, it will also follow that unbiasedness aligns

the choices of investigators who want to obtain a small standard error or a low p-value.

While fixing the bias aligns preferences, this restriction may be too strong. However, I

establish that it is minimax optimal for an appropriate choice of biases.

Theorem 1.1 (Fixed bias is minimax optimal). Write ∆∗(Θ) for all distributions over Θ

with full support. For every hyperprior η with support within ∆∗(Θ) there is a set of biases

βη : Θ→ R such that the fixed-bias restriction

Cη = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βηθ }

is a minimax optimal mechanism in the sense of Definition 1.1, i.e.

Cη ∈ arg min
C

sup
rI∈R∗

Eη
[
rDθ

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

This result implies that the designer should not leave the choice of bias to the investigator.

If the designer has an informative hyperprior, she may set biases to reflect that information.

But with little information on the designer’s side, the designer may want to set them close to

zero. I discuss setting the bias in Appendix A.6.
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With a restriction to given bias (in the sense of an ex-ante fixed vector of biases), the inves-

tigator chooses the estimators to minimize variance. The next result specifically characterizes

unbiased estimators, and therefore the choice set of the investigator if the designer sets the

bias to zero.

Lemma 1.1 (Representation of unbiased estimators). The estimator τ̂ is unbiased, Eθ[τ̂(z)] =

τθ for all potential outcomes θ ∈ Θ, if and only if:

1. For a known treatment probability p, there exist leave-one-out regression adjustments

(φi : (Y × {0, 1})n−1 → R)ni=1 such that

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(z−i)).

2. For a fixed number n1 of treated units, there exist leave-two-out regression adjustments

(φij : (Y × {0, 1})n−2 → R)i<j such that

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − φij(z−ij)),

where φij(z−ij) may be undefined outside 1′d−ij = n1 − 1.

For the case of known probability p, any unbiased estimator can therefore be written in

the leave-one-out form that Wu and Gagnon-Bartsch (2017) obtain as a special case of the

unbiased estimators introduced by Aronow and Middleton (2013).

The result directly extends to a characterization of estimators with fixed bias. Indeed,

fixing the bias is equivalent to the designer choosing an estimator τ̂D with the desired biases

Eθ[τ̂D(z)] − τθ = βθ for all θ ∈ Θ, and letting the investigator choose a zero-expectation

adjustments δ̂I (Eθ[δ̂I(z)] = 0 for all θ ∈ Θ) to form the estimator τ̂ = τ̂D + δ̂I . Given τ̂D,

any estimator with the associated bias profile can thus be written as

τ̂D(z)− 1

n

di − p
p(1− p)

n∑
i=1

φi(z−i), τ̂D(z)− 1

n1n0

∑
i<j

(di − dj)φij(z−ij),

respectively, with adjustments as in the lemma. The statement of the lemma corresponds to
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the unbiased choices

τ̂D(z) =
1

n

n∑
i=1

di − p
p(1− p)

yi, τ̂D(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj).

All estimators with given bias are hence sample-splitting estimators that leave one or

two units out, respectively, when calculating their regression adjustments. But when is an

estimator not just of this form, but also precise? As a general solution, the investigator would

now pick one set of adjustments that minimize variance averaged over their prior, yielding

constrained optimal solution from the perspective of the designer.

For the specific case of zero-bias estimators, the adjustments take a particularly simple

form. The investigator would optimally want to set regression adjustments to the oracle

solutions

ȳi = (1− p)yi(1) + pyi(0),

∆ȳij =
(n0

n
yi(1) +

n1

n
yi(0)

)
−
(n0

n
yj(1) +

n1

n
yj(0)

)
,

respectively, but since the potential outcomes are unknown, these adjustments are infeasible.

Instead, I show that the investigator chooses leave-one-out or leave-two-out expectations of

these adjustments.

Theorem 1.2 (Choice of the investigator from unbiased estimators). An investigator with

risk r ∈ R∗ and prior π over Θ chooses the following unbiased Bayes estimators:

1. For a known treatment probability p,

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − Eπ[ȳi|z−i]).

2. For a fixed number n1 of treated units,

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − Eπ[∆ȳij |z−ij ]).

Hence, all optimal unbiased estimators take as regression adjustments conditional expecta-

tions of potential outcomes. These conditional expectations can be obtained as solutions to
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a prediction problem.16 Independently of the mechanism-design setup, the set of investiga-

tor solutions across different priors completely characterize the class of admissible unbiased

estimators of the sample-average treatment effect.

Theorem 1.3 (Complete-class theorem for unbiased estimators). For any unbiased estimator

τ̂ of the sample-average treatment effect that is not dominated with respect to variance, there

is a converging sequence of priors (πt)
∞
t=1 with full support such that τ̂ equals the limit of the

respective estimators in Theorem 1.2. Conversely, for any converging sequence of priors (πt)
∞
t=1

that put positive weight on every state θ ∈ Θ, every converging subsequence of corresponding

estimators is admissible among unbiased estimators.

Now that I have characterized the optimal solution of the designer and the investigator

(with an explicit expression for the case of unbiased estimators), I return to the question of

commitment. The representation of fixed-bias estimators in Lemma 1.1 requires that the

construction of regression adjustments does not involve the adjusted unit. In Theorem 1.2,

the investigator would therefore have to commit to their construction before she has access

to the full sample. This pre-specification leaves room for automated specification searches

in constructing the adjustments. But fully pre-specifying all specification searches may be

impractical.

I also characterize estimators that ensure fixed bias not by the investigator fully pre-

specifying adjustments, but by a commitment to a sample-splitting scheme. I consider

estimation contracts that have the investigator delegate estimation tasks on subsamples to K

researchers who do not share information about the data they receive.

Definition 1.2 (K-distribution contract). A K-distribution contract τ̂Φ distributes data

z = (y, d) ∈ (Y × {0, 1})n = Z to K researchers. Researcher k receives data gk(z) ∈ Ak and

returns the intermediate output φ̂k(gk(z)) ∈ Bk. The estimate is

τ̂Φ((φ̂k)
K
k=1; z) = Φ((φ̂k(gk(z))Kk=1; z).

16For known p, this exact solution mirrors Wu and Gagnon-Bartsch’s (2017) LOOP estimator, for which the
authors discuss estimating the adjustments using different prediction methods.

28



The investigator chooses the functions gk (from data in Z to researcher input in Ak) and Φ

(from the researcher outputs in×K
k=1Bk and data in Z to estimates in R) before accessing the

data.

As one special case of my general representation result of fixed-bias K-distribution contracts,

I characterize estimators with given bias that divide the sample into K folds and then give each

researcher access to all but one of these folds. In that case, I deduce from the representation

of unbiased estimators in Lemma 1.1 that the estimator always has the given bias if and only

if each researcher only controls the regression adjustments for the respective left-out fold.

Corollary 1.1 (Characterization of fixed-bias K-fold distribution contracts). For K disjoint

folds Ik ⊆ {1, . . . , n} with projections gk : (y, d) = z 7→ z−Ik = (yi, di)i 6=Ik , a K-distribution

contract τ̂Φ has given bias if and only if:

1. For a known treatment probability p, there exist a fixed estimator τ̂0(z) with the given

bias and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n

K∑
k=1

∑
i∈Ik

di − p
p(1− p)

φki (z−i)

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

2. For a fixed number n1 of treated units, there exist a fixed estimator τ̂0(z) with the given

bias and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n1n0

K∑
k=1

∑
{i<j}⊆Ik

(di − dj)φkij(z−ij),

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

These sample-distribution contracts achieve the given bias without detailed commitments

by the researchers.
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1.5 Designer’s Solution

Having set up the estimation of a sample-average treatment effect as a mechanism-design

problem, I justify a restriction to estimators with fixed bias by solving the designer’s delegation

problem. Subject to fixed bias, the investigator pre-specifies an estimator according to the

designer’s preferences. I prove minimax optimality of fixed-bias restrictions, echoing a result

from mechanism design on optimal delegation.

1.5.1 The Role of Bias

When there is no misalignment of preferences, then the resulting first-best estimator that

minimizes average mean-squared error will generally have bias that changes with prior. To

understand how being flexible on bias can improve estimation, note that both bias and variance

contribute to the risk

rDθ (τ̂) = Eθ[(τ̂ − τ)2] = (Eθ[τ̂ ]− τ)2︸ ︷︷ ︸
bias

+Varθ(τ̂)︸ ︷︷ ︸
variance

the designer aims to minimize. We can often improve an estimator with fixed bias by

moving along this bias–variance tradeoff. Indeed, consider the first-best solution τ̂π =

arg minτ̂ Eπ[rDθ (τ̂)] of the designer. The estimate τ̂π(z) = Eπ[τθ|z] comprises the poste-

rior expectations Eπ[yi(1)− yi(0)|z], which are usually biased towards the prior expectation of

unit treatment effects when the prior is informative along this dimension.

But if the designer leaves the decision over bias to the investigator, then an investigator who

has biased preferences will be inclined to bias the estimator in the direction of her preferences,

not of her prior. Consider an investigator with risk

rIθ(τ̂) = Eθ[(τ̂(z)− (τθ + ε))2] (ε > 0)

who would like to show that the treatment effect is higher than it is. The investigator’s

unconstrained solution is now shifted upward by ε, which is added to the bias term. While

reducing the variance relative an unbiased estimator, the designer’s risk may also be increased

through additional bias.
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For choices among estimators with fixed bias, however, the investigator’s and designer’s

preferences in this example are perfectly aligned. With bias fixed at zero, say, mean-squared

error is variance, rDθ (τ̂) = Varθ(τ̂). The ε-biased investigator’s risk is rIθ(τ̂) = ε2 + Varθ(τ̂).

While risks are not the same, they are shifted by a constant. There is no distortion in choices

between estimators with fixed bias for this investigator loss function.

1.5.2 Fixed-Bias Estimation as Second-Best

Having motivated in an example that fixing the bias can align investigator choices, I extend

alignment to a minimax result. If the investigator has constant bias, I have argued that among

estimators with fixed bias she will still commit to a variance-minimizing estimator. To show

that this example extends to an optimal solution, I have to establish that the bias restriction

is neither too permissive nor too restrictive.

A restriction that fixes the bias, for example to zero,

C∗ = {τ̂ : Z → R;Eθ[τ̂ ] = τθ∀θ ∈ Θ},

is not too permissive provided that investigators all choose as if they minimized mean-squared

error relative to some target, albeit not necessarily relative to the true treatment effect.

Assumption 1.5 (Investigator risk restriction). The investigator has a risk function from the

set

R∗ = {rI ; rIθ(τ̂) = Eθ[(τ̂(z)− τ̃θ)2] for some τ̃ : Θ→ R}.

The target τ̃θ can vary arbitrarily with the potential outcomes. In particular, permissible

risk functions include constant biases relative to the truth (τ̃ = τ + ε) or fixed estimation

targets (τ̃ = const.). R∗ also includes the designer’s risk function rD at τ̃ = τ .

Lemma 1.2 (Unbiasedness aligns estimation). If the investigator has risk from R∗ then the

investigator will choose from the unbiased estimators C∗ according to the designer’s preferences.

Note that the result extends to restrictions to fixed bias (that can vary with θ).
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Once I have established asymptotically valid inference for unbiased estimators in Sec-

tion A.5, I will also show in Remark A.5 that the unbiasedness restriction aligns the choices of

investigators who want to obtain small standard errors or tight confidence intervals. For a

local-to-null alternative, by Remark A.6 unbiasedness also insures asymptotic alignment in

large samples when the investigator wants to obtain a low p-value (that is, wants to maximize

the power of a test against some null hypothesis τθ = τ0).

Note, however, that there are many risk (or equivalently utility) functions for which fixing

the bias does not provide alignment. In particular, it may be a poor alignment device for

non-convex loss functions. Take an investigator who wants to produce an estimate that does

not reject some null hypothesis, for example when running a balance or robustness check. In

that case, if some valid way of calculating standard errors is available, the investigator would

want to obtain high variance even among unbiased estimators in order to weaken the evidence

against her preferred null hypothesis.

For the class R∗ of investigator risk functions, fixing the bias is not too restrictive because

it is minimax optimal over investigator preferences. While Lemma 1.2 establishes that choices

from unbiased estimators will be the same for any rI ∈ R∗, there could be a larger set of

estimators that provide alignment, or full alignment of preferences could be too costly.

Theorem 1.1 (Fixed bias is minimax optimal). Write ∆∗(Θ) for all distributions over Θ

with full support. For every hyperprior η with support within ∆∗(Θ) there is a set of biases

βη : Θ→ R such that the fixed-bias restriction

Cη = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βηθ }

is a minimax optimal mechanism in the sense of Definition 1.1, i.e.

Cη ∈ arg min
C

sup
rI∈R∗

Eη
[
rDθ

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

This minimax result shows that the gains from variance reduction of being flexible on bias

are fully undone by the cost of misalignment for a worst-case risk function, for any relaxation

of the fixed-bias restriction. Once we allow the bias to track the prior, it could as well reflect
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the preference of a worst-case investigator. The designer therefore chooses fixed biases that

reflect her hyperprior.

If the designer has a hyperprior η that is quite informative about treatment effects, she

could introduce biases towards expected treatment effects under that hyperprior. Crucially,

however, these biases would be fixed ex-ante and not chosen by the investigator. But when the

hyperprior contains little systematic information about the treatment effect at θ, then βθ close

to zero is a natural choice. In Appendix A.6, I highlight one construction that shows how an

(approximately) uninformative hyperprior delivers (approximately) unbiased estimation as the

support grows. There, I also lay out how being minimax over a specific, uninformative class of

hyperpriors yields zero bias.

1.5.3 Connection to Aligned Delegation

My econometric finding that fixed-biased estimation is minimax optimal (Theorem 1.1) builds

upon a mechanism-design result by Frankel (2014). There, a principal delegates decisions to

an agent who observes states. Frankel (2014) characterizes optimal delegation mechanisms

without transfers. In a class of maxmin optimal, simple mechanisms, the agent behaves

according to the principal’s preferences.

In a leading example from Frankel (2014), a school principal delegates the grading of a

group of students to a teacher. The teacher may prefer to give more skewed or better grades

than the principal, who does not observe the students’ performance. However, the principal

can exploit that the teacher’s biased preferences are consistent across students. If the teacher

and the principal agree on the ranking of students, fixing the distribution of grades obtains

a second-best grade assignment. If the teacher has a constant bias, fixing the average grade

already achieves agreement between principal and teacher. In both cases, the teacher chooses

from the restricted grade assignments according to the principal’s preferences.

What a fixed average is to grading in Frankel (2014), constant bias is to estimation in

my setting. More precisely, I identify Frankel’s (2014) school principal with my designer, the

teacher with the investigator, and individual students with different draws of the data. In the
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school example, the performance of students is the private information of the teacher. For

estimation, the prior distribution over potential outcomes is the private information of the

investigator. Where the teacher chooses a grade for each student, the investigator commits to

an estimator, that is, the investigator chooses an estimate for each (potential) draw of the

data.

Frankel (2014) shows that fixing the average over grades is a maxmin (in utility terms)

optimal mechanism for a class of biased squared-error preferences. Analogously, my fixed-bias

restriction fixes weighted sums over estimates. But since fixing the bias requires setting many

sums at once, and the designer’s and investigator’s preferences involve weights determined by

the prior, additional work is required to establish the minimax optimality in Theorem 1.1. In

Section A.1, I show how Frankel’s (2014) result carries over to the designer’s problem across

all θ ∈ Θ, where the investigator sets all (2|Y|)n values of τ̂(y, d) simultaneously.

1.5.4 Design of Experiment vs. Design of Estimator

In Theorem 1.1, I have assumed that treatment is assigned randomly according to some fixed

rule, but my results extend to the design of treatment assignment itself. The investigator may

leverage prior knowledge about potential outcomes to adjust propensity scores (Kasy, 2016).

For example, if the prior distribution of treated outcomes has larger variance than that of

controls, the investigator may want to assign more units to treatment. Under the fixed-bias

restriction, the investigator’s preference over this additional decision remains aligned with the

goal of the designer.

For K = 1, I show that giving one researcher (with risk function in the set R∗) access to

part of the sample for exploratory ex-post analysis can improve over simple pre-analysis plans.

For K = 2, I show that a flexible, unbiased pre-analysis plan that specifies distribution to two

researchers asymptotically achieves semi-parametric efficiency when the units are sampled iid

under conditions on the population distribution.
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1.6 Investigator’s Solution

The designer restricts the investigator to estimators with given bias. I establish that this

restriction is equivalent to splitting the sample in a particular way. In solving the investigator’s

constrained optimization problem in the specific case of zero bias, I show that optimal unbiased

estimation is equivalent to a set of out-of-sample prediction tasks. I obtain a complete-class

theorem that characterizes admissible unbiased estimators of the sample-average treatment

effect.

Throughout this section, I assume that the investigator fully specifies her estimator before

it is applied to outcome and treatment data z = (y, d). Although the estimator is pre-specified,

it can still include (automated) specification searches. The pre-specified estimator thus plays

the role of a flexible pre-analysis plan. Since my results hold conditional on potential outcomes,

the covariates x1, . . . , xn can be common knowledge before this pre-analysis plan is filed.

In Section 1.7, I show how the results in this section extend when full pre-specification is

impractical. There, I provide a constructive characterization of pre-analysis plans that only

commit to the way the sample is split and distributed.

1.6.1 Characterization of Fixed-Bias Estimators

When does an estimator have a given bias, conditional on potential outcomes? The designer

requires that the investigator provides a fixed-bias estimator. In this section, I provide

an intuitive representation of estimators of a given bias that the investigator can achieve

transparently by construction.

For the case of zero bias, a class of estimators that ensures unbiasedness is obtained

by sample splitting. For known treatment probability p, the Horvitz and Thompson (1952)

estimator τ̂HT = 1
n

∑n
i=1

di−p
p(1−p)yi is unbiased for any pair of potential outcome vectors because

Eθ
[
di − p
p(1− p)

yi

]
= yi(1)− yi(0).

If we replace outcomes yi by adjusted outcomes yi − φi(z−i) with regression adjustments

that do not vary with (yi, di), where z−i denotes the data (yj , dj)j 6=i from all units other
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than i, then the resulting estimator is still unbiased. (Recall that I condition on controls

x1, . . . , xn throughout.) Wu and Gagnon-Bartsch (2017) call the resulting estimator for known

p the “leave-one-out potential outcomes” (LOOP) estimator. This estimator is a special

case of Aronow and Middleton’s (2013) modification of the Horvitz and Thompson (1952)

estimator. Since the adjustment φi(z−i) is the same whether unit i is treated or not and

Eθ
[
di−p
p(1−p)

∣∣∣z−i] = 0, their addition averages out to zero, no matter the potential outcomes or

realized treatment of the other units.17

I show that these sample-splitting estimators are also all estimators that are unbiased

conditional on potential outcomes. If an estimator cannot be written as a Horvitz and

Thompson (1952) estimator with leave-one-out regression adjustments (i.e. in the form of Wu

and Gagnon-Bartsch’s (2017) LOOP estimator), it must have bias for some matrix of potential

outcomes. If instead we considered estimators that are unbiased given some distribution of

potential outcomes (for example, we may want to model noise terms in potential outcomes

that we do not want to condition on), then the result would trivially extend as long as we do

not restrict this distribution. If an estimator cannot be written in this leave-one-out form, it

must have bias for some distribution of potential outcomes.

A leave-one-out estimator can have bias conditional on the number of treated units. If the

number n1 of treated units is known, the leave-one-out adjustment φi(z−i) implicitly depends

on di = n1 −
∑

j 6=i dj . For permutation randomization, I therefore start with the difference

in averages τ̂∗ = 1
n1n0

∑
di=1,dj=0(yi − yj) and establish that all unbiased estimators differ

from τ̂∗ only by leave-two-out regression adjustments φij(z−ij). In every sample split, these

unbiased estimators leave out one treated and one untreated unit.18

Lemma 1.1 (Representation of unbiased estimators). The estimator τ̂ is unbiased, Eθ[τ̂(z)] =

τθ for all potential outcomes θ ∈ Θ, if and only if:

1. For a known treatment probability p, there exist leave-one-out regression adjustments

17It would not be enough to exclude the treatment status di from the constriction of unit i’s regression
adjustment, and thus use yi, since yi can be correlated with di.

18Wager et al. (2016) consider leave-one-out estimators separately in the treatment and control groups, and
use a leave-two-out construction to derive asymptotic unbiasedness.
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(φi : (Y × {0, 1})n−1 → R)ni=1 such that

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(z−i)).

2. For a fixed number n1 of treated units, there exist leave-two-out regression adjustments

(φij : (Y × {0, 1})n−2 → R)i<j such that

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − φij(z−ij)),

where φij(z−ij) may be undefined outside 1′d−ij = n1 − 1.

While I have derived these estimators from unbiased estimators, the characterization

directly carries over to estimators with fixed bias. Indeed, fixing the bias is equivalent to the

designer choosing an estimator τ̂D with the desired biases Eθ[τ̂D(z)]− τθ = βθ for all θ ∈ Θ,

and letting the investigator choose a zero-expectation adjustments δ̂I (Eθ[δ̂I(z)] = 0 for all

θ ∈ Θ) to form the estimator τ̂ = τ̂D + δ̂I . Given τ̂D, any estimator with the associated bias

profile can thus be written as

τ̂D(z)− 1

n

n∑
i=1

di − p
p(1− p)

φi(z−i), τ̂D(z)− 1

n1n0

∑
i<j

(di − dj)φij(z−ij),

respectively, with adjustments as in the lemma. The statement of the lemma corresponds to

the unbiased choices

τ̂D(z) =
1

n

n∑
i=1

di − p
p(1− p)

yi, τ̂D(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj).

The representations are restrictive, but not unique. In the minimal non-trivial case n = 2

and |Y| = 2 for known treatment probability, the leave-one-out representation reduces the

dimension of estimators τ̂ ∈ R(Y×{0,1})n from 16 to 8. Unbiased estimators form a 7-dimensional

affine linear subspace, and equivalent representations lie on lines in Euclidean space.

Notably, linear regression can not generally be represented in this way, as it is not generally

unbiased in my setting (Freedman, 2008). In Section A.4, I provide a simple example of a

biased OLS regression. Also, I make a connection between overfitting and bias, and show that

bias can persist even under sampling from a population distribution and in large samples with

37



high-dimensional controls.

We usually associate sample splitting with losses in efficiency in return for robustness.

Since all unbiased estimators must split the sample, this logic applies here only through the

robustness of the unbiasedness assumption to any distribution of potential outcomes. As

long as we do not impose additional structure, all admissible (with respect to variance or

equivalently mean-squared error) unbiased estimators must be among the sample-splitting

estimators.

This result implies that the set of fixed-bias estimators the investigator chooses from

is characterized by prohibitions. When we represent an estimator by a sum over adjusted

outcomes, then there must be one such representation for which the investigator is not allowed

to use the outcome and treatment assignment of a unit to construct its adjustment. For

this prohibition to apply, in practice the investigator has to commit how the adjustment is

constructed before she has access to the respective outcome and treatment status. I show

below that this commitment leaves room for automated specification searches, and discuss in

Section 1.7 that human specification searches also remain feasible.

1.6.2 Solution to the Investigator’s Problem

Given the restriction to a given bias, what is the optimal solution of the investigator? The

sample-splitting representation provides an objective criterion for fixed bias. Since preferences

are aligned, the investigator applies their subjective prior to minimize average variance over

the regression adjustments from Lemma 1.1. The resulting estimator is a Bayes estimator in

the sense of Wald (1950).

In the specific case of unbiased estimators, the adjustments take a particularly simple form

as solutions to prediction problems. If the investigator knew the potential outcomes, a set of
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variance-minimizing regression adjustments would be given by the infeasible oracle solutions

ȳi = (1− p)yi(1) + pyi(0),

∆ȳij =
(n0

n
yi(1) +

n1

n
yi(0)

)
︸ ︷︷ ︸

=¯̄yi

−
(n0

n
yj(1) +

n1

n
yj(0)

)
= ¯̄yi − ¯̄yj .

I establish that the respective Bayesian leave-one-out and leave-two-out posterior expectations

minimize average risk.19 The resulting estimator is a constrained Bayes estimator in the sense

of Wald (1950).

Theorem 1.2 (Choice of the investigator from unbiased estimators). An investigator with

risk r ∈ R∗ and prior π over Θ chooses the following unbiased Bayes estimators:

1. For a known treatment probability p,

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − Eπ[ȳi|z−i]).

2. For a fixed number n1 of treated units,

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − Eπ[∆ȳij |z−ij ]).

The theorem is non-trivial because one adjustment appears in the estimate for multiple

draws of the data. In particular, if two sample draws only differ in one unit, then the

adjustments to that unit are the same. Key to the proof (which I develop in Section A.3) is

solving a system of first-order conditions jointly for all potential draws of the data.

While the objective unbiasedness restriction dictates sample splitting and guarantees

preference alignment, the prior picks one suitable estimator that trades off risk optimally

between different unobserved states. If the prior assigns low probability to the realized set of

potential outcomes, then the estimator is still unbiased, but may have high variance. In any

case, the investigator wants to reveal her best guess given prior knowledge.

19In the case of known p this is similar to Wu and Gagnon-Bartsch’s (2017) LOOP estimator, which estimates
yi(1) and yi(0) separately from all other units and then averages these estimates with weights 1− p and p to
obtain an adjustment that estimates ȳi.
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Sample splitting guards not just against misaligned preferences, but also against priors

that are dogmatic in the treatment effect. From a Bayesian point of view, we only use the

prior information orthogonal to the treatment effect. Hence, even if the investigator’s prior is

very informative about the treatment effect, the estimator will not reflect this ex-ante bias.

The definition of investigator risk functions R∗ as mean-squared error with respect to some

pseudo-target therefore plays a second role. Alignment with respect to these preferences also

implies robustness against misspecification of priors in the direction of the treatment effect.

Hence, wrong preconceptions about treatment effects will not lead to systematic distortions in

estimates if we restrict researchers to unbiased estimators.

1.6.3 Complete Class and Estimation-Prediction Duality

Since there is generally no single best estimator for all values of the truth, we have minimized

average loss for some prior. If instead we consider admissible estimators that are not dominated

by any other estimator in a purely frequentist sense, the same conclusions apply. Indeed, a

duality result connects admissible unbiased estimation and admissible prediction.

For finite support any admissible estimator is the limit of a Bayes estimator that minimizes

posterior loss given the data for some prior with full support (e.g. Ferguson, 1967). I extend

this complete-class argument to unbiased estimators by applying it to the representation in

Lemma 1.1.

Theorem 1.3 (Complete-class theorem for unbiased estimators). For any unbiased estimator

τ̂ of the sample-average treatment effect that is not dominated with respect to variance, there

is a converging sequence of priors (πt)
∞
t=1 with full support such that τ̂ equals the limit of the

respective estimators in Theorem 1.2. Conversely, for any converging sequence of priors (πt)
∞
t=1

that put positive weight on every state θ ∈ Θ, every converging subsequence of corresponding

estimators is admissible among unbiased estimators.
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The individual increments

φi(z−i) = Eπ[ȳi|z−i],

φi;j(z−ij) = Eπ[¯̄yi|z−ij ]

solve a leave-one-out and leave-two-out out-of-sample prediction problem, respectively. (The

adjustment φij(z−ij) is obtained as φij(z−ij) = φi;j(z−ij) − φj;i(z−ij).) Indeed, φi and φi;j

minimize the average of the forecast risk

riθ(ŷi) = Eθ[w(di)(ŷi − yi)2] (1.2)

given the respective data and the prior π. The weights

w(di) =

(
(di − p)
p(1− p)

)2

, w(di) =

(
n(din− n1)

n1n0

)2

put higher emphasis on the smaller of the the treatment and control groups.20

I apply the complete-class logic to both sides of the problem to obtain a one-to-many

correspondence between unbiased admissible estimation and admissible prediction.21 The

relationship is not one-to-one because different prediction solutions may correspond to the

same estimator.

Corollary 1.2 (Estimation-prediction duality). Any admissible unbiased estimator can be

expressed in terms of a jointly admissible solution to the prediction problems with risks riθ.

Conversely, any jointly admissible solution to the prediction problems defined by risks riθ yields

an admissible unbiased estimator of the sample-average treatment effect via the representation

in Lemma 1.1. (Here, by joint admissibility I mean that the solutions to all prediction problems

are the limits of average-risk minimizers with respect to the same sequence of priors.)

20This mirrors Lin’s (2013) “tyranny of the minority” estimator, which puts similar weights into a least-squares
regression.

21Wager et al. (2016) in an asymptotic framework using a similar sample-splitting construction note that
“the precision of the treatment effect estimates obtained by such regression adjustments depends only on the
prediction risk of the fitted regression adjustment.” Similary, Wu and Gagnon-Bartsch (2017) show that the
variance of their LOOP estimator is approximately the average mean-squared error in predicting the oracle
adjustments, provided that certain covariance terms are negligible. In my finite-sample Bayesian setting, the
duality holds exactly.
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While the estimator itself is unbiased, the implicit prediction solution of a low-variance

estimator will typically have bias.

1.6.4 Constrained Cross-Fold Solutions

It may be infeasible to estimate all regression adjustments optimally. Mimicking machine-

learning practice, one could instead partition the sample into K folds and estimate adjustments

in one fold jointly from the units in all other folds. The resulting estimator resembles Wager

et al.’s (2016) “cross-estimation” and Chernozhukov et al.’s (2017) “cross-fitting” estimator.

Remark 1.1 (Exact K-fold cross-fitting). For a partition of the sample

{1, . . . , n} =
K⋃
k=1

I(k)

into K folds with n(k) ≥ 2 units each of which n(k)
1 > 0 treated and n(k)

0 > 0 untreated, the

estimator

τ̂(z) =
1

n

K∑
k=1

n(k)
∑
i∈I(k)

din
(k) − n(k)

1

n
(k)
1 n

(k)
0

(
yi − φ(k)

i (z−I(k))
)

is unbiased for the sample-average treatment effect τ conditional on (I(k))Kk=1 and (n
(k)
1 )Kk=1

under either randomization. The investigator obtains their constrained optimal (Bayes) τ̂

among these estimators at

φ
(k)
i (z−I(k)) = Eπ[n

(k)
0 yi(1) + n

(k)
1 yi(0)|z−I(k) ]/n(k).

Randomization could be within folds or folds could be chosen after overall randomization.

If K divides n1 and n0, we achieve perfect balance by stratifying folds by treatment (or the

other way around), Kn(k)
1 = n1 and Kn(k)

0 = n0.

In particular, the optimal regression adjustments are predictions even when not all adjust-

ments are estimated. Indeed, φ(k)
i minimizes average risk riθ in (1.2) with weight

w
(k)
i (di) =

(
n(k)(din

(k) − n(k)
1 )

n
(k)
1 n

(k)
0

)2
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given data from other folds and the prior π. An unbiased estimator of the risk is the average

loss on fold k.

1.6.5 Machine Learning Algorithms as Agents

When high-dimensional unit characteristics are available, machine learning offers a solution

to the prediction problems implicit to unbiased estimation. Effectively, machine learning

engages in automated specification searches to find a model that predicts well, which Wager

et al. (2016) and Wu and Gagnon-Bartsch (2017) also leverage for variance reduction in the

same setting. I take a principal–agent perspective on machine-learning algorithms to provide

a formal embedding. The investigator as principal delegates to the machine-learning agent.

Through sample splitting, there is no misalignment of preferences between the investigator and

the machine-learning agent provided the latter minimizes prediction risk, and the investigator

achieves a second-best estimation solution from first-best predictions.

For randomly sampled units, the implicit prediction solutions forecast outcomes from

characteristics. If units are draw according to the population distribution (yi(1), yi(0), xi)
iid∼ P

that includes characteristics xi, then

yi(1), yi(0)|x1, . . . , xn ∼ P(xi).

Increments φi(yTi , dTi) fitted on Ti ⊆ {1, . . . , n} \ {i} minimize expected forecast risk

E[riθ(ŷi)|x1, . . . , xn, yTi , dTi ] = E[Eθ[w(di)(ŷi − yi)2|yi(1), yi(0)]|xi]

over ŷi ∈ R. Writing ŷi = f̂i(xi) with f̂i : X → R a function of training data (yTi , dTi , xTi)

evaluated on the test point xi, f̂i solves the prediction problem

Li(f̂) = E[w(di)(f̂(xi)− yi)2|xi]→ min
f̂
. (1.3)

Here, I conflate the population distribution P with the sampling process to describe the

distribution of observable data.

Supervised machine learning offers non-parametric solutions of out-of-sample prediction
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problems like (1.3) that are particularly suitable for high-dimensional characteristics xi. Since

the test point (yi, di, xi) follows the same distribution as the training sample Ti, sample-

splitting techniques within the training sample allow for specification searches (in the form of

model regularization and combination) to obtain good average predictions at the test point.

Furthermore, the realized loss at i is an unbiased estimate of Li(f̂i).

I capture machine learning as an agent who minimizes average forecast risk for weighted

loss w(di)(f̂(xi)− yi)2. The machine-learning agent’s choice f̂i may have complex structure

that eludes causal interpretation and its parameters may not even be stable approximations of

correlation patterns (Mullainathan and Spiess, 2017). However, the investigator as principal

cares only about the forecast properties of the agent’s solution.

Provided that the agent (approximately) minimizes risk, their choices are (approximately)

aligned with the preferences of the investigator. There is no moral hazard from unobserved

modeling decisions in the delegation of the prediction task from investigator to machine-

learning agent. The machine-learning delegation task can be realized as a contract that

pays the provider of the machine-learning solution according to the observed performance of

prediction functions f̂i on test points (yi, di, xi).

Crucially, sample splitting guards against prediction mistakes. Even when the specific

prediction method does not minimize forecast risk or makes systematic mistakes, the resulting

estimator is still unbiased. Worse predictions can lead to worse estimation performance, but

only through variance.

1.7 Pre-Analysis Plans and Ex-Post Analysis

There are two ways in which we can guarantee that the investigator delivers an unbiased

estimator (or, more generally, an estimator with fixed bias). In the previous section, I derived

a representation of unbiased estimators that require that the investigator’s estimator only

uses one part of the sample when constructing regression adjustments for another part. Since

the investigator will ultimately work with all of the data, this condition cannot be verified

ex-post, but has to be guaranteed by ex-ante commitment. One way to guarantee that the
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estimator fulfills this condition is to require that the investigator commits to the construction

of all regression adjustments before she has seen any of the data.

In this section, I consider instead that the investigator commits to how she will split and

distribute the data to one or multiple researchers who have not yet accessed the data. Detailed

commitment may be infeasible for methods that require active guidance by the researcher,

impractical for very complex algorithms, or inefficient when some prior uncertainty is resolved

only after the initial commitment. I therefore consider sample-splitting schemes that leave some

or all regression adjustments unspecified, and instead delegate their estimation. Delegating

to one researcher can already improve over simple pre-specified estimators. Delegating to

two researchers attains semi-parametric efficiency without any commitment beyond sample

splitting.

1.7.1 Automated vs. Human Specification Searches

The results in this chapter imply a constructive characterization of robust yet flexible pre-

analysis plans. The two ways of ensuring unbiasedness correspond to two different types

of specification searches. The first way in which we can be flexible while also ensuring

unbiasedness is that the investigator commits in her pre-analysis plan which algorithm she

will use to construct regression adjustments. This algorithm then engages in automated

specification searches to solve the prediction problems I have shown to be equivalent to

unbiased estimation.

The second way in which specification searches remain possible applies when the investigator

splits the sample and distributes it to one or multiple researchers. Then each researcher can

search through specifications using his full subsample and does not have to commit to an

empirical strategy ex ante. As long as the investigator commits to how she will distribute the

sample and use the output from the researchers, and follows the procedures I characterize

below, the resulting estimator is again guaranteed to be unbiased.

Automated and human specification searches can be combined to ensure precise and

unbiased estimation under logistical constraints. An investigator who analyzes the data by
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herself can split the sample into two, apply a pre-specified algorithm to the first half of the

data, and search through specifications by hand only in the second half.

1.7.2 Unbiased Estimators without Full Commitment

I show that the class of unbiased estimators includes protocols that do not require full pre-

commitment, but leave additional degrees of freedom open. (I formulate the results in terms

of unbiased estimation, but they carry over to estimation with fixed bias in the same way

as above.) The investigator commits to an estimator that includes flexible inputs by one or

multiple researchers. Each researcher obtains access to a subset of the data, but does not have

to pre-commit to their output.

Definition 1.2 (K-distribution contract). A K-distribution contract τ̂Φ distributes data

z = (y, d) ∈ (Y × {0, 1})n = Z to K researchers. Researcher k receives data gk(z) ∈ Ak and

returns the intermediate output φ̂k(gk(z)) ∈ Bk. The estimate is

τ̂Φ((φ̂k)
K
k=1; z) = Φ((φ̂k(gk(z))Kk=1; z).

The investigator chooses the functions gk (from data in Z to researcher input in Ak) and Φ

(from the researcher outputs in×K
k=1Bk and data in Z to estimates in R) before accessing the

data.

While the investigator still commits which part of the data individual researchers receive

and how their choices and the data form an overall estimate, the individual researchers’ actions

are not pre-specified. From my results in the previous section, I obtain a full characterization of

K-distribution contracts that are unbiased no matter the choices of the researchers. Since the

resulting estimators are always unbiased, the preferences of the researchers, the investigator,

and the designer over these contracts are aligned provided that the investigator and the

researchers all minimize average risk for risk functions in R∗ and have the same prior π.

Lemma 1.3 (Characterization of unbiased K-distribution contracts). A K-distribution con-

tract τ̂Φ is unbiased for the sample-average treatment effect τθ for any conformable researcher

input (φ̂k)
K
k=1 if and only if:
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1. For known treatment probability p, there exist regression adjustments (φi : (×k∈Ci Bk)×

(Y × {0, 1})n−1 → R)ni=1 such that

τ̂Φ((φ̂k)
K
k=1; z) =

1

n

n∑
i=1

di − p
p(1− p)

(yi − φi((φ̂k(gk(z))k∈Ci ; z−i))

for Ci = {k; gk(z) = g̃(z−i) for some g̃}.

2. For fixed number n1 of treated units, there exist regression adjustments (φij : (×k∈Cij Bk)×

(Y × {0, 1})n−2 → R)i<j such that

τ̂Φ((φ̂k)
K
k=1; z) =

1

n1n0

∑
i<j

(di − dj)(yi − yj − φij((φ̂k(gk(z))k∈Cij ; z−ij)),

for Cij = {k; gk(z) = g̃(z−ij) for some g̃}.

In other words, the regression adjustments of a given unit are only controlled by the choices

of researchers who do not have access to data from that unit. The sets Ci, Cij are thus the

set of researchers who have control over regression adjustments φi, φij . For the special case

K = 1, this construction resembles proposals to use hold-out sets to avoid false positives in

multiple testing (Dahl et al., 2008; Fafchamps and Labonne, 2016; Anderson and Magruder,

2017). For general K, the construction resembles K-fold cross-validation. Indeed, we obtain a

particularly simple form if we restrict sample distribution to K-fold partitions.

Corollary 1.1 (Characterization of fixed-bias K-fold distribution contracts). For K disjoint

folds Ik ⊆ {1, . . . , n} with projections gk : (y, d) = z 7→ z−Ik = (yi, di)i 6=Ik , a K-distribution

contract τ̂Φ has given bias if and only if:

1. For a known treatment probability p, there exist a fixed estimator τ̂0(z) with the given

bias and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n

K∑
k=1

∑
i∈Ik

di − p
p(1− p)

φki (z−i)

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

2. For a fixed number n1 of treated units, there exist a fixed estimator τ̂0(z) with the given
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bias and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n1n0

K∑
k=1

∑
{i<j}⊆Ik

(di − dj)φkij(z−ij),

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

K-fold distribution contracts are similar to K-fold cross-fitting from Remark 1.1, but

different in terms of motivation and more flexible in terms of application. K-fold distribution

is motivated by ensuring unbiasedness, not by computational limitations. While K-fold cross-

fitting is contained as the special case where a researcher determines the regression adjustments

for all units in the target fold directly from their training data (that is, no data from the

target fold is used to adjust any of the units in that fold), K-fold distribution contracts also

contain solutions that use additional data without bias. Indeed, for the case of known p, say,

if regression adjustments take the form φki (λk; z−i) with a pre-determined function φki (·; ·) and

some tuning parameter λk, then the adjustments can be be a function of all the data in z−i as

long as the tuning parameter λk is fitted only on the other folds.22

1.7.3 Hybrid Pre-Analysis Plans

I apply the previous result to show that a simple pre-analysis plan is dominated by a hybrid

pre-analysis plan that allows for additional discretion after part of the data is revealed. The

investigator fixes some regression adjustment, but can modify others after access to a subset

of the sample. Since sample splitting ensures preference alignment, the hybrid estimator will

dominate if the ex-post analysis permits better implementation of prior information.

I now assume that the investigator’s prior π is only realized after the data is available.

Before the data is available, the investigator has a prior ηI over π. I think of ηI as a crude

approximation to π. A simple ex-ante prior ηI could come from high costs of fully writing

down or automating the way in which the investigator translates prior information and data

22 This idea can be applied to the post-LASSO (Belloni and Chernozhukov, 2013) after selection on the
training sample. Unlike the cross-fitted LASSO, the post-selection fitting step can include the full sample
(provided all regression adjustments are fitted using a leave-one- or leave-two-out construction). Furthermore,
the selection step can include researcher intervention that has not been pre-specified.
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into predictions of potential outcomes. The ex-post prior π could also represent updated

beliefs after the pre-analysis plan has been filed. In both cases, however, the difference does

not represent the information in the collected data itself, which will be incorporated in the

posterior distribution instead.

Anderson and Magruder (2017) propose a hybrid pre-analysis plan for multiple testing.

The investigator pre-specifies some hypothesis they will test, and then selects additional

hypotheses from a training sample. The additional hypotheses are only evaluated on the

remaining hold-out sample. I adopt their proposal to my estimation setting.

Definition 1.3 (Hybrid pre-analysis plan). A hybrid pre-analysis plan is a 1-fold distribution

contract, i.e. an estimator

τ̂Φ(φ̂; z) = Φ(φ̂(zT ); z)

that pre-specifies a mapping Φ from ex-post researcher input φ̂(zT ) and realized sample data z

to an estimate of the sample-average treatment effect. The researcher (which here could be the

investigator herself) obtains access to training data T ⊆ {1, . . . , n} before the final estimator

is formed.

I assume that the investigator must still pre-commit to an unbiased estimator, so Corol-

lary 1.1 for K = 1 fully characterizes the plans available to the investigator. In these

sample-splitting plans, the choices of the researcher after gaining access to the training sample

are fully aligned with the intentions of the investigator according to their updated prior. The

investigator pre-commits all adjustments in the training sample according to ηI , while the

researcher chooses the remaining regression adjustments according to π and their training

data.

Theorem 1.4 (Hybrid pre-analysis plan dominates rigid pre-analysis plan). Assume that

investigator and researcher have risk functions in R∗. The optimal unbiased pre-committed

estimator τ̂pre is strictly dominated by an unbiased hybrid pre-analysis plan with respect to

average variance, i.e. the hybrid plan is as least as precise on average over any ex-ante prior

ηI and strictly better for many non-trivial ex-ante priors ηI .
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Since the researcher’s and investigator’s preference over unbiased estimators is fully aligned

with the designer’s goal, there is no preference misalignment and the variance captures all of

their risk functions.

Remark 1.2 (Optimal hybrid pre-analysis plan). The dominating hybrid plan is:

1. For known treatment probability p, the researcher chooses regression adjustments (φposti :

(Y × {0, 1})n−1 → R)i/∈T = φ̂(zT ) to obtain

τ̂hybrid(φ̂; z) = τ̂pre(z)− 1

n

∑
i/∈T

di − p
p(1− p)

φposti (z−i)

where 1 ≤ |T | ≤ n− 1.

2. For fixed number n1 of treated units, the researcher chooses adjustments (φpostij : (Y ×

{0, 1})n−2 → R){i<j}∩T=∅ = φ̂(zT ) to obtain

τ̂hybrid(φ̂; z) = τ̂pre(z)− 1

n1n0

∑
{i<j}∩T=∅

(di − dj) φpostij (z−ij)

where 1 ≤ |T | ≤ n− 2.

In both cases, the investigator commits to the training sample T ⊆ {1, . . . , n} and the unbiased

estimator τ̂pre : Z → R.

The optimal ex-post adjustments modify the implicit adjustments of the ex-ante estimator

to match the solution from Theorem 1.2 on the relevant subset, i.e. they solve an out-of-sample

prediction problem.

1.7.4 Many-Researcher Delegation

The hybrid pre-analysis plan is itself dominated by a plan that distributes the data to multiple

researchers. If a single researcher has access to the full dataset before committing their

estimator, bias can return even if the researcher represents their estimate by regression

adjustments. Distribution to multiple researchers reduces inefficiency without introducing

misalignment. Even when ex-ante commitment beyond a trivial estimator is infeasible or
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undesirable, distribution between at least two researchers can produce an ex-post desirable

estimator.

Remark 1.3 (More researchers are better). Assume that the investigator and researchers all

have risk functions in R∗, and that the researchers all share the same (ex-post) prior π. Then

an optimal unbiased K-distribution contract is dominated by an unbiased K + 1-distribution

contract in the sense of Theorem 1.4.

I now consider standard large-sample efficiency criteria for the estimation of the population-

average treatment effect. There is no unique variance-minimal solution in finite samples, as

the class of admissible estimators is large. In the large-sample limit, however, essentially

all admissible estimators have approximately equal performance, and coordination between

researchers with different (non-dogmatic) priors is resolved by a common understanding of the

truth.

Under random sampling of units, the semi-parametric efficiency bound of Hahn (1998) is

achieved at oracle prediction adjustments.23 For (yi(1), yi(0), xi)
iid∼ P with fixed probability p

of treatment, an infeasible estimator of the population average treatment effect τ is

τ̂P(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − E[ȳi|xi])

where the oracle regression adjustments are optimal given knowledge of P. While we will not

generally be able to achieve the variance of τ̂P, under assumptions we can achieve a variance

that is asymptotically equivalent (i.e. Var(τ̂)/Var(τ̂P)→ 1 as n→∞).

Remark 1.4 (Semi-parametric efficiency). If researchers use prediction algorithms (An : Z →

RX , z 7→ f̂n)∞n=1 with

E[(f̂n(xi)− E[ȳi|xi])2]→ 0

as n → ∞, then delegation to two researchers with risk functions in R∗ (who each obtain

access to half of the data, say) without further commitment achieves both finite-sample unbiased

23See also Imbens (2004) for a discussion of efficient estimation of average treatment effects.
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estimation of τθ, and large-sample semi-parametric efficient estimation of τ for the semi-

parametric efficiency bound of Hahn (1998).

In other words, semi-parametric efficiency is achieved from distribution of the data to at

least two independent researchers with risk-consistent predictors. Data distribution ensures

that there is no misalignment.

1.8 Conclusion

By taking a mechanism-design approach to econometrics, I account for misaligned researcher

incentives in causal inference. I motivate why and how we should pre-commit our empirical

strategies, and demonstrate that there exist flexible pre-analysis plans that allow for exploratory

data analysis and machine learning without leaving room for biases. In particular, I characterize

all unbiased estimators of an average treatment effect as sample-splitting procedures that

permit beneficial specification searches.

My results shed light on the role of bias and variance in treatment-effect estimation from

experimental data. Allowing for bias can reduce the variance and thus improve precision. But

when incentives are misaligned, giving a researcher the freedom to choose the bias may, in

fact, reduce precision. However, once we restrict the researcher to fixed-bias estimators, there

will again be a bias–variance tradeoff in the nuisance parameters associated with the control

variables. I have shown in this chapter that unbiased estimation of a treatment effect in an

experiment is equivalent to a set or prediction tasks. Inside these tasks, some bias in return

for a substantial variance reduction can improve prediction quality. Better predictions in turn

translate into lower variance of the unbiased estimator.

In related work, I show that under additional parametric assumptions standard treatment-

effect estimators are dominated because shrinkage can reduce variance without introducing

bias. In a linear model with homoscedastic, Normal noise and exogenous treatment, the usual

linear least-squares estimator for the treatment effect is dominated provided that there are
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at least three Normally-distributed control variables (Spiess, 2017b).24 In that case, I reduce

variance without introducing bias by James and Stein (1961) shrinkage in the underlying

prediction problem.25

I am working on extending my mechanism-design approach to other estimation tasks in

experimental or quasi-experimental data. Applications include effects on endogenously chosen

subgroups, heterogeneous treatment effects, treatment effects under optimal assignment, and

tests for effects on multiple outcome variables. In each case, I conjecture that my approach

can motivate a design restriction by its preference alignment property, yield a representation

of the resulting estimators as sample-splitting procedures, and suggest a characterization of

optimal mechanisms and second-best pre-analysis plans.

One possible direction to pursue is to extend the approach of this chapter to cases where

unbiased estimators are generally unavailable. In instrumental-variable estimation, unbiased

estimation is possible under sign restrictions on the first stage (Andrews and Armstrong,

2017), but generally infeasible when the parameter space is unrestricted (Hirano and Porter,

2015). Still, when there are many instruments, we can improve estimation by providing

better solutions to the first-stage prediction problem implicit to the two-stage linear IV model.

For example, shrinkage in the first stage reduces bias relative to the standard two-stage

least-squares estimator (Spiess, 2017a). This finding raises the question how the delegation of

the first-stage prediction problem can be realized in a way that aligns researcher preferences.

24The usual linear least-squares estimator is, by Gauss-Markov, still variance-minimal among conditionally
unbiased estimators. However, once we integrate over the distribution of control variables (and if these are
orthogonal to treatment), I show that there is an unbiased estimator with lower variance.

25In the nonparametric setting in this paper and the Normal–linear setting in Spiess (2017b), unbiased
estimation reduces to prediction problems. The results are connected because they both stem from invariances
that characterize the distributions – in the case of this paper reflections and permutations, in the case of Spiess
(2017b) rotations that leave the Normal distribution invariant.
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Chapter 2

Shrinkage in Treatment-Effect

Estimation

2.1 Introduction

Many inference tasks have the following feature: the researcher wants to obtain a high-quality

estimate of one or a small set of target parameters (for example, a set of treatment effects

in an RCT), but also estimates a number of nuisance parameters she does not care about

separately (for example, coefficients on control variables). In these cases, can we improve

estimation in the target parameter by shrinking in the estimation of possibly high-dimensional

nuisance parameters? In this chapter, I give a positive answer to this question in two common

program-evaluation cases, namely for adjusting for control variables in an experiment and for

the first stage of a linear instrumental-variables regression.

First, in a linear regression model with homoscedastic Normal noise, I consider shrinkage

estimation of the nuisance parameters associated with control variables. For at least three

control variables and exogenous treatment, I establish that the standard least-squares estimator

is dominated with respect to squared-error loss in the treatment effect even among unbiased

estimators and even when the target parameter is low-dimensional. I construct the dominating

estimator by a variant of James–Stein shrinkage in a high-dimensional Normal-means problem.
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It can be interpreted as an invariant generalized Bayes estimator with an uninformative

(improper) Jeffreys prior in the target parameter.

Second, in a two-stage linear regression model with Normal noise, I consider shrinkage in the

estimation of the first-stage instrumental-variable coefficients. For at least four instrumental

variables and a single endogenous regressor, I establish that the standard two-stage least-

squares estimator is dominated with respect to bias. The dominating IV estimator applies

James–Stein type shrinkage in a first-stage high-dimensional Normal-means problem followed

by a control-function approach in the second stage. It preserves invariances of the structural

instrumental variable equations.

My results directly build upon properties of shrinkage estimators established by James and

Stein (1961). They are most closely related to previous work by Hansen (2007, 2016, 2017) on

model-averaging estimators and shrinkage in instrumental variables. Relative to these existing

results, I focus on bias properties of the estimators and obtain finite-sample dominance in a

Normal model.

Shrinkage in control variables is discussed in Section 2.2, and shrinkage in the first stage of

an instrumental-variable regression follows in Section 2.3. Section 2.4 concludes by contrasting

the two dominance results.

2.2 Unbiased Shrinkage Estimation in Experimental Data

When we estimate a treatment effect in the presence of control variables, can we reduce

variance in the estimation of a target parameter without inducing bias by shrinking in the

estimation of possibly high-dimensional nuisance parameters? In a linear regression model

with homoscedastic, Normal noise, I show that a natural application of James–Stein shrinkage

to the parameters associated with at least three control variables reduces loss in the possibly

low-dimensional treatment effect parameter without producing bias provided that treatment is

random.

The proposed estimator effectively averages between regression models with and without

control variables, similar to the Hansen (2016) model-averaging estimator and coinciding up to
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a degrees-of-freedom correction with the corresponding Mallows estimator from Hansen (2007).

For the specific choice of shrinkage, I contribute four finite-sample properties: First, I note that

by averaging over the distribution of controls we obtain dominance of the shrinkage estimator

even for low-dimensional target parameters, unlike other available results that require a loss

function that is at least three-dimensional. Second, I establish that the resulting estimator

remains unbiased under exogeneity of treatment. Third, I conceptualize it as a two-step

estimator with a first-stage prediction component. Fourth, I show that it can be seen as

a natural, invariant generalized Bayes estimator with respect to a partially improper prior

corresponding to uninformativeness in the target parameter.

The linear regression model is set up in Section 2.2.1. Section 2.2.2 proposes the estimator

and establishes loss improvement relative to a benchmark OLS estimator provided treatment

is exogenous. Section 2.2.3 motivates the estimator as an invariant generalized Bayes esti-

mator (with respect to an improper prior) in a suitably transformed many-means problem.

Section 2.2.4 discusses the properties of the estimator in a simulation exercise.

2.2.1 Linear Regression Setup

I consider estimation of the structural parameter β ∈ Rk in the canonical linear regression

model

Yi = α+X ′iβ +W ′iγ + Ui (2.1)

from n iid observations (Yi, Xi,Wi), where Xi ∈ Rm are the regressors of interest, Wi ∈ Rk

control variables, and Ui ∈ R is homoscedastic, Normal noise. α is an intercept,1 and γ is

a nuisance parameter. To obtain identification of β in Equation (2.1), I assume that Ui is

orthogonal to Xi and Wi (no omitted variables).

Throughout this document, I write upper-case letters for random variables (such as Yi)

and lower-case letters for fixed values (such as when I condition on Xi = xi). When I suppress

1We could alternatively include a constant regressor in Xi and subsume α in β. I choose to treat α
separately since I will focus on the loss in estimating β, ignoring the performance in recovering the intercept α.
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indices, I refer to the associated vector or matrix of observations, e.g. Y ∈ Rn is the vector of

outcome variables Yi and X ∈ Rn×m is the matrix with rows X ′i.

2.2.2 Two-Step Partial Shrinkage Estimator

By assumption there are control variables W available with

Y |X=x,W=w ∼ N (1α+ xβ + wγ, σ2In)

where σ2 need not be known. We care about the (possibly high-dimensional) nuisance

parameter γ only in so far as it helps us to estimate the (typically low-dimensional) target

parameter β, which is our object of interest.

Given x ∈ Rn×m and w ∈ Rn×k, where we assume that (1, x, w) has full rank 1+m+k ≤ n,

let q = (q1, qx, qw, qr) ∈ Rn×n orthonormal where q1 ∈ Rn, qx ∈ Rn×m, qw ∈ Rn×k such that

1 is in the linear subspace of Rn spanned by q1 ∈ Rn (that is, q1 ∈ {1/
√
n,−1/

√
n}), the

columns of (1, x) are in the space spanned by the columns of (q1, qx), and the columns of

(1, x, w) are in the space spanned by the columns of (q1, qx, qw). (Such a basis exists, for

example, by an iterated singular value decomposition.) Then,

Y ∗ = q′Y |X=x,W=w ∼ N





q′11α+ q′1xβ + q′1wγ

q′xxβ + q′xwγ

q′wwγ

0n−1−m−k


, σ2In


.

Writing Y ∗x , Y ∗w , Y ∗r for the appropriate subvectors of Y ∗, we find, in particular, that
Y ∗x

Y ∗w

Y ∗r

 |X=x,W=w ∼ N



µx + aµw

µw

0n−1−m−k

 , σ2In−1


where µx = q′xxβ ∈ Rm, µw = q′wwγ ∈ Rk, and a = q′xw(q′ww)−1 ∈ Rm×k.2 In transforming

2Alternatively, we could have denoted by µx the mean of Y ∗x . However, by separating out µx from aµw I
feel that the role of µw as a relevant nuisance parameter becomes more transparent.
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linear regression to this Normal-means problem, as well as in partitioning the coefficient vector

into two groups, for only one of which I will propose shrinkage, I follow Sclove (1968).

Conditional on X=x,W=w and given an estimator µ̂w = µ̂w(Y ∗w , Y
∗
r ) of µw, a natural

estimator of µx is µ̂x = µ̂x(Y ∗x , Y
∗
w , Y

∗
r ) = Y ∗x − aµ̂w. An estimator of β is obtained by

setting β̂ = (q′xx)−1µ̂x. (The linear least-squares estimator for β is obtained from µ̂w =

Y ∗w .) A natural loss function for β̂ that represents prediction loss units is the weighted loss

(β̂ − β)′(x′qxq
′
xx)(β̂ − β) = ‖µ̂x − µx‖2. We can therefore focus on the (conditional) expected

squared-error loss in estimating µx, for which we find

E[‖µ̂x − µx‖2|X=x,W=w] = mσ2 + E[‖µ̂w − µw‖2a′a|X=x,W=w]

with the seminorm ‖v‖a′a =
√
v′a′av on Rk.

For high-dimensional µw (k ≥ 3), a natural estimator µ̂w with low expected squared-error

loss is a shrinkage estimator of the form µ̂w = CY ∗w with scalar C, such as the James and Stein

(1961) estimator for which C = 1− (k−2)‖Y ∗r ‖2
(n−m−k+1)‖Y ∗w‖2

(or its positive part). While improving

with respect to expected squared-error loss (a′a = const. · Ik), this specific estimator may

yield higher (conditional) expected loss in µx when the implied loss function for µw deviates

from squared-error loss (a′a 6= const. · Ik, so the loss function is not invariant under rotations).

We will show below that it is still appropriate in the case of independence of treatment and

control.

For conditional inference it is known that the least-squares estimator is admissible for esti-

mating β provided m ≤ 2 and inadmissible provided m ≥ 3 no matter what the dimensionality

k of the nuisance parameter γ is (James and Stein, 1961), as the rank of the loss function is

decisive. The above construction does not provide a counter-example to this result: the rank

of a′a = (w′qw)−1w′qxq
′
xw(q′ww)−1 is at most m, so for m ≤ 2, µ̂w = Y ∗w remains admissible

for the loss function on the right. While we could achieve improvements for m ≥ 3 – through

shrinkage in µ̂w and/or directly in µ̂x – our interest is in the case where m is low and k is

high. Conditional on X=x,W=w we can thus not hope to achieve improvements that hold

for any (β, γ), but we can still hope that shrinkage estimation of µw yields better estimates of
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β on average over draws of the data.

To this end, assume that

vec(W )|X=x ∼ N (vec(1αW + xβW ),ΣW ⊗ In)

(that is, Wi|X=x
iid∼ N (1αW + xiβW ,ΣW )). Here, ΣW ∈ Rk×k is symmetric positive-definite

(but not necessarily known). αW ∈ R1×k, βW ∈ Rm×k describe the conditional expectation

of control variables given the regressors X=x. The case where x and W are orthogonal

(βW = Om×k) and controls W thus not required for identification will play a special role below.

Given X=x, assume (q1, qx) is deterministic, and fix q⊥ such that q̃ = (q1, qx, q⊥) ∈ Rn×n

is orthonormal. Note that

vec((qx, q⊥)′W )|X=x ∼ N

vec


 q′xxβW

On−1−m×k


 ,ΣW ⊗ In−1

 .

In particular, q′xW |= q′⊥W . It follows with

(qx, q⊥)′Y |X=x,W=w ∼ N


q′xxβ + q′xwγ

q′⊥wγ

 , σ2In−1


that indeed q′x(Y,W ) |= q′⊥(Y,W ).

Conditional onW=w in the above derivation, aµ̂w−aµw = q′xwγ̂−q′xwγ for γ̂ = (q′ww)−1µ̂w

a function of q′⊥w and (Y ∗w , Y
∗
r ) = (q′wq⊥, q

′
rq⊥)(q′⊥Y ), so γ̂ = γ̂(q′⊥Y, q

′
⊥w). Assuming measur-

ability, γ̂(q′⊥Y, q
′
⊥W ) |= (q′xY, q′xW ). Now writing γ̂ = γ̂(q′⊥y, q

′
⊥w) this implies that

E[‖µ̂w − µw‖2a′a|X=x, q′⊥(Y,W ) = q′⊥(y, w)] = ‖γ̂ − γ‖2E[W ′qxq′xW |X=x]

with E[W ′qxq
′
xW |X=x] = β′Wx

′qxq
′
xxβW + mΣW of full rank k. For the expectation of the

implied β̂, we find

E[β̂|X=x, q′⊥(Y,W ) = q′⊥(y, w)] = β − βW (γ̂ − γ).

We obtain the following characterization of conditional bias and squared-error loss of the

implied estimator β̂:
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Lemma 2.1 (Properties of the two-step estimator). Let (Ỹ , W̃ ) be jointly distributed according

to

vec(W̃ ) ∼ N (0k(n−1−m),ΣW ⊗ In−1−m),

Ỹ |W̃ = w̃ ∼ N (w̃γ, σ2In−1−m),

and write Ẽ for the corresponding expectation operator. For any measurable estimator γ̂ :

Rn−m−1 × Rn−m−1×k → Rk with Ẽ[‖γ̂(Ỹ , W̃ )‖2] <∞, the estimator β̂(y, w) = (q′xx)−1q′xy −

(q′xx)−1q′xwγ̂(q′⊥y, q
′
⊥w) defined for convenience for fixed x, has conditional bias

E[β̂(Y,W )|X=x]− β = −βW (Ẽ[γ̂(Ỹ , W̃ )]− γ)

and expected (prediction-norm) loss

E[‖β̂(Y,W )− β‖2x′qxq′xx|X=x] = mσ2 + Ẽ[‖γ̂(Ỹ , W̃ )− γ‖2φ]

for φ = β′Wx
′qxq

′
xxβW +mΣW .

Note that this lemma does not rely on n ≥ 1 +m+ k, and indeed generalizes to the case

n > 1 +m for any k ≥ 1, including k > n.

We consider the special case where treatment is exogenous, and thus βW = Om×k. This

assumption could be justified, for example, in a randomized trial. Note that in this case in

addition to the linear least-squares estimator in the “long” regression that includes controls W

another natural unbiased (conditional on X=x) estimator is available, namely the coefficient

(q′xx)−1q′xY in the “short” regression without controls. The “long” and “short” regression

represent special (edge) cases in the class of two-step estimators introduced above, which are

all unbiased in that sense under the exogeneity assumption:

Corollary 2.1 (A class of unbiased two-step estimators). If βW = Om×k then for any γ̂ and

β̂ as in Lemma 2.1 E[β̂(Y,W )|X=x] = β. Furthermore,

E[‖β̂(Y,W )− β‖2x′qxq′xx|X=x] = mẼ[(Ỹ0 − W̃ ′0γ̂((Ỹi, W̃i)
n−1−m
i=1 ))2]

for (Ỹi, W̃i)
n−1−m
i=0 iid with W̃i ∼ N (0k,ΣW ), Ỹi|W̃i = w̃i ∼ N (w̃′iγ, σ

2) (here, (Ỹi, W̃i)
n−1−m
i=1
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is the training sample and (Ỹ0, W̃0) an additional test point drawn from the same distribution).

This corollary clarifies that the class of natural estimators derived above are unbiased

conditional on X=x (but not necessarily on X=x,W=w jointly), with expected loss equal

to the expected out-of-sample prediction loss in a prediction problem where the prediction

function w̃0 7→ w̃′0γ̂ is trained on n − 1 − m iid draws, and evaluated on an additional,

independent draw (Ỹ0, W̃0) from the same distribution. The “long” and “short” regressions are

included as the special cases γ̂(w̃, ỹ) = (w̃′w̃)−1w̃′ỹ and γ̂ ≡ 0k, respectively.

The covariates in training and test sample follow the same distribution, which suggests an

estimator that is invariant to rotations in the corresponding k-means problem. Indeed, the

dominating estimator I construct in the following results is of the form

µ̂w =

(
1− p‖Y ∗r ‖2

‖Y ∗w‖2

)
Y ∗w ,

where the standard James and Stein (1961) estimator (for unknown σ2) is recovered at

p = k−2
n−m−k+1 .

Theorem 2.1 (Inadmissibility of OLS among unbiased estimators). Maintain βW = Om×k.

Denote by (α̂OLS, β̂OLS, γ̂OLS) the coefficients and by SSR = ‖Y −1α̂OLS−Xβ̂OLS−Wγ̂OLS‖2

the sum of squared residuals in a linear least-squares regression of Y on an 1, X, and W .

Write h = In − 1n1
′
n/n (the annihilator matrix with respect to the intercept). Assume that

k ≥ 3 and n ≥ m+ k + 2. Then, the two-step estimator β̂ = (X ′hX)−1X ′h(Y −Wγ̂) with

γ̂ =

(
1− p SSR
‖γ̂OLS‖2

W ′h(I−X(X′hX)−1X′)hW

)
γ̂OLS

where p ∈
(

0, 2(k−2)
n−m−k+2

)
is unbiased for β given X=x and dominates β̂OLS in the sense that

E[‖β̂ − β‖2X′hX |X=x] < E[‖β̂OLS − β‖2X′hX |X=x].

Proof. The OLS estimator in the theorem corresponds to γ̂OLS(ỹ, w̃) = (w̃′w̃)−1ỹ′w̃ in
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Lemma 2.1, which yields the maximum-likelihood estimator γ̂OLS(Ỹ , W̃ ) for γ given data

vec(W̃ ) ∼ N (0k(n−1−m),ΣW ⊗ In−1−m),

Ỹ |W̃ = w̃ ∼ N (w̃γ, σ2In−1−m).

By Baranchik (1973), this maximum-likelihood estimator is inadmissible with respect to the

risk Ẽ[‖γ̂ − γ‖2ΣW ] and thus for Ẽ[‖γ̂ − γ‖2φ in Lemma 2.1, as φ = mΣW for βW = Om×k.

However, Baranchik (1973) also includes an intercept that is estimated, but does not enter

the loss function. To formally use the result for our case without intercept in the first-step

prediction exercise, I construct an augmented problem such that the dominance result in the

augmented problem implies the theorem.

To this end, let

vec(W a) ∼ N (0k(n−m),ΣW ⊗ In−m),

Y a|W a = wa ∼ N (waγ, σ2In−m).

(which has one additional sample point, and could without loss include intercepts in W a, Y a).

By Baranchik (1973, Theorem 1), the estimator

γ̂a =

(
1− p

(Y a)′haY a − ‖γ̂a,OLS‖2(Wa)′haWa

‖γ̂a,OLS‖2(Wa)′haWa

)
γ̂a,OLS

strictly dominates γ̂a,OLS = ((W a)′haW a)−1(W a)′haZa, where ha = In−m − 1n−m1
′
n−m/(n−

m), in the sense that

Ea[(γ̂a − γ)′ΣW (γ̂a − γ)] < Ea[(γ̂a,OLS − γ)′ΣW (γ̂a,OLS − γ)]

for any γ ∈ Rk, provided that p ∈
(

0, 2(k−2)
n−m−k+2

)
with k ≥ 3 and n−m ≥ k + 2.

We now show that this implies dominance of γ̂(Ỹ , W̃ ) for

γ̂(ỹ, w̃) =

(
1− p

ỹ′ỹ − ‖γ̂OLS(ỹ, w̃)‖2w̃′w̃
‖γ̂OLS(ỹ, w̃)‖2w̃′w̃

)
γ̂OLS(ỹ, w̃)

in the original problem. Let qa ∈ R(n−m)×(n−m−1) be such that (qa,1n−m/(n − m)) is

orthonormal (that is, the columns of qa complete 1n−m/(n−m) to an orthonormal basis of
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Rm−n). This implies that qa(qa)′ = ha and (qa)′qa = In−m−1. Then, (qa)′(Y a,W a)
d
= (Ỹ , W̃ ).

In particular,

((Y a)′ha(Y a), (Y a)′ha(W a), (W a)′ha(W a))
d
= (Ỹ ′Ỹ , Ỹ ′W̃ , W̃ ′W̃ )

and thus (γ̂a, γ̂a,OLS)
d
= (γ̂(Ỹ , W̃ ), γ̂OLS(Ỹ , W̃ )). We have thus established

Ẽ[(γ̂(Ỹ , W̃ )− γ)′ΣW (γ̂(Ỹ , W̃ )− γ)]

< Ẽ[(γ̂OLS(Ỹ , W̃ )− γ)′ΣW (γ̂OLS(Ỹ , W̃ )− γ)].

Note that γ̂OLS(ỹ, w̃) = (w̃′w̃)−1ỹ′w̃ in Lemma 2.1 does indeed yield γ̂OLS and β̂OLS in the

theorem, and that this extends to γ̂ and β̂ by

γ̂(q′⊥y, q
′
⊥w) =

(
1− p

‖y‖2q⊥q′⊥ − ‖γ̂
OLS(. . .)‖2w′q⊥q′⊥w

‖γ̂OLS(. . .)‖2
w′q⊥q

′
⊥w

)
γ̂OLS(. . .)

with q⊥q′⊥ = h(I− x(x′hx)−1x′)h and

SSR = ‖Y − 1α̂OLS −Xβ̂OLS −Wγ̂OLS‖2

= ‖Y −Wγ̂OLS‖2h(I−X(X′hX)−1X′)h

= ‖Y ‖2h(I−X(X′hX)−1X′)h − ‖Wγ̂OLS‖2h(I−X(X′hX)−1X′)h

= ‖Y ‖2h(I−X(X′hX)−1X′)h − ‖γ̂
OLS‖2W ′h(I−X(X′hX)−1X′)hW .

Unbiasedness and dominance follow with βW = Om×k in Lemma 2.1.

Note that the result extends to the positive-part analog for which the shrinkage factor

is set to zero whenever the expression is negative. For m = 1, the following dominance is

immediate:

Corollary 2.2 (A non-contradiction of Gauss–Markov). For exogenous treatment, m = 1,

k ≥ 3, and n ≥ k + 3, there exists an estimator β̂ with E[β̂|X=x] = β and Var(β̂|X=x) <

Var(β̂OLS|X=x).

The assumption of exogenous treatment is essential for this result, as dropping conditioning

on W and restricting interest to β would not suffice to break optimality of linear least-squares.
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2.2.3 Invariance Properties and Bayesian Interpretation

Starting with the transformations in subsection 2.2.2, we consider the decision problem of

estimating β (equivalently, µx). Guided by the treatment of a linear panel-data model in

Chamberlain and Moreira (2009), I develop the specific estimator proposed in Theorem 2.1

as (the empirical Bayes version of) an invariant Bayes estimator with respect to a partially

uninformative (improper) Jeffreys prior.

In this section, we condition on X throughout and assume that covariates W are Nor-

mally distributed given X. Writing W ∗x = q′xW,W
∗
⊥ = q′⊥W,Y

∗
x = q′xY, Y

∗
⊥ = q′⊥Y , the

transformation developed in subsection 2.2.2 yields the joint distributionW ∗x
W ∗⊥

 =

 µW

Os×k

+ VWΣ
1/2
W (VW )ij

iid∼ N (0, 1)

Y ∗x
Y ∗⊥

 =

µx +W ∗xγ

W ∗⊥γ

+ VY σ
2 (VY )i

iid∼ N (0, 1)

(2.2)

where Σ
1/2
W is the unique symmetric positive-definite square-root of the symmetric positive-

definite matrix ΣW , and VW and VY are independent. Here, in addition to µx = q′xxβ, also

µW = q′xxβW , and s = n−m− 1. I write Z = Rm+s × R(m+s)×k for the sample space from

which (Y ∗,W ∗) is drawn according to this Pθ, where I parametrize θ = (µx, γ) ∈ Θ = Rm×Rk.

(I take σ2,ΣW , µW to be constants.)

The action space is A = Rm, from which an estimate of µx is chosen. As the loss function

L : Θ×A → R I take squared-error loss L(θ, a) = ‖µx − a‖2. An estimator β̂ : Z → A from

the previous section is a feasible decision rule in this decision problem.

For an element g = (gµ, gx, gW , g⊥) in the (product) group G = Rm×O(m)×O(k)×O(s),

where Rm denotes the group of real numbers with addition (neutral element 0) and O(k)

the group of orthonormal matrices in Rk×k with matrix multiplication (neutral element Ik),

consider the following set of transformations (which are actions of G on Z,Θ,A):
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• Sample space: mZ : G×Z → Z,

(g, (yx, y⊥, wx, w⊥))

7→ (gxyx + gµ, g⊥y⊥, gxwxΣ
−1/2
W g′WΣ

1/2
W , g⊥w⊥Σ

−1/2
W g′WΣ

1/2
W )

• Parameter space: mΘ : G×Θ→ Θ,

(g, (µx, γ)) 7→ (gxµx + gµ,Σ
−1/2
W gWΣ

1/2
W γ)

• Action space: mA : G×A → A, (g, a) 7→ gxa+ gµ

For exogenous treatment, these transformations are tied together by leaving model and loss

invariant. Indeed, the following is immediate from Equation 2.2:3

Proposition 2.1 (Invariance of model and loss). For µW = Om×k:

1. The model is invariant: mZ(g, (Y ∗,W ∗)) ∼ PmΘ(g,θ) for all g ∈ G.

2. The loss is invariant: L(mΘ(g, θ),mA(g, a)) = L(θ, a) for all g ∈ G.

By Proposition 2.1, a natural (generalized) Bayes estimator of µx is derived from an

improper prior on θ that is invariant under the action of G on Θ, as this will yield a decision

rule d : Z → A that is invariant in the sense that d(mZ(g, (y, w))) = mA(g, d((y, w))) for all

(g, (y, w)) ∈ G×Z. This implies for µx as an improper prior the Haar measure with respect

to the translation action (i.e. up to a multiplicative constant the σ-finite Lebesgue measure on

Rm), and for γ a prior that is uniform on ellipsoids γ′ΣWγ = ω. Taking ω
τ2 ∼ χ2

m with some

τ > 0 yields the prior γ ∼ N (0, τ2Σ−1
W ). With a product prior for θ, the resulting generalized

Bayes estimator for µx – which minimizes posterior loss conditional on the data – is

E[µx|Y ∗ = y,W ∗ = w] = yx − wx E[γ|Y ∗ = y,W ∗ = w]

= yx − wx(w′⊥w⊥ + σ2ΣW /τ
2)−1w′⊥y⊥.

3Alternatively, we could have treated µW as an element of the parameter space and extend the analysis
to the case of endogenous treatment. Adding (g, µW ) 7→ gxµWΣ

−1/2
W g′WΣ

1/2
W to the action on the parameter

space would have retained invariance.
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Replacing ΣW by the specific sample analog W ′⊥W⊥/s, we obtain the estimator Y ∗x −
sτ2

sτ2+σ2W
∗
x ((W ∗⊥)′W ∗⊥)−1(W ∗⊥)′Y ∗⊥. Similarly assuming that γ ∼ N (0, sτ2W ′⊥W⊥), an unbiased

estimator of sτ2

sτ2+σ2 (given W ) is

C = 1−
(Y ∗⊥)′(Is −W ∗⊥((W ∗⊥)′W ∗⊥)−1(W ∗⊥)′)Y ∗⊥/(s− k)

(Y ∗⊥)′W ∗⊥((W ∗⊥)′W ∗⊥)−1(W ∗⊥)′Y ∗⊥/(k − 2)
.

This estimator corresponds to the estimator from Theorem 2.1 at p = k−2
s−k = k−2

n−m−k−1 . By

construction, it retains the invariance of the associated generalized Bayes estimator. This is

not specific to this value of p:

Proposition 2.2 (Invariance of estimator). For any p, the estimator β̂ from Theorem 2.1 is

invariant with respect to the above actions of G.

2.2.4 Simulation

In this section, I study the performance of the shrinkage estimator introduced in Section 2.2.2

in a simulation exercise. I generate data according to Equation 2.1, where I normalize the

variance of the error term to one and the target parameter to β = 1 (in particular, Xi is

uni-dimensional). The (Xi,Wi) are drawn independently from a multivariate standard Normal

distribution. I fix the sample size to n = 80. I vary the size ‖γ‖ of the control-variable

parameter, as well as the number k of controls.

On this data, I compare the performance of estimates of β from the short OLS regression (Yi

on Xi and a constant, “Short”), the long OLS regression (Yi on Xi, Wi and a constant, “Long”),

and the partial shrinkage estimator introduced in Section 2.2.2 (“JS”). For each parameter

setting and estimator I obtain the root mean-squared error from 100,000 Monte-Carlo draws.

Table 2.1: Simulation results for partial shrinkage estimator (root mean-squared error)

k → 5 15 40

‖γ‖ ↓ Short Long JS Short Long JS Short Long JS

0.0 0.132 0.138 0.134 0.132 0.154 0.135 0.132 0.243 0.149
0.5 0.148 0.138 0.138 0.148 0.155 0.144 0.148 0.242 0.168
1.0 0.187 0.139 0.139 0.188 0.154 0.150 0.187 0.243 0.198
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Table 2.1 reports the results of the simulation exercise for ‖γ‖ ∈ {0.0, 0.5, 1.0} and

k ∈ {5, 15, 40}. The short, long, and partial shrinkage estimators are all unbiased. As

predicted by the theory, the partial shrinkage estimator persistently outperforms the long OLS

estimator, with higher gains when the control coefficient is small or its dimension high. The

short OLS estimator performs better than the long and partial shrinkage estimators when the

control variables matter very little.

2.3 Bias Reduction in Instrumental-Variable Estimation

through First-Stage Shrinkage

The standard two-stage least-squares (TSLS) estimator is known to be biased towards the OLS

estimator when instruments are many or weak. In a linear instrumental variables model with

one endogenous regressor, at least four instruments, and Normal noise, I propose an estimator

that combines James–Stein shrinkage in a first stage with a second-stage control-function

approach. Unlike other IV estimators based on James–Stein shrinkage, my estimator reduces

bias uniformly relative to TSLS. Unlike LIML, it is invariant with respect to the structural

form and translation of the target parameter.

I consider the first stage of a two-stage least-squares estimator as a high-dimensional

prediction problem, to which I apply rotation-invariant shrinkage akin to James and Stein

(1961). Regressing the outcome on the resulting predicted values of the endogenous regressor

directly would shrink the TSLS estimator towards zero, which could increase or decrease bias

depending on the true value of the target parameter. Conversely, shrinking the TSLS estimator

towards the OLS estimator can reduce risk (Hansen, 2017), but increases bias towards OLS.

Instead, my proposed estimator uses the first-stage residuals as controls in the second-stage

regression of the outcome on the endogenous regressor. If no shrinkage is applied, the TSLS

estimator is obtained as a special case, while a variant of James and Stein (1961) shrinkage

that never fully shrinks to zero uniformly reduces bias.

The proposed estimator is invariant to a group of transformations that include translation
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in the target parameter. While the limited-information maximum likelihood estimator (LIML)

can be motivated rigorously as an invariant Bayes solution to a decision problem (Chamberlain,

2007), these transformations rotate the (appropriately re-parametrized) target parameter and

invariance applies to a loss function that has a non-standard form in the original parametrization.

In particular, unlike LIML, the invariance of my estimator applies to squared-error loss.

The two-stage linear model is set up in Section 2.3.1. Section 2.3.2 proposes the estimator

and establishes bias improvement relative to TSLS. Section 2.3.3 develops invariance properties

of the proposed estimator. Section 2.3.4 discusses the properties of the estimator in a simulation

exercise.

2.3.1 Two-Stage Linear Regression Setup

I consider estimation of the structural parameter β ∈ R in the standard two-stage linear

regression model

Yi = α+X ′iβ +W ′iγ + Ui

Xi = αX + Z ′iπ +W ′iγX + Vi

(2.3)

from n iid observations (Yi, Xi, Zi,Wi), where Xi ∈ R is the regressor of interest (assumed

univariate), Wi ∈ Rk control variables, Zi ∈ R` instrumental variables, and (Ui, Vi)
′ ∈ R2 is

homoscedastic (wrt Zi), Normal noise. α is an intercept,4 and γ and π are nuisance parameters.

This model could be motivated by a latent variable present in both outcome and first-stage

equation under appropriate exclusion restrictions as in Chamberlain (2007).5

Throughout this document, I write upper-case letters for random variables (such as Yi)

and lower-case letters for fixed values (such as when I condition on Xi = xi). When I suppress

indices, I refer to the associated vector or matrix of observations, e.g. Y ∈ Rn is the vector of

outcome variables Yi and X ∈ Rn×m is the matrix with rows X ′i.

4We could alternatively include a constant regressor in Xi and subsume α in β. I choose to treat α
separately since I will focus on the loss in estimating β, ignoring the performance in recovering the intercept α.

5In this section, the intercepts α, αX could be subsumed in the control coefficients γ, γX without loss, but
I maintain this notation to keep it consistent.
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For the noise I use the notationUi
Vi

 |Zi = zi,Wi = wi ∼ N

02,

 σ2 ρστ

ρστ τ2




for some ρ ∈ (−1, 1). The reduced form isY
X

 |Z = z,W=w ∼ N


α+ zπY + wγY

αX + zπ + wγX

 ,Σ⊗ I2n


with

πY = πβ,

γY = γ + γXβ,
Σ =

σ2 + 2ρβστ + β2τ2 ρστ + βτ2

ρστ + βτ2 τ2

 .

Note that there is a one-two-one mapping between reduced-form and structural-form parameters

provided that the proportionality restriction πY = πβ holds. I develop a natural many-means

form directly from the structural model, which is thus without loss, but not without consequence.

Throughout, our interest will be in estimating β for many instruments (large `).

We have Ui|Xi = xi, Zi = zi,Wi = wi ∼ N
(ρσ
τ vi, (1− ρ

2)σ2
)
where vi = xi − αX − z′iπ −

w′iγX . Given w ∈ Rn×k and z ∈ Rn×`, where I assume that (1, w, z) has full rank 1 + k + ` ≤

n− 1, let q = (q1, qw, qz, qr) ∈ Rn×n orthonormal where q1 ∈ Rn, qw ∈ Rn×k, qz ∈ Rn×` such

that 1 is in the linear subspace of Rn spanned by q1 ∈ Rn (that is, q1 ∈ {1/n,−1/n}), the

columns of (1, w) are in the space spanned by the columns of (q1, qw), and the columns of

(1, w, z) are in the space spanned by the columns of (q1, qw, qz). (As above, such a basis exists,

for example, by an iterated singular value decomposition.) Then,q′zX
q′rX

 |Z=z,W=w ∼ N


 q′zzπ

0n−1−k−`

 , τ2In∗


q′zY
q′rY

 |X=x, Z=z,W=w ∼ N


q′zx
q′rx

β +

q′zx−q′zzπ
q′rx

 ρσ

τ
, (1−ρ2)σ2In∗

 ,
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where n∗ = n− 1− k. Writing X∗z , X∗r , Y ∗z , Y ∗r for the respective subvectors,

X∗ =

X∗z
X∗r

 , Y ∗ =

Y ∗z
Y ∗r

 ,

µ = q′zzπ, and s = n− 1− k − `, we arrive at the canonical structural form

X∗ ∼ N


 µ

0s

 , τ2I`+s


Y ∗|X∗=x∗ ∼ N

x∗β +

x∗ −
 µ

0s


 ρσ

τ
, (1− ρ2)σ2I`+s

 ,

(2.4)

where I have suppressed conditioning on Z=z,W=w (and omit it from here on).

2.3.2 Control-Function Shrinkage Estimator

Given an estimator µ̂ = µ̂(X∗) of µ, a feasible implied estimator for β in Equation 2.4 is the

coefficient on X∗ in a linear regression of Y ∗ on X∗ and the control function X∗ − (µ̂′,0′s)
′.

(The two-stage least-squares estimator β̂TSLS = (Y ∗z )′X∗z
(X∗z )′X∗z

is obtained from the first-stage OLS

solution µ̂OLS = X∗z . It is biased towards the OLS estimator β̂OLS = (Y ∗)′X∗

(X∗)′X∗ .)

For high-dimensional µ, a natural estimator for µ is a shrinkage estimator of the form

µ̂(X∗) = c(X∗)X∗z with scalar c(X∗). The conditional bias of the implied control-function

estimator β̂ takes a particularly simple form for this class of estimators:

Lemma 2.2 (Conditional bias of CF–shrinkage estimators). For x∗ ∈ R`+s with c(x∗) 6= 0,

E[β̂|X∗ = x∗]− β = E
[
µ̂′(µ̂− µ)

µ̂′µ̂

∣∣∣∣X∗ = x∗
]
ρσ

τ

=

(
1− 1

c(x∗)

(x∗z)
′µ

(x∗z)
′x∗z

)
ρσ

τ
.

Shrinkage in the James and Stein (1961) estimator (for unknown τ2) takes the form

c(x∗) = 1 − p‖x
∗
r‖2

‖x∗z‖2
. This shrinkage pattern (and its positive-part variant) is unappealing

here, as it can cross zero, around which point the estimator diverges. A natural variant that
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mitigates this problem is

c(x∗) =
1

1 + p‖x
∗
r‖2

‖x∗z‖2
=

‖x∗z‖2

‖x∗z‖2 + p‖x∗r‖2
,

which behaves as 1− p‖x
∗
r‖2

‖x∗z‖2
for small p‖x

∗
r‖2

‖x∗z‖2
, but never quite reaches zero.

Theorem 2.2 (Bias dominance through shrinkage). Assume that ` ≥ 4 and p ∈
(
0, 2 `−2

s

)
.

Then |E[β̂|Z=z,W=w] − β| < |E[β̂TSLS|Z=z,W=w] − β| provided ρ 6= 0 and ‖µ‖ 6= 0

(otherwise equality).

The requirement ` ≥ 4 is an artifact of this specific shrinkage pattern and dominance

should extend to ` = 3 for an appropriate modification.

Proof. For the (rescaled) bias, where λ = ps and M = X∗z , we have by Lemma 2.2 that

B(λ) =
τ

ρσ
E[β̂ − β] = E

[
1− ‖X

∗
z ‖2 + p‖X∗r ‖2

‖X∗z ‖2
(X∗z )′µ

(X∗z )′X∗z

]
= E

[
1−
‖X∗z ‖2 + pE

[
‖X∗r ‖2

∣∣X∗z ]
‖X∗z ‖2

(X∗z )′µ

(X∗z )′X∗z

]

= E
[
1− M ′µ

‖M‖2
− λτ2 M

′µ

‖M‖4

]
,

provided that E
∣∣∣1− M ′µ

‖M‖2 − λτ
2 M ′µ
‖M‖4

∣∣∣ < ∞. By the multi-dimensional version of Stein’s

(1981) lemma for h(M) = 1
‖M‖2 ,

−2τ2 E
[

M

‖M‖4

]
= τ2 E [∇h(M)] = E [(M − µ)h(M)] = E

[
M − µ
‖M‖2

]
,

again provided that all moments exist.

For the existence of moments, note that by Cauchy–Schwarz and Jensen it suffices to

consider E
∥∥M/‖M‖4

∥∥ = E[‖M‖−3]. To establish that this expectation is finite, note that the

distribution of ‖M‖2/τ2, a non-central χ2 distribution with ` degrees of freedom and non-

centrality parameter ‖µ‖2/τ2, is first-order stochastically dominating a central χ2 distribution

with ` degrees of freedom, so it is sufficient to establish E[(X2)−3/2] <∞ whereX2 has a central

χ2 distribution with ` degrees of freedom. Now, the density f(y) of (X2)3/2 is proportional

to y`/3−1 exp(−y2/3/2), implying limy↘0 f(y)/yα = 0 for ` ≥ 4 and, say, α = 1/4 > 0. The
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existence of the inverse moment, i.e. E[(X2)−3/2] < ∞, follows by Piegorsch and Casella

(1985).

We thus have

E
[
M ′µ

‖M‖4

]
=
−1

2τ2
E
[

(M − µ)′µ

‖M‖2

]
,

which yields

B(λ) = E
[
1− M ′µ

‖M‖2
+
λ

2

(M − µ)′µ

‖M‖2

]
= E

[
1− ‖M‖

2 − (M − µ)′M

‖M‖2
+
λ

2

‖M2‖ − ‖µ‖2 − (M − µ)′M

‖M‖2

]
=
λ

2
− λ

2
E
[
‖µ‖2

‖M‖2

]
− λ− 2

2
E
[

(M − µ)′M

‖M‖2

]
.

Denote by K a Poisson random variable with mean κ = ‖µ‖2
2τ2 > 0. (B(λ) is constant at 1

for ‖µ‖ = 0, and there remains nothing to show.) From James and Stein (1961, (9), (16)) we

have that

E
[
‖µ‖2

‖M‖2

]
= E

[
2κ

`− 2 + 2K

]
= Q(`),

E
[

(M − µ)′M

‖M‖2

]
= E

[
`− 2

`− 2 + 2K

]
= P (`).

It immediately follows from

B(λ) = P (`)− λ

2
(P (`) +Q(`)− 1)

that the bias for the unshrunk reference estimator (λ = 0, TSLS) is B(0) = P (`) > 0, and that

B(λ) is decreasing in λ since P (`) +Q(`) ≥ 1 by Jensen’s inequality (with strict inequality

unless ‖µ‖ = 0). The (infeasible) bias-minimizing choice of λ is given by

λ∗ =
2P (`)

P (`) +Q(`)− 1
=

`− 2
`−2

2 + κ− 1/E
[
( `−2

2 +K)−1
] .

To conclude the proof, I assert (and prove below) that, for any a ≥ 1,

E
[
(a+K)−1

]
≤ 1

a+ ν − 1
. (2.5)
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With a = `−2
2 it follows that `−2

2 + κ − 1/E
[
( `−2

2 +K)−1
]
≤ 1 and thus λ∗ ≥ ` − 2. We

obtain |B(λ)| ≤ |B(0)| (dominance over TSLS in terms of bias) for all λ ∈ (0, `− 2) by strict

monotonicity of B(λ), which yields the theorem.

To establish Equation 2.5, fix a ∈ R with a ≥ 1 and note that for K Poisson with parameter

ν

E
[

ν

a+K

]
=
∞∑
ι=0

ν

a+ ι

νι exp(−ν)

ι!
=
∞∑
ι=0

ι+ 1

a+ ι

νι+1 exp(−ν)

(ι+ 1)!

=

∞∑
ι=1

ι

a+ ι− 1

νι exp(−ν)

ι!
.

For a = 1, thus E
[

ν
a+K

]
= 1− exp(−ν) ≤ 1. For a > 1,

E
[

ν

a+K

]
=
∞∑
ι=0

ι

a+ ι− 1

νι exp(−ν)

ι!
= E

[
K

a+K − 1

]
≤ ν

a+ ν − 1

by Jensen’s inequality applied to the concave function x 7→ x
a−1+x(x ≥ 0). In both cases,

Equation 2.5 follows by dividing by ν, yielding a generalization of an inequality in Moser (2008,

Theorem 6) to non-integer a.

2.3.3 Invariance Properties

The estimator β̂ developed in the previous section has invariance properties in a decision

problem, where in spirit and notation I follow the treatment of LIML in Chamberlain (2007).

First I fix the sample and action spaces, as well as a class of loss functions, for the decision

problem of estimating β. Starting with Equation 2.4, I write Z = (R`+s)2 for the sample

space from which (X∗, Y ∗) is drawn according to Pθ, where I parametrize θ = (β, µ, ρ, σ, τ ) ∈

Θ = R × R` × R3
≥0. The action space is A = R, from which an estimate of β is chosen. I

assume that the loss function L : Θ×A → R can be written as L(θ, a) = `(a− β) for some

sufficiently well-behaved ` : R → R (such as squared-error loss L(θ, a) = (a − θ)2). The

estimator β̂ : Z → A from the previous section is a feasible decision rule in this decision

problem.

For an element g = (gβ , gz, gr) in the (product) group G = R × O(`) × O(s), where R
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denotes the group of real numbers with addition (neutral element 0) and O(`) the group of

ortho-normal matrices in R`×` with matrix multiplication (neutral element I`), consider the

following set of transformations (which are actions of G on Z,Θ,A):

• Sample space: mZ : G×Z → Z,

(g, (x∗, y∗)) 7→


gz O

O gr

x∗,

gz O

O gr

 (y∗ + gβx
∗)


• Parameter space: mΘ : G×Θ→ Θ,

(g, θ) 7→ (β + gβ , gzµ, ρ, σ, τ )

• Action space: mA : G×A → A, (g, a) 7→ a+ gβ

These transformations are tied together by leaving model and loss invariant. Indeed, the

following result is immediate from Equation 2.4:

Proposition 2.3 (Invariance of model and loss).

1. The model is invariant: mZ(g, (X∗, Y ∗)) ∼ PmΘ(g,θ) for all g ∈ G.

2. The loss is invariant: L(mΘ(g, θ),mA(g, a)) = L(θ, a) for all g ∈ G.

A decision rule d : Z → A is invariant if, for all (g, (x∗, y∗)) ∈ G×Z, d(mZ(g, (x∗, y∗))) =

mA(g, d((x∗, y∗))). The estimator β̂ above is included in a class of invariant decision rules:

Proposition 2.4 (Invariance of a class of control-function estimators). Consider a control-

function decision rule d((x∗, y∗)) obtained as the coefficient on x∗ in a linear regression of y∗ on

x∗, controlling for x∗ − (c(‖x∗z‖, ‖x∗r‖)(x∗z)′,0′)′, where c(‖x∗z‖, ‖x∗r‖) scalar (and measurable).

Then d is an invariant decision rule with respect to the above actions of G.

Proof. Fix (x, y) ∈ Z and consider d((x, y)). Note first that c = c(‖xz‖, ‖xr‖) is invariant to

the action of G on Z. The decision rule is

d((x, y)) =
x′a(x)y

x′a(x)x
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where

a(x) = I− b(x)(b(x)′b(x))−1b(x)′ for b(x) =

(1− c)xz

xr

 .

Now for any g ∈ G, where I write qg =

gz O

O gr

, we have b(qgx) = qgb(x) and thus

a(qgx) = qga(x)q′g. It is immediate that

d(mZ(g, (x, y))) = d((qgx, qgy + gβqgx)) =
x′a(x)y

x′a(x)x
+ gβ

x′a(x)x

x′a(x)x

= d((x, y)) + gβ = mA(g, d((x, y))),

as claimed.

2.3.4 Simulation

In this section, I study the performance of the shrinkage estimator introduced in Section 2.3.2

in a simulation exercise. I generate data according to Equation 2.3 without control variables

Wi (k = 0), where I normalize the target parameter to β = 1, the variance of both error terms

to one, and set their correlation to ρ = .5. The Zi are drawn independently from a multivariate

standard Normal distribution. I fix the sample size to n = 60. I vary the size ‖π‖ ∈ {0.5, 1.0}

of the first-stage parameter, as well as the number ` ∈ {5, 10, 20} of instruments.

On this data, I compare the performance of estimates of β from OLS regression (Yi on Xi),

two-stage least squares (TSLS), and the IV shrinkage estimator introduced in Section 2.3.2

(JSIV). For each parameter setting and each estimator I obtain bias, median bias, standard

deviation (SD), root mean-squared error (RMSE), and inter-quartile range (IQR, the difference

between the 75th and 25th percentile of the distribution of estimates) from 100,000 Monte-Carlo

draws.

Table 2.2 reports the results of the simulation exercise. The two-stage least-squares

estimator is biased towards the OLS estimator, which has positive bias. As predicted by

the theory, the shrinkage estimator persistently reduces the bias, with higher gains when the
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Table 2.2: Simulation results for IV shrinkage estimator

(a) ‖π‖ = 1.0

k 5 10 20

OLS TSLS JSIV OLS TSLS JSIV OLS TSLS JSIV

Bias 0.250 0.025 0.001 0.250 0.063 0.009 0.250 0.120 0.038
Median bias 0.250 0.032 0.010 0.251 0.067 0.019 0.250 0.123 0.047
SD 0.087 0.128 0.139 0.087 0.120 0.143 0.087 0.109 0.146
RMSE 0.265 0.131 0.139 0.265 0.135 0.143 0.265 0.162 0.151
IQR 0.116 0.166 0.178 0.116 0.158 0.184 0.116 0.144 0.188

(b) ‖π‖ = 0.5

k 5 10 20

OLS TSLS JSIV OLS TSLS JSIV OLS TSLS JSIV

Bias 0.400 0.096 0.013 0.400 0.188 0.074 0.399 0.281 0.181
Median bias 0.400 0.112 0.051 0.401 0.195 0.101 0.399 0.283 0.197
SD 0.105 0.240 0.342 0.105 0.200 0.309 0.105 0.161 0.259
RMSE 0.413 0.259 0.342 0.414 0.275 0.318 0.413 0.324 0.316
IQR 0.140 0.295 0.359 0.140 0.256 0.357 0.140 0.211 0.316

control coefficient is small or its dimension high. In the simulation, this pattern carries over to

the median bias. At the same time, the variance of estimates increases, with an ambiguous

effect on overall mean-squared error (MSE): while the MSE is consistently below OLS, MSE

improves over two-stage least squares only for many instruments.

2.4 Conclusion

In this chapter, I discuss two applications of James–Stein-type shrinkage to treatment-effect

estimation. First, shrinkage in control variables in a Normal linear model consistently reduces

expected prediction error without introducing bias in the treatment parameter of interest pro-

vided treatment is random. In this case, the linear least-squares estimator is thus inadmissible

even among unbiased estimators. Second, shrinkage in at least four instrumental variables

in a canonical structural form provides consistent bias improvement over the two-stage least-

squares estimator. Together, these results suggests different roles of overfitting in control and
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instrumental variable coefficients, respectively: while overfitting to control variables induces

variance, overfitting to instrumental variables in the first stage of a two-stage least-squares

procedure induces bias.
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Chapter 3

Robust Post-Matching Inference

3.1 Introduction

Matching methods are widely used to create balance between treatment and control groups

in observational studies. Oftentimes, matching is followed by a simple comparison of means

between treated and nontreated (Cochran, 1953; Rubin, 1973; Dehejia and Wahba, 1999).

In other instances, however, matching is used in combination with regression or with other

estimation methods more complex than a simple comparison of means. The combination of

matching in a first step with a second-step regression estimator brings together parametric

and nonparametric estimation strategies and reduces the dependence of regression estimates

on modeling decisions (Ho et al., 2007). Matching followed by regression allows the estimation

of elaborate models, such as those that include interaction effects, that go beyond the average

treatment effect.

In this chapter, we develop valid standard error estimates for linear regression after nearest-

neighbor matching without replacement. The asymptotic properties of average treatment

effect estimators that employ a simple comparison of mean outcomes between treated and

nontreated after matching on covariates are well understood (Abadie and Imbens, 2006).

However, studies that employ regression models after matching usually ignore the matching

step when performing inference on post-matching regression coefficients. We show that this
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practice is not generally valid if the second step regression is misspecified or if matching is done

with replacement. For matching without replacement, we provide two easily implementable

alternatives for post-matching linear regression coefficients that are robust to misspecification.

First, we show that standard errors that are clustered at the level of the matches are valid

under misspecification. Second, we show that a nonparametric block bootstrap that resamples

matched pairs or matched groups, as opposed to resampling individual observations, also yields

valid inference under misspecification. Furthermore, we show that standard errors that ignore

the matching step can both under- or overestimate the variation of post-matching estimates.

The procedures proposed in this chapter are straightforward to implement with standard

statistical software.

Throughout the chapter, we will consider the following setup. Let W be a binary random

variable representing exposure to the treatment or condition of interest (e.g., smoking), so

W = 1 for the treated, and W = 0 for the nontreated. Y is a random variable representing the

outcome of interest (e.g., forced expiratory volume) and X is a vector of covariates (e.g., gender

or age). We will study the problem of estimating how the treatment affects the outcomes of

the individuals in the treated population (that is, those with W = 1). In particular, we will

analyze the properties of a two-step (first matching, then regression) estimator often used

in empirical practice. This estimation strategy starts with a non-experimental sample, S,

from which treated units and their matches are extracted to create a matched sample, S∗.

Then, using data for the matched sample only, the researcher runs a regression of Y on Z,

where Z is a vector of functions of W and X (e.g., individual variables plus interactions). We

aim to obtain valid inferential methods for the coefficients of this regression, possibly under

misspecification. To be precise, by “misspecification” we mean that there is no version of the

conditional expectation of Y given W and X that follows the functional form employed in the

second-step estimator.

A special case of our setup is that of the standard matching estimator for the average

treatment effect on the treated, which is given by the regression coefficient on treatment W in

a regression of Y on Z = (1,W )′. In this sense, our chapter generalizes the standard theory for
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matching estimators. However, the framework allows for richer analysis, such as the analysis

of linear interaction effects of the treatment with a given covariate, Z = (1,W,WX ′, X ′)′.

To illustrate the implications of our results, consider the simple case when Z = (1,W )′.

As we mentioned in the previous paragraph, in this setting, the sample regression coefficient

on W corresponds to the simple matching estimator often employed in applied studies, which

is based on a post-matching comparison of means between treated and nontreated. Under

well-known conditions this estimator is consistent for the average effect of the treatment on the

treated (see, e.g., Abadie and Imbens, 2012), irrespective of the true form of the expectation

of Y given W and X. Notice, however, that even in this simple scenario, our results imply

that regression standard errors that ignore the matching step are not valid in general. While

the expectation of Y given W always admits a linear version given that W is binary, a linear

regression of Y on Z = (1,W )′ will be misspecified relative to the regression of Y on W and

X, unless Y is mean-independent of X given W over a set of probability one.

The rest of the chapter is organized as follows. In Section 3.2 we first provide a detailed

description of the setup of our investigation. We then characterize the parameters estimated

by the two-step procedure described above. We show that these parameters coincide with the

regression coefficients in a regression of Y on Z in a population for which the distribution of

matching covariates X in the control group has been modified to coincide with that of the

treated. This is similar to the generalization of the Oaxaca decomposition (Oaxaca, 1973)

in DiNardo et al. (1996). Under selection on observables, that is, if treatment is as good as

random conditional on X, these regression coefficients coincide with the population regression

coefficients in an experiment where treatment is randomly assigned in a population that has

the same distribution of X as the treated. We next establish consistency with respect to this

vector of parameters, show asymptotic Normality, and describe the asymptotic variance of the

post-matching estimator. In Section 3.3, we discuss different ways of constructing standard

errors. Based on the results of Section 3.2, we show that naive standard errors that ignore the

matching step are not generally valid if the regression model is misspecified, while clustered

standard errors or an analogous block bootstrap procedure yield valid inference. Section 3.4
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presents simulation evidence, which confirms our theoretical results. Section 3.5 applies our

results to the analysis of the effect of smoking on pulmonary function. The results show

how matching before the regression as well as robust standard errors can quantitatively and

qualitatively alter conclusions from real data. Section 3.6 concludes. The Appendix contains

proofs and extensions.

3.2 Post-Matching Inference

In this section, we discuss the asymptotic distribution of the least-squares estimator, obtained

from a linear regression of Y on Z after matching on observables X.

3.2.1 Post-Matching Least Squares

Consider a standard binary treatment setting along the lines of Rubin (1974) with potential

outcomes Y (1) and Y (0), of which we only observe Y = Y (W ) for treatment statusW ∈ {0, 1}.

Also assume that there are additional (pre-treatment) covariates S.

We will assume that the data consist of random samples of treated and nontreated. This

assumption could be easily relaxed, and we adopt it only to simplify the discussion.

Assumption 3.1 (Random sampling)

S = {(Yi,Wi, Si)}Ni=1 is a pooled sample obtained from N1 and N0 independent draws from the

population distribution of (Y, S) for the treated (W = 1) and nontreated (W = 0), respectively.

We first form a new sample, S∗ ⊆ S, by matching each treated unit, i, to M nontreated

units, J (i), without replacement. Specifically, we assume that there is an (m× 1) vector of

covariates X = f(S) ∈ X ⊆ Rm, along with some distance metric d : X × X → [0,∞) on the

support X of the covariates, such that the sets of matches, J (i) ⊆ {j;Wj = 0}, are chosen to

minimize the sum of matching discrepancies

N∑
i=1

Wi

∑
j∈J (i)

d(Xi, Xj),
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where every nontreated unit appears in at most one set of matches, that is, matching is without

replacement. For simplicity, we omit in our notation the dependence of J (i) on N and M .

The matched sample, S∗, has size n = (M + 1)N1. We use a double subscript notation

to refer to the observations in the matched sample. For instance, Yn1, . . . , Ynn refers to the

values of the outcome variable for the units in S∗, with analogous notation for other variables.

Within the matched sample, observations will be rearranged so that observations n1 to nn are

the N1 treated observations followed by the MN1 matches.

Let Z = g(W,S) be a (k × 1) vector of functions of (W,S), and let β̂ be the vector of

sample regression coefficients obtained from regressing Y on Z in the matched sample,

β̂ = arg min
b∈Rk

1

n

n∑
i=1

(Yni − Z ′nib)2

=

(
1

n

n∑
i=1

ZniZ
′
ni

)−1
1

n

n∑
i=1

ZniYni. (3.1)

In Section 3.2.3 we will introduce a set of assumptions under which β̂ exists and is unique

with probability approaching one.

As we mentioned above, when Z = (1,W )′ then the regression coefficient on W in the

matched sample is given by

τ̂ =
1

N1

n∑
i=1

WniYni −
1

MN1

n∑
i=1

(1−Wni)Yni

=
1

N1

N∑
i=1

Wi

(
Yi −

1

M

∑
j∈J (i)

Yj

)
,

which is the usual matching estimator for the average effect of the treatment on the treated.

For reasons of concreteness and following the vast majority of applied practice, we restrict

the analysis to linear regression after matching, as in Equation (3.1). We conjecture that our

results extend to M-estimators under suitable regularity conditions.
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3.2.2 Characterization of the Estimand

Before we study the sampling distribution of β̂, we first characterize its population counterpart,

which we will denote by β. That is, our first task is to obtain a precise description of the

nature of the parameters estimated by β̂.

The goal of matching is to change the distribution of the covariates in the sample of

nontreated units so that it reproduces the distribution of the covariates among the treated. In

order to do so it is necessary that the support of the matching variable X among the treated

is a subset of the support of that variable among the nontreated.

Assumption 3.2 (Support condition)

Let X1 = supp(X|W = 1) and X0 = supp(X|W = 0), then

X1 ⊆ X0.

We now describe the population distribution targeted by the matched sample, S∗. Let

P (·|W = 1) and P (·|W = 0) be the matching source distributions of (Y, S) from where the

treated and nontreated samples in S are respectively drawn, and let E[·|W = 1] and E[·|W = 0]

be the corresponding expectation operators. For given P (·|W = 1) and P (·|W = 0) and a

given number of matches, M , we define a matching target distribution, P ∗, over the triple

(Y, S,W ), as follows:

P ∗(W = 1) =
1

1 +M
,

and for each measurable set, A,

P ∗((Y, S) ∈ A|W = 1) = P ((Y, S) ∈ A|W = 1),

and

P ∗((Y, S) ∈ A|W = 0) = E[P ((Y, S) ∈ A|W = 0, X)|W = 1].

That is, in the matching target distribution: (i) treatment is assigned in the same proportion

as in the matched sample; (ii) the distribution of outcomes (Y, S) among the treated is the
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same as in the matching source; (iii) the distribution of outcomes (Y, S) among the nontreated

is generated by integrating the conditional distribution of (Y, S) given X and W = 0 over

the distribution of X given W = 1. As a result, under the matching target distribution, the

distribution of X given W = 0 coincides with the distribution of X given W = 1.

Under regularity conditions stated below, estimation on the matched sample, S∗, asymp-

totically recovers parameters of the matching target distribution, P ∗, in which the treated

and nontreated have the same distribution of X, but possibly different outcome and covariate

distributions conditional on X. As a result, comparisons of outcomes between treated and

nontreated in the matched sample, S∗, produce the controlled contrasts of the Oaxaca-Blinder

decomposition (Oaxaca, 1973; Blinder, 1973; and DiNardo et al., 1996). More generally,

under regularity conditions, regression coefficients of Y on Z in the matched sample, S∗,

asymptotically recover the analogous regression coefficients in the target population:

β = arg min
b∈Rk

E∗[(Y − Z ′b)2]

= (E∗[ZZ ′])−1E∗[ZY ]. (3.2)

Matching methods are often motivated by a selection-on-observables assumption, that

is, by the assumption that treatment assignment is as good as random conditional on the

observables we match on. To formalize the assumption of selection on observables and its

implications in our framework, consider source populations, expressed this time in terms

of potential outcomes and covariates, Q(·|W = 1) and Q(·|W = 0), which represent the

distributions of (Y (1), Y (0), S) given W = 1 and W = 0, respectively. These distribution

are defined in a way that P (·|W = 1) and P (·|W = 0) can be obtained by integrating out

Y (0) from Q(·|W = 1) and Y (1) from Q(·|W = 0), respectively. For given Q(·|W = 1) and

Q(·|W = 0), selection on observables means

(Y (1), Y (0), S)|X,W = 1 ∼ (Y (1), Y (0), S)|X,W = 0

almost surely with respect to the distribution of X|W = 1. In words, the joint distribution

of covariates and potential outcomes is independent of treatment assignment conditional on
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the matching variables. Because in this chapter we focus on causal parameters defined for a

population with distribution of the matching variables equal to X|W = 1, for our purposes it

is enough that the selection-on-observables assumption holds for the distribution of (Y (0), S)

only, that is,

(Y (0), S)|X,W = 1 ∼ (Y (0), S)|X,W = 0. (3.3)

Proposition 3.1 (Estimand under selection on observables)

Suppose that Assumption 3.2 holds and that β, as defined in Equation (3.2), exists and is

finite. Then if selection on observables, as defined in Equation (3.3), holds, the coefficients in

β are the same as the population coefficients that would be obtained from a regression of Y on

Z in a setting where:

(a) (Y (1), Y (0), S) has distribution Q(·|W = 1),

(b) treatment is randomly assigned with probability 1/(M + 1).

This result formalizes the notion that matching under selection on observables allows

researchers to artificially reproduce an experimental setting under which average treatment

effects can be easily evaluated through a least-squares regression of Y on Z. Notice, however,

that all results in this chapter apply to the general estimand β in Equation (3.2), regardless of

the validity of the selection-on-observables assumption.

3.2.3 Consistency and Asymptotic Normality

In this section, we will establish large sample properties of β̂. Throughout this chapter, we will

first assume that the sum of matching discrepancies vanishes fast enough to allow asymptotic

unbiasedness and root-n consistency:

Assumption 3.3 (Matching discrepancies)

As N →∞,

1√
N

N∑
i=1

Wi

∑
j∈J (i)

d(Xi, Xj)
p−→ 0.
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Abadie and Imbens (2012) derive primitive conditions on sampling the data-generating

processes that guarantee Assumption 3.3 holds. Of course, in concrete empirical settings,

the adequacy of matching should not rely on asymptotic results. Instead, the quality of the

matches needs to be evaluated for each particular sample (e.g., using normalized differences as

in Abadie and Imbens, 2011).

For any real matrix A, let ‖A‖ =
√

tr(A′A) be the Euclidean norm of A. Next assumption

collects regularity conditions on the conditional moments of (Y, Z) given (X,W ).

Assumption 3.4 (Well-behavedness of conditional expectations)

For w = 0, 1, and some δ > 0,

E[‖Z‖4|W = w,X = x] E[‖Z(Y − Z ′β)‖2+δ|W = w,X = x]

are uniformly bounded on Xw. Furthermore,

E[ZZ ′|X = x,W = 0] E[ZY |X = x,W = 0] Var(Z(Y − Z ′β)|X = x,W = 0)

are componentwise Lipschitz in x with respect to d(·, ·).

To ensure the existence of β̂ with probability approaching one as n → 0, we assume

invertibility of the Hessian, H = E∗(ZZ ′) . Notice that

H =
E
[
E[ZZ ′|X,W = 1] +ME[ZZ ′|X,W = 0]

∣∣W = 1
]

1 +M
. (3.4)

Assumption 3.5 (Linear independence of regressors)

H is invertible.

The next proposition establishes the asymptotic distribution of β̂.

Proposition 3.2 (Asymptotic distribution of the post-matching estimator)

Under Assumptions 3.1 to 3.5,

√
n(β̂ − β)

d−→ N (0, H−1JH−1),
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where

J =
Var
(
E[Z(Y − Z ′β)|X,W = 1] +ME[Z(Y − Z ′β)|X,W = 0]

∣∣W = 1
)

1 +M

+
E
[
Var(Z(Y − Z ′β)|X,W = 1] +M Var(Z(Y − Z ′β)|X,W = 0)

∣∣W = 1
]

1 +M

and H is as defined in Equation (3.4).

All proofs are in Appendix B.3.

3.3 Post-Matching Standard Errors

In the previous section, we established that

√
n(β̂ − β)

d−→ N (0, H−1JH−1)

for the post-matching OLS estimator β̂ that is obtained from a regression of Y on Z within

the matched sample S∗. In this section, our goal is to estimate the asymptotic variance,

H−1JH−1,

in order to do inference on β.

3.3.1 OLS Standard Errors Ignoring the Matching Step

Ho et al. (2007) argue that matching can be seen as a preprocessing step, prior to estimation,

so the matching step can be ignored in the calculation of standard errors. Here, we consider

commonly applied Eicker–Huber–White (EHW or “sandwich”) standard error estimates for iid

data (Eicker, 1967; Huber, 1967; White, 1980a,b, 1982). EHW standard errors are robust to

misspecification.

EHW standard errors can be computed as the square root of the main diagonal of the

matrix Ĥ−1ĴrĤ
−1/n, where

Ĥ =
1

n

n∑
i=1

ZniZ
′
ni (3.5)
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and

Ĵr =
1

n

n∑
i=1

Zni(Yni − Z ′niβ̂)2Z ′ni. (3.6)

The following proposition derives the probability limit of Ĵr with data from a matched sample.

Proposition 3.3 (Convergence of Jr)

Suppose that Assumptions 3.1 to 3.5 hold. Assume also that

E[Z(Y − Z ′β)2Z ′|X = x,W = 0]

is Lipschitz on X0 and

E[Y 4|X = x,W = w]

is uniformly bounded on Xw for all w ∈ {0, 1}. Then, Ĵr
p−→ Jr, where

Jr =
E
[
E[Z(Y − Z ′β)2Z ′|X,W = 1] +ME[Z(Y − Z ′β)2Z ′|X,W = 0]

∣∣W = 1
]

1 +M
.

Notice that Jr = E∗[Z(Y − Z ′β)2Z]. That is, Jr is equal to the inner matrix of the EHW

asymptotic variance when data are iid with distribution P ∗. However, since the matched

sample S∗ is not an iid sample from P ∗, Ĵr is not generally consistent for J . The difference

between the limit of the OLS standard errors Ĥ−1ĴrĤ
−1 and the actual asymptotic variance

H−1JH−1 is given by H−1∆H−1, where

∆ =
−ME

[
Γ0(X)Γ1(X)′ + Γ1(X)Γ0(X)′|W = 1

]
− (M − 1)ME

[
Γ0(X)Γ0(X)′|W = 1

]
M + 1

,

and

Γw(x) = E
[
Z(Y − Z ′β)|X = x,W = w

]
,

for w = 0, 1.

Bias in the estimation of the variance can arise if the covariates in the regression are

correlated with the error terms in the regression, conditional on the variables we have matched

on, once we divide the sample between treated and control units. The following example

provides a simple instance of this bias.
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Example 3.1: Inconsistency of OLS standard errors

Assume the sample is drawn from

Y = τW +X + ε,

where X is scalar and also exogenous, E[X] = E[ε] = 0, and W and X are independent of ε.

Assume that we match the values of X for N1 treated units to N1 untreated units (M = 1)

without replacement. Let j(i) be the index of the untreated observation that serves as a match

for treated observation i. For simplicity, suppose that all matches are perfect, so Xi = Xj(i),

for every treated unit i. Within the matched sample, S∗, we run a linear regression of Y on

Z = (1,W )′ to obtain the regression coefficient on W ,

τ̂ =
1

N1

N∑
i=1

Wi(Yi − Yj(i)).

τ̂ is the usual matching estimator for the average effect of the treatment on the treated. Notice

that Yi−Yj(i) = τ+εi−εj(i). Because the variation in X is taken care of through the matching,

all variation in τ̂ comes through the error terms εi, and we obtain

n Var(τ̂) = 4Var(ε).

Consider now the residuals of the OLS regression of Yni on a constant and Wni in the matched

sample:

ε̂ni = Yni − µ̂− τ̂Wni ≈ Xni + εni,

where µ̂ is the intercept of the sample regression line. For this simple case, the OLS (EHW)

variance estimator for τ̂ is

n V̂ar(τ̂) =
4

n

n∑
i=1

ε̂2
ni ≈ 4

(
Var(X) + Var(ε)

)
.

As a result, EHW overestimate the variance of τ̂ . In this example, OLS standard errors do not

take into account the correlation between regression residuals (generated by X), overestimating

variance. �
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Example 3.1 gives a compelling intuition for why we would generally expect that OLS

standard errors are too large for post-matching estimators: If regression residuals are highly

positively correlated between control units and their match (which seems plausible as long as

unmodeled systematic heterogeneity in treatment is not too high), OLS standard errors for

treatment or interaction-with-treatment terms will overestimate the true variation.

The following example shows, however, that OLS standard errors that ignore the matching

step may also underestimate the variance.

Example 2: Underestimation of the variance

In the same setting as Example 3.1, assume that data is generated by

Y = τW +X − 2WX + ε.

The post-matching estimator of τ from a regression of Y on (1,W )′ is

τ̂ =
1

N1

n∑
i=1

Wi(Yi − Yj(i)).

In this case, Yi − Yj(i) = τ − 2X + εi − εj(i). Therefore,

n Var(τ̂) = 8Var(X) + 4Var(ε).

OLS standard errors are based on residuals,

ε̂ni = Yni − µ̂− τ̂Wni ≈ Xi − 2WniXni + εni =


Xni + εni if Wni = 1,

−Xni + εni if Wni = 0.

As a result, we obtain

nV̂ar(τ̂) ≈ 4Var(X) + 4Var(ε).

In this example, the OLS variance estimator does not take into account all the heterogeneity

in the treatment effects, underestimating the variance of τ̂ . �

In both examples, OLS standard errors would be valid if we included the terms containing

X in the post-matching regression. Indeed, OLS standard errors are generally valid if the

regression is correctly specified in a specific sense defined in the following result.
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Proposition 3.4 (Validity of OLS standard errors under correct specification)

Assume that the post-matching regression,

Y = Z ′β + ε,

is correctly specified with respect to the conditional distribution of Y given (Z,X,W ). That

is, with E[ε|Z,X,W ] = 0. Then, Jr = J , and the EHW variance estimator, Ĥ−1ĴrĤ
−1, is

consistent for the asymptotic variance of
√
n(β̂ − β).

Note that correct specification is precisely the condition under which matching would not

be required to create consistency with respect to the estimand β characterized by the idealized

experiment laid out above, since a direct estimation without matching would do.

More importantly, notice that correct specification (in the sense defined above) of the

post-matching regression is not required for consistent estimation of causal parameters. For

example, under appropriate conditions, a simple difference in means between the treated and

a matched sample of untreated units is consistent for the average effect of the treatment on

the treated. Moreover, consistent estimators of the variance exist for the simple difference in

means. These variance estimators are different from the OLS variance estimator, and do not

rely on correct specification of the post-matching regression (see Abadie and Imbens, 2006).

3.3.2 Match-Level Clustered Standard Errors

By the previous section, we have shown that OLS standard errors are not generally valid for

the post-matching least-squares estimator. In this section, we will demonstrate that when

matching is done without replacement, clustered standard errors (Liang and Zeger, 1986;

Arellano, 1987) can be employed to obtain valid estimates of the variance of post-matching

regression coefficients. In particular, we will consider variance estimates that cluster at the

level of the sets of units matched together in the first step.

Consider an estimator of the asymptotic variance of β̂ given by Ĥ−1ĴĤ−1, where Ĥ is as

in Equation (3.5) and Ĵ is given by the clustered variance formula applied to the sets of units
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matched together in the matching step,

Ĵ =
1

n

n∑
i=1

Wi

(
Zi(Yi − Z ′iβ̂) +

∑
j∈J (i)

Zj(Yj − Z ′j β̂)
)

×
(
Zi(Yi − Z ′iβ̂) +

∑
j∈J (i)

Zj(Yj − Z ′j β̂)
)′
.

Clustered standard errors can be readily implemented using standard statistical software. The

next results shows that match-level clustered standard errors are valid in large samples for the

post-matching estimator (provided matching is done without replacement).

Proposition 3.5 (Validity of clustered standard errors)

Under the assumptions of Proposition 3.3 we obtain that

Ĵ
p−→ J.

In particular, the clustered estimator of the variance is consistent, i.e.,

Ĥ−1ĴĤ−1 − nVar(β̂)
p−→ 0.

The intuition behind this result is that matching on covariates makes regression errors

statistically dependent among units in the same match-set. Standard errors clustered at the

level of the match-set take this dependency into account.

3.3.3 Matched Bootstrap

By the previous section, clustered standard errors are valid for the asymptotic variance of the

post-matching estimator; however, they require calculation of Ĥ, Ĵ as estimates of H,J .

In this section, we show that a clustered version of the nonparametric bootstrap (Efron,

1979) is also valid, and thereby offer a method of calculating standard errors that only requires

the (repeated) calculation of regression coefficients. This bootstrap relies on a general result

about the coupled resampling of martingale increments. Note that the nonparametric bootstrap

on the full sample is not only computationally unattractive (as matches have to be calculated

in each bootstrap iteration), but also invalid (Abadie and Imbens, 2008).
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Recall that we reordered the observations in our sample, so that the first N1 observations

are the treated. Consider the nonparametric bootstrap that samples treated units together

with their matching partners from S∗ to obtain

β̂∗ =

(
1

n

n∑
i=1

VniZniZ
′
ni

)−1
1

n

n∑
i=1

VniZniYni

where (Vn1, . . . , VnN1) has a multinomial distribution with parameters (N1, (1/N1, . . . , 1/N1)),

and Vnj = Vni if j > N1 and j ∈ J (i). In this bootstrap procedure, N1 units are drawn at

random with replacement from the N1 treated sample units. Untreated units are drawn along

with their treated match. Effectively, the matched bootstrap samples matched sets of one

treated unit and M untreated units. The next proposition shows validity of the matched

bootstrap.

Proposition 3.6 (Validity of the matched bootstrap)

Under the assumptions of Proposition 3.5, we have that

sup
r∈Rs

∣∣∣P (√n(β̂∗ − β̂) ≤ r
∣∣∣S)− P (N (0, H−1JH−1) ≤ r)

∣∣∣ p−→ 0.

The proof of this proposition relies on a general result on the coupled resampling or

martingale increments, which can be found in Appendix B.2.

Proposition 3.6 shows that the bootstrap distribution provides an asymptotically valid

approximation of the limiting distribution of the post-matching estimator, but that does not

necessarily imply that the associated bootstrap variance is an asymptotically valid estimate of

the variance of the estimator. Indeed, the analysis of the bootstrap variance is complicated by

the fact that, in forming the bootstrap estimate β̂∗, the empirical analog

Ĥ∗ =
1

n

n∑
i=1

VniZniZ
′
ni

of the Hessian H for a given bootstrap draw may be badly conditioned or even non-invertible,

which happens with positive probability at any given sample size. To circumvent this issue,
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we fix constants c > 0 and α ∈ (0, 1/2) and consider the alternative bootstrap estimator

β̃∗ =


β̂∗, ‖Ĥ∗ − Ĥ‖ ≤ c

nα

β̂, otherwise

where ‖ · ‖ denotes the Frobenius norm. In other words, this modified bootstrap estimator

coincides with the matched bootstrap estimator whenever the bootstrap Hessian Ĥ∗ is close

to the empirical analog of the Hessian Ĥ in the full matched sample, and equals the original

post-matching estimator for other bootstrap draws. The threshold is chosen such that, as the

sample size grows, the two bootstrap estimators coincide with probability approaching one.

We conjecture that β̃∗ allows for valid inference in large samples, including the consistent

estimation of standard errors:

Conjecture 3.1 (Validity of the alternative bootstrap and bootstrap standard errors)

Under the assumptions of Proposition 3.5, the alternative bootstrap given by β̃∗ is valid in the

sense of Proposition 3.6, and yields a valid estimate of the asymptotic variance of β̂, i.e.

nVar(β̃∗|S)
p−→ H−1JH−1

as n→∞.

3.4 Simulations

In this section, we study the performance of the post-matching standard error estimators from

Section 3.3 in a simulation exercise.

3.4.1 Setup I: Robustness to Misspecification

We generate data according to

Y = WX + 5X2 + ε

94



with

X|W = 1 ∼ U(0, 1), X|W = 0 ∼ U(0, 1.5), ε ∼ N (0, σ2),

and U(a, b) is the Uniform distribution on [a, b]. Notice that the distribution of the covariates,

X, differs between treatment and control groups. We sample N1 = 40 treated and N0 = 160

nontreated units. We first match treated and untreated units on the covariates, X, without

replacement and with M = 1 match per treated unit. We consider the following post-matching

regression specifications.

Specification 1:

Y = α+ τ0W + τ1WX + β1X + ε

Specification 2:

Y = α+ τ0W + τ1WX + β1X + β2X
2 + ε

Specification 1 includes X as a linear control, but is misspecified, while Specification 2 is correct

relative to the conditional expectation E[Y |W,X]. Regardless of whether the specification is

correct or not, it can always be seen as an L2 approximation to E[Y |W,X] (see, e.g., White,

1980b). We focus on the regression coefficients τ0 and τ1.

Table 3.1 reports the results of the simulation exercise. In a regression within the full sample

without matching, the estimates of τ0 and τ1 are biased under misspecification (Specification 1),

while they are valid under correct specification (Specification 2). After matching, both

specifications yield valid estimates for τ0 and τ1. However, OLS standard error estimates are

inflated under misspecification, while average clustered and matched bootstrap standard errors

are close to the standard deviation of the estimators. Under correct specification, all standard

error estimates perform well.

This simulation exercise shows the role of matching before running the regression in

obtaining valid estimates even under misspecification, and confirms our theoretical results.

OLS standard errors are not robust to misspecification, while clustered and matched bootstrap

standard error estimates are.
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Table 3.1: Simulation results for 10,000 Monte Carlo iterations for Setup I in Section 3.4.1

(a) Target parameter: Coefficient τ0 = 0 on W

average
full sample post-matching standard error

Specification E[τ̂0] std(τ̂0) E[τ̂0] std(τ̂0) OLS cluster bootstrap

1 1.03 .237 0.00 .116 .225 .109 .112
2 0.00 .093 0.00 .115 .108 .108 .111

(b) Target parameter: Coefficient τ1 = 1 on the interaction WX

average
full sample post-matching standard error

Specification E[τ̂1] std(τ̂1) E[τ̂1] std(τ̂1) OLS cluster bootstrap

1 −1.49 .366 1.00 .199 .406 .190 .195
2 1.00 .159 1.00 .198 .187 .188 .194

3.4.2 Setup II: High Treatment-Effect Heterogeneity

In the simulation in the previous section, OLS standard errors overestimate the variation of

the post-matching estimator under misspecification. In this section, we present an example in

which OLS standard errors are too low. We generate data according to

Y = WX + 20W (X − .5)2 − 10(X − .5)2 + ε

with ε ∼ N (0, σ2) as above. According to this data-generating process, the conditional

treatment effects is non-linear with

E[Y |W = 1, X]− E[Y |W = 0, X] = X + 20(X − .5)2.

Sample sizes, matching settings, and regression specifications are as in Setup I. Notice that both

regression specifications are now misspecified, as they cannot capture non-linear conditional

treatment effects. Like in Section 3.4.1, regression coefficients represent the parameters of an

L2 approximation to E[Y |W,X] over the distribution of (W,X) in Proposition 3.1. Direct

calculations yield τ0 = 5/3 and τ1 = 1 for both specifications.
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Table 3.2: Simulation results for 10,000 Monte Carlo iterations for Setup II in Section 3.4.2

(a) Target parameter: Coefficient τ0 = 1.63 on W

average
full sample post-matching standard error

Specification E[τ̂1] std(τ̂1) E[τ̂1] std(τ̂1) OLS cluster bootstrap

1 −0.44 .449 1.63 .598 .409 .567 .598
2 1.45 .570 1.63 .597 .408 .567 .598

(b) Target parameter: Coefficient τ1 = 1 on the interaction WX

average
full sample post-matching standard error

Specification E[τ̂1] std(τ̂1) E[τ̂1] std(τ̂1) OLS cluster bootstrap

1 5.99 0.68 1.01 1.09 0.74 1.03 1.09
2 1.45 1.05 1.01 1.09 0.74 1.03 1.09

Table 3.2 presents the results of the simulation exercise under this alternative setup. Unlike

in the previous simulation study, naive OLS standard errors that ignore the matching step now

underestimate the variation of the post-matching estimator, driven by the large heterogeneity

in conditional treatment effects that is not captured by either regression specification. As our

theoretical results suggest, our proposed robust standard error estimates approximate the true

variation adequately on average. Note that the different specifications now change inference

without matching, but are essentially equivalent in post-matching regression given that the

estimand β2 is zero in the second specification.

3.5 Application

This section reports the results of an empirical application where we look at the effect of

smoking on the pulmonary function of youth. The application is based on data originally

collected in East Boston by Tager et al. (1979, 1983), and subsequently described and analyzed

in Rosner (1995) and Kahn (2005). The sample contains 654 youth, N1 = 65 who have ever

smoked regularly (W = 1) and N0 = 589 who never smoked regularly (W = 0). The outcome
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of interest is the subjects’ forced expiratory volume (Y ), ranging from 0.791 to 5.793 liters per

second (`/sec). In addition, we use data on age (X1, ranging from 3 to 19 with the youngest

ever-smoker aged 9) and gender (X2, with X2 = 1 for males and X2 = 0 for females).

The use of matching to study the causal effect of smoking is motivated by the likely

confounding effects of age and gender. For instance, while the causal effect of smoking on

respiratory volume is expected to be negative, older children smoke more and have a larger

respiratory volume, which may result in a positive association between smoking and respiratory

volume in this sample.

We first match every smoker in the sample to one non-smoker (M = 1), without replacement,

based on age (X1) and gender (X2). Within the resulting matched sample of 65 smokers and

65 non-smokers, we run linear regressions with the following specifications:

Specification 1:

Y = α+ τ0W + ε.

Specification 2:

Y = α+ τ0W + β1X1 + β2X2 + ε.

Specification 3:

Y = α+ τ0W + τ1W (X1 − E[X1]) + τ2W (X2 − E[X2])

+ β1(X1 − E[X1]) + β2(X2 − E[X2]) + ε.

The first specification yields the matching estimator for the average treatment effect τ0 as the

regression coefficient on W , while the second adds linear controls ins X1 and X2. The third

specification also includes linear interaction effects with age and gender.

The regression coefficients τ0 on treatment W as well as the linear interactions τ1 of

treatment with age and τ2 of treatment with gender for the three specifications (where

applicable) are reported in Table 3.3. The first specification demonstrates the confounding

problem: without controlling for age and gender, there appears to be a positive effect of

smoking on respiratory function. After controlling for age and gender using matching the sign
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Table 3.3: OLS and post-matching estimates of τ0 in Specifications 1, 2, 3 in Section 3.5

smoker smoker×age smoker×male

coeff. st. error coeff. st. error coeff. st. error
OLS clust OLS clust OLS clust

Specification 1:
OLS .711 .099
post-matching −.066 .132 .095

Specification 2:
OLS −.154 .104
post-matching −.077 .104 .096

Specification 3:
OLS .495 .187 −.182 .036 .461 .193
post-matching −.077 .102 .093 −.092 .054 .038 −.021 .249 .212

of the treatment coefficient is reversed. In this specification, the clustered standard error is

considerably smaller than the OLS standard error.

Once we include linear controls (Specification 2), the sign of the main effect is not affected

by matching any more, and clustered standard errors are similar to OLS standard errors.

Both findings are consistent with our regression specification moving closer towards correct

specification. Notice, however, that the magnitude of the OLS estimate with Specification 2

is double that of the magnitude with Specification 1, while the magnitude of the post-

matching estimate stays roughly constant. This result illustrates the higher robustness across

specifications of the post-matching estimator relative to OLS.

In Specification 3, which includes full interactions, both the use of matching and the use of

robust standard errors may matter for qualitative conclusions. First, notice that the coefficient

on the interaction of gender with treatment is large, significant and positive without matching,

suggesting that the effect of smoking is more severe for girls than for boys. After matching, the

sign flips, and the estimated effect is small and insignificant. This suggests that the interaction

finding with OLS is driven by misspecification. Second, in the post-matching regression we

find a negative estimate for the interaction of treatment with age. With OLS standard errors,

this effect is not significant (at the 5% level); the robust clustered standard error, as our theory

suggests, is smaller and lets us reject a zero interaction coefficient.
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3.6 Conclusion

This chapter establishes valid inference in linear regression after nearest-neighbor matching

without replacement. OLS standard errors that ignore the matching step are not generally

valid if the regression specification is incorrect relative to the expectation of the outcome

conditional on the treatment and the matching covariates. Notice, however, that using a

correct specification relative to E[Y |W,X] is not necessary to consistently estimate treatment

parameters after matching. For example, a simple difference in means can identify the average

treatment effect in a matched sample.

We propose two alternatives – standard errors clustered at the match level and an analogous

block bootstrap – that are robust to misspecification and easily implementable with standard

statistical software. A simulation study and an empirical example demonstrate the usefulness

of our results.

Our analysis remains limited in three ways: First, we discuss only matching without

replacement, and our results do not directly carry over to matching with replacement as in

Abadie and Imbens (2006). Second, our analysis assumes that the quality of matches is good

enough for matching discrepancies not to bias the asymptotic distribution of the post-matching

regression estimator. Post-matching regression adjustments may, in practice, help eliminating

the bias as in the bias-corrected matching estimator in Abadie and Imbens (2011). This is

an angle that we do not explore in this chapter and an interesting avenue for future research.

Third, the results presented in this chapter are formulated for post-matching linear least squares

only, but we believe that they carry over to more general classes of regression techniques,

specifically M-estimators.
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Appendix A

Appendix to Chapter 1

This appendix builds up to the proofs of the main results (Theorem 1.1, Lemma 1.1, Theo-

rem 1.2). Throughout, I restate the relevant claims from the main chapter with their original

numbering.

A.1 Minimax Optimality of Fixed Bias

Lemma 1.2 (Unbiasedness aligns estimation). If the investigator has risk from R∗ then the

investigator will choose from the unbiased estimators C∗ according to the designer’s preferences.

Proof of Lemma 1.2. Take any investigator risk function rI ∈ R∗, unbiased estimator τ̂ ∈ C∗,

and prior π ∈ ∆(Θ). (∆(Θ) denotes the unit |θ| − 1-simplex in RΘ.) Then, the designer’s

average risk is

Eπ[rDθ (τ̂)]

rI∈R∗
= Eπ[(τ̂(z)− τ̃θ)2]

= Eπ[((τ̂(z)− Eθ[τ̂(z)])− (Eθ[τ̂(z)]− τ̃θ))2]

= Eπ[(τ̂(z)− Eθ[τ̂(z)])2] + Eπ[(Eθ[τ̂(z)]− τ̃θ)2]

τ̂∈C∗
= Eπ[Varθ(τ̂(z))] + Eπ[(τθ − τ̃θ)2]

by a bias-variance decomposition. (I conflate Pθ into Pπ.) Since Eπ[(τθ − τ̃θ)2] is constant
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with respect to τ̂ and Eπ[Varθ(τ̂(z))] does not vary with τ̃ , the estimation target τ̃ does not

affect the choice of the estimator from C∗. Hence, choices are as if τ̃ = τ . The investigator

chooses from C∗ according to the designer’s risk rD.

Theorem 1.1 (Fixed bias is minimax optimal). Write ∆∗(Θ) for all distributions over Θ

with full support. For every hyperprior η with support within ∆∗(Θ) there is a set of biases

βη : Θ→ R such that the fixed-bias restriction

Cη = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βηθ }

is a minimax optimal mechanism in the sense of Definition 1.1, i.e.

Cη ∈ arg min
C

sup
rI∈R∗

Eη
[
rDθ

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

Proof of Theorem 1.1. I apply the strategy from Theorem 1 in Frankel (2014) to establish that

the unbiasedness restriction yields a minimax (maxmin in utility terms) optimal mechanism.

Relative to the quadratic-loss constant-bias setup in Frankel (2014), average risk yields weighted

sums where the prior changes weights and the bias changes across decisions (sample draws) and

states (posterior expectations). Rather than using Lemma 3 on quadratic-loss constant-bias

utilities in Frankel (2014) as stated there, I therefore appeal directly to the logic of his more

general Theorem 1, which I extend to deal with the non-compact type and action spaces in

my application.

The agent’s (investigator’s) actions are the estimates τ̂(z) at all N = (2|Y|)n sample points

z ∈ Z. (I assume that the covariates x are already known when the investigator commits to

their estimator.) The state that only the agent observes is the investigator’s prior π ∈ ∆(Θ).

π is drawn from the (hyper-)prior η.

In the parlance of Frankel (2014), I consider the Φ-moment mechanisms where the agent

chooses from estimators

Cβ = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βθ∀θ ∈ Θ}

for a set of fixed biases β ∈ RΘ. (Each expectation – a weighted sum over actions τ̂(z) – is a
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map from actions to real numbers.) To show that this mechanism is maxmin optimal for some

choice of β, I establish that:

1. Any feasible such Φ-moment mechanism (i.e. any bias vector β with Cβ 6= ∅) induces

aligned delegation over R∗, that is, subject to the restriction τ̂ ∈ Cβ agents of all risk

types rI ∈ R∗ choose as if they were of risk type rD.

2. R∗ is Φ-rich, that is, for any mechanism there exists some β ∈ RΘ and a sequence of

risk types (rIk)∞k=1 ∈ (R∗)N such that for all realized π ∈ ∆∗(Θ) and all corresponding

sequences (τ̂k)
∞
k=1 of chosen estimators, limk→∞ Eθ[τ̂k(z)] = τθ + βθ for all θ in the

support of π. (Unlike Frankel (2014) I do not explicitly consider mixed strategies since

randomized estimators are dominated in my setting.)

Similar to Frankel’s (2014) Theorem 1, the restriction Cβ is then minimax optimal provided

that β is chosen to minimize the designer’s average risk, for some distribution (hyperprior)

η over π. I will develop this deduction below for my specific case (in which type and action

spaces are not compact) once I have established aligned delegation and richness.

1. Aligned delegation. For β ∈ RΘ such that Cβ 6= ∅, the average over risk rI ∈ R∗ for

an estimator τ̂ ∈ Cβ over the prior π ∈ ∆(Θ) is

EπrIθ(τ̂) = Eπ[Varθ(τ̂(z))] + Eπ[(τθ + βθ − τ̃θ)2]

as in the proof of Lemma 1.2. Hence, choices do not vary with the risk type of the investigator

and are as if the investigator shared the designer’s risk function rD.

2. Richness. For some arbitrary, but fixed mechanism, our goal is to find a vector of biases

β̄ and a risk sequence rI1 , rI2 , . . . such that biases of mechanism outcomes along this sequence

always converge to β̄. I first justify assumptions on the mechanism, then pick a bias vector β̄,

and finally construct a suitable sequence of risk types that ensures bias convergence.

For some conformal mechanism, consider the set C ⊆ RZ of estimators τ̂ that are outcomes

for some investigator risk function rI ∈ R∗ and prior π in the support of η. Note that the
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outcomes of the mechanism are the investigator choices

τ̂π(rI) ∈ arg min
τ̂∈C

EπrIθ(τ̂) (A.1)

where by assumption ties are broken in favor of the designer. I first show that C in (A.1) is

wlog closed. Since the minimizers are already included in C, taking the closure of C does not

change investigator risk at their optimal choices. Replacing C by its closure thus does not

affect investigator risk at choices (A.1), and can only improve outcomes for the designer, since

additional ties are broken in their favor. For the analysis of minimax optimal mechanisms, we

can therefore assume wlog that C is closed.

I first assume that C is also bounded. Define the set

D = {θ 7→ Eθ[τ̂(z)]; τ̂ ∈ C} ⊆ RΘ

of vectors of expectations achieved by estimators in C. By linearity of expectation, D is wlog

compact by the above reasoning. Fix some ordering θ1, . . . , θJ of Θ (where J = |Θ|). Let δ0

be the maximal element in D with respect to the corresponding lexicographic ordering (so

that, in particular, δ0
θ1
≥ δθ1 for all δ ∈ D). For every h ∈ {2, . . . , J}, there exists a function

fh : R>0 → R>0 such that for all ε > 0

δ ∈ D,
h−1∑
j=1

|δθj − δ
0
θj
| < fh(ε) ⇒ δθh < δ0

θh
+ ε. (A.2)

Indeed, assume not, then there must be some h and some ε > 0 such that for every k ∈ N there

exists a δk ∈ D with
∑h−1

j=1 |δνθj | < 1/k and δkθh ≥ δ
0
θj

+ ε. Since D is compact, δk must have a

convergent subsequence with limit δε ∈ D. But δεθj = δ0
θj

for j < h and δεθh ≥ δ0
θh

+ ε > δ0
θh
,

contradicting that δ0 is maximal in D with respect to the lexicographic order. Hence there

exists such fh, and we can assume wlog fh(ε)
ε is monotonically increasing in ε > 0 (otherwise

we can choose an fh that is smaller for small values of ε).

Given the target δ0 ∈ D and the functions fh, h ≥ 2, I construct a sequence of risk functions

rIk such that the expectation of the corresponding investigator choices converges to δ0 for all
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π ∈ ∆∗(Θ). Concretely, for k ∈ N define αk ∈ RΘ recursively by

αkθJ = k αkθj = k/min
h>j

fh(1/αkθh), j < J

and consider the sequence of investigator risk functions

rIkθ (τ̂) = Eθ[(τ̂(z)− τ̃kθ )2], τ̃kθj = δ0
θj

+ αkθj

which falls within R∗.

For the case of bounded C and some arbitrary, but fixed π ∈ ∆∗(Θ), it remains to show that

the expectation of τ̂π(rIk) converges to δ0. Write δkθ = Eθ τ̂π(rIk). Assume for contradiction

that δkθ does not converge to δ0
θ . Since also δkθ ∈ D for all k and D compact, (δkθ )∞k=1 must

have a converging subsequence (δk`θ )∞h=1 with δk` → δ1 ∈ D \ {δ0} as h → ∞. The average

investigator loss along the sequence is

Eπr
Ik`
θ (τ̂π(rIk` )) = Eπ Varθ(τ̂π(rIk` ))︸ ︷︷ ︸

≤const. (C bounded)

+Eπ(δk`θ − (δ0
θ + αk`θ ))2. (A.3)

Note that an estimator τ̂0 with expectation δ0 ∈ D would also have been available in C by

definition of D, and the difference in risk between the chosen subsequence and the alternative

is

∆` = Eπr
Ik`
θ (τ̂π(rIk` ))− Eπr

Ik`
θ (τ̂0)

(A.3)
= Eπ(δk`θ − (δ0

θ + αk`θ ))2 − Eπ(αk`θ )2 +O(1)

= Eπ (δk`θ − δ
0
θ)

2︸ ︷︷ ︸
→(δ1

θ−δ
0
θ)2

−2Eπ(δk`θ − δ
0
θ)α

k`
θ +O(1)

= −2

J∑
j=1

π(θj)α
k`
θj

(δk`θj − δ
0
θj

) +O(1).

Denote by h the smallest index of for which δ0
θh
6= δ1

θh
. Since δ0 is maximal with respect to

the lexicographic ordering of D and δ1 also in D, we must have δ0
θh
− δ1

θh
> 0. By revealed
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preference and since αkθj+1
= o(αkθj ) for all j, it follows that

0 ≥ ∆`/α
k`
θh

= −2
h−1∑
j=1

π(θj)
αk`θj

αk`θh

(δk`θj − δ
0
θj

)− 2π(θh)(δ1
θh
− δ0

θh
) + o(1).

In particular, for ε = π(θh)(δ0
θh
− δ1

θh
),

lim inf
`→∞

h−1∑
j=1

π(θj)
αk`θj

αk`θh

(δk`θj − δ
0
θj

)︸ ︷︷ ︸
=a`j

≥ ε > 0. (A.4)

Hence there must exists some h∗ and a subsequence `s such that

a`sh∗ → ν ∈ (0,∞], lim sup
s→∞

a`sj

a`sh∗
≤ 1 ∀j < h. (A.5)

(That is, a`sh∗ is a maximal sequence within that subsequence, for a suitable asymptotic notion

of maximality; it is not unique, but an instance can be constructed from iterated subsequences.)

For simplicity, I write ks = k`s . I assume wlog that δksθh∗ − δ
0
θj
> 0 for all s. By (A.3),

h∗−1∑
j=1

|δksθj − δ
0
θj
| ≥ fh∗(δksθh∗ − δ

0
θh∗

),

so there must exist some j∗ < h∗ and a refinement of the subsequence along which |δksθj∗−δ
0
θj∗
| ≥

fh∗(δ
ks
θh∗
− δ0

θh∗
)/(h∗ − 1). Note that

π(θj∗)
αksθj∗

αksθh

|δksθj∗ − δ
0
θj∗
|

π(θh∗)
αksθh∗

αksθh

(δksθh∗ − δ
0
θh∗

)

≥ π(θj∗)

π(θh∗)(h∗ − 1)

αksθj∗

αksθh∗

fh∗(δ
ks
θh∗
− δ0

θh∗
)

δksθh∗ − δ
0
θh∗

.

By (A.5) there exists some ν0 ∈ (0,∞) such that a`sh∗ ≥ ν0 for all large s. By the definition of

a`h∗ we find, again for large s, that

δksθh∗ − δ
0
θh∗

=
a`sh∗

π(θh∗)

αksθh
αksθh∗

≥ ν0

π(θh∗)

αksθh
αksθh∗

.
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By monotonicty of fh∗ (ε)
ε therefore for large s

π(θj∗)
αksθj∗

αksθh

|δksθj∗ − δ
0
θj∗
|

π(θh∗)
αksθh∗

αksθh

(δksθh∗ − δ
0
θh∗

)

≥ π(θj∗)

π(θh∗)(h∗ − 1)

αksθj∗

αksθh∗

fh∗

(
ν0

π(θh∗ )

αksθh
αksθh∗

)
ν0

π(θh∗ )

αksθh
αksθh∗

.

By construction of the rates αkθ , we have that for every triple j∗ < h∗ < h and every constant

c > 0 and all large k

αkθj∗

αkθh
fh∗

(
c
αkθh
αkθh∗

)
≥
αkθj∗

αkθJ
fh∗

(
c
αkθJ
αkθh∗

)
=
αkθj∗

k
fh∗

(
ck

αkθh∗

)

≥ cαkθj∗fh∗
(

1

αkθh∗

)
≥ ck →∞.

It follows that

π(θj∗)
αksθj∗

αksθh

|δksθj∗ − δ
0
θj∗
|

π(θh∗)
αksθh∗

αksθh

(δksθh∗ − δ
0
θh∗

)

→∞.

By (A.5), δksθj∗ − δ
0
θj∗

< 0 for all but at most finitely many s. Hence a`sj∗/a
`s
h∗ → −∞, and thus∑h−1

j=1 a
`s
j → −∞, contradicting (A.4). Therefore δ1 = δ0.

Consider now the case when C is unbounded. First, if C is unbounded but B is still bounded

(and thus wlog compact by linearity of the expectation projection), then the same argument as

above goes through since there is always an estimator with finite variance and expectation δ0

available (and the investigator minimizes variance given expectation), so unbounded variance

along the investigator path can only make the choice with expectation δ0 more attractive.

Second, if B is also unbounded, then C cannot be minimax optimal. Since B is unbounded,

it must contain a sequence δk ∈ B with ‖δk‖ diverging. The projection of δk on the unit

sphere towards the origin must contain a converging subsequence with limit v where ‖v‖ = 1.

Consider a sequence of investigators with τ̃k = v along the ray defined by the direction of

this cluster point. One, if the average variance along the sequence of investigator choices is

unbounded, then so is the average risk of the designer. Two, if the average variance along the

sequence of investigator choices is bounded, then the bias diverges and average risk of the
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designer is again unbounded. Indeed, I show that it is not possible that both average variance

and average expectation remain bounded along the ray. If the expectation vector Eθ[τ̂(z)]

along that sequence of investigators remains bounded, pick a point arbitrarily close to the

ray that falls outside that bound. (Such a point exists by construction of v.) As investigator

preference moves along the ray, the gain in average investigator risk from moving to that point

outweigh any cost in terms of variance since the marginal cost of being off the expectation

target only increases, while the variance cost remains bounded. Hence, the bias cannot remain

bounded and the average risk of the designer diverges.

We therefore have that for any π ∈ ∆∗(Θ) the bias of investigator choices along the

sequence rIk converges to β̄θ = δ0
θ − τθ for all θ ∈ Θ.

Proof of minimax optimality. Given any mechanism, by richness there exists a sequence

of investigator risk functions rIk in R∗ and a bias vector β̄ such that Eθ[τ̂π(rIk)]− τθ → β̄θ for

all π ∈ ∆∗(Θ) and all θ ∈ Θ. The expected average designer’s risk along this sequence is

Eη[(τ̂π(rIk)− τθ)2] = Eη Varθ(τ̂π(rIk)) + Eη (Eθ[τ̂π(rIk)]− τθ)2︸ ︷︷ ︸
→β̄2

θ∀θ∈Θ,π∈∆∗(Θ)

,

where I omit the argument z of the estimators. Since biases are bounded (since D is) and the

support of η is in ∆∗(Θ), by dominated convergence

lim inf
k→∞

Eη[(τ̂π(rIk)− τθ)2] = lim inf
k→∞

Eη Varθ(τ̂π(rIk)) + Eηβ̄2
θ

≥ Eη lim inf
k→∞

Eπ Varθ(τ̂π(rIk)) + Eηβ̄2
θ .

For fixed π ∈ ∆∗(Θ), lim infk→∞ Eπ Varθ(τ̂π(rIk)) is at least the minimal asymptotic variance

along a sequence τ̂kπ with bounded bias that converges to β̄, and is otherwise unrestricted. Take

such a sequence for which Eπ Varθ(τ̂kπ ) converges to its minimal limit. Along this sequence,

τ̂kπ must be bounded, so it must have a convergent subsequence with some limit τ̂0
π in RZ for

which by continuity also Eθ[τ̂0
π ]− τθ = β̄θ. But then the variance of τ̂0

π must be at least the
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variance of a variance-minimizing estimator subject to the bias constraint. Taken together,

inf
rI∈R∗

Eη[rDθ (τ̂π(rI))] ≥ lim inf
k→∞

Eη[(τ̂π(rIk)− τθ)2]

≥ Eη min
τ̂∈Cβ̄

Eπ Varθ(τ̂) + Eηβ̄2
θ .

Now, by aligned delegation,

min
τ̂∈Cβ̄

Eπ(Varθ(τ̂) + β̄2
θ ) = min

τ̂∈Cβ̄
EπrDθ (τ̂) = EπrDθ (τ̂π(rI))

for every rI ∈ R∗ for choices from Cβ̄. It follows that for every mechanism there is a set

of biases such that the fixed-bias mechanisms has at least weakly better worst-case (over

investigator types in R∗) performance. Hence, at an optimal choice of biases βη given the

hyperprior η, the fixed-bias restriction Cη is minimax optimal. Such a minimizer exists because

the set of biases is wlog compact (indeed, we can assume Eηβ2
θ ≤ EηrDθ (z 7→ 0) <∞) and the

expected average risk continuous in the choice of bias.

I conjecture that the restriction of the support to priors with full support is not necessary.

A.2 Representation of Unbiased Estimators

As in the main text, for fixed n ≥ 1 and finite support Y I consider potential outcomes

θ = (y(1), y(0)) ∈ Θ = (Y2)n from which for treatment d ∈ {0, 1}n we observe y = d ◦ y(1) +

(1− d) ◦ y(0) ∈ Yn. (Here, ◦ denotes the Hadamard (entry-wise) product.) The estimate of

interest is τθ = 1′(y(1)− y(0))/n.

Lemma 1.1 (Representation of unbiased estimators). The estimator τ̂ is unbiased, Eθ[τ̂(z)] =

τθ for all potential outcomes θ ∈ Θ, if and only if:

1. For a known treatment probability p, there exist leave-one-out regression adjustments

(φi : (Y × {0, 1})n−1 → R)ni=1 such that

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(z−i)).
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2. For a fixed number n1 of treated units, there exist leave-two-out regression adjustments

(φij : (Y × {0, 1})n−2 → R)i<j such that

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − φij(z−ij)),

where φij(z−ij) may be undefined outside 1′d−ij = n1 − 1.

I build up this general representation result in steps from simple estimators with binary

outcomes to general estimators with finite support.

A.2.1 Known Treatment Probability, Binary Outcomes

I start with known treatment probability p = Eθ[di] with di iid and binary support.

A natural class of admissible estimators are Bayes estimators, so a tempting starting point

for the analysis of optimal unbiased estimators are (limits of) Bayes estimators that minimize

average mean-squared error given the data and are also unbiased. However:

Remark A.1. For Y = {0, 1} and p = .5, the only unconstrained Bayes estimator (with

respect to average mean-squared error) that is unbiased (conditional on (y(1), y(0))) is τ̂(y, d) =

1
n(2d− 1)′(2y − 1). For Y = {0, 1} and p 6= .5, there are no unconstrained Bayes estimators

that are also unbiased.

Sketch of proof. For any prior, the unconstrained Bayes estimator with respect to average

mean-squared error is the posterior expectation of τθ given the data. Any posterior expectation

of τθ is bounded between the maximal treatment effect +1 and the minimal treatment effect

−1. To achieve unbiasedness, any data that is consistent with either of the extremes must

therefore yield an estimate of +1 or −1, respectively. Iterating this argument, the unique

unconstrained Bayes estimator is the one achieved from a prior that puts full probability on

(yi(1), yi(0)) ∈ {(1, 0), (0, 1)} and zero probability on the configurations {(1, 1), (0, 0)}. This

yields Eθ[yi(1) − yi(0)|yi, di] = (2di − 1)(2yi − 1), which is unbiased for p = .5, but not for

p 6= .5.

The remark implies that searching for unbiased estimators among unconstrained Bayes
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estimators to characterize the class of admissible unbiased estimators is futile, and I instead

first characterize unbiased estimators before returning to optimality by solving for constrained

Bayes estimators subject to the resulting representation.

Theorem A.1. For Y = {0, 1}, assume that the estimators τ̂A, τ̂B are unbiased τθ (conditional

on θ = (y(1), y(0))). Then,

τ̂B(y, d)− τ̂A(y, d) =
1

n

n∑
i=1

di − p
p(1− p)

φi(y−i, d−i)

for a set of functions φi : (Y × {0, 1})n−1 → R.

For n = 2, the proof of Theorem A.1 can be made on a two-dimensional lattice folded into

a torus. The general proof can similarly be understood as summing over hypercubes on the

surface of an n-torus.

Proof. For δ̂(y, d) = τ̂B(y, d)− τ̂A(y, d), take φi(y−i, d−i) such that

δ̂(y, d) =
1

n

n∑
i=1

di − p
p(1− p)

φi(y−i, d−i) (A.6)

for all (y, d) with y′d > 0 (that is, all those that include some pair (yj , dj) = (1, 1)). This is

always feasible, say by the following inductive construction:

1. Set the φi(1n−1,1n−1) in any way that has (A.6) hold for δ̂(1n,1n).

2. Assuming that φi(y−i, d−i) has been set for all i and (y, d) with y′d ≥ n−k such that (A.6)

holds for such (y, d) (as is the case for k = 0 by the previous step), consider (y, d) with

y′d = n− (k+1). Among the terms φi(y−i, d−i) in (A.6), those with y′−id−i = n− (k+1)

have already been set by the induction assumption, and it remains to show that we can

set conformable terms φi(y−i, d−i) for y′−id−i = n− (k + 2).

Provided that k < n− 1, note that any (y, d) with y′d = n− (k+ 1) contains at least one

(yi, di) with y′idi = 1, δ̂(y, d) has the term φi(y−i, d−i) appear on the right in (A.6), where

thus y′−id−i = y′d−1 = n−(k+2) (so it has not yet been set). But note that this specific

φi(y−i, d−i) also appears only for that (y, d) among all (y, d) with y′d = n− (k + 1) as
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necessarily y′idi = 1. Hence, we can set all previously undetermined φi(y−i, d−i) for all i

and y′d with y′d ≥ n− (k + 1) in a way that (A.6) holds for such (y, d).

By induction, we have set all φi(y−i, d−i) for any i and y′d ≥ 1 conformably with (A.6) for

such (y, d). since this includes all terms of the form φi(y−i, d−i), it remains to show that the

unbiasedness assumption implies that (A.6) extends to (y, d) with y′d = 0.

Write δ̂φ for the function defined by (A.6) for all (y, d). We have thus shown that δ̂φ(y, d) =

δ̂(y, d) for all (y, d) with y′d > 0. By assumption, Eθ[δ̂(y, d)] = 0 for all θ = (y(1), y(0)), so

0 = Eθ[δ̂(y, d)] =
∑

d∈{0,1}n
P(d) δ̂(d ◦ y(1) + (1− d) ◦ y(0), d).

Fixing (y∗, d∗), it follows for any ỹ that

δ̂(y∗, d∗) = −
∑

d∈{0,1}n\{d∗}

P(d)/P(d∗) δ̂((1di=d∗i )
n
i=1 ◦ y∗ + (1di 6=d∗i )

n
i=1 ◦ ỹ, d) (A.7)

Since δ̂φ is similarly zero-bias by construction, the same holds for δ̂φ. Thus, if for some (y∗, d∗)

δ̂ and δ̂φ agree on

ỹ∗(d) = (1di=d∗i )
n
i=1 ◦ y∗ + (1di 6=d∗i )

n
i=1 ◦ ỹ, d)

for some ỹ and all d 6= d∗, then δ̂(y∗, d∗) = δ̂φ(y∗, d∗).

We are ready to show (A.6) for all (y∗, d∗), by induction over 1′d∗. We let ỹ = 1

throughout. At k = 0, d∗ = 0. For any d 6= d∗, ỹ∗(d)′d ≥ 1, so δ̂(ỹ∗(d), d) = δ̂φ(ỹ∗(d), d).

By (A.7), δ̂(y∗, d∗) = δ̂φ(y∗, d∗). Assume now that the claim holds for all (y∗, d∗) with

1′d∗ ≤ k, and consider some (y∗, d∗) with 1′d∗ = k + 1. Then, for any d 6= d∗ with 1′d ≤ k,

δ̂(y∗, d∗) = δ̂φ(y∗, d∗) by the induction assumption. For any d 6= d∗ with 1′d ≥ k+1 there must

be at least one dimension i with di = 1, d∗i = 0, thus ỹ∗(d)′d ≥ 1 and δ̂(y∗, d∗) = δ̂φ(y∗, d∗)

follows by construction. We conclude that δ̂(y∗, d∗) = δ̂φ(y∗, d∗) for all (y∗, d∗).

Since τ̂(y, d) = 1
n

∑n
i=1

di−p
p(1−p)yi is unbiased for τθ, the following characterization is imme-

diate:
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Corollary A.1. For Y = {0, 1}, any unbiased estimator τ̂ of τθ can be expressed as

τ̂ =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(y−i, d−i)).

The following result for the special case n = 2 shows that the reduction in degrees of

freedom in the estimator implied by unbiasedness is substantial:

Remark A.2. For n = 2, the φi(y−i, d−i) are unique up to the one-dimensional equivalence

class φ′i(y−i, d−i)) = φ′i(y−i, d−i)) + (−1)i(2d3−i − 1)∆, so unbiasedness reduces the degrees of

freedom from τ̂ ∈ R16 to [φ] ∈ R7.

A.2.2 Fixed Treatment Group Size, Binary Outcomes

Assume now that instead of the treatment probability, the number of treated is fixed at n1,

so that d ∼ U (Dn1) with Dn1 = {t ∈ {0, 1}n; t′n = n1}. Effectively, we assume invariance to

permutations in the assignment of treatment, but not more.

The natural, unbiased treatment-control-difference estimator can be written as

τ̂∗(y, d) =
1

n1

∑
di=1

yi −
1

n0

∑
di=0

yi =
1

n1n0

∑
di=1,dj=0

(yi − yj),

of which an unbiased extension is

τ̂φ(y, d) =
1

n1n0

∑
di=1,dj=0

(yi − yj − φij(y−ij , d−ij))

with φij = −φji. I claim that these are also all extensions.

Theorem A.2. Let Y = {0, 1}. Assume that τ̂A, τ̂B are unbiased for τθ. Then,

τ̂B(y, d)− τ̂A(y, d) =
1

n1n0

∑
di=1,dj=0

φij(y−ij , d−ij), φij = −φji

for functions φij : (Y × {0, 1})n−2 → R.

Note that we can alternatively write

τ̂B(y, d)− τ̂A(y, d) =
1

n1n0

n∑
i=1

n∑
j=i+1

(di − dj) φij(y−ij , d−ij),
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where we sum over each pair once and φij is only defined for j > i.

We first establish a lemma that adopts the proof strategy from Theorem A.1 to the setting

at hand. To this end, for (y(1), y(0)) ∈ (Y2)n write

N(y(1), y(0)) = {(d ◦ y(1) + (1− d) ◦ y(0), d); d ∈ Dn1}

(the set of observations consistent with y(1), y(0)) and let

C =
⋃

(y(1),y(0))∈(Y2)n

N(y(1), y(0)).

Let c : C → C− be the surjective correspondence

(y, d) 7→ {(ij, (y−ij , d−ij)); i < j, di 6= dj}.

Lemma A.1. If there exists a partition C =
⋃T
t=1 Ct such that for some T ∗

1. for C−t =
⋃

(y,d)∈Ct c(y, d) and

Dt = C−t \
⋃
s<t

C−s ,

there exists injections bt : Ct → Dt for t ≤ T ∗ and

2. for all t > T ∗ and (y, d) ∈ Ct, there exists some (y(1), y(0)) ∈ (Y2)n both (y, d) ∈

N(y(1), y(0)) and

(N(y(1), y(0)) \ {(y, d)}) ∩
⋃
s≥t
Cs = ∅

then for any δ̂ that is mean-zero there exist a function φ : C− → R such that δ̂ = δ̂φ with

δ̂φ(y, d) =
1

n1n0

n∑
i=1

n∑
j=i+1

(di − dj) φij(y−ij , d−ij).

Proof. Given some δ̂, we first construct such a family φ with δ̂φ(y, d) = δ̂ for all (y, d) ∈⋃
t≤T ∗ Ct, and then establish that this implies δ̂φ(y, d) = δ̂ also for (y, d) ∈

⋃
t>T ∗ Ct.

For the first part, I argue inductively as follows: Take t ≤ T ∗ and assume φ has been set on⋃
s<t C−s such that δ̂φ = δ̂ on

⋃
s<t Cs (which is given trivially for t = 1) then for every (y, d) ∈ Ct
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by the first assumption of the lemma there exists a unique term φij(y−ij , d−ij) = φ(bt(y, d))

with bt(y, d) ∈ Dt that has not yet been set, so we can set the terms φ(Dt) in a way that

δ̂φ = δ̂ on Ct and thus on
⋃
s≤t Cs. This completes the proof of the first part.

For the second part, note that by assumption Eθ[δ̂(y, d)] = 0 for all θ = (y(1), y(0)), so

0 = Eθ[δ̂(y, d)] =
∑

(y,d)∈N(y(1),y(0))

δ̂(y, d).

Fixing (y∗, d∗) it follows for any (y(1), y(0)) with (y∗, d∗) ∈ N(y(1), y(0)) that

δ̂(y∗, d∗) = −
∑

(y,d)∈N(y(1),y(0))\{(y∗,d∗)}

δ̂(y, d) (A.8)

Since δ̂φ is similarly zero-bias by construction, the same holds for δ̂φ. We are now ready to show

that δ̂φ = δ̂ for all (y, d) ∈ Ct, by induction over t. For some t > T ∗, assuming δ̂φ = δ̂ holds for

all (y, d) ∈ Cs with s < t (as is the case for all s ≤ T ∗), take any (y∗, d∗) ∈ Ct. By the second

part of the lemma, (A.8) and the induction assumption we must have δ̂(y∗, d∗) = δ̂φ(y∗, d∗).

This completes the proof.

We are ready to prove the main result:

Proof of Theorem A.2. δ̂(y, d) = τ̂B(y, d) − τ̂A(y, d) is a unbiased estimator of zero. Define

a, b : C → N0 by

a(y, d) = y′d, b(y, d) = (1− y)′(1− d).

Note that a(y, d) + b(y, d) ≤ n.

First, set T ∗ = n− 1 and for every t ≤ T

Ct = {(y, d) ∈ C; min(a(y, d), b(y, d)) ≥ 1, a(y, d) + b(y, d) = n+ 1− t}.

Then the first assumption of Lemma A.1 is fulfilled, as for every (y, d) ∈ Ct there exists some

(ij, (y−ij , d−ij) ∈ Ct with y′−ijd−ij + (1−y−ij)′(1−d−ij) = n−1− t = a(y, d) + b(y, d)−2, but

(y, d) is also the unique element in Ct covering that element of Dt under the correspondence c

(as indeed necessarily yi = di, yj = dj , which pins down (y, d) from (ij, (y−ij , d−ij)).

121



Second, with T = n+ 1 and

Cn = {(y, d) ∈ C; a(y, d) = 0, b(y, d) ≥ 1},

Cn+1 = {(y, d) ∈ C; b(y, d) = 0},

note that for each (y∗, d∗) ∈ Cn∪Cn+1 we have that (y(1), y(0)) = (y∗◦d∗+1◦(1−d∗), y∗◦(1−d∗))

produces

N(y(1), y(0)) ∩ {(y, d) ∈ C; min(a(y, d), b(y, d)) = 0} = {(y∗, d∗)}

for (y∗, d∗) ∈ Cn and

N(y(1), y(0)) ∩ {(y, d) ∈ C; b(y, d) = 0} = {(y∗, d∗)}

for (y∗, d∗) ∈ Cn+1. This verifies the second assumption of Lemma A.1.

Unbiased estimators (for binary outcomes) are thus fully characterized by leave-two-out

adjustments. Note that leave-one-out adjustments as in the case of known treatment probability

p would not generally be unbiased.

A.2.3 Extension to Finite Support

Take some distribution over the treatment assignment vector d ∈ {0, 1}n, data (y(1), y(0)) ∈

(Y2)n as before where Y ⊆ R, and y = d ◦ y(1) + (1− d) ◦ y(0). Our goal now is to extend a

representation for binary outcomes to one for finite (but arbitrarily large) support Y.

Lemma A.2. Assume that for Y = {0, 1} any δ̂ with Eθ[δ(y, d)] = 0 for all θ = (y(1), y(0))

permits a representation δ̂ = δ̂φ with

δ̂φ(y, d) =
∑
ι∈I

wι(dSι)φι(y−Sι , d−Sι)

for fixed I, (wι)ι∈I , (Sι)ι∈I (where I finite) and variable (φι)ι∈I where

φι : (Y × {0, 1}){1,...,n}\Sι → R.
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Then the representation result extends to any finite Y ⊆ R (with the same I, (wι)ι∈I , (Sι)ι∈I).

Proof. Write Y` = {0, 1, . . . , `} and define (for ` ≥ 2,m ≥ 0)

Y`,m =
m

×
i=1

Y2`−1 ×
n

×
i=m+1

Y`

We first establish the following intermediate result by induction over t = ns+m from t = 0:

For any (s,m) ∈ (N0×{1, . . . , n})∪{(0, 0)} for ` = 2s+1 any δ̂ with Eθ[δ̂(y, d)] = 0 for all θ =

(y(1), y(0)) ∈ Y2
`,m permits a representation δ̂ = δ̂φ as above with φι :×i∈{1,...,n}\Sι(Y`,m)i → R

For t = 0, the statement holds by the assumption of the lemma. Assume now that

its holds for t with such (s,m) such that t = ns + m and ` = 2s + 1, and consider the

(s+,m+) ∈ N0 × {1, . . . , n} with ns+ +m+ = t+ 1, and write `+ = 2s
+

+ 1 Fix an estimator

δ̂ with Eθ[δ̂(y, d)] = 0 for all θ = (y(1), y(0)) ∈ Y2
`+,m+ . Write For (y, d) ∈ Y`,m × {0, 1}n

define y+
m+ = `+ + ym+ − 1, y+

−m+ = y−m+ as well as y−
m+ = `+, y−−m+ = y−m+ to obtain

y+, y− ∈ Y`+,m+ , and define estimators by

δ̂1(y, d) = δ̂(y+, d)− δ̂(y−, d) δ̂2(y, d) = δ̂(y, d)

where thus δ̂2 is merely a restriction of δ̂ to Y`,m×{0, 1}n. For (y, d) ∈ Y`+,m+ ×{0, 1}n define

ȳm+ = min(ym+ , `+), ȳ−m+ = y−m+ to obtain a ȳ ∈ Y2
`,m for which

δ̂(y, d) = δ̂(y, d)− δ̂(ȳm+ , d) + δ̂(ȳm+ , d)

= δ̂1(y − ȳm+ , d) + δ̂2(ȳm+ , d).

δ̂2 is unbiased (for Y`,m) by construction. Note that

Eθ[δ̂1(y, d)] = Eθ[δ̂(y+, d)]− Eθ[δ̂(y−, d)] = 0

for any y(1), y(0) ∈ Y`,m, as they generate y+(1), y+(0) ∈ Y`+,m+ for which δ̂ is unbiased by

assumption, so δ̂1 is likewise unbiased (for y(1), y(0) ∈ Y`,m). By the induction assumption,

there are thus φ1, φ2 with

δ̂(y, d) =
∑
ι∈I

wι(dSι)(φ
1
ι ((y − ȳm+)−Sι , d−Sι) + φ2

ι ((ȳm+)−Sι , d−Sι)
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for any (y, d) ∈ Y`+,m+ × {0, 1}n. For

φι(y−Sι , d−Sι) = φ1
ι (y−Sι − (ȳm+)−Sι , d−Sι) + φ2

ι ((ȳm+)−Sι , d−Sι)

we therefore have δ̂ = δ̂φ. This concludes the induction step and thus the proof of the

intermediate result.

Setting m = n, it is immediate that the statement of the lemma holds for all Y = Y2s+1.

Since it will always hold for subsets, it holds for all Y = Y`. Now take arbitrary Y = {z1, . . . , z`},

and define for (y, d) ∈ (Y` × {0, 1})n

δ̃(y, d) = δ̂(zy, d)

where (zy)i = zyi ∈ Y. By the intermediate result there is some φ̃ such that δ̃ = δ̂φ̃. Setting

φι(y−Sι , d−Sι) = φ̃(ỹ−Sι , d−Sι) with ỹ such that zỹ = y yields δ̂(y, d) = δ̂φ(y, d).

We are now ready to proof the representation result in the main chapter.

Proof of Lemma 1.1. The representation for general finite support follows from Lemma A.2

applied to the binary representation results in Theorem A.1 and Theorem A.2, respectively.

A.3 Characterization of Optimal Unbiased Estimators

When is an estimator not just unbiased, but has also low average mean-squared error? I start

with the representation

τ̂φ(y, d) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(y−i, d−i))

for known treatment probability p and consider the error

∆φ
θ (y, d) = τ̂φ(y, d)− τθ

=
1

n

n∑
i=1

(
di − p
p(1− p)

(yi − φi(y−i, d−i))− (y(1)i − y(0)i)

)

=
1

n

n∑
i=1

di − p
p(1− p)

(ȳi − φi(y−i, d−i))
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for the adjustment oracle ȳi = (1− p)y(1)i + py(0)i, which would be the loss-minimizing choice

for φi(y−i, d−i).

Proposition A.1. For some prior π over θ = (y(1), y(0)), any φ∗π with

φ∗π(y−i, d−i) = Eπ [ȳi|y−i, d−i]

is a (global) minimizer of average loss EπLθ(φ), where Lθ(φ) = Eθ(∆
φ
θ (y, d))2.

Proof. The restriction that adjustments φi(y−i, d−i) are functions only of y−i, d−i (and of π)

requires some care, as each such adjustments appears given multiple draws of (y, d). Write

Mi(y
∗
−i, d

∗
−i) = {(y, d) ∈ (Y × {0, 1})n; (y−i, d−i) = (y∗−i, d

∗
−i)}

for the (y, d) for which τ̂φ(y, d) (and thus ∆φ
θ (y, d)) includes the term φi(y

∗
−i, d

∗
−i). Then,

∂ EπLθ(φ)

∂φi(y∗−i, d
∗
−i)

=
∂ Eπ

[
1(y,d)∈M(y∗−i,d

∗
−i)

(∆φ
θ (y, d))2

]
∂φi(y∗−i, d

∗
−i)

=Eπ

[
1(y,d)∈M(y∗−i,d

∗
−i)

∂(∆φ
θ (y, d))2

∂φi(y∗−i, d
∗
−i)

]
,

where we note that we can exchange differentiation and integration because all summands are

bounded. I omit writing Eθ explicitly inside Eπ and consider the joint distribution of θ and z.

Here, for all (y, d) ∈M(y∗−i, d
∗
−i),

∂(∆φ
θ (y, d))2

∂φi(y∗−i, d
∗
−i)

= − 2

n

di − p
p(1− p)

∆φ
θ (y, d)

= − 2

n2

 (di − p)2

(p(1− p))2
(ȳi − φi(y∗−i, d∗−i)) +

∑
j 6=i

(di − p)(d∗j − p)
(p(1− p))2

(ȳj − φj(y−j , d−j))

 .

The first-order condition ∂ EπLθ(φ)
∂φi(y∗−i,d

∗
−i)

= 0 is therefore

Eπ
[
1(y,d)∈M(y∗−i,d

∗
−i)

(di − p)2(φi(y
∗
−i, d

∗
−i)− ȳi)

]
= −

∑
j 6=i

(d∗j − p)Eπ
[
1(y,d)∈M(y∗−i,d

∗
−i)

(di − p)(φj(y−j , d−j)− ȳj)
]
.
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The condition is trivially fulfilled for Pπ((y, d) ∈M(y∗−i, d
∗
−i)) = 0. Otherwise, equivalently

=p(1−p)(φi(y∗−i,d∗−i)−Eπ [ȳi|(y−i,d−i)=(y∗−i,d
∗
−i)])︷ ︸︸ ︷

E[(di − p)2]φi(y
∗
−i, d

∗
−i)− Eπ[(di − p)2ȳi|(y−i, d−i) = (y∗−i, d

∗
−i)]

= −
∑
j 6=i

(2d∗j − 1)Eπ
[
(di − p)φj(y−j , d−j)|(y−i, d−i) = (y∗−i, d

∗
−i)
]

Note that this system of first-order conditions will generally have many solutions, as the

φ-representation of τ̂φ is not generally unique. I now show that the specific choice

φi(y
∗
−i, d

∗
−i) = Eπ[ȳi|(y−i, d−i) = (y∗−i, d

∗
−i)]

(for Eπ Pd((y, d) ∈M(y∗−i, d
∗
−i)) > 0, otherwise, say, zero) is a (global) posterior-loss minimizer.

To that end, note that for i 6= j

Eπ [(di − p)Eπ[ȳj |y−j , d−j ]|y−i, d−i]

= Eπ [(di − p)Eπ[ȳj |yi, di, y−ij , d−ij ]|yj , dj , y−ij , d−ij ]

= Eπ [Eπ [(di − p)Eπ[ȳj |yi, di, y−ij , d−ij ]|di, y−ij , d−ij ] |y−ij , d−ij ]

= Eπ [(di − p)Eπ[ȳj |di, y−ij , d−ij ]|y−ij , d−ij ]

= Eπ [(di − p)Eπ[ȳj |y−ij , d−ij ]|y−ij , d−ij ] = 0.

The first-order condition follows. Also

∂2 EπLθ(φ)

∂φi(yA−i, d
A
−i)∂φj(y

B
−j , d

B
−j)

=
1

(p(1− p)n)2
Eπ
[
1(y,d)∈M(yA−i,d

A
−i)∩M(yB−j ,d

B
−j)

(dBi − p)(dAj − p)
]

=



1
p(1−p)n2 Pπ((y−i, d−i) = (yA−i, d

A
−i)), (i, yA−i, d

A
−i) = (j, yB−j , d

B
−j)

(d∗i−p)(d∗j−p)
(p(1−p)n)2 Pπ(y∗, d∗), i 6= j, (y

A/B
−i/j , x

A/B
−i/j) = (y∗−i/j , d

∗
−i/j)

0, otherwise.

Note that ∂2 EπLθ(φ)

∂φi(yA−i,d
A
−i)∂φj(y

B
−j ,d

B
−j)

is two times the variance-covariance matrix of the (mean-zero)

random variables 1(y,d)∈M(y∗−i,d
∗
−i)

di−p
p(1−p)n , and therefore everywhere positive semi-definite. It

follows that the first-order conditions locate a (global) minimum.
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The proposition directly yields the first part of the general characterization result in the

main chapter. The second part follows analogously with oracle adjustments

∆ȳij =
(n0

n
yi(1) +

n1

n
yi(0)

)
︸ ︷︷ ︸

¯̄y)i

−
(n0

n
yj(1) +

n1

n
yj(0)

)
.

Theorem 1.2 (Choice of the investigator from unbiased estimators). An investigator with

risk r ∈ R∗ and prior π over Θ chooses the following unbiased Bayes estimators:

1. For a known treatment probability p,

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − Eπ[ȳi|z−i]).

2. For a fixed number n1 of treated units,

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − Eπ[∆ȳij |z−ij ]).

Proof. The first part is immediate from Proposition A.1. For the second part, we can wlog

consider adjustments

φi;j(y−ij , d−ij) (A.9)

for which we set φij(y−ij , d−ij) = φi;j(y−ij , d−ij)− φj;i(y−ij , d−ij) to find

∆φ
θ (y, d) = τ̂φ(y, d)− τθ

=
1

n1n0

∑
i<j

(di − dj) ((¯̄yi − φi;j(y−ij , d−ij))− (¯̄yj − φj;i(y−ij , d−ij)))

=
1

n1n0

∑
i,j

(di − dj)(¯̄yi − φi;j(y−ij , d−ij)).

As in the proof of Proposition A.1, we can then verify that the choice

φi;j(y−ij , d−ij) = Eπ[¯̄yi|y−ij , d−ij ]

fulfils the associated first-order condition.
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A.4 OLS is Biased

Consider a sample of n units (yi, di, xi), where di ∈ {0, 1} are iid given x1, . . . , xn with

P(di = 1) = p ∈ (0, 1).

A.4.1 Conditional on Covariates

Conditional on covariates xi = 1i=1 and for yi = xidi, the sample-averge treatment effect is

τ = 1/n (one for the first unit, zero for all other units). The coefficient τ̂OLS on d in a linear

regression of y on d and x (with intercept) has expectation E[τ̂OLS|n1] = 0 conditional on any

number 1 < n1 < n− 1 of treated units. Indeed, x perfectly explains y, so the coefficient on d

will always be zero (by Frisch-Waugh or otherwise).

A.4.2 Over the Sampling Distribution

Assume that xi ∈ Rkn+1 with P(xi0) = q ∈ (0, 1) and

xi1, . . . , xik|xi0
iid∼ (1− xi0) · N (0, 1)

(that is, xij = 0 for all j > 0 if xi0 = 1), xi iid across units. (Alternatively, any non-degenerate

distribution will do.) Let yi = xi0di. The average treatment effect of di on yi is

τpop = E[yi|di = 1]− E[yi|di = 0] = q.

Let τ̂OLS be the coefficient on d in a linear regression of y on d and x (with intercept). For

kn/n→ α ∈ (0, 1− q) as n→∞ we also find

τ̂OLS P→ q

1− α
.

Indeed, writing Ax for the annihilator matrix with respect to x and the intercept, by Frisch-

Waugh τ̂OLS = d′Axy
d′Axd

with

E[d′Axy|x] = p(1− p)(nx=1 − 1),

E[d′Axd|x] = p(1− p) trace(Ax) = p(1− p)(n− kn − 1).
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By the law of large numbers (where variances are suitably bounded),

d′Axy

n

P→ p(1− p)E[nx=1/n] = p(1− p)q,

d′Axy

n

P→ p(1− p)(1− α).

A.5 Asymptotic Inference

In this section, I derive asymptotically valid inference of the average treatment effect. These

results deviate from the approach in the main chapter in two notable, related ways. First, I

assume that potential outcomes and controls themselves are sampled iid from a population

distribution, and inference will not condition on their realizations. Second, in order to obtain

valid inference, I take large-sample approximations. The estimator of interest is still unbiased

in finite samples for the sample-average treatment effect. But for efficiency and inference I

focus on the estimation of the population-average treatment effect in large samples.

Building up to a characterization of the variance of the treatment-effect estimator in terms

of out-of-sample prediction quality, I first state an auxiliary remark that will simplify the proof

of the main result.

Remark A.3 (K-fold variance bound). Consider n square-integrable, mean-zero random

variables a1, . . . , an and a partition
⋃K
k=1 Jk = {1, . . . , n} such that, for all k, E[aiaj ] = 0 for

all i, j ∈ Jk. Then,

Var (
∑n

i=1 ai) ≤ K
n∑
i=1

Var(ai).

Proof. By Cauchy-Schwarz, applied once per row, we find that

Var (
∑n

i=1 ai) = Var
(∑K

k=1

∑
i∈Jk ai

)
≤
(∑K

k=1

√
Var

(∑
i∈Jk ai

))2

≤ K
K∑
k=1

Var
(∑

i∈Jk ai

)
= K

K∑
k=1

∑
i∈Jk

Var(ai),

where the last equality follows because increments are uncorrelated within folds.

I assume that potential outcomes and control variables are drawn iid from a population
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distribution

(yi(1), yi(0), xi)
iid∼ P,

treatment is assigned according to a known treatment probability P(di = 1) = p ∈ (0, 1), and

data (yi, di, xi) obtained from yi = yi(di).

In this section, I focus on K-fold estimators similar to those in Remark 1.1. Specifically, I

assume that a sample of size n is divided into K equally-sized folds

K⋃
k=1

Jk = {1, . . . , n}

(so I implicitly assume that K divides n). In this setting, I consider the asymptotic distribution

of the estimator

τ̂ =
1

n

K∑
k=1

∑
i∈Jk

di − p
p(1− p)

(yi − f̂k(xi))

of the population-average treatment effect τ = E[y(1)− y(0)], where each f̂k : X → R is fitted

only on folds other than Jk. My first result characterizes the asymptotic distribution of τ̂ .

Throughout, I use indices i and k outside sums for a representative draw from the respective

distribution.

Theorem A.3 (Asymptotic distribution of K-fold estimator). Assume that

1. E[Var(f̂k(xi)|xi)]→ 0 as n→∞,

2. E
[(

1−p
p

)2di−1
(yi − f̂k(xi))2

]
→ L (where i ∈ Jk), and

3. E[(f̂k(xi)− yi)2+δ] < C <∞ for some δ, C > 0.

Then,

√
n(τ̂ − τ)

d−→ N (0, s2), s2 =
L

p(1− p)
− τ2.

Note that the distribution of prediction functions f̂k will depend on the sample size of the

training sample, and thus on n. Furthermore, the result can be extended to the case where
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the population distribution itself depends on n. While I assume that K is fixed here, the

conclusion also holds with K growing provided that K E[Var(f̂k(xi)|xi)]→ 0.

The first condition expresses that the prediction variance vanishes and predictions stabilize

in large samples. The second condition defines the asymptotic prediction loss of the algorithm.

The third condition is a regularity assumption that will ensure asymptotic convergence. When

this condition holds, I do not require the assumption of bounded support of potential outcomes

from the main chapter. Importantly, I do not assume that the prediction functions approximate

the best prediction of y given x or are risk-consistent, only that their variance vanishes.

Proof of Theorem A.3. Write ti = di−p
p(1−p) . I decompose

√
n(τ̂ − τ) =

1√
n

K∑
k=1

∑
i∈Jk

(ti(yi − f̂k(xi))− τ)

=
1√
n

K∑
k=1

∑
i∈Jk

(ti(yi − E[f̂k(xi)|xi]︸ ︷︷ ︸
=gn(xi)

) + ti(E[f̂k(xi)|xi]− f̂k(xi))− τ)

=
1√
n

n∑
i=1

(ti(yi − gn(xi))− τ) +
1√
n

K∑
k=1

∑
i∈Jk

ti(f̂k(xi)− gn(xi)).

For the first part, note that E[(ti(yi − gn(xi)) − τ)2+δ] is bounded, uniformly in n. Its

expectation is zero and its variance is

s2
n = Var

(
1√
n

n∑
i=1

(ti(yi − gn(xi))− τ)

)
= Var (ti(yi − gn(xi)))

= E
[
t2i︸︷︷︸

=
(
di−p
p(1−p)

)2
= 1
p(1−p)

(
1−p
p

)2di−1

(yi − gn(xi))
2
]
− (E[ti(yi − gn(xi))]︸ ︷︷ ︸

=τ

)2

=

E
[(

1−p
p

)2di−1
(yi − gn(xi))

2

]
p(1− p)

− τ2.

Hence, by the Lyapunov CLT for triangular arrays,

1√
ns2

n

n∑
i=1

(ti(yi − gn(xi))− τ)
d−→ N (0, 1).
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Combining the first two assumptions,

E

[(
1− p
p

)2di−1

(yi − gn(xi))
2

]
→ L,

so we obtain that s2
n → s2 = L

p(1−p) − τ
2 and thus

1√
n

n∑
i=1

(ti(yi − gn(xi))− τ)
d−→ N (0, s2).

For the second part, by Remark A.3,

Var

 1√
n

K∑
k=1

∑
i∈Jk

ti(f̂k(xi)− gn(xi))


≤ K

n

K∑
k=1

∑
i∈Jk

Var
(
ti(f̂k(xi)− gn(xi))

)
= K E

[
t2i (f̂k(xi)− gn(xi))

2
]

= K E

[(
di − p
p(1− p)

)2
]
E
[
(f̂k(xi)− gn(xi))

2
]

=
K

p(1− p)
E
[
(f̂k(xi)− E[f̂k(xi)|xi])2

]
=

K

p(1− p)
E
[
Var(f̂k(xi)|xi)

]
−→ 0

as n→∞. In particular,

1√
n

K∑
k=1

∑
i∈Jk

ti(f̂k(xi)− gn(xi))
P−→ 0.

The claim of the theorem follows.

The asymptotic variance is a function of the expected prediction loss and the treatment

effect, and can be estimated consistently from the sample analogs.

Remark A.4 (Asymptotically valid variance estimate). Under the assumptions of Theo-

rem A.3, the asymptotic variance of τ̂ can be estimated consistently by

ŝ2 =
1

n− 1

K∑
k=1

∑
i∈Jk

(
di − p
p(1− p)

(yi − f̂k(xi))− τ̂
)2

.

As a consequence, we can construct asymptotically valid standard errors and Normal-theory
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confidence intervals from ŝ2. To be more precise, ŝ√
n
is a valid standard error for τ̂ , and

[τ̂ − z1−α/2
ŝ√
n
, τ̂ + z1−α/2

ŝ√
n

]

a 1− α confidence interval for τ (where z1−α/2 is the 1− α/2-quantile of the standard Normal

distribution).

The asymptotic results extend to the case of fixed n1 (by setting p = n1/n, provided that

E[f̂k(xi)]→ E[ȳi]), exact cross-fitting as in Remark 1.1 with balanced folds, and folds that are

only approximately of the same size or only approximately balanced.

Now that we have established asymptotically valid inference, I am ready to return to

preference alignment.

Remark A.5 (Alignment over precision). Assume the investigator chooses among unbiased

estimators, that is, by Lemma 1.1 among regression adjustments. Assume further that she

constructs regression adjustments in a K-fold procedure with (a sequence of) prediction functions

that fulfill the regularity assumptions for asymptotically valid inference in Theorem A.3. Then,

if the investigator wants to obtain small standard errors or tight confidence intervals, her

choices are aligned with the designer’s preference for low mean-squared error E[(τ̂ − τ)2] among

these unbiased estimators.

Proof. The asymptotic distribution of τ̂ as well as the probability limit of ŝ2 only depend on

the asymptotic loss L, the treatment probability p, and the treatment effect τ . The investigator

through her choice of adjustments can only control L, and for these preferences chooses a

sequence of prediction functions that minimizes asymptotic prediction loss. This is also the

variance-minimizing choice the designer prefers. (Since L is non-random, the specific utility

function over the size of standard errors or confidence intervals does not matter here.)

Note that unbiasedness is crucial to reduce the degrees of freedom over the asymptotic

distribution to the variance, with respect to which designer and investigator are aligned.

Conversely, designer and investigator may have different preferences over the bias-variance

trade-off, so allowing for (asymptotic) bias would break alignment even when the estimator is

asymptotically Normal.
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By the same argument as in the proof of Remark A.5, choices are also aligned over the power

of a test against some null hypothesis. Since the investigator cannot move the expectation of

the estimator, the best she can do is to pick a sequence of prediction functions for which the

asymptotic loss L is minimal.

Remark A.6 (Alignment over power). Consider a sequence of population distributions with

τn = τ0 + δ√
n
. Assume that the investigator constructs a one- or two-sided test against the null

hypothesis τ = τ0 by comparing the test statistic
√
n(τ̂−τ0)
ŝ to the standard Normal distribution,

and that the investigator’s (sequence of) prediction functions fulfill the regularity assumptions

in Theorem A.3. If the investigator has a preference for rejecting τ = τ0, then her choices are

aligned with the designer’s goal of minimizing E[(τ̂ − τ)2].

Based on the asymptotic approximation from Theorem A.3, I am now ready to prove the

result from the main chapter that distribution to two researchers attains asymptotic efficiency.

Remark 1.4 (Semi-parametric efficiency). If researchers use prediction algorithms (An : Z →

RX , z 7→ f̂n)∞n=1 with

E[(f̂n(xi)− E[ȳi|xi])2]→ 0

as n → ∞, then delegation to two researchers with risk functions in R∗ (who each obtain

access to half of the data, say) without further commitment achieves both finite-sample unbiased

estimation of τθ, and large-sample semi-parametric efficient estimation of τ for the semi-

parametric efficiency bound of Hahn (1998).

Proof of Remark 1.4. Similar to the proof of Theorem A.3, again setting ti = di−p
p(1−p) , I decom-

posem, with K = 2,

√
n(τ̂ − τ) =

1√
n

K∑
k=1

∑
i∈Jk

(ti(yi − f̂k(xi))− τ)

=
1√
n

K∑
k=1

∑
i∈Jk

(ti(yi − E[ȳi|xi]) + ti(E[ȳi|xi]− f̂k(xi))− τ)

=
1√
n

n∑
i=1

(ti(yi − E[ȳi|xi]))− τ) +
1√
n

K∑
k=1

∑
i∈Jk

ti(f̂k(xi)− E[ȳi|xi])).
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The latter part converges to zero in probability by Remark A.3 as in the proof of Theorem A.3.

Since the support of potential outcomes is bounded, the first part converges by the standard

CLT to a mean-zero Normal distribution with asymptotic variance

Var(ti(yi − E[ȳi|xi])) =
EVar(yi(1)|xi)

p
+

EVar(yi(0)|xi)
1− p

+ Var(E[yi(1)− yi(0)|xi]),

which is the efficiency bound of Hahn (1998).

A.6 Hyperpriors and Optimal Biases

The minimax result in the main chapter establishes that fixing the bias is a minimax optimal

solution to the designer’s delegation problem that aligns the choices of the investigator with

the goal of the designer. An optimal choice of biases, however, depends on the hyperprior of

the designer, and zero as a choice is not an optimal solution in general.

In this section, I discuss one justifications for why I put special emphasis on unbiasedness

coming from a specific notion of an uninformed designer. I then highlight that some hyperpriors,

even on finite support, deliver zero bias as an exact solution. Finally, I discuss how the

characterization of unbiased estimators extends to the case of other choices of the bias.

A.6.1 Uninformativeness and Zero Bias

Intuitively, a designer who has no systematic information about the location of the average

treatment effect will set the biases to zero. If we assumed that the support of the outcome

variables was continuous and unbounded, then one elegant formalization of this argument

would capture uninformativeness about the location of the treatment effect by an invariance to

translation actions in that direction, yielding an improper hyperprior that would deliver zero

bias under an appropriate criterion. Since my chapter is, however, formulated for finite support,

and since dealing with improper priors would bring with it additional technical complications,

I propose here one way of obtaining (approximately) zero bias under a specific notion of

(approximate) uninformativeness in order to highlight the connection between invariances and

bias.
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In order to illustrate one construction of an approximately uninformative hyperprior, I

start with an arbitrary hyperprior η over priors with (full) support in the grid

Θ0 = Y2n
k Yk = {−k,−k + 1, . . . ,−1, 0, 1, . . . , k − 1, k}

for some k ∈ N. (I am choosing an equally-spaced grid for convenience.) From η I construct

increasingly uninformative hyperpriors ηm over priors with support Θm = Y2n
k+m for all m ∈ N0.

In order to construct the hyperprior ηm for m ≥ 0, consider

g = (r, t) ∈ {−1, 1}2n × Y2n
m = Gm

and define the action of Gm on Z2n by g ◦ θ = (ri · θi + ti). (Note that g maps Θ0 to Θm.)

The distribution η over priors π on Θ0 implies a distribution g ◦ η over priors g ◦ π (defined by

(g ◦ π)(g ◦ θ) = π(θ)) on g ◦Θ0 ⊆ Θm that extends to a distribution on Θm. The distribution

ηm over priors with support in Θm is then given by the composition of Uniform(Gm) and ηm

that first draws a random action g̃ and then independently draws a prior over Θm according

to g̃ ◦ ηm.

This construction yields hyperpriors that are increasingly uninformative about the location

of outcomes in that they exhibit more and more symmetries with respect to reflection and

translation of the data. Writing (βmθ )θ∈Θm for the biases chosen optimally by the designer

according to the hyperior ηm constructed in this way, any bias βmθ will therefore approach

zero as the support grows.

Remark A.7 (Approximate unbiasedness). For any fixed θ ∈ Z2n (with m0 large enough such

that θ ∈ Θm), limm→∞
m≥m0

βmθ = 0.

Note that the priors drawn from ηm do not have full support, which could be rectified by

taking appropriate approximations. Note also that in this example I am using invariances

in the outcomes, and not just in the treatment effects, so a smaller class of invariances may

suffice to obtain a similar result.

A similar approach would start with an (improper) invariant hyperpior over priors with

support in Z2n and then consider restrictions of that distribution to an increasing sequence of

136



finite support sets, showing similarly that as the support grows and the hyperprior approaches

the uninformative hyperprior, the optimal biases shrink to zero.

Proof idea. By symmetry, the optimal bias at the origin 0 within any support Θm subject

to the hyperprior ηm is zero, βm0 = 0. Similarly, at fixed θ ∈ Θm0 and for m ≥ m0 + k, the

optimal bias would be zero if we conditioned ηm on

max
i∈{1,...,2n}

|θi − t̃| ≤ (m−m0)

in g̃ = (r̃, t̃), since this would make θ the center of symmetry. Since

Pηm
(

max
i∈{1,...,2n}

|θi − t̃| ≤ (m−m0)

)
→ 1

as m→∞, the argument extends to the unconditional optimization.

A.6.2 Zero Bias as a Minimax Solution

In my main setup, the designer optimizes against a worst-case risk, and averages over a

(hyper-)prior over the investigator’s prior information. One approach of fixing the bias would

replace the hyperprior with assuming a worst-case prior. However, without restrictions on the

priors and for a fixed, finite support, such a minimax solution would be driven by priors that

put full weight on extreme outcome values, which is econometrically unappealing.

Rather, I propose a minimax approach to fixing the biases that includes uncertainty about

the location of the outcomes. For generality, I formulate this result on the level of uncertainty

about hyperpriors, and then return to implications for uncertainty over priors. I follow the

construction and nomenclature from the above discussion of uninformativeness.

Specifically, I start with a set H (which can be a singleton) of hyperpriors, where for each

η ∈ H the priors in the support of η have as support the grid Y2n
k for

Yk = {−k,−k + 1, . . . ,−1, 0, 1, . . . , k − 1, k}.
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Consider

g = (r, t) ∈ {−1, 1}2n × Z2n = G

and, similar to the above, define the action of G on Z2n by g◦θ = (ri ·θi+ti). The distribution η

over priors π on Y2n
k implies a distribution g◦η over priors g◦π (defined by (g◦π)(g◦θ) = π(θ))

on g ◦ Y2n
k ⊆ Z2n. From that, I obtain the set of hyperpriors

H∗ = G ◦H = {g ◦ η; g ∈ G, η ∈ H}.

Following the logic of the proof of Remark A.7, the invariances of H∗ imply that an

investigator who optimizes against a worst-case hyperprior in H∗ chooses zero bias as a

minimax (in risk and hyperprior) optimal restriction of this form:

Remark A.8 (Minimax optimality of zero bias). The unbiased estimators are minimax optimal

for the invariant set H∗ of hyperpriors in the sense that the choice βθ = 0 for all θ ∈ Z2n

minimizes (among fixed-bias restrictions)

sup
η∈H∗

sup
rI∈R∗

Eη
[
rDθ

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

As a special case, this result includes the case where all hyperpriors are singletons, and the

designer thus optimizes against a worst-case prior directly. Hence, for any set of priors Π with

support Y2n
k and

Π∗ = G ◦Π = {g ◦ π; g ∈ G, π ∈ Π},

the minimax result yields minimization of

sup
π∈Π∗

sup
rI∈R∗

Eπ
[
rDθ

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

Note that the priors in Π∗ now have varying support.
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A.6.3 Hyperprios with Exactly Zero Bias

There are hyperpriors that trivially yield zero bias, namely those that by virtue of Varπ(ȳi|z−i) =

0 (for known p) allow the investigator to pick an unbiased estimator with zero loss (such as,

in the case of p = .5, if the investigator knows yi(1) + yi(0) from xi). While these constitute

extreme examples, they point towards a general intuition: if the investigator has strong private

information about the choice of optimal adjustments, then setting a non-zero bias would create

a burden by imposing loss that cannot be avoided.

A.6.4 When Bias is Optimal

If the designer has non-trivial information about the distribution of treatment effects, the

remaining results in the chapter formulated in terms of unbiased estimation extend at least

partly.

First, assume that the hyperprior of the designer implies (approximately) that Eθ[τ̂(z)] =

(1− λ)τθ is an optimal restriction (for λ ∈ (0, 1)), expressing a fixed shrinkage factor that is

set by the designer. Then, the investigator still faces the same unbiased estimation problem

as in the main chapter since the optimal shrunk estimator is the optimal unbiased estimator

multiplied by that factor ex-post.

Second, even if no such structure is available, the results still extend with modifications.

Note that the designer’s solution can equivalently be phrased as choosing a reference estimator

τ̂D (with the desired biases) and letting the investigator choose mean-zero adjustments δ̂I to

obtain an estimator

τ̂(z) = τ̂D(z) + δ̂I(z).

My characterization of unbiased regression adjustments directly yields a characterization of

mean-zero adjustments that characterize the choice set of the investigator, only that the

reference estimator has now changed. However, the optimal adjustments now take a different

form. For example, in the case of n = 1 with known p, the optimal adjustment now takes the
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general form

φi = p(1− p)Eπ[τ̂D(y = y(1), d = 1)− τ̂D(y = y(0), d = 0)],

which precisely yields the familiar adjustment Eπ[(1 − p)y(1) + py(0)] when applied to the

unbiased reference estimator τ̂D(z) = d−p
p(1−p)y.

A.7 Additional Proofs

In this section, I restate and sketch the proofs of the remaining results, which largely follow

from the main results proved earlier.

Theorem 1.3 (Complete-class theorem for unbiased estimators). For any unbiased estimator

τ̂ of the sample-average treatment effect that is not dominated with respect to variance, there

is a converging sequence of priors (πt)
∞
t=1 with full support such that τ̂ equals the limit of the

respective estimators in Theorem 1.2. Conversely, for any converging sequence of priors (πt)
∞
t=1

that put positive weight on every state θ ∈ Θ, every converging subsequence of corresponding

estimators is admissible among unbiased estimators.

Proof. Note first that, for π with full support, the estimator that minimizes average variance

among unbiased estimators is unique (even though the representation in Theorem 1.2 in

general is not). Indeed, among unbiased estimators the investigator minimizes (conflating the

distribution of θ)

Eπ[(τ̂(z)− τθ)2] = Eπ[(τ̂(z)− Eπ[τθ|z])2] + Eπ[(Eπ[τθ|z]− τθ)2].

Hence, within the affine linear subspace of RZ given by the unbiased estimators, the investigator

chooses the point τ̂ closest to (z 7→ Eπ[τθ|z])z∈Z according to the weighted (with positive

weights) Euclidean distance

d(τ̂1, τ̂2) = Eπ[(τ̂2(z)− τ̂1(z))2]

(with the distribution over Z implied by π through draws of θ). Hence, the investigator’s
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solution is unique when π has full support.

Since every limiting estimator is the limit of Bayes estimators with full support, with finite

domain and bounded codomain, any such limiting estimator is admissible. Since the state

space is finite, every admissible estimator is Bayes (e.g. Ferguson, 1967, Chapter 2). If the

estimator is Bayes with respect to a prior with full support, it is unique and therefore has

an adjustment representation of the claimed form. If the corresponding prior does not have

full support, we can write it as a limit of admissible estimators that are Bayes with respect

to priors with full support and thus unique, so the estimator is a limit of estimators of the

claimed form.

Corollary 1.1 (Characterization of fixed-bias K-fold distribution contracts). For K disjoint

folds Ik ⊆ {1, . . . , n} with projections gk : (y, d) = z 7→ z−Ik = (yi, di)i 6=Ik , a K-distribution

contract τ̂Φ has given bias if and only if:

1. For a known treatment probability p, there exist a fixed estimator τ̂0(z) with the given

bias and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n

K∑
k=1

∑
i∈Ik

di − p
p(1− p)

φki (z−i)

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

2. For a fixed number n1 of treated units, there exist a fixed estimator τ̂0(z) with the given

bias and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n1n0

K∑
k=1

∑
{i<j}⊆Ik

(di − dj)φkij(z−ij),

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

Proof. The result is a special case of Lemma 1.3 for this specific choice of the functions gk.

Remark 1.1 (Exact K-fold cross-fitting). For a partition of the sample

{1, . . . , n} =
K⋃
k=1

I(k)
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into K folds with n(k) ≥ 2 units each of which n(k)
1 > 0 treated and n(k)

0 > 0 untreated, the

estimator

τ̂(z) =
1

n

K∑
k=1

n(k)
∑
i∈I(k)

din
(k) − n(k)

1

n
(k)
1 n

(k)
0

(
yi − φ(k)

i (z−I(k))
)

is unbiased for the sample-average treatment effect τ conditional on (I(k))Kk=1 and (n
(k)
1 )Kk=1

under either randomization. The investigator obtains their constrained optimal (Bayes) τ̂

among these estimators at

φ
(k)
i (z−I(k)) = Eπ[n

(k)
0 yi(1) + n

(k)
1 yi(0)|z−I(k) ]/n(k).

Proof. Unbiasedness is immediate from Lemma 1.1. Optimality of this choice of adjustments

follows as in the proof of Theorem 1.2.

Lemma 1.3 (Characterization of unbiased K-distribution contracts). A K-distribution con-

tract τ̂Φ is unbiased for the sample-average treatment effect τθ for any conformable researcher

input (φ̂k)
K
k=1 if and only if:

1. For known treatment probability p, there exist regression adjustments (φi : (×k∈Ci Bk)×

(Y × {0, 1})n−1 → R)ni=1 such that

τ̂Φ((φ̂k)
K
k=1; z) =

1

n

n∑
i=1

di − p
p(1− p)

(yi − φi((φ̂k(gk(z))k∈Ci ; z−i))

for Ci = {k; gk(z) = g̃(z−i) for some g̃}.

2. For fixed number n1 of treated units, there exist regression adjustments (φij : (×k∈Cij Bk)×

(Y × {0, 1})n−2 → R)i<j such that

τ̂Φ((φ̂k)
K
k=1; z) =

1

n1n0

∑
i<j

(di − dj)(yi − yj − φij((φ̂k(gk(z))k∈Cij ; z−ij)),

for Cij = {k; gk(z) = g̃(z−ij) for some g̃}.

Proof. Since the resulting estimator must be unbiased, and researcher choices are themselves

functions of the data made available to them, the result follows directly from the general

representation result of unbiased estimators (Lemma 1.1).
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Theorem 1.4 (Hybrid pre-analysis plan dominates rigid pre-analysis plan). Assume that

investigator and researcher have risk functions in R∗. The optimal unbiased pre-committed

estimator τ̂pre is strictly dominated by an unbiased hybrid pre-analysis plan with respect to

average variance, i.e. the hybrid plan is as least as precise on average over any ex-ante prior

ηI and strictly better for many non-trivial ex-ante priors ηI .

Proof. A researcher with risk function in R∗ minimizes variance among unbiased estimators.

Since the original adjustments corresponding to τ̂pre are available to the researcher, her choice

can only reduce variance on average over her prior. Unless the ex-post changes are ineffectual,

this will strictly improve variance averaged over the hyperprior.

Remark 1.2 (Optimal hybrid pre-analysis plan). The dominating hybrid plan is:

1. For known treatment probability p, the researcher chooses regression adjustments (φposti :

(Y × {0, 1})n−1 → R)i/∈T = φ̂(zT ) to obtain

τ̂hybrid(φ̂; z) = τ̂pre(z)− 1

n

∑
i/∈T

di − p
p(1− p)

φposti (z−i)

where 1 ≤ |T | ≤ n− 1.

2. For fixed number n1 of treated units, the researcher chooses adjustments (φpostij : (Y ×

{0, 1})n−2 → R){i<j}∩T=∅ = φ̂(zT ) to obtain

τ̂hybrid(φ̂; z) = τ̂pre(z)− 1

n1n0

∑
{i<j}∩T=∅

(di − dj) φpostij (z−ij)

where 1 ≤ |T | ≤ n− 2.

In both cases, the investigator commits to the training sample T ⊆ {1, . . . , n} and the unbiased

estimator τ̂pre : Z → R.

Proof. This is a special case of Corollary 1.1.

Remark 1.3 (More researchers are better). Assume that the investigator and researchers all

have risk functions in R∗, and that the researchers all share the same (ex-post) prior π. Then
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an optimal unbiased K-distribution contract is dominated by an unbiased K + 1-distribution

contract in the sense of Theorem 1.4.

Proof. The result follows by the revealed-preference argument in the proof of Theorem 1.4.

Note that to obtain this result I assume that all researchers have the same prior, which

renders the proof trivial, but represents an unrealistic assumption. A more attractive result

would assume that the K researchers each obtain a draw from the same hyperprior η (where

draws are correlated between each other and with the true distribution, also drawn from η, of

θ), and I conjecture that in this case more researchers still improve average estimation quality.
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Appendix B

Appendix to Chapter 3

B.1 General Convergence of Matched Sums

In this section, we derive general convergence results for sums within the matched sample

S∗ that we will later use to establish consistency and asymptotic Normality of the various

estimators in this article. The main tool behind these lemmas is a martingale representation

similar to Abadie and Imbens (2012).

Let F (Y,W, S) be a (s× t)-matrix of real-valued measurable functions,

Φ1(x) = E[F (Y,W, S)|W = 1, X = x], Φ0(x) = E[F (Y,W, S)|W = 0, X = x],

Φ̂ =
1

n

n∑
i=1

F (Yni,Wni, Sni),

and

Φ = E∗[F (Y, T, S)] = E

[
1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∣∣∣W = 1

]
.

Lemma B.1

Under Assumptions 3.1 to 3.3, and if

(a.1) Φ0(·) is (component-wise) Lipschitz on X0,

(a.2) E[‖F (Y,W, S)‖2|W = w,X = x] is uniformly bounded on Xw, for w ∈ {0, 1},
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then Φ̂
p−→ Φ.

Proof. Because Φ̂ converges in probability if and only if each of its components converges, we

assume without loss of generality that s = t = 1. We decompose

Φ̂ =
1

n

N∑
i=1

Wi

(
Φ1(Xi) +MΦ0(Xi)

)
+

1

n

n∑
i=1

(
F (Yni,Wni, Sni)− ΦWni(Xni)

)
+

1

n

N∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)
.

The first term on the right-hand side of the last equation is a sum of iid random variables.

Hence, by the weak law of large numbers, we have that

1

n

n∑
i=1

Wi

(
Φ1(Xi) +MΦ0(Xi)

)
p−→ E

[
1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∣∣∣W = 1

]
= Φ.

For the second sum, notice that,

Var

 1

n

n∑
i=1

(
F (Yi,Wi, Si)− ΦWi(Xi)

)∣∣∣∣∣∣∣
X1, . . . , XN ,

W1, . . . ,WN


=

1

n2

n∑
i=1

Var(F (Y,W, S)|W = Wi, X = Xi)

which (by Assumption (a.2) in the lemma) is bounded by a sequence that converges to zero.

By the law of total variance, we obtain

Var

(
1

n

n∑
i=1

(
F (Yi,Wi, Si)− ΦWi(Xi)

))
−→ 0.

For the third sum, Assumption (a.1) in the lemma implies∣∣∣∣∣∣ 1n
n∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)∣∣∣∣∣∣ ≤ 1

n

n∑
i=1

Wi

∑
j∈J (i)

∣∣∣Φ0(Xj)− Φ0(Xi)
∣∣∣

≤ L√
n

 1√
n

n∑
i=1

Wi

∑
j∈J (i)

d(Xj , Xi)

 p−→ 0,

for some Lipschitz constant L.
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Lemma B.2

In the setup of Lemma B.1, let t = 1, and define

Ψ1(x) = Var(F (Y,W, S)|W = 1, X = x), Ψ0(x) = Var(F (Y,W, S)|W = 0, X = x),

which are (s× s)-matrices. Suppose that, in addition to the assumptions of Lemma B.1, we

have

(a.3) Ψ0(·) is (component-wise) Lipschitz on X0,

(a.4) E[‖F (Y,W, S)‖2+δ|W = w,X = x] is uniformly bounded on Xw for all w ∈ {0, 1}

and some δ > 0.

Then,

√
n(Φ̂− Φ)

d−→ N (0, V ∗)

where

V ∗ =
Var
(

Φ1(X) +MΦ0(X)
∣∣W = 1

)
M + 1

+
E
[
Ψ1(X) +MΨ0(X)

∣∣W = 1
]

M + 1
.

Proof. Fix λ ∈ Rs. We decompose

√
n(Φ̂− Φ)′λ

=
1√
n

n∑
i=1

Wi

(
Φ1(Xi) +MΦ0(Xi)− Φ(Xi)

)′
λ+

1√
n

n∑
i=1

(
F (Yi,Wi, Si)− ΦWi(Xi)

)′
λ

+
1√
n

n∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)′
λ.

The last term on the right-hand side of last equation vanishes in probability:∣∣∣∣∣∣ 1√
n

n∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)′
λ

∣∣∣∣∣∣ ≤ 1√
n

n∑
i=1

Wi

∑
j∈J (i)

∥∥Φ0(Xj)− Φ0(Xi))
∥∥‖λ‖

≤ ‖λ‖L√
n

n∑
i=1

Wi

∑
j∈J (i)

d(Xj , Xi)
p−→ 0

for an appropriate Lipschitz constant L.
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The first two parts of the sum form a martingale. Consider the filtration

Fi =


σ(W1, . . . ,WN , X1, . . . , Xi), i ≤ N1,

σ(W1, . . . ,WN , X1, . . . , XN , (Y1, S1), . . . , (Yi−N , Si−N )), N1+1 ≤ i ≤ N1+n.

Then,

ξi =


1√
n
Wi

(
Φ1(Xi) +MΦ0(Xi)− Φ

)′
λ, i ≤ N1,

1√
n

(
F (Yi−N ,Wi−N , Si−N )− ΦWi−N (Xi−N )

)′
λ, N1 + 1 ≤ i ≤ N1 + n

is a martingale difference array with respect to the filtration F . Also, notice that

N1+n∑
i=1

E[ξ2
i |Fi−1] =

1

n

N1∑
i=1

Var
(

(Φ1(X) +MΦ0(X))′λ
∣∣W = 1

)
+

1

n

n∑
i=1

Var
(
F (Y,W, S)′λ

∣∣W = Wi, X = Xi

)
=
λ′Var(Φ1(X) +MΦ0(X)|W = 1)λ

1 +M
+

1

n

n∑
i=1

λ′ΨWi(Xi)λ,

where the last term converges in probability to

λ′E

[
1

M + 1
Ψ1(X) +

M

M + 1
Ψ0(X)

∣∣∣W = 1

]
λ,

by Lemma B.1. Hence,

N1+n∑
i=1

E[ξ2
i |Fi−1]

p−→ λ′V ∗λ.

Next, note that

|ξi| ≤


1√
n
‖Φ1(Xi) +MΦ0(Xi)− Φ‖2‖λ‖2, i ≤ N1,

1√
n
‖F (Yi−N ,Wi−N , Si−N )− ΦWi−N (Xi−N )‖2‖λ‖2, N1 + 1 ≤ i ≤ N1 + n

≤


1√
n

(‖Φ1(Xi)‖2 +M‖Φ0(Xi)‖2 + ‖Φ‖2)‖λ‖2, i ≤ N1,

1√
n

(‖F (Yi−N ,Wi−N , Si−N )‖2 + ‖ΦWi−N (Xi−N )‖2)‖λ‖2, N1 + 1 ≤ i ≤ N1 + n
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by the Cauchy-Schwarz and triangle inequalities. It follows that

E[|ξi|2+δ] ≤


‖λ‖2+δ

2

n1+δ/2E
[
(‖Φ1(Xi)‖2 +M‖Φ0(Xi)‖2 + ‖Φ‖2)2+δ

]
, i ≤ N1,

‖λ‖2+δ
2

n1+δ/2E
[
(‖F (Yi−N ,Wi−N , Si−N )‖2 + ‖ΦWi−N (Xi−N )‖2)2+δ

]
, i > N1

≤


‖λ‖2+δ

2

n1+δ/2

(
(E[‖Φ1(Xi)‖2+δ

2 ])1/(2+δ) +M(E[‖Φ0(Xi)‖2+δ
2 ])1/(2+δ) + (‖Φ‖2+δ

2 )1/(2+δ)
)2+δ

‖λ‖2+δ
2

n1+δ/2

(
(E[‖F (Yi−N ,Wi−N , Si−N )‖2+δ

2 ])1/(2+δ) + (E[‖ΦWi−N (Xi−N )‖2+δ
2 ])1/(2+δ)

)2+δ

where the latter inequality is implied by Minkowski’s inequality. By assumption (a.3), note

that for both w ∈ {0, 1} and x ∈ Xw, by Jensen’s inequality we have

‖Φw(x)‖2+δ
2 = ‖E[F (Y,W, S)|W = w,X = x]‖2+δ

2 )

≤ E[‖F (Y,W, S)‖2+δ
2 |W = w,X = x] ≤ C

and hence E[‖Φw(X)‖2+δ
2 ] ≤ C, while also

‖Φ‖2+δ
2 =

∥∥∥∥E [ 1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∣∣∣W = 1

]∥∥∥∥2+δ

2

≤ E

[∥∥∥∥ 1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∥∥∥∥2+δ

2

∣∣∣W = 1

]

≤ E

[(
1

M + 1
C1/(2+δ) +

M

M + 1
C1/(2+δ)

)2+δ ∣∣∣W = 1

]
≤ C

and

E[‖F (Yi−N ,Wi−N , Si−N )‖2+δ
2 ] = E[E[| F (Yi−N ,Wi−N , Si−N )‖2+δ

2 |Wi−N , Xi−N ]] ≤ C

for some uniform constant C. Hence,

E[|ξi|2+δ] ≤


‖λ‖2+δ

2

n1+δ/2 (M + 2)2+δC, i ≤ N1,

22+δC, N1 + 1 ≤ i ≤ N1 + n

≤ ‖λ‖
2+δ
2

n1+δ/2
(M + 2)2+δC,
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from which we obtain Lyapounov’s condition, namely that

N1+n∑
i=1

E[|ξi|2+δ] ≤ N1 + n

n

‖λ‖2+δ
2 (M + 2)2+δC

nδ/2
→ 0.

Hence, by the Lindeberg–Feller Martingale Central Limit Theorem,

√
n(Φ̂− Φ)′λ =

N1+n∑
i=1

ξi + oP (1)
d−→ N (0, λ′V ∗λ).

The assertion of the lemma follows now from the Cramér-Wold device.

B.2 The Matched Bootstrap

In this section, we develop a general result for the coupled resampling of martingale increments

that we then apply to the matched bootstrap.

Proposition B.1

Let λ ≥ 1 be fixed. Assume we have a collated martingale difference array

{ζ(1)
n,1, . . . , ζ

(1)
n,n, ζ

(2)
n,1, . . . , ζ

(2)
n,n, . . . , ζ

(λ)
n,1 , . . . , ζ

(λ)
n,n}, n ≥ 1,

with respect to the filtration array

{F (1)
n,1, . . . ,F

(1)
n,n,F

(2)
n,1, . . . ,F

(2)
n,n, . . . ,F

(λ)
n,1 , . . . ,F

(λ)
n,n}, n ≥ 1,

and the following properties:

1. For all ` ∈ {1, . . . , λ},

n∑
i=1

E[(ζ
(`)
n,i)

2|F (`)
n,i−1]

p−→ σ2
` ,

where F (`+1)
n,0 := F (`)

n,n for all ` ∈ {1, . . . , λ− 1}.

2. There exist some C > 0 and δ > 0 such that for all i, n, `,

E[(ζ
(`)
n,i)

4] ≤ C

n1+δ
.
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Consider the sum of increments

Sn :=

λ∑
`=1

n∑
i=1

ζ
(`)
n,i

and the bootstrapped sum of coupled increments

Tn :=
λ∑
`=1

n∑
i=1

(w
(`)
n,i − 1)ζ

(`)
n,i ,

where (w
(λ)
n,1, . . . ,w

(λ)
n,n) is multinomially distributed with parameters (n;n−1, . . . , n−1) indepen-

dent of the data, and

w
(`)

n,ι
(`)
n (i)

= w
(λ)
n,i

for all i ∈ {1, . . . , n}, ` ∈ {1, . . . , λ − 1} and F (1)
n,n-measurable bijections ι(`)n : {1, . . . , n} →

{1, . . . , n}.

Then, we have convergence of the sum,

Sn
d−→ N (0, σ2), (B.1)

where σ2 =
∑λ

`=1 σ
2
` , and conditional convergence of the bootstrapped sum,

sup
x∈R

∣∣∣P (Tn ≤ x∣∣∣F (λ)
n,n

)
− Φ(x/σ)

∣∣∣ p−→ 0, (B.2)

as n→∞.

Note that from convergence of the bootstrapped sum conditional on the data (that is,

(B.2)) follows unconditional convergence Tn
d−→ N (0, σ2).

Proof. Observe that

λ∑
`=1

n∑
i=1

E[(ζ
(`)
n,i)

2|F (`)
n,i−1]

p−→
∑
`

σ2
`

as n→∞ by (1.) and Lyapounov’s condition follows directly from (2.). Hence, (B.1) follows

via the Martingale Central Limit Theorem.

For (B.2), our goal is to modify the proof of Theorem 2.1 in Pauly (2011) for the case of
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coupled resampling. We do so by considering the coupled increments

Zn,i :=

λ∑
`=1

ζ
(`)

n,ι
(`)
n (i)

,

where ι(λ)
n is the identity. For these increments,

Sn =
n∑
i=1

Zn,i

and

Tn =

n∑
i=1

(wn,i − 1)Zn,i =

n∑
i=1

wn,i(Zn,i − Zn),

corresponding to weights Wn,i = wn,i/
√
n that fulfil (2.3), (2.4) and (2.5) in Pauly (2011).

Note, however, that (Zn,i)i is not a martingale difference array any more; hence, we cannot

apply Theorem 2.1 directly, but instead invoke Theorem 4.1 in the appendix of Pauly (2011),

which holds for more general triangular arrays of random variables.

(4.1) in Theorem 4.1 of Pauly (2011) follows from the boundedness condition (2.) by noting

that

max
i≤n,`≤λ

|ζ(`)
n,i | ≤

∑
`≤λ

max
i≤n
|ζ(`)
n,i |

and that

max
i≤n
|ζ(`)
n,i |

p−→ 0

is equivalent to the weak Lindeberg condition

n∑
i=1

(ζ
(`)
n,i)

2I|ζ(`)
n,i|>ε

p−→ 0 ∀ε > 0,

which is implied by (2.) via Lyapounov’s condition.
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For (4.2), note that

n∑
i=1

(Zn,i − Zn)2 =
n∑
i=1

Z2
n,i − Zn

n∑
i=1

Zn,i =
n∑
i=1

(
λ∑
`=1

ζ
(`)

n,ι
(`)
n (i)

)2

−

(
n∑
i=1

Zn,i

)2

/n

=
λ∑
`=1

n∑
i=1

(
ζ

(`)
n,i

)2
+ 2

λ∑
`=2

`−1∑
`=1

n∑
i=1

ζ
(`)

n,ι
`
n(i)

ζ
(`)

n,ι`n(i)
−
(
Sn√
n

)2

.

Now,

A
(`)
n,i := (ζ

(`)
n,i)

2 − E[(ζ
(`)
n,i)

2|F (`)
n,i−1]

defines a martingale difference array with respect to the filtration array F (`)
n,i for all 1 ≤ ` ≤ λ,

and

B
`,`
n,i := ζ

(`)

n,ι
`
n(i)

ζ
(`)

n,ι`n(i)
,

defines a martingale difference array with respect to the filtration array F (`)
n,i (where we have

used F (1)
n,n-measurability of all ι`n) for all 1 ≤ ` < ` ≤ λ, In both cases, the increments have

second moments bounded by C
n1+δ by (2.): Indeed,

E[(A
(`)
n,i)

2] = E[(ζ
(`)
n,i)

4]− E[E[(ζ
(`)
n,i)

2|F (`)
n,i−1]2] ≤ E[(ζ

(`)
n,i)

4] ≤ C

n1+δ

and

E[(B
`,`
n,i)

2] = E[(ζ
(`)

n,ι
`
n(i)

]2(ζ
(`)

n,ι`n(i)
)2) ≤

√
E[(ζ

(`)

n,ι
`
n(i)

]4)

√
E[(ζ

(`)

n,ι`n(i)
)4] ≤ C

n1+δ

by the Cauchy-Schwarz inequality. Now, for any martingale difference array (Ci,n)ni=1 with

EC2
i,n ≤ C

n1+δ ,

E

(
n∑
i=1

Ci,n

)2

=

n∑
i=1

EC2
i,n ≤

C

nδ
→ 0

and hence

n∑
i=1

Ci,n
p−→ 0
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as n→∞. It follows that

n∑
i=1

(Zn,i − Zn)2 =
λ∑
`=1

n∑
i=1

E[(ζ
(`)
n,i)

2|F (`)
n,i−1]︸ ︷︷ ︸

p−→σ2
`

+
λ∑
`=1

n∑
i=1

A
(`)
n,i︸ ︷︷ ︸

p−→0

+2
λ∑
`=2

`−1∑
`=1

n∑
i=1

B
`,`
n,i︸ ︷︷ ︸

p−→0

−
(
Sn√
n

)2

︸ ︷︷ ︸
p−→0

p−→
λ∑
`=1

σ2
` = σ2,

where we have used (1.) and the unconditional convergence result (B.1).

Finally, note that the Zn,i are a sufficient statistic of F (λ)
n,n for calculating Tn, incorporating

sufficient information about both the ζ(`)
n,i and ι

`
n. Hence, (B.2) follows from Theorem 4.1 in

the appendix of Pauly (2011).

We now apply this result to our matching setting:

Proposition B.2

Under the setup and assumptions of Lemma B.2, and also

(a.5) E[F 4
k (Y,W, S)|W = w,X = x] uniformly bounded on X for all k, w ∈ {0, 1},

consider the bootstrapped sum

Φ̂∗ =
1

n

∑
Wi=1

wi

F (Yi,Wi, Si) +
∑
j∈J (i)

F (Yj ,Wj , Sj)

 ,

where w is multinomial with parameters (N1;N−1
1 , . . . , N−1

1 ) independent of the data. Then,

sup
r∈Rs

∣∣∣Pw

(√
n(Φ̂∗ − Φ̂) ≤ r

∣∣∣S)− P (N (0, V ∗) ≤ r)
∣∣∣ p−→ 0.

Proof. Fix λ ∈ Rs. Similar to the proof of Lemma B.2, we decompose

√
n(Φ̂∗ − Φ̂)′λ =

√
n((Φ̂∗ − Φ)− (Φ̂− Φ))′λ

=
1√
n

( ∑
Wi=1

(wi − 1)(Φ1(Xi) +MΦ0(Xi)− Φ)′λ

+
∑
i∈S∗

(wi − 1)(F (Y,W, S)− ΦWi(Xi))
′λ
)

+
1√
n

∑
Wi=1

(wi − 1)
∑
j∈J (i)

(Φ0(Xj)− Φ0(Xi))
′λ.
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The last part of the sum still vanishes in probability, as

Ew

∣∣∣∣∣∣ 1√
n

∑
Wi=1

(wi − 1)
∑
j∈J (i)

(Φ0(Xj)− Φ0(Xi))
′λ

∣∣∣∣∣∣
∣∣∣∣∣∣S


≤ 1√
n

∑
Wi=1

∑
j∈J (i)

Ew(|wi − 1|)︸ ︷︷ ︸
≤2

|(Φ0(Xj)− Φ0(Xi))
′λ|

≤ 2√
n

∑
Wi=1

∑
j∈J (i)

|(Φ0(Xj)− Φ0(Xi))
′λ|

≤ 2L√
n

∑
Wi=1

∑
j∈J (i)

d(Xj , Xi)
p−→ 0

for an appropriate Lipschitz constant L = L(λ), where we have used that

Ew(|wi − 1|) ≤ Ew(wi + 1) = 2.

We can decompose the other parts into martingale increments as in the proof of Lemma B.2:

√
n(Φ̂∗ − Φ̂)′λ =

N1∑
i=1

(wi − 1)ξi +

(M+2)N1∑
i=N1+1

(wi−N1 − 1)ξi + oP (1)

The result follows from Proposition B.1, which establishes a general result for the coupled

resampling of martingale difference arrays.

B.3 Proofs of Main Results

B.3.1 Asymptotic Behavior of Post-Matching OLS

Proof of Proposition 3.1. Let EQ(·|W=1) and EQ(·|W=0) be expectation operators for Q(·|W =

1) and Q(·|W = 0). Notice first that for any measurable function q,

EQ(·|W=1)[q(Y (1), S)] = E[q(Y, S)|W = 1] (B.3)

The result holds also replacing W = 1 with W = 0, and after conditioning on X. In particular,

EQ(·|W=0)[q(Y (0), S)|X] = E[q(Y, S)|X,W = 0]. (B.4)

155



The regression coefficient in the population defined by (a), (b) is the minimizer of

1

M + 1
EQ(·|W=1)[(Y (1)− g(1, S)′b)2] +

M

M + 1
EQ(·|W=1)[(Y (0)− g(0, S)′b)2].

Notice that,

EQ(·|W=1)[(Y (1)− g(1, S)′b)2] = E[(Y − g(1, S)′b)2|W = 1]

= E∗[(Y − Z ′b)2|W = 1],

where the first equality follows from Equation (B.3) and the second equality follows from the

definitions of P ∗(·|W = 1) and Z. Similarly,

EQ(·|W=1)[(Y (0)− g(0, S)′b)2] = EQ(·|W=1)[EQ(·|W=1)[(Y (0)− g(0, S)′b)2|X]]

= EQ(·|W=1)[EQ(·|W=0)[(Y (0)− g(0, S)′b)2|X]]

= E[E[(Y − g(W,S)′b)2|X,W = 0]|W = 1]

= E∗[(Y − Z ′b)2|W = 0].

In the last equation, the first equality follows from the law of iterated expectations, the second

equality follows from selection on observables, the third equality follows from (B.4) and (B.3),

the last equation follows from the definition of P ∗(·|W = 0). Therefore, we obtain

1

M + 1
EQ(·|W=1)[(Y (1)− g(1, S)′b)2] +

M

M + 1
EQ(·|W=1)[(Y (0)− g(0, S)′b)2]

=
1

M + 1
E∗[(Y − Z ′b)2|W = 1] +

M

M + 1
E∗[(Y − Z ′b)2|W = 0]

= E∗[(Y − Z ′b)2],

which implies the result of the proposition.

Proof of Proposition 3.2. By Lemma B.1,

1

n

∑
i∈S∗

ZiZ
′
i

p−→ H;
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by Lemma B.2,

Ĥ
√
n
(
β̂ − β

)
=
√
n

(
1

n

∑
i∈S∗

(ZiYi − ZiZ ′iβ)

)
d−→ N (0, J),

where we note that

E[ZY − ZZ ′β|W = 0, X = x]

is Lipschitz. Hence,

√
n
(
β̂ − β

)
=

p−→H−1︷︸︸︷
Ĥ−1 Ĥ

√
n

(
1

n

∑
i∈S∗

(ZiYi − ZiZ ′iβ)

)
︸ ︷︷ ︸

d−→N (0,J)

d−→ N (0, H−1JH−1).

B.3.2 Post-Matching Inference

Proof of Proposition 3.3. We have that

Ĵr =
1

n

n∑
i=1

Zi(Yi − Z ′iβ̂)2Z ′i

=
1

n

n∑
i=1

Zi(Yi − Z ′iβ)2Z ′i +
1

n

n∑
i=1

Zi

(
(Yi − Z ′iβ̂)2 − (Yi − Z ′iβ)2

)
Z ′i.

Notice that

1

n

n∑
i=1

Zi

(
(Yi − Z ′iβ̂)2 − (Yi − Z ′iβ)2

)
Z ′i

= (β̂ − β)′

(
1

n

n∑
i=1

Zi(Z
′
iZi)Z

′
i(β̂ + β)− 2

1

n

n∑
i=1

Zi(Z
′
iZi)Yi

)
.

By assumption, the functions

E[‖Z‖4|X = x,W = w] and E[|Y |4|X = x,W = w]
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are uniformly bounded on Xw, for w = 0, 1. By Hölder’s Inequality, this implies finiteness of

E

[∥∥∥∥∥ 1

n

n∑
i=1

ZiZ
′
iZiZ

′
i

∥∥∥∥∥
]

and E

[∥∥∥∥∥ 1

n

n∑
i=1

ZiZ
′
iZiY

′
i

∥∥∥∥∥
]
.

Then, for ε ∈ (0, 1/2), by Markov’s Inequality, we obtain

1

n

n∑
i=1

Zi((Yi − Z ′iβ̂)2 − (Yi − Z ′iβ)2)Z ′i

= n1/2−ε(β̂ − β)′
(∑n

i=1 Zi(ZiZ
′
i)Z
′
i/n

n1/2−ε (β̂ + β)−
2
∑n

i=1 Zi(ZiZ
′
i)Yi/n

n1/2−ε

)
p−→ 0.

As a result,

Ĵr =
1

n

n∑
i=1

Zi(Yi − Z ′iβ)2Z ′i + op(1),

and the claim follows from Lemma B.1.

Proof of Corollary 3.4. Under correct specification, we find that

ΓW (X) = E[Z(Y − Z ′β)|W,X] = E[Zε|W,X]

= E[E[Zε|Z,W,X]|W,X]

= E[Z E[ε|Z,W,X]︸ ︷︷ ︸
=0

|W,X] = 0.

Proof of Proposition 3.5. First, note that

Ĵ =
1

n

∑
Wi=1

(
Zi(Yi − Z ′iβ) +

∑
j∈J (i) Zj(Yj − Z ′jβ)

)(
Zi(Yi − Z ′iβ) +

∑
j∈J (i) Zj(Yj − Z ′jβ)

)′
+ oP (1),

where we replace β̂ by β analogous to the proof of Proposition 3.3.

Write

G := Z(Y − Z ′β) Γw(x) := E[Z(Y − Z ′β)|W = w,X = x].

Note that Γ0(x) is Lipschitz on X , and that Gi has uniformly bounded fourth moments. We
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decompose

Ĵ =
1

n

∑
Wi=1

(
Gi +

∑
j∈J (i)Gj

)(
Gi +

∑
j∈J (i)Gj

)′
+ oP (1)

=
1

n

∑
Wi=1

(Γ1(Xi) +MΓ0(Xi)) (Γ1(Xi) +MΓ0(Xi))
′

+
1

n

∑
i∈S∗

(Gi − ΓWi(Xi)) (Gi − ΓWi(Xi))
′

+
1

n

∑
Wi=1

∑
6̀=`′∈J (i)∪{i}

(G` − ΓW`
(X`))

(
G`′ − ΓW`′ (X`′)

)′
+

1

n

∑
Wi=1

(
(Γ1(Xi) +MΓ0(Xi))

(
Gi − Γ1(Xi) +

∑
j∈J (i)(Gj − Γ0(Xj))

)′
+
(
Gi − Γ1(Xi) +

∑
j∈J (i)(Gj − Γ0(Xi))

)
(Γ1(Xi) +MΓ0(Xj))

′ )+ oP (1).

Here, the oP terms absorb the deviation due to using β̂ instead of β, as well as the matching

discrepancies in the conditional expectations.

The first sum is iid with

1

n

∑
Wi=1

(Γ1(Xi) +MΓ0(Xi)) (Γ1(Xi) +MΓ0(Xi))
′

p−→ E [(Γ1(X) +MΓ0(X))(Γ1(X) +MΓ0(X))′|W = 1]

1 +M

=
Var(

E[·|W=1]=0︷ ︸︸ ︷
Γ1(X) +MΓ0(X) |W = 1)

1 +M
,

while the second is a martingale with

1

n

∑
i∈S∗

(Gi − ΓWi(Xi)) (Gi − ΓWi(Xi))
′

p−→ E[Var(Z(Y − Z ′β)|W = 1, X) +M Var(Z(Y − Z ′β)|W = 0, X)|W = 1]

1 +M

by Lemma B.1. Under appropriate reordering of the individual increments, all other sums can

be represented as averages of mean-zero martingale increments; since the second moments of

the increments are uniformly bounded, they vanish asymptotically.
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Proof of Proposition 3.6. Write

Ĥw =
1

n

∑
i∈S∗

wiZiZ
′
i.

Note first that

H−1√n(Ĥw(β̂w − β)− Ĥ(β̂ − β)) = H−1√n

(
1

n

∑
i∈S∗

(wi − 1)Zi(Yi − Z ′iβ)

)
d−→ N (0, H−1JH−1),

conditional on S, by Proposition B.2. Now,

√
n(β̂w − β̂)

= Ĥ−1
w H(H−1√n(Ĥw(β̂w − β)− Ĥw(β̂ − β))

= Ĥ−1
w H︸ ︷︷ ︸
p−→I

(H−1√n(Ĥw(β̂w − β)− Ĥ(β̂ − β))) + (Ĥ−1
w Ĥ − I)︸ ︷︷ ︸

p−→O

√
n(β̂ − β)

d−→ N (0, H−1JH−1),

conditional on S, where we have used that Ĥw − Ĥ
p−→ O.

B.4 Inference Conditional on Covariates

In the main part of this chapter, we analyze the variation of the post-matching estimator

under resampling of units from a population distribution. In some applications, for example if

the sample is the full population, inference conditional on the sample regressors may be more

appropriate. In this section, we discuss standard errors conditional on the covariates X and

treatment W ; in particular, this implies that we condition on matches.

In a standard regression setting, Abadie et al. (2014) argue that Eicker–Huber–White

standard error estimates (Eicker, 1967; Huber, 1967; White, 1980a,b, 1982), which are robust

to misspecification for the unconditional standard errors, are not generally valid for conditional

standard errors if the regression model is misspecified (in which case unconditional standard

errors may overestimate the conditional variation). They propose an estimator of the conditional
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variance that is based on nearest-neighbor matching, and show consistency for the variance

conditional on the sample covariates even under misspecification.

Once we condition on the covariates X and treatment status W , the matching step

is irrelevant for post-matching linear least-squares inference, and the analysis of Abadie

et al. (2014) goes through. In particular, if the regression model is correctly specified, naive

OLS standard error estimates are valid for the conditional variation (as they are for the

unconditional variation by Corollary 3.4). If the regression model is not correctly specified,

naive OLS standard errors are not generally valid for the conditional variation, but valid

conditional standard error estimates that ignore the matching step – for example those proposed

by Abadie et al. (2014) – are valid, as the matching step ceases to play a role.

Table B.1: Simulation results for the main and alternative setups from 100,000 Monte Carlo iterations

(a) Target parameter: Coefficient τ0 on treatment W

Post-matching Average SE estimates

Setup Spec E[E[τ̂0|(Wi, Xi)i∈S∗ ]] E[SE(τ̂0|(Wi, Xi)i∈S∗)] Naive Clust Cond

Main 1 0.00 .115 .228 .110 .118
2 0.00 .115 .109 .109 .113

Alt 1 1.53 .116 .425 .589 .135
2 1.53 .116 .425 .589 .135

(b) Target parameter: Coefficient τ1 on the interaction WX of treatment W with covariate X

Post-matching Average SE estimates

Setup Spec E[E[τ̂1|(Wi, Xi)i∈S∗ ]] E[SE(τ̂1|(Wi, Xi)i∈S∗)] Naive Clust Cond

Main 1 1.00 .200 .411 .191 .206
2 1.00 .200 .189 .190 .197

Alt 1 1.12 0.20 0.76 1.06 0.24
2 1.12 0.20 0.76 1.06 0.24

Table B.1 reports simulation results from the same two setups and two specifications

discussed in Section 3.4. For the simulations, we construct conditional standard error estimates

according to Abadie et al. (2014), using only the matched sample S∗ and ignoring the matching

step. Under correct specification (Specification 2 in the main setup), naive OLS standard

errors are close to nominal on average, as predicted by the theory. Clustered standard errors,
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which are valid for the unconditional variation, are not generally valid, as the alternative setup

confirms; in the main setup, they produce appropriate estimates of the conditional standard

errors because the variation in covariates does not contribute to the total variation in this

specific case due to the matching. The conditional standard error estimates from Abadie et al.

(2014) are close to nominal throughout.

In most applications, the covariates Z in the post-matching regression include only regressors

from X and W . If Z contains additional regressors, the standard errors in Abadie et al. (2014)

can be used to either estimate the variation of the the post-matching estimator conditional on

X and W only, or conditional on the full set X,W,Z of covariates – as long as treatment W

and covariates X are included, the matching step becomes irrelevant for conditional analysis.
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