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ABSTRACT

Catalysts are the cornerstone of the chemicals industry, whose products are used in nearly all human

endeavors. At the core of catalysis lies the intricate relationship between their atoms and electrons, where

quantum mechanics dictates interactions with reactants, products, and electromagnetic fields. This is the

“electronic structure” of catalysts, and studying this structure provides deep insight into the understanding

and design of novel catalytic materials. This thesis focuses on understanding a small subset of promising

heterogeneous catalytic systems using density functional theory (DFT), from oxygen evolution over

polyiodide-doped graphene to the nonadiabatic dissociation of hydrogen over Cu nanoclusters. Some of

these studies emphasize the importance of nonadiabatic behavior, especially magnetization transitions in Cu

nanoclusters upon hydrogen dissociation. Further insights into catalytic properties can be obtained by

comparing DFT calculations to corresponding machine learning predictions. For example, differences

between DFT and empirical data-driven kernels highlight important discontinuous quantum mechanical

effects in H adsorption on dilute Ag alloys. The studies presented here are examples of how detailed

electronic structure calculations can be used to develop a deeper understanding of catalysts and how they

might be improved.
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1
Electronic Structure Theory for Catalysis

Section 1.5 is adapted from the following publication:

Grigory Kolesov, Oscar Grånäs, Robert Hoyt, Dmitry Vinichenko, and Efthimios Kaxiras.
“Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications.” J.
Chem. Theory Comput. 12 2016, 466–476.

1.1 THE SCHRÖDINGER EQUATION

The Schrödinger Equation is the core of practical electronic structure theory. The following groups related

terms together for further discussion:

ih̄
∂ψ (R,r, t)

∂ t
= (HK +Hion +HSOC +Vrest(R,r))ψ(R,r, t) (1.1a)

HK ≡
h̄2

2

(
∑

I

∇2
I

MI
+∑

i

∇2
i

m

)
(1.1b)

Hion ≡ ∑
I<J

ZIZJe2

rIJ
+∑

i< j

e2

ri j
−∑

I j

ZIe2

rI j
(1.1c)

HSOC ≡−
1

2m2c2 ∑
i
si · (∇iVi(ri)×~pi) (1.1d)

These equations use the following notation:

R Coordinates of all nuclei

r Coordinates of all electrons

I,J A nucleus; RI is the position of atom I

i, j An electron; ri is the position of electron i

ZI The atomic number of atom I

rαβ Distance between particles α and β

1



1.1. The Schrödinger Equation

s Electron spin operator

Vi(r) The total potential acting on electron i, including nuclei and other electrons

Vrest Catch-all term for other interactions including electric fields, relativistic effects beyondHSOC, etc.

The expression forHSOC is approximate, but generally contains the most important relativistic effects in

catalytic studies.

Solving the Schrödinger Equation for the wavefunction ψ gives the probability density for observing the

particles at any given set of positions R and r. The operators in Equation (1.1a) are straightforward, but

explicit solutions are only available for very simple systems including the hydrogen atom and the harmonic

oscillator. The main obstacle for larger systems is the curse of dimensionality. Most applications of

electronic structure theory in this thesis are catalyst surfaces, with approximately 50-100 atoms and several

hundred valence electrons. Each of these particles has three spatial coordinates, yielding roughly 1,000

coordinates in total. Even if the equation was solved on a numerical grid with only 2 points per dimension,

one would need 21000 total grid points. Computers with such vast memory do not exist.

1.1.1 DIMENSIONAL ANALYSIS OF THE SCHRÖDINGER EQUATION

The simplifications described in the following subsections are best motivated by applying dimensional

analysis to a simplified Schrödinger Equation for the hydrogen atom:

ih̄
∂ψ(r,R, t)

∂ t
=

(
− h̄2

2m
∇2

e−
h̄2

2MH
−∇2

H
e2

r

)
ψ(r,R, t) (1.2a)

i
∂ψ(ρ,P ,τ )

∂τ
=

(
−1

2
∇2

e−
1
2

m
MH

∇2
H −

1
ρ

)
ψ(ρ,P ,τ ) (1.2b)

L≡ h̄2

me2 ≈ 0.529 Å (1.2c)

T ≡ h̄3

me4 ≈ 0.024 fs (1.2d)

where the hydrogen atom is located near R= 0. Making the variable replacements t→ Tτ , r→ Lρ, and

R→ LP, then solving for L and T in terms of physical constants, yields the dimensionless Schrödinger

Equation in Equation (1.2b). These length scales give tremendous insight into the equations. First, we see

that electronic wavefunctions vary significantly on the scales of 1 Bohr and 24 attoseconds. Variations over

smaller distance and time scales are generally minor. Second, the length scale for the hydrogen atom’s

wavefunction is MH
m ≈ 14,000 times smaller than that of the electron. This reveals a companion to the curse

of dimensionality: the “curse of scale.” Handling both nuclear and electronic quantum effects

2



Chapter 1. Electronic Structure Theory for Catalysis

simultaneously, especially with finite-precision arithmetic, is challenging because extremely fine grids are

required to accurately track the nuclear degrees of freedom.

1.1.2 QUANTUM-CLASSICAL DYNAMICS

The “curse of scale” can be eliminated by treating the nuclei as point particles. This strategy is usually

motivated though perturbation theory. Since nuclei are much more massive than electrons, 1
MI
� 1

m , the

nuclear contribution to the kinetic energy in Equation (1.1b) is small and can be considered a perturbing

Hamiltonian. In most cases simply neglecting the nuclear contribution entirely (i.e. the zeroth order

solution) is sufficiently accurate. In other cases where nuclear quantum effects are important, e.g.

electron-phonon coupling, they can be included using first order or even higher order perturbation theory.

An even simpler motivation for neglecting the nuclear kinetic energy term is to consider dimensional

analysis. As discussed above and shown in Equation (1.2b), the length scale for nuclear wavefunctions is

vastly smaller than the scale for electronic wavefunctions. Solutions to the Schrödinger Equation are

therefore approximately separable by inspection. In particular, relative to electronic length scales, the

nuclear solutions are well approximated as point particles. This assertion is more rigorously justified in

Section 1.1.4 by deriving the Born-Oppenheimer approximation.

In any case, this “classical ion” approximation demotes R to a parameter. Solutions to the Schrödinger

Equation are then found at fixed R values, neglecting the quantum details of the nuclei entirely. Catalyst

design almost always invokes this simplification so most of this thesis considers nuclei to be point particles.

However, the classical ion approximation ignores several effects that can be catalytically relevant:

1. Zero-point vibrations. Treating nuclei as classical particles neglects the zero-point energy (ZPE) of

vibrational modes. ZPE is particularly significant for bonds involving H atoms.

2. Quantum tunneling. Demoting R to a parameter neglects the spatial delocalization of nuclear

wavefunctions. In the limit of low temperatures and atomic mass, delocalizaed atoms can tunnel past

the classical activation energy barrier.

3. Electron-phonon coupling. Rapid atomic motion, such as in molecular beams and bond activation,

perturbs electronic states and thus couples them. Raman scattering, electron-hole pair

excitations,39,129 and “electronic friction”53 are notable examples.

Corrections for most of these effects can be included in the classical ion approach when necessary. For

example, zero-point vibrational energy corrections are applied in my work on alcohol reactivity presented in

3



1.1. The Schrödinger Equation

Chapter 3, and electron-phonon coupling is implicitly included in Ehrenfest dynamics as discussed below in

Section 1.5.

1.1.3 ADIABATIC DYNAMICS

Another major simplification, often combined with the classical ion approximation, is to only consider the

electronic ground states. This is also motivated by dimensional analysis. Time scales for atomic motion are

set by the system’s highest frequency bond vibration. The highest frequencies are reached in H-containing

compounds, H–F in particular with a vibrational period of approximately 7.5 fs. The standard “safe”

molecular dynamics time step is then about 1 fs. In comparison, the electronic time scale of T ≈ 24 as is

more than 100 times shorter. Electrons can react almost instantaneously to most changes in atomic positions

and remain in the ground state for the given arrangement of of atoms R. This is the adiabatic approximation.

Within the adiabatic approximation we solve the time-independent Schrödinger Equation at the atomic

positions R. Then, rather than propagate the equations with short time steps of order 24 as, we simply

assume the electrons remain in the ground state and propagate the atomic positions with the much longer

molecular dynamics time step of order 1 fs. The adiabatic approximation works well for most thermal

catalysis studies. Nevertheless, similar to the classical ion approximation, there are some exceptions:

1. Photocatalysis. Optical excitations involve electronic transitions so they must be considered explicitly

in the Schrödinger Equation. These excitations can yield very different effective potential energy

surfaces than the electronic ground state and facilitate chemical reactions. For example, as discussed

in Section 1.5.1, some excited-state compounds spontaneously dissociate.

2. Rapid wavefunction changes. In some cases the ground state electronic wavefunctions can be

particularly sensitive to changes in atomic positions. Ground state wavefunctions can then change

quickly on the times scales electronic motion, requiring explicit consideration of the electrons’

real-time response to atomic motion. Section 1.5.2 discusses the simple case of H adsorption on

metal surfaces, and Chapter 4 considers similar effects in H2 dissociation.

1.1.4 BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer (BO) approximation is closely related to the classical ion approximation, and relies

on the time independent Schrödinger Equation. Rather than consider the full wavefunction ψ(r,R, t), the
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Chapter 1. Electronic Structure Theory for Catalysis

BO approximation assumes that ψ can be separated into electronic and nuclear components:

ψ(r,R) = ψe(r;R)ψN(R) (1.3)

Similar to the discussion of the classical ion approximation, we note that the length scale for nuclear

wavefunctions is much smaller than for electronic wavefunctions. Since both ψe and ψN are normalized, it

follows that the nuclear gradient is much larger for the nuclear wavefunction than for the electronic

wavefunction. In other words,

∇IψN(R)� ∇Iψe(r;R) (1.4)

The nuclear kinetic energy terms are proportional to ∇2
I for each nucleus I, and are the only term to

contain factors of ∇I . Therefore we start by evaluating ∇2
I ψ , using the chain rule, then consider

Equation (1.4):

∇2
I ψ(r,R)≈ ∇2

I (ψe(r;R)ψN(R)) (1.5a)

=
(
∇2

I ψe(r;R)
)

ψN(R)+ψe(r;R)
(
∇2

I ψN(R)
)

+2∇Iψe(r;R) ·∇IψN(R) (1.5b)

≈ ψe(r;R)
(
∇2

I ψN(R)
)

(1.5c)

The last line, Equation (1.5c), is the core of the BO approximation. It follows from Equation (1.4) since this

is the largest of the three terms from the chain rule.

Finally, consider the full HamiltonianH from the Schrödinger Equation in Equation (1.1a). We rewrite

HK as Te +TN to explicitly keep track of the nuclear kinetic energy. Moreover, we also rewrite the full

Hamiltonian asH= Te +TN +Hother to simplify our consideration of the BO approximation. Note that

neither Te norHother have terms containing ∇I . We see how the BO approximation in Equation (1.5c)

simplifies the Schrödinger Equation:

Eψe(r;R)ψN(R) = (Te +TN +Hrest)(ψe(r;R)ψN(R)) (1.6a)

= (Te +Hrest)(ψe(r;R)ψN(R))+TN (ψe(r;R)ψN(R)) (1.6b)

≈ ψN(R)(Te +Hrest)ψe(r;R)+ψe(r;R)TNψN(R) (1.6c)
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1.1. The Schrödinger Equation

In Equation (1.6c), the only approximation used is the one discussed from Equation (1.5c). We also use the

fact that Te +Hrest has no ∇I operators to rearrange the first term on the right-hand side. Finally, we divide

both sides by ψe(r;R)ψN(R):

E =
(Te +Hrest)ψe(r;R)

ψe(r;R)
+

TNψN(R)
ψN(R)

(1.6d)

The final expression, Equation (1.6d), is then explicitly separable. Rather than solving for a combined

electronic and nuclear wavefunction, with the BO approximation we can instead find separate solutions for

ψe and ψN .

Inspecting the electronic contribution to Equation (1.6d) recovers the classical ion approximation. Since

the first term on the right-hand side is the only one depending on r, it must be a constant with respect to R.

For nefarious reasons we can let this constant be Eg(R). This choice of notation yields the same

time-independent Schrödinger Equation resulting from the classical ion approximation:

(Te +Hrest)ψe(r;R) = Eg(R)ψe(r;R) (1.7)

In addition, once Eg(R) is known, then the nuclear wavefunction can be found using Equation (1.6d):

TNψN(R) = (E−Eg(R))ψN(R) (1.8)

In principle, the BO approximation is an improvement over the classical ion approximation since it also

provides ψN . However, in practice the BO approximation is almost always only invoked to justify the

classical ion approximation. In these cases the BO approximation is equivalent to making both the adiabatic

and classical ion approximations.

1.1.5 POTENTIAL ENERGY SURFACES

Solutions for Eg(R) are known as potential energy surfaces. This is because Eg only varies with the atomic

positions, i.e. a scalar function of 3N coordinates for N atoms. Thermodynamics and transition state theory,

including saddle points and local minima, involve only the total energies and forces. As discussed

previously, these energies are well approximated by solving the electron-only Schrödinger Equation from

Equation (1.7). Moreover, the BO approximation is widely used in molecular dynamics since atomic forces

are easily obtained through Newton’s equations as FI =−∇IEg(R). Rather than explicitly consider the
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Chapter 1. Electronic Structure Theory for Catalysis

complex electronic wavefunction, we only need the energy Eg and its gradients ∇IEg with respect to the

atomic positions. Knowing Eg alone is therefore sufficient for calculating catalytic rates, activation energies,

and vibrational properties.

1.2 DENSITY FUNCTIONAL THEORY

Equation (1.7) highlights a simple yet surprisingly important fact about systems in the adiabatic and

classical ion limits: the ground state wavefunction directly corresponds to the ground state energy. This

equivalence suggests that a dramatic reduction in dimensionality is possible: for a given set of atomic

positions R and n electrons, the 3n-dimensional ψg(r) directly corresponds to scalar Eg. In light of

Section 1.1.5, we see that knowing Eg alone is still sufficient to obtain catalytic insight. Does a

low-dimensional shortcut to Eg actually exist?

Fortunately the answer is “yes.” First proven by Hohenberg and Kohn in their eponymous

Hohenberg-Kohn (HK) theorems,62 it can be shown using the variational principle that the ground state

density is a functional of the total electron density n(r):

Eg(R) = Eg(R) [ng(r)] (1.9)

Rather than solve for the 3n-dimensional wavefunction ψg, the HK theorems prove that we only really need

the 3-dimensional total electron density. Kohn was awarded half of the 1998 Nobel Prize in Chemistry for

this work.

Later work by Levy97 provides a cleaner and more general proof for density functional theory as it is

used today. Instead of repeating the proofs, here I provide a “derivation” of DFT in the same spirit of Levy’s

work. Neglecting the nuclear kinetic energy and spin-orbit coupling terms, the time-independent

Schrödinger Equation can be rewritten as follows:

Eψ(r;R) = (Te +Hion +Vrest(r,R))ψ(r;R) (1.10a)
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1.2. Density Functional Theory

Hion contains electron-electron repulsion, electron-ion attraction, and ion-ion repulsion. Since the latter

depends only on the atomic positions R, it is a constant C(R) that can be added to E after solving the

electronic Schrödinger Equation. This leaves the following quantities:

=

(
Te +∑

i< j

e2

ri j
−∑

I j

ZIe2

rI j
+Vrest(r,R)

)
ψ(r;R) (1.10b)

=

(
Te +∑

i< j

e2

ri j
−∑

j

(
∑

I

ZIe2

rI j

)
+Vrest(r,R)

)
ψ(r;R) (1.10c)

This rearrangement demonstrates that the Schrödinger Equation (aside from nuclear kinetic energy and

spin-orbit interactions) contains only one and two-body operators. Similar to neglecting the repulsion

between ions, we also set aside the terms in Vrest(r,R) that only affect the ions since they can be calculated

after solving the electronic Schrödinger Equation as well. We are then left with Vrest(r,R)→Vrest(r).

Electrons are indistinguishable particles so they must all experience the same potential operator Vrest,i.

Therefore Vrest = ∑i Vrest,i is a single-body operator along with Te and electron-ion interaction. For simplicity

we also assume that these are local operators, such that Vrest,i↔Vrest(ri). Most operators of catalytic interest

are local or at least approximately local (e.g. van der Waals interactions). For convenience we collect the

one-body operators intoH1, one-body Hamiltonian:

H1 ≡ Te−∑
i

∑
J

ZJe2

riJ
+∑

i
Vrest,i (1.11)

The last remaining term in the full Hamiltonian, electron-electron interaction, is a two-body operator.

Defining this operator as Vee, we obtain the following form for the electronic part of the Schrödinger

Equation:

Eψ(r;R)ψ(r;R) = (H1 +Vee)ψ(r;R) (1.12)

With the definition of Equation (1.12) the “derivation” of DFT is surprisingly straightforward. As

discussed previously, we seek the electronic total ground state energy Eg instead of the wavefunction. In the

spirit of the HK theorems and Levy’s work, we use the variational principle:

Eg = min
ψ

〈
ψ
∣∣H1 +Vee

∣∣ψ
〉

(1.13a)

= min
ψ

(∫
dr1 · · ·drn ψ∗H1 ψ +

〈
ψ
∣∣Vee
∣∣ψ
〉)

(1.13b)

= min
ψ

(∫
dr lim

r′→r
dr2 · · ·drnH1ψ(r′,r2 · · ·rn)

∗ψ(r,r2 · · ·rn)+
〈
ψ
∣∣Vee
∣∣ψ
〉)

(1.13c)
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Chapter 1. Electronic Structure Theory for Catalysis

Introducing the limit lets us replace the integral over the n−1 degrees of freedom not acted on by the

single-body operators with the first-order density matrix γ .

≡min
ψ

(∫
dr lim

r′→r
H1γ(r′|r)+

〈
ψ
∣∣Vee
∣∣ψ
〉)

(1.13d)

Rather than minimize over all wavefunctions directly, we can instead minimize over all wavefunctions ψγ

that correspond to a given first-order density matrix γ , then minimize over all first-order density matrices.

This is mathematically equivalent, but conceptually important.

≡min
γ

min
ψγ→γ

(∫
dr lim

r′→r
H1γ(r′|r)+

〈
ψγ ∣∣Vee

∣∣ψγ〉
)

(1.13e)

≡min
γ

(∫
dr lim

r′→r
H1γ(r′|r)+ min

ψγ→γ

〈
ψγ ∣∣Vee

∣∣ψγ〉
)

(1.13f)

We now define W [γ]≡minψγ→γ
〈
ψγ
∣∣Vee
∣∣ψγ〉. W [γ] is a functional that represents the minimum possible

Coulomb repulsion for a pure state corresponding to γ . Finally, in general any single-particle density matrix

can be written as a sum over single-particle orbitals ψi as γ(r′|r) = ∑i niψi(r′)∗ψi(r). Minimizing over γ is

therefore equivalent to minimizing over all ni and ψi. With this final replacement, we obtain reduced density

matrix functional theory (RDMFT):

Eg = min
ni,ψi

(
∑

i
ni

〈
ψi

∣∣∣∣∣
h̄2

2m
∇2 +∑

I

ZIe2

|r−RI |
+Vrest(r)

∣∣∣∣∣ψi

〉
+W [ni,ψi]

)
(1.13g)

The corresponding density ρ(r) is easily written in terms of ni and ψi:

ρ(r) = ∑
i

ni |ψi(r)|2 (1.14)

Symbolically this completes RDMFT: the total electronic energy Eg is a functional of the first order density

matrix. Instead of solving for the 3n-dimensional wavefunction, we can obtain Eg by minimizing over

3-dimensional single-particle orbitals ψi(r) and occupation numbers ni instead.

Although Equation (1.13g) is exact in principle, in practice the functional W is unknown. This is because

the coulomb repulsion term Vee is a two-body operator. While its expectation value can be written exactly in

terms of γ(2)(r,r′|r,r′), the second-order density matrix, the space of all γ(2) matrices corresponding to a

system n electrons is unknown.125 Moreover, even if it were known, this domain is likely much larger than

the space of all first-order density matrices. The lack of γ(2) is a problem because Vee is a significant
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1.2. Density Functional Theory

contribution to Eg, so even small relative errors could be large on the scale of kBT at typical catalytic

temperatures.

Fortunately, the largest contribution to W in Equation (1.13g) is the Hartree term VH(r) from Hartree

Fock theory, and this term can be written exactly in terms of γ(1). We can then rewrite Equation (1.13g) in

terms of VH(r) and the remaining part of the functional W ′.

W [γ]≡
∫

drdr′
ρ(r)ρ(r′)
|r− r′| +W ′ [γ] (1.15a)

VH(r)≡
∫

dr′
ρ(r′)
|r− r′| (1.15b)

Eg = min
ni,ψi

(
∑

i
ni

〈
ψi

∣∣∣∣∣
h̄2

2m
∇2 +∑

I

ZIe2

|r−RI |
+VH(r)+Vrest(r)

∣∣∣∣∣ψi

〉
+W ′ [ni,ψi]

)
(1.15c)

Introducing VH(r) highlights that the Hartree term is single-body operator that can be included with the

others introduced before.

Although RDMFT is already a major simplification, γ(r|r′) is a six-dimensional quantity while the

density ρ(r) is only a three-dimensional quantity. Moving to density functional theory, i.e. using ρ as the

fundamental quantity instead of γ , yields a significant reduction in computational effort so that larger

systems can be studied. To accomplish this, we consider a system of noninteracting particles instead, whose

corresponding density ρ(r) minimizes the total energy Eg [ρ]. The wavefunction of a noninteracting system

is a single Slater determinant, whose occupation numbers are either 0 or 1 (Slater determinants either do or

don’t contain a particular single-particle wavefunction). The sacrifice we make is that the single-particle

states ψi no longer have any connection to actual electronic states in principle.∗ Instead of minimizing over

ni and ψi quantities in DFT, we minimize over ρ(r):

Eg = min
ρ

(
∑

i

〈
ψi

∣∣∣∣∣
h̄2

2m
∇2 +∑

I

ZIe2

|r−RI |
+Vrest(r)

∣∣∣∣∣ψi

〉
+Exc [ρ]

)
(1.16a)

= min
ρ

(
∑

i

〈
ψi

∣∣∣∣
h̄2

2m
∇2
∣∣∣∣ψi

〉
+
∫

drρ(r)

(
∑

I

ZIe2

|r−RI |
+Vrest(r)

)
+Exc [ρ]

)
(1.16b)

ρ(r) = ∑
i
|ψi(r)|2 (1.16c)

DFT is similar to RDMFT, and is still exact in principle. The first two terms in Equation (1.16b) are

especially similar since only the ni factors have been removed. The subtle difference is that eliminating the

∗In practice the ψi can usually be interpreted as single-particle orbitals. They appear to be meaningful whenever
molecular orbital theory applies.
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ni factors breaks the connection between the KS states ψi and γ , so their corresponding kinetic energy values

are only approximate. This approximation is generally excellent. The remaining contribution to kinetic

energy, as well as Vee−VH , is now handled by the exchange-correlation functional Exc [ρ]. Exc contributes

only a few percent of the total energy but it describes most of chemical bonding.

Computational implementations of DFT re-cast Equation (1.16b) as a linear system of equations. To do

so, we define the exchange-correlation potential Vxc as the functional derivative of Exc [ρ(r)] with respect to

ρ(r):

Vxc(r)≡
δExc [ρ]

δρ

∣∣∣∣∣
r

(1.17)

The method of Lagrange multipliers, to enforce the normality condition
〈
ψi
∣∣ψi
〉
= 1, then produces the

following linear system of equations:

HDFT [ρ]
∣∣ψi
〉
= εi

∣∣ψi
〉

(1.18)

HDFT [ρ]≡
(
− h̄2

2m
∇2 +∑

I

ZIe2

|r−RI |
+Vrest(r)+Vxc [ρ] (r)

)
(1.19)

Equations (1.18) (one for each ψi) are known as the Kohn-Sham (KS) equations,84 introduced by Kohn and

Sham shortly after publication of the Hohenberg-Kohn theorems. Although it appears that these are

mean-field equations at first glance, an exact expression for Vxc retains all of the original system’s

interactions. The KS equations are solved self-consistently using standard matrix diagonalization routines to

obtain the KS wavefunctions ψi in some convenient basis set (see Section 1.2.2 for details).

1.2.1 EXCHANGE-CORRELATION FUNCTIONALS

DFT’s accuracy for catalytic studies rests entirely on Exc. Its exact functional form is unknown, but there are

significant ongoing efforts to create and improve approximations to it. The earliest functional is the local

density approximation (LDA), which uses the exact expression for the homogeneous electron gas.62 It is

surprisingly effective given its simplicity, but LDA significantly overestimates bond energies.24 The next

generation of functionals include gradients of the density, yielding the generalized gradient approximation

(GGA). One of the most popular functionals in solid state physics is the GGA functional of Perdew, Burke,

and Ernzerhof,138 published in 1996. It is simply known as “the PBE functional,” and it is used in all work

featured in this thesis despite being developed over 20 years ago. PBE has remained at the forefront of

physics since it is among the most accurate local functionals, where Vxc[ρ](r) only depends on r and the
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1.2. Density Functional Theory

density at that point Vxc(r,ρ(r),∇ρ(r), · · ·). This form is approximate because the real Vxc[ρ](r) is a

functional of ρ everywhere, not just at a particular r of interest, but considering this extended behavior

requires computationally expensive integrations. PBE is an excellent tradeoff between accuracy and speed.

As local functionals, LDA and GGA are comparatively inexpensive but fail to correctly treat long-range

interactions and suffer from self-interaction error.24

Most significant improvements to PBE in general require making Vxc nonlocal, requiring nested

integrations in Equations (1.16b) and (1.18). For example, hybrid functionals include a fraction of the

Hartree-Fock exchange energy, generally referred to as “exact exchange” despite using KS states as if they

were true single-electron states. Evaluating the exchange interaction requires pair-wise integrals over all

pairs of KS states ψi and ψ j, significantly increasing computational costs. The most popular hybrid

functional is B3LYP,4,95,157,178 a weighted combination of Hartree-Fock exchange with exchange and

correlation functionals from both LDA and GGA.157 Another route to significant improvements in some

cases is to use empirical functionals, which are specifically fitted to a dataset of known quantities. Fitting is

a controversial process because parameters that minimize error for one type of system or set of molecules

can yield increased errors for other systems.† Another recent approach is to include the local kinetic energy

density along with the local density and its gradients, resulting in meta-GGA functionals. A recent and

popular example is the SCAN functional,161 which appears to offer significant and systematic

improvements to PBE while remaining computationally inexpensive. Part of meta-GGAs’ successes are

their effective nonlocality; the kinetic energy density is a function of the KS eigenstates which vary across

the whole system. Meta-GGAs have been shown to include some of the long-range interactions GGA

functionals lack, in this sense they have been described as having “ultranonlocality.”127

1.2.2 BASIS SETS AND SUPERPOSITION ERROR

Computational implementations of DFT must express the continuous functions ψi(r) with a finite collection

of numbers. In practice this is done by defining a basis set, a collection of primitive functions such as plane

waves or Gaussians, and then representing ψi(r) as a linear combination of these functions. The

mathematical approach follows:

ψi(r) = ∑
µ

ciµ φµ(r) (1.20a)

ψT
i = (ci1,ci2, · · ·) (1.20b)

†It is likely that a version of the “No Free Lunch” theorems in Chapter 5 applies to empirical potentials.
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For finite basis sets it is generally simpler to consider the vector ψi of coefficients rather than the actual

function ψi(r).

After applying the “Fourier trick” with respect to each of the basis orbitals, the KS states described by

Equations (1.18) can be obtained by solving a generalized eigenvalue equation:

HDFT [ρ]ψi = εiSψi (1.21a)

(HDFT [ρ])µν =
∫

drφ ∗µ(r)HDFT φν(r) (1.21b)

Sµν =
∫

drφ ∗µ(r)φν(r) (1.21c)

ρ = ∑
i
ψiψ

†
i (1.21d)

where εi is the Lagrange multiplier associated with KS state ψi(r). To distinguish matrices from operators I

use script letters for operators and capital letters for matrices. Equation (1.21a) is a generalized eigenvalue

problem. At each iteration of a DFT calculation, Equation (1.21a) is solved for the new vectors ψi and

eigenvalues εi. The new vectors produce a new density matrix ρ . This process is repeated until

self-consistent, such that ρ does not change from one iteration to the next. The εi values have no inherent

physical meaning, but similar to the KS states themselves, in practice they can interpreted as the energies of

single electron states. In fact, DFT band structures are simply plots of εi for all KS states along

high-symmetry directions in the Brillouin zone.

An important consideration in practical DFT calculations is highlighted by Equations (1.20a) and (1.21d):

the total density ρ(r) is constrained by the choice of basis functions φµ(r). For example, ρ(r′) is zero if

φµ(r′) = 0 for all orbital φµ . In general we can describe a particular basis set by a collection of coefficients

β, perhaps describing a real-space grid or the number and shape of orbitals. Minimizing with respect to

density in Equation (1.16b) now involves optimizing both the coefficients ciµ and the basis set itself through

β:

Eg = min
β

min
ciµ |β

∑
i

〈
ψi

∣∣∣∣
h̄2

2m
∇2
∣∣∣∣ψi

〉
+
∫

drρ(r)

(
∑

I

ZIe2

|r−RI |
+Vrest(r)

)
+Exc [ρ] (1.22)

where we now explicitly minimize over basis set coefficients ciµ and the basis set itself through β.

While all DFT codes readily perform the “inner” optimization over the coefficients ciµ , almost none of

them automatically perform the “outer” optimization with respect to the basis set itself. Poor basis sets

constrain the density and systematically overestimate Eg. This systematic error leads to basis set

superposition error (BSSE), where this “basis constraint” is mitigated by orbitals associated with another

part of the system. For example, a poor basis for a molecule might be too inflexible to correctly charge
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density near a bond. When this molecule is brought close to a surface, orbitals located at the surface can

provide additional flexibility and thus stabilize the bond following the variational principle, reducing the

total energy. This decrease in total energy is indistinguishable from adsorption energy so BSSE

systematically overestimates adsorption energy. BSSE effects are mitigated by optimizing the basis set

itself; a fictitious enthalpy method37 for this optimization is discussed in Appendix A.

Choosing an appropriate basis set is critical. There are three popular choices:

1. Plane waves: completely delocalized states which prevent BSSE. Energy and ρ are systematically

improved by using more plane waves, although many high-frequency plane waves are needed to

describe localized bonds. Plane waves are equivalent to uniform sampling by Fourier transforms so

vacuum regions are treated with high precision, wasting computational effort.

2. Pseudoatomic orbitals (PAOs): DFT solutions for isolated atoms. Few PAOs are needed to describe

localized bonds since they are perturbations of atomic orbitals. Atom-centered basis sets also lead to

minimal wasted effort in vacuum regions. However, poorly-chosen orbitals can lead to significant

BSSE, and there is no obvious systematic way to add additional basis functions.

3. Gaussians: Gaussian functions scaled by polynomials. They are not solutions for isolated atoms and

are therefore more susceptible to BSSE than PAOs. Their mathematical form provides analytic

overlap and exchange integrals, significantly reducing computational effort for exact exchange and

post-Hartree-Fock methods.

Plane waves eliminate BSSE and are easy to converge so they are the best choice when computational

resources are abundant. In this thesis plane wave calculations are used to understand the physical and

catalytic properties of iodine-doped graphene in Chapter 2, the mechanism of anhydrous alcohol

dehydrogenation on Cu(111) surfaces in Chapter 3, and the modeling of H adsorption energies on bimetallic

Ag alloys in Chapter 5.

However, plane waves can become prohibitively expensive when studying large surfaces or nanoclusters.

Part of the reason is that most practical DFT calculations employ periodic boundary conditions to facilitate

computing the Hartree potential VH(r) from ρ(r). This is because fast Fourier transforms are usually the

fastest way to compute VH(r):

∇2VH(r) = 4πρ(r) (1.23a)

−k2VH(k) = 4πρ(k) (1.23b)
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where the differential equation in Cartesian coordinates is algebraic in Fourier space k. Equation (1.23b) is

only valid if VH and ρ are periodic, but surfaces, molecules, and other low-dimensionality structures are

aperiodic along one or more dimensions. The common solution is to pad the non-periodic dimension(s) with

vacuum space to minimize spurious interactions among the periodic images implied by Equation (1.23b).

Typical vacuum distances for surfaces with small dipole moments are 10 to 20 Å, while the surface itself is

typically less than 15 Å thick. Using plane waves is equivalent to a uniform mesh over the whole unit cell

through Fourier transforms, so plane waves expend significant computational effort on vacuum regions that

contribute little to the total energy.

Another major issue with plane waves is solving Equation (1.21a) for the KS states. Catalytic studies

generally involve covalent bonds that must be described using many high-frequency plane waves. Plane

wave basis sets therefore tend to be large, with many thousands of Fourier mode basis functions. Solving for

the KS states involves diagonalizing HDFT, and the runtime scales as O
(
m3
)

for m basis functions. Plane

waves can be exceedingly expensive for more than about 100 atoms with substantial vacuum space.

Both the vacuum space and large matrix problems are mitigated using PAOs and Gaussians. Interatomic

bonding (even in metals) is well described through perturbation theory, where neighboring atoms perturbs

the spherically-symmetric atomic potential ZIe
|r−RI

. Reasonable basis functions φµ(r) can then be constructed

as R`(r)Y`m(r̂), i.e. hydrogen-like orbitals. PAO basis sets use R`(r) obtained from performing DFT

calculations on isolated atoms, while Gaussian basis sets use a linear combination of several Gaussian

functions scaled by polynomials. Hydrogen-like wavefunctions asymptotically decay as r` exp(−αr). A

single PAO suffices for an isolated atom because it is the numerical solution, and only 23 total PAOs per

atom are needed to obtain quality band structures for the bulk phases of most transition metals.37,156 In

contrast, superpositions of several Gaussians must be used for even an isolated atom because they have the

wrong short and long-range asymptotic behaviors. Gaussian basis sets must be larger for the same accuracy

at a given level of theory. Therefore PAOs are better than Gaussians for typical DFT calculations. On the

other hand, exact exchange and (post-)Hartree-Fock calculations require extensive evaluation of overlap and

exchange integrals. Gaussian orbitals yield analytic expressions for these integrals and are therefore faster

for quantum chemistry calculations.

1.2.3 ELECTRON SPIN AND SPIN-ORBIT COUPLING

In the nonrelativistic Schrödinger Equation there is no explicit dependence on electron spin so spin

commutes with the Hamiltonian. The same true for the DFT Hamiltonian as well. KS states are therefore
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1.2. Density Functional Theory

joint eigenstates of the spin operator along some axis andHDFT, resulting in spin orbitals ψiσ (r)|σ〉 where

σ indicates the spin state. The noninteracting KS “particles” are fermions just like real electrons so σ

represents one of two spin- 1
2 eigenstates usually referred to as “up” and “down.” In addition, the spatial

dependence ψiσ is separate from the spin state |σ〉. In light of these considerations, such solutions are

referred to as “colinear spin” since all spin directions are either “up” or “down” along some chosen spin

axis. All KS states have either up or down character, so the total density can also be written as the sum of

spin densities:

ρ(r) = ρ↑(r)+ρ↓(r) = ∑
i

∣∣ψi↑(r)
∣∣2 +∑

i

∣∣ψi↓(r)
∣∣2 (1.24)

SinceHDFT and Sa commute, despite the up and down labels, it should be noted that the axis a is arbitrary–it

has no relationship with the coordinate system chosen for r.

Despite not having explicit spin dependence,HDFT has implicit spin dependence. This is because Vxc[ρ]

includes spin-dependent exchange interactions, which vanish between any two KS states with opposite spin:

〈
ψiσ ψ jσ ′

∣∣∣∣
1

|r− r′|

∣∣∣∣ψ jσ ′ψiσ

〉
=
∫

drdr′
ψ∗iσ (r)ψ∗jσ ′(r

′)ψ jσ ′(r)ψiσ (r′)
|r− r′| 〈σ |σ ′〉〈σ ′|σ〉 (1.25a)

=
∫

drdr′
ψ∗iσ (r)ψ∗jσ ′(r

′)ψ jσ ′(r)ψiσ (r′)
|r− r′| δσ ′σ δσσ ′ (1.25b)

If σ and σ ′ differ, then the states’ exchange interaction vanishes. Functionals are therefore parameterized on

the spin densities, i.e. Vxc[ρ] =Vxc[ρ↑,ρ↓], to account for this.

For the single-particle equations and basis functions, spin is included by “splitting” each of the m spatial

basis functions φµ(r) into two spin orbitals φµ(r)|↑〉 and φµ(r)|↓〉. If these 2m total orbitals are grouped by

spin, then ψiσ and HDFT can be written as a collection of “spin blocks:”

ψiσ =
(
ci1↑, · · · ,cim↑,ci1↓, · · · ,cim↓

)T (1.26a)

HDFT =


 H↑↑ H↑↓

H↓↑ H↓↓


 (1.26b)

Hσσ ′
µν ≡

〈
φµσ |HDFT|φνσ ′

〉
(1.26c)

The nonrelativistic Hamiltonian commutes with spin so the off-diagonal spin blocks H↑↓DFT and H↓↑DFT vanish:

Hσσ ′ = Hσσ δσσ ′ (1.27)
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Chapter 1. Electronic Structure Theory for Catalysis

Off-diagonal spin blocks in the overlap matrix, e.g. S↑↓, vanish as well. The eigenvalues and eigenvectors

within each block of a block-diagonal matrix are entirely decoupled. KS states for each spin direction can

then be obtained independently. Magnetism and spin polarization in colinear spin systems result from the

spin-dependent exchange iterations, leading to H↑↑ 6= H↓↓ and thus different KS states.

Matters become more complicated with the introduction of relativistic effects. In solid-state and catalytic

studies, the most important relativistic effect is spin-orbit coupling where electrons’ intrinsic spin interacts

with orbital angular momentum. The general expression for spin-orbit coupling is given in Equation (1.1d)

and repeated here for the case of a single particle:

HSOC =− 1
2m2c2 s · (∇V (r)×~p) (1.28)

where s is the vector of Pauli matrices s= (σx,σy,σz), and V (r) is the total potential operating on the

electron. This includes the potential from ions and other electrons.

Although evaluating the gradient ∇V (r) for all contributions to V (r) is complicated, most contributions

result in mild gradients and therefore very small corrections. For example, the electron-electron repulsion

contribution is small because the length scale of electronic wavefunctions, about 0.5 Å, produces small

gradients. Similarly, the Rashba effect at surfaces contribute only small gradients as well. An order of

magnitude estimate of the gradient is the work function of a surface divided by an angstrom, yielding

electric fields on the order of 1 eV/Å. This leads to a typical contribution on the order of only 1 µeV. By far

the largest contribution in catalytic materials is the ionic potential. For each ion I, its contribution to the

potential ZIe2

|r−RI | diverges as r approaches RI , and its gradient diverges as well. In these cases the spin-orbit

contribution toH can rise to the order of several electron volts for sufficiently heavy elements like Au.

The total potential V (r) in Equation (1.28) can therefore be approximated simply as a 1
r potential if we

define RI as the origin. The gradient of this potential is directed along r̂ in spherical coordinates. With this

approximation, we obtain the most common form of spin-orbit coupling:

HSOC ∝ s · (∇V (r)×p) (1.29a)

≈ s ·
(

∇
ZIe2

r
×p
)

(1.29b)

∝−s ·
(

1
r2 r̂×p

)
(1.29c)

∝− 1
r2 s ·L (1.29d)
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1.3. Zero-Point Vibrational Energy

where L is the electron angular momentum operator. The last equation, with L · s, reveals why this

approximation is known as LS coupling. DFT codes include spin-orbit coupling by including the matrix

elements of the LS operator in HDFT. Localized basis sets almost always use products of radial and angular

wavefunctions, i.e. φµ(r) = Rµ(r)Yµ(r̂), leading to simple expressions for the spin-orbit matrix elements

(HSOC)µν .33

Spin-orbit coupling can have important implications for solid-state physics and surface catalysis. The first

is spin splitting in surface states, where LS corrections of order 1 eV can significantly alter the energies and

characters of states involved in adsorbate-surface bonding. Another is introducing more complex magnetic

order. This arises because the L · s operator now explicitly couples electron spin to the atoms’ valence

orbitals, and the off-diagonal spin blocks H↑↓ and H↓↑ in Equation (1.26b) no longer vanish. The KS

eigenvalue problem (Equation (1.21a)) now has complex-valued eigenvectors with nonzero coefficients for

both φµ↑(r) and φµ↓(r). Contributions from each φµσ basis function vary in space, so each KS state’s spin

magnitude and direction can vary throughout the system.49,66 The single-particle KS states cannot as spin

orbitals in this case since spin direction and magnitude become coupled to the spatial wavefunction.

Moreover, coupling between spins and orbitals can lead to anisotropic magnetism, where crystal structures

can support preferred magnetic orders. In this thesis, spin-orbit coupling is primarily used to predict the

effects of magnetism in Cu13 nanoclusters on the catalytic rate of H2 dissociation in Chapter 4.

1.3 ZERO-POINT VIBRATIONAL ENERGY

Given the existence of the potential energy surface, Eg(R), we consider its applications in catalytic studies.

As discussed in Section 1.1.4, the Born-Oppenheimer approximation leading to Eg(R) neglects nuclear

quantum effects. For the most part these effects are minor at typical catalytic temperatures of 300 K and

higher where quantum tunneling is impeded. For example, quantum tunneling effectively reduces the

effective activation energy for H2 dissociation over isolated Pt atoms in the top layer of the Cu(111) surface

for temperatures up to 190 K, but the activation energy approaches its classical value by 300 K. An important

factor that cannot be neglected, however, is zero-point vibrational energy (ZPE). Compounds are never fully

localized at their minimum-energy geometry since the ionic positions R are also quantum degrees of

freedom, so they have nonzero vibrational ground state energy similar to the simple harmonic oscillator.

Fortunately, it is relatively straightforward to include ZPE corrections in DFT calculations. We typically

seek corrections for local minima where the forces on all atoms are zero. With R defined as the
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Chapter 1. Electronic Structure Theory for Catalysis

displacement from the minimum-energy geometry, the energy can be expanded in a Taylor series:

E(R) = Emin +
1
2
RT HR+O(R3) (1.30)

where H is the Hessian. Since the Hessian is symmetric, we can rewrite it as a sum over its eigenvalues λi

and eigenvectors ui:

(H−λiI)ui = 0 (1.31)

H = ∑
i

λiuiuT
i (1.32)

A local minimum has all positive eigenvalues by definition.‡ Equation (1.32) shows that energies increase

quadratically and independently along each displacement direction ui for small displacements. Similarly to

eigenmodes, normal modes χi and and their frequencies ωi are determined by analogy to the simple

harmonic oscillator, with the “harmonic oscillation” ansatz:

R(t) = ∑
i

ci χ̂i sin(ωit−θi) (1.33)

where ci are amplitudes of sinusoidal oscillations along each of the normal mode directions χ̂i with some

phase θi. Application of Newton’s equations of motion results in a similar eigenvalue equation for the

normal modes and their frequencies:
(
H−ω2

i M
)
χi = 0 (1.34)

where M is the mass matrix, whose entries on the diagonal are MI for coordinates belonging to atom I, and

whose off-diagonal elements are zero.§ Once Equation (1.34) is solved, we obtain the ZPE correction by

summing over the zero-point energies of each of these independent harmonic oscillator modes:

EZPE =
h̄
2 ∑

i
ωi (1.35)

It should also be noted that the normal mode directions χi are not the same as the Hessian eigenmodes ui:

they are solutions to two different eigenvalue equations. In particular, note that that the Hessian eigenvalues

in Equation (1.31) are multiplied by the identity matrix I, resulting in a standard eigenvalue problem, while

‡The sum in Equation (1.32) implicitly does not include rigid translations or rotations which correspond to λi = 0.
§Technically M is defined as the matrix such that the kinetic energy can be written as 1

2 Ṙ
T MṘ. M is diagonal in

Cartesian and mass-weighted Cartesian coordinates, which are most commonly used.
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1.4. Classical Transition State Theory

the normal mode frequencies in Equation (1.34) are multiplied by the mass matrix M, resulting in a

generalized eigenvalue problem. Although M is diagonal, diagonal matrices do generally commute with

other matrices¶ (including H) so Hessian eigenmodes and normal modes are different. This is a subtle but

important distinction. For example, isotopic substitution changes M, normal modes, and their frequencies,

but not H, its eigenvectors ui, or their curvatures.

ZPE is especially important in activation energies for bonds involving H. For example, O–H bond

vibrations have frequencies of order 3,000 cm−1 so the corresponding ZPE correction is approximately

0.2 eV. In the alcohol dehydrogenation work presented in Chapter 3, this O–H vibrational frequency and

other bond frequencies are negligibly affected by adsorption to Cu, so ZPE corrections to adsorption

energies are minor. However, since the O–H bond no longer exists in the transition state leading to alcohol

dehydrogenation, the ZPE correction to the activation energy for O–H bond breaking is roughly −0.2 eV!

Vibrational frequencies for C–H bonds are similar in magnitude and thus have similar ZPE corrections as

well for activation energies, so ZPE corrections should always be included for bonds involving H.

1.4 CLASSICAL TRANSITION STATE THEORY

1.4.1 CANONICAL ENSEMBLE DERIVATION

Classical transition state theory (TST) is the application of statistical mechanics to the prediction of reaction

rates. Suppose we are interested in the elementary reaction step from compound A to compound B. These

compounds can be defined as local minima of the potential energy surface. Molecular vibrations and phonon

modes can then be described as the small deviations from these minima, while reactions correspond to more

significant changes in molecular geometries. In general the reaction from A to B crosses a reaction surface,

labeled S,183 such that geometries displaced to one side of S will move toward A’s local minimum, and

microstates displaced on the other side will move toward B’s local minimum. The relative probability of any

two microstate geometries R and R′ is given by their relative Boltzmann factors:

P(R′)
P(R)

= exp
[
−β
(
E
(
R′
)
−E (R)

)]
(1.36)

Each microstate in the canonical ensemble has a location R and momentum P in phase space. We let P||

be the momentum tangent to the plane S at R, and let p⊥ be the momentum perpendicular to the plane. The

flux across S at some point R in the surface is its speed p⊥
M⊥

, where M⊥ is the effective mass along p̂⊥.32,177

¶They only commute when all entries on the diagonal are identical, i.e. if they are proportional to the identity matrix.
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The relative flux per particle can be calculated as the flux across S, weighted by both the relative

probability of each point
(
R,P||

)
in phase space as well as having a particular momentum p⊥ perpendicular

to S:

F =
1
Z

∫

S
dRdP|| d p⊥ e−βE(R) exp

[
−β

2

(
P2
||

M||
+

p2
⊥

M⊥

)]
p⊥
M⊥

(1.37a)

This expression is very general but difficult to evaluate because of the high dimesionality. However, we can

see that flux contributions decay exponentially with E (R) due to the Boltzmann factors. Therefore most of

the F is contributed by the lowest energy region(s) of S. If there is a single, small low-energy region on S,

then S can be approximated as a plane tangent to this region whose normal vector p̂⊥ is constant.32,177 In

this case the integrals over p̂⊥ and R are separable:

≈ 1
Z

[∫

S
dRdP|| e−βE(R) exp

(
−

βP2
||

2M||

)]∫ ∞

0
dp⊥ exp

(
−β p2

⊥
2M⊥

)
p⊥
M⊥

(1.37b)

=
1
Z

[∫

S
dRdP|| e−βE(R) exp

(
−

βP2
||

2M||

)]
kT (1.37c)

The term in square brackets is the partition function integral over S. Defining this quantity Z∗, we obtain a

general expression for the flux per particle:

F = kT
Z∗

Z
(1.37d)

Rather than use the full partition function integral, we can redefine the partition functions as being relative to

the minimum energy encountered in each region. Letting ∆EA be the difference between the minimum

energy along S and the minimum energy of A, we obtain a more familiar form for the flux:

F = kT
Z∗

Z
e−β (ETS−EA) ≡ kT

Z∗

Z
e−β∆EA (1.38)

where Z and Z∗ are now integrals of energies relative to their respective minima. Z and Z∗ account for

configurational entropy since low-energy distortions lead to Boltzmann factors near unity and thus larger

partition function integrals. This is the statistical mechanics derivation of the Arrhenius rate law. ‖ Finally,

we note that this flux is defined per particle so the overall rate, in particles per second, is F multiplied by the

‖Note that no shortcuts based on quantum mechanics, “attempt frequencies,” or a fictitous “unstable frequency” are
necessary to obtain the Arrhenius expression. These tricks deliver the right results for the wrong reasons.
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1.4. Classical Transition State Theory

concentration or coverage of A molecules. In some cases energies and the integrals change with

concentrations, e.g. interadsorbate interactions and excluded-volume effects; these cases can be considered

in the grand canonical ensemble.

Deriving Equation (1.38) exposes several quantities and assumptions of central importance to TST and

calculating reaction rates. First, the minimum-energy geometry RTS along S is the transition state. It is a

first-order saddle point on the potential energy surface because it has negative curvature perpendicular to S

by definition, and it is a local minimum with respect to all other degrees of freedom. Second, the quantity Z∗
Z

is commonly referred to as the “entropy factor.” Transitions where S contains many accessible

configurations, or where A contains few accessible configurations, lead to high reaction rates. The number

of of accessible microstates in S and A can change differently with temperature as well. Empirically

speaking the overall rate factor for bond breaking in molecules with several atoms is roughly 1013 Hz when

the reaction leaves other parts of the potential energy surface along other degrees of freedom are unaffected.

This is a common situation so 1013 Hz is commonly used when more detailed calculation or experimental

results are unavailable. For example, breaking an alcohol O–H bond does not significantly change the

properties of the alcohol’s C–H bonds. However, some reactions lead to significant entropy changes and

therefore have dramatically different rates. In molecular desorption, for example, the desorbed molecule has

significantly higher configurational entropy than the adsorbed state so a typical desorption rate prefactors

rise to 1015.5 Hz.14

The Hessian and the harmonic approximation are typically employed to further simplify Equation (1.38).

Energies corresponding to small displacements are quadratic as shown in Equation (1.30), so for small

displacements we can approximate E(R) near the minimum-energy geometry RA and the transition state as

quadratic. Each mode, with vibrational frequency ωi = 2πνi contributes a factor of 1
νi

.177 High-frequency

modes involve rapid increases in the energy with displacement and therefore small partition functions. With

this approximation we obtain the “Vineyard prefactor” for the rate:

F =
∏3N

i νi

∏3N−1
i νTS

i
(1.39)

This expression was popularized by Vineyard.177 The vibrational frequencies are the same as those used for

harmonic ZPE corrections, so finding the normal modes for adsorbates yields both the ZPE correction as

well as the Vineyard prefactor with minimal additional effort.

Although Equation (1.39) is straightforward and nearly comes for free along with ZPE corrections, its

actual utility is highly debatable for surface science. Among other approximations employed in its
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derivation, e.g. that the dividing surface S is a plane, it is subject to a number of questionable assumptions:

1. There is a single transition state, leading to a single effective plane that approximates S.

2. 100% of the flux across S results in a reaction, the “no-recrossing” assumption.

3. E(R) is quadratic near the minima of A and S for all distortions that change energies by up to several

kT . Otherwise the harmonic approximation fails. Most of the configurational entropy, and hence the

prefactor, comes from very low-energy distortions. Unfortunately, for weakly adsorbed molecules

these energies are so low that E(R) is not quadratic. In fact, weakly-bound adsorbates can even have

diffusion barriers lower than kT . In these cases the harmonic approximation significantly

underestimates entropy for adsorbed molecules so desorption rates are overestimated by orders of

magnitude.14

4. Vibrations along each normal mode satisfy the classical limit h̄ωi� kT where the classical partition

function is valid. For high frequency modes, such as O–H bond vibrations as discussed previously,

h̄ωi significantly exceeds kT . In these cases, alternate approaches to transition state theory should be

used to handle vibrational quantization.172

5. The mode frequencies νi must be computed precisely enough that their product in Equation (1.39)

has low numerical error.

Most of these assumptions have been thoroughly considered in the references provided above and elsewhere.

1.4.2 GAMBLING WITH NUMERICAL ERROR

However, an issue that has not been discussed in the literature is assumption 5: calculations may be

insufficiently precise. Precision is particularly challenging to obtain since small Hessian errors can yield

large relative errors for low frequencies. Moreover, the product of these frequencies in the Vineyard

prefactor accumulates all these relative errors. Poor precision for one mode yields poor precision for the

whole product. Adsorbates generally have several low-frequency modes, corresponding to unhindered

translations and rotations in the gas phase, so low frequencies are ubiquitous.

Relative uncertainties in the harmonic frequencies can be quantified using Monte Carlo simulations.

Finite differences are used to calculate the Hessian we can sample noise values from errors observed in the

calculation. Defining the “error matrix” as E =
(
H−HT

)
/2, we can obtain new error matrices E ′ by

sampling with replacement from the actual errors matrix E . This resampling process, using a data set as an
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approximate histogram, is known as bootstrapping. Relative errors in frequencies are obtained by

performing many frequency calculations with different bootstrapped errors:

1. Symmetrize the Hessian Hsym ≡ (H +HT )/2

2. Obtain a bootstrapped error matrix E ′ by sampling with replacement from E

3. Let Herr = Hsym +E ′ be the corresponding noisy Hessian

4. Symmetrize Herr, then calculate its normal mode frequencies and their product

Each trial produces a set of vibrational frequencies given its bootstrapped errors. Distributions of each

mode’s frequencies and their products from these Monte Carlo trials provides confidence intervals. For

example, I applied this bootstrapping approach to the Hessian obtained from VASP for the minimum-energy

ethanol geometry on the (111) step of the Cu(111) surface (see Chapter 3 for details). This test reveals that

the 68% confidence interval for the product of frequencies is 300% of its “actual” value from Hsym. These

ethanol Hessians were calculated with even higher precision than that needed to fully converge adsorption

energies and geometries, so these large uncertainties should be considered typical for weakly-bound

adsorbates. Calculating ratios of two products for the Vineyard prefactor would lead to even worse

numerical error. Considerable care and great attention to detail is therefore needed when calculating the

Vineyard prefactor in the presence of numerical error.

1.4.3 FINDING TRANSITION STATES

We now turn to the process of obtaining the transition state geometry and its energy. From the flux

derivation leading to Equation (1.37d) we identified that the transition state is a first-order saddle point, the

local maximum along the reaction path R(χ) and a local minimum along all other directions. In the

Vineyard prefactor this used with the harmonic approximation to simplify the partition function integrals.

For an elementary reaction there is only a single local maximum along R(χ) connecting the reactant and

product geometries. Moreover, as a local maximum along the reaction path, the lowest-curvature mode will

have the most negative curvature. Saddle points, by definition, also have zero gradients so forces should

vanish. Consequently there are three objectives when searching for transition states:

1. zero forces

2. highest energy along the reaction path

3. most negative possible curvature
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While many transition state search algorithms exist, two of them are particularly notable for their

popularity and success. The most popular of these is the nudged elastic band method (NEB).57,58,115 NEB

discretizes the reaction path between two user-selected geometries into m steps, known as images. Along the

path direction, forces along the discretized path are projected out and replaced with springs between

adjacent images to keep them uniformly spaced along the path. The path direction, or tangent ti, for each

image R1, · · · ,Rm is the unit vector toward its higher-energy neighbor. This single-sided derivative is less

accurate than a centered difference calculation, but centered differences tend to yield kinks and

discontinuities in the path.57 With these definitions the “NEB force” is reasonably simple:

FNEB,i =
(
1− titTi

)
FDFT,i + k ti (di,i+1−di,i−1) (1.40)

where FNEB,i and FDFT,i are the NEB and actual forces at geometry Ri, k is some spring constant, and di, j is

the distance
∣∣Ri−R j

∣∣. Minimizing this force yields equally spaced images since the spring term only

vanishes when distances to neighboring images is equal. The forces perpendicular to the path,
(
1− titTi

)
FDFT,i, are minimized as usual. In the limit that many images are used, the highest-energy image

will be close to the transition state.

In surface catalysis studies, however, using a large number of images is computationally impractical due

to the large number of atoms and vacuum space. Reasonable approximations to the reaction path can be

obtained by interpolating among only a few images, but in general none of the NEB images will lie at the

transition state itself. A common improvement that addresses this issue is the climbing-image NEB method

(cNEB).58 At each cNEB step, a special “climbing force” is applied to the highest-energy image at R∗. The

transition state is a local maximum along the path so the climbing force reverses the force along the tangent

direction:

FNEB,∗ =
(
1−2t∗tT∗

)
FDFT,∗ (1.41)

where the tangent t∗ for this highest-energy image uses centered differences rather than the one-sided

differences used for the other geometries. Optimized image geometries from cNEB now have their

highest-energy geometry close to the transition state by construction. The climbing image lacks the spring

force, however, so the image spacing on the reactant side of the path can differ from that of the product side.

NEB’s relative simplicity and explicit path discretization makes it the most popular choice for accurate

transition state searches. Its most significant strength is that the transition state is guaranteed to lie between

the user-selected reactant and product geometries. Furthermore, information about the reaction mechanism
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can be obtained by observing the changes from one image to the next along the pathway. On the other hand,

these advantages are closely related to two of the NEB method’s major weaknesses: the user must specify

both the reactant and product geometries, and the NEB method minimizes the collective force among m

geometries. The first is frustrating because often times a key piece of the mechanism is known, e.g. breaking

an alcohol O–H bond, but the initial and final geometries for this elementary step are unknown. Using the

NEB method then requires running a separate NEB calculation for each possible pair of reactant and product

geometries. The second consideration is that m geometries must be optimized instead of just one. Moreover,

these force minimizations are now coupled by the distant-dependent spring forces and the path tangents ti.

These further increase the computational costs of NEB calculations beyond the m-fold increase from

minimizing m images instead of one.

Besides these more obvious issues, there were two other prominent problems encountered throughout the

work described in this thesis. First, the cNEB method typically fails when the there are multiple transition

states. Such cases are relatively common, such as reactants diffusing to a metastable geometry to facilitate

breaking a bond of interest. Second, discontinuous paths prevent convergence because the one-sided tangent

approximations ti fail at each discontinuity. In the nanocluster work in Chapter 4, for example, the

minimum-energy reaction path has sharp turns that lead to poor finite-difference approximations for the path

tangents ti. In that work, between 15 and 23 images were needed to converge the path. The associated

computational costs for the small nanocluster were acceptable, but full surface calculations with this many

images would have been prohibitively expensive.

A complementary method that resolves most of these challenges is the dimer method.56,59 Rather than

discretize the reaction path, the dimer method is a local search that directly seeks a nearby transition state.

This is done by minimizing the lowest eigenmode of the Hessian and minimizing energy along all other

directions. This process naturally converges at first-order saddle points.

Similar to the NEB method, the dimer method uses modified forces. Two closely-spaced images, which

put the “dimer” in “dimer method,” are slightly displaced from each other along n̂, the dimer axis. The

direction of n̂ is the dimer method’s estimate for the Hessian eigenmode with the lowest curvature. The

dimer is iteratively translated and rotated throughout the search as the following effective force is minimized:

Fdimer = (1−2n̂n̂T )FDFT (1.42)

This minimizes force perpendicular to the dimer and reverses the force along the dimer, climbing to the

nearest saddle point where the lowest curvature mode is most negative. This effective force is very similar to
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the cNEB method’s climbing force in Equation (1.41).

Since computing the full Hessian at each iteration is prohibitively expensive, the dimer method uses only

a few finite-difference calculations at each iteration to obtain just the lowest-frequency mode. Curvature is

minimized by rotating the dimer (i.e. n̂) to the lowest-curvature mode. This is done in two steps. First, the

current curvature c1 and “torque” τ are computed from the forces at each endpoint of the dimer:

c0 = n̂ · (FDFT,1−FDFT,0) (1.43a)

τ = (1− n̂n̂T )(FDFT,1−FDFT,2) (1.43b)

where FDFT,0 and FDFT,1 are the forces.∗∗ The torque vector t is the steepest-descent direction for curvature,

so the dimer method minimizes curvature by rotating n̂ by some angle θ toward τ̂ , producing a new mode

direction n̂′(θ) = cos(θ)n̂+ sin(θ)τ̂ . Curvature is π-periodic with respect to θ so curvature along the

rotated direction can be written as a linear combination of sines and cosines:

c(θ) = A+Bcos(2θ)+C sin(2θ) (1.44)

where A, B, and C are constants. The curvature c0 and its derivative c′(0) =−τ are given by the finite

difference expressions above. To solve for all three variables we require a third equation, obtained by

computing the curvature c(θ) along a rotated vector n̂′(θ). Choosing θ = π/4 keeps the dimer method

numerically stable and produces a simple equation for the rotation angle θ ∗ that minimizes the total

curvature:59

θ ∗ =
1
2

tan−1
(

τ
2c(π/4)−2c(0)+ τ

)
(1.45)

This rotation process requires three DFT force calculations: one at each endpoint of the dimer, and a third

for displacement along n̂′(θ = π/4).

The dimer method’s chief advantage is that it searches locally for transition states rather than trying to

converge the entire reaction pathway. This path gives information regarding the catalytic mechanism for the

reaction, but as discussed above, only the transition state itself and its neighborhood on the dividing surface

S are truly important. Including an extra gradient for minimizing the effective dimer force, typically using

either the conjugate gradient or BFGS methods, the dimer method requires a total of four gradients per

iteration while the NEB method requires 2m gradients. NEB calculations generally use at least three to five

∗∗Technically these expressions should be normalized by the length of the dimer, but only ratios are important for the
dimer method.
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1.5. Time-Dependent DFT and Ehrenfest Dynamics

images so only four gradients is already a significant advantage. Once converged, the dimer geometry is

located at the transition state and its orientation n̂ is aligned with the unstable mode. In addition, the dimer

method only requires an initial guess for the transition state and the direction n̂ for the unstable mode. Since

catalytic studies often focus on bond breaking, a reasonable guess for the transition state and unstable mode

is to stretch the bond of interest, and use the corresponding displacement vector as the guess for n̂. The

dimer method’s inputs are therefore relatively easy to obtain from chemical intuition. Dimer method

calculations are extensively used for the work on anhydrous alcohol dehydrogenation in Chapter 3 and on

H2 dissociation over Cu13 nanoclusters in Chapter 4.

Dimer method calculations also have two significant disadvantages. The first, and most important, is that

the dimer can get “distracted” as it searches for a transition state since it orients itself along the

lowest-curvature mode of the current geometry. This issue primarily arises when searching for

low-curvature transition states such as diffusion modes for weakly bound adsorbates. Instead of converging

the low-curvature transition state for diffusion, distortions introduced by the initial guess or during force

minimization lead the dimer to find corresponding bond activation or bending modes with much lower

curvature instead. This issue is empirically rare for bond breaking, but relatively common for diffusion. The

second disadvantage is that the dimer method is a local search and only returns the transition state geometry

itself. Minimum-energy pathways require subsequent steepest-descent or conjugate-gradient optimizations

toward the reactant and product states.

1.5 TIME-DEPENDENT DFT AND EHRENFEST DYNAMICS

This section is adapted from the following publication:

• Grigory Kolesov, Oscar Grånäs, Robert Hoyt, Dmitry Vinichenko, and Efthimios Kaxiras.

“Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications.” J. Chem.

Theory Comput. 12 2016, 466–476.

The variational approach used to obtain DFT from a time-independent Hamiltonian can be made more

general to handle time-dependent systems as well. This gives rise to time-dependent DFT (TDDFT),

describing the time-dependent density and total energy corresponding to a time-dependent external

potential. Accounting for atomic motion in this process, including some or all the nonadiabatic interactions

discussed in Sections 1.1.3 and 1.1.4, is known as nonadiabatic molecular dynamics (NAMD). A wide

variety of methods with different levels of sophistication and computational expense have been developed

over the years. Most of these, however, are too expensive to implement for systems with hundreds of atoms
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over the long time scales of order 10-100 fs for chemical reactions. Among the less expensive approaches,

some popular choices have drawbacks in terms of surface catalysis. For example, the fewest-switches

surface hopping method173 is prohibitively expensive for metallic surfaces with high densities of states, and

even its modern successors require model Hamiltonians to be computationally feasible.154 Another example

is molecular dynamics with first-order “electronic frictions”53 where strong nonadiabatic coupling can lead

to diverging friction.53 Therefore we will consider a specific approach to NAMD that scales to hundreds of

atoms and is generally appropriate for metallic surfaces: Ehrenfest dynamics.

Ehrenfest dynamics can be derived in a number of ways, but the best and most elegant approach is

presented by Kunert and Schmidt.90 Whereas DFT is obtained by variationally minimizing total energy with

respect to density, Kunert and Schmidt derive Ehrenfest dynamics by variationally minimizing a mixed

quantum-classical action. The total action A is split into a classical part Ac, composed on N classical point

masses describing the atoms, and a quantum part Aq describing n electrons. In this scheme the nuclei are

asserted to be point particles from the beginning in the spirit of the classical ion approximation

(Section 1.1.2) and the BO approximation (Section 1.1.4). Kunert and Schmidt then derive a collection of

core equations that dictate dynamics:

A = Ac +Aq (1.46a)

Ac =
∫ t1

t0
dt

(
∑

I

MI

2
Ṙ2

I (t)−U (R(t) , t)

)
(1.46b)

Aq =
∫ t1

t0
dt
〈

Ψ(t)
∣∣∣∣ih̄

∂
∂ t
−H (R(t) , t)

∣∣∣∣Ψ(t)
〉

(1.46c)

FI =−∇IU(R(t), t)−∇IE(R(t), t) ∀ I ∈ 1..N (1.46d)

ih̄ψ̇i(t) =HDFT
[
ρ(r′, t ′)

]
(t)ψi(t) ∀ i ∈ 1..n (1.46e)

where U(R(t), t) includes the ion-ion repulsion term and any other interactions only affecting the ions, and

E(R(t), t) is the TDDFT total energy. Equations (1.46d) and (1.46e) are the result of minimizing the

classical and quantum actions in the TDDFT formalism. In principleHDFT [ρ(r, t ′)] (t) is nonlocal in both

space and time, but as an approximation we apply the “adiabatic” approximation†† and use the local PBE

functional as the time-dependent exchange-correlation functional. Equations (1.46e) are the time-dependent

KS (TDKS) equations. Propagating the TDKS equations in time implicitly includes the effects of ionic

motion throughHDFT.

††Adiabatic here refers to approximating the functional as being strictly local in time t, not the adiabatic approximation
in Section 1.1.3.
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1.5. Time-Dependent DFT and Ehrenfest Dynamics

As with time-independent DFT, a carefully chosen basis set is necessary to facilitate the calculation of

HDFT and to propagate the time-dependent KS states ψi(t). For the work presented in this thesis, a

pseudoatomic orbital (PAO) basis, with orbitals φµ(r), are used to reduce computational effort. As discussed

previously in Section 1.2.2, PAOs require the fewest orbitals to obtain a good description of bonding.

Letting ci be the time-dependent vector of coefficients for KS state i, such that (ci)µ corresponds to basis

function φµ(r), the TDKS equations can be written as

ih̄ċi = S−1 (H− iP)ci, (1.47)

where S is the overlap matrix and H is the DFT Hamiltonian in the chosen basis set. The new addition

compared to the time-independent KS equations is the matrix P, defined as Pµν =
〈
φµ
∣∣ d

dt

∣∣φν
〉
. P arises

from the chain rule; PAOs are centered at the ionic positions RI(t) and therefore vary in time along with the

coefficients c(t). Equation (1.47) defines the time dependence of each of the KS states. We then integrate

the TDKS equations with respect to time using the time evolution operator Û(t +∆t, t):

ci(t +∆t) = U(t +∆t, t)ci(t) (1.48a)

U(t +∆t, t) = exp
{
−i∆t

[
S−1

1/2

(
H1/2− iP1/2

)]}
+O

(
∆t3) (1.48b)

where the subscripts of 1
2 indicate that S, H, and P are evaluated at the midpoint between time steps t and ∆t,

i.e. H1/2 =
1
2 (H(t)+H(t +∆t)). Using the midpoint rule increases the order of accuracy relative to simply

using the the matrices evaluated at t alone (Euler integration), making Equation (1.48b) accurate to second

order in the time step ∆t. Typical time steps are ∆t . 24 as, the characteristic time scale for electrons.

Choosing the midpoint rule also improves time-reversibility and thus energy conservation, but also increases

computational costs since H(t +∆t) and ρ(r, t +∆t) must be known. In practice this is accomplished by

iteratively propagating until self-consistency is reached,16 similar to the iterations performed for

time-independent DFT. The matrix exponential in Equation (1.48b) is therefore calculated several times for

each of the small time steps ∆t. We find that computational effort is reduced as much as possible by using

Padé approximants of order 3/3, augmented with a scaling-and-squaring strategy,16 while still keeping the

calculations stable and sufficiently accurate.

Solving for the time-dependent atomic positions RI(t) is more straightforward since the nuclei are

considered point particles. As in BO molecular dynamics the nuclei are propagated according to Newton’s

equations with standard Verlet integration. Using an atom-centered PAO basis complicates the force
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calculation in Equation (1.46d) since ∇I affects the PAO basis functions as well as the Hamiltonian itself.

The full expression for the forces is given in Equation (1.49):

FI =−∇I ∑
J 6=I

ZIZJe2

RIJ
−Tr

{
ρ
[
∇IH−GI−

(
HS−1dI +d†

I S−1H
)]}

(1.49)

(GI)µν ≡
〈
φµ |∇I (VH +Vxc)|φν

〉
(1.50)

(dI)µν ≡
〈
φµ |∇I |φν

〉
(1.51)

G and d are vector matrices that account for how the orbitals are affected by the nuclear gradients ∇I . These

forces are similar to those in used in the ordinary Pulay force term.141,156 Equation (1.49) explicitly shows

that the nuclear forces FI correspond to the total electron density ρ via the trace, regardless of whether ρ

corresponds to a single electronic state or a superposition of many electronic states reached by nonadiabatic

transitions. In this sense the Ehrenfest forces are considered “mean field” forces since they correspond to the

mean potential energy surface. Ehrenfest forces are valid when the electronic density corresponds to a single

electronic state, or to a superposition of several states with similar forces. On the other hand, when different

electronic transitions result in significantly different forces, Ehrenfest dynamics will follow the a weighted

mean of these forces and be misleading. The following subsections discuss two different applications of

Ehrenfest dynamics to systems of catalytic interest.

1.5.1 MOLECULAR PHOTODISSOCIATION

Azobisisobutyronitrile (AIBN) is a common source of radicals in photopolymerization. AIBN dissociates

upon exposure to UV light to form a N2 molecule and a pair of isobutyronitrile radicals that facilitate

polymerization through radical chemistry. Linear response calculations show that the HOMO to LUMO+1

excitation closely resembles this UV transition. The initial condition for the TDDFT simulation of this

transition was therefore the HOMO to LUMO+1 state at the minimum energy geometry using the ∆-SCF

method, where the highest energy occupied KS state was left unoccupied and the second-lowest energy KS

state was occupied until self-consistency was reached. The TDDFT simulations the proceed by alternating

between Equations (1.48b) and (1.49) with a time step of ∆t = 25 as.

The dissociation proceeds as shown in Figure 1.1, producing the pair of isobutyronitrile radicals and a

nitrogen molecule as anticipated. During the dissociation, the net spin of each radical oscillates substantially

before arriving at an equilibrium value. These oscillations are the result of the initial excited state, with no

net magnetization on each isobutyronitrile group, gradually coupling to magnetized radical states through
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1.5. Time-Dependent DFT and Ehrenfest Dynamics

Figure 1.1: Net radical spin on one of the isobutyronitrile radicals calculated from: (a) the nonadiabatic propa-
gation and (b) the model Hamiltonian. In (b), the short-dash line shows the term a(t) in the effective Hamilto-
nian, the long-dash line shows b(t). The geometry of the AIBN molecule before and after dissociation is shown
on the right. The red and orange lobes are magnetization density isosurfaces of opposite sign.

the central N2 molecule. These magnetized states interact nonadiabatically via the DFT Hamiltonian and

therefore yield rapid oscillations in the magnetization density.

To qualitatively understand this behavior we consider a simple three-state model Hamiltonian Heff(t)

involving the two magnetized radical states, |↑↓〉 and |↓↑〉, and the unmagnetized initial state |∆SCF〉. For

simplicity, we model the matrix elements with sigmoidal time-dependence:

Heff =




E a(t) −a(t− t0)

a(t) 0 b(t)

−a(t− t0) b(t) 0


 (1.52)

where the matrix elements represent the following couplings:

〈∆SCF|Heff(t)|∆SCF〉= E = 0.71 eV (1.53)

〈∆SCF|Heff(t)|↑↓〉= a(t) =−〈∆SCF|Heff(t)|↓↑〉 (1.54)

〈↑↓|Heff(t)|↓↑〉= b(t) (1.55)

The coupling to the |↓↑〉 state is shifted by t0 = 1 fs to model the slight initial asymmetries that lead to the

|↑↓〉 state first dominating the overall magnetization. The numerical solution for the net radical spin is
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Chapter 1. Electronic Structure Theory for Catalysis

Figure 1.2: H atom kinetic energy and the total energy dissipated into the electronic degrees of freedom for H
adsorption over the top site of the Al(111) surface. Insert shows the motion trail over the first 60 fs of the H
atom adsorbing at the Al(111) top site. The H atom’s initial position is shown in red, and its position at 60 fs
is shown in blue. Only the top layer of Al atoms is shown for clarity.

calculated as the probability of being in the |↑↓〉 state minus that of being in |↓↑〉 state. A comparison

between the DFT and model net radical spin, as well as the time-dependence of the a(t) and b(t) matrix

elements, is shown in Figure 1.1. The initial onset of large oscillations, their amplitude, and the trailing

fluctuations around 50 fs are qualitatively well-reproduced despite the significant simplifications implied by

the model.

1.5.2 H ATOM SPIN TRANSITIONS

H adsorption on metallic surfaces exhibits an electronic phase transition where the H atom’s net spin

discontinuously vanishes once it is sufficiently close to the surface.7,102,103,128,168 This distance is known as

the spin transition point. This spin transition is a fundamentally nonadiabatic effect due to the square root

discontinuity in the ground state spin polarization as it crosses the spin transition point, and previous studies

calculated that this transition dissipates roughly 200 meV into electronic degrees of freedom over the first

period of H atom motion as it collides with a metallic FCC (111) top site.7,102

We model the system representing H adsorption by a 2
√

3×2
√

3 supercell of the Al(111) surface. To

reduce computational effort as much as possible we use a single-zeta polarized (SZP) basis set, a real-space

cutoff of 35 Ry, and only sample the Brillouin zone at the Γ-point. The Al slab consists of 6 layers in the

(111) direction, with the bottom two fixed at their bulk positions. These settings are chosen to closely

resemble those of Lindenblatt and Pehlke.102 The amount of nonadiabatic energy dissipation is determined

as the the difference between the electronic energy in the nonadiabatic calculation and the corresponding
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ground-state electronic energy with identical atomic positions. The difference between these two

calculations is exactly the degree to which the electrons have been excited in the metal surface. The H atom

starts 4 Å above the Al(111) top site and directly approaches the surface with an initial kinetic energy of 60

meV. The motion trail of the H atom colliding with the top site is shown in the inset of Figure 1.2, and our

results for the H atom’s kinetic energy and the nonadiabatic energy dissipation in the first period of the H

atom’s motion are presented in Figure 1.2. The two step-like jumps in the electronically-dissipated energy

correspond to the H atom crossing the spin transition point, once on approach and again right after it recoils

from its collision with the Al(111) top site. We calculate a maximum energy of 0.17 eV dissipated to the

electronic degrees of freedom, close to the maximum of 0.18 eV found by Lindenblatt and Pehlke102 despite

the low computational parameters chosen. This dissipated energy is twice the amount transferred to the Al

atoms’ total kinetic energy, highlighting the importance that nonadiabatic effects can have on adsorption at

metallic surfaces.

1.6 CONCLUSION

This chapter reviews the major considerations and approximations made in studying the electronic structure

and catalytic properties of “large” systems on the order of 100 atoms. Directly solving the Schrödinger

Equation is computationally impractical due to its high dimensionality, and conceptually unnecessary since

only one and two-body operators are necessary to describe electron dynamics (see Section 1.2 and work by

Levy97). These considerations, along with the Born-Oppenheimer approximation (see Section 1.1.4), lead to

density functional theory. DFT reduces all of the many-body complexity of the Schrödinger Equation to a

functional of the total electron density ρ (r). With appropriate functionals, particularly local GGA

functionals, large systems can be studied with relatively modest computational resources. The work

presented in this thesis makes extensive use of DFT with the PBE functional to understand adsorption and

heterogeneous catalysis at the atomic scale. Some discussion of relativistic effects is also provided for

spin-orbit coupling in Section 1.2.3.

Moreover, application of the Born-Oppenheimer approximation leads to potential energy surfaces. The

latter are a key ingredient in statistical mechanics in the canonical ensemble and classical transition state

theory. Section 1.4 reviews the canonical ensemble description of transition state theory and the origins of

the Arrhenius rate law, without questionable appeals to “attempt frequencies” or other conceptual shortcuts.

This review provides a clear picture of transition state theory’s limitations, and in particular the limitations

of harmonic transition state theory where rates are calculated using the Vineyard prefactor.177 The popular
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NEB and dimer methods for locating transition states are introduced and compared with one another.

Finally, this chapter also discusses ways to treat catalytically-relevant effects beyond the Born-Oppenheimer

approximation, specifically zero-point vibrational motion in Section 1.3 and nonadiabatic dynamics in

Section 1.5.
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2
Polyiodide-Doped Graphene

Apart from minor modifications, this chapter originally appeared in the following publication:

Robert A. Hoyt, E. Marielle Remillard, Ekin D. Cubuk, Chad D. Vecitis, and Efthimios
Kaxiras. “Polyiodide-Doped Graphene.” J. Phys. Chem. C 121(1) 609 (2017)

ABSTRACT

Iodine-doped graphene has recently attracted significant interest as a result of its enhanced

conductivity and improved catalytic activity. Using density functional theory calculations, we

obtain the formation energy, desorption rate, and electronic properties for graphene systems doped

with polyiodide chains consisting of one to six iodine atoms in the low-concentration limit. We

find that I3 and I5 act as p-type surface dopants that shift the Fermi level 0.46 and 0.57 eV below

the Dirac point, respectively. For these two molecules, molecular orbital theory and analysis of the

charge density show that doping transfers electronic charge to iodine π∗ molecular orbitals

oriented perpendicular to the graphene sheet. For even-length polyiodides, we find that I6

decomposes to I2 and I4, both of which readily desorb at 300 K. Adsorption energy calculations

further show that I3 acts as an effective catalyst for the oxygen reduction reaction on graphene by

stabilizing the rate-limiting OOH intermediate.

2.1 INTRODUCTION

Despite a wide range of extraordinary features, practical applications of graphene in modern

electronics remain limited due to the difficulties of controlling its electronic properties. For
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example, the lack of an electronic band gap restricts application in semiconductor electronics; the

presence of dangling bonds on the exposed carbon atoms at the edges of graphene make samples

highly reactive and prone to reactions with impurities;68 and the low density of states near the

Fermi level contributes to high sheet resistance such that even high quality graphene samples have

a sheet resistance in excess of 1 kΩ/sq.79 In order to use graphene in advanced electronics, it is

necessary to develop better control of its structural21,99,180 and electronic17 properties. Doping

provides one possible path in this direction: depending on the type of dopant, the concentration,

and the synthesis method, it is possible to create band gaps ranging from 0.1 to 6.4 eV,48,83,142 to

increase conductivity,197 to form ultra-thin insulators,78 and to improve catalytic performance.189

Conventional ion implantation techniques introduce lattice defects that disrupt graphene’s

electronic band structure and ultimately degrade desirable properties, such as ballistic electron

transport, that arise from the Dirac-like fermions17 near the Fermi level. One way to introduce

dopants without creating structural defects is to use adsorbed atoms or molecules. Iodine-doped

graphene is of particular interest as a reversible p-type surface dopant: recent experiments have

shown that iodine enhances conductivity140,187 and catalytic response3,189 making it ideal for use

in optoelectronic devices as a transparent conducting film48,73,78,137 and as a low-cost alternative to

platinum catalysts in fuel cells.189 Moreover, reversible iodine doping allows graphene to

transition from a semi-metal to a metal and back without disrupting the sp2 hybridization in

pristine graphene.187.

To date, theoretical studies suggest that iodine is adsorbed to the surface of graphene by van der

Waals (vdW) interactions.109,170,171 However, structures that contain a 1:1 ratio of C, H, and

halogen X (X=F, Cl, Br, I) atoms, like CX and CHX, or a 2:1 ratio like C2HX, are not likely to be

stable at room temperature.78 The main difference between experimental and theoretical studies

has been the treatment of iodine. Thus far, all but one theoretical study considered isolated atoms
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of iodine or I2 molecules interacting with the graphene sheets, whereas Raman spectroscopy and

X-ray photoelectron spectroscopy data show that iodine dopants form I3 and I5 chains.74,76,140,187

More recent work by Tristant and coworkers171 focused on the formation of I3 and I5 on

monolayer and bilayer graphene from high concentrations of I2, as well as their geometric and

vibrational properties. These authors, using molecular dynamics simulations, found vibrational

spectra in good agreement with Raman spectroscopy, and from these studies concluded that I3 and

I5 are stable on graphene near 300 K. What has not yet been been systematically explored for I3

and larger polyiodides is the formation energy, thermodynamic stability, and charge transfer in the

low-concentration limit of order 1 at. % or less found in experimental samples.80,96,146,155,192 In

particular, the doping behavior of I4 and I6 is unknown. These species could be formed from

precursor I2 subunits during the thermal annealing stage but are absent in experimental samples.

Determining their structure and thermodynamic stability would complement the current

understanding of the polyiodide-doped graphene system.

In a related, important application it is also unknown how polyiodides can serve as active sites

for the oxygen reduction reaction (ORR). Recent work69,188,193,194 demonstrated that oxygen

reduction proceeds primarily through a four-electron associative pathway involving OOH

adsorption on undoped and substitutionally-doped graphene. Jiao at al.69 showed that the

rate-limiting step is the weak adsorption of this OOH intermediate, which prefers regions of high

spin and positive charge density on graphene clusters.193,194 This preference is related to the fact

that dopants at edge sites yield higher ORR activity than those in the bulk of a cluster. ORR

activity in N-doped graphene can be improved by co-doping with adsorbed molecules such as

polyiodides,192, benzoate,116, and 1-pyrenebutyrate116 by a similar increase of positive charge

induced by N atoms. In contrast to these covalently-bonded substitutional dopants, polyiodides are

weakly-bound surface adsorbates. The mechanism for stabilizing the OOH intermediate by
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polyiodides is ambiguous since OOH could bind directly to adsorbed polyiodides rather than to

positively-charged carbon atoms in graphene.

2.2 COMPUTATIONAL DETAILS

To explore the issues raised above we studied the electronic properties of graphene doped with

adsorbed polyiodide chains and OOH using first-principles electronic structure calculations based

on density functional theory (DFT). We obtain band structures and formation energies within DFT

with the generalized gradient approximation exchange-correlation functional of Perdew, Burke,

and Ernzerhof138,139 and the projector-augmented wave (PAW) formalism with frozen core states,

using the standard pseudopotentials in the VASP computational package.49,85–88 We employ a 7×7

graphene supercell (containing 98 C atoms) in which polyiodides and OOH adsorbates are placed,

with 24.7 Å vacuum spacing between images of the graphene sheet to minimize interactions. We

determine the equilibrium geometries with the conjugate gradient relaxation method and a

maximum force tolerance of 0.02 eV/Å. Convergence of total energies to within 1 meV per atom

requires a 3×3×1 Monkhorst-Pack k-point sampling and a 500 eV plane-wave cutoff. We include

vdW interactions using the methods of Grimme46 (D2) and Tkatchenko-Scheffler167 (TS). Gas

phase calculations for polyiodide and OOH molecules were performed using cubic cells with side

length 36 Å. For visualization of the results we use the VESTA117 and VMD64 graphics packages.

We calculate the formation energies, E f (N), and desorption energies, ∆EN , for each iodine chain

of size N from the expressions

E f (N) = Etot(N)−EG−
N
2

Evac(2)

∆EN = Evac(N)+EG−Etot(N)

where Etot(N) is the total energy for the polyiodide-graphene system, EG is the total energy of a
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pristine graphene sheet, and Evac(N) is the energy of an isolated IN chain. Similarly, for OOH

calculations we obtain the adsorption energy Eads of OOH bound to system X relative to the

independent systems using the expression

Eads = Etot(OOH@X)−Etot(OOH)−Etot(X) (2.1)

To determine the minimum energy configurations for polyiodides, we place single iodine atoms at

several high-symmetry points above the graphene lattice. To test the effects of rotation, we rotate

the linear I3 chains originating above the hollow site to form angles of 0, π
12 , and π

6 radians relative

to a C-C bond. To test the effects of translation, we consider a linear I3 chain originating at the top

site and running parallel to a C-C bond. We allow all these initial geometries to relax to their

ground-state. The ground-state energies for all tested rotations and displacements differ by less

than 2 meV, showing that there is no strong preference for the orientation of the iodine chains, and

consequently we focus on a single orientation for the rest of the structures considered. For OOH

adsorption, the minimum-energy geometries were found with a similar approach by testing

multiple rotations and translations relative to undoped and I3-doped graphene.

In addition to possible energy differences arising from molecular orientation, polyiodides can

exhibit a wide range of structural conformations, especially when combined with salts and metallic

structures162. We therefore consider a range of possible geometries to determine the preferred

doping structure, some of which are depicted in Figure 2.1. These include: 1) linear geometries

(denoted as IL
N) for all polyiodide dopants; 2) a triangular geometry for I3; 3) various shapes, like

V, T, and dice-like for I5, shown in Figure 2.1; 4) for I6, two IL
3 units were placed 3.3 Å apart both

collinearly, denoted as ILL
6 , and perpendicular to each other, denoted as IT

6 . In most cases, the

geometry obtained after relaxation was nearly identical to the initial geometry. The only

exceptions are the geometries for I3, which always relaxed to IL
3 , and the geometry for IL

5 , which
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Figure 2.1: (a-c) Minimum-energy configurations for the odd-length polyiodides. (d) The next-most stable
pentaiodide IT5 . (e-g) Minimum-energy configurations for each even-length polyiodide. (h) Most stable adsorp-
tion geometry for OOH on I3-doped graphene.

relaxed to IV
5 (see Figure 2.1(c)).

2.3 RESULTS AND DISCUSSION

2.3.1 FORMATION ENERGIES

The most stable geometries (lowest formation energy per iodine atom) are IL
N for N 6= 5, and IV

5 ; we

denote these as simply IN in the following. All relaxed structures are coplanar and parallel to the

graphene sheet, and the formation energy generally decreases with increasing chain length: I5 has

the lowest formation energy (−0.376 eV/I) suggesting that it is the most stable polyiodide. The

energy for adsorbed atomic I is positive since the formation energy is defined with reference to

molecular iodine (I2), and therefore includes the full bond dissociation energy for converting I2 to

atomic I. In all cases, the vdW corrections of either kind (D2 or TS) substantially decrease the

formation energy for all chain lengths as seen in Figure 2.2(a). To investigate the iodine

concentration’s influence on the binding energy, we normalize by including multiple copies of the
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Figure 2.2: (a) Formation energy, E f (N) per iodine atom for chain length N = 1− 6 with and without vdW
corrections. (b) Induced hole density σN versus polyiodide chain length N.

shorter chains (N = 1 through 4) in the same unit cell to achieve approximately 6% and 8%

doping. Higher iodine concentration increases the formation energies per iodine for I1, I3 and I4,

but does not affect the formation energy for I2. The formation energy change is greater for the

odd-length chains, with E f (1) increasing by 0.39 eV and E f (3) increasing by 0.06 eV, while E f (4)

increases by only 0.02 eV.

The values of E f (N) and ∆EN , along with the structural information for each case, are

summarized in Table 2.1. The high total formation energies, all above −2 eV, and long

iodine-graphene distances indicate only weak interactions between polyiodides and graphene.

From comparing formation energies and final geometries, a key result is the tendency to form

weaker bonds (about 3 Å) between I2 subunits, a common feature among polyiodides.162 These

appear in the I4 and I6 geometries as well as in the I2 subunit of IT
5 , implying weaker bonds than
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Table 2.1: Formation energies per iodine atom (E f ), desorption energy (∆EN), desorption lifetime (τN), mean
polyiodide-graphene distance (dI-G), and nearest-neighbor distances (dI-I) for the most stable length-N polyio-
dide. Numbers in parentheses are from Tristant et al. 170

N E f (eV/I) ∆EN (eV) τN (s) dI-G (Å) dI-I (Å)
1 0.370, (0.43) 0.884 1.1×102 3.60, (3.35) 17.3, (12.30)
2 −0.177, (−0.21) 0.354 1.4×10−7 3.74, (3.62) 15.0, (12.30)
3 −0.312 1.150 3.3×103 3.70 12.6
4 −0.289 0.869 6.3×101 3.73 10.5
5 −0.376 1.595 1.0×1013 3.68 10.2
6 −0.323 1.352 8.3×109 3.76 8.3

those found within I3 and I5. For the even-length chains, comparing formation energies reveals that

each of these weak I2-I2 bonds yields approximately 0.4 eV, and is responsible for stabilizing the

longer, even-length polyiodides. In contrast, the local minima for I3 and I5 are the result of

favorable orbital hybridization, yielding shorter (∼ 2.9 Å) bonds, and larger charge transfer from

the graphene sheet as discussed below. Similar results for the geometries of the odd-length

polyiodides were reported by Tristant et al.;171 the lower binding energies and higher mean

iodine-graphene distances reported here are consistent with the tendency of the GGA

exchange-correlation functional to underbind structures relative to optB86b-vdW.82

The low formation energy per elongated I-I bond in I4 and I6 suggests low reaction barriers

toward decomposing into smaller polyiodide chains. To explore this in more detail, we calculated

the bond dissociation curves for I4 and I6 as a function of I-I bond length by abstracting an I2

subunit from the rest of the chain. This was done by constraining the second and third iodine atoms

along the chain transverse to the graphene plane while allowing all other degrees of freedom to

relax, see Figure 2.3 for I6. This is an application of the distinguished (or driven) coordinate

method,185 which provides a reasonable reaction path and transition state structure when the

reaction path is dominated by the selected coordinate, in this case the length of the

already-elongated 3.01 Å I-I bond. The resulting dissociation energies, 0.446 eV for I6 and

0.418 eV for I4, agree well with the total energy difference between the IN precursor and the
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Figure 2.3: Bond dissociation curve for I6 as a function of I4-I2 distance, with energies relative to the geomet-
ric ground state. The inset shows the dissociated geometry a distance of 7.50 Å.

resulting IN−2 and I2 chains in separate supercells, 0.427 eV for I6 and 0.445 eV for I4.

2.3.2 ELECTRONIC STRUCTURE

To investigate the extent of orbital hybridization and the effect of iodine doping on graphene’s

electronic structure, we show results for I2 and I3 in Figure 2.4. The band structure and density of

states (DOS) vary minimally with spin polarization and choice of vdW correction (we present only

spin unpolarized results here). The presence of the Dirac cone, flat iodine bands, and the

remarkable similarity between pristine graphene and the IN-graphene band structure for all N

values considered confirms that graphene’s pz-hybridization is not disrupted by the presence of

iodine atoms (the differences are minimal on the scale of Figure 2.4). The Fermi level is always

lower than the value of the Dirac point indicating that all polyiodide configurations considered are

p-type dopants. As illustrated in Figure 2.4 for I2 and I3, the energy difference between the Dirac

point and the Fermi level is generally higher for odd-length chains than even-length chains. The

only exception is I6, where the energy difference (0.48 eV) is substantially higher than that of I1

(0.11 eV). This predicts greater charge transfer for odd-length polyiodides than even-length ones,

as suggested in prior work for I1 and I2 by Tristant et al.170

To reveal the source of this difference, we project the DOS onto iodine-centered spherical

harmonics, and find that the molecular orbitals of iodine are almost exclusively 5s and 5p hybrids.
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Figure 2.4: Band structures and density of states (DOS) for the minimum-energy configurations of: (a) I2,
(b) I3. Dashed lines indicate the Fermi level, and violet bands highlight electronic contributions from iodine.
The orbital diagrams show the spatial character of the corresponding iodine molecular orbitals. Charge transfer
(units of 10−3 e Bohr−3) along the chain for: (c) I2, (d) I3, shown on a plane perpendicular to the graphene
sheet (G).
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With a large 10 eV energy difference between the 5s and 5p orbitals, there is minimal s-p

hybridization; for a chain of length N this yields N 5s molecular orbitals with energies centered

around −13 eV, and 3N 5p hybrid orbitals centered around −2 eV relative to the Dirac point. The

shapes and characters of the 5p-hybridized orbitals for I2 and I3 within the energy range of

Figure 2.4(a)-(b) are shown alongside the DOS. Since all IN in their minimum-energy

configurations are coplanar and approximately linear, molecular symmetry further divides the 5p

hybrids into N orbitals of σ character and 2N orbitals of π character. The strong interaction

between 5p orbitals oriented along the chain yields larger energy gaps between σ molecular

orbitals than between π molecular orbitals, as seen in Figure 2.4(a)-(b), thus explaining the

difference between even and odd-length polyiodides. The odd-length neutral I3 and I5 chains have

a lowest unoccupied molecular orbital (LUMO) with π∗ character, and the small π-orbital energy

gaps place these states at least 0.72 eV below the Dirac point, in good agreement with the

maximum 0.8 eV Fermi level shift observed in experimental transport measurements by Wu and

coworkers187 at high iodine exposure. In contrast, the LUMO for even-length chains has σ∗

character, and the larger energy gaps tend to place them much closer to the Dirac point. In the case

of I2 and I4 this lowest unoccupied σ∗ is very close to the Dirac point, while for I6 the

increasingly-dense spacing of σ∗ orbitals places the LUMO somewhat lower, 0.48 eV below the

Dirac point. The lone anomaly is I1, where the lack of I-I bonding destabilizes the 5p orbitals by

removing exchange and correlation effects present for N ≥ 2. As a result, the nearly-degenerate 5p

orbitals for I1 lie only −0.11 eV below the Dirac point.

The spatial character of the transferred charge gives additional support to this molecular orbital

interpretation. Figure 2.4(c) and (d) show isosurfaces of the transferred charge density for I2 and

I3, defined as the difference between the charge density of the doped system and the sum of

densities of the isolated, neutral polyiodide and undoped graphene sheet with the same atomic
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positions. The I3 and I5 chains primarily gain charge in π∗ orbitals, while I1 and the even-length

chains gain charge in σ∗ orbitals parallel to the graphene sheet. The spatial distribution of excess

charge on the iodine chains agrees well with the density of the corresponding LUMO: note, for

example, the similarity for I3 between Figure 2.4(d) and the corresponding π∗ LUMO that accepts

the charge in Figure 2.4(b).

2.3.3 CHARGE TRANSFER

The charge transfer between iodine and graphene offers additional insight into the role of iodine

dopants in catalysis and electronic devices. We employ Bader charge analysis55,151,164 to

determine how much charge the polyiodide dopants acquire in their optimal configurations. We

obtain the net charge transfer QN by finding the total charge QB
tot contained in Bader volumes

attributed to the iodine atoms, then subtracting the seven valence electrons per iodine atom to

obtain the net charge. For a more direct comparison to experiment, where the iodine concentration

is generally of order 1 at. %, the hole density is extrapolated to 1.0 at. % iodine doping by dividing

the net charge QN by the corresponding area of graphene AG, giving a hole density σN :

σN = (QB
tot−7N)/AG = QN/AG

We show the results of this calculation in Figure 2.2(b). All three odd-length polyiodides draw

more charge than the even-length polyiodides, generally consistent with the lower energy of the

unoccupied π∗ orbitals relative to the lowest unoccupied σ∗ orbitals, and yield the highest hole

densities induced on graphene. I1 still draws more charge than I6, even though the the dopant band

is farther below the Dirac point for I6 as mentioned above. Estimating charge transfer and hole

density from the band structure alone, by integrating the DOS resulting from graphene’s linear

dispersion near the Dirac point,17,170 would therefore predict the opposite order between I6 and I1.
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The Hirshfeld partial charges,60 calculated as part of the TS vdW correction, are qualitatively

consistent with the Bader charges so the latter are expected to be more reliable. We also assess the

magnitude of finite size effects by calculating the hole density for a pair of I3 dopants. The error

bar in Figure 2.2 indicates the difference: the 2×I3 structure yields a lower hole density than a

single I3. Charge transfer for larger N may be underestimated compared to calculations performed

with actual 1 at. % doping.

The good correspondence between charge transfer and the character of molecular orbitals

explains the conductivity-enhancing effects of I3 and I5. With the weak π hybridization in these

species, their π∗ LUMO is lower than the Dirac point, and can therefore yield significant hole

densities in graphene with both I3 and I5 yielding hole densities of approximately 5×1012 cm−2.

This value is in reasonable agreement with a range experimental results, which demonstrate

5×1012 cm−2 at 4 at. % I,146 2.6×1013 cm−2 at an estimated 1 to 1.7 at. % I,73 and

4.75×1013 cm−2.187 In contrast, the even-length polyiodides have σ∗ LUMOs that are much

closer to the Dirac point due to the stronger 5p hybridization along the chain. The net charge

transfer to these less-stable LUMOs is therefore reduced. The DC conductivity of graphene is

proportional to its net charge density,17 whether this density is created by an applied gate potential,

impurities and adsorbates,71,187 or even by photo-generated carriers.81 For I3 and I5, the significant

induced hole density in graphene agrees well with the observation that polyiodide doping

significantly increases the conductivity.187 These results are also consistent with the observation

that polyiodide doping improves the conductivity of carbon nanotubes.197

2.3.4 POLYIODIDE STABILITY

An open question is the reason for the abundance of I3 and I5 reported in the experimental

literature. Although we find I5 to be the most stable per I atom, the formation energy of I3 is only

0.9kBT lower per I atom than I4, and is 0.4kBT higher per I atom than I6 at 300K. Formation
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energies alone cannot explain why I3 is the majority polyiodide dopant reported by experiments.

An observation that may help explain this is related to the hole densities: I3 and I5 show the largest

charge transfer per adsorbed molecule, suggesting that electrostatics play a role in keeping these

polyiodides bound to graphene. To explore this idea further, we obtain the desorption energy ∆EN

for each chain length to determine the stability of each IN species. To estimate the corresponding

desorption rates kN and lifetimes k−1
N we use the Eyring equation:32

kN = (kBT/h) e−∆EN/kBT e∆S/kB . The ∆SN term in the full Eyring equation is assumed to be

negligible since the polyiodides are only weakly bound to graphene, so that both adsorbed and free

polyiodides have nearly identical vibrational modes; the only major difference is a hindered

rotation into the graphene sheet for adsorbed chains. As a result, ∆SN should be negligible and is

unlikely to vary with N. Table 2.1 shows the resulting desorption energies and lifetimes. The

desorption barriers are highest for I3, I5 and I6, resulting in orders of magnitude longer desorption

lifetimes that are in line with their larger charge transfer and dispersion interactions with graphene.

Although these calculations neglect solvation and dielectric screening effects that would be present

in an experimental setting, the relative rates presented here provide strong evidence that the high

desorption barriers of I3 and I5 play a crucial role in their observed abundance.

Combined with the small bond dissociation energies for I4 and I6, the weak adsorption of I2

explains the absence of the even-length polyiodides studied here, and likely all longer-length

polyiodides as well. Any I2 molecules remaining after the preparation of polyiodide-doped

graphene should quickly desorb from the surface at 300 K given its low desorption barrier of

0.354 eV. For I4 and I6, although the desorption barriers are significantly higher, the corresponding

dissociation barriers for I2 abstraction are not. For example, the 0.445 eV dissociation barrier for I4

to form a pair of I2 molecules corresponds to a lifetime of only 4.8×10−6 s from the Eyring

equation. Therefore I4 and I6 are expected to rapidly decompose toward I2 at 300 K. For even
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larger polyiodides IN with N ≥ 7, these generally feature similar elongated I-I bonds between some

combination of I2, I3, and I5 subunits.162 Assuming the corresponding bond dissociation energies

to be similar to those for I4 and I6, the observed lack of large polyiodides can be explained by

repeated thermal decomposition toward the shorter polyiodides considered here.

2.3.5 MECHANISM OF CATALYSIS

In addition to reversibly doping and increasing the conductivity of graphene, polyiodides have

attracted recent interest for their role in making graphene an effective catalyst for oxygen

reduction. The work of Jiao et al.69 shows that the weak binding of the OOH intermediate presents

a large free energy barrier of 1.1 eV, yielding slow ORR kinetics in undoped graphene. The

presence of dopants can significantly increase the binding energy of OOH and therefore reduce the

corresponding barrier. Of the two observed polyiodide dopants, we focus on I3 since it has been

observed to be the dominant active species in polyiodide-doped graphene.189 To determine how

strongly I3 stabilizes the OOH intermediate, we find the minimum-energy adsorption geometry for

OOH for undoped graphene (G), I3-doped graphene (I3-G), and for both neutral I3 and charged I−3

molecules in the gas phase. The adsorption energies, distances, and Bader charge values are shown

in Table 2.2. On undoped graphene, OOH is only weakly adsorbed with a minimum O-graphene

distance of 2.95 Å, and the molecular plane is nearly parallel to graphene. Similar to polyiodides,

OOH adsorption energies vary negligibly with translations and rotations. The minimum-energy

adsorption geometry for I3-doped graphene is shown in Figure 2.1(h), and has a significantly

stronger adsorption energy as a result of forming an O-I bond. The minimum O-graphene distance

actually increases slightly in the presence of I3, which shows that the lower adsorption energy

comes from bonding to I3 rather than a carbon atom in graphene. Compared to substitutional

B-doped graphene69 and N-doped graphene,69,194 I3 binds OOH by about −0.13 eV more and

should therefore correspond to a smaller free energy barrier of 0.57 eV. This significant lowering
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Table 2.2: Adsorption energy (Eads), minimum O-graphene distance (dO−G), O-I bond length (dO−I), and net
OOH Bader charge (QOOH) for each system interacting with OOH.

system Eads (eV) dO−G Å dO−I Å QOOH (e)
G −0.441 2.95 0.26

I3-G −0.968 3.06 2.23 0.35
I3 gas −1.440 2.12 0.33
I−3 gas −0.569 2.33 0.44

of the free energy barrier for OOH adsorption, due to direct bonding to I3 dopants, explains how I3

can serve as the active site for OOH adsorption and hence promote the early stages of oxygen

reduction.

There is also an interesting relationship between OOH adsorption and the corresponding charge

transfer, where the stronger binding of OOH on I3-doped graphene is accompanied by a substantial

increase in its partial charge. For reference, we compare the OOH adsorption strength to neutral I3

and the corresponding I−3 anion in the gas phase. I3 yields significantly stronger OOH adsorption

than I−3 , see Table 2.2. I3 on graphene is roughly halfway between neutral and anionic with a net

Bader charge of 0.55 e, and its corresponding OOH adsorption energy and O-I bond length are

between those of neutral I3 and anionic I−3 in the gas phase. This close agreement reflects the weak

I3-graphene interaction, and suggests that the reactivity of polyiodide-doped graphene could be

improved by decreasing the net charge on the polyiodide dopants, for example by co-doping

graphene with an electronegative element. This may explain the recent observation192 that

co-doping graphene with both polyiodides and N yields faster ORR kinetics than either dopant

alone, despite lower I and N loading than the individual samples.

2.4 CONCLUSION

In summary, we studied the electronic properties of iodine-doped graphene to understand the

possibility of using polyiodides as dopants (I1 through I6). To foster comparisons between these

different polyiodides, we calculated the binding energies, electronic band structures, densities of
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states, charge transfer, and desorption rates for each polyiodide on graphene. We find that, in

general, longer chain lengths and lower concentrations have more favorable formation energies,

with little dependence on the relative orientation of the polyiodide molecule and the graphene

lattice. Band structure calculations and molecular orbital theory reveal that polyiodide molecules

act as p-type dopants and do not noticeably disrupt graphene’s band structure. There are also clear

distinctions in doping behavior among the different chain lengths as a result of orbital

hybridization: the I3 and I5 chains acquire charge in π∗ orbitals that are oriented with lobes

perpendicular to graphene, while I1 and even-length chains acquire charge in orbitals with lobes

parallel to graphene. As a result of weak π hybridization and thus lower-energy LUMOs, the

odd-length chains exhibit 25% greater charge transfer per iodine atom. This increased charge

helps keep the experimentally-observed I3 and I5 species stably bound to graphene, while I2

rapidly desorbs at 300 K. Furthermore, although I4 and I6 are reasonably stable with respect to

desorption, they are unstable with respect to dissociation into separate I2 molecules as a result of

their elongated I-I bonds and low bond dissociation energies. This explains the observed lack of

longer polyiodides IN (N ≥ 7), which generally feature longer bonds between shorter polyiodide

subunits. We also find that the rate-limiting OOH intermediate is effectively stabilized by adsorbed

I3 chains, resulting in a lower free energy barrier that agrees with the fast ORR kinetics observed

for polyiodide-doped graphene.
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3
Anhydrous Alcohol Dehydrogenation on Cu(111)

Apart from minor modifications and Section 3.5, this chapter is being prepared for the following

publication:

Robert A. Hoyt, Matthew M. Montemore, Robert J. Madix, E. Charles H. Sykes, and
Efthimios Kaxiras. “Anhydrous Methanol and Ethanol Dehydrogenation at Cu(111) Step
Defects.” in preparation

Apart from minor modifications, content in Section 3.5 appeared in the following publication:

Zhi-Tao Wang, Robert A. Hoyt, Mostafa El-Soda, Robert J. Madix, Efthimios Kaxiras, and
E. Charles H. Sykes. “Dry Dehydrogenation of Ethanol on Pt-Cu Single Atom Alloys.” Top.
Catal. 1 (2017)

ABSTRACT

Oxidative methanol dehydrogenation is a major industrial reaction with global formaldehyde

production exceeding 30 million tonnes per year. Unfortunately, oxidative dehydrogenation

produces water-aldehyde mixtures that require subsequent distillation. Anhydrous alcohol

dehydrogenation is a promising alternative that produces H2 instead of water. Pursuant to recent

experimental work showing that highly stepped Cu(111) surfaces exhibit anhydrous

dehydrogenation activity, we present first-principles density functional theory calculations for

methanol and ethanol dehydrogenation at Cu(111) step edges to provide an atomistic

understanding of the catalytic mechanism; these sites stabilize all intermediates while reducing

activation energies. We find that van der Waals contributions to the energy account for more than

50% of adsorption energies, and their inclusion is essential in achieving good agreement with
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experimental desorption temperatures. Furthermore, vibrational zero-point energy corrections

significantly reduce the activation energy for all reaction steps considered here. Hydrogen bonding

among ethanol intermediates at step edges is weakened by geometric frustration. These insights

lead us to propose several ways for further improving undercoordinated Cu sites as anhydrous

alcohol dehydrogenation catalysts.

3.1 INTRODUCTION

Improving the performance of industrial catalysts requires increasing their activity and selectivity

while maintaining long catalyst lifetime. Alcohol dehydrogenation on heterogeneous catalysts is

the most significant industrial pathway for formaldehyde production,35,160 with global production

exceeding 30 million tonnes per year. Current catalysts, either based on silver or oxides of iron,

molybdenum and vanadium38 require oxygen to facilitate alcohol oxidation and therefore produce

water as a byproduct. Separating formaldehyde and unreacted methanol from water requires

energy-intensive absorber and vacuum distillation stages.35,199 If catalysts were able to function in

the absence of oxygen, industrially valuable H2 would be produced instead of water. Such catalysts

are not commercially available yet, but further improvements to promising candidates may lead to

better prospects. Cu is particularly promising due to its low cost, high selectivity,160 and long

catalyst lifetimes.

Substantial experimental work has addressed alcohol dehydrogenation on Cu surfaces. Much of

this research has focused on oxidative dehydrogenation over single-crystal surfaces, starting with

Cu(110)12 and Cu(111).150 The consensus is that O–H bond breaking occurs at low temperatures

to produce stable alkoxy intermediates, followed by reaction rate-limited aldehyde desorption at

higher temperatures. Hydrogen adatoms generated from breaking methoxy C–H bonds can also

lead to methoxy hydrogenation and reaction rate-limited methanol desorption.12 Detailed
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adsorbate-surface distance measurements for methanol and methoxy intermediates at low

temperature have been made with X-ray standing wave adsorption experiments.72 More detailed

results for adsorbate geometry and induced surface relaxation are also available for methoxy on the

Cu(111) surface.61 Under ultra-high vacuum (UHV) conditions, defect-free Cu single-crystal

surfaces (except Cu(210)18) are inert toward alkoxy dehydrogenation11,12 such that a co-catalyst is

required to facilitate C–H bond breaking. Early studies employed adsorbed oxygen atoms as the

co-catalyst and produced water as a byproduct.11,12,150 Later it was demonstrated that water itself

serves as a co-catalyst for methoxy dehydrogenation to formaldehyde and H2
10,153 through

water-alcohol and water-alkoxy hydrogen bonding. In an effort to remove water from the reaction

cycle entirely, more recent work on Cu(111) surfaces has demonstrated that surface defects, either

isolated dopant metal atoms153,181 or step edges,182 can supplant water as an effective co-catalyst

to facilitate anhydrous alcohol dehydrogenation. These defect studies also observed O–H bond

breaking at low temperatures followed by C–H bond breaking at higher temperatures.

Several previous theoretical studies based on density functional theory (DFT) examined a

variety of methanol dehydrogenation intermediates at flat and stepped Cu(111) surfaces. Greeley

and Mavrikakis45 found that methanol adsorbs to Cu top sites through its O atom, while

formaldehyde adsorbs flat on Cu(111). They also find the same reaction mechanism as observed in

experiments. A related study on 22-atom Cu(111)-terminated clusters42 reported qualitatively

similar energetics, but found that methanol adsorbs at top sites through the alcohol H atom, and

that formaldehyde adsorbs perpendicular to the surface though weak O–Cu and H–Cu bonds.

Methanol dehydrogenation intermediates have also been studied in the context of methanol

synthesis with DFT and van der Waals (vdW) corrections on the stepped Cu(211) surface.6,159 Step

edges stabilized all adsorbates and improved reactivity, while vdW interactions were significant for

higher molecular weight adsorbates, particularly those derived from CO2 rather than CO. While
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Cu(211) surfaces expose (100) steps, there also exist (111) steps, as discussed below. The (111)

step has been studied with DFT for formaldehyde steam reforming using the Cu(221) surface,100

where formaldehyde was found to adsorb above and parallel to the step edge.

The corresponding ethanol dehydrogenation pathway and its intermediates have been studied as

well. A study of ethyl acetate synthesis on Cu(111) surfaces98 found that ethanol adsorbs to the

terrace through its alcohol H atom, while another study of ethanol adsorption found that it adsorbs

to Cu(111) surfaces through its O atom instead.165 Further work on CO hydrogenation to ethanol

on Cu(211) surfaces found that all intermediates besides H are more stable at step edges,196 and

that H is most stable at three-fold hollow sites immediately below the step edge, while an earlier

study100 found that H is most stable at three-fold hollow sites immediately above the step edge.

Although the predicted reaction mechanism for alcohol dehydrogenation agrees with experimental

results, there is significant disagreement regarding adsorption geometries for alcohols and

aldehydes.

To address the current lack of direct comparison between methanol and ethanol and between

both Cu(111) step edges, as well as the lingering discrepancies among existing computational

studies, we report here the adsorption geometries and energies for all key methanol and ethanol

dehydrogenation intermediates on the Cu(111) terrace and its step edges. We take into account

vdW interactions for all adsorbates and transition states as they have been shown to qualitatively

alter adsorption energies and geometries for dehydrogenation intermediates on Cu(111)

surfaces159,165 and other organic molecules on Au(111) and (100) surfaces.77 Furthermore, while

alcohol-alcohol hydrogen bond energies are significant in the gas phase34 and on transition metal

surfaces,10,93,112,153 hydrogen bonding behavior has not been studied at Cu(111) step edges. We

also include vibrational zero point energy (ZPE) corrections for all intermediates to provide a more

realistic description.
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Our theoretical comparison between methanol and ethanol can help identify trends that extend

toward larger alcohols like n-propanol, and the difference in behavior at step edges versus on the

Cu(111) terrace can reveal how local surface structure contributes to adsorbate stability and affects

reaction rates. These detailed calculations elucidate the importance of step edges and contribute to

a better understanding of catalyst design principles.

3.2 COMPUTATIONAL DETAILS

3.2.1 DFT AND MD PARAMETERS

Density functional theory (DFT) calculations were performed using VASP version 5.4.285–88 with

the exchange-correlation functional of Perdew, Burke, and Ernzerhoff (PBE).138,139 To achieve

precisions of 0.01 eV for minimum-energy geometries we use plane wave cutoffs of 400 eV and

relax geometries until the maximum force component is less than 0.01 eV/Å in magnitude using

the FIRE method8 from the VASP Transition State Tools (VTST) package. The Cu(111) surface is

modeled with a 3×3 supercell, while the (111) and (100) step edges are modeled using

three-atom-wide supercells of the (553) and (533) surfaces, respectively. All unit cells contain six

layers in the (111) direction, with the bottom two layers fixed in their bulk positions and with a

bulk-optimized lattice constant of 3.547 Å. To minimize interactions between periodic slab images

we ensure that at least 10 Å of vacuum separates atoms in adjacent slabs, including any adsorbates,

and we apply dipole energy corrections perpendicular to the slab. Monkhorst-Pack k-point

meshes134 are selected to achieve similar sampling densities across all three surfaces. With the

convention ~Ai ·~b j ≡ δi j for lattice vector ~Ai and reciprocal lattice vector~b j, convergence is obtained

using mi = |~bi| ·50 Å points along lattice vector ~Ai, rounding mi to the nearest integer. This yields

an 8×8 grid for the (111) surface, a 7×5 grid for the (111) step, and a 7×6 grid for the (100)

step. For inter-adsorbate interactions, 4×4 Cu(111) supercells and four-atom-wide step surfaces
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were used with the same k-point density and otherwise-identical settings. Gas phase calculations

use cubic unit cells with a side length of 30 Å. Molecular dynamics simulations use four total

layers, plane wave cutoffs of 300 eV and mi = |~bi| ·35 Å. These reduced values preserve most

adsorption energies within 0.05 eV and yield very similar adsorbate geometries relative to the

converged parameters. All energies include zero-point vibrational energy (ZPE) corrections, using

0.005 Å centered differences, and vdW corrections calculated with the Tkatchenko-Scheffler (TS)

method.167 All transition state geometries and energies are obtained using the dimer method,56,59

as implemented in VTST, which improves the standard VASP version by rotating the dimer

regardless of curvature to avoid pathological trajectories. Searches are initiated from several

rotations and translations of the lowest-energy hydrogenated precursor with the cleaved O–H or

C–H bond pre-stretched to approximately 1.3 Å to reduce its curvature. Dimer geometries are

optimized using conjugate gradient minimization until the largest force is less than 0.02 eV/Å in

magnitude. Reactant and product geometries are determined by displacing each transition state by

±0.25 Å along the unstable mode, then relaxing to the nearest local minimum using the conjugate

gradient method. Finally, molecular dynamics (MD) simulations used a time step of 1 fs and a

Nose-Hoover thermostat set to 150 K.

3.2.2 STRUCTURES AND ENERGETICS

The Cu(111) surface has two low index step facets as illustrated in Figure 3.1, with (111) or (100)

orientations. We refer to undercoordinated atoms at step edges as “step atoms,” and to the bridge

sites between them “step bridges.” Step atoms at both step edges are 7-fold coordinated and have

identical radial distribution functions. The (111) and (100) step edges meet at 60angles to form

kink sites with either 6-fold coordination (lower left in Figure 3.1) or 8-fold coordination (upper

right in Figure 3.1). Although these kinks most likely have different reactivities, we did not

consider them in detail since scanning tunneling microscopy (STM) images show that adsorbates
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Figure 3.1: Primitive step features on the Cu(111) terrace. Cu atoms in the upper terrace are shaded light
tan, while Cu atoms in the lower terrace are shaded dark tan.

are found along the entirety of step edges. Preliminary calculations also show that adsorption

energies at 6-fold-coordinated kink sites are stronger, but their O–H transition states have higher

energies so they are predicted to be less reactive. Both step types are experimentally stable and

similarly prevalent on the Cu(111) surface throughout the alcohol dehydrogenation reactions and

above 400 K. Furthermore, while adatom and vacancy defects at step edges are also possible, we

calculate that the formation energy of an adjacent adatom-vacancy pair is significantly endothermic

relative to clean step edges: 0.55 eV for the (111) step, and 0.65 eV for the (100) step. Adatoms

and vacancies increase alcohol adsorption energies by about 0.1 eV compared to clean steps so

adsorbates cannot stabilize these adatom-vacancy pairs. O–H transition states also have higher

energies on adatoms and defects than on clean step edges. As a result we did not consider such

defects in detail.

Adsorption energies are significantly increased by vdW interactions, especially for the larger

ethanol dehydrogenation intermediates where the extra CH2 subunit typically contributes an

additional 0.18 eV to adsorption energies. Table 3.1 shows the vdW contribution to alcohol and
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Table 3.1: Percent Contribution fvdW of TS vdW Corrections to PBE+vdW Desorption Energies

Surface MeOH EtOH CH2O CH3CHO
(111) step 54 62 60 58
(100) step 61 66 53 64
terrace 79 87 111 111

aldehyde desorption energies, defined as the fraction fvdW of the total adsorption energy due to the

TS vdW correction

fvdW (A) = (ETS (A/X)−ETS (A)−ETS (X))/Edes (3.1)

where ETS is the TS vdW contribution to the PBE+vdW energy for intermediate A adsorbed to

surface X or in the gas phase, and Edes is the PBE+vdW desorption energy. All values are taken

from the same PBE+vdW calculation. TS vdW corrections account for at least 54% of desorption

energies at step edges, and at least 79% on the flat Cu(111) terrace. This is largely due to variations

in the PBE contributions since the TS vdW corrections for each adsorbate are similar across all

three sites. fvdW exceeds 100% for aldehydes on the terrace; aldehyde-surface vdW interactions

are so dominant they result in geometries with a negative PBE contribution. Undercoordinated step

atom and bridge sites provide stronger adsorbate-Cu interactions and hence reduce the relative

contributions of vdW interactions at step edges. Our binding energy and fvdW values for ethanol on

the Cu(111) surface are in reasonable agreement with previous results165 using the similar D3

vdW correction scheme.47 For methanol and formaldehyde we obtain significantly larger

adsorption energies for the same adsorption geometries reported by Greeley and Mavrikakis45

without vdW corrections. Similar increases in stability due to vdW corrections are also seen in

previous work on Cu(110),20 though with a smaller typical trend of 0.14 eV/CH2 due to the

Cu(110) surface’s lower atomic density at the surface.

In addition to increasing adsorbate stability, vdW contributions also affect adsorption

geometries. The TS vdW corrections are exclusively attractive and therefore favor smaller
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adsorbate-surface distances. Previous comparisons of the PBE and PBE+vdW geometries of

ethanol on Cu(111)165 using D3 vdW corrections found that the C–C bond is approximately

perpendicular to the surface with PBE alone, but is nearly parallel to the surface with PBE+vdW.

Similarly, our alcohol adsorption geometries on the Cu(111) terrace feature slightly shorter

adsorbate-Cu distances than previous methanol geometries with O–Cu bonding,45 and much

shorter than previous methanol42 and ethanol98 geometries with H–Cu bonding. The latter H–Cu

adsorption geometries are unstable with PBE+vdW and relax to the O–Cu geometry. Force

components were generally less than 0.1 eV/Å during the relaxation from H–Cu bonding to O–Cu

bonding, demonstrating the importance of using stringent force criteria when working with weakly

bound adsorbates. Adsorption geometries for aldehydes are similarly affected. Several previous

studies without vdW corrections found that formaldehyde42,43 and acetaldehyde195 adsorb

perpendicular to the surface with relatively large adsorbate-Cu distances, although flat

formaldehyde adsorption geometries were only 0.02 eV less stable.43 In contrast, perpendicular

aldehyde geometries are unstable in PBE+vdW calculations and relax to lie flat on the terrace.

Adsorption at step edges is similarly affected. Previous ethanol and acetaldehyde geometries at

(100) steps196 exhibited large angles between the C–C bond axis and the the upper terrace without

vdW corrections, while the PBE+vdW geometries have C–C bonds parallel to the lower terrace.

Similarly, vdW corrections reduced adsorbate-surface distances for alcohol dehydrogenation

intermediates on Cu(110) surfaces as well.20

Another effect of vdW corrections is a reduction in the bulk-optimized lattice constant. Our

PBE+vdW calculations yield a lattice constant of 3.55 Å, 1.9% lower than the experimental value

of 3.615 Å. Conversely, GGA-only calculations tend to overestimate lattice constants.26 The PW91

functional predicts 3.66 Å for Cu,45 and PBE predicts 3.67 Å.126 Compared to the latter PBE-only

value, the PBE+vdW value is equivalent to a 3.3% isotropic compression of the Cu lattice and
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Type Site Alcohol Aldehyde O–H C–H

MeOH
(111) step 0.03 0.04 −0.21 −0.20
(100) step 0.04 0.04 −0.21 −0.20
terrace 0.04 0.01 −0.22 −0.21

EtOH
(111) step −0.06 0.03 −0.22 −0.18
(100) step −0.06 0.03 −0.21 −0.22
terrace −0.06 0.03 −0.22 −0.23

Table 3.2: Contribution of Zero-Point Vibrational Energy to Desorption and Activation Energies in eV

should therefore affect its electronic and catalytic properties. For example, Greeley and Mavrikakis

previously investigated the impact of a 4% lateral expansion on methanol dehydrogenation45 on

Cu(111) and found that expansion reduced the C–H activation energy by 0.06 eV and increased the

stability of the methoxy intermediate by 0.18 eV. Similar effects are anticipated in the present

study.

Zero-point vibrational energy can significantly alter potential energy landscapes, especially for

activation energies of bonds with high vibrational frequencies. O–H and C–H bonds have typical

frequencies around 3000 cm−1 and therefore contribute h̄ω/2∼ 0.2 eV. Thus, ZPE corrections are

expected to be significant in these cases since cleaved bonds do not contribute to transition state

ZPE corrections. For adsorbates, ZPE corrections can still be significant since molecular normal

modes may change as a result of adsorbate-surface interactions. We therefore calculated ZPE

corrections for all reaction intermediates and gas phase species. Table 3.2 shows the resulting ZPE

corrections to the PBE+TS desorption and activation energies for alcohols and aldehydes. ZPE

corrections are small for desorption energies, where adsorbate-surface interactions are too weak to

significantly alter molecular normal modes. The total correction is at most 10% across all 12

adsorbate-site combinations. On the other hand, ZPE corrections reduce activation energies by

about 0.21 eV for all dehydrogenation reactions. This value is similar to the one predicted by the

vibrational frequency of bonds which is approximately 3000 cm−1. Comparing the stable normal

modes of reactant and transition state geometries reveals no other significant differences for each
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reaction. Neglecting the approximately 0.21 eV ZPE corrections for bonds would therefore

increase activation energies by up to 40% at step edges.

3.3 DEHYDROGENATION INTERMEDIATES

Steps increase the stability of all intermediates on the Cu(111) surface. Minimum-energy

adsorption geometries at each site are shown in Figure 3.2 and their O–Cu bond lengths are shown

in Table 3.3. Although both steps involve similar geometries for each intermediate, the reduced

7-fold coordination of step atoms leads to qualitatively different adsorption geometries compared

to the flat Cu(111) terrace. All adsorbate-Cu bonds involve the O atom on all three surfaces,

although the O–Cu coordination changes throughout the dehydrogenation process. A major finding

is the similarity in adsorption and reactivity between methanol and ethanol intermediates. Both

alcohols and their corresponding alkoxys have the same O–Cu coordination and very similar O–Cu

bond lengths, as well as similar orientations relative to the surface. The corresponding aldehydes

have weak preferences for different O–Cu coordinations, where formaldehyde prefers step bridges

and acetaldehyde prefers step atoms.

Adsorbate terrace (111) step (100) step
MeOH 2.23 2.17 2.22
EtOH 2.32 2.14 2.17
MeO 2.03 1.95 1.95
EtO 2.02 1.95 1.95
CH2O 2.99⊥ 2.08 2.12
CH3CHO 3.06⊥ 2.07 2.07

All distances are in Å.
⊥ Distance from O atom to the Cu(111) surface plane

Table 3.3: O–Cu Bond Distances for Minimum-Energy Adsorbate Geometries
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Figure 3.2: Minimum-energy adsorption geometries for isolated methanol and ethanol dehydrogenation inter-
mediates. Cu atom colors indicate their position relative to the step: light tan for the upper terrace, and dark
tan for the lower terrace.
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3.3.1 ALCOHOLS

Methanol and ethanol prefer dative O–Cu bonding through one of the oxygen lone pairs to top sites

on every surface facet. As shown in rows A and B of Figure 3.2, methanol and ethanol have similar

geometries and adsorb through binding to the O atom. Ethanol is more strongly bound on average

by −0.18 eV, due to vdW interactions between its additional CH2 subunit and the Cu surface. At

steps, adsorption is significantly stronger at the undercoordinated step atoms. This yields shorter

O–Cu distances at step sites, 2.14 to 2.24 Å, versus the terrace values of 2.30 Å for methanol and

2.32 Å for ethanol. Since the O-bonded Cu atom relaxes somewhat toward the alcohol, the average

vertical distance between the O atom and the Cu(111) surface layer is slightly larger, 2.39 Å, for

both alcohols, in fair agreement with the experimental value of 2.69±0.19 Å for methanol.72

Alcohol adsorption energies vary by at most 0.04 eV between the (111) and (100) step edges for

both alcohols, indicating negligible preference for either step edge. Alcohols on the terrace feature

O–H bonds approximately parallel to the surface and O–C bonds oriented at angles 36-37from the

surface. Alcohol geometries at steps have O–H bonds approximately perpendicular to the step

edge and all carbon atoms are suspended over the lower terrace. The internal coordinates of

adsorbed molecules are nearly identical to their gas phase values for all alcohol and step

combinations. The only exception is ethanol in specific conformers. In the gas phase, there is

negligible preference for trans over gauche (< 0.01 eV difference in energy). On the terrace, the

preference is more significant and the trans conformer is more stable than the gauche conformer by

0.06 eV. In contrast, trans geometries are unstable at step edges and relax to the gauche conformer.

3.3.2 ALKOXYS

Alkoxys have significantly different adsorption geometries on the terrace and steps as shown in

rows C and D of Figure 3.2. Alkoxys on the terrace prefer fcc hollow sites, forming three O–Cu
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bonds of length 2.03 Å, and feature an O–C bond nearly perpendicular to the surface. We find that

the O atom in methoxy and ethoxy both have average vertical distances from the Cu(111) surface

layer of 1.39 Å, in good agreement with a previous experimental value of 1.31±0.06 Å,72 and this

previous study determined that methoxy adsorbs to both fcc and hcp hollow sites with negligible

preference between the two. Earlier photoelectron diffraction experiments61 found a similar

average vertical distance of 1.32±0.05 Å from the methoxy O atom to its three nearest Cu

neighbors, which agrees well with our value of 1.35 Å for both methoxy and ethoxy. Moreover, the

latter study found that the methoxy C–O bond is perpendicular to the surface with a length of

1.42+0.10
−0.03 Å, in excellent agreement with the minimum-energy orientation and C–O bond length of

1.42 Å. In contrast to the terrace, alkoxys at step sites occupy undercoordinated bridge sites, with

the O–C bond perpendicular to the step direction and nearly coplanar with the lower terrace.

Alkoxys at steps exhibit an additional preference for a methyl C–H bond directed toward the lower

terrace with an energy gain of 0.03 eV. In contrast to the alcohols, the (100) step binds alkoxys

more strongly than the (111) step, by 0.06 eV for methoxy and 0.02 eV for ethoxy.

3.3.3 ALDEHYDES

Minimum-energy aldehyde adsorption geometries are shown in rows E and F of Figure 3.2. On the

terrace there is negligible aldehyde-Cu chemical bonding, such that adsorption is dominated by

vdW interactions, so distances to the Cu(111) surface plane are reported in Table 3.3 instead of the

closest Cu atom. Aldehydes on the terrace also show negligible preference for any specific

orientation or location as long as the molecular plane is nearly parallel to the terrace. On steps, the

more reactive step atoms provide more stable and specific adsorption geometries consistent with

dative O–Cu bonding. The lowest-energy geometries involve aldehyde O atoms bonded to either a

step bridge or to a single step atom, with the rest of the aldehyde suspended over the lower terrace.

Formaldehyde is most stable at step atoms and acetaldehyde is most stable at step bridges, but
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these preferences are weak since the alternate geometry is less stable by at most 0.04 eV.

Formaldehyde has an additional metastable adsorption geometry above a step bridge with its O–C

bond directed approximately parallel to the step direction, less stable by only 0.04 eV, suggesting

that formaldehyde’s potential energy surface is shallower than acetaldehyde’s.

3.3.4 HYDROGEN

H atoms are most stable at three-fold hollow sites as shown in row G of Figure 3.2. On the Cu(111)

terrace there is a negligible (< 0.01 eV) preference for hcp hollows. The H atom at the hollow site

forms three H–Cu bonds of length 1.73 Å. At steps, hydrogen prefers the 3-fold hollow site closest

to the step bridge on the upper terrace. This is an fcc hollow site for the (111) step, and an hcp

hollow site for the (100) step. The H adsorption geometries have reduced symmetry, forming two

H–Cu bonds of length 1.73 Å with the step bridge, and a longer bond of length 1.80 Å with the

third Cu atom. Furthermore, while other hollow sites on the upper and lower terraces are

metastable, hollow sites at steps are unstable. Top and bridge site geometries are also unstable.

Using a clean slab and half the energy of a gas phase H2 molecule as a reference, hydrogen

adsorption energies are −0.28 eV on the terrace, −0.30 eV at the (111) step, and −0.32 eV on the

(100) step. H atoms therefore have no significant preference for step edges relative to the Cu(111)

terrace.

3.3.5 COVERAGE

To understand the effect of coverage on stability, we calculated the adsorption energies of ethanol

and ethoxy in 4×4 Cu(111) unit cells and unit cells that include 4-atom-wide step edges. For the

steps, stability is insensitive to coverage since the change in adsorption energy is negligible

(≤ 0.02 eV). For the Cu(111) terrace, however, decreasing coverage increases stability. Ethanol is

more stable by 0.06 eV and ethoxy is more stable by 0.04 eV in the 4×4 unit cell than in the 3×3
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Table 3.4: Hydrogen Bond Energy EHbond, Donor-Acceptor H· · ·O distance dH· · ·O, Donor-Acceptor O–O Dis-
tance dO–O, Donor O–Cu Distance dO–Cu, and Acceptor O–Cu Distance d′O–Cu for Hydrogen Bonding Geome-
tries

Acceptora Location EHbond(eV) dH· · ·O(Å) dO–O(Å) dO–Cu(Å) d′O–Cu(Å)

EtOH

gas phase −0.25 1.87 2.84
terrace −0.28 1.64 2.65 2.13 3.13

(111) step −0.09 1.63 2.64 2.03 3.56
(100) step −0.12 1.74 2.68 2.07 2.43

EtO

gas phase −0.48 1.45 2.49
terrace −0.06 1.65 2.65 2.17 2.05, 2.10

(111) step 0.02 1.34 2.43 1.96 1.91
(100) step 0.05 1.39 2.44 1.97 1.91

aThe donor is ethanol in all cases.

unit cell. Although hydrogen bonding interactions lead to clustering between adjacent alcohols,

intermediate-range alcohol-alcohol interactions are weakly repulsive.93

3.3.6 ETHANOL HYDROGEN BONDING

Alcohols in the gas phase exhibit significant hydrogen bonds with binding energies of up to

0.25 eV.34 Hydrogen bonding to other alcohols and water can change their adsorption and

reactivity on transition metal surfaces such as Cu10,153 and Rh.112 In particular, alcohol

dehydrogenation on Cu surfaces can be co-catalyzed by water-alcohol hydrogen bonding. To

investigate the potential for hydrogen bonding to influence reactivity, we calculate the energy of

the hydrogen-bonded dimers relative to the isolated adsorbates:

EHbond = (E [dimer/X ]+E [X ])− (E [donor/X ]+E [acceptor/X ]) (3.2)

where E [A/X ] is the energy of adsorbate or dimer A on surface X . Negative values indicate that the

hydrogen-bonded dimer is more stable than the isolated adsorbates.

Although EtOH–EtOH hydrogen bond energies are similar between the gas phase and Cu(111)

terrace, hydrogen bonding is much weaker at step sites (see Table 3.4). This is a consequence of
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Figure 3.3: Minimum energy hydrogen-bonded geometries for EtOH–EtOH and EtOH–EtO dimers on each
surface. Corresponding energies and geometry values are presented in Table 3.4.

two types of geometric frustration. First, the distance between adjacent step atoms, 2.51 Å is

incompatible with the gas phase O· · ·O distance of 2.84 Å, as shown in Figure 3.3. Step sites’

stronger bonding to ethanol increases the degree of frustration, weakening hydrogen bonds relative

to the terrace and gas phase. Second, alcohol monomers feature O–H bonds nearly perpendicular

to the step direction, at angles of 82for the (111) step and 74for the (100) step, but ethanol

molecules identically adsorbed at adjacent step atoms would require a donor O–H bond parallel to

the step direction instead. This mismatch in distance and O–H orientation destabilizes the

EtOH–EtOH dimer relative to isolated ethanol monomers. The resulting step geometries favor

hydrogen bonding: the acceptor ethanol’s O–Cu bond is significantly lengthened on the (100) step,

and broken altogether on the (111) step and terrace.

As in the EtOH–EtOH case, EtOH–EtO hydrogen bonding is stronger in the gas phase and on

the terrace than on steps (see Table 3.4). In the gas phase, EtOH–EtO dimers are strongly bound

due to the undercoordinated O atom on the acceptor ethoxy radical, and the hydrogen bond angle is

nearly 180 On the terrace, ethanol prefers top sites while ethoxy prefers fcc hollow sites, but

top-hollow site distances are incompatible with the gas phase O· · ·O distance of 2.49 Å. Hence,

geometric frustration again reduces the binding energy of the dimer. Furthermore, since ethoxy is
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more strongly bound to the terrace than ethanol, hydrogen bonding is no longer strong enough to

cleave all of the ethoxy acceptor O–Cu bonds. The minimum-energy geometry on the terrace

partially resolves this geometric frustration by moving the acceptor ethoxy to a bridge site. Step

dimers are similarly frustrated. Alcohols are most stable at step atoms while alkoxys are most

stable at step bridges, but no atom-bridge distance matches the gas phase O· · ·O distance of

2.49 Å. The resulting geometry is qualitatively different than on the terrace (see Figure 3.3). Both

steps feature EtOH–EtO dimers where the EtOH and EtO fragments form a single O–Cu bond at

adjacent top sites. EtOH–EtO dimers at steps are less stable than isolated EtOH and EtO due to

significant geometry changes, but the hydrogen bond itself appears to be strong since the hydrogen

bond angle and O· · ·O distances are very similar to the gas phase values. The donor O–H bond is

also longer than in the gas phase, 1.09 Å versus 1.04 Å, while the acceptor H· · ·O distance is

significantly shorter, 1.38 Å versus 1.65 Å.

Molecular dynamics (MD) simulations of isolated ethanol dehydrogenation intermediates and

hydrogen-bonded EtOH–EtOH and EtOH–EtO dimers provide additional insight into hydrogen

bonding. Isolated ethanol molecules on the terrace rotate almost freely about the O–Cu bond so

O–H bond orientations change approximately every 100 fs. Such frequent rotations suggest a

shallow potential energy surface. In contrast, ethanol trajectories on both steps show that the O–H

bond is almost always directed toward the lower terrace which suggests a deeper potential energy

well. This confirms the assertion made earlier, namely that geometric frustration for the donor

ethanol O–H orientation is more significant at step sites. We also confirm that the O–Cu bonds for

the accepting ethanol are broken on the terrace and (111) step. On the terrace, the donor ethanol

remains adsorbed to the same Cu atom for MD simulation times up to 1 ps while the whole dimer

rotates almost freely about the donor O–Cu bond. For the (111) step, the situation is similar where

the donor O–H bond shows little energetic preference for a specific angle relative to the step
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direction over a range of 45 The behavior at the (100) step is significantly different, as the donor

O–H bond does not rotate much and the acceptor ethanol remains bound to a step atom.

For EtOH–EtO dimers we gain similar insights into the bonding from MD simulation

trajectories of 1 ps. On all surfaces the EtOH–EtO dimers are metastable and vibrate in place,

without any of the nearly free rotations seen for EtOH–EtOH dimers. At both steps the H atom

position relative to the O atoms varies significantly throughout the trajectories. Figure 3.4(a) shows

the superimposed projections of O and H positions onto u, the O–O axis, and v, the perpendicular

direction in the O-O-H plane, relative to the red O atom for each time step. These large variations

are the result of the H atom “hopping” between the two O atoms approximately every 150 fs as

shown in Figure 3.4(b), precluding clear donor and acceptor assignments. The dynamics are

therefore more accurately described as two ethoxy fragments sharing a H atom. This shared H

atom remains at least 1.10 Å from either O atom for 90% of the trajectory, indicating strong

hydrogen bonding. This direct H exchange between alcohols and alkoxys could facilitate

alcohol-alkoxy displacement reactions reported previously.77
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Figure 3.4: Molecular dynamics results for an EtOH-EtO dimer at the (111) step. (a) Projection of O and H
atom positions along u, the O-O direction, and v, the perpendicular direction in the O-O-H plane. (b) Distance
from the H atom to the O atom of the same color in panel (a).

3.4 SURFACE REACTIVITY

To compare reaction energies and stabilities among different alcohol and surface combinations, we

use the DFT total energy of the gas phase alcohol and bare surfaces as a reference. All

dehydrogenation intermediates, including H atoms, are considered adsorbed to the same kind of

surface. Hydrogen diffusion away from product states is determined using the minimum energies

of the isolated hydrogen and adsorbate in separate DFT unit cells

∆E = E [H/X ]+E [A/X ]−Eproduct [(A+H)/X ]−E [X ] (3.3)

where A is the intermediate, X is the active site, and Eproduct is the DFT total energy of the nearest

local minimum past the transition state. The resulting interaction energies are shown in Figure 3.5.

Since peak aldehyde desorption temperatures are lower than or similar to peak H2 recombination

temperatures in temperature-programmed reaction spectroscopy (TPRS) experiments,182 we do
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not include H2 recombination in Figure 3.5; energy differences between step types include their

relative H atom stabilities. The complete dehydrogenation reaction from gas phase alcohol to gas

phase aldehyde and H2 is significantly endothermic: 0.95 eV for methanol to formaldehyde, and

0.71 eV for ethanol to acetaldehyde. These values are within 0.06 eV of their experimental

enthalpies of reaction.1 Geometries for each of the 12 transition states are shown in Figure 3.6.

Activated C–H bond lengths are significantly longer than activated O–H bond lengths, particularly

at step edges, and similar to those found for the Cu(110) surface.20 These lengths show that

transition states for C–H activation are particularly late along the reaction pathway, in agreement

with the low (≤ 0.25 eV) activation energies for aldehyde hydrogenation back to alkoxys at steps.

Reaction energy profiles for methanol and ethanol on all three active sites are shown in

Figure 3.5. Steps decrease all activation energies and strengthen all adsorption energies relative to

the Cu(111) terrace. The same is true compared to the Cu(110) surface as well,20 with the

exception of C–H bond activation energies which are similar. An important quantity for

dehydrogenation activity is the relative probability of desorption versus O–H bond activation,

which is exponential in the “branching energy” ∆EO–H
A −∆Edesorb. The branching energy is

0.39 eV for methanol and 0.27 eV for ethanol on the Cu(111) terrace, making desorption much

more likely than O–H activation. In contrast, step edges provide significantly higher desorption

energies and lower activation energies, yielding a negative branching energy and thus increasing

catalytic activity. Steps are therefore predicted to contribute most of the surface reactivity under

UHV conditions, in agreement with experimental results.182

Another major trend is the difference in stability and reactivity between methanol and ethanol.

Ethanol and ethoxy are more stable than methanol and methoxy by about 0.18 eV on all three

surfaces, respectively. The difference in adsorption energies between acetaldehyde and

formaldehyde is more variable, ranging from 0.11 eV on the terrace to 0.28 eV on the (111) step.
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Figure 3.5: Energies, in eV, for methanol and ethanol dehydrogenation intermediates relative to gas phase
alcohols and clean surfaces for the Cu(111) terrace (black), (111) step (blue), and (100) step (red). Steps are
labeled as “alc” for alcohols, “oxy” for alkoxys, and “ald” for aldehydes. X+H indicates X coadsorbed with H,
and X–H indicates the corresponding transition state. Energies for H2 desorption are omitted for clarity; values
include atomic H adsorption at each surface.
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Figure 3.6: Transition states for O–H and C–H bond activation for the Cu(111) terrace and the (111) and
(100) step edges. Each number indicates the activated bond’s length in Angstroms.

There is little difference in O–H activation energies; the methanol and ethanol values are

within 5% at each site. In contrast, ethoxy C–H activation energies are all lower than their methoxy

counterparts, by about 10% for the terrace and 25% on both steps.

3.4.1 ALCOHOLS TO ALKOXYS

Steps significantly reduce the activation energy of O–H bond cleavage for both alcohols. Their

O–H transition states have the alkoxy fragment adsorbed to a step bridge and a H atom near a

three-fold hollow site on the lower terrace. The metastable product state consists of the alkoxy at

the step bridge and H at the same 3-fold hollow site on the lower terrace. This state is less stable

than having H and the alkoxy on separated slabs, primarily due to the significantly lower stability

of H below the step relative to the terrace above the step (by about 0.2 eV).

On the terrace, the O–H bond is cleaved over a bridge site, with the alkoxy and H fragments

adsorbed at adjacent hcp and fcc hollow sites, respectively. Isolated alkoxys are more stable by

about 0.04 eV at fcc hollow sites but transition states with alkoxys at hcp sites are more stable by
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≤ 0.03 eV. Following O–H cleavage the alkoxy diffuses across a Cu–Cu bridge to an adjacent fcc

site. Alkoxy-H interactions are repulsive on the terrace, possibly due to Coulomb repulsion. Using

methanol dehydrogenation as an example, the net Hirshfeld charges on the alcohol O and H atoms

start at qO =−0.16 e and qH =+0.14 e, and decrease throughout the reaction to qO =−0.22 e and

qH =−0.12 e in the coadsorbed product geometry. Compared to steps, higher Cu atom

coordination and weaker alkoxy adsorption destabilize the transition state on the Cu(111) terrace.

3.4.2 ALKOXYS TO ALDEHYDES

Like O–H bond activation, C–H bond activation proceeds differently on step sites than on the

Cu(111) terrace. To cleave the C–H bond on the terrace, the alkoxy O–C bond first tilts toward the

surface to reduce the distance between the H atom and the terrace, followed by H abstraction to a

fcc hollow site. The C–H activation energy is lower for ethoxy than for methoxy. In addition, C–H

cleavage is significantly endothermic for both alkoxys so the activation energies for hydrogenation

back to the alkoxy are 0.26 eV for formaldehyde and 0.41 eV for acetaldehyde.

Reactions at steps have significantly lower activation energies than on the terrace, a result of

favorable alkoxy adsorption geometries. First, alkoxys already have O–C bonds approximately

parallel to the terrace so the abstracted H atom starts approximately 0.5 Å closer to the Cu surface

than on the flat Cu(111) terrace. Second, minimum-energy aldehyde geometries have similar O–C

and C–C orientations relative to the step edge, reducing the amount of molecular distortion and

hence the activation energy required to reach the transition state.

Alkoxys and aldehydes are both more stable at steps so the net reaction energies are

approximately as endothermic as on the terrace. Combined with the lower transition state energy,

at steps C–H bond formation has very low activation energy. The largest activation energy for

aldehyde hydrogenation is only 0.25 eV so alkoxy dehydrogenation should occur readily at the

300-400 K aldehyde desorption temperatures reported in experiments.182
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3.4.3 ALDEHYDE DESORPTION

We find that aldehyde desorption from Cu(111) step sites is strongly affected by kinetic

competition. Aldehyde desorption temperatures are significantly higher in

temperature-programmed reaction spectroscopy (TPRS) experiments, in which the alcohol is

dosed, than in temperature-programmed desorption (TPD) experiments, in which the aldehyde

itself is dosed. However, Figure 3.5 shows that alkoxy C–H bond activation is not the rate-limiting

step. Using simple kinetic arguments similar to previous work,113 we show that kinetic

competition between reversible hydrogenation and irreversible desorption significantly increases

the effective aldehyde desorption energy in TPRS experiments compared to TPD experiments.

Reversible aldehyde hydrogenation and irreversible desorption can be described using simple

first and second-order rate expressions. We consider the rates of alkoxy dehydrogenation k f ,

aldehyde hydrogenation kr, and aldehyde desorption kd per lattice site:

k f = A f θalk (1−ΘT)e−β∆E f
A (3.4)

kr = Ar θald θH e−β∆Er
A (3.5)

kd = Ad θald e−βEads (3.6)

θo = θalk +θalk (3.7)

where θX values are coverages, θo ∼ 10% is the coverage of active sites,182 ΘT is the total

coverage on the terrace, and the prefactors A f = 1013 Hz, Ar = 2×1012 Hz, and Ad = 1015.5 Hz are

typical values for first-order reactions, second-order reactions, and first-order desorption,14

respectively. Hydrogen recombines at higher temperatures than aldehyde desorption182 so H atoms

are kinetically trapped and thus θH = θalk +2θald ≥ θo. Moreover, all adsorbates except H are

significantly more stable at steps so ΘT ≈ θH. Aldehyde hydrogenation barriers are much lower
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than their desorption energies at steps, so even the lower bound θH = θo gives kr
kd
≥ 2.4×105 at

300 K. The vastly higher hydrogenation rate yields an equilibrium between aldehyde

hydrogenation and alkoxy dehydrogenation.

Equilibrium gives a fully-determined system of equations. Defining B≡ e−β(∆E f
A−∆Er

A), where

B≤ 2.0×10−5 at 300 K, we obtain the following important results to first order in B:

θald

θalk
≈ 1−θo

θo

A f

Ar
B (3.8)

kd ≈ (1−θo)Ad
A f

Ar
e−β(Eald,(g)−Ealk) (3.9)

Equation (3.8) predicts a formaldehyde to methoxy ratio of approximately 1:
(
2×107

)
, and an

acetaldehyde to ethoxy ratio of approximately 1:500 at their peak TPRS desorption temperatures

of 370 and 320, respectively. Alkoxys are predicted to be the majority species in all cases.

Expressing kd in terms of the dominant alkoxy coverage, θald ≈ θo, results in Equation (3.9),

showing the effective aldehyde desorption is the total energy difference between the gas phase

aldehyde and the adsorbed alkoxy. Alkoxys are significantly more stable than their corresponding

aldehydes so kinetic competition increases the effective aldehyde desorption temperature. These

predictions are in excellent agreement with the observed TPRS temperatures as discussed below.

The critical factor leading to these results is kr
kd
� 1, a combination of high aldehyde desorption

energy and low activation energy for C–H bond formation at step edges.

3.4.4 TEMPERATURE COMPARISON WITH EXPERIMENTS

To check the correspondence between our DFT calculations and recent experimental

measurements, we use the Redhead Equation for first-order kinetics to calculate peak TPD
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temperatures T DFT
max from desorption energies

EA

k T 2
max

=
v
r

exp
(

Ea

k Tmax

)
(3.10)

where r = 1.0 K/s is the heating rate, k is the Boltzmann constant, and v = 1015.5 Hz is a typical

desorption prefactor for adsorbates like CO and methanol.14 We compare to the experimental data

of Wang et al.,182 who report desorption temperatures for flat and stepped Cu(111) surfaces dosed

with methanol, ethanol and acetaldehyde, as well as the reaction rate limited desorption

temperatures of formaldehyde and acetaldehyde. The same experimental temperature is assigned

to both step edges, and the activation energy for reaction rate-limited aldehyde desorption is

assumed to be the total energy difference between adsorbed alkoxys and their gas phase aldehydes

as discussed previously. As shown in Figure 3.7 with dark circles, the DFT calculations and chosen

prefactor typically overestimate desorption temperatures by about 41 K. The linear correlation

suggests that DFT calculations are reliable for obtaining catalytic trends. Furthermore, we

extrapolate our ethanol results with the trend of 0.18 eV/CH2 to predict experimental TPD

temperatures for isopropanol and acetone114 desorption, as well as 1-butanol, butyraldehyde,

crotyl alcohol, and crotanaldehyde.123 For these predictions we use the Redhead equation as above

with the experimental heating rates. These predictions, shown in Figure 3.7 as open squares,

follow a similar trend to the fitted line which suggests that the 0.18 eV/CH2 PBE+vdW trend

generalizes well to longer alcohols.
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Figure 3.7: Parity plot of experimental TPD temperatures versus DFT predictions via the Redhead Equation
(see text). Solid line: 1:1 parity. Dashed line: fit to methanol and ethanol results (dark circles). Open squares
compare extrapolated desorption temperatures for isopropanol, 1-butanol, crotyl alcohol, and their aldehydes
with experimental TPD values.

3.5 CHEMICAL DEFECTS: ISOLATED PT ATOMS

Whereas previous sections discuss dehydrogenation at Cu(111) step defects, isolated Pt atoms

embedded in the Cu(111) surface have also been shown to catalyze ethanol dehydrogenation.181

We refer to this Pt-substituted surface as the Pt–Cu single-atom alloy (SAA). Analogous

calculations to those above, with the same computational settings, are used to map out the

energetic landscape for the formation, spillover and reaction of ethoxy intermediates. Comparing

these calculations to those on step defects highlights the most important considerations for

anhydrous alcohol dehydrogenation on Cu(111) surfaces.

for ethanol are very similar between the Pt–Cu SAA and the Cu(111) surfaces, where ethanol

adsorbs most strongly at Cu top sites in the trans conformer (Figure 3.8). Ethanol adsorption is

stronger on the Pt–Cu SAA surface than on Cu(111) by 0.07 eV and the O–H bond is oriented

toward the Pt atom. Attractive H–Pt interactions, consistent with hydrogen bonding, strengthen

ethanol adsorption by 0.07 eV relative to the Cu(111) surface. These H–Pt interactions also

facilitate O–H bond activation and stabilize the removed H atom after the dehydrogenation,
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significantly decreasing the activation barrier (see Figure 3.8). This reduction, combined with

experimental observations of alcohol O–H bond activation, confirms the formation of the ethoxy

intermediate. Inserting the O–H bond activation barrier (0.63 eV) on Pt–Cu SAAs into the

Arrhenius equation with a prefactor of 1012 Hz and a reaction rate of 1 mHz predicts an annealing

temperature of∼ 210 K needed to induce the reaction.15,145 This temperature is∼ 50 K higher than

the temperature at which the sample must be annealed in the STM experiment in order to observe

the formation of the ethoxy intermediate. However, considering the accuracy of DFT calculations

and the precision of STM temperature measurements (±20 K),182 theory and experiment are in

reasonable agreement with each other for the O–H bond activation energy on Pt–Cu SAAs.

The corresponding product states after O–H cleavage on Cu(111) terraces and Pt–Cu SAA

surfaces are significantly different. On the Cu(111) surface the ethoxy group and H atom are

adsorbed at adjacent threefold �Cu (Cu3) hollow sites with ethoxy at the fcc hollow and H at the

hcp hollow site, with an adsorption energy of −0.70 eV relative to gas phase ethanol. On the Pt–Cu

SAA surface, the ethoxy–Pt interaction is repulsive so the ethoxy and H fragments are separated by

two hollow sites (Figure 3.8). Ethoxy is coordinated to a Cu3 fcc site and the H fragment is

adsorbed at a Pt1Cu2 hcp site, with an adsorption energy −0.73 eV relative to gas phase ethanol.

These energetics agree with the STM results showing that while ethoxy is formed at Pt sites, it

spills over to pure Cu(111) sites at which it is 0.05 eV more stable than at Pt sites (Figure 3.8).

As shown in Figure 3.8 the calculated energy for C–H bond activation (0.63 eV) on the Pt–Cu

SAA surface is also lower than on the Cu(111) surface (0.96 eV). Experimental results also suggest

lower activation energies since acetaldehyde desorbs at lower temperatures in TPRS experiments

on Pt–Cu SAAs compared to the Cu(111) surface. The final dehydrogenation product,

acetaldehyde, has very similar nearly-flat adsorption geometries on both surfaces. Compared to

ethoxy ( ∼ 0.7 eV), coadsorbed acetaldehyde and H have a much smaller adsorption energy of
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−0.35 eV on Cu(111) and ∼−0.55 eV eV on Pt–Cu SAAs relative to gas phase ethanol. The

results also reveal that the acetaldehyde desorption barriers are 0.42 eV on Cu(111) and 0.53 eV on

Pt–Cu SAAs. On both surfaces the desorption energy of acetaldehyde is comparable to the

activation energy for C–H bond formation so kinetic competition is expected to be limited.

In addition, isolated Pt atoms reduce the TPRS temperature for recombination of molecular

hydrogen, 260 K from Pt–Cu SAAs181 compared to 330-370 K from the Cu(111) terrace,182

despite stronger H adsorption to Pt atoms than Cu atoms. The reduced temperature is caused by

isolated Pt atoms catalyzing hydrogen recombination, decreasing the activation energy

significantly compared to the Cu(111) terrace.36,105 Hydrogen coverages should then be lower on

Pt–Cu SAAs than on flat or stepped Cu(111) surfaces at temperatures exceeding 260 K. Lower

hydrogen coverages should then further reduce kinetic competition between acetaldehyde

desorption and hydrogenation to ethoxy. These factors help explain why acetaldehyde desorbs at

lower temperatures in TPRS experiments from Pt–Cu SAAs (310 K) compared to stepped Cu(111)

surfaces (320 K) despite the higher C–H bond activation energy.

An important aspect of any catalytic cycle is the fate of the active site after the reaction, e.g.

poisoning with byproducts. Our TPRS experiments show that the acetaldehyde yield remains

constant after five reaction cycles on the same Pt–Cu SAA surface. This confirms that no

deactivation occurs during ethanol dehydrogenation under UHV conditions. Furthermore, STM

images after the deposition of ethanol and annealing to 450 K to complete the reaction cycle

revealed a completely clean surface on which no residual surface-bound species are present,

further confirming that no poisoning occurs. Importantly, the isolated Pt sites in the surface are

stable up to this temperature and can catalyze repeated reactions. In terms of reaction selectivity,

we did not detect any species other than the m/z fragments for ethanol, H2 and acetaldehyde,

indicating 100% selectivity for ethanol dehydrogenation.
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Figure 3.8: Selected stable structures and energies (eV) for all reaction steps for ethanol on Cu(111) (black)
and the Pt–Cu SAA surface (red) relative to gas-phase ethanol and the corresponding bare surface. EtOH+H
and ald+H are the nearest local minima past the transition state for O–H and C–H cleavage, respectively.
EtOH, EtO and ald correspond to ethanol, ethoxy and acetaldehyde, respective. H2 recombination is omitted
for clarity; energy differences between the Cu(111) and Pt–Cu SAA surfaces include their relative H adsorption
energies.

Taken in combination with experimental results,181 these calculations show that ethanol

undergoes the same two-step dehydrogenation on Pt–Cu(111) SAAs as on flat and stepped

Cu(111) surfaces. Furthermore, while both Cu(111) step edges and surface Pt atoms can convert

ethanol to acetaldehyde and H2, surface Pt atoms have lower energetic barriers and higher

conversion due to the spillover of the ethoxy intermediates to Cu. Thus, this work demonstrates the

crucial role of dilute active metal sites on important reaction steps using model Pt–Cu single

crystal alloy surfaces.

3.6 CATALYTIC IMPLICATIONS

3.6.1 BRANCHING ENERGIES FOR LONGER ALCOHOLS

Since O–H activation energies are very similar between methanol and ethanol, we expect them to

be similar for longer alcohols as well. The limiting factor for UHV methanol and ethanol
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dehydrogenation on Cu(111) single crystals is their high branching energies. If each additional

CH2 subunit contributes a similar adsorption energy change of 0.18 eV without changing the O–H

activation energy, then longer alcohols will increasingly favor reaction over desorption. A similar

increase in reactivity is predicted for longer alcohols on the Cu(110) surface.20 The ethanol

branching energy, the difference between its O–H activation energy and desorption energy, is

0.27 eV on the terrace so desorption is strongly favored over reaction. However, with the trend of

0.18 eV/CH2, longer alcohols will have increasingly favorable branching energies. For example,

n-propanol should have a lower branching energy of approximately 0.09 eV and n-butanol should

have a branching energy of approximately −0.09 eV. We therefore hypothesize that Cu(111)

terraces can selectively dehydrogenate longer alcohols starting with n-butanol.

3.6.2 COMPETITIVE BINDING

Despite a higher calculated O–H activation energy, our previous investigation of isolated Pt atoms

in Cu(111) single crystal surfaces182 (single-atom alloys) found greater catalytic activity than steps

for alcohol dehydrogenation. We believe this is the result of “self-poisoning” at steps where alkoxy

products favorably compete with alcohol reactants for adsorption. On the Pt-Cu(111) surface,

ethoxy-Pt interactions are repulsive and ethoxy groups adjacent the Pt active site are less stable

than at longer distances. In contrast, in this study steps are the most stable binding sites for alkoxys.

To achieve catalytic turnover at steps, alkoxy products must diffuse away from step edges to make

way for additional alcohol adsorption. This likely slows down dehydrogenation kinetics at high

alkoxy coverages. Furthermore, alkoxy-alcohol replacement is slightly endothermic (by < 0.1 eV)

for ethanol at both steps and for methanol at the (100) step, effectively increasing the activation

energy for subsequent O–H bond breaking. Making alkoxy adsorption weaker or altogether

unstable could mitigate these kinetic and thermodynamic limitations. We therefore hypothesize

that catalytic turnover for O–H activation could be improved if step edges were chemically
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modified to destabilize alkoxy adsorption. At high hydrogen coverage such modifications would

also reduce aldehyde desorption temperatures since they are dictated by alkoxy stability as well.

3.6.3 HYDROGEN RECOMBINATION

In addition to destabilizing alkoxy adsorption, another way to reduce aldehyde desorption

temperatures is to reduce hydrogen coverage. Alkoxys adsorb more strongly than their

corresponding aldehydes, so reversible aldehyde hydrogenation to the alkoxy increases aldehyde

desorption temperatures. Hydrogen desorbs from the Cu(111) terrace near 370 K at low coverages,

a temperature similar to or higher than aldehyde desorption temperatures, so H coverage is

expected to be high under reaction conditions. The activation energy for hydrogen recombination

can be reduced by introducing other active sites on the surface. For example, isolated Pt atoms in

the Cu(111) surface layer reduce the H2 recombination temperature to approximately 255 K in

TPD experiments for anhydrous ethanol dehydrogenation.182 Reduced hydrogen coverage would

limit aldehyde hydrogenation back to alkoxys and therefore reduce the peak TPD temperature for

aldehyde desorption.

3.7 CONCLUSIONS

In this work we investigate anhydrous alcohol dehydrogenation on the Cu(111) surface and its

steps. The presence of steps increases adsorption energies for all intermediates. Including TS vdW

corrections further increases adsorption energies by more than 50% in all cases and favors shorter

adsorbate-Cu distances. ZPE corrections yield a minor (< 10%) effect on adsorption, but a

significant reduction in O–H and C–H bond activation energies by ∼ 0.21 eV. Finally, while

hydrogen bonds are significant in the gas phase and on the terrace, geometric frustration limits

their stability at step edges. EtOH–EtO dimers at step edges are less stable than isolated EtOH and

EtO, but still exhibit strong H-bonding characteristics and a “H hopping” mechanism with
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sigificant variations in O–H distances.

Steps also significantly improve reactivity by reducing O–H and C–H activation energies to

values lower than alcohol desorption energies. With O–H bond activation energies lower than

desorption energies, steps will be highly reactive, while the opposite is found for the Cu(111)

terrace. Step edges on Cu(111) are also predicted to be somewhat more reactive overall for

anhydrous alcohol dehydrogenation than clean Cu(110) surfaces. Furthermore, the low C–H bond

activation energies makes alkoxy dehydrogenation highly reversible. Acetaldehyde desorption

from steps is therefore predicted to be limited due to kinetic competition so desorption

temperatures are dictated by the greater alkoxy stability. Peak TPD and TPRS temperatures

calculated at step edges using DFT based on this prediction are in good agreement with

experimental results for methanol, ethanol, and acetaldehyde desorption from Cu(111). In contrast,

kinetic competition does not take place on the Cu(111) terrace due to the higher C–H activation

energies and lower aldehyde desorption energies.

In light of these results we propose three directions for further work on alcohol dehydrogenation

on Cu(111) surfaces. First, the additional CH2 subunit of ethanol increases its desorption energy

by 0.18 eV relative to methanol while preserving the O–H activation energy. If this trend continues

to larger alcohols, desorption energies are predicted to exceed O–H activation energies on the

Cu(111) terrace starting with n-butanol and thus lead to length-selective alcohol dehydrogenation.

Second, alcohols and alkoxys are similarly stable at step edges so catalytic turnover is limited.

Alkoxy binding could be destabilized by doping, facilitating their replacement with unreacted

alcohols to improve catalytic turnover and UHV aldehyde yield. Third, aldehyde desorption

temperatures are increased in the presence of coadsorbed H due to reversible aldehyde

hydrogenation. If surfaces were chemically modified to facilitate H2 desorption at lower

temperatures, the resulting decrease in H coverage would limit C–H hydrogenation rates and lead
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to aldehyde desorption at lower temperatures.
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4
Nonadiabatic H2 Dissociation on Cu13 Nanoclusters

Apart from minor modifications, this chapter is being prepared for the following publication:

Robert A. Hoyt, Matthew M. Montemore, and Efthimios Kaxiras. “Nonadiabatic Hydrogen
Dissociation on Copper Nanoclusters” in preparation

ABSTRACT

Hydrogenation is a major industrial process, spurring significant interest in the development of

selective and efficient catalysts. Copper surfaces exhibit high selectivity, but are poor catalysts for

the initial dissociation of molecular hydrogen. Various properties of materials have been previously

considered as key factors in catalyst design; in this work, we identify the spin state as an additional

design parameter for nanocatalysts. We study hydrogen dissociation on copper nanoclusters to

understand how structure might improve this metal’s catalytic prospects. Nanoclusters, which can

have large ground-state magnetic moments depending on symmetry and quantum size effects, can

exhibit magnetization-dependent catalytic behavior. The most favorable transition state for

hydrogen dissociation has a significantly lower activation energy on the nanocluster compared to

that of single-crystal copper surfaces, but requires a switch in magnetization from 5 µB to 3 µB.

Without this switch, the activation energy on nanoclusters is higher than that for single-crystal

surfaces. The weak spin-orbit coupling in Cu hinders this important change in magnetization state,

decreasing the kinetic rate of hydrogen dissociation by a factor of 16. We consider strategies to

facilitate the magnetization switch through optical excitation, substitution, change in charge state,
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and the presence of a co-catalyst. These considerations demonstrate how control of magnetic

properties could be used to improve catalytic performance.

4.1 INTRODUCTION

Heterogeneous transition metal catalysts are ubiquitous in industry. Their wide-ranging

applications, from catalytic cracking to highly selective hydrogenation, are derived from the large

variety of electronic properties across the periodic table. These intrinsic properties are further

modified through structural and compositional changes induced by alloying, oxidation, surface

structure modification, metal-support interactions, and promotors; all these changes provide

enormous flexibility in catalytic design. In recent years, progress in nanotechnology has introduced

the nanocluster size and geometry as new catalyst design parameters.184 As the nanocluster

diameter approaches 1 nm and below, finite size effects can become especially pronounced and

produce surprising effects like a discontinuous change in catalytic activity upon the addition of a

single atom.25 Here, we show that finite size effects can give rise to a significant magnetic moment

in a nanocluster of Cu and this produces magnetization-dependent reactivity; this dependence on

magnetization could be a path to magnetic control of catalytic activity.

We focus on selective hydrogenation on Cu, which is non-magnetic in its bulk form. The reason

for our choice is that Cu surfaces exhibit high selectivity for industrially important reactions, but

they require elevated temperatures and pressures to compensate for their poor H2 dissociation

kinetics.51,91 While some improvements have been proposed for bulk surfaces, such as the use of

dilute alloys,91 the possibility of using Cu nanoclusters has been largely unexplored. The reduced

atomic coordination and surface strain inherent in nanoclusters generally increase adsorption

energies and reduce activation energies. Thus, we expect these effects in Cu nanoclusters to lead to

improved H2 dissociation kinetics.
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We investigated H2 dissociation on an icosahedral nanocluster of Cu using first-principles

density functional theory (DFT) calculations in the SIESTA156 code with the PBE

exchange-correlation functional138,139 (see Appendix A for details). Early studies using empirical

interatomic potentials found icosahedral geometries to be most stable, but more recent work using

first-principles quantum chemistry methods predict disordered minimum-energy geometries for

Cu13 and other 13-atom fcc metal clusters.23,132 Nevertheless, icosahedral Cu13 can be synthesized

in solution using synchrotron radiolysis.133 Electrochemical Cu13 synthesis has also been

reported,176 with sizes consistent with an icosahedral geometry, but the structure could not be

determined precisely. More importantly, the 3-fold hollow sites of icosahedral Cu13 are locally

identical to hcp hollow sites on the well-studied bulk Cu(111) surface; this similarity in structural

features can reveal finite size effects with greater clarity.

4.2 RESULTS AND DISCUSSION

4.2.1 ELECTRONIC STRUCTURE

Icosahedral Cu13 nanoclusters have a significantly different electronic structure than Cu(111)

surfaces. Quantum size effects produce discrete energy levels near while the icosahedral symmetry

yields 5-fold degeneracies in both spin directions to produce 10 total valence states. The five

valence electrons of Cu13 then follow Hund’s rule to fully occupy the five majority-spin states and

leave the minority-spin states unoccupied. The result is a large ground-state magnetization of 5 µB,

as noted previously,104 and an exchange splitting of 0.47 eV, as shown in Figure 4.1. Other

13-atom metal nanoclusters, either of icosahedral shape or with different structure, are also

predicted to have significant magnetization, including Ni13, Ag13, and Au13.23,104,107 This appears

to be a general tendency of nanoclusters, where the discrete densities of states combine with

symmetry-induced multiple degeneracy to produce net magnetization through exchange
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Figure 4.1: Spin-resolved projected density of states near the Fermi level icosahedral Cu13 for the majority (up,
red) and the minority (down, blue) spin components. Contributions from different orbitals are identified for
both spin directions.

Figure 4.2: Illustration of how H-Cu hybridization drives the magnetization switch. Structural figures show the
clean cluster (left, purple) and the one with H2 adsorbed (right, green).

splitting.107

In contrast to bulk Cu and other transition metal surfaces, H2 molecules can adsorb weakly on

Cu13 intact (albeit weakly). There are two nearly isoenergetic geometries: one with a net

magnetization of 5 µB and H–Cu bonds of length 1.90 Å, and another with 3 µB and H–Cu bonds

of length 1.73 Å. The geometries are qualitatively similar, with the H–H bond axis centered above

an apex Cu atom. The geometry with shorter bonds, shown in Figure 4.2, is marginally more stable

with total energy lower by 0.04 eV. The reduced magnetization is caused by the shorter H–Cu

bonds and increased hybridization with Cu orbitals, which pushes the energy of the antibonding
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majority-spin state above that of the bonding minority-spin state. This mechanism is illustrated in

Figure 4.2, where the inversion of spin states produces the observed magnetization change by

−2 µB. Despite its greater stability, the lower magnetization geometry only has a weak adsorption

energy of 0.09 eV, such that H2 dissociation will most likely proceed from molecular collisions

with Cu13 rather than thermal activation. The same is true of bulk Cu surfaces.147

4.2.2 MAGNETIZATION-DEPENDENT REACTIVITY

The initial magnetization of 5 µB for isolated Cu13 differs from the magnetization of 3 µB for the

H2/Cu13 complex, but the weak spin-orbit coupling of both H and Cu means that the magnetization

switch required for adiabatic dissociation may not actually take place. We therefore obtain

transition states and reaction pathways for a fixed magnetization state of 3 µB and 5 µB separately.

As shown in Figure 4.3, the minimum-energy pathway for H2 dissociation is more complicated

than on the Cu(111) surface. H2 first slides parallel to a Cu–Cu bridge (green to white in

Figure 4.3), followed by bond cleavage and relaxation to the nearest local minimum (white to

purple in Figure 4.3). The dissociated final state has one H atom at a hollow site and the other

adsorbed at a Cu–Cu bridge site, the second-nearest bridge for the low magnetization structure and

the third-nearest bridge for the high magnetization structure. In contrast to the smooth

minimum-energy pathway on the Cu(111) surface, the minimum-energy pathways on Cu13 for

both magnetization states have two major high-curvature regions as marked in Figure 4.3: one for

the right-most H atom at the point of H2 dissociation, and another for the left-most H atom during

the subsequent descent to the final state.

The activation energy for H2 dissociation is quite different in the two magnetization states:

0.20 eV in the low magnetization state and 0.67 eV in the high magnetization state. This

dependence on magnetization is caused by increasingly large bonding-antibonding splitting along

the minimum-energy pathway. In the adiabatic case, which involves a switch in magnetization
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Figure 4.3: Above: minimum-energy pathways for H2 dissociation at fixed magnetization of 3 µB and 5 µB.
The green-white-purple gradient indicates reaction progress, with the initial and final states indicated by larger
spheres. High curvature regions are marked with ∗. Below: energy of key intermediates, with the adiabatic
ground-state energy in bold; the zero of energy is defined as the energy of the isolated H2 and Cu13 at 5 µB.

from 5 µB to 3 µB, the high-energy antibonding state becomes unoccupied in favor of the

lower-energy bonding state of opposite spin. The resulting activation energy is relatively small at

0.20 eV. In the limit of no spin-orbit coupling, however, the high-energy antibonding state remains

occupied and the transition state is higher by 0.47 eV. In comparison, the Cu(111) and Cu(110)

surfaces have reported activation energies around 0.4 eV to 0.5 eV51,115,147 depending on the

experimental or computational method. Since the low magnetization and high magnetization

activation energies on Cu13 differ significantly, and straddle those of bulk Cu surfaces, H2

dissociation rates depend critically on the probability of a magnetization switch.
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4.2.3 MAGNETIZATION TRANSITION PROBABILITIES

To estimate the probability of a magnetization switch we ran 100 Born-Oppenheimer (BO)

molecular dynamics simulations to obtain typical dissociation trajectories along the adiabatic

potential energy surface. To ensure that each trajectory corresponds to H2 dissociation, we start the

simulation at the transition state geometry and run time backward to the associated state. Initial H2

kinetic energies ranged from 0.05 to 0.40 eV, and velocity directions were chosen randomly. Since

adiabatic dynamics are time-reversible, these initial conditions randomly sample H2-Cu13

collisions which result in H2 dissociation. The time-dependent magnetization for each trajectory

exhibits the adiabatic magnetization switch from 3 µB to 5 µB as the H atoms recombine, involving

the inversion of opposite-spin Kohn-Sham states shown in Figure 4.2. Analyzing each trajectory

can then produce an estimate of the probability PLZ of a magnetization switch using the

Landau-Zener approximation (see Appendix A for details):

PLZ = 1− exp(−2πΓ) , Γ≡ δ 2/h̄∣∣∣ ∂
∂ t (Eh(t)−El(t))

∣∣∣
(4.1)

where Eh(t) and El(t) are the potential energies at high magnetization (5 µB) low magnetization

(3 µB), respectively, and δ = 8.15 meV is the experimentally observed Rashba splitting for the

Cu(111) surface.163 The spin-orbit splitting can be estimated from first-principles using the DFT

spin-orbit coupling Hamiltonian33 (δ ≈ 12 meV, see Appendix A), but previous DFT calculations

significantly overestimated the Cu(111) Rashba splitting163 so we use the experimental value

instead. Each randomized trajectory samples the denominator in the expression for Γ in

Equation (4.1) (see Appendix A). PLZ varies significantly with H2 center of mass (CM) velocities

away from Cu13 at the avoided crossing as shown in Figure 4.4. The fitting equation is derived by

approximating the denominator of Γ in Equation (4.1), the crossing rate, as the CM velocity vCM
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Figure 4.4: Landau-Zener probabilities PLZ versus the H2 center of mass velocity vCM away from Cu13. Open
circles show results calculated from the 100 adiabatic molecular dynamics trajectories. The minimum mean
absolute error fit of the Landau-Zener formula is indicated by the solid line.

away from the nanocluster multiplied by a scalar constant g, which is fitted to the data. Overall the

median probability and interquartile range for PLZ is (6.2±1.4)%. Adiabatic transition state

theory therefore overestimates reaction rates by a factor of 1/PLZ ≈ 16.

4.3 POSSIBLE CATALYTIC IMPROVEMENTS

4.3.1 MAGNETIC EXCITATIONS

Since the weak spin-orbit coupling of Cu and H hinders the magnetization switch and hence

reduces reaction rates, we now discuss several methods for improving Cu13 as a H2 dissociation

catalyst. One approach is to excite nanoclusters to the lower magnetization state in advance of a

H2-Cu13 collision. Such excitations would bypass the hindered magnetization switch and decrease

activation energies by destabilizing the isolated nanocluster. Defining ∆ETS to be the activation

energy for H2 dissociation relative to isolated H2 and Cu13, we use ∆EBO
TS to refer to the

Born-Oppenheimer limit where the system remains in its electronic ground state, and ∆E∗TS to refer

to the excited initial state. Both values are shown for Cu13 and other clusters (discussed below) in

Table 4.1. While ∆EBO
TS is 0.20 eV, ∆E∗TS is negative so H2 can dissociate over magnetically excited
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Cu13 at arbitrarily slow collision velocities. These excitations could be induced using optical

spin-flips and intense irradiation to compensate for the weak spin-orbit coupling of Cu.66 Since the

density of states is discrete near the Fermi level for both spin directions, the incident optical

spectrum could be tuned to a narrow band around the exchange splitting of 0.47 eV (λ ≈ 2.7 µm)

to specifically target the spin-flip excitation.

4.3.2 SUBSTITUTION AND CHARGE STATES

Another approach for improving catalytic rates is to modify the electronic structure of Cu13 so that

a magnetization switch is no longer needed. The high activation energy for the high magnetization

state is caused by occupying the highest antibonding state as shown in Figure 4.2. Depopulating

this state using electron deficient clusters should result in activation energies that vary less with

magnetization. To address this possibility, we consider electron deficient Cu clusters, Cu+13, or

clusters formed by substitution of a surface Cu atom by an atom with fewer valence electrons,

Cu12Ni and Cu12Pd. Isolated Pd atoms in particular have been shown to facilitate H2 dissociation

on bulk Cu surfaces.36,91 All three electron-deficient clusters we considered have magnetization of

4 µB in their ground state since one of the majority-spin antibonding states is no longer occupied.

To investigate the effect of Ni and Pd substitution without changing the number of valence

electrons, we also consider Cu12Ni− and Cu12Pd− anions with five valence electrons and

ground-state magnetization of 5 µB. All clusters have nearly icosahedral geometries and similar

densities of states near the Fermi level.

Table 4.1 summarizes the energetics of H2 dissociation on all six nanoclusters we considered.

H2 adsorption only induces magnetization switches for clusters with five valence electrons (Cu13,

Cu12Ni−, and Cu12Pd−). However, as H–Cu hybridization increases along the minimum-energy

pathway, clusters with ground state magnetization of 4 µB undergo a corresponding switch from

4 µB to 2 µB before reaching the transition state. Therefore the transition states for all six clusters
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Table 4.1: Magnetization of the Isolated (mI) and Adsorbed (mads) H2/Nanocluster Systems, Adsorption En-
ergy Eads, and Activation Energies Relative to the Gas Phase (∆ETS) and Adsorbed H2 (∆EA)

Cluster mI mads Eads ∆Eδ→0
TS ∆EBO

TS ∆E∗TS ∆Eδ→0
A ∆EBO

A
Cu13 5 3 0.09 0.67 0.20 −0.05 0.72 0.29
Cu+13 4 4 0.34 0.29 0.10 −0.11 0.63 0.43
Cu12Ni 4 4 0.77 −0.54 −0.58 −0.71 0.23 0.18
Cu12Ni− 5 3 0.69 −0.33 −0.60 −0.81 0.20 0.08
Cu12Pd 4 4 0.53 −0.16 −0.19 −0.27 0.38 0.35
Cu12Pd− 5 3 0.47 −0.06 −0.30 −0.43 0.34 0.17

Energies are in eV, and magnetization values are in µB.

have lower magnetization than their corresponding ground states by 2 µB. Similar to bulk Cu

surfaces, Ni and Pd dopants increase the H2 adsorption energy while reducing the activation

energy; all four clusters with substituted Cu atoms have lower activation energy than desorption

energy so H2 dissociation can proceed from both thermal activation and gas phase collisions. To

distinguish between these possibilities, we use ∆EA for activation energy relative to the adsorbed

state, and ∆ETS for the activation energy relative to isolated H2 and the nanocluster. Superscripts

indicate the relevant magnetic limits: δ → 0 for the zero spin-orbit coupling limit, and BO for the

adiabatic limit following the Born-Oppenheimer approximation. Cu12Ni and Cu12Ni− have the

lowest activation energy regardless of the magnetization state.

As expected, electron-deficient clusters exhibit smaller changes in ∆EA and ∆ETS with respect to

magnetization (see Table 4.1). For example, ∆Eδ→0
TS −∆EBO

TS is 0.47 eV for Cu13, but only 0.19 eV

for Cu+13. The adiabatic activation energy for all clusters is lower than the δ → 0 “fixed

magnetization” limit, so adiabatic transition state theory overestimates H2 dissociation rates for all

six clusters. Magnetization differences in ∆ETS are most important for Cu13 and Cu+13 where H2

dissociation mostly proceeds from collisions, while differences in ∆EA are more important for

clusters with substituted Cu atoms where thermally activated H2 dissociation is likely.
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Table 4.2: Incremental Adsorption Energies E(k)
ads and Activation Energies ∆E(k)

TS for Multiple H2 Adsorption on
Cu13

k E(k)
ads ∆E(k),δ→0

TS ∆E(k),BO
TS

1 0.09 0.67 0.20
2 0.30 0.21 0.21
3 0.15 0.23 0.01

Energies are in eV, and the most stable arrangement and most common ∆ETS values are shown in
bold.

4.3.3 CO-CATALYSTS

Finally, we consider using co-catalysts to improve the performance of Cu13 in H2 dissociation.

One particularly simple strategy is to consider H2 as its own co-catalyst: H2 adsorption can induce

the hindered magnetization switch for the dissociation of a subsequent H2 molecule. This approach

is feasible since H2 grows more stable with increasing coverage. The adsorption and activation

energy for increasing H2 coverages is shown in Table 4.2, where E(k)
ads is the incremental adsorption

energy of the kth H2 molecule on (k−1)H2/Cu13. 2H2/Cu13 has the highest incremental adsorption

energy and should therefore be the most common complex at equilibrium. Adsorption and

transition-state geometries still have ground-state magnetization of 3 µB except for H2 dissociating

over the 2H2/Cu13 complex, where the magnetization is 1 µB due to further increases in H-Cu

hybridization. We also find that the most common 2H2/Cu13 arrangement also produces the lowest

∆EBO
TS value of only 0.01 eV. Although a switch from 3 µB to 1 µB becomes necessary, the

corresponding PLZ is likely more than offset by the large 0.2 eV decrease in the activation energy.

4.4 CONCLUSION

In conclusion, we investigated the catalytic behavior of Cu13 clusters for H2 dissociation and

demonstrated that magnetization and spin-orbit coupling play an important role in this reaction. A

combination of high symmetry in the cluster geometry and quantum size effects give Cu13 a large

98



Chapter 4. Nonadiabatic H2 Dissociation on Cu13 Nanoclusters

magnetic moment and yields magnetization-dependent catalytic behavior. The most favorable

reaction pathway requires a magnetization switch, which is hindered by the weak spin-orbit

coupling of H and Cu. The corresponding probability PLZ ≈ 6.2% of a magnetization switch

means that adiabatic transition state theory overestimates reaction rates for the H2/Cu13 system by

a factor of 1/PLZ ≈ 16. Therefore magnetization presents a new challenge for designing nanoscale

catalysts for H2 dissociation and hydrogenation. This magnetization dependence also offers new

opportunities to control catalyst behavior by changing magnetic states. For example, ground-state

Cu13 features a substantial collisional activation energy of 0.20 eV, but we predict that excited Cu13

which has lower magnetization will facilitate H2 dissociation at arbitrarily slow collision

velocities. The magnetization switch could be induced by optical spin-flip excitations.

Appropriately designed catalysts with controllable magnetization, for example using optical or

magnetic fields, could provide new ways to control catalyst activity without altering more

conventional reaction parameters such as temperature, pressure, and reactant composition.
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5
Machine Learning

Apart from minor modifications, Section 5.4 is being prepared for the following publication:

Robert A. Hoyt, Matthew M. Montemore, Ioanna Fampiou, Wei Chen, and Efthimios
Kaxiras. “Understanding H Adsorption on Ag Alloys With Machine Learning.” in
preparation

5.1 INTRODUCTION

Before the advent of “fast computing machines,”111 the only reliable data for materials and

catalysts was to run experiments. Theoretical models certainly existed long before general-purpose

computers, but their complexity was limited to those that can be solved or closely approximated by

hand, and were generally applied as a way to rationalize experimental results after the fact. A

famous example is the famous Newns-Anderson model128 for adsorption on transition metals.∗

The model is based on empirical tight-binding Hamiltonians with approximate metal-hydrogen

interactions. Theorists were not properly equipped to make reliable first- principles estimates of

electronic and catalytic properties until the advent of Kohn-Sham DFT, and generalized gradient

exchange-correlation potentials in particular. DFT has been highly successful but its speed and

maximum practical system sizes remain limited, primarily since the cost of its underlying matrix

operations scales cubically with the number of atoms. Machine learning algorithms represent a

return to empiricism, but their dramatically lower computational costs could open the door to

∗It should be noted that D. M. Newns hypothesized the “d-band model” decades before it was popularized by Hammer
and Norskov in their famous “Why Gold is the Noblest of All the Metals” paper regarding H2 dissociation. Moreover,
silver is actually the noblest in this respect.119
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multiscale modeling and high-throughput screening with the accuracy of quantum chemistry

methods if appropriately constructed.

Inspired by machine learning’s meteoric growth over the past 20 years, and dramatic successes

in advertising, finance, and computer vision, materials scientists have high hopes that machine

learning will prove equally transformative in materials design. I remain cautiously optimistic.

First, in the materials science community the phrase “machine learning” has an air of technical

mysticism. Common misunderstandings, ambiguous jargon, and lack of good pedagogy

complicate matters immensely. Second, the prevailing literature is primarily occupied with

mimicking the results of DFT or other methods on familiar test sets. Major modeling innovations

will be required to make machine learning in materials science suitable for the first-principles study

of new systems. After all, DFT is widely used to gain first-principles insights into new systems, not

to interpolate between the known results of more accurate quantum chemistry methods.

In this chapter I first discuss the theory behind machine learning for regression tasks. My hope is

to substantially clarify machine learning, its terminology, and demonstrate the deep connections

across popular models by introducing and discussing kernel functions in depth. Kernel functions

are the very core of regression so understanding them gives deep insight into the models they

produce. Next, I discuss the application of machine learning to predicting adsorption energies on

dilute silver alloys.

5.2 MACHINE LEARNING OF REGRESSION MODELS

Although machine learning is a relatively late addition to my work, I consider this section to be the

most important one in this thesis. It is broadly applicable to machine learning and data science in

general. My hope is that it clearly explains the underpinnings of machine learning for

single-variable regression. By discussing the kernel and the Mercer criterion from the very
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beginning, seemingly disparate models from linear regression to neural networks are immediately

united under the same framework. These insights and connections are also related to principal

component analysis and clustering methods. I hope this fresh take on regression is as useful to the

reader as it was to me.

5.2.1 KERNELS

Our goal in regression is to construct a model ŷ which estimates the value of an unknown, scalar

function y of one or more variables x. These vectors x, called feature vectors, are points in feature

space. Feature vectors x numerically describe some system of interest: surface alloys, customer

reviews, stock market conditions, etc. In the context of statistics, vectors x describe sampling

events and values y are the corresponding observed values. Common applications include

interpolation, to estimate an unknown and generally noisy function between two known data

points, and dimensionality reduction (or compression), to determine which subset of variables is

most important. Both these applications are discussed in more detail below. A regression model is

defined by the corresponding kernel that asserts how much the function’s value y(x) at x is related

to its value y(x′) at another point x′. The kernel is a pair-wise scalar function k(x,x′|β) of any two

points x and x′, where β represents any parameters in the kernel. In the context of Gaussian

processes, k asserts the covariance between the function’s values at x and x′. Kernels are are the

core of regression methods since they dictate the relationship between the training values and new

data points.

The key to a good learning model is therefore the selection of an appropriate kernel. By the

same logic, there are poor choices as well. This raises an interesting question: is there a kernel with

the best average performance over all possible functions y? The answer is no. David Wolpert’s

famous (albeit technical) “No Free Lunch” (NFL) theorems186 prove that all models have identical

mean performance in this case. This proves that that guessing zero is just as good as state of the art
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models. Fortunately, there are two important caveats to consider. First, while the NFL theorems

prove identical mean performance over all functions, certain models can be much better than

average for a particular class of functions. For example, most “real world” functions reliably

exhibit at least some smoothness and continuity. Second, the NFL theorems only prove that the

mean performance of all models is identical, so the typical (e.g. median) performance for some

models can still be much better than average. The NFL theorems prove we must critically evaluate

kernels to ensure they correctly reflect the target function’s properties. There are no silver bullets.

5.2.2 KERNEL TRICK

To interpret kernels as covariances, and imbue them with convenient mathematical properties, they

are nearly always† chosen to satisfy what is popularly known as “Mercer’s condition:”110

k(x,x′|β) = φ(x|β) ·φ(x′|β) (5.1)

where φ is a vector-valued function that maps points in feature space x to points in kernel space φ.

Mercer’s condition states that k can be nonlinear in feature space, but will be a simple inner

product in its kernel space φ. This has major consequences. First, by inspection of the dot product,

k is symmetric in x and x′. Second, the dot product form shows that arbitrarily nonlinear behavior

in feature space becomes linear in kernel space. In some cases, especially linear regression, both

the kernel k and kernel space φ are known and easy to compute. In most other cases, however,

either k or φ is unknown or computationally impractical.

A third property is that the dot product from ensures that the kernel is positive semidefinite.110

To show this, consider any n samples at points xi drawn from feature space. With the the kernel

†k-Nearest Neighbors (kNN) is the one prominent exception.
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matrix‡ Ki j ≡ k(xi,x j|β) = φ(xi|β) ·φ(x j|β), then K is a symmetric and positive definite matrix.

K is symmetric by inspection because k is symmetric. To prove K is positive definite, we calculate

its inner product for an arbitrary test vector u:

uT Ku=
n

∑
i j

ui Ki j u j (5.2a)

=
n

∑
i j

uiφ(xi|β) ·φ(x j|β)u j (5.2b)

=

(
n

∑
i

uiφ(xi|β)
)(

∑
j

u jφ(x j|β)
)

(5.2c)

=

(
n

∑
i

uiφ(xi|β)
)2

(5.2d)

uT Ku≥ 0 (5.2e)

The combination of symmetry and being positive definite means that the kernel matrix K has

positive semidefinite eigenvalues and its eigenvectors form an orthogonal basis. Furthermore, K

can be rewritten using the spectral theorem, leading to the kernel-based definition of principle

component analysis and clustering as discussed in Section 5.2.5.

5.2.3 KERNEL MATRIX AS A COVARIANCE MATRIX

Kernel matrices K have broad utility in machine learning. They explicitly appear in kernel

regression models (see Section 5.2.4) and in kernel principal component analysis (see

Section 5.2.5). However, given the importance of selecting appropriate kernels, it is important to

be able to visualize and experiment with kernels to better understand their properties. This can be

done using Gaussian processes.

A Gaussian process is a probability distribution over some domain, in our case feature space,

‡More commonly known as the “Gramian,” but Gramian matrices are more general than kernels so I find the term
“kernel matrix” more concrete.
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where the value at every point is normally distributed. Knowing the covariance between two points

Ki j = k(xi,x j), and the mean µ, dictates the joint distribution for the observed values. In other

words, the values are normally distributed, and are coupled to each other by known variances Ki j.

The joint distribution is a multivariate normal:

ŷ (x1, · · · ,xn)∼N (µ,K) (5.3)

Equation (5.3) is also called the Gaussian process prior, and ŷ is the vector of model values ŷi. It is

the probability distribution of observing any particular sequence of yi values given sample points

xi. Gaussian processes can be regression models in their own right, by conditioning this

distribution given some already-observed training data. However, a thorough discussion of

Gaussian processes and their applications as regression models is outside my expertise and could

be a thesis in its own right.30 Instead, I rewrite Equation (5.3) in their uncoupled form to provide a

bit more clarity, then discuss a useful application for these equations:

K =UΣUT ≡U




σ2
1 0

. . .

0 σ2
n




UT spectral theorem (5.4a)

ŷ ∼ µ+U




N
(
0,σ2

1
)

...

N
(
0,σ2

n
)




(5.4b)

where U ≡ (û1 · · · ûn) is the unitary matrix whose columns are the eigenvectors of K, and Σ is a

diagonal matrix with K’s eigenvalues along its diagonal. This whole process is a kind of Fourier

analysis in disguise. In Fourier analysis, we transform the “unit vectors” (ŷ)i = ŷi into the basis of

complex exponentials using a unitary transformation. Fourier transforms are broadly applicable
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Table 5.1: Randomly Drawn Functions from Selected Kernels in Two Dimensions

Sample Linear RBF Sinc Tree

x ·x′ exp(−|x−x′|2) sin(|x−x′|)
|x−x′|

δ`(x)`(x′)
|`(x)|

1

2

when operators are coupled in real space, but uncoupled in reciprocal space. In the same way, the

unit vector values ŷi are correlated according to K, but rotating to the basis described by U

decorrelates them. Similar to Fourier modes, the basis U contains the “normal modes” of K that

vary independently. This is what leads to the single-variable normal distributions in

Equation (5.4b).

The most important insight from Gaussian processes is that Equation (5.3) allows us to sample,

or draw, functions themselves from a kernel. After choosing some points xi, we construct Ki j and

sample from the normal distribution to obtain typical ŷi values. Multiple samples can be drawn

quickly using the decoupled form of Equation (5.4b) once we have the eigenvectors and

eigenvalues of K. In this case we can choose µ= 0 to focus entirely on variations of functions.

Table 5.1 shows functions drawn from several kernels. Among others, linear, RBF, and tree kernels

are discussed in more detail in the following sections.

5.2.4 KERNEL REGRESSION

Through some unfortunate series of events, many machine learning publications and presentations

present “kernel learning” as being somehow distinct from linear regression, neural networks and

random forests. In this section I demonstrate how all these common regression models are kernel
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methods. The question is not “is this kernel regression?”, but rather “which kernel is being used?”

For some kernel k satisfying the Mercer criterion, we can obtain the two general forms of

regression used in machine learning. Consider a training set of n data points xi and corresponding

sampled values yi. Kernel regression yields the following model ŷ for new data points x:

ŷ(x) =
n

∑
i

αik(xi,x|β) (5.5a)

=
n

∑
i

αiφ(xi|β) ·φ(x|β) (5.5b)

=

(
n

∑
i

αiφ(xi|β)
)
·φ(x|β) (5.5c)

≡ w ·φ(x|β) (5.5d)

where the coefficients αi are chosen to minimize some cost function C, usually including the total

squared error. Equation (5.5a) is the form implied by mentions of “kernel learning” or “kernelized

[method]” in the literature. In this form, the coefficients αi, and possibly β as well (see

sections 5.2.4.4 and 5.2.4.5), are optimized. These models are generally solved by forming the

kernel matrix, Ki j ≡ k(xi,x j|β) (see Section 5.2.2) to produce an equivalent matrix equation to be

solved with standard linear algebra routines. While the solutions to these equations scale as O(n3),

they can still be routinely used on training sets with up to tens of thousands of points.

On the other hand, when the kernel space φ is known, the dot product representation can be used

to obtain the “linearized” form in Equation (5.5d). The dot product identity allows the sum over

kernel vectors and their αi coefficients to “collapse” to the constant vector of coefficients, or

support vector, w. Using Equation (5.5d) therefore yields a simple linear regression task. Taking

advantage of this linear form is referred to as “the kernel trick.” Moreover, the linear form can be

interpreted as plane in kernel space with w as its normal vector. In support vector methods,

regression and classification are interpreted in terms of distances from this dividing surface.
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Equation (5.5d) reveals that complicated and nonlinear boundaries in feature space correspond to

simple hyperplanes in kernel space.

Overall, Equation (5.5d) is an extremely important result for machine learning. Nearly every

common kernel satisfies Mercer’s criterion so nonlinear models in feature space x are necessarily

linear in feature space φ. One major consequence is that the linear form simplifies the statistical

analysis of kernels so that their relative strengths and limitations can be better understood. Second,

the linear form helps us choose appropriate kernels for regression tasks. For example, let ∆ŷ be the

difference in model output between points x and x′. Then we have

∆ŷ≡ ŷ(x)− ŷ(x′) (5.6a)

= w ·φ(x|β)−w ·φ(x′|β) (5.6b)

= w ·
(
φ(x|β)−φ(x′|β)

)
(5.6c)

This can be used to guide the selection of kernel functions. If we know that ∆ŷ should vanish, e.g.

adsorbate stability at symmetrically equivalent adsorption sites, then we want φ(x)≈ φ(x′) to

ensure that ∆ŷ≈ 0 regardless of the value of w. Equivalently, from Mercer’s criterion, we would

choose a kernel k that returns a large value (i.e. high covariance) between the two related points.

Some of the ambiguity in machine learning terminology is caused by the fact that, in most cases,

either the kernel k or the kernel space φ is unknown. This either-or situation then leads to

branching terminology even though both conditions are equivalent (at least in principle) due to

Mercer’s criterion. Methods where the kernel is known include linear regression and “kernel”

support vector regression, while methods using explicit kernel spaces φ include neural networks

and literature efforts aimed at “feature engineering.”
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5.2.4.1 LINEAR AND POLYNOMIAL REGRESSION

Linear regression corresponds to the “dot product” kernel

k(x,x′) = x ·x′ dot product kernel (5.7)

Comparison of Equations 5.1 and 5.7 shows that this is the special case where φ(x) = x, i.e.

feature space and kernel space are identical. When this φ is used in Equation (5.5d), we obtain the

linear regression model:

ŷ(x) = w ·φ= w ·x= w1x1 + · · ·+wmxm (5.8)

for m-dimensional feature vectors x. Non-zero offsets in the model are generally avoided by first

shifting xi and yi values to have zero mean. Another alternative is to add a constant “dummy”

feature, (x1 · · ·xm,)→ (x1 · · ·xm,1), so that the new last element of w yields the linear offset.

Shifting is generally the better strategy since an offset variable does not need to be optimized.

To interpret the dot product kernel in terms of covariance, consider the sketch of a one

dimensional linear model in Figure 5.1. As discussed previously k(x,x′) = x ·x′ is a good match

for this data because the data clearly follow a linear trend in feature space xi. When both points are

far from the origin along similar directions, such as points x1 and x2 in Figure 5.1, k(x1,x2)� 0.

Large k values in this case reflect the fact that large values y(x1) strongly imply large y(x2) due to

the slope, and vice-versa. Increasingly distant points have ever-increasing effects on the slope,

leading to k’s divergence as |x1|, |x2| → ∞. Similarly, we see that positive y(x1) values imply

negative y(x4) values through the slope as well. Finally, with the line centered at zero, the point x3

near the origin is not expected to correlate with points elsewhere like x1 and x4. Points near the

origin, like x3 ≈ 0, yield k(x3,x1) = x3 ·x1 ≈ 0. This same logic applies to higher dimensions where
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Figure 5.1: Sketch of a typical linear relationship. Values x1 · · ·x4 are labeled for reference for discussion in the
main text.

inner products are used instead of scalar multiplication. Typical two-dimensional linear functions

drawn from the Gaussian prior with the dot product kernel are shown in Table 5.1 for reference.

Polynomial regression is an extension of Equation (5.8), where an order p polynomial has up to

p factors of x1 · · ·xm in each term. For example, a quadratic model for a two-dimensional feature

space xT = (x1,x2) is

ŷ(x) = w1x1 +w2x2 +w11x2
1 +w12x1x2 +w22x2

2 (5.9)

Offsets can be handled just as discussed previously for linear regression. Comparison of

Equations 5.5d and 5.9 shows that φ for quadratic regression is a vector of the polynomial terms:

φ(x)T =
(
x1,x2,x2

1,x1x2,x2
2
)

(5.10)

Vectors in kernel space φ can be constructed for cubic polynomials by appending 3-fold products,

quartic polynomials by adding 4-fold products, etc. Two representative draws from Gaussian

processes using the quadratic kernel are shown in Figure 5.2.
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Figure 5.2: Two functions drawn randomly from a Gaussian process using the quadratic kernel as shown in
Equations 5.3 and 5.4b. Each draw can yield positive or negative curvature along any axis.

5.2.4.2 SUPPORT VECTOR REGRESSION

Support vector regressors (SVRs) are another popular class of models where k is known instead of

φ. Despite their deep connections to linear regression, machine learning terminology differs

significantly. In the literature SVRs are interpreted as models consisting of a “decision boundary”

S(x) = 0, and ŷ(x′) is the closest distance from x′ to the surface S. The simplest dividing surface is

a simple hyperplane. If we let the normal vector to the hyperplane be ŵ, then the dividing surface is

S(x) = ŵ ·x− c = 0 (5.11)

Distances ŷ(x) from this hyperplane can then be calculated. Letting xp be any point on S, we

obtain

ŷ(x) = ŵ ·x− ŵ ·xp (5.12a)

= ŵ ·x− c (5.12b)
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Figure 5.3: Sketch of support vector classification in two dimensions. The dashed line shows the dividing sur-
face S. Points are classified according to which side of the surface they reside: red for S(x)− c < 0, and blue for
S(x)− c > 0.

If we relax the requirement that ŵ must be a unit vector, then it becomes exactly the same as the

the linear model in Equation (5.8) with an offset.

Matters are more interesting for nonlinear SVRs, where the surface S is nonlinear (i.e. curved)

in feature space. They are implicitly used in support vector classifiers (SVCs), which seek a

dividing surface S that separates data points in one subgroup from those in the other. An example

of such a task is shown in Figure 5.3. SVCs then determine the class of any new point by

determining which side of S they are on. S is usually chosen to minimize the total distance to all

incorrectly classified points (“soft margin” training), so determining distances from S is an

important task. However, framing a regression model in terms of distances to curved surfaces is

rather unintuitive. For this reason so-called “kernel regression,” described in the following section,

is much more popular. SVR and kernel regression are equivalent by the Mercer criterion; only their

interpretation is different.
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5.2.4.3 KERNEL REGRESSION

As discussed previously, the name “kernel regression” is counterintuitive because nearly all

regression is kernel regression. In an ideal world, then, “linear regression” would simply be

renamed “linear kernel regression.” Nevertheless I use kernel regression here in the same way it is

used in the literature.

Kernel regression is the class of models where the kernel function k is known and used explicitly

as in Equation (5.5a):

ŷ(x) = ∑
i

αik(xi,x|β) (5.13)

for a set of training points xi and kernel parameters β. Although φ is unknown in general,

satisfying the Mercer criterion still guarantees that this model is equivalent to linear regression

problem in kernel space as shown by Equations 5.5a and 5.5d. Kernel regression is also trivially

linked to SVRs by noting that the constraint ŷ(xp) = c defines a nonlinear surface, and that the

distance of some point x from this surface can be written as ŷ(x)− ŷ(xp) = ŷ(x)− c. Moreover,

invoking the Mercer condition shows that this surface is a linear hyperplane in kernel space:

0 = ŷ(x)− c (5.14a)

= ∑
i

αik(xi,x|β)− c (5.14b)

=

(
∑

i
αiφ(xi|β)

)
·φ(x|β)− c (5.14c)

≡ w ·φ(x|β)− c (5.14d)

Distances from this hyperplane therefore yield regression due to the same link between linear

SVRs and linear regression.

Kernel regression is broadly applicable because a few of them, especially the RBF (or “squared
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exponential”) kernel, tend to perform well for most real-world regression tasks. The RBF kernel is

really a normal distribution in disguise:

kRBF(x,x′|σ) = exp

(
−|x−x′|2

2σ2

)
(5.15)

The RBF kernel asserts that nearby values tend to have similar function values, i.e. are strongly

correlated with kRBF . 1, while distant points are uncorrelated with kRBF & 0. RBF kernel values

monotonically approach zero as with increasing distance |x−x′|. For this reason RBF is often

described as being a “localized” or “stationary” kernel. RBF kernels are infinitely differentiable

and have analytic gradients. These locality and smoothness properties give the RBF kernel its

broad applicability since most functions of interest are also smooth and continuous.

An advantage of kernel regression is that additional properties can be included in the kernel. For

instance, values of a periodic functions are highly correlated at specific displacements along a

particular direction. Correlation between points in these different fringes can be asserted using a

cosine or other periodic function. If the periodic correlation only holds over limited length scales,

the periodic kernel can be multiplied with a localized kernel such as RBF so long-range

correlations vanish. Figure 5.4 shows several randomly drawn functions from such a kernel for

several different length scales σRBF. Large σRBF values yield long-range correlations in the

left-most panel of Figure 5.4, while shorter length scales yield only local cosine-like correlation.

For distances much shorter than σRBF, kRBF . 1 so most of the variation is due to the cosine kernel.

For long distances, kRBF decreases to 0 so distant points exhibit minimal correlation. Multiplying

two kernels is similar to a logical AND operation in the sense that the product only yields significant

correlation between two points if both kernels are large. This is just one example of how kernels

can be combined to generate increasingly sophisticated models.30

With this more thorough discussion of kernels, we return to the No Free Lunch theorems. The
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σRBF� 1 σRBF > 1 σRBF < 1 σRBF� 1

Figure 5.4: Random two-dimensional functions drawn from a Gaussian process with the composite kernel
k(x,x′) = kcos(x,x′) · kRBF(x,x′) and varying RBF length scales σ . The σ parameter is largest for the left-most
panel, resulting in long-range periodicity, and smallest for the right-most panel, resulting in only short-range
coherence.

RBF kernel (and other “general-purpose” kernels) perform reasonably well for most data sets, but

only because it makes very mild assertions about smoothness and locality. Most functions have

additional properties such as known asymptotic limits and symmetries that are not included by

RBF. Kernels including these additional symmetries will outperform kernels lacking them.

The lack of specific function attributes in RBF and other general-purpose kernels leads to

inefficient use of data. Starting from Equation (5.5a), we can write the regression model resulting

from the RBF kernel:

ŷRBF(x) = ∑
i

αi kRBF(xi,x|σ) (5.16a)

= ∑
i

αi exp

(
−|x−xi|2

2σ2

)
(5.16b)

Equation (5.16b) reveals that “RBF kernel regression” is another way of writing “a sum of

Gaussians.” With n training points, Equation (5.16b) shows there are n independent parameters.

On the other hand, we generally know (or at least believe) that the sampled function is given by a

small number p of physically important variables. The large excess of parameters n� p suggests

that the RBF kernel adds too much flexibility to the model. In many cases this excess flexibility

can make model predictions worse, a phenomenon known as overfitting. Section 5.3.2 discusses

methods designed to mitigate overfitting.
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Returning to the specific example of periodic functions, the RBF kernel only gives the

short-range correlation between data points so several Gaussians are required to describe just a

single ridge in Figure 5.4. Modeling two fringes would require twice as many Gaussians, and three

fringes would require three times as many. Moreover, the RBF kernel vanishes a long distances so

ŷRBF will predict 0 for distant data points instead of following a periodic trend. Vanishing at long

distances also leads to other unintended consequences such as misleading error estimates for

distant points.144 In comparison, a cosine kernel with the correct periodicity would yield a

superposition-of-cosines model that provides better predictions and generalization with fewer

samples, and does not vanish at long distances. While the RBF kernel is certainly reasonable for

localized trends, we should keep its limitations and the NFL theorems in mind when selecting an

appropriate model.

5.2.4.4 NEURAL NETWORKS

Neural networks (NNs) and deep learning are immensely popular. Computational implementations

of neural networks were some of the first uses of general-purpose computers and a hot topic in

artificial intelligence research in the late 1950s and 1960s.131 The popularity of neural networks

comes from a combination of empirical and mathematical evidence that they can “learn” arbitrarily

complex functions27 as well as their passing similarity to neurons. Anything that claims similarity

to neurons and artificial intelligence is obviously cool. Unsurprisingly, the behavior of neural

networks is therefore discussed with great ambiguity. In this section, however, I use the the

previous discussion of kernels to offer a simple explanation for their behavior. In particular I

demonstrate in Equations 5.19c and 5.19d that neural networks learn by approximating the kernel

space function φ(x|β).

The most common neural network design is the classic “multilayer perceptron.” A schematic of

the model is shown in Figure 5.5. The input nodes in layer `= 0, or perception neurons (e.g.
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Figure 5.5: Sketch of a typical multilayer perceptron neural network. Input nodes are assigned the entries of
x. Subsequent nodes in hidden layer ` compute nonlinear functions of the weighted sum over node values from
layer `− 1. Color coding highlights which edges correspond to several weight vectors w`

j. The output is drawn
as a box to distinguish it from hidden nodes.

sensory information), are assigned the feature values x. These nodes are then “connected” by

edges (axons) to nodes in the next layer `= 1. Multiple layers, which may have different numbers

of nodes, are then connected in a hierarchical way to obtain an L-layer network. Each node i in

layer ` computes its own weighted sum s`i based on the previous layer’s values:

sL
i = w`

i ·σ`−1 +bL
i (5.17)

where σ` is a vector of the previous layer’s values, w`
i is its weights vector, and b`i is the node’s

own constant offset or “bias.” The value s`i can be roughly interpreted as an activation potential for

the neuron. To give the network nonlinear behavior, the actual value the node is σ `
i = σ(s`i ), where

σ(s) is a nonlinear function. Typical choices include simple sigmoids, hyperbolic tangents, or

diode-like rectification functions. These serve as each neuron’s response to its activation potential

sL
i . The final regression output of the L-layer network is a final weighted sum over the last layer’s

values σL with a final bias term bout. In summary, neural networks are dictated by the following
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relationships:

σ0
i = xi (5.18a)

σ `
i = σ

(
w`

i ·σ`−1 +b`i
)

(5.18b)

ŷNN(x) = wout ·σL
(
x
∣∣
{

w`
i ,b

`
i

})
+bout (5.18c)

The correspondence between w`
j and inter-layer connections is shown for several nodes in

Figure 5.5.

While the behavior of neural networks appears complicated at first glance, the resulting model is

easily interpreted in terms of kernel regression. First, note that ŷNN in Equation (5.18c) is linear in

the output layer values σL. Comparing the “kernel trick” in Equation (5.5d) to Equation (5.18c)

then reveals the deep (and almost trivial) connection between neural networks and kernel

regression:

ŷNN(x) = w ·φ(x|β)↔ wout ·σL(x|
{

w`
i ,b

`
i

}
)+bout (5.19a)

⇓ (5.19b)

w↔ wout (5.19c)

φ(x|β)↔ σL
(
x
∣∣
{

w`
i ,b

`
i

})
(5.19d)

where the linear offset bout can be handled as in linear regression by appending 1 to φ.

Equation (5.19c) shows that the output weights are its support vector, and Equation (5.19d) shows

that the neural network’s last layer is its kernel space function φ(x). For neural networks, the

kernel parameters β are the collection of all its edge weights and bias terms. Neural networks

learn the kernel space φ(x) leading to a linear model. Increasingly nonlinear φ functions can be

produced by adding more layers to the network, while higher-dimensional kernel spaces are
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obtained by increasing the number of nodes per layer.

This deep connection clarifies the origins of neural networks’ broad success in machine

learning. Since the basic nonlinear σ functions are simple, they can be iteratively combined to

form the more complicated functions required to map feature space to kernel space. The

continuous and smooth properties of typical σ functions are also inherited by the resulting kernel

space functions φNN. Neural networks are therefore a major example of regression models with

known kernel space functions φ.

Compared to other kernel regression models, training a neural network involves optimizing both

the support vector w and the kernel parameters β↔
{

w`
i ,b

`
i
}

at the same time. In contrast to the

linear kernel, with no parameters, and popular general-purpose kernels like RBF, with O(1)

parameters, neural networks often have at least several dozen parameters. In fact, with sufficient

computational power and large data sets it is even possible to train and use neural networks with

billions of parameters.169 This flexibility lets neural networks handle wide ranges of regression

tasks. Of course, this flexibility has associated costs: with large numbers of parameters, large

training sets must be used to ensure all kernel parameters are well defined.

5.2.4.5 DEEP LEARNING

Deep learning refers to model fitting where both the coefficients and the kernel parameters β that

enter the kernel are optimized along with the coefficients. This is often the case for all regression

models, e.g. optimizing σ for the RBF kernel, but “deep” is generally reserved for very flexible

kernels with many parameters. The most common form of deep learning is neural networks, where

β is the collection of all neural network parameters in the “hidden layers” between the input layer

and output value ŷ. As a result of the historically strong distinction between neural networks and

kernel regression, the terminology has diverged. “Deep learning” in the literature refers to β

optimization for neural networks and similar models, while optimizing β for kernel regression is
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Figure 5.6: Sketch outlining the operations involved in the first two layers of a convolutional neural network.
Large frame stacks represent images throughout the sequence of operations, while small stacks represent the
convolutional filters. The correspondence between convolutional filters C and their resulting output frames is
highlighted through color-coding for the first layer.

often called “hyperparameter optimization.”

One of the major advances in deep learning, beyond neural networks themselves, arrived with

the advent of convolutional neural networks. These networks were largely popularized by their

excellent performance in optical character recognition without any hand-picked features or

labeling.94 Convolutional networks first perform several rounds of convolution operations, then

pass the results on to a conventional neural network. As sketched in Figure 5.6, each layer ` in a

convolutional network can be considered a stack of d` equally-sized images. The input (layer

`= 0) might correspond to a color image, a stack of d0 = 3 RGB images, or an audio waveform

with one “image” per microphone. To obtain the next layer, `= 1, the input stack is convolved

with n1 smaller filters of size m1×m1×d0, where m1 is much less than the dimensions of the input

image. As discussed previously, a nonlinear σ function is applied to each of these convolution

values to obtain nonlinear behavior. An optional final step in the layer is a pooling operation which

down-samples the image. A popular pooling operation is max pooling, where each p× p region

(usually p = 2) in the image is replaced by its maximum value. These operations complete the first

layer of the convolutional neural network. Subsequent layers proceed in exactly the same manner,

creating d` new images from layer `−1 using corresponding filters of size m`×m`×d`−1.
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Convolutional networks greatly outperform conventional neural networks for image recognition

tasks. The main benefit they provide is translational invariance. Rather than training a

conventional neural network to recognize the same object in several different locations,

convolutions by definition scan each filter across the entire input image. A limited degree of noise

tolerance is also introduced by having multiple pixels in each filter, as well as the pooling

operations, which effectively act as a low-pass filter by coarse-graining the input image. Pooling

operations’ coarse-graining is also a lossy operation, introducing some spatial ambiguity and hence

a limited degree of distortion and scale invariance.

Deep learning techniques are starting to make their way into materials science though graph

convolutions. While image convolutions deal with pixels, graph convolutions deal with nodes and

edges. Images can be considered to be a special kind of graph where each “node” (pixel) has the

same local topology and number of edges (adjacent pixels). Graph convolutions can then “derived”

by making the concept of convolutions more abstract. Graph convolutions are particularly relevant

for materials science because nodes and edges can be considered abstract versions of atoms and

bonds. Just as an image convolution combines information about a particular pixel with that of its

neighbors, a graph convolution combines data about a node with that of adjacent nodes and their

corresponding edges.31 For molecular graph convolutions, atoms can described by values such as

atomic number and valency while bonds can be described by values such as bond orders and

aromaticity. At the first convolution layer, each filter function combine each atom’s values with

those of its neighbors and corresponding edges in the input molecule to generate a corresponding

“output molecule.” Similar to image convolutions, a set of filters then produces a stack of output

molecules. Iterating this process several times then produces a graph convolutional neural network.

Graph convolutions are a recent development but they have already demonstrated considerable

success in predicting molecular properties including hydrophobicity and toxicity.31 Theoretical
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understanding of graph convolutions and their properties is also under active development,41 but

more work remains to be done. For example, molecular graphs are generally irregular§ so there is

no obvious way to apply pooling operations.

5.2.4.6 DECISION TREES, RANDOM FORESTS, AND PARTITIONS

Decision trees perform regression using a series of if-else decisions, and hence strongly resemble

binary tree data structures. Training a decision tree starts by placing its training data into the “root”

node. The first if-else decision consists of selecting a pivot, p f , a value corresponding to feature f

such that all (xi) f ≤ p points are placed in the “left child” node, and the remaining points with

(xi) f > p are placed in the “right child” node. The feature f and pivot p f are generally chosen to

minimize the total variance of the child nodes. This process is then recursively applied to each of

the children as much as possible until a limiting criterion is met. Typical limitations are a

maximum tree depth, i.e. number of decisions, or number of data points per node. Nodes with no

further decisions are leaves. Once trained, a prediction ŷt(x) is made by evaluating all decisions on

x to reach its leaf node, then returning the mean of all training values yi in that leaf.

A sketch of a decision tree classifier is shown in Figure 5.7 to clarify our discussion. Starting

with 100 points, the tree makes decisions to minimize the predicted error. The first decision is

made using feature 3 with a pivot of −1, yielding mostly red points in the left branch. This node is

relatively pure and no further partitions are made. The left branch, which now contains a nearly

even mix of red and blue points, is then partitioned on feature 1 with a pivot of 2, resulting in a

majority-red and majority-blue leaf. Both of these decisions reduce the overall classification error;

the second decision in particular improves accuracy for the 89 points with x3 ≥−1 from

approximately 50% to 75%. Regression trees behave similarly, with each decision reducing the

overall RMSE among the resulting children. Figure 5.7 also illustrates how all tree decisions are

§Atoms do not necessarily have the same number or type of bonds.
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Figure 5.7: Sketch of a decision tree classifier trained on 100 data points belonging to either the “red” class or
the “blue” class. Circle sizes indicate the number of points in each node, and the pie chart indicates how many
points belong to each class. The first decision partitions data points using feature 3 with −1 as the pivot. A
subsequent decision among points with x3 ≥−1 is then made using feature 1 with 2 as the pivot.

mutually exclusive and made with respect to a single feature. The regions of feature space

corresponding to each leaf node, or leaf regions, are therefore non-overlapping, axis-aligned and

contiguous. The latter two properties also mean that all leaf regions are convex.

With these insights we can now derive the kernel corresponding to a decision tree. This

derivation is inspired by previous work on forest and random partition kernels28,152 but here we

derive the tree kernel from first principles and obtain a more correct result. Let t be a decision tree

trained on n data points and `t(x) be the leaf region containing x. Each leaf regions `t contains

1≤ |`t(x)| ≤ n training points. Finally, with δ`t(x)`t(x′) = 1 indicating when x and x′ belong to the
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same leaf region, and 0 otherwise, we derive the decision tree kernel kt :

ŷt(x) = 〈yi〉i∈`t(x) (5.20a)

=
1

|`t(x)| ∑
i∈`t(x)

yi (5.20b)

=
1

|`t(x)|∑i
yiδ`t(xi)`t(x) (5.20c)

= ∑
i

yi

(δ`t(xi)`t(x)

|`t(x)|

)
(5.20d)

Direct comparsion of Equations 5.20d and 5.5a yields the tree kernel and its coefficients:

αi = yi (5.20e)

kt(x,x′) =
δ`t(x)`t(x′)

|`t(x′)|
(5.20f)

Before discussing kt’s properties we show that it satisfies the Mercer criterion. To demonstrate

symmetry, there are two cases:

1. δ`t(x)`t(x′) = 1 so x and x′ are contained in the same leaf region. In this case |`t(x)|= |`t(x′)|.

This proves kt(x,x′) = kt(x′,x) as follows:

kt(x,x′) =
δ`t(x)`t(x′)

|`t(x′)|
=

δ`t(x′)`t(x′)

|`t(x)|
= kt(x′,x) (5.21)

2. δ`t(x)`t(x′) = 0, i.e. x and x′ are not in the same leaf. In this case the numerator is zero so

symmetry is even easier to prove:

kt(x,x′) =
0

|`t(x)|
= 0 =

0
|`t(x′)|

= kt(x′,x) (5.22)
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Proving that kt is positive semidefinite is more complicated. As usual, consider an arbitrary

collection of m test points in feature space, with Ki j = kt(xi,x j). In general these m test points are

independent of the tree’s training points. Leaf regions `t(x) do not overlap so without loss of

generality we can reorder the indices i so they are grouped by their leaf regions. We now label

these regions as `r, where r = 1..R enumerates the R regions containing at least one test point. In

other words, the first |`1| indices i = 1.. |`1| lie in leaf region `1, the next |`2| indices

i = |`1|+1.. |`1|+ |`2| lie in region `2, and so on. From the symmetry proof above, Ki j = 0 when xi

and x j lie in different regions, so this ordering makes K block diagonal. We define these

sub-blocks Kr for convenience. Moreover, for points i and j in the same leaf region `r
t , we have

Ki j =
1
|`r

t | for all i, j in the region. This makes all entries in each sub-block Kr identical. We can

then re-write these constant blocks using the spectral theorem to obtain their eigenvalues:

Kr =
1
|`r|




1

...

1



(1, · · · ,1)+

|`r|
∑
j=2

0 ·u j uT
j (5.23)

where the u j are vectors orthogonal to the first eigenvector of all ones. By inspection of

Equation (5.23), each Kr block has one positive eigenvalue (λ1 = 1)¶ and the remaining |`r|−1 are

zero. Each Kr block is therefore positive definite. Returning to K itself, the eigenvalues λ of a

block diagonal matrix are the union of its sub-blocks’ eigenvalues, i.e. {λ}K = ∪r {λ}Kr
. All

sub-blocks Kr have eigenvalues that are positive or zero, so their union of all eigenvalues is also

either positive or zero. K itself is therefore positive definite.

Now that we have proven kt it is a valid kernel, we discuss some of its interesting properties.

First, from the proofs above we see that kt(x,x′) is piecewise constant: 1
|`t(x)| =

1
|`t(x′)| if both points

are in the same region, and zero otherwise. This reflects that tree values at x are x′ are correlated

¶The factor of 1
|`r | in Equation (5.23) is the vector’s normalization.
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via the mean of their leaf region, so all points in the same leaf region are identically correlated.

Second, the correlation among points decreases with the number points in each leaf. If a leaf

region has a single data point then |`t(x′)|= 1 and kt = 1. This is because the “mean” of a single yi

is identical to yi itself, leading to perfect correlation. As the number of points in the leaf rises,

though, correlation decreases as 1
|`t(x′)| since each each yi value only contributes that same fraction

1
|`t(x′)| of the mean. It should be noted that the kernel kt derived above is similar to that derived by

Davies et al.,28 but Equation (5.20f) contains the normalization factor of 1
|`t(x′)| while that of

Davies et al. does not. For “full” trees, i.e. those with a single data point per leaf, the normalization

factor is 1 so our kernels are identical. However, in practice each leaf may have a different number

of points. The kernel kt derived above in Equation (5.20f) correctly accounts for the corresponding

1
|`t(x′)| correlation.

Additional properties can be gleaned from the tree construction process itself. First, training is

fast compared to other nonlinear methods since predictions are simple means and the “cost

functions” are just variances. Second, after training trees only need the sequence of decisions and

the mean value yi in each leaf region. Trees can then be stored in well-established binary tree

structures for memory efficiency. Third, they are invariant to monotone feature transformations.

This is because tree decisions simply partition on some value p f , so for any transformation f → f ′

there exists a pivot value p f → p′f ′ that yields the same partitioning. For example, consider x→ x2

for x > 0. If px = 5 best partitions the original data, then x2 is identically partitioned at px2 = 25.

Most other regression models are sensitive to monotone transformations. Monotone invariance

allows forests to perform well without having to extensively test different data scaling and

preconditioning strategies.

Despite these advantages, single decision trees are rarely used in practice. First, they have a

strong tendency to overfit data, predicting ŷ(x) with significant noise. This is because predictions
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are the average of only the small number of yi values present in each leaf. Any noise in the sample

values ŷ is thus echoed back in the output–deep decision trees don’t approximate the underlying

function y(x) so much as mimic its sample values ŷ. Second, individual decision trees have hard

rectangular boundaries. For small perturbations ε, x and x+ε can straddle a decision boundary,

leading to completely different decision paths and values.

Empirically it has been demonstrated that using an ensemble of randomized decision trees, or a

decision forest,13 strongly mitigates these drawbacks. Most decision forest regressors ŷ f return the

mean of their trees’ predictions ŷt . Randomized trees each have different leaf boundaries and

decision pathways, and thus different predictions ŷt(x). Averaging over a large number T of

randomized trees mitigates noise and discontinuities in ∆ŷt at leaf boundaries because each tree

only contributes a fraction 1
T to the forest’s mean.

The challenge in such decision forests is to randomize each tree enough to change its boundaries

and predictions, but not so much that it becomes useless for predictions. In other words, trees

should be decorrelated from each other, but maintaining their correlation with the true function

y(x). Many randomization approaches exist, but the most popular by far are heavily based on the

Breiman’s random forest algorithm:13

1. Bagging: construct trees on bootstrapped subsets Bt drawn with replacement from the

training data

2. Random Inputs: each decision considers a random subset of features F

3. Optimal Pivots: select the best pivot p f among f ∈ F

4. Prediction: return the mean of all yi where i ∈ `t(x) and i ∈ Bt

Various “global” choices must then be made regarding the number of features F to consider for

each decision and maximum tree depths. Fortunately, the following choices are generally close to
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optimal for regression: consider F . m of the m total features for each decision, and use unlimited

depth.13 Bagging gives each tree a different subset of the training data, leading to different pivot

values and decision pathways. Similarly, using F random inputs adds additional variation to the

decision pathways.

Subsequent work has suggested several improvements to the original random forest algorithm.

The most popular of these is the extra(-random) forest algorithm,40 which modifies step 3 by

comparing a single random pivot value p f for each of the F random inputs. Extra forests generally

provide a small improvement in accuracy over random forests and are significantly faster to train

because only a single pivot per feature is considered for each decision. Extra forests are used

extensively in the work on predicting H adsorption energies for dilute Ag alloys presented in

Section 5.4. Another possible improvement, rotation forests148 further randomizes decision

boundaries by applying a random unitary rotation Ut to the feature values of each tree’s training

data. Decisions are then made on the rotated axes described by Ut . Rotation forests are promising

but most common machine learning libraries have not implemented it yet.

Now we can consider the forest kernel. A forest regressor returns the average of its trees, so the

forest regressor ŷ f can be written in terms of its tree regressors:

ŷ f (x) =
1
T ∑

t
ŷt(x) (5.24a)

=
1
T ∑

t
∑
i∈Bt

yi kt(xi,x|βt) (5.24b)

If we define δiBt to be 1 if i is in Bt and 0 otherwise, we can further simplify this expression:

=
1
T ∑

t
∑

i
yiδiBt kt(xi,x|βt) (5.24c)

=
1
T ∑

i
∑

t
yiδiBt kt(xi,x|βt) (5.24d)
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Interestingly this last expression cannot be written in terms of Equation (5.5a). This is because

each tree’s coefficients are different, with δiBt changing from tree to tree. We can demonstrate this

in general for two different models, with kernels k1(x,x′) 6= k2(x,x′):

ŷ1(x)+ ŷ2(x) = ∑
i

αi1 k1(xi,x)+∑
i

αi2 k2(xi,x) (5.25a)

= ∑
i

αi1 k1(xi,x)+∑
i

αi2 k2(xi,x)+∑
i

αi1 k2(xi,x)−∑
i

αi1 k2(xi,x) (5.25b)

= ∑
i

αi1 (k1(xi)+ k2(xi))+∑
i
(αi2−αi1)k2(xi,x) (5.25c)

Equation (5.25c) shows that the model sum corresponds to the sum of their kernels only if the

coefficients are the same. Eliminating the explicit appearance of δiBt would thus give us a forest

kernel that is the sum of its trees’ kernels. Returning to Equation (5.24b), we remove this bagging

restriction to see what it implies:

1
T ∑

t
∑
i∈Bt

yi kt(xi,x|βt)→
1
T ∑

t
∑

i
yi kt(xi,x|βt) (5.26a)

=
1
T ∑

t
∑

i
yi

δ`t(xi|βt)`t(x|βt)

|`t(x|βt)|
(5.26b)

This last expression is the random forest kernel if trees predict the mean of all training point

samples in a given leaf region, not just those in Bt . Bagging can still be used randomize partitions

when generating trees (as part of the randomized βt), but no samples should be left out when

making predictions. In recognition of this change, and inspired by Davies et al.,28 I call modified

algorithm the random partition forest. We can now obtain the kernel k f for the random partition
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forest:

ŷ f (x) = · · ·=
1
T ∑

t
∑

i
yi kt(xi,x|βt) (5.27a)

= ∑
i

yi

(
1
T ∑

t
kt(xi,x|βt)

)
(5.27b)

As with the regression tree, we finally compare to Equation (5.5a):

αi = yi (5.27c)

k f (x,x′|β f ) =
1
T ∑

t
kt(xi,x|βt) = 〈kt(xi,x|βt)〉t∈ f (5.27d)

Again, it must be pointed out that k f is the kernel corresponding to the random partition forest, not

to the more common random forest introduced by Breiman. Nevertheless, tree construction is

identical for both methods so the random partition forest kernel can be extracted from trees made

for random and extra forests. Moreover, since bagging primarily serves to randomize partition

boundaries rather than randomize predictions themselves, Equation (5.27d) should be a reasonable

approximation to the kernel from Breiman’s random forests. It should also be noted here that the

culmination of bagging, random inputs, and random pivots can be considered to be parameters β

for the forest kernel, drawn randomly from some distribution. From this perspective we can

interpret extra forests as Monte Carlo samples drawn from the distributions of Bt , random inputs,

and random partitions.

Although some properties of random [partition] forests have been discussed above, knowing the

kernel gives us more insight. Tree kernels are rectangular so forest kernels are the mean of many

such rectangles. A sketch of a forest kernel is shown in Figure 5.8 for different numbers of trees.

By averaging over several trees, the forest kernel has softer boundaries. Each tree’s kernel is

chosen to be optimal for the target function, so similar to neural networks, k f yields a data-driven
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T = 2 T = 5 T = 20 T = 100

Figure 5.8: Sketch of a forest kernel k f (x,0) in two dimensions using randomly-generated rectangular regions
for varying numbers of trees T . The white circle indicates the origin, and k f is plotted over the same region for
varying values of x∈R2. The forest kernel decreases monotonically with distance |x| from x′ = 0 along any fixed
direction.

kernel. For a given point x′, k f (x,x′) is maximized at k f (x′,x′) where its trees’ kernels are all

nonzero (x′ by definition is in its own leaf region). We can also see that that k f (x,x′) decreases

monotonically as x moves away from a fixed x′ along some direction û. Letting t be the distance,

then x= x′+ t û. As t increases, each tree kernel in the forest is only nonzero in the convex region

`t(x′), so sufficient displacement t may move x outside `t(x′) where the the tree’s kernel is 0. Tree

kernels are therefore monotonically decreasing functions along any direction û. Since the forest

kernel is the mean of its trees’ kernels, k f must monotonically decreases along û too. This proves

that k f (x+ t2û,x′)≤ k f (x+ t1û,x′) for t2 ≥ t1 ≥ 0, which I call directionally monotonic for lack of

a better phrase. Forest kernels therefore exhibit a limited degree of localization, somewhat similar

to the RBF kernel discussed previously in Section 5.2.4.3.

As proposed by Davies et al., forests can be generalized to obtain an entire class of

partition-based models. We can obtain the generalization by expanding the forest kernel:

k f (xi,x|βt) = 〈kt(xi,x|βt)〉t∈ f
−→=
〈δ`p(x|βp)`p(x′|βp)

|`p(x)|

〉

p∈e
(5.28)

The right-hand side defines the random partition kernel, an ensemble e of partitioners p. Each

partitioner subdivides feature space into one or more non-overlapping regions `p(x). Davies et al.
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obtained the same expression, but without the 1
|`p(x)| scaling discussed previously. Forests are a

special case of random partition kernels: they are ensembles of partitioners that subdivide feature

space into contiguous rectangular regions. However, there are no requirements about the shape of

these regions in general so regions could be non-rectangular. For example, partitioners based on

k-means clustering would not have rectangular boundaries. If each partitioner’s leaf regions are

convex, then the resulting ensemble would exhibit the same “directional monotonicity” that forests

do. On the other hand, Equation (5.28) also permits non-convex and even disjoint regions as well.

Partitioning models could be designed to handle periodicity and other nonlocal correlations. These

partitions might be obtained using discrete Fourier transforms or wavelet analysis. Sophisticated

partitioning schemes are beyond the scope of this thesis but could be promising directions for

future work.

Finally, as ensemble methods, random forests can provide confidence intervals based on each

tree’s prediction. For any point x, the random forest prediction ŷ f (x) is the mean of its trees’

predictions {ŷt(x)}. Most implementations of random forests, such as the one in scikit-learn

used in Section 5.4, report only the mean. However, the distribution of tree predictions can give

insight into the forest’s confidence in a prediction. If most trees predict similar values for ŷt(x),

then the forest has high confidence and can be interpreted as a narrow confidence interval. In

contrast, widely varying predictions indicate poor confidence and a wide confidence interval. The

simplest metric for the confidence interval is the standard deviation σ f (x) of forest predictions.

Empirically, in the Ag alloys work in Section 5.4, these standard deviations are indeed correlated

with the errors ε f (x). Defining the “forest z-score” as z f (x) =
ε f (x)
σ f (x) , we found that z f is

approximately normally distributed such that z f can be interpreted in the same way as z-scores in

other contexts. Having quantifiable confidence intervals is a major benefit since it is always

important to know the limitations and reliability of predictions, especially when accuracy can vary
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among different groups of points in dataset.

5.2.5 PRINCIPAL COMPONENT ANALYSIS AND CLUSTERING

Obtaining decorrelated features and sparsity is an important task when applying most regression

models. In most practical data sets the feature values x themselves are not uniform and

decorrelated. For example, consider a housing data set with variables including GPS location,

population density, and distance to public transit. Population density and distance to public transit

are correlated since public transit is generally not built in rural areas, and distance is a function of

GPS coordinates so they are correlated as well. Models trained on all variables can then struggle to

identify the most important features and their independent effects. Moreover, high dimensonal

models with many features require many parameters, requiring more data to precisely determine

the values of all coefficients.

These issues are mitigated if we map xi to a new feature space, zi, where the new features

z1, · · · ,zm are decorrelated. By ranking the variance σ2
i along each of these directions from largest

to smallest, we can also achieve sparsity by only keeping the components of zi with high variance.

These components describe most of the variation in the data set. A sketch of this process is shown

in Figure 5.9. The data points are clearly distributed along a curve. If we could obtain the

projection of each data point along the curve, then most of the two dimensional sample points are

reasonably approximated using only the single coordinate z1 along the curve. Similarly, the

outliers indicated by filled circles can be detected by finding points with unusually large values

along the low-variance dimension z2. These kinds of projection become increasingly beneficial

when we must consider dozens or even hundreds of features.

Both goals are achieved by principal component analysis (PCA). Relationships between

correlated variables are nonlinear in general, such as those sketched in Figure 5.9. Following the

kernel discussions above, however, we know that nonlinear correlations in feature space xi will
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Original Coordinates xi Projected Coordinates zi

Figure 5.9: A sketch demonstrating the utility of projecting features onto new axes. z1 is distance along the
curve, and z2 is distance perpendicular to the curve. Outliers are indicated by filled circles.

become linear correlations in a well-chosen kernel space φ(xi). For simplicity, let φi ≡ φ(xi). If

we know the φi explicitly for all n sample points, e.g. linear and neural network regression, then

we can obtain the correlation matrix directly:

C ≡ 1
n

n

∑
i=1
φiφ

T
i (5.29a)

= ∑
i

λi ûi ûT
i (5.29b)

=UΛUT (5.29c)

where the eigenvalues λi are the principal values, and the eigenvectors ûi are the principal

components. The matrix U ≡ (û1, û2, · · ·) is the matrix of principal components. Equation (5.29b)

follows from the spectral theorem, and Equation (5.29c) shows that we can interpret U as a new

basis: the rotation of kernel space vectors φi that decorrelates their entries.

Principal values λi give variances of the data along each dimension ui in kernel space. Those

directions with the largest variances then explain most of the variation among the corresponding xi.
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By convention we sort the λi such that λ1 ≥ λ2 ≥ λ3 · · · and so on. The rank of C depends on φ and

n. Suppose φ is a d-dimensional vector, φ ∈ Rd . If n < d, then rank(C)≤ n since the n kernel

space points φi span at most n dimensions. If n≥ d, then C ∈ Rd×d means that rank(C)≤ d. In

both cases rank(C)≤ n so the eigenvectors ûi can be written as linear combinations of the kernel

space points:

ûi = ∑
µ

α i
µφµ (5.30)

As implied previously, seek the projection of x j onto the ith largest principal component in kernel

space:

(z j)i ≡ ûT
i φ j (5.31)

This notation is admittedly complicated, but it keeps our discussion entirely general so that we can

apply PCA using any kernel of choice. If we have φi for all points, then Equation (5.31) completes

our objective.

When only k(xi,x j) = φi ·φ j is known, however, we need to re-write these expressions to rely

exclusively on inner products. Fortunately, the projections we want in Equation (5.31) are inner

products. Using Equation (5.30) we can then rewrite them in terms of K:

(z j)i ≡ ûT
i φ j =

(
∑
µ

α i
µφ

T
µ

)
φ j = ∑

µ
α i

µKµ j =
(
αiT K

)
j

(5.32)

The right-hand side of Equation (5.32) shows that the x j’s projection onto principal component ûi

is the the jth entry of αiT K. If we define Z ≡ (z1 · · ·zn), and A≡
(
α1 · · ·αn

)
, then this equation can

be rewritten as

Z = KA (5.33)

so that the ith column of Z lists the projections of each point φ onto the ith principal component.
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This matrix operation is easy to implement once K and A are known. We can obtain an eigenvalue

equation for αi using the eigenvalue equation for ûi:

Cûi = λiûi eigenvector definition (5.34a)
(

1
n ∑

j
φ jφ

T
j

)(
∑
µ

α i
µφµ

)
= λi ∑

µ
α i

µφµ Equations 5.29a, 5.30 (5.34b)

1
n ∑

j
∑
µ
φiK jµα i

µ = λi ∑
µ

α i
µφµ (5.34c)

To eliminate the remaining vectors, we apply the Fourier trick by multiplying on the left with φν ,

and seeing that this equation should hold for all ν

φT
ν

1
n ∑

j
∑
µ
φiK jµα i

µ = φT
ν λi ∑

µ
α i

µφµ ∀ν (5.34d)

1
n ∑

j
∑
µ

Kν iK jµα i
µ = λi ∑

µ
Kνµα i

µ ∀ν (5.34e)

Equation (5.34e) is an eigenvalue equation in K:

Kαi = nλiα
i (5.34f)

Equation (5.34f) shows we can get the projections αi, the corresponding matrix of vectors A, and

the principal values λi by finding the eigenvalues of K. Applying Equation (5.33) then yields the

desired vectors Z = (z1 · · ·zn). Before continuing, it should be noted that the matrix expression C is

only the covariance matrix when the average kernel space values are centered at zero, i.e.

∑iφi = 0. Otherwise, the resulting correlations are biased. Therefore K is usually shifted to yield

K̃, corresponding to kernel space vectors centered at the origin. This shifting can be accomplished
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as follows:

K̃ = K−11/nK−K11/n +11/nK11/n (5.35)

where 11/n is the matrix where every entry
(
11/n

)
i j =

1
n . This allows us to “center” K at the origin

without directly knowing the values of φi. Equation (5.34f) is then applied to K̃.

Several examples of kernel PCA are shown in Table 5.2 for various combinations of data sets

and kernels. As expected the linear kernel extracts linear relationships between input features.

Linear PCA is the special case where xi = φ(x), so the eigenvectors U of the kernel matrix K can

be interpreted as a rotation matrix for the original features. This explains why linear PCA rotates

the input data. Interpreting the φ vectors for the RBF and cosine kernels is more difficult since

they are infinite-dimensional: the power series expansions for exp(u) and cos(u) have an infinite

number of terms. We can still interpret the results based on the behavior of k though. The RBF

kernel asserts that nearby points are correlated with each other, so groups of points with small

distances are mutually correlated. These points will then tend to grouped together with RBF PCA.

The blue and red points in the “half moon” data set have this relationship, and RBF PCA clusters

them together as expected. Finally, the cosine kernel asserts that points at periodically correlated

along the horizontal direction. Points spaced at regular intervals are thus considered mutually

correlated, and are grouped together by cosine PCA. This explains why cosine PCA performs

poorly for data sets lacking periodic order, and performs well for the periodic “fringes” data set.

We can also see the performance of different kernels in reducing dimensions on real world data:

the “red wine” data set.29 These samples consist of 11 features describing the chemical properties

of Portuguese red wines and their qualities on a 1-10 scale as determined by a panel of experts.

The goal is to predict the quality of new wines using only the readily-available 11 chemical

measurements. Figure 5.10 shows the results of the various approaches PCA and projection-based

methods of obtaining a two dimensional representation of the original 11-dimensional data. The
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Table 5.2: Kernel PCA Applied to Different Data Sets

Name Feature Space Linear Kernel RBF Kernel Cosine Kernel
x ·x′ exp(−|x−x′|2) cos(|x1− x′1|)

line

half moon

fringes

most straightforward approach is to keep only the two most important features for linear

regression. This is done using linear LASSO regression as described in section 5.3.2 and yields the

“LASSO” projection in Figure 5.10. The other three panels show the results of PCA using the

linear, RBF, and forest kernels. Generally speaking the LASSO and forest PCA projections yield

the best distinction between wines of each quality; both methods show a clear separation from

upper left to lower right. Linear and RBF PCA also perform reasonably, but moderately good and

poor wines are mixed on the interior of the region.
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LASSO Linear Kernel RBF Kernel Forest Kernel

Figure 5.10: Several approaches for achieving two dimensional representations of the red wine data. Points are
colored by quality; purple is worst and yellow is best. LASSO projects all points onto the two most important
features as determined by linear LASSO regression (see Section 5.3.2). The other three are applications of
kernel PCA. Forest and RBF kernels were optimized by maximizing their respective regression performances on
the data set.

5.3 MODEL TRAINING

We now turn to the task of actually obtaining the coefficients αi, and possibly β parameters as

well, for a given regression model. There are two equivalent perspectives to model training:

1. Costs: optimize the coefficients αi and parameter(s) β with respect to a cost function C

2. Likelihood: maximize the likelihood of observing training points yi given the model

Both approaches are summarized below.

5.3.1 COST FUNCTIONS: LASSO AND RIDGE

Explicit cost functions pose finding the αi in terms of an optimization problem. The most typical

cost function is the [root mean] squared error:

CSE ≡∑
i
(yi− ŷ(xi))

2 (5.36)

Using squared error prioritizes models without large errors, but quadratic scaling leaves models

susceptible to outliers, points with unusual yi values resulting from noise or errors in data

collection. Other cost functions, such as mean absolute error, can be used as well. Squared error is
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immensely popular because it leads to linear matrix equations involving the kernel matrix K and

the vector of coefficients α. Other cost functions can provide greater resilience to noise but

generally make optimization more computationally expensive.

For some models, especially those with many parameters and noisy data sets, minimizing

squared error alone leads to the αi coefficients becoming very large to replicate noise and errors in

the data set instead of the underlying function. Augmenting the cost function a parameter-based

penalty mitigates this behavior. Such augmentations are said to regularize the model. The most

common regularization approaches are LASSO and ridge:

CLASSO ≡CSE +λ1 |α|1 (5.37a)

Cridge ≡CSE +λ2 |α|22 (5.37b)

where all λ parameters are positive. Both penalties are widely used.

5.3.2 LASSO VERSUS RIDGE REGRESSION

These cost functions have qualitatively different behavior. LASSO regularization is the L1 (or

“Manhattan”) norm. Empirically, increasing λ1→ ∞ almost always leads to a growing number of

αi coefficients becoming identically 0. LASSO is therefore useful for dimensionality reduction

since the features corresponding to αi = 0 coefficients can be ignored. For example, the “LASSO

projection” in Figure 5.10 as obtained by adjusting λ1 until only two of the eleven features had

nonzero coefficients in the linear model. LASSO penalties therefore yield sparse models with few

terms, leading to its widespread use in compression. Unfortunately, the L1 norm generally leads to

non-analytic solutions for α as a function of λ1, so CLASSO must be iteratively minimized with

numerical optimization methods.

On the other hand, the ridge penalty is the L2 norm which generally provides analytic matrix
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equations for α for a given value of λ2. Moreover, the L2 norm is invariant under unitary rotations.

Unfortunately, L2 penalties do not tend to yield sparsity. As λ2→ ∞, |αi| values do tend to

decrease but almost never actually vanish. Sparsity can still be achieved with ridge regression, but

often times redundant features will have approximately uniform coefficients. Determining which

coefficients can be eliminated, e.g. with an empirical cutoff, must be done with great care. Ridge

regression is therefore favored in cases where sparsity is less important than regularization.

Differences between LASSO and ridge regression can be explained by comparing frontiers of

constant CSE with those of constant L1 and L2 penalties. The squared error cost generally

increases toward the origin (α= 0) since constraining the coefficients increases errors (the

variational principle). Meanwhile, the regularization penalties increase away from the origin.

Points where these frontiers intersect yield the lowest penalty for a given value of CSE and thus the

lowest overall cost. These intersections are sketched for both LASSO (L1) and ridge (L2) penalties

in Figure 5.11. We see that LASSO tends to yield intersections at the axis-aligned “corners” of the

L1 norm, corresponding to αi = 0. In contrast, the smooth L2 contours feature tangential

intersections that generally do not correspond to αi = 0. This is why LASSO regression tends

toward sparsity while ridge regression does not.

5.3.3 MAXIMUM LIKELIHOOD AND BAYESIAN OPTIMIZATION

The other approach to model parameters is maximum likelihood estimation. From this perspective,

models and function values are considered to be probability distributions. We start with the error

distribution, p(yi|xi,α), the probability p of observing yi given its corresponding position xi in

feature space and model parameters α. This distribution is usually assumed to be Gaussian:

p(yi|xi,α)∼N
(
ŷi (xi,α) ,σ2) (5.38)
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LASSO (L1) Penalty Ridge (L2) Penalty

Figure 5.11: Sketches showing the intersections between contours of constant squared error cost and L1/L2
cost. Cel shading is applied according to squared error cost. Intersections between the L1/L2 contours and
squared error contours are indicated by filled circles.

where ŷi is a function of the features xi and the model parameters α. Equivalently, we can define

εi ≡ yi− ŷi such that εi ∼N
(
0,σ2

)
.

The most likely model maximizes the probability P of observing all the values yi with respect to

the parameters α. Assuming that errors are identically and independently distributed, we can

re-write the optimization problem for as follows:

max
α

P({yi}|{xi} ,α) = ∏
i

P(yi|xi,α) (5.39a)

= ∏
i

1√
2πσ2

exp
(
− ε2

i

2σ2

)
(5.39b)

=

(
1√

2πσ2

)n

exp

(
− 1

2σ2 ∑
i

ε2
i

)
(5.39c)

=

(
1√

2πσ2

)n

exp

(
− 1

2σ2 ∑
i
(yi− ŷi (xi,α))

2

)
(5.39d)
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The only part of the right-hand side that depends on α is the sum embedded in the exponential.

The smaller this sum, the larger P becomes. Therefore we now have an equivalent minimization

problem:

max
α

P({yi}|{xi} ,α)→min
α

∑
i
(yi− ŷi (xi,α))

2 ≡min
α

CSE (α) (5.39e)

This last equation shows that maximizing the normal distribution’s probability is exactly equivalent

to minimizing the squared-error cost function CSE (again assuming that errors are identically and

independently distributed).

Based on the derivation above, we can generalize this connection for probabilities of the

following form:

p(yi|xi,α) = |a|exp
(
−|εi|p
|b|

)
→min

α
∑

i
|εi|p (5.40)

Exponentials depending on some power p of the error lead to minimizing the p-norm of the errors.

Equation (5.40) is the core link between minimizing the cost functions above and maximizing

probability.

The approach above is immensely popular (i.e. ordinary least squares regression), but is a bit

circuitous. In modeling we typically prefer p(α|{yi} ;{xi}), the probability of observing the

parameters α given the observed values yi and their feature vectors xi. Maximizing this probability

gives the most likely weights, and p is a distribution yielding confidence intervals for the

parameters.

Conditional probabilities can be obtained using Bayes theorem, resulting in Bayesian

optimization. Bayesian approaches are particularly attractive because they provide easy ways to
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include regularization. We start with Bayes’ theorem itself:

P(B|A) = P(A|B)P(B)
P(A)

(5.41)

In the present context, A is the set of observed values y, and B is a set of model parameters α.

Rewriting Bayes’ theorem with this notation yields the probability distribution for α:

P(α|{yi} ;{xi}) =
P({yi}|α;{xi})P(α)

P({yi} ;{xi})
(5.42)

The probability P(α) is the Bayesian prior on the weights. Similar to kernels, priors are arbitrary

in the sense that they dictate the subsequent conditional distribution for α. Priors provide a

statistically well-defined way to enforce constraints and biases on the parameters. For example,

unusual or highly unlikely parameter combinations can be penalized by assigning them small

probabilities in the prior. Bayesian approaches are therefore not first-principles methods, and

statisticians have argued the relative merits and validity of Bayesian models (as opposed to

frequentist models) for centuries. The main risk is that bad priors can lead to unreasonable bias

into the results. For example, one could obtain any desired result αbias using

P(α) = δ (α−αbias). On the other hand, well-chosen priors can improve resistance to outliers,

leverage domain knowledge to compensate for small or incomplete data sets, and obtain

uncertainty estimates via Equation (5.42).

The most popular Bayesian priors are selected to yield regularization. As discussed previously,

keeping parameters small prevents models from fitting significant amounts of noise or being

strongly biased by outliers. In terms of P(α) we therefore assert that coefficients are more likely to

be small by using a prior that is maximized when α= 0. For example, we can set P(α) to be a

normal distribution assuming that the parameters are independent and identically distributed with
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standard deviation σα :
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To see how this prior affects the most likely value of α, we maximize the conditional probability

P(α|{yi} ;{xi}) given the training data:

max
α

P(α|{yi} ;{xi}) = max
α

P({yi}|α;{xi})P(α)

P({yi} ;{xi})
(5.44a)

The denominator of the right-hand side is sometimes known as the marginal distribution of the

training data itself and is constant with respect to α. Furthermore, we can replace P({yi}|α;{xi})

with the expression we already found in Equation (5.39c):
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We now replace P(α) with the Gaussian prior from Equation (5.43):
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This expression is maximized when the argument is minimized:

→min
α

∑i ε2
i

2σ2 +
|α|2
2σ2

α
(5.44f)

= min
α

∑
i

ε2
i +

σ2

σ2
α
|α|2 (5.44g)

max
α

P(α|{yi} ;{xi})≡CSE (α)+λ2|α|2 ≡Cridge (α) (5.44h)

A Gaussian prior on the weights α therefore corresponds to Ridge regression, the L2 penalty.

Analogous to Equation (5.40), there is a general connection between exponential priors and cost

functions:

P(α) ∝ exp
(
−|α|

p

|b|

)
→Cp(α) = λp |α|p (5.45)

In other words, using an prior that is exponential in the p-norm, i.e. P(α) ∝ exp(−|α|p),

corresponds to using the p-norm as a cost function.

Though lengthy, this derivation demonstrates an important result: cost functions and Bayesian

regularization are equivalent. The advantage of explicit cost functions is that they directly lead to

optimization problems, and tools for solving such optimization problems are widespread. On the

other hand, the Bayesian approach yields distributions for the parameters. Moreover, when P(α)

has no analytic expression, Bayes’ theorem makes Monte Carlo sampling straightforward since we

can draw many samples from P(α) and obtain empirical distributions for α given the training data.

5.4 H ADSORPTION ON AG ALLOYS

ABSTRACT

Adsorption energies on surfaces are excellent descriptors of their chemical properties, including

their catalytic performance. This has prompted a significant amount of work towards efficiently
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predicting adsorption energies without performing expensive quantum chemical calculations,

based on semi-empirical or data scientific models. Here, we develop machine learning models to

predict H adsorption energies on stepped Ag surface alloys, based on a database of energies

calculated with density functional theory. By starting with a simple model and iteratively refining

the features extracted from the calculations, we determine the key characteristics of successful

models and reduce the number of features required for accurate adsorption energy predictions. We

find that nonlinear models are essential for accurate predictions. Moreover, detailed comparisons

between model predictions and density functional theory calculations reveal a counterintuitive

“self-passivation” exhibited by some dopants, as well as unexpected discontinuous electronic

structure effects. Both these phenomena are explained using tight-binding Hamiltonians and

analysis of the density of states. Finally, we show that we can estimate the reliability of a particular

prediction, mitigating the effects of larger prediction errors in the small fraction of cases where

they occur.

5.4.1 INTRODUCTION

Many important chemical processes involve hydrogenation, including biodiesel production,

petrochemical conversion, fine chemical synthesis, and food processing.19,63,191 For example, the

selective hydrogenation of acetylene to ethylene is a necessary step to purify feedstocks for

ethylene polymerization. Therefore, understanding and designing catalysts for hydrogenation

reactions has been the subject of intensive research.

Adsorption energies of key intermediates have long proved useful in rationalizing trends in

catalytic performance.5 Hydrogen itself is an important intermediate in hydrogenation reactions,

and its adsorption energy can correlate with that of other intermediates, such as hydrocarbons.120

Therefore, to a first approximation, the hydrogen adsorption energy can be used to screen surfaces

for their catalytic performance towards hydrogenation reactions.5,22,106,158,198 After initial
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screening, more detailed studies of other important intermediates for a particular reaction can be

performed prior to experimental synthesis, characterization, and testing. Ag has the weakest H

adsorption energy of the transition metals,121 and this inertness can lead to Ag alloys having high

selectivity for hydrogenation.191

Several approaches have been tested for predicting adsorption energies without performing

computationally intensive quantum chemical calculations. Some of these approaches are

physically motivated, such as estimating electronic structure using tight-binding.67 Other

approaches are data driven,2,143 culminating in the application of modern machine-learning

techniques.70,101,108,135,174 However, to apply more powerful machine-learning methods and ensure

the generality of the approach, larger data sets are needed. The generated model and the process of

creating it can in turn provide physical insights into complex problems.

In this work, we perform thousands of calculations of H adsorption energies on stepped Ag alloy

surfaces, in order to apply powerful machine-learning methods and enable efficient prediction. We

begin by mining the data for catalytic insights and constructing a very simple model. We examine

the errors to tailor the machine-learning approach and iteratively develop more accurate models.

Iterative improvements and detailed inspection of these models results in high accuracy (median

absolute error of 0.3 kcal/mol) and provides a physical understanding of counterintuitive trends,

including self-passivation. We find that the best models have low bias, allowing them to readily

adapt to varying trends within the data, and that the best surface descriptions combine structural

and chemical information.

5.4.2 DATA AND MODELS

Bimetallic alloys are formed from a Ag(211) host structure by replacing between one and eight

atoms with a single transition metal element: Ti, Zr, Hf, V, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Co, Rh,

Ir, Ni, Pd, Pt, Cu, Au, Zn, or Cd. The bottom layer is always composed of Ag to simulate the bulk,

148



Chapter 5. Machine Learning

allowing for the remaining 32 atomic sites to serve as candidates for replacement. The H

adsorption energy for each alloy surface is obtained using density functional theory (DFT)

calculations with the VASP code85,87 (see Appendix B for details). Geometry relaxations for each

alloy start with the metal atoms placed in the corresponding minimum-energy positions of the pure

Ag(211) structure, and H placed at the hcp hollow site adjacent to the step edge, which is its

minimum-energy geometry on pure Ag(211).

All regression models are implemented in scikit-learn,136 an open-source Python package

supporting a wide variety of general-purpose machine learning methods. We focus on linear and

quadratic polynomials, multilayer neural networks, kernel ridge regression, random forests,13 and

extra forests.40 When applicable, we also consider ridge and LASSO regularization to adjust the

balance between model accuracy and generality. All errors are calculated using randomized 4-fold

cross-validation. Parameters are chosen to minimize total squared error on the training set (75%),

and the test set (25%) is used to optimize model hyperparameters and evaluate model accuracy. For

each model we also consider several preconditioning methods: standardization (zero mean, unit

variance), principal component analysis (PCA), and quantile transformation.

5.4.3 RESULTS AND DISCUSSION

5.4.4 DATA MINING

We begin by examining the database to understand how various dopant positions affect H

adsorption. For the structures with a single dopant atom, we calculated the standard deviation of

adsorption energies for substitutions within the first, second, and third nearest-neighbor shells

around the H atom, as well as more distant dopant locations. Standard deviations decline quickly

with distance: 0.30 eV among first nearest-neighbors and 0.11 eV among second

nearest-neighbors, but only 0.04 eV among third nearest-neighbors or more distant atoms (see
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Figure 5.12: Standard deviation of adsorption energies for isolated dopant atoms located at varying distances
from the H atom. Distances are labeled according to nearest-neighbor shells, e.g. ‘2’ refers to second nearest-
neighbor dopants. Inset: geometry of the Ag(211) surface, with lighter atoms in the surface and darker atoms
in the subsurface. Atoms in the first and second nearest-neighbor shells are labeled.

Appendix B, Figure 5.12). Therefore, a single dopant significantly affects adsorption energies only

if it lies within the first and second nearest-neighbor shells, a total of four symmetrically

inequivalent sites.

Doping in the first nearest-neighbor shell results in qualitatively different effects on adsorption

than the second shell. Most dopants have higher d-orbital energies and radii than Ag and therefore

tend to enhance H adsorption, as discussed in previous studies.50,120,121 These dopants strengthen

H adsorption energies when located adjacent to H in the surface, but have the opposite effect when

located within the second nearest-neighbor shell (see Appendix B, Figure B.2). For elements with

low d-orbital energies, specifically Cd, Zn, and Au, these effects are reversed. Therefore, elements

that bind strongly to H also passivate nearby Ag atoms towards H adsorption.

We also examined the formation energies of the alloy surfaces, relative to the clean Ag(211)

surface and the lowest-energy bulk phase of each dopant element. Our results indicate that alloy

surfaces for most elements are thermodynamically unstable, with formation energies exceeding

0 eV, regardless of the number of dopants (see Appendix B, Figure B.3). These unstable elements

prefer to lie as isolated atoms in the second or third layers. However, Zn, Cd, Au, Pd, and Pt form
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thermodynamically stable alloys, with dopant atoms in the surface layer. Under mild reaction

conditions, metastable alloys may remain kinetically trapped in their configuration. Therefore, we

also searched for arrangements with metastable formation energies between 0 and 1 eV. We find

that Ti, Zr, Hf, Rh, Ni, and Cu have metastable arrangements for both bare surfaces and in the

presence of a single H atom. Adsorption of a single H atom is insufficient to qualitatively change

formation energies: no formation energy changes from > 0 eV to < 0 eV or from > 1 eV to < 1

eV, although higher H coverage or other reaction intermediates are likely to have larger effects.

5.4.5 INITIAL FEATURES AND MODELS

To apply a machine learning model, we must first extract features from each surface in our

database to use as model inputs. Each atom in the Ag(211) structure is a symmetrically

inequivalent site that can be occupied by either Ag or one of the 22 transition metal dopants.

Therefore, it is natural to treat the system as a static lattice. Considering the 31 lattice sites within

8 Å of the H atom, we can then encode the entire structure using a binary matrix B ∈ {0,1}31×23,

such that BiJ = 1 if lattice site i is occupied by an atom of element J. With such a large number of

features (31×23 = 713) we apply LASSO-regularized linear regression. Regularization applies a

penalty to large coefficients and therefore results in simpler models that are less likely to be

overfitting. The root-mean-square error (RMSE) of this model is 150 meV (see Figure 5.13).

Despite not supplying chemical descriptions of the elements, the linear model captures a

significant amount of the variance in H adsorption, with an R2 statistic of 0.81. However, there are

outliers with errors exceeding 1 eV. Therefore, very simple models can provide a surprisingly

reasonable estimate for most H adsorption energies, but improvements to the features and model

are needed for precise estimates.

Errors from the simple model also provide insight into which data points may be unphysical or

difficult to predict. The geometries of the outliers reveal two major sources of error. The first, and
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most severe, is related to reconstruction, where the surface geometry changes significantly from

the input structure. In particular, “differential reconstruction,” where the surface reconstructs

differently for the bare slab compared to the H/slab systems, often results in high errors. A second

class of outliers consists of cases where the H atom relaxes by moving to a different region of the

slab, beyond the top and bridge sites adjacent to the initial configuration (see Appendix B for

details). These outlier classes are color-coded in Figure 5.13. As indicated in the log-scale

histogram in Figure 5.13(b), these two classes of points comprise a small fraction (2.5%) of the

total data but dominate the total error. This is consistent with the lower prediction errors we

obtained in the absence of relaxation, by predicting “adsorption energies” for the alloy surfaces in

their initial bare slab and H/slab geometries.

To test whether these outliers and the high overall RMSE can be mitigated using different

models, we compare LASSO- and ridge-regularized linear and polynomial regression,

ridge-regularized multilayer neural networks and radial basis function (RBF) kernel regression,

random forests,13 and extra forests.40 Although more sophisticated variants of these models have

been considered previously,31,94,166,200 these general-purpose models are widely supported in

commonly used software packages.

To reduce overfitting and computational effort, we use a more parsimonious feature set for these

comparisons, including both “arrangement” and “chemical” features that describe the locations

and chemical identity of dopants, respectively. For structural features, we use a one-hot vector of

length 31 indicating which sites are substituted: bi = 1 if lattice site i is occupied by a dopant. We

then include the number of first, second, and third-nearest neighbors relative to the H atom, as well

as the number of dopants farther away than third-nearest neighbor. This leads to 35 total

arrangement features. These features are partially redundant, but linear combinations of features

can yield more sparse and accurate models.13
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Table 5.3: Lowest RMSE Values for Combinations of Models and Feature Scaling Strategies

Regularization Model Standardized PCA Quantile Unscaled
LASSO linear 212 212 202 213
LASSO quadratic 134 135 120 137
Ridge neural network 106 106 107 fail
Ridge kernel ridge 111 111 105 117
n/a random forest 101 120 102 101
n/a extra forest 100 116 101 99

All values are in units of meV, with uncertainties of ±1 meV. The lowest RMSE value for each
model is bolded.

For chemical features, we use commonly available atomic properties to account for the dopant

element’s chemical identity. Based on insights from previous studies,50,67,124 we include each

dopant’s tight-binding d-orbital radius and energy52 and its column in the d block. We also include

the dopant’s row in the d block, Pauling electronegativity, covalent radius, mass density, enthalpy

of fusion, ionization energy, bulk modulus, Poisson ratio, and conductivity, similar to previous

work.101,108 Combining these with the structural features yields 47 total features. Our tests suggest

that the accuracy of the nonlinear models is insensitive to the precise feature set, as long as there

are enough features that the model can effectively distinguish between different elements.

The lowest RMSE results for each model using these features are shown in Table 5.3 for various

feature scaling strategies. Standardization shifts each feature to have zero mean and unit variance,

and PCA projects these standardized features onto the corresponding principal components. These

are linear transformations. In contrast, quantile scaling is a nonlinear transformation that maps

each feature value to the range (0,1) according to its percentile rank. The linear and quadratic

models are generally out-performed by the other four models with lower bias for most scaling

choices. Extra forests perform best with an RMSE of approximately 100 meV.

Forests are particularly successful due to their if-else decisions, which handle categorical

features in a natural way. In particular, forests are ideally suited for the one-hot vectors we use to

encode the structure. The benefits of if-else decisions also explain why PCA worsens forest
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performance, where the rotation in features tends to mix the one-hot bits with continuous features.

Since extra forests yield the lowest RMSE values and are insensitive to the scale of individual

features, we use their results in the subsequent discussion. Extra forests perform well across the

entire range of adsorption energies, with an improved R2 score of 0.92 and a median absolute error

of only 17 meV.

We find that extra forests, along with all other models, still have high errors associated with

differential reconstruction and H migration. In the following we exclude these points to focus on

errors that are not due to artifacts of the relaxation. Differential reconstruction yields calculated

adsorption energies that do not represent the chemical reactivity of the surface since two

qualitatively different surfaces are included in the subtraction. Similarly, when the H atom relaxes

to a completely different site, the model attempts to predict the adsorption energy far from the

region of the intended hollow site. Because we have a large data set, we can ignore the 2.5% of

points with significant atomic motion and still expect to not lose predictive capability for those

structures. Retraining extra forests on the remaining 97.5% of the data set yields a significantly

lower RMSE of 52 meV.

5.4.6 PHYSICAL INSIGHTS

We can gain insight into the model and into the underlying behavior of the system by examining

cases where the model performs poorly. Prediction errors are highest for elements toward the

left-hand side of the d block, where V and Mo have the highest element-wise RMSE values of

104 meV and 101 meV, respectively. These large errors are caused by similar configurations

having significantly different adsorption energies. We quantified similarity by computing the

forest’s kernel k f . Similar to other machine learning methods, the forest kernel k f (x,x′) gives the

correlation between any two data points described by x and x′ according to the trained forest

model. It is obtained by checking how often the two data points follow the same decision
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Figure 5.13: (a) Parity plot comparing simple linear model predictions to DFT calculations of H adsorption
energies. The dashed line indicates 1:1 parity, and data points corresponding to surface reconstruction and
H atom migration are color-coded red and blue, respectively. Four additional outliers due to reconstruction,
with DFT adsorption energies of −2.83, −1.98, 1.07, and 2.03 eV are not shown. (b) Log-scale stacked error
histogram with the same color coding as (a).
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Figure 5.14: d-Orbital projected densities of states on V atoms for selected V/Ag(211) arrangements. Light-
colored atoms are in the surface layer and dark-colored atoms are in the subsurface layers. (a) V tetramer with
high prediction error. (b-d) The three most similar arrangements according to the forest kernel k f (see text).
Each plot is labeled with the corresponding H adsorption energy and k f value. Grey regions indicate excess
densities of states relative to the reference structure in (a).

pathways. Given k f , the predicted adsorption energy for any data point x can be written as an

average over all training values yi, weighted by the corresponding kernel values k f (x,xi) (see

Section 5.2.4.6 for details). Data points xi with the largest k f (x,xi) values thus contribute the most

to the predicted value at x.

As an example, we use the forest kernel to better understand a large outlier, the V tetramer in

Figure 5.14(a) whose adsorption energy is significantly overestimated. Inspection of the three most

similar arrangements and their corresponding H adsorption energies, shown in Figure 5.14(b-d),

reveals the source of the error: these most similar structures all have significantly stronger H

adsorption. All four arrangements in Figure 5.14 have the same nearest neighbor shell for H, and

similar second-nearest neighbor shells. Analyzing the density of states reveals that stronger

adsorption is associated with higher d-orbital densities of states just below the Fermi level; these

increases are highlighted by the gray regions in Figure 5.14(b-d). These additional states lead to

stronger H adsorption energies, consistent with previous studies of O on Pt alloys.65 For example,

the last arrangement in Figure 5.14(d) yields the highest increase in the density of states near the

Fermi level and has the strongest H adsorption energy among these four structures.
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Similarly, further analysis of the errors reveals cases where adsorption energies tend to be

counterintuitive. In particular, 2-dopant structures where both dopants lie in the H’s first

nearest-neighbor shell have an RMSE that is twice as high as the data set as a whole, and 30%

higher than all cases with at least one dopant atom in this shell. Figure 5.15 compares adsorption

energies for dimers and isolated dopant atoms along the step edge for all dopant elements

considered here. One might expect that dimers of dopant atoms would yield roughly double the

effect of a single dopant atom–in most cases, strengthening adsorption. Adsorption energies for

dimers of Ti, Zr, and Hf at the step edge are indeed much stronger than the corresponding isolated

atom. The same is true for most elements on the right-hand side of the d-block such as Co, Pd, Cu,

and Zn. However, adsorption energies for dimers are significantly weaker, compared to an isolated

atom, for most elements from the center of the d-block, especially Mo and Re. The trend in H

adsorption energies for dimers and isolated atoms therefore changes dramatically across various

elements. While previous work has generally indicated that adsorption energies change

monotonically with the composition of the nearest neighbor shell,44,122,190 we show that there are

many exceptions to this.

Again, close inspection of the densities of states can rationalize this counterintuitive behavior.

For the dimers, dopant-dopant hybridization is stronger than Ag-dopant hybridization, resulting in

clear d-d bonding and antibonding peaks in most cases (see Figure B.4). Previous work has shown

clearly that high densities of states at or just below the Fermi energy leads to strong adsorption.130

Dimers of elements on the left side of the d-block have d-d antibonding peaks near the Fermi

energy, allowing strong adsorption. For dimers of elements in the middle of the d-block, rising

d-orbital energies push the antibonding peak above the Fermi energy where it no longer contributes

significantly to adsorption, while the d-d bonding peak is still much lower than the Fermi energy.

In these cases, the dopant-dopant hybridization results in weaker H adsorption. For elements on
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Adsorption Energy (eV)

isolated

dimer

Figure 5.15: Comparison of H adsorption energies for dimers (wide red bars) and isolated atoms (narrow black
bars) at the step edge for each dopant element. Inset: sketch of isolated atom and dimer arrangements, where
atoms below the step edge are darker spheres.
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the right side of the d-block, the d-d bonding peak lies near the Fermi energy, again allowing

strong H adsorption.

Overall, the model performs worse in cases where the character of surface states varies

discretely and discontinuously with the number and locations of dopant atoms. Small changes to

the arrangement, such as the addition or removal of single dopant as shown in Figure 5.14(b-d),

can significantly change surface state energies and occupations, and H adsorption energies are

sensitive to these changes. This is analogous to finite size effects in small nanoclusters, where

chemical reactivity is sensitive to the precise number of atoms and their configuration.25 With

weak dopant-Ag hybridization throughout the d-block, the dopant atoms’ electronic structure can

be understood in terms of a small nanocluster embedded in the Ag(211) lattice.

5.4.7 FINAL MODEL

In light of the observations described above, we considered a wide variety of surface features to

improve forest predictions. We summarize these features here and leave additional details to

Appendix B. Because of the sensitivity of the adsorption energy to particular arrangements of

dopants, we added one-hot bits indicating the presence of dimer and trimer arrangements that we

found to be important. We also added additional chemical features, including the formation energy

of a single dopant element in the bulk-like third layer of the Ag(211) surface and H adsorption

energies for isolated dopant atoms and dimers at the step edge. Since the combination of d-orbital

properties and specific arrangements is important, we also included column-wise sums of the

Coulomb matrix149 using the dopant’s column in the d block as its effective charge. Finally, to

account for detailed changes in orbital hybridization, we included the eigenvalues of a simplified

tight-binding Hamiltonian of the Ag(211) surface and the first five moments of the corresponding

eigenvectors projected onto the three metal atoms closest to H. In total these contribute an

additional 187 features to the original 47 features. We also tested an alternative encoding of the
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structure, where a radial distribution function centered at the H atom was calculated for each

structure, and a weighted difference between these functions was used to define a kernel. Although

this resulted in somewhat smaller errors than the one-hot vector for kernel regression, the

difference was small (a few meV), and this scheme is very difficult to implement into a forest,

which is a more accurate model for this dataset. Therefore, we continued to use the one-hot vector

to encode the structure.

Predicting H adsorption energies using all 234 features leads to overfitting; therefore, we use

recursive feature inclusion (RFI) to simplify the model as a form of regularization. RFI

heuristically grows a selected subset F of the most important features. At each RFI step a new

forest is trained on the union of F and each one of the remaining 234-|F | features, then the feature

yielding the lowest out-of-bag RMSE is added to F . Repeating RFI k times thus obtains |F |= k of

the most important features. RFI performs better than feature importances computed directly from

the forest since the latter are more sensitive to correlations among features.

The lowest RMSE value of 49.7 meV is obtained by retaining only the top 25 features from RFI.

The additional decision-making flexibility therefore leads to a slight improvement in model

performance while significantly reducing the number of features. Figure 5.16 shows the

corresponding parity plot and error histogram. Compared to the initial linear model with 713

one-hot bits, errors on the 97.5% of non-outlier points are significantly lower across the full range

of H adsorption energies. In addition, fewer features can be included with only a small penalty to

the RMSE. For example, retaining only the top 12 features results in an RMSE value of 52.1 meV,

just below that of the original extra forest model’s RMSE of 52.5 meV. This corresponds to a

nearly four-fold reduction in the number of features while preserving the original forest’s accuracy;

hence, for future studies this feature set could reduce the amount of data needed for training.

Considering many additional features is essential for this reduction since seven out of these top 12
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Figure 5.16: Parity plot and error histogram for the best extra forest model on the 97.5% of non-outlier data
points. Solid bars in the histogram show the extra forest’s error distribution, while the dashed outline shows the
the corresponding error distribution for the original model of 713 one-hot bits on the same data.
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features, and four of the top six features, are among those additional 187 features considered for

the model. The top six features from RFI are the second and third moments of the tight-binding

energies projected onto a step atom, the number of first-nearest neighbors, the element’s column of

the d block, and column sums of the Coulomb matrix corresponding to the nearest-neighbor atom

on the terrace and the subsurface atom directly under the hcp hollow site. Using only these top six

features yields an RMSE value of 61.0 meV, corresponding to a R2 statistic of 0.97, showing that

only a few well-chosen features can capture most of the variance in H adsorption energies.

Quantifying model uncertainty is important since the accuracy of predictions made by machine

learning models, including extra forests, can vary across the data set. Previous work has considered

sophisticated metrics for forest uncertainties,179 but a simple and readily available metric is the

“forest variance:” the variance of predictions made by trees in the forest. Forest predictions are

means of its trees’ predictions, so variances can be obtained easily. Letting ε be the prediction

error of a particular point, and v f be the forest variance, we define the forest z-score to be

z f =
ε√v f

. Z-scores here are calculated using 4-fold test-train splits, training the extra forest on

75% of the data and evaluating errors and prediction variances on the remaining 25% to avoid bias.

These z-scores are close to normally distributed and forest variances are typically larger than

model errors by approximately 50%. After correcting for this scaling, Figure 5.17 shows the

resulting histogram of z-scores for the 97.5% of non-outlier data points. The good agreement

between the z-score histogram and the normal distribution demonstrates that 0.68√v f reliably

estimates forest uncertainty for each data point across the full range of H adsorption energies.

Hence, we have an indication of the reliability of a particular prediction, which allows us to put

less trust in predictions with low reliability and mitigate the effects of prediction errors.
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Figure 5.17: Histogram of forest z-scores, computed as the ratios of forest errors to the corresponding stan-
dard deviations among all trees’ predictions. The red line shows the normal distribution with unit standard
deviation for reference.

5.4.8 CONCLUSION

The process of constructing a machine learning model for our database of more than 5,000 H

adsorption energies on stepped Ag alloy surfaces has given insight into both model construction

and the physics underlying adsorption. First, we showed that a very simple linear model with no

chemical or physical insight can give qualitatively useful predictions. However, nonlinear models

significantly improve accuracy, and the proper featurization can significantly reduce the needed

number of features and the amount of data needed for training. Extra forests were found to be the

most accurate model, although other nonlinear models give fairly similar accuracy. The final

model is quite accurate in the vast majority of cases, with a median absolute error of 0.3 kcal/mol.

The model identifies structures with the same first nearest-neighbor shell and a similar second

nearest-neighbor shell as being “similar” (or correlated) to each other, as we would intuitively

expect, and the errors are high in cases where these similar structures have significantly different

adsorption energies. These structures violate a widespread assumption in machine learning: that

similar input values yield similar output values. The model also provides reliable confidence

intervals for its predictions, crucial in screening studies to mitigate the possibility of missing
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promising candidates due to larger-than-expected errors.

We have also elucidated chemical trends and found unexpected behavior in adsorption on dilute

alloys. Atoms that strengthen H adsorption when in H’s first nearest neighbor shell tend to weaken

adsorption when in H’s second nearest neighbor shell. In some cases, H adsorption energies can be

surprisingly sensitive to small changes in the composition of the H’s second and even third nearest

neighbor shells. We also found counterintuitive non-monotonic behavior as a function of the

composition of the nearest neighbor shell. In particular, there are several cases where two nearby

dopants lead to weaker H adsorption than a single nearby dopant. These counterintuitive results are

driven by nanocluster-like electronic structure effects arising from weak dopant-Ag hybridization.

The model tends to have higher errors in cases that are counterintuitive, suggesting that the model

gains a similar “intuition” as human observers. Overall, we have found that the process of

constructing a model and understanding its errors can bring physical insight beyond that given by

the model itself.
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6
Conclusions

This thesis discusses the details of computational electronic structure theory, starting from the

Schrödinger Equation, and its applications to catalytic systems using transition state theory in the

microcanonical ensemble. Several specific examples of these applications are presented with

various levels of sophistication. Chapters 2 and 3 are traditional and straightforward applications

of density functional theory to calculating adsorbate stability and activation energies. These studies

demonstrate how atomistic insights and basic transition state theory can be used to characterize

catalytic systems and resolve open experimental questions. More sophisticated applications of

density functional theory and nonadiabatic dynamics are presented for photodissociation and

atomic H adsorption in Sections 1.5.1 and 1.5.2, and H2 dissociation over Cu13 nanoclusters in

Chapter 4. These studies illustrate how electronic structure theory can still provide catalytic insight

when classical transition state theory and the Born-Oppenheimer approximation fail. Finally,

recent advances in machine learning and its applications to catalytic systems are discussed in

detail. The strengths and weaknesses of machine learning models are exposed by comparison to

density functional theory calculations of H adsorption energies on dilute Ag alloys.

General-purpose machine learning models easily capture most of the variance in adsorption

energy, but fail to capture the discrete, discontinuous effects of electronic quantization.

I hope the introductions to electronic structure (Chapter 1) and to machine learning (Chapter 5)

are broadly useful. The various approximations made in moving from the full Schrödinger
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Equation to time-independent density functional theory are particularly important. Violations of

these approximations, such as the adiabatic and classical ion approximations, offer both challenges

and opportunities for future work. For example, manipulating magnetic states could lead to the

development of optically-switchable nanoscale catalysts. Similarly, the discussion of kernel

learning and H adsorption on Ag alloys highlights the successes of machine learning in materials

science and its ongoing challenges. The results of Section 5.4 demonstrates that even simple

machine learning models can quickly and accurately predict adsorption energies on complex

surfaces. On the other hand, detailed comparisons and analyzing outliers demonstrates that

general-purpose models have serious limitations. For dilute Ag alloys, the electronic structure of

the surface is sensitive to the precise number and locations of dopant atoms. Continuous models,

such as random forests and neural networks, are poorly suited for predicting these effects. More

specialized machine learning models for atomistic systems may fare better, such as convolutional

neural networks, but work on their practical implementations and theoretical justifications is in its

infancy. Using machine learning models for first-principles predictions is still a distant dream.
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and Reaction on PdâĂŞAu Bimetallic Surfaces. J. Phys. Chem. C, 119, 11754 (2015).

[191] F. Zaera. The Surface Chemistry of Metal-Based Hydrogenation Catalysis. ACS Catal., 7,
4947 (2017).

[192] Y. Zhan, J. Huang, Z. Lin, X. Yu, D. Zeng, X. Zhang, F. Xie, W. Zhang, J. Chen, and
H. Meng. Iodine/Nitrogen Co-Doped Graphene as Metal Free Catalyst for Oxygen
Reduction Reaction. Carbon N. Y., 95, 930 (2015).

179



Bibliography

[193] L. Zhang, J. Niu, M. Li, and Z. Xia. Catalytic Mechanisms of Sulfur-Doped Graphene as
Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells. J. Phys. Chem. C, 118, 3545
(2014).

[194] L. Zhang and Z. Xia. Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped
Graphene for Fuel Cells. J. Phys. Chem. C, 115, 11170 (2011).

[195] M. Zhang, R. Yao, H. Jiang, G. Li, and Y. Chen. Catalytic Activity of Transition Metal
Doped Cu(111) Surfaces for Ethanol Synthesis from Acetic Acid Hydrogenation: a DFT
Study. RSC Adv., 7, 1443 (2017).

[196] R. Zhang, G. Wang, and B. Wang. Insights Into the Mechanism of Ethanol Formation from
Syngas on Cu and an Expanded Prediction of Improved Cu-Based Catalyst. J. Catal., 305,
238 (2013).

[197] Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan, and E. V. Barrera. Iodine Doped Carbon Nanotube
Cables Exceeding Specific Electrical Conductivity of Metals. Sci. Rep., 1, 83 (2011).

[198] Y. Zhou, W. Chen, P. Cui, J. Zeng, Z. Lin, E. Kaxiras, and Z. Zhang. Enhancing the
hydrogen activation reactivity of nonprecious metal substrates via confined catalysis
underneath graphene. Nano Lett., 16, 6058 (2016).

[199] L. F. Žilnik and J. Golob. Analysis of Separation of a Water-Methanol-Formaldehyde
Mixture. Acta Chim. Slov., 50, 451 (2003).

[200] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society. Series B (Statistical Methodology), 67, 301 (2005).

180



A
Magnetization Switches in Cu13

Apart from minor modifications, this appendix is part of a manuscript being prepared for

publication:

Robert A. Hoyt, Matthew M. Montemore, and Efthimios Kaxiras. “Nonadiabatic Hydrogen
Dissociation on Copper Nanoclusters” in preparation

A.1 COMPUTATIONAL SETTINGS

The DFT calculations were carried out with the SIESTA156 code using double-ζ plus polarization

(DZP) basis sets and the GGA exchange-correlation functional of Perdew, Burke, and

Ernzerhoff138,139. We used cubic unit cells with a side of length 14 Å to isolate nanoclusters from

their periodic images, and a mesh cutoff of 290 Ry. The pseudoatomic orbitals were individually

optimized using the simplex utility in SIESTA as described below to ensure accuracy in the

electronic properties. Activation energy calculations were performed using the climbing-image

nudged elastic band54 (CI-NEB) method and the dimer method56,59 as implemented in the Atomic

Simulation Environment package92 in Python. For the CI-NEB method, the discontinuities in the

H2 dissociation pathways (see Figure 4.3, main text) violate the first-order tangent approximation

so more than a dozen images were needed to obtain convergence. In contrast, using the dimer

method was more straightforward since it uses much smaller displacements. Finally, time steps of

1 fs were used for molecular dynamics simulations.
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A.2 BASIS SET OPTIMIZATION

The finite pseudoatomic orbital (PAO) basis in SIESTA constrains the functional form of

Kohn-Sham states and hence the total density, so in principle the PAO basis itself should be

variationally optimized in addition to the wavefunction coefficients for all geometries. For

example, basis set optimization improves the lattice constant of bulk metals as well as their

vacuum charge densities.37,75 However, in practice the lack of analytic gradients with respect to the

basis set parameters makes this optimization computationally expensive. Optimized basis sets tend

to be transferrable to chemically similar systems.75 Without optimization the total density is

artificially constrained by sub-optimal basis functions and this can lead to significant errors. In the

present study, for example, the default basis set in SIESTA fails to produce molecular H2

adsorption geometries on Cu13. Therefore we optimized the basis set for each nanoparticle as

described by García-Gil et al.37 The overall strategy is to minimize a fictitious “basis enthalpy”

Hbasis with respect to the PAO parameters ~β :

min
~β

Hbasis = min
~β

[
EDFT

(
~R|~β
)
+ pVbasis

(
~β
)]

(A.1)

where EDFT is the DFT total energy, ~R contains the atomic coordinates, Vbasis is the total volume of

the DFT basis set, and p = 0.05 GPa is the fictitious pressure. The pressure p dictates the tradeoff

between accuracy (unconstrained orbitals) and speed (compact orbitals). In optimizing the H atom

basis, we first optimized the valence shell of isolated H atoms, followed by optimizing all other

parameters for the H2 molecule to ensure good descriptions of both atomic and molecular

hydrogen. For the metal atoms, we optimized all parameters for the ground-state nanocluster

geometry as predicted by the default basis set in SIESTA.
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A.3 LANDAU-ZENER APPROXIMATION

The Landau-Zener formula gives the transition probability from state A to state B in the presence

of a constant coupling δ when their relative expected energies vary linearly in time. The

probability PLZ is given by

PLZ = 1− exp(−2πΓ) , Γ≡ δ 2/h̄∣∣∣ ∂
∂ t (EA(t)−EB(t))

∣∣∣
(A.2)

The key quantity of interest is the crossing rate, r ≡
∣∣∣ ∂

∂ t (EA(t)−EB(t))
∣∣∣, in the denominator of Γ.

In this case A is the state with high magnetization and B is the state with low magnetization. Most

of the precession from high to low magnetization occurs when the relative energies are comparable

to the coupling δ , that is, |Eh−El|. δ , so the crossing rate is evaluated at the avoided crossing

where Eh = El . We obtain the crossing rate from our molecular dynamics trajectories by

approximating the time derivative using finite differences. Since the time-dependent magnetization

m(t) changes from 3 µB to 5 µB for each trajectory, the avoided crossing is located when

m(t) = 4 µB. The magnetization depends mostly on the relative occupation of the two

opposite-spin states involved in the magnetization switch, so their relative energy ∆ε ≡ ε↑− ε↓ can

be extracted from m(t). Defining the “strong coupling region” to be |∆ε(t)| ≤ 5δ , we then use the

simulation time steps T± closest to ∆ε (T±) =±5δ and re-calculate the fixed-magnetization DFT

energies Eh (T±) and El (T±) at the geometries of those time steps. Letting ∆T = T+−T−, these
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values yield the following finite difference approximation:

r ≡
∣∣∣∣

∂
∂ t

(Eh(t)−El(t))
∣∣∣∣

=

∣∣∣∣
∂Eh(t)

∂ t
− ∂El(t)

∂ t

∣∣∣∣

≈
∣∣∣∣
(

Eh(T+)−Eh(T−)
∆T

)
−
(

El(T+)−El(T−)
∆T

)∣∣∣∣

=
1

∆T
|∆Eh−∆El| (A.3)

Finally, this approximation for r can be used to calculate Γ:

Γ≈ δ 2h̄
1

∆T |∆Eh−∆El|
=

δ 2∆T/h̄
|∆Eh−∆El|

(A.4)

We used Equation (A.4) to calculate PLZ for all trajectories shown in Figure 4.4.

A.4 DFT ESTIMATE OF SPIN-ORBIT COUPLING

Kohn-Sham DFT provides exact ground-state densities and energies in principle, but the

corresponding single Slater determinant “wavefunction” simply facilitates the calculation of kinetic

energies and single-particle densities and therefore does not directly correspond to the many-body

wavefunction. In particular, the spin state implied by the Slater determinant does not match that of

the true many-body ground state in general. Spin-orbit couplings between many-body total spin

states are therefore unavailable in Kohn-Sham DFT. However, the net magnetization is a property

of the spin-resolved total density so magnetization changes are accessible in Kohn-Sham DFT.

Furthermore, by the van Leeuwen theorem175 (of which the Runge-Gross theorem can be

considered a special case), real-time propagation of the Kohn-Sham states produces (in principle)

the same time-dependent single-particle density as the actual many-body wavefunction. Therefore,
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when spin-flip excitations result in magnetization changes, we can approximate the spin-orbit

coupling constant by appealing to magnetization changes within time-dependent DFT (TDDFT).

In TDDFT the Kohn-Sham equations are propagated according to the DFT Hamiltonian:

∂
∂ t
|ψi〉=−

i
h̄

HDFT |ψi〉 (A.5)

The full DFT Hamiltonian can be considered to be a sum of the colinear spin Hamiltonian Hσσ ,

which commutes with spin, and the spin-orbit coupling Hamiltonian Hσ ′σ
soc , which does not.

Eigenstates of the colinear spin Hamiltonian can then be assigned spin quantum numbers along a

chosen axis to yield pure-spin states in the “up” and “down” directions. In the absence of

spin-orbit coupling, commutation between spin and the colinear Hamiltonian results in a constant

net magnetization. The introduction of the spin-orbit coupling Hamiltonian, however, couples

opposite-spin states and allows for spin precession, resulting in time-dependent net magnetization.

The concept is most clear in the equivalent matrix form using a simplified basis of two

opposite-spin states |↑〉 and |↓〉. These states represent the opposite-spin KS states in Figure 4.2

responsible for the magnetization switch:

∂p
∂ t

=− i
h̄



〈↑|H |↑〉 〈↑|H |↓〉

〈↓|H |↑〉 〈↓|H |↓〉


p

=− i
h̄




ε↑ 〈↑|Hsoc |↓〉

〈↓|Hsoc |↑〉 ε↓


p

≡− i
h̄




ε↑ δ

δ † ε↓


p (A.6)

where εσ ≡ 〈σ |H |σ〉 and δ is the spin-orbit matrix element between the two opposite-spin states.
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A.4. DFT Estimate of Spin-Orbit Coupling

The maximum magnetization precession rate occurs at the avoided crossing, ε↑− ε↓ = 0, where the

eigenstates of H are equal spin superpositions 1
2 (|↑〉+ |↓〉). In this case an initially pure-spin state

fully precesses between |↑〉 and |↓〉, and the net magnetization oscillates accordingly. Away from

the avoided crossing,
∣∣ε↑− ε↓

∣∣� |δ | and the eigenstates are nearly identical to the pure-spin

eigenstates of the colinear Hamiltonian. An initially pure-spin state then rotates about the true

mixed-spin eigenstate and the net magnetization exhibits small oscillations. Including all of the

Kohn-Sham states complicates the numerical solutions, but the precession of a one pure-spin state

into another state of opposite spin is still maximized at avoided crossings, and the rate is still

dictated by the corresponding spin-orbit coupling matrix element 〈ψσ ′
j |Hsoc |ψσ

i 〉. Using

|δ | ≡ |〈↑|Hsoc |↓〉| can therefore provide a reasonable DFT-based estimate of the spin-orbit splitting

in the Landau-Zener approximation at the avoided crossing.
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B
Details of Machine Learning on Ag Alloys

B.1 DENSITY FUNCTIONAL THEORY CALCULATIONS

Training data for machine learning was obtained by running high-throughput density functional

theory calculations on Ag alloy surfaces. All calculations were performed using the projector

augmented wave (PAW) method9,89 within VASP.85,87 The Perdew-Burke-Ernzerhof form of the

generalized gradient approximation was employed to describe electron exchange and

correlation.138 Van der Waals interactions were taken into account using the Tkatchenko-Scheffler

method.167 Ag alloys were modeled using the stepped Ag(211) surface with 4 atoms along the step

edge and 4 layers along the (111) direction. Atoms in the bottom layer along the (111) direction

were fixed in their bulk positions. 28.0 Å of vacuum space was used along the z direction to

prevent spurious image interactions. A 7×7×1 Monkhorst-Pack118 k-point grid was used to

sample the Brillouin zone along with a plane-wave cutoff energy of 400 eV. Structural relaxations

were performed until the maximum force component was less than 0.04 eV/Å. The optimized

lattice constant of bulk Ag with these choices is 3.96 Å. Because of the large number of structures

in the database, in the present study we do not consider the effects of spin polarization and

zero-point vibrational energy which demand significantly more computational resources.

187



B.2. Data Mining
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Figure B.1: Scatter plot of all 5457 energies against the ratio of the second and third-shortest H–metal bond
to the first. Each point is colored by its adsorption energy (in eV) relative to the pure Ag(211) surface. A posi-
tive (negative) value means weaker (stronger) H adsorption.

B.2 DATA MINING

The final positions of the H atom are most often near the center of the hcp hollow, but a significant

number of cases relax to off-center, to a bridge site, or to a top site (see Figure B.1).

For dopant positions in the first and second nearest-neighbor shells, Figure B.2 shows adsorption

energies for selected elements. Adsorption energies are similar for nearest-neighbor dopants along

the step edge and the terrace, with step dopants generally yielding slightly stronger H adsorption.

There is a qualitative change in behavior between first and second nearest-neighbor dopants, where

elements that strengthen H adsorption as first nearest-neighbors weaken H adsorption as second

nearest-neighbors, and vice versa. Substitution of the subsurface atom immediately below the hcp

hollow yields the least stable H adsorption energies.

We also ran many (≈ 1000) symmetry-equivalent configurations, which allows us to assess the

precision of our DFT method. Typically, the difference between adsorption energies for

symmetry-equivalent configurations is around 1 meV (standard deviation of 1.5 meV), and only 4

cases have differences larger than 10 meV.

We compare formation energies of the most stable alloys across the d block in Figure B.3. Each

188



Appendix B. Details of Machine Learning on Ag Alloys

Figure B.2: H Adsorption energies for selected elements for each of the symmetrically inequivalent positions
within the first nearest-neighbor (1NN) and second nearest-neighbor (2NN) shells.

plot shows the formation energy of each dopant’s most stable arrangement for a bare slab and

H-covered slab, highlighting trends across the d block. The most stable arrangements correspond

to elements near Ag in the d block, particularly Zn and Cd, while the least stable arrangements are

located near Mo. H adsorption does not significantly stabilize unstable dopants; the energetic cost

to bring unstable elements to the surface is not sufficiently offset by stronger H adsorption.
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B.2. Data Mining

Figure B.3: Color-coded grid plots of thermodynamic stabilities, relative to Ag(211), for the most stable alloy
surface for each element. Each tile is labeled with the formation energy in eV, and bolded symbols indicate ele-
ments with a minimum formation energy below 1 eV. Top: formation energies of bare slabs. Bottom: formation
energies in the presence of a single H atom per unit cell, relative to H adsorbed on Ag(211).
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Appendix B. Details of Machine Learning on Ag Alloys

B.3 OUTLIERS

Outliers due to reconstruction and changes in the H atom’s adsorption site, the red and blue points

in Figure 5.13, respectively, were identified by comparing the geometries of the relaxed H

adsorption structure, relaxed slab, and initial positions before relaxation. “Differential

reconstruction” points were identified using the simple criterion |Rads−Rslab| ≥ 1.3 Å, where Rads

and Rslab are vectors containing the relaxed metal atom positions for H adsorption and bare slab

calculations, respectively. This is equivalent to the root mean square displacement between the two

structures. Most adsorption energy calculations for structures exceeding the 1.3 Å threshold are

unreliable since the relaxed H adsorption and bare slab structures have different coordinations. For

example, in some cases asymmetric dopant atom arrangements lead to the formation of (111) step

facets from the (100) facets originally present in the Ag(211) structure.

“H migration” points are identified in a similar way. The influence of H displacements ∆RH

between the relaxed and initial structures on errors is anisotropic: the model is more sensitive to

displacements along the step direction, ∆R||H , than displacements perpendicular to the step edge,

∆R⊥H . This is because the distance from the hcp hollow to an adjacent fcc hollow site along the step

edge is approximately 1.4 Å, so displacements ∆R||H of order 1.0 Å correspond to H adsorption

closer to fcc hollows. In contrast, distances to adjacent fcc hollow sites perpendicular to the step

edge are longer so the hcp adsorption model remains valid for larger ∆R⊥H . Displacement thresholds

both along and perpendicular to the step edge were determined by inspecting the locations of the

model’s largest outliers, rejecting points meeting at least one of the following criteria:

1. ∆R⊥H > 2.3 Å

2.
(
∆R⊥H > 0.6 Å

)
and

(∣∣∣∆R||H
∣∣∣> 1.0 Å

)

Approximately 2.5% of all data points meet the criteria for either differential reconstruction or H
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B.4. Densities of States

migration.

B.4 DENSITIES OF STATES

To gain insight into the self-passivation of step dimers, we examined the density of states of each

case as noted in the main text (see Figure B.4).
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Figure B.4: Projected densities of states onto each dopant’s d orbitals for the step dimers.
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B.5. List of Features

B.5 LIST OF FEATURES

As summarized in the main text, a wide variety of features were considered for the final forest

model. These features can be generally categorized as arrangement features, chemical features,

and hybrids of the two.

Arrangement features included the following:

• One-hot bits indicating if each of the 31 atoms within 8 Å of H is occupied by a dopant

• Total number of dopant atoms and the number of nearest-neighbor dopants at the step edge

• Shortest H–dopant and dopant–dopant bond length in the unrelaxed structure

• Standard deviation of dopant atom positions

• One hot bits for each of the 65 clusters present in a scatter plot of the shortest dopant-dopant

bond length and standard deviation of metal atom positions

• One-hot bits indicating the existence of the following pairs of dopant atoms:

– Step dimer with both atoms adjacent to the H atom

– Any dimer where both dopants are in the surface layer

– Any dimer where one atom is in the surface layer and the other is in the first subsurface

layer

– Dopants at opposite corners of the (111) step facet adjacent to the H atom

For each element, the following chemical features were included:

• Formation energies of an isolated atom and a dimer in the third layer of the slab

• Adsorption energy difference between an isolated step atom and a step dimer of that element
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Appendix B. Details of Machine Learning on Ag Alloys

• Pauling electronegativity

• Covalent radius

• Mass density

• First ionization energy

• Bulk modulus

• Poisson ratio

• Conductivity

• Tight-binding d-orbital energy and radius52

• One-hot bits indicating if the bulk crystal structure is hexagonal close-packed or

body-centered cubic

• Row and Column of the d block

• Formation energy per atom for the lowest-energy bulk structure relative to an isolated,

spin-unpolarized atom

Finally, hybrid features including both arrangement and chemical information were also

included:

• Column sums of the Coulomb matrix149 constructed for atoms within 8 Å of the H atom,

using each atom’s column in the d block as the effective charge

• Eigenvalues of a simple tight-binding Hamiltonian for the slab geometry, using one effective

orbital per atom. The d-orbital energies, radii, and coupling values VIJ are those in Appendix

E in Harrison52.
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B.6. Top Features

• The first through fifth moments of the above tight-binding eigenvalues weighted by their

projection onto each of the H atom’s three nearest neighbors.

• Differences in the d-orbital energy and work function from Ag for each of the H atom’s three

nearest neighbors

B.6 TOP FEATURES

After applying RFI (see main text) to the remaining 97.5% of the data lacking differential

reconstruction or H migration, we obtain the best extra forest RMSE values using the following 25

features:

1. third moment of tight binding eigenvalues projected onto the nearest-neighbor step atom

2. number of first nearest-neighbors

3. column sum of the Coulomb matrix corresponding to the nearest-neighbor terrace atom

4. second moment of tight binding eigenvalues projected onto the nearest-neighbor step atom

5. column sum of the Coulomb matrix corresponding to the atom directly underneath the H

atom’s hcp hollow site

6. shortest distance between dopant atoms using the relaxed Ag(211) positions

7. dopant element’s column in the d block

8. number of second nearest-neighbors

9. formation energy of an isolated atom in the third layer of the Ag(211) structure

10. one-hot bit for the closest atom at the bottom of the step edge

11. number of third nearest-neighbors
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Appendix B. Details of Machine Learning on Ag Alloys

12. shortest H–dopant distance using the relaxed Ag(211) positions

13. one-hot bit corresponding to one of the clusters in a scatter plot of shortest H–dopant bond

versus standard deviation of dopant atom positions

14. work function of the nearest-neighbor step atom

15. one-hot bit for the second nearest-neighbor atom in the surface layer

16. the second-highest eigenvalue of the tight-binding Hamiltonian

17. column sum of the column matrix corresponding to the closest atom at the bottom of the step

edge

18. one-hot bit for the atom directly under the H atom’s hcp hollow site

19. dopant element’s covalent radius

20. the 34th eigenvalue of the tight-binding Hamiltonian

21. the 25th eigenvalue of the tight-binding Hamiltonian

22. standard deviation of dopant atom positions

23. one-hot bit corresponding to another cluster of H–dopant bond lengths versus the standard

deviation of metal atom positions

24. one-hot bit for the subsurface atom under the adjacent hcp hollow site along the step edge

25. dopant element’s d-orbital energy
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