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Thesis advisor: Professor Douglas P. Finkbeiner Tansu Daylan

A Transdimensional Perspective on Dark Matter

ABSTRACT

Robust uncertainty propagation and marginalization over nuisance parameters is the key to per-
form robust inference. This thesis introduces a transdimensional, hierarchical, threshold-free, and
Bayesian inference framework. Colloquially referred to as probabilistic cataloging, the paradigm
propagates within and across model covariances, reduces mismodeling and information loss due
to thresholding based on statistical significance, and accelerates computation to ensure scalability.
The main product is a Python implementation of probabilistic cataloging called the Probabilistic
Cataloger (PCAT). The code and its documentation are available on GitHub and readthedocs,
respectively, for the use of the scientific community.

A central problem in contemporary cosmology is dark matter. Astrophysical data sets such as
telescope images that aim to probe the characteristics of dark matter, require covariant models and
aim to recover information contained in data features potentially caused by model elements with
low statistical significance. Using probabilistic cataloging, the thesis presents two inferences of the
properties of dark matter, e.g., self-annihilation of Weakly Interacting Massive Particles (WIMPs)
in the inner Milky, and the small-scale structure of dark matter in galactic halos. The role of various

priors in probabilistic cataloging are also studied.
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Introduction

As humankind collects more data on the observable Universe, relating these observations to the
underlying models becomes increasingly harder. The trivial approach in this process would be to
construct an independent, adhoc model for each and every observation, successfully explaining a//
possible observations. This would be an example of extreme overfitting and not useful for making

predictions based on the learned models. Instead, the scientific method makes progress by explain-



ing as much data as possible with the least model complexity. The ultimate success towards this goal
would be the construction of a theory of everything that is consistent with 4y observation up to the
measurement uncertainty. However, as a model grows in context during this process and needs to
be consistent with a larger and more diverse data set, updating one’s beliefs on this model based on
the arrival of new data, becomes increasingly difficult.

A fundamental problem in contemporary cosmology is the missing matter in the Universe. A
transparent, gas-like substance that dominates the dynamics at galactic and larger scales, dark matter
hypothesis is at the forefront of research in cosmology. In order to test the existence of dark matter
or to infer its mass and potential interactions, one has to collect large data sets, counting cosmic rays
and photons as a function of space, time, and energy.

Whether recorded by a particle detector or a Charged Coupled Device (CCD), cosmological
data sets are essentially digitized outputs of voltage amplifiers. Because there is only a rather indi-
rect relation between these voltage measurements and the underlying cosmological model param-
eters, a large number of nuisance parameters need to be marginalized over when performing infer-
ence. Moreover, both the observed data and the model parameters can have covariances, i.e., mul-
tiple configurations can yield the same level of consistency between the model and the data. The
former arises when there is correlated noise in the measurements and the latter can be due to the
parametrization choice of the underlying model. These covariances are crucial in robustly executing
the scientific method, since uncertainty propagation has to be performed based on the knowledge of
such covariances.

This thesis implements a novel statistical inference framework, probabilistic cataloging, that can



learn about hypotheses based on observed data. It generalizes the treatment of such covariances

to the transdimensional context, where multiple models of different complexity can be simultane-
ously consistent with the observed data. This is a very frequently encountered, but rarely properly
handled inference mode that has ubiquitous applications across all frontiers of science, including
cosmology.

The remaining of this thesis is structured as follows. Chapter 1 presents the problem of missing
matter in the Universe. Then, Chapter 2 introduces the notion of probabilistic cataloging. The fol-
lowing two chapters showcase two different astrophysical applications of probabilistic cataloging to
the problem of dark matter. In particular, Chapter 3 presents results regarding the gamma-ray sky
including the anomalous emission in the inner Milky Way, Chapter 4 illustrates a transdimensional
approach to modeling gravitationally lensed images. Chapter s then presents the software imple-
mentation of probabilistic cataloging, PCAT. Chapter 6 concludes the thesis. The contents of the

Sections 3.2, 4, 5.2, and 5.3 have been previously published in7# and 7> with minor changes.



Missing matter in the Universe

Photons in the Universe carry information about the underlying physical processes. A unique,
isotropic component of this electromagnetic field is the Cosmic Microwave Background (CMB) 7.
The nearly-thermal spectrum of the emission as measured by the Far-Infrared Absolute Spectropho-
tometer (FIRAS)™* is consistent with the Universe having a hot and dense past™. In this Big Bang

model, the Universe adiabatically cools to eventually allow the electrons and protons to recom-



bine, causing CMB photons to stream freely. The observed temperature of the CMB monopole,
2.725 £ 0.002 K*3, allows one to infer that the Universe must have been about 380 thousand years
old when CMB photons last scattered with the cosmic plasma. Likewise, as shown in Figure 1.1,
the small (~ 10uK) spatial anisotropies of the CMB temperature *°"77%2°%"79 indicate that the den-
sity perturbations at the time of last scattering, must have also been small. However, if these initial
density fluctuations are evolved forward in time under the influence of gravity, no galaxies are pre-
dicted to form within the inferred lifetime of the Universe. As shown in the top left panel of Figure
1.2, consistency with the observation that the Universe today is structured up to supercluster scales,
then, requires that there be an additional, at most weakly interacting (i.e., in addition to gravitation),
cold (i.e., non-relativistic long before the last scattering of the CMB photons), dominant matter
component in the Universe. This missing form of matter is referred to as dark matter.

The case for the existence of dark matter would be less convincing had it not been predicted be-
fore the discovery of the CMB. While studying the line-of-sight motions of galaxies in the Coma
cluster, Fritz Zwicky observed in 1930s that the galaxies were moving at a speed (i.e., with a line-of-
sight velocity dispersion of & ~ 1000 km s~ 1) that would not allow the luminous (i.e., stellar) mass
of the cluster to hold the galaxies together, naming the missing matter as “Dunkle Materie” (Dark
Matter)*#*. Since then, similar Doppler observations of the optical light from stars in galaxies™” and
the 21 cm line emission of neutral Hydrogen at the outer regions of galaxies™ have indicated a non-
Keplerian rotation curve. Furthermore, X-ray emission of early type galaxies also revealed presence
of hot gas in their halos®7, which again lead to the prediction of additional mass to support the ob-

served fast rotation of the X-ray emitting gas. Another series of data sets that require dark matter are



Figure 1.1: The full sky map of CMB temperature anisotropies (i.e., leaving out the monopole) inferred by finding an
independent component of the observed microwave sky common in all bands as measured by the Planck satellite 10,

observations of gravitational lensing. Gravitational lensing is the coupling of photons to gravitation,
leading to the bending of light due to the presence of mass®. Consistency between the observed
light deflection with the mass models, require that the mass budget of the deflectors be dominated
by non-luminous matter.

Furthermore, in the Big Bang model, the hot beginning of the Universe allows efficient ther-
monuclear reactions. As a result, light nuclei must have been synthesized in the first few minutes
of the Universe ®#6:64, Requiring consistency between the predicted abundances of such stable pri-
mordial elements, such as 2H, 3He, *He, and “Li, with their measurements in low metallicity clouds
at high redshift, allows the determination of the primordial baryonic abundance relative to that of
photons, indicating that baryons cannot make up more than ~ 5% of the mass-energy budget of
the Universe.

Dark matter is not the only hypothesis that can address these data sets. The leading alternative
theories are Modified Newtonian Dynamics (MOND)*7, a phenomenological modification to the
Newtonian gravity and Modified Gravity (MOG)**°, a Yukawa theory of gravity in the weak field

approximation, as well as their relativistic generalizations TeVeS* and Scalar-Tensor-Vector Gravity
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Figure 1.2: Some of the other data sets that require dark matter. Top left: Redshift distribution of galaxies spectroscop-
ically measured by the CfA Redshift Survey 1% (darker blue), the Two Degree Field Galaxy Redshift Survey (2dFGRS) ¢°
(brighter blue), and the Sloan Digital Sky Survey (SDSS) >*® (violet), compared with the simulated catalogs drawn from
the Millenium simulation ?*°, as reproduced from 2%%. The filaments and walls in the large-scale structure of the Uni-
verse are the pancake-like structures due to the gravitational instability predicted by Zeldovich ?*?. In addition to
explaining the observed large-scale structure, cosmological IV -body simulations with dark matter also predict the ob-
served excess correlation at the sound horizon at the time of decoupling, i.e., the Baryonic Acoustic Oscillations ®°. Top
right: The observed rotation curve of M31, reproduced from *®*. The triangles indicate the Doppler measurements of
optical light from stars *®7, whereas circles show those of the 21 cm line emission of neutral Hydrogen '&°. Bottom left:
The X-ray image *°° of a pair of merging galaxy clusters, 1E 0657-558, taken by the Chandra telescope, superposed
with the gravitational potential inferred >’ from the lensing of optical emission of background galaxies. The X-ray
emission from the collisional hot gas does not correlate well with the mass distribution of the system, suggesting that
collisionless dark matter accounts for most of the mass in the system and does not interact with the baryons. Bottom
right: Hubble Space Telescope (HST) image of a strong lens system, SDSS J1038+4849, where the foreground galaxy
cluster bends the light from the background galaxies, producing multiple images. The shape, radius, and brightness of
the resulting arcs require the foreground system to be more massive than the stellar and gas mass inferred from the
observed optical light.



(STVG), respectively. The former modifies the acceleration at the small-acceleration limit, leading to
higher rotation at larger galactocentric radii, whereas the latter proposes a stronger gravitational in-
teraction that is partly canceled by a repulsive, finite-range force only at small scales to reproduce the
Newtonian gravity. Even though such models make predictions consistent with some observations,
they fail to be consistent with all anomalies that the dark matter hypothesis can explain.

It is also true that some of the non-luminous matter is in the form of black holes, neutron stars,
planets, and possibly dim stars such as brown and white dwarfs. However, observations of mi-
crolensing indicate that the abundance of such compact objects with masses above ~ 1077 M,

except around a window of ~ 10 — 100M, cannot account for the required amount of dark mat-

ter $219:98

1.1 STANDARD MODEL OF COSMOLOGY

Modeling of the observed CMB anisotropies requires that the geometry of the Universe be close to
flat, i.e., that the inner angles of a cosmologically-sized triangle sum to 180°. However, the observed
abundance of galaxy clusters only yields 30% of the mass that could close the Universe, leading to a
cosmological model where an additional, spatially uniform component, i.e., dark energy, accounts
for the rest of the mass-energy budget of the Universe.

There are several observations that probe the equation of state of dark energy. For instance, the
luminosity distance to type IA Supernovae (i.c., standard candles with fixed energy output) are ob-

served to be higher than that predicted for a universe decelerating under the gravitational influence



of matter alone™#>'76

. Measurements of the baryonic acoustic oscillations in the large-scale structure
also require a dark energy component, in order to explain the redshift evolution of the angular di-
ameter distance. In this model, because dark energy becomes dominant only at late times, acoustic
peaks in the CMB power spectrum alone cannot break the geometric degeneracy and constrain dark
energy. Nevertheless, the correlation of galaxy density and the CMB temperature at large scales in-
dicates that gravitational potentials of voids and clusters must have been decaying recently™, which
can be explained by dark energy via the late-time integrated Sachz-Wolfe effect™. Further evidence
for dark energy comes from the gravitational lensing of the CMB by the large-scale structure, given
observations of the CMB power spectrum at small multipoles®.

Bringing dark energy and dark matter together along with the baryonic matter and radiation,
produces the concordance A Cold Dark Matter (ACDM) model. As shown in Figure 1.3, A joint fit
to the cosmological data sets yields the abundance of dark matter, dark energy, and baryonic matter
to be ~ 27%, 68%, and 5% of the mass-energy budget of the Universe™.

CMB observations also introduce a challenge to the Big Bang model. The observation of a large
monopole of the CMB temperature requires distant points on the sky with non-intersecting particle
horizons, to be causally connected. This is achieved in the inflation model"®™*"#7, where the Uni-
verse goes through an exponential expansion before the Big Bang, which allows CMB photons to be
in thermal contact prior to inflation. The field responsible for the expansion, the inflaton, eventually
decays, reheating the Universe and reproducing the hot and dense conditions of the Big Bang model.

Along with ACDM, Big Bang and inflation form the standard model of cosmology. Testing and

updating this concordance model is the central problem of cosmology.



Supernova Cosmology Project
Suzuki, et al., Ap.J. (2011)

No Big
11Bang l
Union2.1 SN la
1.2 Compilation .
with SN
Systematics
1.0 .
0.8} i
<l
G
0.6 i
0.4 ]
BAQ Y
0.2
A
s
090 0.2 0.4 0.6 0.8 1.0

Qy

Figure 1.3: Energy-mass budget of the Universe, modeled by ACDM and constrained by the cosmological data sets >*°.
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1. SMALL-SCALE STRUCTURE OF DARK MATTER

In ACDM, the structure is thought to have formed by the initial collapse of the rarest (most un-
likely) matter density fluctuations that grew to be nonlinear into self-gravitating halos, and then,
by the successive accretion of smaller halos by the more massive halos. The radial profile of the
mass density of these halos can be modeled with a broken power-law, i.c., the Navarro Frenk White

(NFW) profile ¢4,

_ PO -
plr) = (r/rs)Y(14+1/rs)3=7 (r)

where r is the halocentric radius, 7 is the scale radius, 7y is the inner log-slope, and pg is a normaliz-
ing constant. Since structure formation still continues today, only few and dynamically unrelaxed
structures exist at the largest scales.

ACDM is consistent with observations of the large-scale structure of the Universe7**3*72, It can
fit the power-spectrum of the temperature and polarization anisotropies of the CMB, with some
exceptions at the largest scales, e.g., the cold spot %, whose downward temperature fluctuation could
plausibly be due to cosmic variance. At smaller scales, around £ ~ 10 Mpc_1 h, observations of
the Lyman-a forest, i.e., absorption spectra of distant quasars, are also consistent with the nonlin-
ear growth of perturbations in ACDM. In particular, the one-dimensional power spectrum of the

Lyman-a forest7»7>*7 measured using the Baryon Oscillation Spectroscopic Survey (BOSS)*” and
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XQ-100"*, can be fitted well with the predictions of the ACDM.

At yet smaller scales, nonlinear growth of structure causes the power spectrum of matter fluctua-
tions to be ineffective in characterizing the matter distribution. Furthermore, there is little evidence
to believe that ACDM is the correct description of the Universe at smaller scales. Discrepancies be-
tween observations and ACDM predictions have been claimed to remain at subgalactic scales 7%,
For instance, the number of observed satellites in the Local Group (~ so) falls short of the much
larger numbers of low-mass subhalos (> 1000) predicted by N-body simulations of ACDM "2,
Furthermore, the projected density profiles of the observed subhalos are rather shallow in the central
regions compared to the much cuspier profiles predicted by ACDM 9%¢h47:106:230171,

These apparent discrepancies can be resolved in several ways. First, the inclusion of baryonic

feedback processes within numerical simulations 43,192,235,80,193,62,102,212,167,43,

"7 can significantly reduce
the tension between predictions and observations. Another venue to resolve the tension is to mod-
ify the microphysics of dark matter by, for instance, postulating that dark matter particles interact

with each other**7?397%%9_ or with a relativistic species ¥3094:1552266

5. Both possibilities result in
a modification to the internal density profile of dark matter halos, while the latter could also sup-
press the number of small-mass subhalos +'95%°. Alternatively, the discrepancy could be due to a
suppression of the small-scale matter power spectrum prior to structure formation. This may arise
from the free streaming of dark matter particles after they kinetically decouple from the rest of the
cosmic plasma, which partially erases inhomogeneities at the ~ kpc comoving scale 36,69,32,37,38  Yet

another way to modify ACDM is to relax the coldness assumption. Given that the main motivation

to postulate dark matter is to seed the Universe with density fluctuations, dark matter cannot be hot

12



(i.e., relativistic), which would allow it to free-stream after decoupling from the rest of the cosmic
plasma in the early Universe. Only some, less than 1% of dark matter is hot, in the form of neutrinos.
However, current measurements of the Lyman-c forest are consistent with some amount of free-
streaming. Furthermore, dark matter can also be an ultralight (with mass ~ 1022 &V) scalar field, in
which case the Heisenberg uncertainty principle would prevent the resulting bosonic dark matter
waves with a de Broglie wavelength of ~ 1 kpc from collapsing, such as in the Fuzzy Dark Matter

130

model®°. Last, the discrepancy can be resolved by introducing a small-scale suppression, e.g., a kink

or running spectral index, to the primordial power spectrum assuming an inflation with broken
scale-invariance 3258,

In any case, the possibility of resolving the potential small-scale crisis of ACDM makes a strong
case for probing the subgalactic structure of dark matter observationally. Chapter 4 will present an

inference framework that learns about the statistical properties of mass substructure in strong lenses

given high-resolution optical images of such systems.

1.3 PARTICLE NATURE OF DARK MATTER

Cosmological dark matter problem described above requires an electromagnetically neutral, non-
relativistic, dissipationless, and long-lived particle. However, there is no such state in the Standard
Model of particle physics 123,89,233 Furthermore, although there are some anomalies, the current evi-
dence for dark matter comes solely from its gravitational interactions.

A large spectrum of hypotheses have been put forward to realize a particle theory for dark matter.

13



Some of these are asymmetric dark matter that relates the observed asymmetry between matter and
antimatter to a dark sector'*'%%; axions, i.e., a Bose-Einstein condensate due to the misalignment
mechanism proposed as a solution to the strong Charge Parity (CP) problem in quantum chro-
modynamics'7#; localized, stable, and bosonic field configurations called Q-balls™®*#%%; the gauge
fermion mediating supergravity interactions, the gravitino*; sterile neutrinos that do not interact
via the weak force, but that still mix with the active neutrinos*»*°*'; and primordial black holes that
may have collapsed in the early Universe™. However, this thesis will discuss a yet different candi-
date, Weakly Interacting Massive Particles (WIMDPs)*>'#* and their indirect detection.

42 However,

The first WIMP candidate was proposed as a new generation of heavy neutrinos
this is now ruled out™ since the Large Electron Positron Collider (LEP) measurement of the decay
width of the Z boson with mass mz'®, constraints the number of active (i.e., those with nonnegligi-
ble left-handed component) neutrinos with mass below m 7 /2 ~ 45 GeV, to three.

WIMPs can also be produced by several ultraviolet-complete theories. One way is to extend the
Standard Model with a symmetry between fermions and bosons called supersymmetry. This leads to
the prediction of heavy (i.e., O(100 GeV)) fermionic states called neutralinos that are linear combi-
nations of the fermionic superpartners of the neutral gauge bosons and the Higgs scalar in the Stan-
dard Model. However, heavy particles eventually decay, unless this is forbidden by a symmetry, i.e.,
conservation law. Further imposing the conservation of a discrete parity, Zo, makes neutralino sta-
ble, yielding a WIMP candidate. A similar symmetry allows the first Kaluza-Klein excitation $2°%18

and the lightest odd-parity particle of the little Higgs******°7, to produce WIMDPs.

In the Big Bang model supported by the discovery of the CMB, the Universe must have been hot

14



in the beginning following the reheating of the cosmic plasma with the decay of the inflaton field.
The simplest picture in this environment is to propose that WIMPs denoted by x with mass 12,
and Standard Model particles, denoted by SM, are efficiently exchanging energy, i.e., are in thermal
equilibrium. Furthermore, because particles in the early Universe have high kinetic energies and are

ultra-relativistic, both backward and forward reactions,

XX = SMSM, (r.2)

proceed readily. However, as the temperature of the cosmic plasma, T, goes below m., , backward
reactions into y and X become exponentially unlikely. As a result, the continuing forward reaction

suppresses the number density of x,

Niy,eq X (mXT)3/2 exp < - mx/T> . (1.3)

The suppression continues until the rate of forward interactions drops below the rate with which
the Universe expands, resulting in the freeze-out of the WIMP density at 1. f,, as shown in Figure

1.4. The relic WIMP abundance in units of the critical density of the Universe then becomes

15



3x 10727 ¢m3s !

{ov)

QXhQ x

for the mass at which ultraviolet-complete theories predict the existence of new, heavy states, i.c.,
my ~ 100 GeV. Here, h is the reduced Hubble constant, h = 102 H. Given the cosmological
measurement of 2, ~ 0.1, this yields the annihilation cross section of (cv) ~ 3 x 10726 ecm3 s~ L.

The annihilation cross section of WIMPs depend on the WIMP mass as o mi /m7, for masses
below mz and as o 1/ mi at larger masses. Therefore, since the relic WIMP abundance is inversely
proportional to the annihilation cross section, m,, cannot be smaller than ~ 2 GeV*#* or larger than
~ 400 GeV'™ since the coupling constant cannot grow indefinitely because of the conservation of
probability (i.e., wavefunction unitarity). Mediator particles can also exist that increase the annihila-
tion cross section, relaxing the bounds on m,,.

Currently, there are only upper limits on the potential non-gravitational interaction, i.e., scatter-
ing™ and annihilation”, cross sections of WIMPs. An observation that can only be explained by a
nongravitational interaction of dark matter would be an independent and stronger evidence for the
existence of dark matter.

There are three ways with which one can expect to probe WIMPs as illustrated in Figure r.s.

First, WIMPs can be produced in high energy particle collisions such as in the Large Hadron Col-
lider (LHC). The observational signature would be missing energy and momentum, since the pro-

duced WIMPs would escape the detector without any further interaction. Second, nuclei in low-

16
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Figure 1.4: Dark matter abundance during thermal freeze-out?’. If WIMPs with My ~ 100 GeV, thermally freeze out,
their relic abundance can be consistent with the amount of non-baryonic matter required to close the mass-energy
budget of the Universe. Colored lines show the abundance of WIMPs that freeze out with different annihilation cross
sections that increase from red to blue. The black line shows the equilibrium abundance.
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background detectors can be expected to collide with WIMPs moving in the galactic halo, resulting
in observable the recoil of nuclei. Energy distribution of the recoiling particles as well as their tem-
poral (annual) variation due to the varying velocity of the Solar System in the galactic frame, would
allow discrimination of WIMPs from sources of background recoils. In the summer of the northern
hemisphere, the velocity of the Earth around the Sun aligns with the (current) velocity of the Sun
around the galactic center, potentially amplifying and spectrally hardening the recoil energy distribu-
tion®. However, direct detection experiments are sensitive to WIMP masses much larger than that
of protons, i.c., above ~ 10 GeV/ 2. The current upper limit for the spin-independent scattering
cross section is 7.7 x 10747 cm?® at 90% confidence level ™.

Third, WIMPs can interact with each other and produce Standard Model states that then pro-
duce showers of lower energy particles. An important class of such final states is photons, which
propagate to the observer without interacting with the intervening magnetic field, unlike those of
charged products such as electrons, positrons, protons, and anti-protons. The flux, i.e., number of
photons per detector area, solid angle, energy, and time, expected from these WIMP annihilations is

proportional to the line-of-sight integral of the WIMP number density squared,

1 (ov) dN, 21 — (ov) dN,

Ol =5 4n dE ~ 8rm? dE

pidl, (L)

los los

since annihilation is a two-body process. Here, p, is the energy density of WIMDPs, which is indepen-

dently measured to be ~ 0.3 GeV em ™2, (ov) is the thermally averaged annihilation cross section
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Figure 1.5: Three ways to detect WIMPs. The reaction proceeds to the lower right in collider searches and in all direc-
tions in the early Universe. Direct detection is any scattering along the line connecting the lower left and upper right.
Indirect detection is the reaction that proceeds to the upper left. SM stands for a Standard Model particle and can be
anyof W+, Z, .9, H, qi, %,

and dN.,/dE is the photon spectrum (i.e., number of photons per energy) in a single annihilation.
Depending on the annihilation channel, the Standard Model generically predicts the spectrum of
these photons to have a peak at some fraction of m,,. In particular, annihilations into quark anti-
quark pairs result in more efficient partitioning of initial energy to photons, generating broader
photon spectra with smaller average energies. Annihilations into charged leptons, however, produce
more energetic photons in units of m,.. Other particles such as electrons and positrons co-produced
in WIMP annihilations can increase the spectrum at low energies via inverse Compton scattering
and Bremsstrahlung radiation due to their interactions with the galactic gas, dust and cosmic rays,
the latter being a significant factor for indirect detection in the direction of the galactic plane and the

galactic center.
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1.4 THE GEV EXCESS

The gamma-ray sky is a rich source of information on the non-thermal processes in the Universe.
Gamma-rays allow characterization of energetic sources such as pulsars, active galactic nuclei (AGN),
supernovae remnants, as well as galactic and extragalactic diffuse high energy interactions.

Fermi Large Area Telescope (LAT)? is a spaceborn gamma-ray detector that has performed a
full-sky survey. Thanks to its low instrumental backgrounds and high angular resolution, it has
detected over three thousand gamma-ray sources, the galactic bubbles*® and characterized the dif-
fuse emission of the Milky Way and the extragalactic emission. The 3FGL# is the full-sky catalog of
gamma-ray sources detected by the Fermi-LAT.

The observed gamma-ray sky can be modeled as the sum of diffuse emission components, point
and extended sources. The dominant contribution to the diffuse model” is the gamma-rays pro-
duced by the scattering of high energy protons with interstellar gas and dust, which produce neutral
pions, 7o, that quickly decay into a pair of high energy photons. Another diffuse component s the
inverse Compton scattering of interstellar optical and infrared radiation field by the high energy cos-
mic ray electrons. Lastly, when the high energy electrons scatter on the gas and dust, they produce
stopping radiation (Bremsstrahlung) in gamma-rays. In addition, the gamma-ray sky has a signifi-
cant isotropic emission component, which is mainly the total redshifted gamma-ray emission from
distant galaxies.

Using the known sources of diffuse emission and point sources in the 3FGL, the Poisson regres-

sion of the Fermi-LAT data towards the inner galaxy reveals an anomalous emission, i.e., the GeV
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Figure 1.6: Left: gamma-ray emission inside a square of side 10° around the galactic center in the 1 - 3 GeV energy bin.
Right: residual gamma-ray emission after the diffuse and isotropic emission components have been subtracted. The
markers show the Australia Telescope National Facility (ATNF) pulsar catalog (light green) and the 3FGL gamma-ray
source catalog (dark green).

excess. The GeV excess was initially discovered by Lisa Goodenough and Dan Hooper™ and since
then, has been scrutinized in detail »2%172127:754912 The Fermi-LAT data and the anomalous resid-
ual emission are shown in Figure 1.6.

The inner galaxy is also one of the regions on the sky from which gamma-rays potentially pro-
duced by WIMP annihilations are expected to come from. Therefore, the potential consistency of
the GeV excess and the photons from WIMP annihilations can generate additional evidence for the
dark matter hypothesis as well as yielding an observational probe of its potential particle interac-
tions. In particular, the best-fit spectrum of an emission template as in Equation 1.5 is given in the
left panel of Figure 1.7, which peaks at ~ 2 GeV and is consistent with that expected from WIMP

annihilations. However, it is important to note that this spectrum is fitted for a single realization of
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the diffuse background. When uncertainties in the background emission are accounted, the uncer-
tainties in the spectrum of the GeV excess become larger %, allowing a range of hypotheses regarding
the origin of the GeV excess to be consistent with the marginal spectrum.

In this section, in order to characterize the spatial extent of the GeV excess and test its consistency
with the morphology expected from WIMP annihilations, another Poisson regression of the Fermi-
LAT data is performed.

The Fermi-LAT data (i.e., Reprocessed Pass 7, ultraclean class, front converting events) in the 40°
by 40° square centered at the galactic center, taken between August 4, 2008 and December s, 2013 is
binned spatially in HealP1 x with side resolution 256 and spectrally in logarithmically spaced energy
bins. Standard data quality cuts are applied to the data such as taking events with zenith angle less
than 100°, instrumental rocking angle less than 52°, DATA QUAL, and LAT CONFIG tags equal to 1.

The regressors are taken to be the Fermi-LAT diffuse model (i.e., p6v11) evaluated at each en-
ergy, a free isotropic emission component in each energy bin, and 8 rotationally symmetric ring
templates, each 1° wide, centered at the galactic center. The radii of the rings vary from 2° to 10° and
are smoothed with the Fermi Point Spread Function (PSF) similar to the diffuse model, using the
Fermi Science Tools. Data around the known point sources are masked.

A design matrix, A, that contains these templates as columns, is constructed such that

Y =AB+e (L.6)

where the number of rows and columns of A are the number of pixels times the number of en-
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ergy bins used in the fit, and the number of regressors, 3 is the vector of template coeflicients, Y
is the observed gamma-ray counts, and € is the residual, which is assumed to be independent and
identically distributed. Because collection of gamma-rays is a Poisson process, € should be Poisson
distributed. However, in order to obtain an approximate solution, it is initially assumed that € is
Gaussian distributed with standard deviation equal to VY, and the solution for /3 that minimizes

ele,

Bo = (ATA) "I ATY, (17)

is obtained. Then, starting from 3y, a gradient-descent optimizer is used to find the maximum likeli-
hood solution for 5.

The best-fit ring coefficients and their uncertainties at 68% confidence level, are shown in the
right panel of Figure 1.7. This implies that the GeV excess is detected up to 10° from the galactic cen-
ter, which corresponds to a projected distance of ~ 1.5 kpc. It is also inferred that, up to 8° from the
galactic center, the morphology of the GeV excess is consistent with the morphology of a generalized
NFW profile with index 1.2, squared and projected onto the sky.

The resulting best-fit annihilation cross section is 2.25 X 10726 cm3s™! for a 43 GeV bb. It is also
found that, although the GeV excess can be fitted with annihilations into 77 with lower (i.e., ~ 20
GeV) masses, annihilations into bb yield better consistency with the GeV excess. In addition, the
inferred annihilation cross sections would be two times as much, if the WIMP is Dirac (i.e., not self-

conjugate) instead of Majarona. It is also important to note that, when the regression is repeated
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Figure 1.7: The data (black) and the best-fit (blue) spectrum (left) and morphology (right) of the GeV excess ’°.

with the full-sky data, the best-fit annihilation cross sections are reduced by a factor of ~ 2.

The inferred annihilation cross section is consistent with the annihilation cross section needed
for the thermal freeze-out of WIMPs. Furthermore, if WIMPs are annihilating with this cross sec-
tion, the annihilation has to be s-wave (i.c., independent of the WIMP velocity), and in order to be
consistent with the constraints from direct detection experiments, the elastic scattering cross sec-
tion should be suppressed by the WIMP momentum. Nevertheless, the best-fit WIMP annihilation
cross section is likely to be biased, since the systematic uncertainties of the excess is large below 1
GeV 9,

The finding that the GeV excess extends up to 10° from the galactic center, is inconsistent with
the hypothesis that young pulsars may be producing the GeV excess, because young pulsars are ex-

pected to become faint by the time they reach this distance given a typical kick velocity of ~ 1000
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km s~ 1. However, it is plausible that the GeV excess is generated by millisecond pulsars, which can
remain bright over billions of years.

It is important to note, however, that despite the consistency between the GeV excess and the
WIMP annihilation hypothesis, other predictions of the WIMP annihilation hypothesis are in
tension with other data sets. For example, if WIMP annihilations are producing the GeV excess,
WIMPs should also be annihilating in dwarf galaxies. However, no such emission has been observed,
which has ruled out thermally annihilating WIMPs below so GeV at 95% confidence level***". Fur-
thermore, the absence of observations of new particles at the LHC has weakened the theoretical

priors of O(100) GeV WIMDPs.
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Probabilistic cataloging

Imagine taking a long exposure photograph. Initially, because no photon has arrived at the CCD yet,
any model about what is behind the lens, will be equally likely given the observed data. However,
that there is no photon arriving at the CCD, would be the most credible model from a reductionist
point of view, given that it is the simplest model and the closest to being tested. Once some photons

have been collected by the CCD, imagine that the surviving model is that the camera is pointed at
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avery distant ferry on the ocean. Although the observation that the hull of the ferry is partially oc-
cluded by the ocean, can be propagated as far as to infer that the Earth is round, there will still be
infinitely many models not discriminated by the available data. For instance, the noise in the pho-
tograph may not allow the individual detection of most people on board. Yet, the model that there
is one, ten or hundred people on board, may not be equally credible, given subtle discriminating
features in the observed image. Moreover, given the noisy image of the distant ferry, any inference,
e.g., whether there are humans or bears on board the ferry, require taking into account all possible
multiplicities, heights, and colors of humans and bears. Furthermore, even if the CCD had collected
photons for a long time, models regarding even finer scale may remain degenerate, i.c., individual
eyelashes of a given person may not be detected, although the size distribution of eyelashes may
again be constrained.

The essence of the scientific method is to construct a model (i.e., hypothesis), M, with certain
a priori degree of belief, i.e., probability *, distribution on its parameter space, P(€2,7). The prob-
ability distribution over 257 can be updated a posteriori to yield another probability distribution

P(Qr]| D) based on the consistency of the model with the observed data, D,

P(D|Q, M)P(Qr, M)
P(D|M) ’

P(Q|D) = (20)

*This thesis is written from a Bayesian standpoint. It treats probability as degree of belief in a proposition,
as opposed to the frequentist definition of frequency of observation of experimental outcome. Hence, it al-
lows assignment of probability to hypotheses unlike the latter, which can only assign probability to observed
data conditional on hypotheses.
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where P(D|Q)y) is the probability of observing D given the model M, i.e., the likelihood. Since
the data arrives incrementally over time, this update can happen indefinitely, adopting the posterior
of previous inferences as the prior for new inferences.

In the rest of this thesis, the probability distributions over the parameter space of the model, M,
ie, P(Qys) and P(Qy| D), will be referred to as the prior and posterior, respectively. Furthermore,
the union set of a group of models, Mo, M1, ..., My,,,., will be referred to as the metamodel, M ,
whose parameter space becomes €2, = Qp7, X Qpp, X ..o X QMNmax‘

Models can contain a number of identical parameter subspaces. In this thesis, these will be re-
ferred to elements. An element is a group of parameters that represent a meaningful entity in the
model only when considered together. Hence, the number of elements in a given model, IV, is the
model indicator and also a discrete parameter of the metamodel, M , such that the Nth member
of the metamodel contains NV elements. Furthermore, the gth parameter of the nth element in the
N'th member of the metamodel will be denoted with £, 4. Note that elements and their parame-
ters are model constructs and do not belong to the data space.

The parameter space spanned by element parameters will also be referred to as the caralog space,

Nmax Nmaz N— 1Nep

= U QCN— U H H €qu> (2“2)
N=1

N=1 n=0 ¢=0

where N, is the number of parameters per element. Because the metamodel can also contain pa-

rameters other than those of elements, the parameter space of the metamodel, €2, can be written
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as the union of the product spaces of the catalog subspaces with the space of a common parameter

vector p,

N’rna:L'

Qp = U P X QCN- (23)
N=0

Equivalently, the catalog space is the metamodel marginalized over the common parameters, /.

Cataloging is the inference of elements and their parameters. A traditional approach T to cata-
loging is to determine whether adopting an alternative model with an additional element increases
the maximum likelihood as compared to the null model without the additional element. Iteratively
performing this hypothesis test over the catalog subspace while potentially optimizing other param-
eters, e.g., J, one can determine the likelihood improvement for the additional element. This can
then be used to define elements as detected when the data is at least a 50 deviation from the predic-
tion of the null model.

If the model elements only have Gaussian covariances, traditional cataloging can capture un-
certainties of element parameters with the covariance matrix. However, when elements have non-
Gaussian covariances due to the non-Gaussianity of the likelihood (e.g., Section 3) or nonlineari-
ties in forward-modeling (e.g., Section 4), covariances between element parameters cannot be fully
captured by the covariance matrix. The maximum likelihood catalog also either blends elements

together or infers spurious elements, failing to propagate uncertainties across models with different

"The term traditional cataloging is used to refer to any approach that does not use at least one of the four
features of probabilistic cataloging listed later in this section.
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Figure 2.1: Left: Covariances between two continuous parameters. Right: Covariance between the model indicator
and a continuous parameter.

complexity. Furthermore, encapsulation of the parameter covariances with the covariances matrix,
also fails when the likelihood is multimodal. These issues with the propagation of within and across
model covariances can be overcome in a Bayesian framework, by representing one’s state of knowl-
edge with an ensemble of configurations with a variable number of elements consistent with the
data.

Figure 2.1 shows two examples of non-Gaussian covariances. The left panel contains the joint
probability distribution of two parameters, 61 and 6. Even though the maximum likelihood is at
(01,602) = (0.2,0.2) and the uncertainty estimate at this pointis (cg, , 09,) = (0.1,0.1), the
global topology of the joint probability distribution is significantly different from this estimate.
Therefore, the marginal probability distributions do not agree with the maximum likelihood esti-

mate. The right panel shows a similar joint probability distribution, but over a continuous parame-
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ter 03 and a model indicator, V.

Traditional cataloging can dimensionally reduce large amounts of observations to relatively com-
pact lists of elements, precluding false positives with the use of a hard significance threshold that
discards subthreshold information. Nevertheless, traditional catalogs are still models that describe
one’s state of knowledge consistent with the given data up to statistical and systematic errors. As ex-
emplified above, despite collection of large amounts of data, members of the metamodel, M ,can be
approximately equally consistent with the data. Therefore, inferences should take such within and
across-model degeneracies into account by first learning the joint probability distribution of €2,
and then marginalizing this probability distribution. This can be achieved by collecting an ensemble
of metamodel realizations.

A fundamental problem in inference is that of mismodeling, i.e, the data not being a draw from
the generative model used to fit it. This is because models of observations in the Universe are never
perfect descriptions of the data due to unmeasurable degrees of freedom. Therefore, the derived
statistical uncertainties underestimate the total uncertainties due to the presence of systematic errors.
Inferences must marginalize over the dominant sources of systematic uncertainties to ensure that the
remaining systematic uncertainties is below the inferred statistical uncertainty. Bayesian inference
also allows robust marginalization over such nuisance parameters.

In what follows, an element that improves the goodness-of-fit below and above the 5o signif-
icance threshold, will be referred to as subthreshold and superthreshold, respectively. Traditional
cataloging relies on retaining superthreshold elements as “detected” and discarding subthreshold

elements from the model. By requiring a high threshold, a low false discovery rate is ensured at the
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expense of also lowering the completeness of the inferred catalog. As a resul, the fact that some fea-
tures in the data are not modeled due to the missing subthreshold elements, causes information loss
as well as biasing the parameters of superthreshold elements and other parameters in the model. A
high significance threshold especially degrades inference of the population characteristics of sub-
threshold and marginally superthreshold elements.

In this thesis, a transdimensional, threshold-free, bhierarchical, and Bayesian inference framework
called probabilistic cataloging, is implemented that performs covariant modeling and robust uncer-
tainty propagation. The framework is based on taking fair samples from the posterior of a meta-
model, consistent with the given data. Each of these four ingredients independently adds functional-
ity to the framework. The thesis builds on previous ideas in "#™9b24442,

Probabilistic cataloging does not distinguish subthreshold and superthreshold elements and does
not place any threshold on the significance of elements. Subthreshold elements allow one to recover
more information from the data. When they enter posterior samples more frequently than what one
would expect from the null model, this propagates information from subtle features in the data to
the posterior of their parameters, even though the degree of belief in their individual existence can
be below detection threshold. Their existence in the metamodel also reduces the degradation (i.c.,
bias and variance) when inferring the parameters of the superthreshold elements.

The transdimensionality of the inference allows across-model covariances to be propagated. The
posterior of the count function S(&; > &£4.+), i.e., the number of elements with its gth parameter
above some g » in a given sample from the posterior, encapsulates the population characteristics of

the gth parameter. It accounts for how the uncertainties in the parameters as well as the existence of
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elements reflect to the population characteristics of the g element. The posterior of S(§; > &g.4),
P(S(&; > £4.4)|D), is marginalized over all within and across-model covariances.

In astrophysics, applications of probabilistic cataloging is ubiquitous. Fundamentally, the data
is either the number of photons collected in spatial, spectral, and temporal bins with some measure-
ment noise, or secondary quantities derived from such observations. Some examples of data sets
that require covariant modeling are crowded images (spectrograms or light curves) across the elec-
tromagnetic spectrum (e.g., optical, X-rays, and gamma-rays), where there are more than one source
(line or feature) per detector resolution; lensed images, where the lens model contains covariant mass
clumps; kinematic data sets, where stellar streams form covariant clusters on the space of integrals of
motion; CMB power spectra, where covariant features may exist in the primordial power spectrum.
The common feature of all these data sets are that multiple models of different complexity can be
approximately equally consistent with data, resulting in an uncertainty on the number of their ele-

ments.

2.1 PRIOR ON THE METAMODEL

Given a metamodel M, the prior on its N th member can be written as

P(Qury) = P(N, p, 05 {{ENng}n=01,...N—1, Bg }g=0,1,... . Nep—1) (2.4)

where (3, is the byperparameter that parametrizes the prior on the gth parameter of all elements,
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P(fN,mqvﬁq) = P(fN,n,qmq)P(ﬂq)v (2:5)

whereg = 0,1, ..., Ngp — 1.
An additional hyperparameter is the one that parametrizes the prior on IV, assuming that IV is

Poisson realization of underlying mean number of elements 1,

P(N|u) = ﬂ —#
W) = Nie (2.6)

The hyperparameter 11 is taken to be log-uniform distributed, i.e., scale-free, such that

1 1

B In Hmaz — In Hmin ;

P(p)

for tmin = 0.1 < i < phmaz = 10Npqq and vanishes otherwise.

Changing a hyperparameter does not change the likelihood, but only reparametrizes the prior.
The prior on the hyperparameter, P(f3), will be referred to as the byperprior. Probabilistic cata-
loging allows hyperparameters to be assigned a hyperprior other than a delta-function. When the
distribution of a given element parameter is apriori believed to belong to a certain a family, e.g.,
power-law distributed, but the exact form of the prior, e.g., log-slope, is not known, hierarchical
modeling allows reduced prior informativeness and the forward propagation of prior uncertainties.

Throughout this thesis, in order to keep the notation simple, both the probability densities of
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continuous, e.g., (t, and the probability distribution of the discrete parameter /N are denoted simi-
larly with P (1) and P(N), with the implication that the former is a probability density whereas the
latter is a probability distribution and they are both referred to as probability distributions.

Element parameters are assumed to be independent and identically distributed draws from an
underlying population and no correlations are believed to exist a priori. Therefore, uniform priors
are placed on the n-point correlations of element parameters, allowing the posterior to reveal correla-
tions, if any.

Taking into account the hierarchy and independence of parameters, the joint prior on the meta-

model becomes

P(Qury) = P(N|)P(5) [T P(B) [ [ P(évimalBa)- (2.8)

n

2.1.1 PARSIMONY

A model can explain an observed data set by remaining consistent with it. However, given an uncon-
strained number of degrees of freedom, any data can be explained with arbitrary complexity. Never-
theless, the resulting model would fail in making predictions for future data because of overfitting
the randomness in the current data. Therefore, the figure of merit that distinguishes models is their
explaining power weighted against their predictive power. A fundamental principle that encodes

this principle is the Occam’s razor, which maintains that models should make as few assumptions as
p p p
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possible while explaining phenomena.
The degree of belief in a member of the metamodel, M, is given by the integral of the likeli-
hood, P(D|N, 6), over the parameter space of the model, weighted by the prior degree of belief,

P(N,0y),
P(D‘MN) :/P(D|N,0N)P(N,9N)d9]v (2.9)

where 0 is an arbitrary parameter of the Nth member of the metamodel. This fully marginalized
posterior will be referred to as the Bayesian evidence. Assuming a flat prior of width g, and a flat
posterior of width oy, for 8, the Bayesian evidence becomes P(D|N, O max) (00, /X0, Y,
where d is the dimensionality of 0y and 0y max is the maximum likelihood estimate of 6 7. There-
fore, the Bayesian evidence contains the ratio of the posterior volume to the prior volume and disfa-
vors models that waste prior parameter space, i.c., those that marginally increase the goodness-of-fit
at the expense of making other predictions inconsistent with the observed data. In probabilistic
cataloging, Bayesian evidence is the primary source of parsimony.

Figure 2.2 illustrates the Bayesian evidence for three different models M1, M3, and M3. The hor-
izontal axis enumerates the set of all possible data that could be observed. Probability of observing
some data, is nonzero over different intervals for the three models. M fails in assigning nonzero
probability to the observed data, D. Even though M3 predicts the observed data with some prob-
ability, it spreads the probability over a larger region in the data space. The model that assigns the

highest probability of observing the data, D, is the model M>. Therefore, M> should be chosen
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Figure 2.2: The Bayesian evidences of three models M7, M5, and M3, as a function of data. M5 has the highest
evidence for the observed data, D.

model based on the parsimony principle.

In what follows, the element parameter whose correlation with its significance is highest, will
be referred to as the amplitude parameter denoted by &,. In probabilistic cataloging, in order to
make the prior distribution of element amplitudes scale-free, the prior on the amplitude of the nth
element is taken as a power-law between some &4 min and &g maz with the index —f3,.

1-5 _
kﬁa—glfﬁagaﬁa for fa,min < £a,n < ga,maw

P(€anlBa) = § 5@ Samin . (2.10)

0 otherwise
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Furthermore, a uniform prior is placed on the angle described by this log-slope,

P(B,) = tan~ ! (Bamaz) — tan=(Ba,min) 1 + 52 for faymin < a < Pa,maz . (2n)

0 otherwise

As a result, most of the prior volume is assigned to the low end of the amplitude distribution.
When the minimum of the prior on the amplitude is high, most of the prior volume will be incon-
sistent with data, yielding a low Bayesian evidence for bad models. However, as the minimum of the
amplitude prior is lowered, more of the prior volume becomes consistent with the data. In the limit
of taking this minimum to zero, addition of a random element drawn from the prior into the model,
does not change the likelihood. This results the integral in Equation 2.9 to evaluate to unity, since
Bayesian evidence does not penalize model complexity that does not affect the likelihood.

The likelihood as a function of a typical amplitude parameter is given in Figure 2.3. It shows that
the amplitude parameter has a Gaussian likelihood around the true value, when the parameter value
is above the detection threshold. However, at smaller amplitudes, the likelihood loses sensitivity to
the parameter and levels off at the likelihood of the null (i.e., zero-element) model.

Probabilistic cataloging places a scale-free prior on the Poisson mean of the number of elements,
which also causes smaller number of elements to be favored. This is the second (weaker) source of
parsimony, but is independent of the response of the likelihood to the new dimensions.

Adding new dimensions to a model along which the likelihood is flat, is not useful for learning

information from data because the posterior reduces to the prior. However, some information can
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€a

Figure 2.3: The likelihood as a function of typical amplitude parameter.

be inferred from the data when the likelihood is only approximately flat along the new dimension,
although the posterior can be highly informed by the prior. Therefore, depending on the intended
meaning of the posterior, an additional regularization prior may be needed. In particular, if the pos-
terior is to represent the complete catalog space allowed by the data, then no additional regularization
is needed. However, if the posterior is to represent a compact description of the catalog space consis-
tent with the data, then model complexity should be penalized further.

Because of the many uncontrollable degrees of freedom, observations made in the physical Uni-
verse are always stochastic. When testing an alternative model, the randomness (i.e., uncertainty) of
all observations have to taken into account in the null model. As a result, there should always be a

nonzero expected discrepancy between the data and the fitting model. Furthermore, a model with
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a larger number of elements can fit the data at least as well as another with fewer elements, if the
priors on the element parameters are chosen appropriately. Just as a too-low goodness-of-fit shows
that the model is not consistent with the data, a too-high goodness-of-fit indicates that the degrees
of freedom of the model causes the noise in the observations to be mismodeled. Not respecting the
noise properties of the data can bias a hypothesis test at low signal-to-noise since many subthreshold
elements can overfit the data by increasing the goodness-of-fit above that expected from the noise

in the null model. In addition, it can also cause the amplitudes of superthreshold elements to be
underestimated.

When the posterior represents the complete catalog space allowed by the data, the computational
complexity of inference grows exponentially with the addition of each element. However, this in-
crease in the computational complexity is not justified when judged on the basis of information
gain per computation, since little information is gained while spending a disproportionate amount
of computational resources. Therefore, unless the minimum amplitude is high enough to ensure
manageable computational complexity, an additional prior becomes needed to regulate model com-
plexity when elements are subthreshold. This prior will be referred to as the regularization prior.

An effective way to regulate inferences is cross validation *", which involves iteratively evalu-
ating consistency of a predicted subset of the data when the model explains the rest of the data.
However, in probabilistic cataloging this type of model regularization would introduce excessive
computational complexity, since the forward-modeling has to be performed millions of times.
Instead, models can also be regulated based on the some norm of the parameter vector, L, =

05 + 67 + ... + 0%71)1/ Pin the form of a negative log-prior term. Although Lo norm offers
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a penalty independent of the parameter scale, L1 as in LASSO?7 (Least Absolute Shrinkage and
Selection Operator), and Lo as in ridge regression, are more frequently employed in optimization
problems since they yield differentiable cost functions. In probabilistic cataloging, however, differ-
entiability is not a requirement and the L norm can be used to select models.

There are several information criteria that perform model selection based on the Ly norm that
are valid at different levels of signal-to-noise and likelihood topologies. For example, assuming that
the true model is among the members of the metamodel and that the prior is approximately flat, the
Bayesian evidence can be Taylor-expanded around the posterior mode up to second order to obtain
an approximation valid at high signal-to-noise (i.e., when number of data points, Np, is much larger

than that of parameters, d ),

~1/2
P(D|My) ~ P(D|N,0x.)P(N,0x.,)(27)"™/2V2P(D|N, 0) Np™? (an)
ON=0N
yielding the Bayesian (Schwarz) Information Criterion (BIC)™*,
1
In P(dy) = —§lenND. (2.13)

When inference is at low signal-to-noise, this approximation does not hold true and only yields an
upper (conservative) limit. If the assumption that the true model is in the metamodel is relaxed, one

can then attempt to find a model that best approximates the true model. One way to characterize
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the proximity of a probability distribution P to another probability distribution () is to use the

Kullback Leibler (KL) divergence™, i.e., information gain,

Dy, = /dQP(H) In SEZ; (2.14)

When the KL divergence between the approximate fitting model and the true model, is mini-
mized, the bias (i.e., discrepancy between the maximum and expected likelihood) becomes equal to

the dimensionality of the model, yielding the Akaike Information Criterion (AIC)**.

InP(dy) = —dn (2.15)

However, both BIC and AIC are only valid for point estimates. In probabilistic cataloging, the
regularization prior must instead be imposed during the sampling. Therefore, assuming that the
residuals of the null and alternative models are x? distributed with Np — N Nepand Np — (N +

1) Nep, degrees of freedom, respectively, the regularization prior is defined as

1 1
InP(N+1)—InP(N) = <§X?VD—(N+1)N6,, - §X?VD—NN61,>

) (2.16)

1
e 5 <<X?VD_(N+1)Nep> - <X%VD_NN€1)>> e _§N€p~
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Therefore, by construction, this regularization prior removes complexity that resultsin S 1o
improvements to the goodness-of-fit. As a result, when regularization prior is applied, probabilistic
cataloging is only useful for learning about elements that are individually more significant than

~ lo.

2.2 SAMPLING

When inferring the posterior of the metamodel, given infinite time and computational resources,
the posterior could be evaluated on a regular grid of the metamodel parameter space. However, the
required number of likelihood evaluations grows exponentially with the number of dimensions

and a brute-force calculation fails even for moderate number of parameters. Therefore, probabilistic
cataloging requires taking fair samples from the posterior.

Sampling is performed by constructing a reversible Markov chain, whose stationary distribution
is the target (e.g., posterior) distribution. Known as Markov Chain Monte Carlo (MCMC), this ran-
dom process allows fair samples to be taken from a probability distribution that cannot be directly
sampled from. A sufficient but not necessary condition to obtain a reversible Markov chain is to

establish detailed balance

/ PN, 0y |D)Q (0, 0y )a(Oy 8 )dO —
Qmy

/Q PN, 0x|D)Q (0, 0x (O, 0x) A0y (217)
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where 0y and 9?\7 are the current and proposed states in the parameter space of the Nth member of
the metamodel, Q7 , Q (O, 0y ) is the one-to-one transition from O to 0 and (O, 0y ) is the
probability of accepting the transition. Because both the current and proposed states are in the same

model, M, the Bayesian evidences on both sides cancel, yielding

| POV PN, 8)Q(6x, 8 )0, O ) =
Qny

| POIN.6) PN 0@ O, 0Bk (e)

Once Q (O, 0'y) is specified, o (6, 0’y ) can be uniquely determined,
N)1SSp N quely

(2.19)

PN P(DIN,0y) P(N,0y) Q']9)
a(fn]0y) = min <1’P(D|N,9§) X P(N,Qg) X Q(@‘H’)>'

When sampling from the posterior of the metamodel parameter space, €2y, the current and
proposed states can have different dimensions, e.g., 0 and 9§V, with N # N'. Therefore, the
chain can no longer be reversible in the transdimensional case, since the transition loses its one-to-
one property. This can be alleviated by drawing random auxiliary parameters, u and v/, using the
probability distributions P(u) and P(u’), to match the dimensions of the current and proposed

states such that the transition (0, u) = (0, v’) is a diffeomorphism H,

H(bn,u) = Oy, o) (2.20)

H Y0\, v) = (On,u). (2.21)
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The dimension matching,
dim(0x) + dim(u) = dim (@) + dim(u’), (2.22)

where dim() denotes the dimension operator, conceals the transdimensional nature of the proposal
and ensures reversibility. Therefore, H(0n,u) = (6'y,,u’) replaces the probabilistic transition,
Q(0'10).

When making a proposal across models, there are infinitely many ways to construct distinct dif-
feomorphisms. However, only some are useful transitions to explore degeneracies in the posterior
of the catalog space. Denoting the probability of proposing a transition from model M to M},

P(N — N’), the ratio,

P(N' = N) 2
P(N = N')’ 3

is included in the acceptance probability to ensure detailed balance. Lastly, the coordinate transfor-

mation H is required to conserve probability such that,

00, )

/ r
deN/dU = a(eN’u)

dOndu, (2.24)

for all O and w.
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This yields

a(0y/|0n) = min(1, ap), (2.25)
_ P(N',0,|D) P(u) P(N" — N) |08, u) 226
Y= "P(N,0n|D) P(u) P(N = N') | 90w, u) 2
——— ————

where the common factor of P(D|M ) on both sides, cancel again since the transformation is per-

formed within the same metamodel, giving

_ P(D|N',@),) P(N',0y,)
"= "P(DIN,6x) P(N,0y)

X Oy X Qe X @ (2.27)

This sampling framework is known as the Reversible Jump MCMC (RJMCMC)"+*>™  which is
a variant of MCMC that allows across-model proposals in a pool of models indexed by their dimen-
sionality. Probabilistic cataloging inherits the RIMCMC framework in implementing transdimen-
sional proposals.

The purpose of sampling is to traverse the parameter space with a frequency proportional to the
posterior. Therefore, given a finite number of samples, the sampler visits regions with the highest
posterior, which are disjoint across models and may also be disconnected in a given model. In order
to sample efficiently, the proposals (i.e., choices of H and P(u)) should approximate the posterior

and result in forward-model changes that yield comparable likelihoods.
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WITHIN-MODEL PROPOSALS ~ Within-model proposals explore the posterior along a given mem-
ber of the metamodel by making changes to the parameter vector. Even though within-model pro-
posals do not require the RIMCMC formalism, they can be incorporated into this framework when
both © and v’ have the same dimension.

Within-model proposals are made in a transformed space, where the prior is uniform. The trans-
formation is performed using the cumulative distribution function (CDF) of the modified parame-
ter, O, which is either an element or common parameter. This yields a transformed parameter, 9;\/,
which, by construction, has a uniform prior between o and 1. The within-model proposals are made

such that

(O, u) = (O, ) (2.28)
HNEV =0y +u (2.29)
u = —u. (2.30)

As aresult, the prior ratio in Equation 2.27 is set to unity. During forward-modeling with ég\/’ the
inverse CDF is used to calculate 9?\1’ which is then used to determine the forward-model.

When the posterior is multimodal, barriers between high-posterior regions can significantly in-
crease the number of proposals required for convergence. In order to increase the sampling effi-
ciency, the auxiliary parameter  is drawn from a heavy-tailed Gaussian distribution with mean zero.

Furthermore within-model proposals are made symmetric as in Metropolis proposals, which sets c,,
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to unity. Within-model proposals are also self-antagonist such that both forward and reverse transi-
tions can be achieved using the same type of proposal. Therefore, since there are as many parameter
proposals possible as the number of parameters, which is invariant during a within-model proposal,
. in Equation 2.27, becomes unity. Similarly, the Jacobian, i.e., &; in Equation 2.27, evaluates to

unity for all within-model proposals.

BIRTH AND DEATH PROPOSALS  Although sampling from a given €27, can be performed using
within-model proposals, sampling from €2 ;; requires across-model proposals that incorporate a
change in N. In these across-model proposals, u and «’ have different dimensions. These across-
model proposals implement the volume factor in the Bayesian evidence into probabilistic cataloging,
because the auxiliary parameters are randomly sampled.

Birth and death proposals, where an element is either added to or deleted from the element lis,
are the elementary across-model proposals that allow the exploration of models of different dimen-
sionality. Because they are the reverse proposals of each other, both have to be present in the set of
possible proposal types in order for detailed balance to be respected.

During a birth, the transformation

(On,u) = (0N, &) = Oy 1. (231)

is proposed so that the auxiliary parameter vector, u, is the same as the parameters of the added ele-
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ment, §. Conversely, during a death proposal it is required that

0N+1 - (9N7 g) — (9N7 ’U/) = 9;\/ (2'32’)

where the auxiliary parameter vector v’ carries the parameters of the element to be killed, &.
Because the new element parameters are drawn from the prior, this causes the probability of
the auxiliary vector to be same as the prior of €, resulting in the cancellation of the prior and the

probability distribution of the auxiliary parameters in Equation 2.27, i.e.,

= =1 (233)

During birth and death proposals, the list of elements is treated as ordered. Given N elements
in the current state, if the list of elements were treated as an unordered list, the number of possible
distinct birth proposals would be 1, whereas the number of possible distinct deaths in the reverse
proposal would be N' + 1. However, there would also be an implicit N + 1 fold degeneracy in
u, reducing P (u) by the same factor. At the end, the resulting . would be unity. An equivalent
scheme that does not introduce degeneracies to u can be obtained, however, by treating the element
list as ordered. Then, both the forward and reverse proposals during a birth have N + 1 possibilities,
resulting in o, being equal to unity. Adoption of an ordered element list makes the bijective nature
of the transformation manifest.

Since the auxiliary parameter vector is identical to the added element parameters, the Jacobian,
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@}, also becomes unity. Hence, ag becomes

e e e (1)

When the regularization prior is applied, after a birth or death proposal, the proposal is accepted
with a 100% probability only if the log-likelihood increases by 0.5N,),. Hence, the regularization
prior effectively shifts the log-likelihood cutoft in Metropolis-Hastings proposals, down by Nep,.
Figure 2.4 shows the trace (left) and histogram (right) of the log-likelihood changes during accepted
birth proposals. The top and bottom rows correspond to inferences with and without the regular-
ization prior, respectively.

Birth and death proposals make sampling from a multimodal posterior more efficient, since they
result in non-local (i.e., memoryless) changes to the state vector. For the same reason, they accelerate

burn-in of the sampler starting at a fair draw from the prior.

SpLITS AND MERGES At low signal-to-noise, the dominant transdimensional covariance is whether
or not features in the data are more consistent with a single element or the background-only hypoth-
esis. However, as the signal-to-noise ratio increases, transdimensional covariances shift to higher
numbers of elements, leading to covariances between a single and high-amplitude element or multi-
ple and lower-amplitude elements.

In principle, birth and death proposals span the catalog space, i.c., given infinite resources they

50



B, Accepted

I i
8 4000 - : :
3500 - : :
. b
ooy
<, CHMRRG R L | . - - N .
S " . 1§ 1 |
i =' 2000
< L | | N i i
-__ I u | MH“““ “ MHM\ ULIU H\H‘ | L M‘ Ml\“ i\“ \’ H‘ I\ __ 1500 1 i i
1000
500 - : i
6 soloo 10600 15cl>oo -5 0 5
isamp AInP(D|M)

B3, Accepted

800
10.0 +
700
il
“I Wkl 600
—~ 5.0 41
s W w 500
S “wwww ikl g
.l | M L ‘ 1[1 | ,1 | = w0
3 L [Ie M il HM 0 0l A
oo 1 I
-25 - 200
-5.0 100
T T T T 0
0 1000 2000 3000 -5 0 5 10
samp AInP(D|M)

Figure 2.4: Log-likelihood difference during accepted birth proposals.
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can be used to probe all transdimensional covariances. However, the exploration of parameter co-
variances with only birth and death proposals, can be inefficient for superthreshold elements, be-
cause the implementation of birth and death proposals, where the auxiliary parameters are drawn
from the prior, is tailored towards exploring subthreshold elements, e.g., between multiplicity of
subthreshold elements and the background hypothesis.

Therefore, additional across-model proposals are needed in order to efficiently explore transdi-
mensional covariances at high signal-to-noise. Split and merge proposals, where an element is split
into two, and two elements are merged into one, can probe these covariances.

During a split proposal an element with parameters & is split into two elements with parameters

&1 and &9, such that

(9]\77 U) = (0N71)£05 U) — (0N717£1)§2) = 0§V+1 (2'35)

where 6y _1 is the part of the current state vector that does not change. In what follows, the hor-
izontal position, vertical position, amplitude, and the rest of the parameters of an element will be
denoted with &; ¢,, &6, &i,a> and & p, respectively, where i is o, 1, or 2. Hence, the transformation is

specified as
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§1.00 = 0.0, + uo, (1 — ua)

§2,00 = 0,00 — Up, Ua

1,00 = 0,6, + Uo, (1 — ua)

§2,0, = £0,0, — Uy Ua

§1,a = Ua0,a

52,(1 = (1 - Ua)fo,a

§1.0 = o

§op = Uy
where ug, , ug,, Uq, and uy, are the auxiliary parameters. They represent the horizontal and vertical
splittings, the fraction of the amplitude that is given to the first daughter and the parameters of

the second daughter except its position and amplitude, respectively. Similarly, the transformation

during a merge reads

9N+1 - (9N717§17£2) — (9§V—17§07u/) - (0§V7U/) (2'37)

During a split, the parent is chosen randomly. Therefore, given a state with NV elements, there
are N, N and N + 1 possibilities, yielding a joint probability of N~2(N + 1)~1. During a merge

with IV + 1 elements initially, the first daughter and the parent are also chosen randomly with a joint
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Figure 2.5: Schematic view of split and merge proposals along with the within-model proposals. Arrows indicate the
transitions of the MCMC state.

probability of (N +1) 1N =L, However, the second daughter is chosen with a probability weighted
by a Gaussian in distance from the first daughter and a standard deviation of 6. Furthermore, the

Jacobian of the split proposal becomes &,. Hence, oy for split proposals becomes

_ P(DIN +1,0y,)  P(&)P(&) e~ 05(A0) /6%,

1
= — =N, N
= TPDIN,Oy) P(é)P(w) p( 2 ) ST s,

X fO,a

(2:38)

The typical transdimensional covariance explored by split and merge proposals is shown in Fig-
ure 2.5. Here, a given feature of the data can be fitted with one or two elements. The histogram of
the posterior samples from the amplitude of the single element and the amplitudes of the alternative
model are shown in the left and right panels, respectively. These histograms are marginalized over all

other parameters of the elements such as their positions.
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In order for split and merge proposals to be efficient, 1g, and ug, are also drawn from a Gaussian
distribution with mean zero and standard deviation 0y, ug, is drawn from the uniform distribu-
tion between o and 1, and ug, are drawn from the respective prior distributions. As a result of these
choices, the prior ratio, avy, ¢, and aj approximately cancel each other, allowing the sampler to
visit equally likely configurations in different models.

Figure 2.6 shows In «; for the accepted split proposals. Because «; is the amplitude, this his-
togram shifts left or right by a constant depending on the problem. However, its shape is dictated
by two competing effects that reduce the acceptance ratio of splits. At high-amplitudes, because
elements are more significant, a given spatial splitting causes lower likelihoods. Towards the low-
amplitude end, however, daughter elements become more likely to fall below the minimum of the
amplitude prior. Therefore, split proposals are more efficient at intermediate amplitudes.

Table 2.1 summarizes the proposal types along with their frequency. In order to ensure that NV is
not biased, across-model proposals have a fixed probability of proposal, independent of current V.

The state transitions are further illustrated in Figure 2.7, where the sampler transitions between
member models using birth, split, death, and merge proposals and explore individual model parame-

ter spaces using within-model proposals.
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Figure 2.6: Histogram of the logarithm of the Jacobian factor during accepted split proposals.
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Figure 2.7: State transitions in the Markov chain, showing the birth (B), split (S), death (D), merge (D) and within-model
(W) proposals.
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Table 2.1: Types of proposals used to explore the catalog space.

Name H Frequency
Within-model 0.6
Birth 0.05
Death 0.05
Split 0.Is
Merge 0.15

2.2.1 MODEL SELECTION

The Bayesian evidence for two given models M+ and My can be used to find the relative fully

marginalized posterior of the models

P(My/|D) _ P(D|My) P(Myr) (239)
P(My|D) — P(D|My) P(My) " |

Because the integral in Equation 2.9 is a high-dimensional integral, its calculation is very noisy.

Estimating it with samples from the posterior

Nsam
P(DIMy) = """ (2.40)
Za P(D\N,QN)G)

or from the prior
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1

samp

P(D|My) ~

> P(DIN,0.q) (2.41)

where a = 1,2, ..., Nygmp is the index of the samples drawn and 6y , is the value of the parameter
vector for the ath sample, leads to a large variance due to sampling noise. Stabilizing the estimates
by truncating the samples or sampling from the prior with likelihood thresholds such as in Nested
Sampling*°* may partially alleviate this variance. Nevertheless, the large dimensionality and multi-
modality of the posterior remain intrinsic limitations to estimating the Bayesian evidence.

In probabilistic cataloging, the Bayes factors between member models in Equation 2.39 are in-
stead obtained by the relative frequency of visits to members of the metamodel. Therefore, the
Bayesian evidence of the metamodel, P(D|M ) is not of interest and not calculated. Instead, the
marginalized posterior of the model indicator, P(N|D), directly yields the Bayes factor. Therefore,
detailed balance during reversible jumps implements the parsimony of Bayesian evidence into prob-
abilistic cataloging. This is an advantage of probabilistic cataloging compared to other inference
frameworks that rely on estimating the Bayesian evidences of models and precludes the necessity to

sample from the posterior of individual member models in order to calculate the Bayesian evidences,

ie, P(D|My), P(D|My), ... P(D|My).
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2.2.2 LABELING DEGENERACY

The parameter vectors of the members of the metamodel contain two distinct classes: the common
and element parameters. The common parameters have fixed labels (i.c., interpretations during
forward-modeling) that do not change across samples. Therefore, although there is a distinct poste-
rior of the common parameters of each member of the metamodel, P(N, g]D), a weighted average
of these posteriors can yield P(M, 5] D).

Unlike the common parameters, the likelihood is invariant to permuting the labels of elements.
This is a feature shared by all mixture models**3, where model components are not individually
labeled and, hence, can change labels without changing the likelihood. Similarly, in probabilistic
cataloging, the labels of elements (and their parameters) can change across samples. As a result, if
an infinite number of samples were taken, a weighted average of the posterior of element parame-
ters would become identical. As a result, elements in a given sample from the posterior, cannot be
matched to elements in a different posterior sample without breaking the labeling degeneracy.

The degeneracy in the element labeling does not imply any loss of information. Even though the
posteriors of a given kind of element parameter, P (&, 4| D), are identical for all elements, the infor-
mation is retained in the posterior of the count function of a given element parameter, P(S(§, >
£)ID).

Taking fair samples from the joint posterior of the metamodel is the correct approach for robust
uncertainty propagation, which accounts for all within and across-model degeneracies. Breaking

of the labeling degeneracy causes some of the information to be lost and introduces a bias into the
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posterior due to arbitrary choices made in associating elements across samples. Nevertheless, prop-
agation of uncertainties is a continuous process. Inferences use as prior, the posterior of previous
inferences. Therefore, if all inferences had propagated uncertainties by keeping samples from the
posterior, the time and space complexity of inference would increase exponentially, making uncer-
tainty propagation impossible after a few subsequent inferences. Therefore, uncertainties should be
propagated in the form of posterior samples only when, doing so reduces bias and improves informa-
tion recovery. Even then, the posterior should be dimensionally reduced into a covariance matrix at
the earliest possible stage of inference, as soon as uncertainties can be expressed in a different basis
without non-Gaussian covariances, i.e., when the covariance matrix can encapsulate the uncertain-
ties.

When samples from the metamodel are to be dimensionally reduced to a covariance matrix of
(fixed-label) element parameters, this requires a prescription for breaking the labeling degeneracy.
This can be achieved by marginalizing the posterior samples from the catalog space onto the element

parameter space and then finding clusters on these projections™°.

2.2.3 ASSOCIATING A PROBABILISTIC CATALOG WITH A REFERENCE CATALOG

There are two motivations for associating a probabilistic catalog with a reference (i.e., traditional)
catalog. First, using simulated data, the performance of the probabilistic catalog can be studied with
respect to the true catalog as in Section 3.1. Second, the associations of the probabilistic catalog with
a reference catalog can yield the posterior of parameters that cannot be inferred by using only the

data the probabilistic catalog is consistent with, as in Section 3.3.
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In this thesis, the elements are associated based on positional proximity. In order to associate a
probabilistic catalog with a reference catalog, each posterior sample catalog is associated with the ref-
erence catalog by finding the closest sample element inside a circle of maximum radius, 04, around
every reference element. Then, the posterior of the element parameters that are assigned to reference
elements, is calculated.

This approach allows associations between a probabilistic catalog and a reference catalog with-
out breaking the labeling denegeracy of the probabilistic catalog. Furthermore, it yields unbiased
uncertainty estimates for the element parameters other then positions (e.g, their amplitudes) at the
expense of increasing random associations, i.e., those due to spatial coincidences. However, in order
to ensure that these do not bias associations, for all inferences, 0. is chosen not to be larger than

the spatial scale at which elements become covariant.

2.2.4 DECISION LOGIC

Probabilistic cataloging improves inference performance at the expense of increased time complex-
ity. Therefore, a decision logic is required to determine which feature of probabilistic cataloging is

justified under what conditions. Figure 2.8 illustrates this decision logic.

2.2.§ IMPLEMENTATION

PCAT isa Python2.7 implementation of the presented probabilistic cataloging framework and
the main product of this thesis. It is a mixture RJIMCMC sampler that takes fair samples from

the posterior of a metamodel given some data. It is publicly available at https://github.com/
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Figure 2.8: Decision logic of how to employ probabilistic cataloging.

62


https://github.com/tdaylan/pcat
https://github.com/tdaylan/pcat

tdaylan/pcat for the use of the scientific community, with documentation available at http:

//pcat.readthedocs.qo.

2.3 EMISSION METAMODEL

Photon collection by a CCD or particle detector, where impinging photons are counted in spatial,
spectral and temporal bins or bands (i.e., bins with transfer functions), is a Poisson process. In what
follows, temporal binning will not be considered, but the data will also be binned in data quality
classes. Furthermore, the observed number of photons in energy band 4, pixel j, and data quality

class m will be denoted by kD

iim Given some data, ideally one would aim to infer the underlying

. true D true :
true generative model, &} o such that ;> misa Poisson realization of k5 i However, processes in

the Universe cannot be modeled with arbitrary complexity due to unobservable degrees of freedom.

Therefore, kP,

iim 1S instead modeled parametrically with a metamodel whose forward-model, LM

zgm’

the Poisson mean of kP

yielding the log-likelihood

iym>

In P(DIN,0x) = Y In P(kD,,[K},)

igm

—Zk”mlnk”" — kM In kD

igm ijm z]m

(2.42)

ijm

The forward-model, k:l m> 18 the photon counts predicted by the metamodel in energy band ¢, pixel

J and data quality class m, and is the projection of the metamodel onto the data space. It is a deter-

ministic function of the metamodel parameter space, and obtained by the model flux convolved
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with the exposure of the detector towards a particular direction on the sky, (61, 82), at energy E,

€(E, 01, 02), and the transfer efficiency, T'(E),

K= / / / Mu(E, 01,05)e(E, 01, 05)T(E)dEd6:df, (2.43)

where M, (E, 61, 62) is the flux predicted by the metamodel, i.e., number of photons per area,
time, energy, and solid angle. When data is collected, there can be discontinuities such as dead CCDs,
cosmic rays, leakage from bright sources. The exposure correction allows these pixels to have zero-
weight in order to mask out such data. When the number of photon counts is high, as in optical

photometry, the data reduces to a Gaussian process.

2.3.1 MODELING PHOTON EMISSION

The forward-model counts in energy bin ¢ and data quality class 12, can be written as a sum of sev-

eral components,

Ndif_l
My = Z Diw + Ii + Pim, (2-44)

w=0

which contains Ny; ¢ spatially varying diffuse emission components, Djy,, where w = 0,1, Ng; r — 1,
an isotropic emission component, Z;, which models truly isotropic emission, whether of cosmic or

instrumental origin, as well as emission from point sources with fluxes below the minimum of the
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flux prior. Py, is the contribution of point sources to the emission model.

Incoming direction of photons can only be measured with finite precision. The spatial and spec-
tral shape of this uncertainty is encapsulated in the PSF of the instrument, F,,. Therefore, each
D; is convolved with F;y,. The emission metamodel contains a common parameter for the normal-
ization of Dy, and Z; for each ¢ and w. Log-uniform priors are placed on these normalizations and
they are denoted with A

In general, photon emission from a point source can be modeled as a delta function in position
space with an energy spectrum, which are then convolved with the spatial and spectral instrument
response, i.e., the point and line spread functions, of the measuring instrument, respectively. The
measurement uncertainty in energy is assumed to be much smaller than the size of the energy bins.
The delta function at the position of each point source is then convolved with the PSF, F,,, which
is in units of the fraction of total flux per solid angle.

PCAT allows the PSF to be modeled with Gaussians

A %
Fim(0o; 0) = Noreshad Gairg B (2.45)
where 0 is the angular distance from the point source, King functions (Section 3)
-
1 1 65
Fim(0o;0,7) = == (1- = || 1+ 53 ; (2.46)

Voro? vy 202y

which approximates a Gaussian at small 6 and a power-law with log-slope «y at large 0, or an Airy

6s



pattern (Section 4),

2J1 (C sin 90)

csin 0y

Fim(0o) = , (2.47)

where cis a constant and .Jp is the Bessel function of the first kind of order one.

In astrophysics, the PSF of a given instrument can be constrained using simulations or calibration
data such as bright and isolated or stacked point sources. In that case, priors on the PSF parameters
can be made delta functions. However, in certain applications, where the PSF can change over space,
energy or time, the uncertainties in the PSF may be comparable to the uncertainties in the fluxes and
positions of the point sources. In that case, the uncertainties in the PSF must be marginalized. In yet
other applications such as clustering of arbitrary data sets, the PSF is unknown a priori, and must be
inferred along with the elements. Parameters that characterize the PSF in the emission metamodel of
PCAT are denoted with 77.

Hence, when summed over all point sources, the model point source surface brightness, Py, is

obtained in energy bin ¢ and PSF class m, in units of photons per area, time, solid angle, and energy,

N-1

Pim = Zf:im(el,na 02,n)fm' (2-48)

n=0

where f; is the flux of the nth point source in the ith energy bin.
In the emission metamodel of PCAT, the elements are light point sources and their parameters are

the horizontal position, 01, vertical position, 2, flux, f, and color, s. The spectra of point sources
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are either modeled as a power-law with a single color, s,,,

—sn
E.
fni = fn F; 7 (2.49)

as in Sections 3.1 and 3.2, or a set of colors, Sy, for each energy bin other than the pivot energy bin,

Ey,

; (2:50)

as in Section 3.3.

A probabilistic graphical model (PGM) of the emission metamodel PCAT is presented in Figure
2.9. In this representation, nodes denote random variables with certain probability distributions,
while edges denote conditional dependencies of the probability distributions of the destination
nodes. The red, blue, green and yellow nodes represent the metamodel parameters, which are as-
signed prior probability distributions. In particular, the red nodes are the hyperparameters 1 and
a, which set the normalization and slope of the point source flux distribution, respectively. The
blue node indicates the number of point sources in a member model, IV, i.e., is the multiplicity of
each green node. Likewise, the green nodes are the element parameters. The yellow nodes are the
common parameters of the metamodel. Mp node is the forward-model, i.e., a deterministic func-
tion of the metamodel parameters, which has the same dimensions with the data, D. Along with the

hyperpriors and priors on the common parameters, the consistency of M p with D determines the
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posterior. The directed edges are color-coded such that black edges denote a probabilistic relation,
whereas olive lines show a deterministic relation. Finally, magenta lines imply that the multiplicity
of the destination node is set by the origin. The graph does not use plate notation, since the multi-

plicity itself is a discrete parameter in the metamodel, which admits a hierarchical prior.

2.3.2 DATA AND METAMODEL BOUNDARIES

In general, the spaces of the data and forward-model do not have to be coincident. A given data

set may have features that can only be explained by model components outside the data space. For
instance, an image may have features close to its boundaries that have been caused by sources outside
the image.

In order to model emission from sources outside the data space, PCAT allows the spatial prior
region to be larger than the image by the Full Width at Half Maximum (FWHM) of the PSF. There-
fore, the model point sources can move out of the image and probe whether a feature close to the
boundary can be fit better by a model point source outside the image. As a result the offset provides
a smooth transition from a data-informed region well inside the image to a prior dominated region

outside the image, where the posterior asymptotes to the prior.
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Figure 2.9: The probabilistic graphical model of PCAT emission metamodel. Each colored node in the network cor-
responds either to a single parameter or a set of parameters (when vectorized) in the metamodel. M, denotes the
forward-model and D stands for the data. Nodes and edges are colored depending on the type of parameter they
represent and their conditional dependences, respectively.
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The gamma-ray sky

Inference of point sources is a fundamental problem in astronomy. Sources may be subthreshold
either due to their intrinsic faintness (i.e., photon shot noise), or being fainter than the typical fluc-
tuations of the background emission or nearby brighter sources. As a result, catalogs can become
flux-incomplete, and the inferred background emission can be biased high.

In general, there are two inferences that can be performed regarding sources in the model:

* What are the sources above some significance threshold and what are their parameters?
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* What are the multiplicity, position, flux and color distribution of the sources?

Traditional catalogs, by construction, can only address the first question, whereas a probabilistic
catalog can provide an answer to both questions.

When inferring a catalog from a telescope image, non-Gaussian covariances appear between
source parameters (e.g., position, flux, and color parameters) when the number of superthreshold
sources per FWHM of the PSF, becomes greater than unity. Therefore, traditional cataloging also
mismodels crowded-field images, has lower sensitivity for faint sources, and fails to propagate uncer-
tainties in the source positions, fluxes, and colors to further analyses.

In this section, the inference performance of probabilistic cataloging will be characterized using
simulated data. Then, the observed gamma-ray sky towards the northern galactic pole and the inner

galaxy will be studied using the emission metamodel of PCAT.

3.0.1 MODELING GAMMA-RAY EMISSION

When modeling gamma-ray emission with PCAT, it is assumed that the flux of the nth point source
in the pivot energy bin, fi,, is distributed as a power-law between fy,i, and fr,q4, with the log-slope
-ov at the central flux. The value of f,;,, will be different for each section in this chapter, whereas
Frnae will be fixed at 1076 cm =251 GeV 1.

Throughout this chapter the gamma-ray data is assumed to have been collected by the Fermi-
LAT and is in the form of photon counts binned spatially, spectrally, and in PSF quality classes. The
latter allows better modeling of point sources, since photons that convert at the top of the instru-

ment, i.e., front-type events, have smaller angular reconstruction uncertainties. The PSF quality
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binning is based on front and back converted events for Pass 7 data (Section 3.2), whereas it is based
on the two best PSF classes for the Pass 8 data (Sections 3.1 and 3.3). The energy bins are taken as

0.3 —1,1 — 3and 3 — 10 GeV. The pivot energy is taken as Flg = 0.5 GeV for the Sections 3.1 and
3.3and By = 1.7 GeV for the Section 3.2. Furthermore, spatial binning is performed in HealP1 x
pixels with base resolution 256.

A weighted sum of two King functions is used to model the PSF®. Furthermore, given that the
Fermi-LAT energy resolution of ~ 10% is smaller than the energy bin width, infinite energy resolu-
tion is assumed and the line spread function of the detector is neglected.

Given that the PSF of the Fermi-LAT is below 1° in all the energy bands of interest, the radius
scale of split and merge proposals, 0, is taken as 1° in order to optimize the exploration of covari-
ant elements. Point source associations are also performed with an association angle, 045, of 1°.

Posteriors in Sections 3.2 and 3.3 are compared to 3FGL to assess the performance of probabilistic
cataloging. Thus, the choice of energy binning coincides with that of the 3FGL catalog, in order to

facilitate associations in Sections 3.2 and 3.3.

3.1  SIMULATED DATA

In order to validate the framework, probabilistic cataloging is first performed on simulated data.
Towards this purpose, the posterior of the metamodel is compared with the parameters of the true
metamodel, which is forward-modeled to generate the data.

In order to generate the simulated data, a random sample is drawn from the prior of a member
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of the emission metamodel with 100 point sources. Then, the sample is forward-modeled to obtain
surface brightness. A flat exposure is assumed to convert surface brightness into photon counts.
Lastly, in order to account for the photon shot noise, a Poisson realization of the forward-model
counts is drawn as the simulated data.

The simulated data count map in the 1 GeV - 3 GeV energy bin is shown in the top left panel
of Figure 3.1. When probeabilistic cataloging is performed on this data, the posterior of the mean
forward-model and residual count maps are obtained as shown in the top right and bottom panels
of Figure 3.1. Posterior of the mean residual count maps contain no coherent features and give an
averaged x? per degree of freedom of 1.04.

Figure 3.2 shows six fair samples from the posterior of the catalog space superposed on the same
data count map. The area of the markers are proportional to the flux of the point source they rep-
resent. Sample-to-sample variation of bright model sources are smaller compared to faint model
sources. Furthermore, some faint model point sources change labels (i.e., are born, split, killed, or
merged) across frames.

Next, the top left panel in Figure 3.3 shows the mean of the posterior (blue) and simulated (green)
flux histogram with the 68% credible intervals for the former. The posterior is consistent with the
true catalog, although there is some oversliptting at the bright end due to crowdedness of the image.
For reference, Figure 3.4, shows the posterior consistent with a similar data set, but one whose di-

mensions are doubled, i.e., the number of sources per FWHM of the PSF is reduced by a factor of

In crowded fields, a more robust comparison between the true metamodel and the posterior
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Figure 3.1: The simulated gamma-ray count map (top left), the posterior of the mean forward-model count map (right),
and the posterior of the mean residual count map (bottom). The color scales indicate the number of photons per pixel
in all panels and are arcs1inh stretched in order to make faint features more visible. Superimposed with the count
maps is the catalogs (green). The sizes of the markers are proportional to the logarithm of the fluxes of the correspond-
ing point sources.
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Figure 3.2: Six fair draws from the posterior of the emission metamodel, superposed on the data count map (same as
the left panel of Figure 3.1).
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can be performed based on the significance. In what follows, significance will be defined as the log-
likelihood improvement of adding a given element to the model. The posterior of the color (top
right), photon count (bottom left), and significance (bottom right) histograms are shown in Figure
3.3, which show the agreement between the posterior and the true catalog.

Figure 3.3 shows the posterior of the histograms, but this time corrected for the regularization
prior. It overplots the transfer function due to the regularization prior in purple with the label
PTFN. These are obtained by taking the ratio of the number of true elements in each bin above the
log-likelihood penalty (35 for these point sources with s degrees of freedom) with the total number
of true elements in the bin. This function can be used as a prior in an inference without the regu-
larization prior, or as a correction factor with which the posterior with the regularization prior can
be rescaled to undo the effect of the regularization prior, with the caveat that this also increases the
posterior uncertainties. In Figure 3.3, the values of the transfer function are plotted after multiplica-
tion with 10. Therefore, when the transfer function is 10, that implies that all elements in that bin
are above the siginificance scale of the regularization prior.

The former comparison shows that the distribution of the posterior and true catalogs are con-
sistent. However, it is also important to check element-wise consistency between the two catalogs.
Towards this purpose, the posterior samples from the catalog space are associated with the true cat-
alog as discussed in Section 2.2.3. Figure 3.6 illustrates the resulting correlation. The horizontal axes
show the fluxes (top left), colors (top right), photon counts (bottom left), and significances (bottom
right) of the true sources, while the vertical axes show the relevant posterior quantities associated to

the true point sources. The vertical error bars denote the statistical uncertainty due to marginaliza-
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Figure 3.3: Posteriors of the flux (top left), color (top right), photon color (bottom left), and significance (bottom right)
histograms, showing the posterior mean, 68% and 95% quantiles (blue). The green histograms show the distribution of
simulated point sources.
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Figure 3.4: Posterior of the flux histogram consistent with an image whose dimensions have been stretched by a factor
of 2, reducing the crowdedness.

tion over the posterior of the emission metamodel. Horizontal error bars are not provided, since the
true catalog is a simulated catalog without any uncertainties. At the bright end, model point sources
are superthreshold and well localized, yielding small vertical error bars. Moving towards the faint
end, the correlation broadens due to crowdedness and the model point sources becoming fainter
than the Poisson fluctuations of the background. In the extreme faint limit, one expects a given true
point source to be associated with a random model point source, completely suppressing the correla-
tion. The spread increases towards low fluxes because of the drop in the significance of the elements,
which result in larger flux uncertainties as well as lower completeness.

When generating the simulated data, the colors of the true point sources are chosen such that the
significance of the point sources mostly correlate with the flux at the pivot energy bin of 0.3 GeV -

1 GeV. This is a typical problem in traditional cataloging, where the catalogs are more complete in
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Figure 3.5: Similar to Figure 3.3, but corrected for the effect of the regularization prior. The purple line shows the
transfer function of the regularization prior, i.e., in a given bin the ratio between the number of true point sources with
significance above 2.5, to the total number of true point sources. The posteriors shown are corrected by these transfer
functions.
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Figure 3.7: Posterior of the joint histogram of the flux and color of model point sources (left) and the completeness as a
function of flux and color of true point sources (right).

certain bands than others. Therefore, requirement of detections for further inference on the flux-
color space, causes loss of information and bias. Figure 3.7 shows the posterior of the joint histogram
of point source fluxes and colors (left) and the completeness as a function of true point source flux
and color (right).

In order to further illustrate the effect of the regularization prior on the posterior, the posterior
of the model indicator, mean number of point sources, the log-slope of the flux distribution and the
background normalization in the middle energy bin are shown in Figure 3.8. The posterior is not
consistent with the true values because of the regularization prior, which affects the posterior signifi-
cantly at low signal-to-noise. Therefore, the posterior must be corrected (or have been sampled with
a prior modified by the regularization prior). The posterior of the model indicator shown in the top

left panel of Figure 3.8 yields the Bayes factor between the models.

81



o n
g 24
N —
—
i
|
r
n
o~
—
o »n
o~
2 |
= IS
3 o
-
!
0
o >
)
O
=
-
<
o
o
o
T T T T T
o o o o o o
] @ © < «
—
QEmmZ

100

N pts

160 A
140 A
120 A
100 A
8
6

dwes N
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Another approach to probing subthreshold point sources is the fluctuation analysis where the
1-point probability distribution of the emission is used to estimate the contribution of subthreshold
point sources to the total emission'*. By modeling the tail of the distribution of deviations due
to subthreshold point sources below the detection threshold, fluctuation analysis can distinguish
truly isotropic emission from subthreshold point sources. The method has been considered across
the whole electromagnetic spectrum, e.g., in radio >, far-infrared ", X-rays°>*° and gamma-
rays 24143,

Probabilistic cataloging does not rely on this approach, but can produce the marginal posterior of
the 1-point function of counts per pixel. Figure 3.9 shows the 1-point function of two components,
i.e., the isotropic (left), and the subthreshold point source (right). The true histogram and the pos-
terior are overplotted with green and blue along with the 1-point function of the data (black). The
posterior distribution of the subthreshold point sources significantly differ from the posterior of the

isotropic emission component, indicating the existence of subthreshold point sources.

3.2 NORTHERN GarAacTIC PoLAR CAP

In this section, the observed gamma-ray data in the direction of the North Galactic Pole (NGP) is
probabilistically cataloged and the posterior is compared with the 3FGL.

Reprocessed Pass 7, source class gamma-ray data inside a 40° x 40° square around the NGP, i.e.,
the Northern Galactic Polar Cap (NGPC), is binned spatially, spectrally and in PSF quality classes

(i.e., front and back converted events) provided by the Fermi-LAT collaboration (i.e., events that
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Figure 3.9: Posterior of the histogram of number of counts per pixel, shown with blue, . The data is shown with the
black.

convert in the front and back of the instrument). Furthermore, since most of the sources at high
galactic latitudes are time-variable blazars, the data in the same time interval as that used to construct
the 3FGL catalog, i.e., weeks 9 through 217, is used. The exposure map of the Fermi-LAT for the
same data type and acquisition interval is used. Importantly, in this section, regularization prior is
not applied.

At ~ GeV energies, modeling the spectra of the point sources using a power-law is not an accu-
rate description of the data. Galactic gamma-ray emitters such as pulsars are known to exhibit an
exponential cutoff in their spectraat ~ 1 — 10 GeV. Nevertheless, most of the sources in the NGPC
are expected to be extragalactic. Moreover, extragalactic gamma-ray sources such as blazars and radio
galaxies have curved spectra, i.e., a power-law with a running index, due to their broadband inverse

Compton emission on the external radiation field of the Active Galactic Nucleus (AGN). To address
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this concern the energy span is restricted to 1.5 decades, i.e., between 0.3 GeV and 10 GeV, where
curved spectra can be approximated using a single power-law.

Two background emission components are used, i.e., the diffuse emission model® and an isotropic
emission component for each energy bin. At high galactic latitudes such as in the NGPC, the diffuse
model is approximately equal to the interstellar medium dust column density7'°.

Figure 3.10 tiles together fair samples from the posterior showing the number of data counts in
each pixel, i.e., similar to the left panel in Figure 3.2, but showing observed NGPC data instead. The
grid illustrates the typical evolution of the MCMC state, where bright true point sources have an as-
sociated model point source with precise spatial and spectral localization, whereas faint 3FGL point
sources are associated with model sources in some fraction of samples. Because some of the flaring
3FGL sources are detected over a small period of time, not all 3FGL sources are above detection
threshold in this data set.

Figure 3.11 shows the posterior of the flux and color histograms consistent with the NGPC. That
the mean of the posterior color distribution is 2.2 is consistent with majority of the point sources
being blazars, where the lower tail is dominated by Flat-spectrum Radio Quasars (FSRQs) and BL
Lacs make up the harder subpopulation””.

Next, samples from the posterior catalog space are associated with the 3FGL. Figure 3.12 shows
the posterior of the fluxes associated with the 3FGL. Posterior of the point source fluxes associated
with the 3FGL agree with the 3FGL fluxes, with an increasing uncertainty towards the dim end. The
correlation is stronger at larger fluxes, where covariances with the background normalization and the

PSF do not significantly affect the posterior on the fluxes. The level of agreement decreases towards
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Figure 3.10: The NGPC photon count map as measured by the Fermi-LAT (color scale), the 3FGL sources in the re-
gion (green markers) and six fair samples from the catalog space (blue pluses). The image is centered at the NGP and
the axes correspond to a Cartesian projection about the NGP. The size of the markers are proportional to the loga-
rithm of the flux of the point source. The color scale corresponding to the number of photon counts per pixel has been
arcsinhstretched in order to emphasize faint features. The 3FGL sources are marked with a green square if the
sample catalog does not have a model point source within 0.5°. Otherwise they are marked with a green X, indicating a
hit.
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Figure 3.11: Posterior (black) of the flux (left) and color (right) histograms consistent with the NGPC and the his-
tograms of the 3FGL (green) fluxes and colors. In the left panel, the top axes show the corresponding photon counts
(C) and the significance (o).

lower fluxes, which is partially due to the different spectral modeling used by the two catalogs.

By summing fluxes of the point sources in the posterior catalog samples, the posterior contri-
bution of the point sources to the total emission in the NGPC can also be inferred. The median
spectra of the point sources, isotropic, and diffuse components are given in Figure 3.13. The diffuse
model is observed to be the dominant component, accounting for 57%1'(53 of the total emission.

The isotropic component and the point sources account for the rest in roughly equal amounts, i.e.,
25% 4 and 18%72, respectively. However, the partitioning between the point sources and the
isotropic component is set by the choice of the minimum allowed point source flux. If the min-
imum flux allowed for the point sources is lowered, then the relative contribution of the point
sources would account for some of the isotropic component, since emission from faint point sources

are nearly degenerate with the emission of the isotropic component. Therefore, the inference of how
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Figure 3.12: Posterior of the fluxes associated with the 3FGL in all energy bins.

much of the emission is accounted for by the point sources should be addressed with reference to a
particular minimum point source flux.
Posterior of the hyperparameters provides another handle on the population characteristics. Fig-
ure 3.14 shows the posterior of the log-slope of the flux distribution consistent with the NGPC.
0.07

Posterior of the power-law slope is inferred to be —1.927180Z. This is smaller than the expecta-

tion from a uniform distribution of equally bright blazars, i.c.,

-1 —1
av _an (g L (1

_ — —5/2
i o\ ar X e X f . (3.1)

7'3
Previously,? found that the source count function has a slope of —2.6 & 0.2 at the bright end, which
hardens to —1.6 & 0.1 at the faint end. Because a single power-law is used in this inference, the
resulting posterior converges to an intermediate value. Moreover, given that the inference is based

not on the full-sky, but only on the NGPC, the posterior of the number of point sources is subject

to shot noise around the mean number of true point sources.
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Figure 3.13: Spectra of emission correlated with the Fermi diffuse model (dotted), isotropic model (dot-dashed) and
the total emission from point sources (dotted) averaged over the region.
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Figure 3.14: Posterior of the power-law slope of the flux distribution consistent with the NGPC.
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Figure 3.15: Posterior of the normalization of the isotropic emission component consistent with the NPGC.

Figures 3.15 and 3.16 show the normalization of the isotropic and diffuse components for each
energy bin, respectively. Median of the posterior isotropic and diffuse background normalizations
are inferred to be larger than unity by a factor of ~ 1.3 and ~ 1.1. Moreover, because the diffuse
model is relatively featureless in the NGPC, the two normalizations have a large covariance.

Figure 3.17 shows the posterior of the number of point sources. It is inferred that there are 270739

point sources in the region above 3 x 107 em™ 25 1GeVtinthe 1 — 3 GeV energy bin.

3.3 INNER GALAXY

2126,240,40178 11y the inner

The GeV excess can be the emission from subthreshold point sources™#»
Milky Way, cosmic ray energy injection from the supermassive black hole at the center of the Milky

Way775° or WIMP annihilations. A hypothesis test regarding the GeV excess that precedes this
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Figure 3.16: Posterior of the normalization of the diffuse emission component consistent with the NGPC.
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Figure 3.17: Posterior of the number of point sources consistent with the NGPC.
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hypothesis test, however, is whether or not it is of diffuse or point source origin. Previously, the GeV
excess has been studied with the non-Poissonian template fitting"## and wavelet decomposition >
and substantial evidence has been found for the subthreshold point source origin.

The inner Milky Way is a crowded field of gamma-ray point sources and its modeling can be im-
proved with probabilistic cataloging. Furthermore, probabilistic cataloging can probe the properties
of subthreshold point sources in this region.

Towards this purpose, 8 years of Pass 8, source class Fermi-LAT data inside £10° of the galac-
tic center with standard data quality cuts, is binned spatially, spectrally and, in PSF quality classes.
Then, using this data, probabilistic cataloging is performed using the emission metamodel of PCAT.

The set of background emission components include, in addition to the isotropic and diffuse
emission components, the squared and projected NFW profile, which is referred to as the dark emis-
sion component.

The observed photon count map in the energy bin 1 GeV - 3 GeV and the posterior of the mean
residual count map are shown in Figure 3.18.

Figure 3.19 shows the data and posterior of various emission components spatially averaged inside
+5° without (left) and with (right) the regularization prior. When the regularization prior is applied
nominally, the posterior of the dark emission component is inferred to be higher than that of the
subthreshold point sources in the 1 - 3 GeV and 3 - 10 GeV energy bins. When the regularization
prior is not applied, however, the posterior of the dark emission component is consistent with zero
in the 0.3 GeV -1 GeV and 1 GeV - 3 GeV energy bins, and a factor of 3 smaller than the contribution

of the subthreshold point sources.
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Figure 3.18: Left: the photon count map observed by the Fermi-LAT. Right: posterior of the mean residual count map.
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Figure 3.19: Posterior of the spectra of various components in the inference of the emission metamodel consistent
with the gamma-ray emission in the inner Milky Way, spatially averaged over the inner == 5° without (left) and with
(right) the regularization prior.
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Figure 3.20 shows the posteriors of other inferences where the strength of the regularization prior
is varied as in Equation 5.9. In general, the stronger the regularization prior becomes, the larger the
posterior significance of the dark emission component becomes. In particular, the bottom right
panel of Figure 3.20 corresponds to an inference, where essentially all subthreshold point sources are
removed from the posterior. In that limiting case, the dark emission component can fully explain
the GeV excess. However, as the strength of the regularization prior is reduced, the significance of
the dark emission component diminishes, and becomes insignificant when the regularization prior is
completely removed.

Furthermore, Figures 3.21 and 3.22 show the posterior of the joint histogram of the point source
positions when the regularization prior is omitted and applied, respectively. In the former case, sub-
threshold point sources can explain the GeV excess, whereas in the latter, the GeV excess is mostly
explained by the dark emission component.

Figure 3.23 also shows the mean of the posterior of the joint histogram of the point source posi-
tions when the regularization prior is applied, but the dark emission component is not in the model.
In that case, the GeV excess is forced to be explained by subthreshold point sources and Figure 3.23
yields a map of the locations of the most significant subthreshold point sources that could be con-
tributing to the GeV excess.

Sample catalogs from the posterior can be associated with external reference (i.e., traditional)
catalogs to extend the posterior onto quantities about which there was no information in the proba-
bilistically cataloged data set. Figure 3.24 presents the posterior of the pulsar periods assigned to the

samples from the catalog space by associating the samples with the ATNF catalog. It is inferred that
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Figure 3.20: Similar to Figure 3.19, but with c;, = 0.25 (top left), o, = 0.5 (top right), a, = 0.75 (bottom left), and
oy, = 10 (bottom right).
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Figure 3.21: Mean of the posterior of the galactic longitude and latitude histogram of model point sources. The color
scale gives the number of element samples in a given pixel.
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Figure 3.22: Similar to Figure 3.21, but with the regularization prior.
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Figure 3.23: Similar to Figure 3.21, but for an inference where the regularization prior is applied, but there is no dark
emission component to account for the GeV excess.
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Figure 3.24: Left: Posterior of the histogram of the ATNF periods associated to the catalog samples. Right: Mean of
the posterior of the joint histogram of the galactic latitude and the pulsar period of the ATNF source associated to the
model point sources.

the posterior catalog space consistent with the gamma-ray data is associated with a larger fraction of
young pulsars compared to the millisecond pulsars. This is likely due to the fact that point sources
in the catalog samples fit the GeV excess and the residuals along the galactic plane. Because these re-
gions have a higher fraction of young pulsars, these posterior samples consistent with gamma-rays
preferentially correlate with young pulsars. Potential discovery of the milliseconds in the region can
reduce this correlation.

The hypothesis test between a diffuse and subthreshold point source origin for the GeV excess
can also be studied using the 1-point function of photon counts per pixel, after marginalizing over
the rest of the emission metamodel. Figure 3.25 shows the 1-point functions of the photon counts
in the 1 GeV - 3 GeV energy bin of three components: all point sources (top), subthreshold point

sources (middle), and the dark emission component (bottom) for two inferences with (left) and
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without (right) the regularization prior. In the right column, the absence of the parsimony prior
makes the dark emission component consistent with zero. However, even in the left column, the
contributions of the subtreshold point sources and the dark emission component are comparable at
the bright end.

Even though the inference without the regularization prior can fully explain the GeV excess, it
is important to emphasize that this is achieved by point sources with individual significances much
below 1o. This is shown in Figure 3.26, where most of the posterior volume as a function of flux
and significance come from low-significance sources.

The resulting posterior of the flux, significance and color histograms consistent with the gamma-
ray emission in the inner galaxy are presented in Figure 3.27. Because the pivot energy bin is 0.3 GeV
-1 GeV, the colors belong to the 1-3 GeV and 3 - 10 GeV energy bins.

When sample catalogs from the posterior are associated with the 3FGL, the posterior of the pa-
rameters associated with the 3FGL point sources can be compared with the 3FGL parameters. Fig-
ure 3.28 shows this comparison, where it is observed that the catalog samples and the 3FGL mostly
agree, although the two make significantly different predictions for some sources. However, these
discrepancies can be due to the fact that the two catalogs are consistent with data sets with different
time intervals and reconstruction algorithms.

It is a well-motivated hypothesis that there are subthreshold millisecond pulsars in the inner
Milky Way. Probabilistic cataloging of the gamma-ray emission in the Milky Way shows that the
GeV excess is consistent with a subthreshold point source origin and that the latter is favored against

a diffuse origin when no regularization is applied. However, the latter statement is partially prior-
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Figure 3.25: Similar to Figure 3.9, but for the posterior consistent with the inner galaxy, showing the 1-point functions
for all point sources (top), subthreshold point sources (middle), and the dark emission component (bottom) for two
inferences with (left) and without (right) the regularization prior.
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Figure 3.26: Posterior of the histogram of the fluxes and significance of the point sources.

driven, because a compact description of the data with subthreshold point sources above ~ 1o

cannot explain the GeV excess better than a dark emission template.
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Figure 3.27: Posterior of the flux (top left), significance (top right), and color (bottom) histograms (blue), and the his-
tograms of the associated quantities of the 3FGL point sources (green). The mean (black line) and the 68% credible
region (grey shade) of the posterior of the hyperdistribution of the quantities are also shown.

103



1078 6
4
’
| ‘
_ i ] 1
. == i
%) 117
T 1077 - Ny 3
g - 7—«»—» .
7 8. 2
5 i ¥
T
O, = 4 1 4 = e,
€ = T Tt
o
Q. I
10-8 = — 0 A
T -1 A ,/
1l
i;z"_z_*_¢__ 1 ’
T T -2 T T T
1078 1077 107 -2 -1 1 2 3
fref [GeV‘l cm™2 3—1] sief

Figure 3.28: Posterior of the flux (left) and the 1 GeV - 3 GeV color (right) of associated to the 3FGL catalog.
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Gravitationally lensed optical images

Small-scale structure of dark matter can, in principle, be probed by the light emission from faint

dwarf galaxies in the Local Group and beyond. However, star formation in these low-mass subhalos
is suppressed due to reionization, interaction with their host, and self—quenching%’m. Consequently,
most of the subhalos with virial halo mass < 108 M, should be dark, making gravitational lensing®

the only observable probe of their properties. Therefore, gravitational lensing provides a unique
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window into the small-scale structure of dark matter in the Universe. In particular, galaxy-scale
strong lensing systems in which a background source (e.g. galaxy or quasar) is multiply-imaged by a
foreground massive galaxy provide an informative observable to probe the dark matter distribution
on subgalactic scales. High-resolution (i.e., with PSF FWHM ~ o.1 arcsec) optical images of these
strong lenses yield a rich data set that can be used to constrain the foreground mass model.

Existence of small-scale structure on the mass plane causes smooth mass models to fail in describ-
ing the lensed emission, resulting in anomalies in the flux ratios of multiple images. Observations
of these flux-ratio anomalies in strongly-lensed quasars™*56:31855:67:68,157,154,91168,109,165,166,108,128 e
been used to study the abundance of substructure within lens galaxies. In particular, 67 used the ob-
servation of seven radio-loud lensed quasars to put a constraint on the substructure mass fraction
of 0.006 < faup < 0.07 at 90% confidence level. More recently, gravitational imaging of mass

140,223,121

substructure close (in projection) to magnified arcs and Einstein rings has allowed the infer-

ence of the small-scale distribution of dark matter. This method fits the observed strong lenses with

a smooth mass distribution, i.e. without substructure, and then adds pixel-based corrections**%**7

or a number of linearized subhalos***

to the mass model with the requirement that the additional
degrees of freedom improve the goodness-of-fit above some detection threshold, e.g., greater than

~ 100 For instance,>>**7 detected substructure with masses above 10% M, at high significance us-
ing optical images of two strong lens systems. Similarly, a 109 M, substructure was detected by'** in
an interferometric data set at a significance of 6.9¢ in the strong lens SDP.81?*°. Constraints on the
mass fraction in substructure and on the subhalo mass function can, in principle, be placed using

these detections as well as nondetections in other lens systems 224,225,145,122,146
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Linking a detection of mass substructure into constraints on the subhalo mass function and their
internal properties (e.g., concentration and truncation) is nontrivial. Degeneracies in the lensing
model can make the interpretation of a detection ambiguous™®. For instance, covariances between
the source, smooth lens, and substructure models, can lead to biases and underestimated errors in
the inferred substructure parameters if such uncertainties are not propagated properly. Furthermore,
the nonlinearity of the lensing magnification implies that the likelihood improvement resulting
from the addition of a subhalo to the lens model is not independent of the presence of other sub-
halos within the lens. In addition, subhalo models also have transdimensional (i.e., across model)
covariances since the observed arcs can be fitted with approximately equal likelihoods, using multi-
ple subhalos at various separations and a single more massive subhalo. Properly taking into account
these degeneracies is important in obtaining robust uncertainties on subhalo population parameters.

28,120,065,

With the exception of several studies 29 which aim to infer subhalos below the detection

threshold statistically, current inferences **>5**

place constraints on the subhalo population affer
detecting (or not detecting) mass substructure within lens galaxies. There are two main problems
with this approach. First, by using a reduced form of the data (i.e., position and mass of detected
substructure), these inferences cannot fully propagate degeneracies within and across lens models of
different complexity. Second, relying on detections causes subthreshold information in lensing data
features (e.g., arcs) to be discarded.

In this chapter, the emission metamodel of PCAT is extended to include lensed emission, as well

as elements that represent the mass distribution on the lens plane. The resulting metamodel is re-

ferred to as the lensed emission metamodel, which is the union of lens models with different num-

107



bers of dark matter subhalos. Therefore, the parameter space of the elements constitute the cata-
log space of subhalos on the lens plane. The common parameters of the metamodel contain the
macro lens model parameters in addition to the parameters describing the PSF and background
emission. The observed data is a series of images (i.c., photon counts) of a strong-lens in different
energy bands. In principle, the framework can also incorporate other types of auxiliary data such as
time delays of the multiple images when analyzing quasar background sources®*, or spectroscopic

data of the foreground galaxy to constrain its mass budget™”

as well, by imposing informative priors
on the relevant metamodel parameters.

Unlike traditional cataloging of subhalos, probabilistic cataloging generates an ensemble of sam-
ples from the joint posterior of the macrolens model and the subhalo catalog space. It also does not
require model subhalos to improve the goodness-of-fit above the detection threshold, which reduces
mismodeling of the data and recovers more information. Furthermore, it bases the inference on the
observed photon count maps directly, as opposed to derived, potentially biased estimates such as in-
ferred astrometric perturbations or relative magnifications of the multiple images of the background
source, which have significant non-Gaussian covariances. The joint posterior of the lensed emission
metamodel can be marginalized to obtain the marginal posterior of the lens model and subhalo pa-
rameters. This allows one to fully propagate within and across model covariances and uncertainties
in the observed data to the parameter of interest, e.g., the subhalo mass function.

To illustrate the features of probabilistic cataloging, the focus in this chapter is on simple smooth

lens models and source configurations, and results are presented for simulated data sets, which al-

lows one to study potential biases and systematics. Analyses of observed data would require a more
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1 216

complex lens and source plane model?°. While this additional complexity can increase the time

complexity of inference, the presented framework can be extended to incorporate them.

4.1 LENSED EMISSION METAMODEL

The lensed image, fqc, can be written as the source brightness profile, fy., evaluated on the image

plane,

Fac(01,02) = fuc(61 — g, 02 — ap,), (4.1)

where & = (o, , g, ) is the deflection vector at the image position, § = (01, 62). 61 and 63 denote
the horizontal and vertical coordinates on the two dimensional image plane and @ is the position on

the source plane such that

Dy
I
St
|
/@\1
o

(4.2)

which is the lens equation. Furthermore, the deflection field & can be written as the gradient of the

Newtonian gravitational potential integrated along the line-of-sight,
- 2 = Xste — X
a= 29 [ = Xu), (43)

where X is the comoving distance along the line-of-sight, X is the comoving distance to the source

and W(7) is the gravitational potential at the three dimensional position vector, 7.
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Because the lensing halo is much smaller than other distance scales in the problem, in the thin-

lens approximation, this Equation (4.3) reduces to

L2 Dis
- 62 DsDL

Vo / dz ¥ (), (4.4)

where theta is the angle subtended by the halocentric three-dimensional vector 7t a line-of-sight
distance of z, Dy, Ds, and Dy are the angular diameter distances from the observer to the lens and
sources planes, and from the lens to the source plane, respectively. Analytic expressions for the line-

of-sight integral of various foreground mass components can then be used to calculate the deflection

field 3¢,

4.1.1 DEFLECTION FIELD

Because of the linearity of the Poisson equation, the deflection field, &, can be expressed as the su-
perposition of deflections due to several components. In a typical strong lens system, the dominant
contribution comes from the smooth mass distribution of the main foreground galaxy (hereafter the
host halo), @, and the external shear due to the large-scale structure, Gex. Subhalos perturb this
deflection field at the percent level with individual contributions to the deflection field, &, where

the subscriptn = 0,1, ..., N — 1is the index of a subhalo. As a result, the total deflection field is
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given by

N-—1
QO = Qlext + Qhe + Z Qp. (4-5)

n=0

Smoorr Haro  Cosmological N-body simulations of ACDM ' suggest that the equilibrium dis-
tribution of collisionless dark matter particles is approximately spherically symmetric about the
dynamical center of mass of the self-gravitating halo of dark matter particles. Furthermore, the re-
sulting virialized halos have a universal radial profile that is described by the NFW profile, i.c., a
broken power-law in the radial halo-centric distance, 7. However, the host galaxy also possesses bary-
onic matter, which dominates the mass budget in the bulge. Taking the mass budget of the host halo
to be the sum of the baryonic and dark matter components, it has been found that the mass density
profile of Early Type Galaxies (ETGs) can be fitted by Singular Isothermal Ellipsoids (SIEs), which is
known as the bulge-halo conspiracy**° since neither dark nor baryonic matter density distribution is

individually isothermal. As a result, the mass density profile of the host halo is taken as

2

Ohst
S - ) .6
ph T (r) 27TGT2 (4 )

where 0y is the (constant) velocity dispersion and G is the gravitational constant. In general, galax-
ies also possess some ellipticity due to the existence of a baryonic disc or as artifacts of recent gravi-
tational interactions. By taking into account the ellipticity of the isothermal gas, and assuming that

the contours of equal surface mass density are in the form of concentric ellipses, the deflection is
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given by %54,

/ 2 p / 2 nl
HE,hstqhst tan_l ( 1-— Qs 1,hst> ~ n tanh—l ( 1-— st 2,h$t> 5

Ohst = 1,hst 2hst | (4'7)
1 2 w w
e
2 2 . . . . . o
where w = qﬁstﬁ’l + 6,7, ghst = 1 — €ng is the minor to major axis ratio, and epy is the ellipticity.

The primed quantities, i.e, 9’17hst, /Z,hst’ éll,hst’ and éé,hst’ denote the angular coordinates and the
associated unit vectors along the minor and major axes of the elliptical host halo, respectively. If
one uses @p to denote the angle between the major axis of the ellipse and the horizontal axis of the
image, 01, then the primed coordinates are obtained by translating the image by (01 s, 62 hst) and
then rotating it by @pg.

Furthermore, the lensing strength of the isothermal deflector is parametrized using the projected
Einstein radius, 0 hg, i.¢., the radius of the circular image that would be produced if the lens were
spherical and aligned with the background light source. In general, 0 h¢ can be defined as the ra-
dius of a circle that has an area equal to the area inside the critical curve, which holds true even for
non-spherical lenses.

Note that many observed strong lenses require departures from an isothermal model, where the
preferred inner log-slope of the three dimensional density distribution can be significantly different
from -2. However, since the presented method is independent of the details of the lens model, a

relatively simple mass model is assumed for the smooth halo.
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SusHaros  ACDM predicts that, with cosmological time, more density peaks collapse to form new
self-gravitating halos, while halos that formed earlier are accreted into more massive ones. Because hi-
erarchical structure formation is a continuous and ongoing process, at any given time some fraction
of matter is expected to be tied in halos that have been accreted into more massive halos. These dark,
gravitationally bound satellites inside the virial extent of the host, are referred to as subhalos.
Subhalos grow by accretion and lose mass via tidal stripping, collisions and evaporation. The
relative efficiency of these processes determines the level of substructure in a host halo of mass My
at redshift 2. N-body simulations can predict the abundance and properties of these subhalos,
although the finite mass resolution of simulations can preclude robust conclusions**?. Nevertheless,
it is expected that subhalos have a truncated mass profile due to tidal stripping by the host galaxy.
Therefore, the three dimensional subhalo density profile of the nth subhalo, p;, (1), is taken to be

the NFW profile with a power-law truncation as**:

Moy, 1 Tg
)= ’ 5 .8
alr) Amrd, (1/r5n)(L+1/1e0)? (r/7s0)? + 72 (+8)
2
-
M., = MO’”W [(7’5 —Dlnry + 71, — (1 + rﬁ)] . (4.9)

where M, , is the truncated mass of the subhalo. In this parametrization, most of the mass of a sub-
halo is contained inside the scale radius, 75 ,, which would be the subhalo-centric distance at which
the density profile steepens from a power-law with index -1 to a power-law with index -3 if it were
not tidally truncated. Moreover, the central mass concentration is encoded in 7, = 7 ,,/7s ,, simi-

lar to the concentration parameter ¢ = 7yir /T, in the non-truncated case, where i », 7 » and
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75 are the virial, tidal cutoff, and scale radii of a subhalo. M ,, is a mass scale relevant to the nth
subhalo. Subhalos with large 7, represent old, highly concentrated subhalos that orbit the host at
large halocentric distances. In contrast, those with low 7,, typically correspond to subhalos that are
close to the center and are being tidally stripped by the host. The subscript 7 is used to refer to a
parameter of the nth subhalo when the host halo has the same type of parameter.

It is also expected that subhalos near the dynamical center of the host halo, and closest to dis-
ruption, should be tidally elongated. Nevertheless, because current data sets do not have the signal-
to-noise necessary to constrain departures from spherical symmetry, any triaxiality in the subhalo
shapes is neglected. Furthermore, because virialized halos are generally found to have concentrations
that reflect the average background density of the Universe at the time of their collapse, earlier halos
are expected to have higher concentrations. Upon accretion into the host halo, their high concen-
trations can help them remain intact despite strong tidal stretching and evaporation by the host

209

halo. Motivated by recent N-body simulations*®?, substructure inside subhalos is neglected and it is
assumed that the subhalos of the host galaxy have smooth mass distributions.

Although the mass of a non-truncated NFW profile is logarithmically divergent with halocentric
radius, tidal truncation makes the total mass M, , finite** such that

Mcn:MOn

: "2 1) (72 =Dl + 7 — (1 +72)] (4.10)

This finite mass is plotted in Figure 4.1 for a subhalo in units of My ;. It changes by about an

order of magnitude in the relevant region of 1 < 7, < 10. Below 7, ~ 1, the subhalo is likely
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to be completely disrupted by evaporation and tidal stripping. Truncated masses are reported when
referring to subhalos.

The simulated images are approximately centered at the dynamical center of the host halo, and
have a size comparable to its Einstein radius, which is much smaller than its virial radius. When
projected along the line-of-sight, subhalos in the field of view have a large spread in their three di-
mensional distance from the dynamical center of the host. As a result, there should be a large spread
in their deflection profile. This is taken into account approximately by drawing the projected scale
and cutoff radii of the simulated subhalos from a uniform distribution. The limits of these distribu-
tions are given in Table 4.1. The resulting ratios between the projected cutoff and scale radii, 7, fall
between 3 and 2s.

It is important to emphasize that these simulated subhalos provide a test bed for introducing
probeabilistic cataloging of subhalos and do not fully reflect their rich dynamics. Furthermore, al-
though simulations and analytical treatments of ACDM can predict the scale and cutoft radii of a
given subhalo given its mass and distance from the center of the host galaxy, implying that predic-
tions can be folded into the inference as a joint prior distribution on the projected scale and cutoft
radii, the fact that strong lens images are not informative about the three dimensional distance of a
subhalo from the center of its host means there is a degeneracy in this description.

The deflection field due to the nth subhalo, o, is parametrized using the angular distances corre-
sponding to the scale and cutoff radii, 6 , = 75,/ Dy, and 6., = 7,/ Dy, and the normalization of
the deflection profile, a5, which is referred to as the deflection strength.

When projected onto the lens plane, the deflection field due to an untruncated, spherically sym-
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Figure 4.1: Truncated mass of a subhalo, M. ,, normalized by My ,, as a function of the ratio between its cutoff and
scale radii, 7,.

metric NFW subhalo becomes azimuthally symmetric and can be described by a radial profile™®

Sn(0) Mon 1, 0 /
n E = d . 1 - F
(67 0 Ecrit WD%Zcritgs,n 0/( n 5 + (9 )) (4 II)
(67%7) 4 /
=y (5 +F @),

where ¥, (0) is the mean surface mass density of the nth subhalo inside a subhalo-centric circle of
radius 0, and

> Ds
Serit = —— :
erit el DLSDL (4 12)

is the critical surface mass density on the lens plane, which has a value of 3.1x 109 M, kpc =2 for
the simulated data. For notational brevity, the rescaled angular distance, ¢ = 0/6; ,,, is used. The
function F(¢') is given by
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/
arccos(1/6") 0 s 1
V-1
F(0') =41 it = (4.13)
/
arccosh(1/6") 0 < 1.
V1-07

When the truncation is taken into account, the deflection profile becomes**

Qs n Tn2 2 2 2
oy = o 7(73 12 <(Tn +14+2(0"7 - 1))F(9') + (77— Dln7,
2
2 72 Tn — 1 N
+ 7Ty A/ TE 40 (77_“ L(6") 71')), (4.14)
where

0/
L(#) =1n () ) (4.15)
Tn+2/T2 + 0'?

In the limit of large 73, = 01, /0; , this expression reduces to Equation (4.11). Hence, the three
parameters used to describe the resulting deflection profile of the nth subhalo are the normalization
s, projected scale and cutoft radii 6; ,, Oc .

The deflection as a function of radial distance in three dimensions from the dynamical center of
mass of the subhalo is proportional to the integrated mass up to that radius. Therefore, it initially

rises because of the shallow log-slope of the NFW profile, turns over at the scale radius and further
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Figure 4.2: Deflection as a function of angular distance from a given subhalo in arcsec. All three profiles have a subhalo
deflection strength of o, , = 0.1 arcsec. The blue, green and red profiles correspond to subhalos with (6, , = 0.05
arcsec, O, = 1arcsec), (6;,, = 0.2arcsec, 6 ,, = 1arcsec)and (s, = 0.05 arcsec, 6, = 2 arcsec), respectively.

steepens beyond the cutoft radius. The projected deflection profile of a subhalo is given in Figure
4.2

ACDM predicts that the variance of the matter density fluctuations in the Universe monoton-
ically increases as one averages the density field inside successively smaller spheres. Therefore, the
number of collapsed halos (and hence of subhalos) increases steeply as a power-law toward low
masses with a log-slope of ~ —1.97°?. When ACDM is modified at small scales via self-interactions,
free-streaming at kinetic decoupling or by the Heisenberg uncertainty in the case of wave-like dark

29, this is no longer the case and one expects a mass scale below which the subhalo mass func-

matter
tion is suppressed.

Since subhalo deflection strengths are proportional to mass, it is assumed that a ,, are also dis-

tributed as a power-law between some minimum and maximum value. However, the lower limit of

118



this prior is not motivated by a physical cutoff in the mass distribution. It is rather a computational
convenience, since probabilistic cataloging of very low mass subhalos result in little information gain
at the expense of significantly increasing computational complexity. Furthermore, the pixel size and
the PSF of the photon collecting device sets an angular distance scale below which deflections cannot
significantly affect the image. This scale also depends on the level of background emission and the
flux of the lensed light source. For the simulated images of the Wide Field Camera 3 / Ultraviolet
Visible (WFC3/UVIS) camera on board the HST, whose pixel size is 0.04 arcsec, this scale roughly
corresponds to ~ o.o1 arcsec. Therefore, the minimum allowed value of a5, is chosen as o.o1 arcsec,
in order to allow low-significance subhalos into the posterior. The maximum of « , is chosen as 1
arcsec. However, this maximum value does not significantly affect the posterior, since most of the
prior volume is contained at small o , due to the steepness of the power-law. The normalization of
this power-law is then given by fisb, i.e., the Poisson mean of the number of subhalos.

Because of the hierarchical prior in probabilistic cataloging, the negative of the log-slope of the
i , distribution, 3, is also allowed to vary. Therefore, the sampler visits all prior configurations
consistent with the data and generates the posterior of 3. Although 3 parametrizes the prior, it is
treated similar to other parameters in the model, and is referred to as a hyperparameter. It is the
prior on this hyperparameter that specifies the prior belief on the distribution of « ,,. This prior
is set such that [ itself is Gaussian distributed with a mean and standard deviation of 1.9 and 0.5,
respectively. The mean reflects the value motivated by ACDM, whereas the spread accounts for any
deviations and allows the sampler to visit subhalo configurations that deviate from a power-law with

index r.9.

119



2.00 . Mc, min [MO]

1.50 4
1.25 4
v
N 1.00
0.75 1 he)

0.50 o 26

0.1 0.2 0.3 0.4
Zhst

Figure 4.3: Contours of minimum truncated subhalo mass allowed in the metamodel, i.e., lower limit of the truncated
subhalo mass prior, as a function of host and source galaxy redshifts, assuming 957,1 = 0.1 arcsecand 95,,, = larcsec.

The deflection strength, a ,, projected scale and cutoff radii, 0 , and 6. ,, of a subhalo uniquely
determine its truncated mass, M, ,. Therefore, given the above priors, there is no hard boundary on
the prior distribution of the subhalo truncated masses. However, most of the prior volume falls in
the interval 10% — 109 M, for the host and source redshifts of 2 = 0.2 and 2 = 1 simulated in
this chapter. This interval changes as a function of angular diameter distances to the host and source
planes. To put the prior subhalo mass interval into cosmological context, Figure 4.3 shows the lower
bound of the prior on the truncated mass of a subhalo, if it had ; , = 0.05 arcsecand 6., = 1
arcsec.

Last, a spatially uniform prior is adopted on the projected surface density of subhalos. The prior

structure of the lensed emission metamodel is summarized in Tables 4.1 and 4.2..
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EXTERNAL SHEAR ~ Lensing galaxies are usually found in galaxy groups or clusters, whose overall con-
tribution adds angular structure to the deflection field in the vicinity of the lensing galaxy. Even in
the case of an isolated galaxy, matter distribution in the foreground of the lensing galaxy can intro-
duce additional multipole terms to the deflection field. This external deflection is parametrized by a
reduced shear field ey oriented at an angle ¢eye With respect to the longitudinal axis™. The field is

traceless and invariant under a rotation of 180°.

COS 20exe  + SiN 2exy
C?ext = VYext 0. (4'16)

SN 2¢Qexe  — COS 2Pexe
In this formalism, only the reduced shear, Yexe = Vee/ (1 = Kexe), is modeled, where ey represents a
potentially underlying, spatially uniform convergence in the field of interest. This is because adding
a constant mass sheet to the model, (1 — Kex), reproduces the same lensed image by simultaneously
rescaling the source position and flux or the deflector mass®?. These degenerate mass models are

linked by the transformations

(1 - Hext) — Aexts
(4.17)

VYext — A’Yext .

An independent measurement of the deflector mass, e.g., using stellar kinematics, could constrain

A97%9 - Alternatively, because the magnification field and light travel time change with A, knowledge
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of the non-lensed fluxes of the background sources or having multiple images of the same system
taken at different times could break this degeneracy. Specifically, the knowledge of time delays be-
tween multiple images of a background quasar and the time-delay distance allows one to constrain
the gravitational potential of the main deflector independent of the astrometric information. Be-
cause only a single photometric exposure of the strong lens system is used, all convergences are deter-
mined only up to the transformation in Equation 4.17 and no attempt is made to lift the degeneracy.
The inclusion of only a quadrupolar shear field is motivated by the assumption that the lensing

galaxy is isolated and gravitationally relaxed. If there are nearby galaxies, higher order multipoles

would be needed.

4.1.% LIGHT EMISSION FROM THE SOURCE

In general, the background light source in a strong lens system could be a quasar, a blue, young
galaxy with bright Lyman-o emission, or a red ETG similar to the lensing galaxy considered in this
thesis. When the background light source is a quasar, i.e., a point source without any spatial feature,
the resulting multiple images are not extended and can be used to probe subhalos only over a small
region on the lens plane depending on the mass of the subhalo. Therefore, galaxy-galaxy lenses are
considered instead, where light from a background galaxy is strongly deflected by a giant elliptical

in the foreground. In these systems multiple images are more extended and a higher fraction of the
pixels are informative on the subhalo parameters.

It is assumed that the emission from both the foreground and the background galaxies have Sérsic
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profiles, i.e., the surface brightness is given by'?

fea1(0) = fegarexp < — bn((e/ee,gal)l/n — 1))7 (4.18)

where the subscript gal refers to both lensing (foreground) and lensed (background) galaxies, i.e.,

gal=thst, src}. In this relation by, is a coefficient that depends on the index 1%,

b o 1+ 4 N 46
= n — —
" 3 405n  25515n2

(4.19)

which controls the level at which the inner and outer slopes anti-correlate. Furthermore, fe g,y is the
projected distance within which half of the total emission is contained and fe g, is the surface bright-
ness at this radius. It is assumed that n = 4, which corresponds to the de Vaucouleurs profile”’. For
this profile, the surface brightness at the half-light radius, fe gal, is related to the flux of the galaxy,
Iga, by Iga = 727602 fe gal.

Modeling the source plane emission with the surface brightness of a single galaxy is a simplified
description of observed lenses. In particular, emission or absorption regions in the source galaxy can
significantly change the appearance of the resulting arcs and arclets. However, the main purpose is
to construct a simple test bed to compare probabilistic cataloging to mainstream analysis tools of

strong lensing.
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4.1.3 Li1GHT EMISSION FROM THE FOREGROUND GALAXY

The same surface brightness profile in Equation 4.18 is used to represent emission from the host
galaxy, but with different half-light radius and surface brightness, 0 hst, and fe hst.

Because the scattering cross section between dark and baryonic matter is not necessarily zero,
in principle, there can be a spatial offset between the surface brightness and mass density of a host
galaxy that has not been gravitationally relaxed ***. Such unrelaxed systems are not modeled and it is
assumed that the smooth mass distribution and the light emission of the host galaxy are cocentric.

Furthermore, an estimate of foreground galaxy or isotropic emission is not subtracted from the
observed photon count map. This is because subtracting a best-fit emission component from the
photon count map is equivalent to placing a delta function prior at the associated value, or equiv-
alently, assuming that the parameter has vanishing covariance with all other parameters. Instead,
samples are taken from the joint posterior of all parameters including those of the host galaxy and
the nuisance parameters are marginalized out.

It is assumed that the background emission is spatially uniform. Therefore, a single isotropic

emission component is allowed in the lensed emission metamodel.

4.1.4 INSTRUMENTAL PSF

In the absence of an intervening atmosphere and in the limit of distortion-free optics, the PSF of
the HST is limited by diffraction, although it has diffraction spikes due to the support vanes of the

secondary mirror. Given the circular aperture of the HST, the PSF in band ¢ can be modeled as an
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Airy pattern whose first zero-crossing occurs at a radius of ;.

In general, uninformative priors can be placed on the parameters that characterize the PSF shape,
€., Opsti- Lhis would allow PSF parameters to be inferred along with the lensed emission meta-
model. However, in the absence of a bright point source in the image, the PSF cannot be constrained.
Therefore, Gaussian priors are adopted on the PSF parameters, whose means and standard devia-
tions are provided by external calibration. This allows propagation of uncertainties due to potential

covariances between the PSF and model parameters.

4.1.5 MODEL IMAGE

Given the above ingredients, the model image prior to the PSF convolution can be expressed as the

sum of

* isotropic (i.e., spatially uniform) emission component to model detector background and

isotropic sky emission, fpac,
* emission from the host galaxy, fhs,

* gravitationally lensed emission of a background light source due to a foreground host galaxy

and a variable number of its subhalos, fi..

The total model emission, fm, is then obtained by convolving this image with the PSF, F, such

that

fm =Fx (fbac + fhst + ]Esrc)- (4-20)
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Tables 4.1 and 4.2 list the metamodel parameters. The row group at the top contains the hyper-
parameters, which parametrize the conditional distribution of subhalo properties. These subhalo
parameters are shown in the row group at the bottom of the list. The remaining row groups are the
PSF, background, and lens parameters from top to bottom. The lens parameters are further divided
into three subgroups, separately showing the foreground host lens, background light source, and
external shear parameters.

The third and fourth columns indicate the minimum and maximum when the associated distri-
bution is uniform, log-uniform or power-law, and show the mean and standard deviation when the
distribution is Gaussian. The fifth column indicates the parameters of the metamodel from which
the simulated data sets are drawn. Simulated data generation will be discussed in Section 4.2.1.

A probabilistic graphical model of the lensed emission metamodel PCAT is presented in Figure

4.4, which uses the same notation as Figure 2.9.

4.2 INFERENCE ON THE LENS PLANE

In order to validate the inference performance of PCAT, it is run on simulated data. These simulated
count maps are generated as Poisson realizations of the photon count maps obtained by forward-
modeling a generative (#7x#e) metamodel. Since the parameters of the true metamodel are known,
the posterior can be compared with the underlying true parameters. This approach yields full con-
trol over systematic errors, by allowing us, for instance, to fit a data set that has been drawn from a

different metamodel.
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’ name H prior ‘ min/mean ‘ max/std ‘ true ‘ unit ‘

Hsub uniform o 100 -
6] Gaussian 1.9 0.5 1.9
’ Opsf H Gaussian ‘ 0.087 ‘ 0.0I ‘ 0.087 ‘ arcsec ‘
’ A H log-uniform ‘ 1078 ‘ 10— ‘ 2 x 1077 ‘ erg/ch/s/A/sr ‘

01 src uniform -2, 2 RC arcsec
02 src uniform -2 2 RC arcsec

Iy || log-uniform 10~29 10719 10~18 erg/ch/s/A
Oc e || log-uniform 0.1 2 0.5 arcsec

Esre uniform o 0.3 R

Dore uniform o 2T R radian
01 hst uniform -2, 2 RC arcsec
02 hst uniform -2, 2 RC arcsec

L || log-uniform 10720 1071 10~16 erg/cmz/s/A
Oense | log-uniform 0.1 2 I arcsec
O b || log-uniform 0.5 1.5 arcsec

€hst uniform o o.5 R

Ohst uniform o 2T R radian
Vext uniform o 0.3 R

Dext uniform o 27 R radian
N Poisson Lhsub /Hsab 25

9: uniform -2 2 R arcsec

9; uniform -2, 2 R arcsec

g power-law 0.01 I R arcsec

9_; uniform o 0.1 R arcsec

(9Hc uniform o 2 R arcsec

Table 4.1: The parameter list of the PCAT lensed emission metamodel. The letter R under the “true” column implies
that the associated parameter is randomly sampled from the prior. The letters RC, on the other hand, mean that the
parameter is drawn from a Gaussian with mean 0 and standard deviation 0.04 arcsec.
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’ name H explanation ‘

[hsub mean number of subhalos
15} slope of the deflection strength distribution
’ Tpst H radius of the Airy disk that represents the PSF ‘
’ A H normalization of the isotropic emission ‘
01 src horizontal coordinate of the background source
02 src vertical coordinate of the background source
I flux of the background source
O sre half-light radius of the background source
€qre ellipticity of the background source
ODsre azimuthal orientation of the background source
01 hst horizontal coordinate of the host galaxy
02 hst vertical coordinate of the host galaxy
g flux of the host galaxy
Oc hst scale size of the Sérsic profile of the host galaxy
Ok hst Einstein radius of the host galaxy
€hst ellipticity of the host galaxy
¢nse || azimuthal angle of the ellipticity of the host galaxy
Vext amplitude of the external shear
Dext azimuthal angle of the external shear
Ny number of subhalos in a model
6’: horizontal coordinate of the nth subhalo
H_; vertical coordinate of the nth subhalo
Oy deflection strength of the nth subhalo
9—; projected scale radius of the nth subhalo
: projected cutoff radius of the nth subhalo

Table 4.2: The parameter list of the PCAT lensed emission metamodel, indicating the meaning of the parameter.
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Figure 4.4: The probabilistic graphical model of PCAT lensed emission metamodel. The notation is the same as that in
Figure 2.9. The lensed emission metamodel has massive subhalos as elements and another class of common parame-
ters, X, to model the macro lens.
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4.2.1 SIMULATED DATA

When simulating an image, it is assumed that the data is taken using the WFC3/UVIS detector on
the HST. This choice is intended to provide an example, since probabilistic cataloging can be ap-
plied to any photometric data set such as ground-based high-resolution images that use adaptive
optics. It is further assumed that the F814W filter is used to collect the photons. For this HST band,
the forward-modeled surface brightness, i.e., in units of erg em 25 A" oL s multiplied by
6.1 x 1018 erg_1 cm? s A8 as well as the pixel area in order to obtain the forward-modeled pho-
ton counts per pixel. It is assumed that the photometric data is collected in a single exposure and
that no drizzling is applied. Furthermore, the observation time is fixed at 1000 seconds, which is
roughly equivalent to a half orbit of HST. Choosing the simulated galaxy brightnesses low enough
allows one to ensure that the CCD does not saturate over the selected exposure time. Finally, defin-
ing signal-to-noise as the ratio of the lensed surface brightness with the square root of the total sur-
face brightness, the nominal simulated data set has a maximum per-pixel signal-to-noise of 9, which
quickly decays away from the multiple images of the background source.

The parameters of the true metamodel are sampled randomly from the prior, unless stated other-
wise in Table 4.1. In particular, the minimum of the true distribution of cy ,, is chosen to be 0.003
arcsec, and the number of true subhalos is fixed at 25. These two choices are made so that the result-
ing true subhalo mass fraction averaged within o.r arcsec of the critical curve is ~ 2%'". Further-
more, deterministic values are assigned to some parameters as indicated under the z7ze column of

the table. The letter combination RC under this column indicates that the associated parameters
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(galaxy coordinates) are drawn from Gaussians at the center of the image with a standard deviation
equal to a pixel size (0.04 arcsec). Likewise R denotes that the parameter is drawn randomly from
the prior. Once the true metamodel parameters are determined, the predicted image is calculated
and a Poisson realization of the map is drawn to obtain the simulated photon count map.

The true subhalos in this simulated data set are mostly low-significance subhalos. Out of the 25
true subhalos, only 3 improve the goodness-of-fit, log P(D|§2 ), by more than 35 when added to
the model, meaning that the rest are below the detection threshold (i.e., 5 ) for 5 degrees of free-

dom.

4.2.2 NOMINAL RESULTS

Figure 4.5 shows the nominal simulated photon count map (repeated across panels) and six fair
samples from the ensemble of subhalo catalogs, represented with blue pluses. Also shown with the
green markers is the true catalog of subhalos.

The multiple images in the simulated data set are formed by a background galaxy near the fold
caustic of an elliptical foreground galaxy. The green right triangle and the blue left triangle show
the position of the true and model background source, respectively. Similarly, the green diamond
and the blue filled square indicate the position of the true and model host galaxy on the lens plane,
respectively. The positions of the true and model galaxies are overlapping in all samples, although
the positions of the blue markers have unnoticeable variations across samples due to the rather small

uncertainties in the posteriors of the source and host galaxy positions.
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Figure 4.5: Fair samples from the posterior of the catalog space of subhalos. The gray scale shows the number of
photons per pixel using a log stretch. Superposed on the simulated image, the panels show 6 out of 1000 fair samples
from the posterior of the subhalo catalog space, using blue pluses. Posterior samples shown in the left column have the
regularization prior, which effectively reduces the number of subhalos. The samples on the right have the default (i.e.,
uniform P(log ) prior. Also superposed on all panels is the true catalog of subhalos, shown with green squares. The
sizes of the markers are proportional to the square root of the deflection strengths of the subhalos. The green diamond
and blue square denote the positions of the true and sample host galaxy, respectively. Similarly, the green right triangle
and the blue left triangle show the position of the true and sample background source, respectively. Note that the
macro lens model also changes from panel to panel.
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Macro LENs MoDEL - Subhalos have a perturbative effect on the deflection field otherwise domi-
nated by the host galaxy. Therefore, any bias in the host galaxy parameters, as well as other macro
lens parameters such as those of the background galaxy and the external shear, can potentially leak
into constraints on the subhalo properties. Hence, the posterior of the macro lens model parameters
are discussed first.

In general, it is found that the best constrained macro lens parameters are the positions of the
host and source galaxies and the Einstein radius of the host galaxy. They generally have posterior
68% credible intervals that are 6 x 10~% arcsec, 5 x 1073 arcsec, and 0.01 arcsec wide, respec-
tively. However, it is also found that the Einstein radius of the host halo correlates with its ellipticity,
whose amplitude and orientation angle are constrained inside 68% credible intervals that are o.o1
and 2° wide, respectively. The anti-correlation can be attributed to the fact that the critical curve is
constrained more strongly along one axis of symmetry than the other.

As an example, Figure 4.6 shows the distribution of posterior samples on the horizontal position
of the host halo. The green vertical line indicates the true value of the parameter, whereas the red
vertical line shows the value of the parameter in the maximum likelihood sample.

The host and source galaxy fluxes, on the other hand, are constrained at the ~ 2% and ~ 10%
level, respectively. Specifically, the prior knowledge of the morphology of the galaxies, i.e., that they
are Sérsic profiles of known indices, reduces the uncertainty on the fluxes. If the source plane emis-
sion had been allowed to vary from pixel to pixel subject to some regularization, the uncertainties
on the background emission would be larger. Nevertheless, since the posterior is marginalized over

the emission on the source plane, this propagates any uncertainties to the marginal posterior of the
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Figure 4.6: Histogram of samples from the posterior of the horizontal position of the host halo shown with the blue his-
togram. The green vertical line indicates the true value of the parameter, whereas the red vertical line shows the value
of the parameter in the maximum likelihood sample. The dot-dashed and dashed vertical lines denote the following
percentiles: 2.5, 16, 84, and 97.5.

subhalo properties. The choice of Sérsic profile also introduces a strong covariance between the lu-
minosity and half-light radius of the galaxies, which can have correlation coefficients as large as 0.9.
The external shear is the least strongly constrained component of the macro lens model with
typical uncertainties of ~ 10% on the magnitude of the shear field and ~ 20° uncertainty on
its direction. The large uncertainty in the alignment is due to the degeneracy of the quadrupole
shear term with the overall deflection field due to subhalos. Similarly, the posterior of the lensed
emission metamodel is marginalized over the shear field and its uncertainties are propagated to the
uncertainties on the subhalo properties.
Finally, an uncertainty of ~ 0. 1% is obtained on the isotropic emission component and the prior
uncertainty on the PSF is recovered in the posterior. The latter allows one to marginalize over un-

certainties due to the lack of perfect knowledge of the PSF and is not intended to gain information
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Figure 4.7: Histogram of the tidally truncated subhalo masses in the true model (green) and the posterior (blue). The
central point and the error bars show the 16th, 50th and 84th percentiles of the histogram samples from the posterior,
respectively. Posterior histogram agrees with the true histogram even though the majority of the subhalos are below
detection threshold. It is important to note that the inferred posterior depends on the choice of s iy, i.e., the poste-
rior would extend to lower masses (and be more prior-dominated) if (v min is lowered. Therefore, the main inference
of interest here is the normalization of the posterior subhalo mass distribution given a choice of a5 and a broad
Gaussian prior on the log-slope, (3.

about the PSF using the image.

SusHALO Mass FUNcTION — The posterior truncated mass distribution of the subhalos is presented
in Figure 4.7. The figure shows the histogram of the truncated masses of the true subhalos in green.
Overplotted with blue error bars is the median histogram of the truncated masses of the subhalos
in the posterior samples. These blue points with error bars are obtained by first calculating the his-
togram of the truncated masses for each posterior sample from the metamodel. Then, 16th, soth,
and 84th percentiles in each bin are plotted as the lower cap, central point, and the upper cap of the
error bar, respectively.

In Figure 4.7, mass bins that contain a true subhalo may have a median posterior other than one,
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and the posterior uncertainties go above zero when there is no true subhalo. This is a result of ac-
counting for transdimensional (across-model) covariances. Thanks to transdimensional proposals,
a true subhalo can be fitted both with multiple and lower-mass subhalos and a single, more massive
subhalo. It is important to emphasize that such transdimensional covariances exist even for true
subhalos with high significance. Therefore, even though the log-likelihood difference between two
models with and without a given subhalo may be well above 35, it may be as low as a few when com-
paring two models where the subhalo exists as a single, high-mass clump and as two, smaller-mass
clumps. Furthermore, it is also true that a high-mass subhalo can be far from the multiple images,
causing the posterior subhalo mass function to be uninformed of its existence.

The roll-off at small masses is due to the choice of the minimum deflection strength allowed in
the model, o min. If this value is decreased, the posterior extends to lower masses. Therefore, the
constraints derived on the subhalo mass function must be quoted for a given ;s min. Given the
choice of the simulated data set and the simulation redshifts, the posterior subhalo mass function
becomes prior-driven below ~ 10% M. This is illustrated in Figure 4.8, which shows the truncated
mass and significance of subhalos in a different simulated data set with a higher number of subhalos.

As for the deflection profile parameters 6 ,, and 6 ,,, it is found that the projected cutoff radius
is better constrained than the projected scale radius. WFC3’s pixel size of 0.04 arcsec is comparable
to the projected scale radius of an NFW subhalo with 75, = 200 pc at the simulation redshift
of z = 0.2. This implies that current optical photometry is insensitive to the scale radii of most
subhalos. However, more massive subhalos close to the multiple images can still be distinguished

based on their projected scale radii, which motivates the choice to make 0; ;, subject to inference.
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Figure 4.8: Truncated mass vs. significance (i.e., maximum log-likelihood difference of adding the subhalo to the model)
of simulated subhalos in a different simulation with a higher number of subhalos. The vertical lines indicate 10 through
50 for 5 degrees of freedom. For this simulation, subhalos fall below 10 at a mean truncated mass of 2 X 108M®.

The mass of a subhalo does not have a one-to-one correlation with its significance. In a photo-
metric inference problem, how the flux of a given point source compares to the background emis-
sion inside the FWHM of the PSF, largely determines its signiﬁcance‘so. Therefore, isolated, bright
light sources are expected, on average, to be more statistically significant than fainter ones. However,
how strongly a subhalo can be constrained in the lensing problem, depends on its mass as well as
how its deflection field is oriented with respect to the lensed emission. Since the deflection profile
of a subhalo drops beyond its projected scale radius, in order to have non-negligible effect on the
log-likelihood, a subhalo needs to be close to an already lensed emission on the image plane as well
as having a large enough mass.

The leading order contribution of a given subhalo with index 7 to the model image can be ob-

tained by Taylor expanding Equation (4.1). Recasting this equation in terms of the photon count
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m(01,02) + m(01,02) + O(a2), (4.21)

is obtained.
The second term is negative over some regions of the lensed emission and positive in other re-

) instead better encapsulates the level of perturbation a given subhalo introduces

gions. <\07n . ﬁkm

to the image already lensed by all other mass components. Therefore, it is a relatively more accurate
estimator of the significance of a given subhalo compared to M ;. This quantity is referred to as the
subhalo relevance. Subhalos with low relevance cannot be constrained using the observed photomet-
ric data. An example can be seen in Figure 4.5, where the true subhalo at (1.8, 1.1) arcsec is relatively
less constrained despite having a mass above 103 M.

Figure 4.9 shows the correlation between the relevance of a subhalo and the log-likelihood in-
crease when including the subhalo into the lens model while leaving all other parameters fixed. The
correlation is not one-to-one, however, due to the fact that the host galaxy and the external shear
can dominate the deflection field in some regions more than others, which causes subhalos with
equal relevance to have different significances. Therefore, in general significant subhalos have high

relevance, but high relevance subhalos can have very low significance.
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Figure 4.9: Correlation between the relevance of a simulated subhalo population and the log-likelihood improvement
in adding each subhalo to the model, A\,, In L. Vertical dashed lines indicate 10, 20, 3, 40, and 5o contours for

5 degrees of freedom. These subhalos are independently drawn and do not correspond to the true subhalos in the
simulated strong lens shown in Figure 4.5.

SusraLo mass FRacTIioN  The shape of the subhalo mass function is poorly constrained given the
small number of strongly lensed systems analyzed so far. Nevertheless, the fraction of mass tied in
subhalos in the vicinity of the critical curve of the host halo, can be accurately measured for high
signal-to-noise strong lenses. Therefore, the subhalo mass fraction provides an observational sum-
mary statistic of the subhalo mass function.

In order to determine the posterior fraction of mass locked in subhalos, the quantity is first cal-
culated for each sample and then the moments of the posterior are determined. The subhalo mass
fraction for a given sample from the metamodel is defined as the ratio between the mean surface

mass density due to all subhalos and that due to the host halo inside an annuli centered at the host
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Figure 4.10: Histogram of samples from the posterior of the subhalo mass fraction (right). The MCMC time evolution
of the quantity (left). The legend is similar to that in Figure 4.6. The red (maximum likelihood sample), and the dashed
blue (97.5th percentile) lines overlap.
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where “ann” represents the mentioned annulus around the host halo. The resulting posterior of
the subhalo mass fraction at the Einstein radius is shown in Figure 4.10 along with its evolution as a
function of MCMC time. Note that a prior probability distribution on the subhalo mass fraction,
fE,sub is not imposed directly. The figure shows that the posterior of fg sp agrees with the true value
and that it is sensitive to the existence of subhalos below detection. The green line shows the true
subhalo mass fraction.

Last, Figure 4.11 shows the median of the posterior deflection due to various components. In or-
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Figure 4.11: Median of the posterior deflection fields due to various components. The arrows indicate the local direc-
tion of the deflection field and have lengths that represent the magnitude of the deflection field. However, the arrows
in the left and right panels have been scaled by 0.1 and 10, respectively, for better visibility. The positions of the true
subhalos are shown with green Xs, whose area are proportional to the masses of the subhalos. The radii of the green
and dashed blue circles are the Einstein radii of the true and sample macro lens models, respectively. They are only
drawn to guide the eye in the absence of the observed image.

der to compute these maps, the horizontal and vertical components of the associated vector field
are first calculated for each fair sample from the posterior of the lensed emission metamodel. Then,
for each pixel, the soth percentiles (medians) are determined. Figure 4.11 then illustrates the deflec-
tion field separately for the host halo (left), external shear (center), and subhalo population (right).
The radius of the green and blue dashed lines, which are also mostly overlapping, denote the circles
whose radii coincide with the Einstein radii of the true and model host halos, respectively. Since the
host galaxy is elliptical, however, the circles do not correspond to the critical curve and are intended
to guide the eye. The area of a circle is proportional to the host mass contained inside the Einstein ra-
dius. The true Einstein radius is 1.5 arcsec, yielding a mass inside the Einstein radius of 5 x ol Mo,
Posterior total deflection field is found to be constrained at the percent level across most of the
image. However, this translates to ~ 100% uncertainty in the deflection field due to subhalos. Pos-

terior deflection field due to subhalos is only constrained well near the multiple images, where the
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Figure 4.12: Mean of the posterior convergence obtained from the transdimensional (left) and one-subhalo (right)
inferences. Green markers and the circle have the same meaning as in Figure 4.11.

uncertainties can be as low as 20%.

4.2.3 THE BIAS IN A ONE-SUBHALO LENS MODEL

Fixed-dimensional lens modeling requires iteratively testing lens models with a fixed number of
subhalos (or a fixed amount of any other form of additional model complexity) in addition to the
smooth lens model. In the simplest approach, a single subhalo can be added to the smooth lens
model to fit an observed photon count map. In this section, the previous results from transdimen-
sional sampling are compared to such a case, where the lens model contains a single subhalo. To
make a robust comparison, the same simulated photon count map is used as shown in Figure 4.5.
Then, instead of allowing a variable number of subhalos in the lens model, the transdimensional
proposals in PCAT are turned off and the number of subhalos is fixed to 1. The latter scheme is still

Bayesian and probes all within-model covariances, but neglects across-model covariances.

142



Figure 4.12 illustrates the median of the posterior convergence obtained in the transdimensional
(left) and one-subhalo (right) inferences. These posterior convergence maps are obtained similarly
to the posterior deflection maps, i.e., the convergence maps are calculated for each sample from the
posterior by numerically differentiating the deflection field, and then the median convergence in
each pixel is presented as the median of the posterior convergence map.

In the left panel of Figure 4.12, transdimensionality allows subhalos to be born and die across the
image, probing the goodness-of-fit of all combinations of subhalo multiplicities, positions and de-
flection profiles allowed by the prior. Such configurations mostly include mild likelihood improve-
ments below the detection threshold assumed in traditional cataloging. The median of the posterior
convergence reveals low-significance diffuse features in the underlying subhalo convergence field as
well as constraining superthreshold true subhalos. In contrast, the median of the posterior conver-
gence obtained from the one-subhalo inference on the right contains a single overdensity, which is
also inferred by the transdimensional inference. However, the transdimensional approach also (par-
tially) deblends subhalos in the crowded region to the extent allowed by the information available in
the data and degeneracies in the likelihood, despite the fact that most sample subhalos presented in
Figure 4.5 do not indicate associations with the true subhalos.

The failure of the one-subhalo inference to reveal the remaining features in the underlying true
convergence field is due to the absence of additional model subhalos which causes the macro lens
model and the single subhalo to be biased to increase the likelihood. Without proposals to probe
transdimensional covariances, the sampler explores a mode of likelihood of the one-subhalo lens

model. The inference of lower-significance features in the convergence map does not imply that
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Figure 4.13: Median of the posterior residual between the model and true convergence in the transdimensional (left)
and one-subhalo (right) inferences, given as percentage of the true subhalo convergence map. The divergent color
scale is linear and saturated at &= 100. Green markers and the circle have the same meaning as in Figure 4.11.

the additional subhalos are formally detected. The increase in the goodness-of-fit between the two
approaches is Alog P(D|€2 ;) ~ 10. In order to detect these model subhalos at 50, they would be
required to individually improve the goodness-of-fit above A log P(D|€2,;) ~ 35 given that they
have 5 degrees of freedom.

The difference between the two inference schemes becomes more evident when the posterior
predictions are compared with the underlying true convergence field due to subhalos. Figure 4.13
illustrates the residual between the true subhalo convergence map and the median of the posterior
convergence obtained in the transdimensional (left) and one-subhalo (right) inferences, respectively.
The disagreement is significantly smaller in the case of a transdimensional approach, which correctly
predicts the mean subhalo convergence field over most of the lens plane and have smaller disagree-
ment close to the subhalos. However, note that even the transdimensional approach cannot fully

constrain the true subhalo convergence field in the vicinity of most subhalos. This is expected, be-
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cause the simulated photon count map contains very little information on their properties.

Figure 4.14 shows the posterior of the position and deflection strength of the model subhalo
in the one-subhalo inference. The joint distribution is observed to be highly skewed with heavy
tails. Furthermore, the median of the posterior mass of the subhalo, 4.5 x 108 M, o> is biased low
compared to the mass of the closest true subhalo at (1.2, -0.5) arcsec, 8 x 105 M.

Another problem with fitting the lensed image using a fixed number of subhalos is that the pos-
terior of the macro lens model can be significantly biased because of the missing modeled subhalos.
This is because the macro lens model compensates for the absence of subhalos below the detection
threshold, resulting in a seemingly high goodness-of-fit that mismodels the underlying true lensed
emission metamodel. An example is shown in Figure 4.15, where the posterior of the host halo ellip-
ticity is plotted for the cases of nominal (transdimensional) and one-subhalo inferences using a simi-
lar, but independently drawn data set. One-subhalo inference is observed to generate multimodality

in the posterior of the ellipticity of the host.

4.2.4 EXTENDING THE METAMODEL TO LOWER SUBHALO MASSES

The lower limit of the deflection strength prior can be made smaller at the expense of making the
posterior prior-dominated (i.e., resulting in little information gain) and significantly increasing the
computation time required for convergence. Therefore, given the observed data, there is a reason-
able lower limit to the deflection strength, e.g., 0.o1 arcsec, which can balance information gain and
computational complexity.

Next, results from a different inference is presented, where there is no mismodeling at the low
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Figure 4.14: Joint posterior of the horizontal and vertical positions and the deflection strength of the subhalo in the
one-subhalo inference. Dashed lines have the same meaning as in Figure 4.6. For comparison, the position of the
nearest true subhalo is (1.2, -0.5) arcsec and it has a deflection strength of 0.05 arcsec.
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Figure 4.15: Histogram of samples from the posterior of the host halo ellipticity. The legend is same as that in Figure
4.6.

end of the subhalo mass function, unlike the nominal results in Section 4.2.2, where the minimum
subhalo deflection strength allowed in the fitting metamodel is a factor of 3 higher than the true
minimum subhalo deflection strength. Using the same data set as shown in Section 4.2.2, Figure 4.16
compares the posterior of the number of subhalos in the nominal results (left) and in a run, where
Osmin = 0.003 arcsec (right). Given a lower o min, the run shown in the right panel explores a
higher number of subhalos whose masses are lower on average. The two posteriors are consistent
with each other. Given thata a scale-free prior exists on the mean number of subhalos, ftsp, the

fact that there is a preferred scale in the number of subhalos and that it is consistent with the true
number of subhalos, implies that the posterior is informed by the underlying subhalos below the

detection threshold.
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Figure 4.16: Histogram of samples from the posterior of the number of subhalos shown with blue. The legend is same
as that in Figure 4.6.

4.3 NO-SIGNAL TEST

Any inference framework is expected to produce null results when subject to an input data set that
does not contain the signal of interest. Therefore, the inference framework is next tested on a sim-
ulated data set that was not affected by any subhalo. For this purpose another simulated image is
generated as a Poisson draw of an image forward-modeled by the macro lens model, background
emission and PSF (same as that used to generate the main data set presented in the thesis), but with-
out any subhalo. Then, PCAT is run on this image. Figure 4.17 shows the histogram of the number
of subhalos in the posterior, which is consistent with the true value of o. Furthermore, none of the
subhalos in the posterior ensemble of catalogs is more significant than 40. The fact that there is a

non-zero number of subhalos in the posterior is largely a consequence of the degeneracy between
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the mass of the main deflector and the total mass of subhalos inside the critical curve. The total mass
in the subhalos, as shown in Figure 4.18, is also mostly zero, although the posterior does contain
some mismodeled subhalo mass due to degeneracies in the lensing problem. The 84th percentile
(vertical blue dashed-dotted line) extends to about 3x 108 M, which coincides with the maximum

likelihood sample (vertical red line), indicating that these few samples overfit the image.

4.4 SENSITIVITY TO THE PRIOR CHOICE

An important nuisance parameter of the model is the minimum deflection strength allowed by the
prior. The reason for its criticality is that the subhalo mass function is expected to be steep, causing

the posterior total number of subhalos to sensitively depend on the minimum deflection strength

- -
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Figure 4.17: Histogram of the number of subhalos in the posterior when there is no true subhalo that affects the simu-
lated image. The legend is sames as that in Figure 4.6.
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allowed by the metamodel. The lower o min is allowed to go, the more prior dominated the poste-
rior becomes. Conversely, taking cts min too high causes mismodeling, since this removes from the
metamodel those subhalos with marginal significances that could fit subtle features in the data.
Figure 4.19 illustrates the effect of varying this nuisance parameter away from the nominal value
of o.o1 arcsec. In the left panel, c; min is reduced to 0.005 arcsec, whereas in the right panel, it is in-
creased to 0.02 arcsec. Although the posterior in the left panel agrees better with the ground truth at
the low mass end, this happens at the expense of oversplitting the most massive subhalos. Further-
more, the lower end of the posterior subhalo mass function becomes prior-dominated, and could
miss a potential cutoff or flattening required by the data. The 0.02 arcsec run on the right performs

comparably at the high masses, but fails to explore the subhalo mass function at the low-mass end.
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Figure 4.18: Posterior distribution of the total mass in subhalos inside the Einstein radius of the host galaxy, when
there is no true subhalo that affects the simulated image. The legend is sames as that in Figure 4.6.
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Figure 4.19: Posterior histogram (blue) of the subhalo masses, when ¢ ;5 is 0.005 arcsec (left) and 0.02 arcsec (right).
The green histograms show the mass function of the true subhalos.

These results based on simulated data show that probabilistic cataloging is an effective tool to
probe lens models with a variable number of deflectors. Probabilistic cataloging differs from tradi-
tional cataloging, because it does not discard information or bias the posterior by imposing a detec-
tion threshold on model subhalos, i.e., requiring that model subhalos improve the goodness-of-fit
above some threshold. By subsequent marginalization over the catalog space of subhalos, it obtains
robust estimates of the underlying mass model and population characteristics of subhalos, without
individually detecting them. This contrasts with traditional cataloging, where detections and nonde-
tections are used to constrain the subhalo mass function. However, because these detections are not
fair draws from the underlying subhalo mass function, this approach cannot account for covariances
in the subhalo catalog space, potentially yielding biased results with underestimated uncertainties.

It is shown that, by not including these small subhalos in the lens model, fixed-dimensional infer-

ence methods can significantly mismodel the data. Furthermore, the subhalo mass function can be
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probed even when many subhalos in the sample catalogs are individually below the detection thresh-
old and would be absent in a traditional catalog.

Currently, the most extensive and homogeneous collection of optical images of galaxy-galaxy
type strongly lensed systems is the SLACS collection®?*. These targets have been spectroscopically
selected from the Sloan Digital Sky Survey (SDSS) data set conditional on encountering multiple
strong emission lines at a higher redshift than that of the target galaxy. They were later followed up
by the Advanced Camera for Surveys (ACS) on the HST. However, the limited depth of the HST
only allows the most massive subhalos, if any, to be constrained 226,227 Next generation, wide field,
high angular resolution telescopes such as WFIRST and EUCLID are expected to revolutionize
studies of dark matter substructure. The number of high signal-to-noise strong lens images is ex-
pected to go up to thousands***>7°. Furthermore, greater exposure depth should allow constraints
on multiple subhalos per strong lens, making it possible to constrain the subhalo mass function to
lower masses. These infrared telescopes will also carry spectrometers, which, in synergy with the
photometric redshifts provided by the Large Synoptic Survey Telescope (LSST), will allow simulta-
neous constraints on the redshifts of the model sources and deflectors. Follow up of high signal-to-
noise systems with the James Webb Space Telescope (JWST) and interferometry at submillimeter
wavelengths, e.g., Atacama Large Millimeter Array (ALMA), may allow constraints on the subhalo
properties of systems at high redshift.

The presented inference can be improved in several ways. First, multi-band images can be used
by introducing color parameters for the source and host emissions. This would make available in-

formation contained in the different colors of sky background, source, and foreground galaxies.
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Furthermore, the source plane emission can be parametrized on an adaptively refined grid, instead
of imposing that the source plane emission is from a galaxy with a perfect Sérsic profile. This would
yield a more realistic model of the source plane emission, and a more principled method to marginal-
ize over uncertainties in the emission from the source plane. This is especially relevant for late type
background galaxies, where emission has strong spatial features such as outflows, bright spots or
dust obscured regions on the disc.

Probabilistic cataloging can also be extended to use temporal information by sampling from the
posterior of a lensed emission metamodel given exposures of the strongly lensed system taken at
different times. Because lensing is also sensitive to the angular diameter distances to the lens and
source planes, this would allow an independent measurement of the Hubble constant, Hy, as in*4,
but with constraints that have been marginalized over dark subhalos that can potentially bias the
macro lens parameters. Also, combining multiple exposures may improve sensitivity to substructure

135,65 although microlensing could potentially bias this inference **.

via time-delay lensing
Furthermore, probabilistic cataloging provides a principled way to gather information from in-
dependent strong lens systems, when constraining the posterior of the subhalo parameters. Given
images of different strong lenses, the catalog space consistent with these images can be jointly sam-
pled with hyperparameters characterizing the population characteristics of the subhalos. This is a
significant improvement with respect to traditional cataloging, where incorporating nondetections
into the inference may become ambiguous, since fixed-dimensional approaches do not propagate

transdimensional covariances

Inference of mass substructure on the lens plane also has strong degeneracies with the inference
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of light substructure on the source plane. In particular, the light substructure in the source plane
can affect the lensed image similar to the mass clumps in the lens plane. Such degeneracies can be
partially broken by exploiting a data set such as velocity-binned ALMA images, that are informative
on the line-of-sight velocities of the light substructure, thus allowing component separation in the

source plane.
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Probabilistic Cataloger

PCAT is the software implementation of the probabilistic cataloging discussed in this thesis. It was
initially designed to sample from the posterior of a gamma-ray emission metamodel consistent with
the Fermi-LAT data’+. Later, it was generalized to include lensing in the emission metamodel. It has
been used in two publications”#7*. Its design philosophy is to fill the gap between the statistically

unsophisticated users and data sets that require a transdimensional and covariant modeling. A typi-
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cal user experience is the preparation of the data in the form that can be fed into PCAT, choosing the
metamodel, element kernel type, and priors on the element parameters as well as common parame-
ters of the metamodel. The outputs of the framework are the HDFs files that contain the chain and
plots that visualize the posterior of the metamodel in various projections. It’s main dependencies are
numpy, scipy, matplotlib and multiprocessing modules.

In addition to the gamma-ray and lensed emission metamodels presented in this thesis, PCAT
has two more metamodels that have been implemented in the course of this PhD. The first is the
X-ray emission metamodel, which can be used to sample from the posterior of the catalog space of
X-ray point sources consistent with deep field X-ray images. These samples then can be correlated
with the crowded optical catalogs of the same region, yielding a posterior of the redshift and optical
properties of the faint X-ray point sources. Second, PCAT can also assume the standard Gaussian
mixture model as its metamodel, which can be used to sample from the posterior of the multiplicity,
amplitude, and size distributions of clusters on the integrals-of-motion plane (kinetic energy and
momenta) of stars, which allow inferences of their formation history. These two metamodels have

been omitted from this thesis.

5.1 PROPOSAL SCALE

MCMC can efficiently sample from a given probability distribution only when the proposal distri-
bution is similar to the target probability distribution. For instance, when the target probability dis-

tribution is a Gaussian with a standard deviation of unity, the mixing of the chain will be slow when
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the proposal scale is either much smaller or larger than unity. In the former case, the chain takes too
small steps, achieves an acceptance ratio of ~ 100%, increases the correlation between successive sam-
ples, and requires more thinning to obtain uncorrelated samples. In the latter case, proposals get
frequently rejected and the state of the chain will evolve at a time scale longer than the number of
samples taken by the sampler. The optimal scaling of MCMC proposals requires acceptance ratio to
be 23.4% in the large dimension limit™.

PCAT sets the proposal scale by determining the Hessian matrix, i.e., the curvature of the target
probability distribution at the initial state. Because the chain is initialized at a draw from the prior,
the initial Hessian estimate can bring the state closer to a fair draw from the posterior, but cannot
efficiently sample from the posterior. Therefore, once the acceptance ratio drops significantly, PCAT
restarts with a new Hessian estimate and this scale learning process continues iteratively until succes-
sive iterations start generating fair samples from the posterior. Frequently, however, one has good
priors on what the proposal scale should be for the posterior of interest. Therefore, PCAT also allows
one to bypass this iterative scheme by letting the user define the proposal scale for every parameter.
In order to maintain the optimal acceptance rate, the scale of within-model proposals is normalized

by the square root of the number of parameters whose values are proposed to change simultane-

ously,

0p = ———0p. (5.1)

where o p and ¢ are the single and multiple parameter proposal scales in the unit space and Ny, is
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the number of parameters perturbed per within-model proposal.

The relative frequencies of different proposal groups can also be adjusted by the user. Atlow
signal-to-noise, birth and death proposals become the principle proposals that align with the data
uncertainties, whereas as the signal-to-noise increases, split and merge proposals become the princi-
ple transdimensional proposals that probe covariances.

The acceptance ratio of birth and death proposals is set by the minimum of the prior on the ele-
ment amplitudes and the regularization prior. When the regularization prior is applied, a too-low
minimum amplitude results in an acceptance ratio much less than o.1. Conversely, when the regular-
ization prior is not applied, a too-low minimum amplitude causes the acceptance ratio to increase to
~ 1. Therefore, by default, PCAT tunes this minimum to the value that yields an acceptance ratio of

~ 0.1

5.2 TIME COMPLEXITY

Probabilistic cataloging requires sampling from the posterior. Therefore, its time complexity de-
pends on the typical number of elements (i.e., dimensionality) of the metamodel and can be high
for even moderate numbers of elements. Furthermore, the hierarchy and transdimensionality of the
metamodel can further increase the time complexity. As a result, in general, the time complexity of
probabilistic cataloging is higher than that of traditional cataloging roughly by a factor equal to the
number of fair samples taken from the posterior. Therefore, caution must be exercised to ensure

that probabilistic cataloging is scalable.
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For each proposal in MCMC, the current parameter vector is used to compute the forward-
model, which is then compared with the data through the likelihood. This forward-modeling is
the leading term in the time budget of a single proposal. In PCAT, forward-modeling of element pa-
rameters is performed perturbatively. During each proposal, the current forward-model is modified
for the change in the element that is proposed to change, be added or be killed. This decreases the
time complexity of processing a single sample from O(NpN) to O(Np), where N is the number
of elements and Np is the number of data points. Furthermore, it is assumed that the affect of the
elements on the forward-model vanishes outside some circle around the element, resulting in a local
evaluation of the forward-model. Assuming that the closest pixel to the nth element has index j, the

evaluated element kernel is

]Cim<01,n - 917]‘, 92771 — 027]‘) Ifj in Lh
Kijm = (52)

0 otherwise

where Ky, is the element kernel, K, is the element kernel evaluated on the forward-model grid,
61, and 03 ; are the horizontal and vertical positions of the jth pixel, and Ly, is the list of nearby pix-
els to pixel j for the hth amplitude bin. Ly, is precomputed for all amplitude bins before sampling
and stored as a look-up table. The radius of the circle that Lj, extends over, depends on the ampli-
tude of the element and is determined such that the approximation error by the largest amplitude

allowed by the prior contaminates the lowest amplitude at most by one percent.
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Figure 5.1: The radial profile of emission from a point source as reconstructed by the Fermi-LAT in different flux bins.
The tail of the PSF is a power-law and is not exponentially suppressed. The horizontal line highlights the minimum flux
allowed by the prior multiplied by 0.01. When the position, flux or the color of a point source is changed, its contribu-
tion to the total model is updated only inside a circle centered at the pixel closest to the point source. The radius of the
circleis set such that this approximation causes a negligible error.

The circle radii are illustrated in Figure 5.1 for the emission metamodel, where the horizontal line
indicates 0.01 fynin, where fy,in is the minimum flux allowed by the emission metamodel. Hence,
point sources contribute to the forward-model up to the radius, after which the bias introduced by
their neglect is below one percent of the contribution of the faintest point source. The error intro-
duced by this approximation is monitored throughout sampling to ensure that the bias is negligi-
ble. As a result of this approximation the time complexity of a single proposal is further reduced to
O(Npg), where Npy, is the number of data points where the element kernel does not vanish.

For element kernels that are approximately Gaussian, such as PSFs in X-rays and optical wave-
lengths, the evaluation in Equation 5.2 can be further accelerated by linearizing the element kernel

and replacing interpolation with a matrix multiplication of expansion coefficients and small (i.e.,
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leading order) shifts on the forward-model grid. This is then used to evaluate in parallel the forward-
models of elements with more complex morphologies such as galaxies with Sérsic profiles, as the
sum of linearized kernels called phonions. This was implemented in a different software of proba-

80 but has not been included in this thesis.

bilistic cataloging optimized for optical photometry

Moreover, inference of large fields can be broken down into independent inferences of tiles not
much larger than ~ 10 — 20 times the size of the element kernel. Because elements further away
have vanishing covariances, their posteriors can be sampled independently. The regularization prior
also has the advantage of significantly reducing the time complexity of the probabilistic cataloging
by only allowing relatively significant subthreshold elements, 22 10, into the model. In addition,
the term In k?j in the log-likelihood is fixed for a given data set and neglected when calculating the
differences in log-likelihood. PCAT also achieves parallelism at the process level via bypassing the
Global Interpreter Lock (GIL) of Python, where the main (parent process) spawns multiple, non-
interacting child processes to accelerate computation.

The resulting time budget of PCAT per sample per band per data quality class are 1 ms, 1 ms, 3 ms
and 12 ms for the X-ray emission metamodel, Gaussian mixture metamodel, gamma-ray emission
metamodel, and the lensed emission metamodel, respectively. Because X-ray emission is forward-
modeled on a Cartesian grid and the element kernel has ~ 400 pixels, it has the smallest time budget.
Gamma-ray emission is evaluated on HealP1i x and the PSF in the lowest energy is oversampled due

to PSF tails, resulting in a larger (~ so00) number of pixels per band in the element kernel. Lensed

emission is the slowest forward-modeling because of the solution of the lens equation.
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5.3 CONVERGENCE

MCMC allows sampling from multimodal and covariant posteriors with the caveat that conver-
gence to the stationary distribution can require a long simulation time. When the posterior extends
to models with thousands of parameters, the finite available MCMC time may preclude the conver-

gence of the sampled distribution to the desired target distribution.

5.3.1  ACROSS-CHAIN VARIANCE

One method for evaluating the chain convergence is to calculate the variance of the sampled chain.
However, the variance of a single MCMC chain can underestimate the true variance, since the chain
may not have converged to the target distribution despite having a small variance. Therefore, mul-
tiple, ~ 4, chains are run and the mean of the chain variances are compared with the variance of the

104

means of the chains™#, ensuring that the initial states of the chains are over-dispersed relative to the

target distribution. Having N, chains and N samples in each chain, the resulting test statistic,

A B 1
R= 1+ — — :
AR (53)

is known as the Potential Scale Reduction Factor (PSRF). It estimates the factor by which the sta-

tistical uncertainty of a random variable could be reduced by running the chains longer. Therefore,

it can be used to assess whether the chains have converged to the same distribution. Here, W is the
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within-chain variance, i.e., the mean of the chain variances,

N

1 1 _
W = ﬁc Zc: (Ns 1 Z(ys - yc)2>7 (5-4)

S

B is the between-chain variance, i.e., the variance of the chain means,

Ne

1 1 e \?
B= o — S 4 .
Nc_lZ <yc MZ}%) : (s:5)

c

and the mean of the cth chain is
1 &
. = — . .6
Ye N, ; Ys (5 )

This definition of B differs from that commonly found in the literature by a factor of N, which is
absorbed into the definition of R. In a well-mixed chain the PSRF should be close to unity.

Because of the labeling degeneracy in probabilistic cataloging, there is an IV!-fold degeneracy
in the likelihood of a member model with IV elements. For any reasonably large IV, N is larger
than the number of samples that can be drawn from the posterior. Therefore, formal convergence is
not possible, but also unnecessary, since well sampling only one of the degenerate likelihood peaks
reveals the unique likelihood topology of the problem.

When sampling from a target probability distribution by constructing Markov chains, one needs
to ensure that all walkers reach the same stationary distribution. Because the chain is transdimen-
sional, however, the PSRF is calculated on the forward-model. Figure 5.2 illustrates the PSRF distri-

bution obtained in Section 4, which implies that the inference hasa S 10% uncertainty that adds
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in quadrature with the statistical uncertainty derived by assuming that all chains have sampled from

the same target distribution, i.e., the posterior of the metamodel.

5.3.2 AUTOCORRELATION

In MCMC, proposals are made to change the current state by some random, but small amount.
Therefore, nearby samples in the chain will be similar. In order to retain the Markovian property,
the chain is thinned by a factor equal to the autocorrelation time of the resulting chain. Given the
high dimensionality, ~ 1000, of probabilistic cataloging, this thinning factor is typically ~ 10%.

The autocorrelation of the chain is computed using a similar method to that followed to calculate
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Figure 5.2: PSRF evaluated in each pixel in an inference of lensed emission metamodel.
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Figure 5.3: Autocorrelation of the diluted chain normalized by its value at zero lag.

the PSRF of the forward-model. After calculating the autocorrelation of each common parameter
and the forward-model in each data cube, the maximum autocorrelation is determined. The auto-
correlation of the chain obtained in Section 3.2 is plotted in Figure 5.3, which shows that samples in

the diluted chain is memoryless.

5.4 SYSTEMATICS

5-4.1 COMPLETENESS AND FALSE DISCOVERY RATE

Using a simulated data set, the posterior of the metamodel can be assessed by comparing the poste-

rior of the metamodel with the parameters of the true metamodel from which the simulated data
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was drawn. An important part of this assessment is the comparison of the posterior of the catalog
space with the elements of the true metamodel. In this context, the elements of the true metamodel
are treated as a traditional catalog.

When comparing the proximity of a sample catalog with a reference catalog, there are two rele-
vant quantities: the completeness and the false discovery rate, i.e., Type I error. The completeness, C,

is given by

= s 57
N (57)

where N, is the number of elements in the reference catalog and N, is the number of correct

associations. In contrast, the false discovery rate, F, is

Nt
F = , 5.8
Nsam ( )

where Nggp, is the number of elements in the sample catalog and N, is the number of false associa-
tions.

The associations with the true catalog is performed as discussed in Section 2.2.3. Figure 5.4 shows
the posterior of the completeness (left) and false discovery rate (right) when the regularization prior
is applied. Posterior completeness is unity at high flux, low color, and high significance, whereas
it drops to zero at low flux, high color, and low significance. The false discovery rate shows the op-

posite behavior as expected. Here, the true color distribution is such that soft sources are mostly
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subthreshold. The transition occurs at a significance of ~ 20 despite the fact that the true catalog is
highly crowded (i.e., on average one true source inside 2° by 2° region).

When the regularization prior is lifted, the false discovery rate generally increases and the com-
pleteness drops. This is shown in Figure s.s.

Completeness and false discovery rate also depend on the association scale, which allows the dis-
crimination threshold (i.e., level of degradation) to be controlled, placing the sampler at different
points on the Receiver Operating Characteristics (ROC). Figure 5.6 shows the effect of changing the

association radius.

5-4.2 BREAK IN THE AMPLITUDE DISTRIBUTION

An important feature of probabilistic cataloging is its ability to use subthreshold information in
the data. Figure 5.7 presents the mean of the posterior histogram of point source fluxes and signif-
icances (blue), the posterior of the hyperdistribution (black), and the true catalog (green), when
the true metamodel has a broken flux distribution with a break at 3 x 1078 cm™2s71GeV L. As

a result, the posterior of the lower slope of the flux distribution is only informed by subthreshold
and marginally significant point sources. Nevertheless, the inference does recover the break in the
posterior, although the application of the regularization prior (left) causes the slope to be predicted

higher.
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Figure 5.4: Posterior of the completeness (left) and false discovery rate (right) as a function of point source significance
(top), flux (middle), and color (bottom). Point source parameters on the horizontal axes correspond to the reference
(i.e., true) and the model point sources for the completeness and false discovery rate, respectively.
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Figure 5.5: Similar to Figure 5.4, but when the regularization prior is not applied.
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Figure 5.6: Posterior of the Completeness and false discovery rate as a function of the association scale.

5-4.3 VARYING THE REGULARIZATION PRIOR

A regularization prior of -1/2 per degree of freedom is motivated for the case when the residuals are
independent, identically distributed, and Gaussian. In general, however, there can be degeneracies
between the element parameters, which reduces the effective number of parameters of elements.
Furthermore, residuals may deviate from the X2 distribution. Lastly, because this prior is intended
to reduce model complexity, its exact value should not change the results of the inference, as long as
the posterior is corrected for the effect of the regularization prior.

Figure 5.8 shows the posterior of the number of elements (top left), slope of the flux distribution
(top right), and the background normalization (bottom), when the regularization prior is scaled by a

factor oy such that
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Figure 5.7: Top: Posterior (blue) of the flux histogram when the true flux distribution (green) has a break, imposing
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and significance imposing (left) and not imposing (right) the regularization prior. True point sources are shown with
green markers.
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1
In P(N) = —5 0 Nep . (5.9)

The true values of the parameters are shown with the green lines. Posterior of the number of ele-
ments decreases as o increases. Similarly, the slope of the flux distribution decreases (i.e, flux dis-
tribution becomes shallower) and the background normalization increases as v, increases. These
posteriors agree with the true metamodel at oy, = 0.5. This is largely due to the fact that the like-
lihood is Poisson instead of Gaussian, which causes larger uncertainties in the forward-model and
require a smaller penalty for more complex models.

However, in general, the posterior of different parameters can agree with the true metamodel at
different values of oy, because they may have different covariances with the model indicator. There-
fore, the correction that must be applied to the posterior to undo the effect of the parsimony prior

depends on the parameter of interest as in the Focused Information Criterion (FIC)*°.
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Figure 5.8: Posterior mean number of elements (top left), flux distribution slope (top right), and background normaliza-
tion (bottom), when the strength of the regularization prior is scaled to different values.
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Conclusion

This thesis implements a transdimensional, threshold-free, hierarchical, and Bayesian inference
framework. It is based on the foundations of statistics, i.e., the epistemological study of how in-
ference should be made, but also relates to contemporary problems in cosmology. Its central idea

is that proper uncertainty propagation and marginalization is a prerequisite to performing robust

inference.
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Although there is growing evidence for the dark matter hypothesis based on its gravitational in-
teractions, an observation that can only be explained by the non-gravitational interaction of dark
matter would yield substantial evidence for its existence. Obtaining this evidence, if there will be
any data to support it, requires robust error propagation and marginalization over nuisance param-
eters. The thesis applies probabilistic cataloging to two such data sets and explores their inference
potential. The thesis focuses on the indirect detection of WIMPs not because WIMPs are theoreti-
cally more justified than other dark matter candidates. In the absence of data that yields substantial
evidence for a particular model, any model choice is largely prior-driven.

The thesis also explores the notion of model complexity. The parsimony principle is the view
that the best description of some data is the one that uses the fewest symbols (i.e., minimum descrip-
tion length) to explain it. Regularization of model complexity has implications for any inference
using the scientific method. In particular, regularization of model complexity has applications from
reducing overfitting in Q-learning, e.g., constructing intelligent agents to take optimal actions with-
out exploiting only short-term benefits, to obtaining latent representations of large data sets. It is
plausible to expect that the increase in the computational resources will allow a broader range of
inferences to use ideas in probabilistic cataloging to take into account transdimensional modeling

covariances.
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