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Practicable Characterization of Systematic Heterogeneity

Abstract

In public health, personalized medicine is the ideal. For example, an effective strategy for improving

the health of a population is to measure the health of constituent subpopulations and intervene where the

treatment is most needed. Alternatively, a member of a subpopulation presents with an ailment and relevant

covariates are used to determine the appropriate treatment. Such strategies reasonably assume that there

is heterogeneity in the effect of the treatment on health across subpopulations. However identification of

heterogeneity tends to be expensive, understandably so due to the demands we are making of our data. Costs

appear when having to make strong a priori assumptions about the number and identifying characteristics

of the subpopulations across which the treatment effect differs, in the increased sample size required for the

data to fill in gaps left by the absence of assumptions, and/or in the manual evaluation of large numbers

of covariates. This dissertation discusses different approaches to reducing this cost. Chapter 1 compares

a Lot Quality Assurance Sampling (LQAS) survey conducted in southwestern Uganda to an unaffiliated

but coincident Demographic Health Survey (DHS) and shows that if we redefine our goal in terms of the

programmatic decisions we need to make, we can come to the same conclusions at a fraction of the cost. In

Chapter 2 I consider just how expensive it is to identify heterogeneity in the absence of a priori assumptions,

and draw some general conclusions about the capabilities and limitations of extant modern methods of causal

inference. I conclude with Chapter 3, where I leverage the insights of Chapter 2 to build a visualization

application that facilitates the exploratory, hypothesis-generating analysis of treatment effect heterogeneity

(TEH), particularly for large datasets where a manual evaluation of covariates is not practicable.
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Comparing two survey methods of
measuring health-related indicators: Lot

Quality Assurance Sampling and
Demographic Health Surveys

Sarah C. Anoke1, Paul Mwai1, Caroline Jeffery2, Joseph J. Valadez2, Marcello Pagano1

1 Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA

2 Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK

Abstract

Two common methods used to measure indicators for health program monitoring and evaluation are the

demographic and health surveys (DHS) and lot quality assurance sampling (LQAS); each one has different

strengths. We report on both methods when utilized in comparable situations. We compared 24 indicators in

south-west Uganda, where data for prevalence estimations were collected independently for the two meth-

ods in 2011 (LQAS: n = 8876; DHS: n = 1200). Data were stratified (e.g., gender and age) resulting

in 37 comparisons. We used a two-sample two-sided z-test of proportions to compare both methods. The

average difference between LQAS and DHS for 37 estimates was 0.062 (SD = 0.093; median = 0.039). The

average difference among the 21 failures to reject equality of proportions was 0.010 (SD = 0.041; median

= 0.009); among the 16 rejections, it was 0.130 (SD = 0.010, median = 0.118). Seven of the 16 rejections

exhibited absolute differences of <0.10, which are clinically (or managerially) not significant; 5 had differ-

ences >0.10 and <0.20 (mean = 0.137, SD = 0.031) and four differences were >0.20 (mean = 0.261, SD

= 0.083). There is 75.7% agreement across the two surveys. Both methods yield regional results, but only

LQAS provides information at less granular levels (e.g. the district level) where managerial action is taken.

The cost advantage and localization make LQAS feasible to conduct more frequently, and provides the possi-

1



bility for real-time health outcomes monitoring. This work was supported by NIHGrants 5T32AI007358-24,

5T32AI007358-25.

2



1.1 Introduction

The importance of monitoring and evaluation (M&E) to assess interventional programs, inform allocation

of resources and improve evidence-based policy has been commented on by several authors [13, 16, 48].

Two common sampling and survey methodologies used to track health program indicators for M&E are the

demographic and health surveys (DHS) [7] and lot quality assurance sampling (LQAS) [74].

DHS and LQAS differ in structure because they serve different purposes: DHS for international compar-

isons and benchmarking, LQAS for intranational comparisons, benchmarking and health system manage-

ment. A unique benefit of LQAS is the ‘locality’ of the methodology. LQAS gives local (e.g., subdistrict,

county or subcounty) information, which, if need be, can subsequently be further aggregated into district and

regional information. The disaggregation helps overcome the ecological fallacy problem, the assumption

that all subregions perform at the regional mean. Additionally, LQAS gives more distributive information

about how the subregional estimates vary across the region, which allows for identification of geographical

disparities.

Further, LQAS surveys are shorter, cheaper to implement, and the data obtained are readily available.

With regard to this last point, LQAS data are hand tabulated within a week of data collection to permit

district managers to classify subdistrict units according to predetermined coverage targets; also, more formal

reports with districts and regional prevalence measures can be produced within 6 weeks of data collection.

Thus, the surveys can be done more frequently, perhaps within the three-to five-year interim between DHS

implementations. This increased frequency of measurement allows LQAS data to be used for health system

management whereas DHS data, because of the need for international consistency, take several months after

collection to process and several additional months to compile into a final report. The increased frequency of

LQAS surveys also positively impacts the building of local capacity, because local district teams incorporate

LQAS data collection into their regular health system responsibilities, whereas a DHS may temporarily

employ individuals every few years.

An LQAS survey also is flexible and can be adapted to obtain information most useful for program man-

agement; survey items relevant to the region of implementation are easily added or removed, and these

modifications do not hinder either the data collection process or the data analysis. Comparatively, a DHS

is a large and expensive undertaking, making it difficult to modify the data collection and analysis process.

3



This inertia, combined with the DHS’ occasional reference as a ‘gold standard’, underscores the importance

of identifying the best use of a specific survey tool, rather than assuming it serves all informational purposes.

Finally, another advantage of LQAS is that the data are almost real time in that the data collectors see the

immediate and local impact of the data they collect, as opposed to a detached central ‘black box’ repository

and its distant possible impact on health policy. This may favorably affect the quality of the data, and it

certainly influences the cost of providing national, or aggregated summaries, as the inputs to such summaries

are the data that were gathered to provide local information, an aim that presumably justifies the cost of

obtaining the data. Thus, the marginal cost of aggregation is minimal compared to the cost of acquiring the

data.

The goal of this study is to provide substantive evidence to support the above claims about LQAS’ relative

utility, by conducting a formal statistical comparison of indicators common between the two surveys. These

indicators cover several aspects of Ugandan public health, such as HIV prevention, malaria treatment and

prevention, family planning and reproductive health, sanitation, maternal, newborn and child health, and

nutrition.

1.2 Methods

1.2.1 Selection of region and indicators for comparison

We selected Uganda for this comparison because data exist from both DHS and LQAS surveys collected

around the same time: between July and August 2011 for the LQAS, and between June and December 2011

for the DHS.

DHS is a national survey; the sample collected represents all 112 districts in Uganda. Seventy-eight

of these districts are engaged in USAID-funded projects that use LQAS for their monitoring. The best

geographic overlap between the two surveys is in the DHS-defined south-west region, where LQAS surveys

were conducted in each of this region’s constituent districts. In this study, we compare indicators calculated

for the south-west region.

The choice of indicators to compare started with a ‘core set’ of 59 national indicators created to track

social service performance in Uganda. This list was created by a Technical Working Group of the USAID-

4



funded STAR-E LQAS project comprising representatives from several Ugandan institutions, projects and

programs. Twenty-five LQAS indicators had definitions comparable to those contained in the DHS Final

Report; we report on 24 of these comparisons. We replicated all but one DHS result using the DHS data set

supplied by Inner City Fund (ICF) International. The indicator for which we could not reproduce the reported

DHS estimate and the 33 LQAS indicators we did not find within the DHS Final Report were omitted.

1.2.2 Sampling schemes and data collection

The DHS Program is implemented by ICF International under contract from the U.S. Agency for Interna-

tional Development (USAID) [7]. The Program administers several surveys internationally, including the

eponymous demographic and health survey (DHS). Although there is a general structure, each survey is tai-

lored to the needs of the specific country. Here, we discuss the structure of the 2011 Ugandan DHS (UDHS),

which was implemented jointly with the Uganda Bureau of Statistics (UBOS).

As discussed in the 2011 UDHS Final Report, the sample for the 2011 UDHS was designed ‘to provide

population and health indicator estimates for the country as a whole and for urban and rural areas separately’

as well as for 10 regions, whose boundaries are administratively defined by the DHS Program [73]. This

two-stage stratified cluster sample was selected by sampling households in each of 405 clusters, where strat-

ification was by urban/rural status and region. The sampling frame for the selection of the clusters was the

2002 Population Census provided by UBOS. A three-month household listing operation was conducted in

the 405 selected clusters, starting in April 2011. Data collection took place over a six-month period, from

the end of June 2011 to early December 2011. Women aged 15-49 years in all households and men aged

15-54 in one-third of households were eligible for interview.

In the first stage of sampling within the south-west region, 40 clusters were selected from a total of 8369

with 7983 being rural and 386 urban. The 40 selected clusters comprise five urban and 35 rural areas. In the

second stage of sampling, the DHS sampled 1200 of 685,695 households; 150 were urban and 1050 rural.

The expected number of completed interviews for the region was 1097 (96.3% completed) for women 15-49

years and 477 (92.6% completed) for men 15-54 years. We report the actual sample sizes with the results.

The national DHS first stage of sampling comprised 405 clusters selected from 48,715 clusters (42,675 rural,

6040 urban), and included 119 urban and 286 rural areas. The second stage comprised 12,150 households

(8580 rural, 3570 urban) of 5,076,534 households. The expected number of completed interviews was 9885
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for women 15-49 and 3628 for men 15-54.

The three subsurveys of interest are the household survey, the women’s survey (asked in all households),

and the men’s survey (asked in approximately every third household). All three subsurveys were conducted

within the same household. The LQAS methodology is a health science derivative of Statistical Quality

Control, a set of tools developed by Dodge and Romig, and Shewhart [50]. The data are sampled from a local

administrative unit called a supervision area (SA; e.g., county, subcounty or parish within a district), which is

classified as ‘acceptable’ or ‘unacceptable’ according to a coverage target. Although the goal is classification,

it is also possible to aggregate SA-level data to construct prevalence estimates for the respective districts and

regions; here, the classification decisions do not in any way impact the estimation of indicators [74, 50].

LQAS in Uganda during 2011 included more than 11,400 interviewees; the sample of 8676 households

in the south-west was also selected using a stratified two-stage process. Districts in south-west region were

divided into SAs based on how the district managed health services. Within each SA, a sample of 19 or 24

villages was selected with probability of selection into the sample proportional to the village population size

(PPS). To maintain an approximate minimum district sample size of 96, districts with only 4 SAs required

an SA sample size of 24 (4 SAs 9 × 24). In each selected village, the interviewer constructed a map of the

village with the help of a chief or other local leader, and divided the map into equivalent segments based

on visible landmarks and the number of households in each segment. One segment was selected randomly.

The interviewer then enumerated the households in the selected segment and selected one randomly. If the

selected segment had 30 or more households, it was further segmented and a subsegment selected randomly;

all households in the final segment were enumerated and one chosen randomly. To accommodate the fact

that there could be a nearby household with zero probability of selection (e.g., it was omitted from the map

because it was hidden behind vegetation), the next house with the closest door was selected for the first inter-

view. Thereafter, the household with the next closest door was selected for each subsequent subpopulation.

Only one individual from each subpopulation was interviewed in the sampled village.

The five subsurveys of interest correspond to particular subpopulations: mothers of children 0-11 months,

mothers of children 12-23 months, women 15-49 years, men 15-54 years and youth 15-24 years. All five

subsurveys were conducted in different households, comparatively different from what was employed by

DHS. To accomplish this, from a randomly selected house, an interviewee is selected who is either a woman

aged 15-49 years, a man aged 15-54 years, the mother of an infant aged 0-11 months, the mother of an infant
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aged 12-23 months or a youth aged 15-24 years. Subsequent households were selected to find interviewees

from the remaining populations, taking care not to select two interviewees from the same household.

1.2.3 Weighting

Within both the UDHS and LQAS data sets, individuals had different probabilities of being sampled. To

construct valid, representative estimates from these data, we calculated sampling weights based on each

sampling design.

DHS In the 2011 UDHS, sampling weights were calculated based on the two-stage stratified cluster design

used to sample households (see Appendix A.4 of [73] for details). These weights are provided within the

2011 UDHS data set.

LQAS In the LQAS data, we calculated weights based on the two-stage stratified design used to sample

households. Within each SA, a fixed number (either 19 or 24) was sampled irrespective of the SA population

size. To adjust for differences in SA sample sizes, individual observations are weighted by the number of

individuals a response represents. For example, if an observation is one of 19 sampled from an SA with a

population of 2000, then each observation is weighted by 2000/19. In another SA, if an observation is one

of 24 sampled from an SA with a population of 4500, then each observation is weighted by 4500/24. We

use these weights to construct a representative district point estimate, and a representative regional point

estimate (Figure 1.1).

1.2.4 Sampling errors

DHS The DHS Program provides a formula in Appendix B of the 2011 UDHS Final Report [73] for cal-

culating sampling errors based on the two-stage stratified cluster design used to sample individuals. For

indicators considered to be of ‘primary interest’ by the DHS Program, sampling errors are provided in the

report. Where possible, we use these sampling errors. For indicators where sampling errors are not provided,

we calculated them using the formulae provided.
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Figure 1.1 Population distribution by district, across the 14 districts of the south-west region. These population
counts were calculated from LQAS sampling frames created during sampling of the data used in this writing, and
were used to calculate the weighted regional prevalence estimate for each LQAS indicator. The 40 clusters that
were sampled by the DHS Program for inclusion in their survey are denoted by translucent circles. The LQAS
population counts are congruous with the distribution of DHS clusters, which were selected based on a distribution
proportional to the population density.

LQAS The survey data software within Stata® 13 was used to calculate standard errors at both the district

and regional levels [65]. For details on the formulae used, refer to the Stata Survey Data Reference Manual

[64]. At the regional level, we used the Wilson score interval to construct confidence intervals [22].

1.2.5 Statistical comparison of indicators

A two-sample two-sided z-test of proportions was used to test whether the proportions as estimated from

DHS data and LQAS data were statistically equivalent. Standard errors for test statistics were calculated by

taking the square root of the sum of the squared standard errors from the two estimated proportions. In two

cases (Table A.4 on page 60), it was necessary to calculate a weighted average and accompanying standard

error of two LQAS subpopulation estimates for comparison to a single DHS measure. The weights used
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were the proportion of the aggregated sample that belonged to a particular subpopulation. For example,

for an aggregated sample consisting of members from two subpopulations with 1353 and 752 members,

respectively, the corresponding weights are 1353/(1353+752) and 752/(1353+752).

1.3 Results

1.3.1 Regional comparisons

The 24 selected indicators cover several aspects of Ugandan public health; including HIV knowledge, coun-

seling, and behavior (8 indicators), malaria treatment and prevention (3), family planning & reproductive

health (4), child health (3), nutrition (4) and sanitation (2). The results of the 37 comparisons are summarized

as a forest plot (Figure 1.2).
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Figure 1.2 A forest plot of 37 comparisons of DHS and LQAS data collected in south-west Uganda during 2011.

Point estimates, confidence intervals and the results of statistical comparisons are shown in the Appendix

(Tables A.1-A.8, starting on page 57). In Tables A.9 and A.10 (also in the Appendix, on pages 64 and 65,

respectively), we summarize our comparisons. For 6 indicators (Table A.1 on page 57 and Table A.3 on

page 59), we refine the comparison by making subpopulation comparisons (e.g., men, women, male youths,

female youths) resulting in additional comparisons. In total, we assessed 38 comparisons; 1 comparison

using a cohort of male youths (Table A.3 on page 59) was eliminated due to the UDHS having insufficient

comparable data, thereby reducing the number of comparisons to 37. We did not reject equality of the
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proportions in 21 of 37 (56.8%). The average difference between LQAS and DHS estimates for the 37

comparisons was 0.062 (SD = 0.093; median = 0.039). The average difference among the 21 failures to

reject equality of proportions was 0.010 (SD = 0.041; median = 0.009); among the 16 rejections, it was

0.130 (SD = 0.010, median = 0.118). As the large standard deviation, and lower median value compared to

the mean indicate considerable variation among these rejections, we examined the variation further. Seven of

the 16 rejections exhibited differences of <0.10, which are clinically (or managerially) not significant; five

more had differences >0.10 and <0.20 (mean = 0.137, SD = 0.031) and 4 differences were >0.20 (mean =

0.261, SD = 0.083). We consider the more interesting of the 16 rejections in the Discussion below.

1.3.2 Distribution of prevalences across districts

The limit of inference when using UDHS data is at the regional level; however, district health system man-

agers cannot use such results without making the strong assumption that the districts within the region per-

form similarly, with the regional estimate reflective of the overall mean. This assumption is unnecessary,

and indeed, becomes a testable hypothesis, when making inferences using LQAS data, because we are able

to provide information at both the regional and subregional (i.e., district) levels. This information includes

identification of highly and poorly performing districts (and highly and poorly performing SAs within the

district), and a measure of the geographic variability of the regional estimator.

To illustrate this point, in Figure 1.1, Figure 1.3, and Figure 1.4 are maps of south-west region displaying

the 14 constituent districts with population sizes, and prevalence estimates calculated using LQAS data from

that district for two indicators (contraceptive prevalence, and fully vaccinated children 12-23 months of age).

Each smaller filled circle represents one of the 40 DHS clusters sampled from this region; note that the

DHS prevalence is estimated such that the comparative map would contain a single color covering the whole

region. In the lower portion of each of these maps is the overall regional prevalence from both surveys.
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Figure 1.3Distribution of the indicator ‘% of currentlymarriedwomenwho are using any family planningmethod’
across the 14 districts of the south-west region. Test for homogeneity of prevalences: p-value < 0.0005. The 40
clusters that were sampled by the DHS Program for inclusion in their survey are denoted by translucent circles.
Refer to Table A.5 on page 61 for more detailed information on these prevalence estimates.

1.4 Discussion

1.4.1 Discrepancies between prevalence estimates

When comparing two indicators, we first need to ensure that the indicators are measuring the same phe-

nomenon. This is often difficult to ensure when the two are defined in different surveys by different individ-

uals. Our choice of indicators to compare was influenced by how closely we could achieve comparability

of indicators. Secondly, if two indicators are supposedly estimating the same quantity and the results differ,

it is not possible, without importing extra information into the argument which we do not have available, to

determine which indicator yields an answer that is closer to the ‘truth’. With these caveats, we failed to find

disagreement in 21 comparisons and another 7 show clinically insignificant difference (75.7%). However,
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Figure 1.4Distribution of the indicator ‘% of children 12-23 months who are fully vaccinated’ underDefinition 2
(1 BCG + 3 DPT + 3 POLIO + MEASLES) across the 14 districts of the south-west region. Test for homogeneity
of prevalences: p-value = 0.002. The 40 clusters that were sampled by the DHS Program for inclusion in their
survey are denoted by translucent circles. Refer to Table A.6 on page 61 for more detailed information on these
prevalence estimates.

there are discrepancies that reveal subtle differences between the UDHS and LQAS surveys. We discuss

only a selection of extreme discrepancies to perhaps find explanation for these and other differences. For

example, consider the ‘HIV Counseling and Testing’ indicators (Table A.1 on page 57), where, across all

subpopulations, three of the five comparisons failed to disagree. While two indicators were found to be

statistically different, their values are still reasonably close and clinically insignificant. For the five ‘HIV

Knowledge and Sexual Behavior’ indicators (Table A.3 on page 59), four failed to disagree for almost all

subpopulation comparisons. For the indicator reporting the percentage of individuals who have had sex-

ual intercourse with a non-marital or noncohabiting sexual partner, the LQAS estimates were higher for all

subpopulations. However, three of the four differences were clinically insignificant. In this example, the

statistical difference masks the similarity of the prevalence estimates when considered from the point of view

of the health system manager.
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For the ‘Prevention of Mother-to-Child Transmission’ (PMTCT) indicator (Table A.2 on page 58), there

was a significant difference. We believe this is attributable to the differing construction of the two indicators;

the DHS asks several questions of respondents about receiving specific information related to PMTCT, while

the LQAS survey asks a general question about whether the mother has received information about PMTCT.

Next, consider the indicator ‘% of mothers of children 0-11 months who received two of more doses of

SP/Fansidar during their last pregnancy’ (Table A.4 on page 60). From the way the corresponding DHS

women’s questionnaire item is structured (Item #425), respondents are asked to volunteer the name of their

antimalarial; if the respondent does not know the name of the antimalarial, they are shown the packages of

medications to support their response. In the LQAS survey interview, respondents are also asked to volunteer

the name of their antimalarial, but the packets of medications are not shown.

Another discrepancy is ‘% of households using iodized salt’ (Table A.7 on page 62), where the DHS esti-

mate is higher than the LQAS estimate in two circumstances. This difference could reasonably be attributed

to the methods used by the interviewer to determine the presence of iodized salt. During the DHS inter-

view, the interviewer asks the respondent for a teaspoonful of cooking salt and performs a chemical test for

presence of iodine (Household Questionnaire Item #140). During the LQAS survey interview (Mothers of

children 12-23 months Questionnaire Item #514), the interviewer requests the household’s salt packet and

checks the packaging for indication of iodization. In short, there is no chemical testing and the package

may underreport the presence of iodine. We must also take into account that the DHS uses a representative

sample of all households whereas the LQAS uses a representative sample of households with mothers of

children 12-23 months of age. The former comprises a population with more variation and could include

a confounder associated with purchasing of iodized salt. Nevertheless, the populations are not equivalent.

When we extract the households with children 12-23 months from the DHS for comparison with the LQAS,

the results are closer (95.9% vs. 92.2%) but we compare an LQAS sample of n = 1371 with a DHS cluster

sample of n = 171. The power in the LQAS sample to detect small differences may be the reason for this

statistically significant but clinically insignificant result.

An additional discrepancy is ‘% of households with safe water supply’ (Table A.8 on page 63, but an

explanation for the difference is not as readily available as for the previous three examples. In comparing

the available option responses in the two surveys for ‘source of drinking water’, we see that they are largely

the same with two exceptions: ‘public tap/standpipe’ and ‘protected spring’. Both of these safe water sources
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that are included as DHS response items but are not LQAS response items. Exclusion of these response items

from the numerator of the DHS indicator only further exacerbates the difference between the two prevalence

measures.

One discrepancy worth mentioning concerns an indicator we omit from the final analysis due to lack of

definition compatibility, namely ‘% of mothers of children aged 0-11 months who took iron supplementary

tablets for at least 90 days during last pregnancy’. The estimate from DHS data yielded 0.044 [95% CI

(0.007, 0.082) with n = 205] while the LQAS data yielded 0.776 [95% CI (0.754, 0.797) with n = 1446].

We believe this discrepancy is caused by the way the questions are asked of the respondents. Within the DHS

Women’s Questionnaire, respondents are asked ‘How many days did you take iron tablets during your last

pregnancy?’ and provide an integer. Within the LQAS Mothers of children aged 0-11 months questionnaire,

respondents are asked ‘Did you take iron tablets for at least 90 days during your last pregnancy?’ and provide

a yes or no. The estimation goals of the two questions are different; the DHS wanted to report an average

number of days, and the LQAS wanted a binary classification.

Differences between prevalence estimates, such as those discussed above, do not mean that one estimate

is correct and the other is not. Rather, these differences expose differences in questionnaire items and in-

terviewer protocols that can lead to the improvement of both surveys. Prevalence estimates that are similar

lend support to the other, leading us to believe that the calculated estimate may be close to reality.

1.4.2 Comparison of costs

It is interesting but difficult to compare the costs of LQAS with those of DHS as the purpose for their

respective uses is different. One clear difference in this Ugandan case is that the DHS is designed to measure

indicators at a regional level while the LQAS survey utilizes the measures at the district level. Hence, many

more district-level samples are collected with the LQAS survey. The only financial data in the literature

concerning DHS costs come from the 1991, 1994, 1996, and 1999 Tanzania surveys [55]. That study took

all expected recurrent and non-capital costs, divided by the number of participating households times the

national estimate of average household size for 2000-01. Oddly, as this results in a lower cost estimate, all

members of the household were considered as participants, rather than just those interviewed. The cost was

$19.57 per participant (or $25.25 in 2013 dollars). Using this information to estimate the cost per interview

in the 2011 UDHS, which includes a household and a women’s survey in the same household, and men in
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every third sampled house, the cost per interview was $57.94 (or $130.37 per household in 2013 dollars).

The cost data for LQAS come from a detailed cost study in Costa Rica [74] and a comparative assessment

from 2002 of three USAID projects in Nepal, Nicaragua and Armenia [30]. LQAS promotes the engagement

of District Health Managers as a cost-saving mechanism as their costs are already paid by the Ministry of

Health. These in-kind costs are included in this analysis as an LQAS cost. Taking into account that LQAS

uses parallel sampling of interviewees (all in different households), the cost per interview is $11.17, using

the first index household as the reference (or $29.28 per household in 2013 dollars). In these examples,

LQAS was at least 4.5 times less expensive than DHS for each household participating in the survey and

5.2 times less expensive for each interview. We note though the UDHS used a questionnaire more extensive

than that of the LQAS survey, and included height and weight measurement, blood specimen collection for

on-site anaemia and laboratory vitamin A testing. An extensive questionnaire and biological measurement

does increase the costs of a DHS.

1.4.3 Surveys are complementary, not redundant

From the prevalence comparisons, we see that as a secondary by-product the LQAS survey provides very

similar information to that of the DHS. Twenty-one of 37 comparisons for the 25 selected indicators failed

tests of statistical difference, including important measures of HIV knowledge and sexual behavior, malar-

ial prophylaxis, child vaccination and nutrition. Seven statistical differences were clinically insignificant

resulting in a failure to find meaningful difference in 75.7% of the comparisons. Many of the prevalence es-

timates that did not agree across the two surveys have reasonable explanations. Other comparisons of LQAS

with demographic surveillance systems have proved to have an excellent agreement of results, but in those

occasions the indicators were identical [13]. Similarly, reliability studies of LQAS have recently compared

data collected by managers who use LQAS results to improve their own programs with data collected by

disinterested data collectors; the concordance of the two data sets was very high [8].

In fact, the information provided by the LQAS survey is a superset of the information provided by the

DHS; it provides similar information to that of the DHS, and more. In general, for a fixed sample size, a

stratified sampling strategy produces more precise estimates than a cluster sampling strategy. In the case

of this particular regional study, where the LQAS survey sample was stratified and the DHS used a cluster

sample, for all indicators the LQAS sample size was larger than that of the DHS. This suggests that the LQAS
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measures are more precise but we do again note that the surveys were designed and conducted for different

purposes, so a comparison of sample size is not so straightforward. The large sample sizes also may have led

to the statistical differences between the surveys that are not important from a health system management

perspective.

It is indeed true that the purposes and intended use of data generated by the two surveys are different. For

example, the DHS is designed to collect information on the population of living mothers with children under

five years of age, so there is five years of history in every resulting measure. The LQAS survey is designed

to collect information on the population of mothers with younger children such as under one year of age, or

12 to 23 months of age so this survey gives information on health system performance from the recent past.

This short time frame lends flexibility to the survey, so questionnaire items can be modified and updated

based on the most effective direction of healthcare delivery.

However, the stratification of the LQAS sample allows us to investigate the geographic variability of the

regional point estimate, exemplified in Figures 1.3 and 1.4. Use of such information, in conjunction with

demographic information like the population distribution of Figure 1.1, provides the structure needed for the

evidence-based allocation of resources. The LQAS results provide a further and more granular depiction of

variability when considering the classification of subdistrict-level supervision areas according to a coverage

target. The subdistrict areas (counties, subcounties and parishes in the case of Uganda) are not presented in

Figures 1.3 and 1.4, but are the main reason for using LQAS, to empower subdistrict managers to manage

by quickly available classification results reflecting the current condition of the area for which they are

responsible. This is in contrast to DHS data, which are able to give a single estimate for the region that

cannot be disaggregated [13]. Although an analyst could consider, alternatively to LQAS, a design akin to

a stratified DHS, the analyst would lose many of the advantages particular to LQAS, including the ease of

data collection, the timeliness of results, and relatively low financial and human cost.

To our knowledge, this formal comparison of indicators as calculated using LQAS data and DHS data col-

lected within similar time periods is the first of its kind. However, a comparison on the basis of an emulation

was reported in [12]. Our findings are quite similar to other comparisons to the LQAS sampling procedure

seen in the M&E literature. For example, Singh et al. [63] report consonance of immunization coverage

estimates in a region of India as calculated from data using the LQAS sampling method and from data using

the 30-cluster survey method of the World Health Organization’s Expanded Program on immunization [33].
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Bhuiya et al. [11] also report agreement of estimates from LQAS data and ‘health and demographic system’

data collected in Matlab, Bangladesh.

Several individuals involved in global health policy have commented on the need of data at different levels

for policy-making and management [16]. As evidenced by our study and similar studies discussed above,

the LQAS methodology provides these multilevel data, whereas the DHS, by nature of its design, cannot.

The DHS has built a reputation of providing high-quality data for international comparisons; we have shown

that LQAS gives the same accuracy, but is programmatically more relevant [13, 48]. Further, LQAS builds

local capacity, because regular data collection will lead to its institutionalization. Chan et al. [16] describe

this institutionalization as ‘essential’, because it strengthens a country’s ability to collect, process, analyze

and use health data. Also, by virtue of using local health workers to collect LQAS data, it is cheaper than

the DHS.

1.5 Conclusion

The LQAS sampling method is a viable, timely, and informative complement to the DHS that can be used

in interstitial years. It is more-management oriented because of the quick turnaround of data collection and

analysis, allowing for targeted, data-driven decisions to be made quickly. This results in timely and local

evidence of the value of the data collected and it might also convince local data gatherers of the value of the

data gathering effort and result in higher quality data.
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Abstract

The literature on causal effect estimation tends to focus on the population mean estimand, which is less

informative as medical treatments are becoming more personalized and there is increasing awareness that

subpopulations of individuals may experience a group-specific effect that differs from the population aver-

age. In fact, it is possible that there is underlying systematic effect heterogeneity that is obscured by focus

on the population mean estimand. In this context, understanding which covariates contribute to this treat-

ment effect heterogeneity (TEH) and how these covariates determine the differential treatment effect is an

important consideration. Towards such an understanding, this chapter briefly reviews three approaches used

in making causal inferences and conducts a simulation study to compare these approaches according to their

performance in an exploratory evaluation of TEH when the heterogeneous subgroups are not known a priori.

Performance metrics include the detection of any heterogeneity, the identification and characterization of het-

erogenerous subgroups, and unconfounded estimation of the treatment effect within subgroups. The methods

are then deployed in a comparative effectiveness evaluation of drug-eluting versus bare-metal stents among

54,099 Medicare beneficiaries in the continental United States admitted to a hospital with acute myocardial

infarction in 2008.

This work was supported by grants NIH 5T32AI007358-27, NIH NCI P01-CA134294, and NIH NGIMS

R01-GM111339.
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2.1 Introduction

Literature on estimation of the causal effect of a treatment on an outcome tends to focus on the population

mean estimand, which is appropriate for many research questions. However, technological advances and

subsequent increases in the quantity and quality of biomedical data has led to an interest in personalized

medicine, the mining of large observational data sources to construct treatments tailored to the covariate dis-

tribution of a population [38]. The resulting research question then involves determination of treatment effect

heterogeneity (TEH), the existence of an underlying partition of the population into subgroups across which

the treatment effect varies systematically. Although the causal effect research question has evolved from

one of a population-level average effect to one of subgroup-specific effects, methods for population-level

average effect estimates still dominate the literature on causal effect estimation. The goal of this discussion

is to evaluate the extent to which several common methods for causal effect estimation simultaneously ad-

just for confounding and allow for an exploratory investigation of subgroup-specific treatment effects, in

potentially high-dimensional settings without any prior knowledge of the number or specific characteristics

of these subgroups.

Subgroup analysis methods originated in the clinical trial setting [5, 52], and have been generalized for

use in observational studies [51] with limitations [1, 5, 42, 52, 58]. Many methods for subgroup detection

in observational studies have grown out of the genetics and bioinformatics literature, but are not designed

for comparative evaluation or causal inference [21, 24, 39, 54, 62, 79, 82, 83]. In light of these issues there

have been a number of proposed applications of modern machine-learning methods such as regression trees

[15, 32] to TEH, including the development of non-parametric causal forests comprised of “honest” trees

[6, 77], the use of trees to identify members of a subgroup with an “enhanced” treatment effect [26], and a

weighted ensemble of estimators [28].

This paper contributes the ongoing discussion by considering exploratory subgroup detection and TEH

estimation in high-dimensional settings when manual evaluation of effect modifiers is not feasible, accom-

plished in conjunction with confounding adjustment. Achievement of these goals is defined as correct esti-

mation of the number of underlying subgroups, interpretable characterization of the subgroups by observed

covariates, and unconfounded estimation of the treatment effect within each subgroup. The discussion con-

tinues in §2.1.1 with a brief overview of causal inference and treatment effect estimation. In §2.1.2 we more

19



formally define TEH and distinguish it from other but related causal concepts, and in §2.2 we introduce re-

gression trees as a modeling procedure well-suited for our treatment of TEH identification as a classification

problem.

We then discuss three general classes of modeling approach that have been used for causal effect estima-

tion: 1) modeling the outcome conditional on covariates and treatment (e.g., linear regression), 2) modeling

the treatment conditional on covariates (e.g., propensity score estimation), and 3) modeling the outcome and

treatment jointly conditional on covariates. Evaluation of the ability of each approach to identify TEH is

done by describing, implementing, and comparing representative modern methods from each model class:

Bayesian Additive Regression Trees (BART) [35], propensity scores estimated with Generalized Boosted

Models (GBM) [45], and the Facilitating Score (FS) [66], respectively. Note that these specific methods are

not investigated based on any judgment of optimality or superiority over other methods, and such judgment

is not the focus of this paper. Rather, evaluation of each of these representative methods is meant to assess

the relative strengths and weaknesses of its respective class of modeling approach for the purposes of iden-

tifying and estimating TEH. BART and propensity scores with GBM were chosen as modern methods that

have recently emerged as popular approaches to overall causal effect estimation. FS is a recently-proposed

approach from the machine learning literature that is similarly rooted in tree-based approaches, designed

specifically for the purposes of estimating TEH. In §2.3 each method is compared qualitatively, in §2.4 via

simulation study, and in §2.5 in the context of an actual CER investigation. The discussion is concluded in

§2.6.

2.1.1 Notation and Estimation of the Overall Average Treatment Effect

Let i index individuals within a sample of size n, randomly sampled from a much larger population of

interest. Ti is a binary indicator of an individual’s point exposure status and Xi a p-dimensional vector of

measured pre-treatment covariates. Lowercase ti, xi are realizations of their uppercase counterparts. Y1i

and Y0i represent the potential outcomes that would have been observed had individual i been assigned to

treatment or control, respectively. On the difference scale, the causal effect of treatment on individual i is

Y1i−Y0i. The Fundamental Problem [37] precludes observation of this individual treatment effect (ITE), so
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we instead consider the average treatment effect (ATE) as our estimand, defined in (2.1).

E[Y1 − Y0] = E[Y1]− E[Y0] (2.1)

= E[Y |T = 1,X]− E[Y |T = 0,X]. (2.2)

There are variables associated with both T and Y such that the quantity measured in (2.2) is not a treatment

effect, but a spurious measure of association that is in part due to dissimilarities in their distribution across

treatment arms. These problematic covariates are referred to as confounders, defined here as the subset of

X required for strong ignorability [59] to hold. For the purposes of this discussion, we assume that the

available covariates measured in X contain (at least) all confounders required to satisfy the assumption of

strong ignorability and estimate causal treatment effects. The notation above also implies the Stable Unit

Treatment Value Assumption [60].

2.1.2 Treatment Effect Heterogeneity

Variables E = {E1, E2, . . .} ⊆ X that define subpopulations across which the treatment effect differs are

called effect modifiers [34, p. 42], with effect modification being synonymous with TEH. As noted by [34, p.

42] and [57, p. 199-201], whether a variable is an effect modifier depends on the scale on which the effect

is being measured, be it additive as used here, multiplicative, or the odds ratio. To reflect this dependence,

some authors use the terminology effect-measure modification. It is possible for a variable to be both an effect

modifier and a confounder, which further emphasizes the importance of simultaneous confounder adjustment

and TEH identification.

Mapping these statements back to our notation, effect modifiers E comprise a subset of X , a collection

of variables which deserve some clarification. First note that identifying TEH requires that causal effect

identifiability assumptions (e.g., strong ignorability in §2.1.1) defined at the population level must hold

within each subgroup. An implication is that achievement of ignorability is particular to a subpopulation,

meaning that each subpopulation has its own set of confounders, and its own set of relationships among the

confounders, treatment, and outcome. For example, a particular variable can be a confounder in more than

one subpopulation but have different relationships with the outcome in each. Thus let variables X be the

union of effect modifiers E and confounder sets from each subpopulation.
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Our conceptualization of effect modification is different from that of causal [76, p. 268] or biologic [57, p.

202] interaction, the combined effect of treatment T and a second exposure on the outcome Y . In this context,

it is of interest whether the effect of T depends on the value of this second treatment (or vice versa in the

symmetric argument) [75, Definition 2]. Contrastingly, effect modifiers are characteristics of observational

units used to define subpopulations [75, Definition 1]. Our conceptualization of effect modification is also

different from that of mediation, a causal concept that aims to understand “how an effect occurs” [76] by

considering the pathways between T and Y and variables on those pathways, termed mediators. Effect

modification is a causal concept that aims to understand “for whom an effect occurs” [76].

2.2 Regression Trees for Characterizing TEH

Assuming that strong ignorability is satisfied by measured covariatesX and a modeling approach has been

selected (as will be discussed in §2.3), there are different estimation procedures that an analyst could con-

sider in fitting a model to data. One such procedure is the fitting of a step function with a classification

or regression tree (CART). CART does not require the prespecification of any relationships between Y , T ,

and/or X , and the relationships that it does estimate are quite flexible. Further, CART is potentially non-

parametric and is able to yield valid estimates when data are missing at random. CART has relevance to the

goal of identifying TEH because the classifications can be thought of as the detection and characterization

of subgroups by effect modifiers. As discussed in the previous section, each subgroup has its own set of

confounders, and its own set of relationships among Y , T , and X . These subgroup-specific relationships

can be thought of as (statistical) interactions between treatment, confounders, and effect modifiers. Achieve-

ment of subgroup-specific ignorability can be thought of as the detection of many (potentially) high-order

interactions, making CART a natural choice for TEH estimation. The Supplementary Material outlines some

terminology used in the regression tree literature.

2.3 Treatment Effect Modeling Approaches

There are several approaches an analyst could pursue in modeling the treatment effect, and within each ap-

proach, several methods to choose from. In this section we describe three classes of approach and from each,
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a representative method that has been previously used for the explicit purpose of causal effect estimation. For

each representative method, we outline its statistical framework and discuss how it may be used to identify

subgroups.

The tree-based methods highlighted here average across many simple or unstable models, improving

variance but losing direct interpretability of the estimated subgroups. Further, the analyst must a priori

specify a maximum number of possible subgroups to investigate, relying on the ability to collapse across

subgroups if the data indicate fewer. After deciding on a method and how to use that method to assign group

membership, interpretation of which characteristics define each subgroup relies on the analyst’s ability to

inspect covariates distributions within each group to infer what characterizes them. Assuming ignorability

is satisfied by some subgroup-specific confounder covariate setXsubgroup, unconfounded subgroup-specific

treatment effect estimation is possible. TEH is present if the estimated treatment effects vary across the

subgroups.

A necessary condition for such estimation is that the analyst can extrapolate the relationships estimated

from the treatment arm to the control arm, and vice versa. This extrapolation relies on positivity, the assump-

tion that within every level of Xsubgroup, the probability of treatment is bounded away from 0 and 1. This

is an assumption that our causal interpretations rely on, and should be empirically justified. Our ability to

provide such justification depends on the estimation method, so the discussion of each estimation method

includes an examination of positivity.

2.3.1 Modeling Class 1: Outcome conditional on covariates and treatment

By far the most common modeling approach is to model the conditional mean of Y |X, T . The overwhelm-

ingly most popular class of models within this approach is parametric linear regression, which models the

conditional mean as a linear combination of covariates. To see how this modeling approach allows for causal

inference, consider the linear regression model

E[Y |X, T ] = β0 + β1X1 + . . .+ βpXp + γ0T + γ1TX1. (2.3)
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SUTVA and ignorability allow the difference in conditional means to represent the conditional average treat-

ment effect (ATE):

γ0 + γ1X1 = E[Y |X, T = 1]− E[Y |X, T = 0]︸ ︷︷ ︸
difference in conditional means

= E[Y1 |X]− E[Y0 |X] = E[Y1 − Y0 |X]︸ ︷︷ ︸
conditional ATE

. (2.4)

First considering the case where γ1 ≡ 0, we see that the conditional ATE is γ0, constant for all values of

X . Because of the collapsibility of the mean, γ0 is also the marginal average treatment effect. If γ1 ̸= 0,

then the linear predictor contains a (statistical) interaction term, which embeds the a priori belief that the

average treatment effect is not additive and its magnitude depends on the value of X1. Use of (statistical)

interaction terms is one way of specifying possible TEH, but requires knowledge of the covariates that define

the underlying subgroups, infeasible when considering a large number of covariates.

Another set of methodologies within this modeling class estimate the disease risk score [2, 3], a special

case of Mietennen’s confounder score [47] and used when the outcome is binary. A disease risk score is the

conditional probability of experiencing the outcome while unexposed to treatment Pr(Y = 1 |X, T = 0)

and is a tool for ranking subjects on how “case-like” they are [47, p. 611]. Related to the disease risk score

is the prognostic score, a recasting of the disease risk score in the language of potential outcomes [31]. In

both cases, observations are stratified by score and the treatment effect estimated within each stratum.

Representative Method: Bayesian Additive Regression Trees (BART) A popular alternative to para-

metric regression for estimating (2.3) is Bayesian Additive Regression Trees (BART) [18, 19], which we

will explore in some detail for its potential to provide exploratory analysis of TEH. Following the notation

of Chipman et al. [18], let Tj , j = 1, . . . ,m represent a tree with Bj terminal nodes; that is, a partition of

the population into Bj subgroups. Let Mj = {µbj | bj = 1, . . . , Bj} be the set of mean outcomes across

the subpopulations defined the terminal nodes of tree Tj . Also let g(xi, ti | Tj ,Mj) represent the mapping

of observed covariate and treatment pair (xi, ti) to a terminal node within tree Tj with mean µbj ∈ Mj . An

individual’s outcome is then modeled as the sum ofm trees

Yi = εi +
m∑
j=1

g(xi, ti | Tj ,Mj), εi ∼ N(0, σ2) (2.5)
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wherem is fixed. This is an example of boosting, the construction of a large tree by summing together simple

trees. In the Bayesian model, the m simple trees and outcome variance σ2 are the unknown parameters;

the data are y the vector of observed outcomes, and X the matrix of observed covariate data. A Gibbs

sampler is used to sample from the posterior distribution of the boosted tree. Each posterior draw is used to

generate a predicted outcome Ŷi for all observations i. Notationally, let the kth posterior draw be denoted

as T̂ (k) =
(
(T̂ (k)

1 , M̂
(k)
1 ), . . . , (T̂ (k)

m , M̂
(k)
m ), σ̂(k)

)
, and the vector of n predicted outcomes generated from

this tree denoted as Ŷ (k). The set T̂ =
{
T̂ (1), T̂ (2), . . . , T̂ (K)

}
denotes theK posterior draws.

As Hill [35] contributes in her reframing of BART from a predictive methodology into a methodology for

causal effect estimation, Ŷ (k) is the vector of predicted potential outcomes, corresponding to the treatment

actually received. Ŷ (k)
counterfactual is another vector of predicted potential outcomes, but corresponding to the

treatment not received. The ITE predicted from T̂ (k) is then the appropriate difference in the predicted

potential outcomes. This prediction of ITEs is repeated ∀ T̂ (k) ∈ T̂ (envision a K × n matrix, with the ith

column representingK samples from the posterior distribution of the ITE for the ith observation). Estimates

of the ITE for each individual (as well as σ2) are then obtained by summarizing across theK posterior draws,

for example, by averaging to take the posterior mean estimate. It is this averaging across K boosted trees

(rather than inference based on one boosted tree) that differentiates BART from traditional boosted methods.

Although subgroup estimation is not explicitly part of the model specification or estimation output, the

analyst is still able to investigate the empirical distribution of ITEs for clues. For example Foster et al. [26]

refer to Ŷ (k)
counterfactual as the “virtual twin” of Ŷ

(k), and suggest regressing the predicted ITEs onX , towards

finding a single subgroup with a treatment effect that is “enhanced“ relative to the ATE. Hill [35] proffers

visualization of the modes of the predicted ITEs (by histogram for example) for hints about the underlying

number of subgroups. Alternatively, the analyst can a priori set the number of subgroups to ten (say), and

group observations based on deciles of the empirical distribution and estimate a TE within each subgroup.

When using BART or other outcome regression models, valid causal inference relies on positivity, but

empirical positivity violations (e.g., a level of Xsubgroup with only treated observations) will not be auto-

matically evident. In fact, outcome regression will yield causal effect estimates whether or not positivity is

violated. This issue can be partially overcome by assuming any empirical violations are random rather than

deterministic [80], and checking that the unconditional probability of treatment within the finite subgroup

sample is bounded away from 0 and 1.
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2.3.2 Modeling Class 2: Treatment conditional on covariates

ModelingT |X is referred to as propensity score estimation, where the propensity score e(X) = Pr(T = 1 |X)

is the conditional probability of treatment [56]. This modeling approach is typically employed as part of a

covariate dimension reduction strategy, where the analyst attempts to satisfy ignorability by conditioning

on e(X) rather than the covariates individually [56, Theorem 3]. The use of e(X) allows us to adjust for

confounding while averting the need to model how each covariate relates to the outcome of interest or at

least alleviating the consequences of misspecifying such a model [36].

Propensity score methods are used in designing observational comparative studies, that is, the structuring

“to obtain, as closely as possible, the same answer that would have been obtained in a randomized experiment

comparing the same analogous treatment and control conditions in the same population” [61]. This can be

accomplished, for example, by matching or subclassifying treated and untreated observations with similar

values of the propensity score. A key benefit of this approach is that it permits the analyst to empirically judge

the plausibility of the hypothetical study design before analysis of any outcome. After grouping observations

on the propensity score, the analyst can empirically assess covariate balance, the similarity of covariate

distributions among treated and control units with similar values of the propensity score.

In addition to empirical verification of the hypothetical study design and covariate balance, use of propen-

sity scores to adjust for confounding empirically alerts the analyst to violations of the positivity assumption:

when the propensity score model discriminates treatment groups too well, it yields subgroups that are homo-

geneous with respect to treatment, thus empirical justification of causal interpretation is absent, the treatment

effect is undefined, and overall inference must be restricted to observations with defined treatment effect es-

timates.

Estimation of the propensity score itself has traditionally been done via logistic regression, but the liter-

ature shows movement towards more flexible alternatives. For example, Woo et al. [81] evaluate the use

of generalized additive models in propensity score estimation, where the linear predictor is replaced with a

flexible additive function. Ghosh [27] generalize propensity score estimation as an example of confounder

dimension reduction and discuss the theoretical validity of “covariate sufficiency” in causal inference.

Representative Method: Generalized Boosted Models (GBM) One of the most popular flexible alter-

natives to traditional logistic regression is the use of generalized boosted models (GBM) [45]. We use this
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method to estimate the conditional log odds of treatment logit[Pr(Ti = 1 |Xi)], by summing together many

low-depth regression trees. Again following the notation of Chipman et al. [18], let g(xi | Tj ,Mj) represent a

mapping of an observed covariate value to a terminal node within tree Tj with mean µbj ∈ Mj = {µbj | bj =

1, . . . , Bj}. In this model, µbj is the mean log odds of treatment for observations in terminal node bj .

The estimation algorithm is initialized at tree T0 with B0 = 1 node and M0 = {logit(t)} where t is the

unconditional proportion of treated individuals in the sample. During the jth of m iterations, a low-depth

tree fit to residuals [ri = ti − expit [g(xi | Tj−1,Mj−1)]], where expit [g(xi | Tj−1,Mj−1)] is the predicted

probability of treatment based on the tree from the previous iteration. Let the number of nodes on this residual

tree be denoted by B∗
j and b∗jℓ represent the set of observations in terminal node ℓ ∈ {1, . . . , B∗

j }. For each

terminal node b∗jℓ an update is calculated and added to Tj−1 to generate Tj . The end result of this algorithm

is a sequence of trees with increasingly better fit to the data. To prevent overfitting, the algorithm is stopped

at the iteration that minimizes some average measure of covariate imbalance across the two treatment arms

(e.g., the average standardized absolute mean difference, or the Kolmogorov-Smirnov statistic).

The resulting estimated propensity score can be used to group individuals, but such grouping requires an

a priori specification of the number of subgroups. The analyst could set the number of subgroups to ten (say)

and group observations based on deciles of the empirical propensity score distribution, then estimate a TE

within each subgroup.

Recall, however, that our goal is to group observations that are similar, where the desired similarity is

in the ITE. While estimating differential effects across groups defined by the estimated propensity score

is commonplace, note that these groups are not defined based on observations’ ITE. Rather, observations

are grouped based on the likelihood of receiving treatment, so assessment of TEH is typically restricted

to whether the treatment effect varies with values of the estimated propensity score. This can provide an

overall assessment of the presence of TEH, but as the propensity score is a scalar summary of a multivariate

covariate vector, deriving clinical or scientific interpretability from knowing that the treatment effect varies

with the propensity score is challenging. Thus TEH across values of the propensity score does not provide

the specificity of heterogeneity we are interested in. If an effect modifier is associated with Y and not T –

in other words, if an effect modifier is not also a confounder – then propensity score methods will not be

able to detect it. By ignoring outcome data and focusing solely on the relationship between T and X , the

propensity score model has difficulty learning about who experiences the treatment effect differently.
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2.3.3 Modeling Class 3: Outcome and treatment jointly, conditional on covariates

A relatively recent approach is considering the conditional joint distribution of the outcome and treatment by

modeling (Y, T ) |X . Nelson and Noorbaloochi [49] define a multidimensional sufficient summary S(X), a

balancing score such that (Y, T ) ⊥⊥ X |S(X). Wang et al. [78] take a Bayesian variable selection perspec-

tive, defining a Bayesian adjustment for confounding (BAC) methodology for estimating average treatment

effects with linear regression models by averaging over the posterior probability of covariate inclusion in a

joint model for (Y, T ).

RepresentativeMethod: Facilitating Score (FS) The representative approach from this model class that

we investigate in detail is that of Su et al. [66], who define the multidimensional facilitating score a0(X) as

a statistic that satisfies the following conditional independence:

X ⊥⊥ (Y0, Y1, T ) |a0(X)
relaxation
=⇒ X ⊥⊥ T |a0(X)︸ ︷︷ ︸

addresses confounding

and X ⊥⊥ (Y0, Y1) |a0(X)︸ ︷︷ ︸
addresses effect modification

. (2.6)

Estimation of a0(X) involves joint modeling of (Y0, Y1, T ), precluded by the Fundamental Problem [37].

Thus Su et al. [66] instead propose a multidimensional weak facilitating score a(X), that satisfies the fol-

lowing as derived from the above relaxation:

X ⊥⊥ T |a(X)︸ ︷︷ ︸
addresses confounding

and E[Y1 − Y0 |X] = E[Y1 − Y0 |a(X)]︸ ︷︷ ︸
addresses effect modification

. (2.7)

The weak FS a(X) is therefore a balancing score, and conditioning on a(X) defines a subpopulation within

which the average treatment effect is constant. This is the first method discussed thus far that has explicitly

addressed the issue of TEH.

To estimate the weak FS, Su et al. [66] use the conditional independence

(Y, T ) ⊥⊥ X |h(X) (2.8)

for a statistic h(X). The validity of this independence is a consequence of a factorization theorem applied to

the joint distribution of observed data fY,T |X(y, t |x) [66, Theorem 7]. By this theorem, the statistic h(X)
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that fulfills the preceding conditional independence also fulfills definition (2.7) of a weak facilitating score

[66, Theorem 3]. This then allows for indirect estimation of the weak FS by jointly modeling (Y, T ). Regres-

sion trees [15] are used for this modeling, where the fact that the joint conditional density fY,T |X(y, t |x)

is constant within a terminal node implies (Y, T ) ⊥⊥ X within that node. This within-node independence

implies (2.8); that is, that the facilitating score is constant within a given node. Because a single tree model

is known to be unstable (i.e., a small change in the data can result in a large change in the final tree structure)

[32, p. 312], Su et al. [66] propose an aggregated grouping strategy (similar to bagging) to average across

K possible tree structures. Again adopting the notation of Chipman et al. [18], to generate one possible

tree structure, a bootstrap sample is generated to grow and prune tree Tk to Bk terminal nodes. This tree is

then applied to the original data. An n× n pairwise distance matrixDk is generated from the resulting tree

classifications, where matrix element

d
(k)
ii′ =


1 if observations {i, i′} fall into the same terminal node of Tk

0 otherwise
(2.9)

The distance matrices are then averaged to obtainD = 1
K

∑K
k=1Dk, and a clustering algorithm (e.g., mul-

tidimensional scaling, partitioning around mediods) applied toD to obtain the final data stratification. The

end product is the assignment of each observation to a subgroup, and a TE can be estimated within each.

Similar to BART, issues of sparsity may preclude empirical justification of positivity, but this can be

partially overcome through assumptions made of the larger subpopulation that the sample represents and

checking that the unconditional probability of treatment within each subgroup is bounded away from 0 and

1. We note that although the estimation algorithm of Su et al. [66] ensures empirical subgroup positivity

through particular stopping rules within the node-splitting procedure, these rules also increase the potential

to conceal true subgroups. For example, if there is a tree node that contains observations from two subgroups

but there are too few treatment observations, the procedure will not split that node and inference will be made

on the whole node.

29



Approach Representative Method Summary + Assumption

Y |X, T Bayesian Additive Regression Trees
(BART) [18, 19] and application to causal
effect estimation [35]

Tree-based modeling of individual poten-
tial outcomes.

T |X Propensity score estimation with General-
ized Boosted Regression (GBM) [45]

Tree-based modeling of logit[e(x)].

Y, T |X Tree-based Facilitating Score (FS) estima-
tion [66]

Tree-based modeling of fY,T |X(Y, T |X).
X ⊥⊥ T |h(X) and
E[Y1 − Y0 |X] = E[Y1 − Y0 |h(X)]

Table 2.1 Summary of statistical methods being compared.

2.4 Comparison of Methodologies: Simulation Studies

We evaluate the ability of the three approaches discussed in §2.3 to identify TEH by considering the repre-

sentative method from each approach; these methods are summarized in Table 2.1.

2.4.1 Simulated Data

Data Structure and Analysis Letting ℓ1 ∈ {A,B,C,D} denote a particular simulation scenario, Table 2.2

defines possible underlying correlation structures for {Y, T,X1, . . . , X6, E1, E2, E3}. Let Y ∼ N(µℓ1 , 1)

denote the continuous outcome, and T ∼ Bern(pℓ1) the binary treatment. There is one covariate associated

with the treatment only, X5 ∼ Bern(0.5). There is one covariate associated with the outcome only, X6 ∼

N(0, 1). There are four confounders of the effect of treatment on outcome, (X1, X2, X3, X4)
i.i.d.∼ N(0, 1).

In addition, there are three binary effect modifiers, (E1, E2, E3)
i.i.d.∼ Bern(0.5). These three variables define

eight subgroups (Group 1, …, Group 8), with six unique treatment effects among them. As determined by

µℓ1 and the eight unique values of (E1, E2, E3), the subgroup-specific ATEs are 1, 2, 5, 5, 6, 6, 9, and

10. Regardless of the underlying data generation mechanism, models are fit using all available covariates

(similar to what might be done in practice).

Within one of the 100 simulation iterations, a dataset of sizen = 1500 is generated according to §2.4.1 and

TEH evaluated using each of the methods described in §3. In the case of BART and GBM, such evaluation

is done by partitioning the estimated probability distribution (be it of the outcome or treatment) into deciles,

then estimating a TEwithin each subgroup defined by the deciles. In the case of the facilitating score (FS), the
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dissimilarity matrixD is partitioned into 10 subgroups using the partitioning around mediodsmethod and a

TE estimated within each. In practice the analyst will know neither the number nor relative sizes of the true

underlying subgroups; thus success of a method is judged in part by its ability to group similar observations

together. Typical measures of concordance are complicated by our estimation of more subgroups (ten) than

truly exist in the population (eight), as well as the unequal sizes of the true subgroups, leading to members

of true subgroups necessarily split across estimated subgroups. This process is explained in detail below, as

is our proposed measure of concordance.

ℓ1 Data Generation Scenario Definition

A confounding and no effect modification pℓ1 = expit( 0.1X1 − 0.1X2 + 1.1X3 − 1.1X4

+0.4X5)
µℓ1 = −3.85 + 5T + 0.5X1 − 2X2 − 0.5X3

+2X4 +X6

B effect modification and no confounding pℓ1 = expit( 0.4X5)
µℓ1 = −3.85 + 5T + X6 − E1 − 2E3 + TE1

+4TE2 − 4TE3

C effect modification and confounding pℓ1 = expit( 0.1X1 − 0.1X2 + 1.1X3 − 1.1X4

+0.4X5)
µℓ1 = −3.85 + 5T + 0.5X1 − 2X2 − 0.5X3

+2X4 +X6 − E1 − 2E3 + TE1

+4TE2 − 4TE3

D effect modification and confounding by
effect modifiers

pℓ1 = expit( 0.1X1 − 0.1X2 + 1.1X3 − 1.1X4

+0.4X5 − 0.1E1 + 1.1E2 − 4E3)
µℓ1 = −3.85 + 5T + 0.5X1 − 2X2 − 0.5X3

+2X4 +X6 − E1 − 2E3 + TE1

+4TE2 − 4TE3

Table 2.2 Summary of data generation scenarios for Simulation Study 2.4.1.

Results To summarize the results of a single simulation iteration, subgroups are numbered in ascending

order by the estimated treatment effect. If an individual is in a subgroup for which there is an undefined

treatment effect (e.g., its subgroup is entirely comprised of individuals on treatment), it is assigned to an

“undefined” subgroup. For example, if only seven of ten subgroups have a defined treatment effect, then the

8th, 9th, and 10th subgroups are empty and the individuals in the three subgroups are all reassigned to the

same “undefined” subgroup. In the ordering of subgroups, the “undefined” group is placed last.

The estimated partition is cross-tabulated with the eight true groupings, which are also ordered by the mag-

nitude of their average treatment effect (envision a 8×11 table where each row corresponds to true subgroup
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Figure 2.1Visualization of results from Simulation Study 2.4.1. Details regarding how the figure was constructed,
and how to interpret the figure, are given in §2.4.1.

membership and each column corresponds to estimated subgroup membership). Within this cross-tabulation

table, row percentages for each of the q = 1, 2, . . . , 8 rows are calculated representing the proportion of

units in true treatment group q that are assigned each of the estimated subgroups (columns). This table of

row percentages is constructed for each simulation iteration. The resulting collection of tables is averaged

over the 100 simulation iterations to yield a single table of cell-specific averages. A single average indicates

how often a method places an individual from true subgroup q in to each of the 11 estimated subgroups. Av-

erages for the different data generation scenarios and the different estimation methodologies are visualized

in Figure 2.1.

To ease explanation, consider the fourth block in the second row of Figure 2.1 – the table summarizing

data generated under Scenario D and using GBM to address TEH. The last row of this table summarizes

results for observations in Group 8, the true subgroup with the largest ATE (as indicated by the numbers in

the right-hand margin). The first number in this row is “1”, the average percentage of units in Group 8 that

were assigned to the estimated subgroup with the smallest treatment effect. This average is taken across the

simulations for which this estimated subgroup had membership. For this first cell, the average is taken across

all 100 simulation iterations, because by design, there is always membership in the smallest group. Consider,

however, the 10th cell in this row containing the value “18”. On average across the 8 simulations for which

there was membership in the 10th subgroup, 18% of units in Group 8 were assigned to the subgroup with the

tenth (i.e., largest) treatment effect. Of special note is the “36” in the 11th column of the first row; on average
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across the 92 simulation iterations for which there was at least one estimated subgroup with an undefined

treatment effect, 36% of observations in Group 1 were placed in an estimated subgroup having an undefined

treatment effect. Said simply, using GBM to estimate TEH, over one-third of observations in true Group 1

can be expected to have an undefined treatment effect. We note that GBMwas the only estimation procedure

that yielded subgroups with an undefined treatment effect; the cell-specific averages presented for BART and

FS were across all 100 simulation iterations. The denominators for the cell-specific averages presented for

GBM are not explicitly provided within the figure, but are contained in Table B.1 of the Appendix.

Measures of concordance between Figure 2.1 and what we expect to see are given in Table 2.3. Defining

“truth” as the color arrangement we expect to see for a particular estimation method and simulation scenario,

we calculate the Euclidean distance of each observed cell color (i.e., a block in Figure 2.1) from its expected

cell color, in red-green-blue (RGB) color space. We then average these cell-specific distances over the 80

cells to get a summary measure of how far our observed data are from what we expect. (Note that the

11th undefined column was omitted from these calculations, under the assumption that membership in this

column is reflected by absence in the remaining 10 columns included in the calculation.) Scaling these

distances by the maximum distance (the distance between random assignment of and perfect assignment),

we get a measure of distance from what we expect to see on the [0, 1] scale. Letting (Rc, Gc, Bc) represent

the expected color of cell c and (rc, gc, bc) the observed color, we define this distance in Equation (2.10)

below.
1

80 cells
∑

c∈{80 cells}

√
(Rc − rc)2 + (Bc − bc)2 + (Gc − gc)2 (2.10)

Subtracting this quantity from 1, we get ameasure of concordance that is similar to the traditional definition of

“sensitivity”, in that we are conditioning on the truth and measuring agreement with this truth. “Sensitivity“

for each estimation procedure and simulation scenario is presented in Table 2.3.

Figure 2.2 presents a second summary of the simulation results. The structure of this grid is pattered after

Figure 2.1, where each row is an estimation method, and each column is a data generation scenario. Letting

j = 1, . . . , 100 denote the simulation iteration, the ten treatment effect estimates generated during the jth

iteration are plotted, with the x-axis corresponding to magnitude; this is repeated for all 100 simulation itera-

tions. For each estimated treatment group (e.g., TE(1)), a boxplot is used to help visualize the distribution of

estimates in that group. Recall from §2.4.1, the estimated treatment groups are always sorted from smallest
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Scenario A Scenario B Scenario C Scenario D
confounding and effect effect effect

no effect modification and modification and modification and
modification no confounding confounding confounding by EMs

Bayesian Additive Re-
gression Trees (BART)
+ partitioning ÎTE distribu-
tion into deciles

94.5 97.9 97.6 98.4

Generalized Boosted
Models (GBM)
+ partitioning ê(X) distribu-
tion into deciles

98.5 1.0 0.7 10.9

Facilitating Score (FS)
+ partitioningD into 10 sub-
groups using PAM

96.4 42.1 30.1 23.5

Table 2.3 Summary of “sensitivity” calculations for Simulation Study 2.4, with quantities calculated according to
Equation (2.10) and given as percentages.

TE to largest; so TE(1) will always be the estimated subgroup with the smallest treatment effect. For clarity,

the x-axes of the forest plots have been omitted, but there are vertical dashed lines denoting the true average

treatment effects (1, 2, 5, 6, 9, 10).
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Scenario A Scenario B Scenario C Scenario D
confounding and effect modification effect modification effect modification

no effect modification and no confounding and confounding and confounding by EMs

B
A
RT

G
B
M

FS
-b
t

Figure 2.2 Box plots of point estimates of the ATE across 100 replicates of each simulation scenario, with layout analogous to that of Figure 2.1 in the main
text. For clarity, the x-axes of the plots have been omitted, but there are vertical dashed lines denoting the true average treatment effects (1, 2, 5, 6, 9, 10).
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Discussion Figure 2.1 is a qualitative metric that allows for broad comparisons of the “performance” of

each TEH identification strategy under several different data generation scenarios, where “performance”

refers to the ability of the method to group truly similar observations together. For BART and GBM, deciles

are used to define the estimated subgroups; for our sample size of 1500, each of the 10 estimated subgroups

is expected to contain 150 individuals. While there is no analogous sample size imposed on the subgroups

estimated by FS, the groups tend to contain between 110 and 180 individuals. If we consider that individuals

in true Group 1 have value (E1, E2, E3) = (0, 0, 1) and Pr{(E1, E2, E3) = (0, 0, 1)} = 1/23 = 0.125, then

we expect 0.125×1500 ≈ 188 individuals to be in Group 1. In a procedure that does a good job of grouping

truly similar observations together, we’d expect to see Group 1 concentrated within the first estimated decile

and the remaining 188− 150 = 38 observations in the contiguous decile.

Looking at the results from BART we see exactly what we expect given the particular data generation

scenario. Under ScenarioA, there is no effectmodification, and observations from each of the trueGroups are

evenly distributed across the estimated subgroups. Under Scenarios B, C, and D, where effect modification is

present, 150/188 = 80% of observations in true Group 1 are in the first estimated decile, and 38/188 = 20%

are in the contiguous decile. These percentages are reflected in the underlying cell color; the full range of

colors is given by the scale at the bottom of the figure. In true Group 2 there are 188 individuals, with

150 − 38 = 112 in the second decile and 188 − 112 = 76 in the third. Again, we see exactly what we

expect, with 112/188 = 60% of true Group 2 in the second decile and 76/188 = 40% in the third, and these

percentages reflected in the underlying cell color. As demonstrated by these percentages, because the true

subgroup sizes are not multiples of the estimated subgroup sizes, the estimated subgroups are heterogenous

with respect to the true subgroups.

This heterogeneity is also made obvious in Figure 2.2. We expect the first estimated subgroup to be

completely comprised of individuals from true Group 1 and the second estimated subgroup to have 38/150 =

25% from trueGroup 1 and 112/150 = 75% from trueGroup 2. Thuswewould expect the treatment effect of

the first estimated subgroup (i.e., TE(1)) to be 1, and the estimated treatment effect of the second estimated

subgroup to be 25% × 1 + 75% × 2 = 1.75, and this is exactly what we see under Scenarios B, C, and

D for BART. Of note is the boxplot associated with the third estimated subgroup, which we expect to be

comprised of 76/150 = 51% from true Group 2 and 74/150 = 49% from true Group 3, with an expected

treatment effect of 51% × 2 + 49% × 5 = 3.5. This particular boxplot echoes the feature of Figure 2.1
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where the estimated subgroups are heterogenous with respect to the true subgroups. This also emphasizes

the importance of estimating a large number of subgroups relative to the true number, because the analyst

will want the estimated subgroups to be homogeneous.

Returning to the BART results in Figure 2.1, not only is the distribution of true Groups 1 and 2 as expected,

the distribution of all eight true Groups is as we would expect. In short, BART does an excellent job of

grouping truly similar observations. This is demonstrated by the clustering of large percentages in a given

row, and the diagonal pattern of cell coloring. As explained in detail above, the spread over three versus two

columns is purely a function of the true group size; larger groups will spread over more columns. Table 2.3

quantifies this concordance, reporting a high “sensitivities” across all simulation scenarios.

Next considering the GBM analysis, the results confirm our earlier hypothesis, that an effect modifier

must be associated with treatment for the propensity score to have any chance of detecting the resulting

TEH. Under Scenario B where there is effect modification but the EMs are not associated with treatment

(i.e., the EMs are not confounders), GBM does no better than random assignment of observations. This

is demonstrated by the equal (≈ 10%) allocation of each true subgroup (rows) across the ten estimated

subgroups (columns), by the relatively uniform red coloring across the summary table, and by the relatively

small “sensitivity” reported in Table 2.3. However in Scenario D where all three EMs are associated with

treatment, GBM is able to detect some of the underlying data structure. Looking generally at the distribution

of cell percentages/coloring in this table, we see two blocks of orange & yellow coloring, in the upper left

and the lower right. What is being manifested in this separation is GBM’s detection of the one EM (E3)

that has a strong association with treatment relative to the other two EMs (logistic regression coefficients of

(E1, E2, E3) = (−0.1, 1.1,−4)) and the other covariates in the dataset (see Table 2.2). The four rows (the

first, second, third, and fifth) with more orange coloring on the left represent the four true subgroups with

E3 = 1 and the remaining four rows represent the subgroups with E3 = 0.

Perhaps the most interesting aspect of the results from GBM is the 11th “undefined” column, where the

method is alerting us to positivity violations. There are certain combinations of EMs that lead to extreme av-

erage propensity score values within that subgroup. For example, observations with (E1, E2, E3) = (0, 0, 1)

and (E1, E2, E3) = (1, 0, 1) have average propensity scores of 0.06 and 0.04, respectively. Such a low av-

erage propensity score means that in finite settings like this one, where GBM is able to (somewhat) correctly

group these observations together, often the estimated subgroups will not have any treated observations and
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the TE will be undefined. Figure 2.1 quantifies this, with brighter colors in the 11th column indicating more

extreme positivity issues.

Now looking towards the results generated by FS, under Scenario B where there is effect modification

and no confounding, the blocks of color suggest that the method is able to group observations by the mag-

nitude of their treatment effect, rather than their covariate values: true subgroups with ATEs of 1 and 2 are

grouped together (rows 1 and 2), as are true subgroups with ATEs of 5 and 6 (rows 3 through 6), and true

subgroups with ATEs 9 and 10 (rows 7 and 8). A preliminary investigation of PAM partitioning the data into

20 subsamples revealed four large groups, implying that specifying more subgroups would have detected

more structure, but that not all structure would have been detected due to the relatively weak association

between E1 and Y .

Comparing the FS results of Scenario C to Scenario B, we see the beginnings of a bifurcation of the

middle block of observations. Because we have now introduced covariates that have treatment and outcome

associations of similar strength toE2, the decision trees constructed by FS chooseE2 less often as a variable

that defines a decision rule, instead choosing the other covariates. Because E2 has become relatively less

important in defining subgroups, the movement of observations is towards the groups defined by strong EM

E3. Thus, the third and fifth rows, which have value E3 = 1, are moving towards the grouping of the first

and second rows which also have value E3 = 1; similarly for the fourth and sixth rows with value E3 = 0.

Our final comments on FS are about Scenario D, which demonstrates a potential pitfall of empirical

positivity enforcement through algorithmic stopping rules. As expected, FS is able to group observations by

strong EM E3. Different from Scenario C where E3 is not associated with treatment, here E3 has a strong

negative association with treatment. Thus observations with E3 = 1, those in rows 1, 2, 3, and 5, have very

low values of the propensity score. Decision tree nodes with these observations cannot be split any further

because the stopping rule requiring a minimum number of treated observations will have been triggered.

Comparatively, observations with E3 = 0 have moderate propensity score values, so are able to be further

divided by E2.

While the above simulation study was intentionally simplistic in its data generation, the Supplementary

Material present an analogous simulationwhere data are generated tomore directlymimic the covariate distri-

bution observed in the CER investigation of §2.5. The general conclusions of this supplementary simulation

study are the same as those presented here.
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2.5 Comparison ofMethodologies: CER forCardiovascular stents

in Medicare beneficiaries

Drug-eluting stents (DES) have been widely adopted as a non-inferior alternative to bare-metal stents (BMS)

for treatment following myocardial infarction (MI) [44], with clinical-trials evidence indicating important

effect modification by diabetes [9] and age [17, 41, 53]. In this data analysis, we consider the comparison of

drug-eluting stents (DES) to bare-metal stents (BMS) as treatment of myocardial infarction (MI), by looking

at the association of each with the two-year revascularization rate. Our goal in this exploratory analysis is

to evaluate whether TEH is present, as determined by the three estimation methods under consideration and

using our knowledge of their operating characteristics.

2.5.1 Data Structure

De-identified inpatient data on 38 covariates were generated by 54,099 Medicare beneficiaries hospitalized

in the continental United States in 2008 with their first MI. An unadjusted comparison of the two-year revas-

cularization rate in DES and BMS patients yields a risk difference of –0.055, indicative of a worse outcome

with BMS and thus consistent with the literature, but thought to be confounded by patient characteristics

that help determine treatment choice. As summarized in Table 2.4, patients receiving BMS generally have a

higher baseline risk profile.

To evaluate TEH, each of the three estimation methods were applied to the data. In the case of BART and

GBM, such evaluation was done by partitioning the estimated probability distribution (be it of the outcome

or treatment) into 500 quantiles, then estimating a TE within each subgroup defined by these quantiles. In

the case of FS, the dissimilarity matrixD is partitioned into 500 subgroups using PAM and a TE estimated

within each.

2.5.2 Results

The results of this data analysis are summarized in Figure 2.3. For each estimation method, the subgroup-

specific treatment effects (the risk difference) and associated uncertainty intervals are plotted in ascending

order. The red vertical line denotes the marginal estimated risk difference. None of the estimation methods
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DES BMS
(30,562) (23,537)

Race: white 90.2 90.1
Male 57.2 57.8
Age (years) 74.9 76.2
Region
west 16.0 13.7
midwest 27.7 30.0
south 40.6 38.8
northeast 15.7 17.5

COPD 15.7 16.9
Asthma 2.6 2.5
Prior Coronary artery bypass graft (CABG) performed 0.4 1.1
Prior congestive heart failure 6.8 7.1
Prior myocardial infarction 3.0 2.8
Unstable angina 3.2 2.3
Chronic atherosclerosis 90.6 88.4
Respiratory failure 2.3 2.6
Hypertension 69.2 65.8
Prior stroke 1.0 1.3
Cerebrovascular disease (non stroke) 2.7 3.1
Renal failure 5.4 6.2
Pneumonia 6.7 8.5
Malnutrition 1.2 2.2
Dementia 3.3 5.3
Functional disability 1.3 1.7
Peripheral vascular disease 4.4 4.7
Trauma in the past year 3.5 4.3
Major psychiatric disorder 1.2 1.6
Liver disease 0.2 0.5
Severe hematological disorder 0.4 0.7
Anemia 14.6 18.2
Depression 4.8 4.9
Parkinsons/Huntington 0.9 1.0
Seizure disorder 1.1 1.4
Chronic fibrosis 1.4 1.6
Vertebral fractures 0.6 0.7
Cancer 3.6 6.3
Eligible for Medicaid 12.0 13.2
Diabetes 29.9 26.3
Revascularization within two years 22.0 27.5

Table 2.4 Baseline characteristics (% experiencing unless otherwise indicated) and one-year hospital readmission
rate for DES (“treated”) and BMS (“untreated”) patients (columns 1 and 2). See §2.5.1 for details on the population
that generated these data.
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BART GBM FS-bt

marginal R̂D: –0.047 marginal R̂D: –0.047 marginal R̂D: –0.049
(488 groups) (476 groups) (497 groups)

Figure 2.3Visualization of results from Data Analysis 2.5. Details regarding how the figure was constructed, and
how to interpret the figure, are given in §2.5.2.

were able to estimate 500 subgroups, for differing reasons. In the case of BART, there were several hundreds

of patients with the same estimated ITE, and those subgroups could not be disaggregated. For GBM, 24

of the 500 subgroups had an undefined treatment effect (i.e., at least one treatment arm with less than 2

observations), 3 for FS.

Focusing on the results from BART (which proved most promising in the simulation studies), we investi-

gate whether any individual covariates exhibit a clear association with subgroup membership. Towards this

goal, we plot ITEs and subgroup average ITEs across the distribution of each covariates, as illustrated for

four covariates in Figure 2.4. To ease explanation, consider the top-most plot marked age. The y-axis repre-

sents the subgroup-specific average age in years, and the x-axis represents the subgroup-specific ATE (again

measured on the risk-difference scale). A red dot represents a subgroup, generated as described earlier: the

54, 099 posterior means are partitioned into 500 subgroups, and the average age and average TE (taken as

the average of the posterior mean ITEs within that subgroup) are plotted. Thus, we expect 500 red dots in

this single plot. To generate the values that the gray dots represent, we applied the subgrouping process used

on the posterior means (i.e., partitioned into 500 subgroups and calculated subgroup-specific averages) to

each of the 1000 posterior draws of 54,099 ITEs, and plotted a random subset of 100.
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subgroup-specific treatment effect

Figure 2.4 Visualization of results from Data Analysis 2.5. Covariates displayed are age, Medicaid eligibility,
prior diabetes diagnosis, and prior hypertension diagnosis. The y-axis represents the subgroup-specific average,
and the x-axis represents the subgroup-specific ATE (on the risk-difference scale). A red dot represents a subgroup,
generated as described in §2.5.2: the 54 099 posterior means are partitioned into 500 subgroups, and the average
covariate measure (e.g., average age) and average TE (taken as the average of the posterior mean ITEs within that
subgroup) are plotted. Thus, we expect 500 red dots in a single plot. To generate the values that the gray dots
represent, we applied the subgrouping process used on the posterior means (i.e., partitioned into 500 subgroups
and calculated subgroup-specific averages) to each of the 1000 posterior draws of 54 099 ITEs, and plotted a
random subset of 100.
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2.5.3 Discussion

A qualitative analysis of the forest plots in in Figure 2.3 suggests that none of the three estimation procedures

detect any treatment effect heterogeneity; the variability in subgroup-specific estimates is as onemight expect

from sampling variability. However the successful performance of BART in the simulation studies leads us

to further investigation, as displayed in Figure 2.4.

Considering Figure 2.4, there is evidence of quantitative effect modification by age; it appears that DES

lead to better outcomes in younger patients, a benefit that decreases to nearly zero in older patients. These

conclusions are supported by the literature, where it is known that DES generally leads to better outcomes

than BMS but the increased comordibities, bleeding risk, and frailty of elderly patients may negate the

beneficial effects [17, 41, 53]. There is also compelling evidence of quantitative effect modification by

hypertension, where absence of hypertension is associated with better outcomes within DES patients, as

compared to BMS patients. The figure does not imply effect modification byMedicaid eligibility or diabetes.

The lack of evidence of effect modification by diabetes may come as a surprise because of the physi-

ological [4, 40] and randomized clinical trial [9] evidence that supports the general understanding among

clinicians that the effect of stent type on adverse cardiovascular outcomes is different within diabetic pa-

tients. However what we are seeing is a well-known issue with measurement of diabetes prevalence: it is

subject to high rates of misclassification [25]. High blood pressure, on the other hand, is positively associ-

ated with diabetes [43] and is much easier to determine. So in fact, it is possible that we are seeing the effect

modification of diabetes through a proxy.

2.6 Conclusion

The goal of a TEH estimation method is to provide a partitioning of the covariate space into interpretable

subgroups, identifiable by covariate values. Such a partition would be extracted from the data, rather than

specified a priori by the researcher. Historically, detection of TEH has involved identification of effect

modifiers by subject matter experts, then an evaluation of the estimated treatment effect within each subgroup.

This sort of a priori specification precluded exploratory analyses of TEH (for good reason, out of a desire to

constrain the type I and II error rates), treated confounding and TEH as separate issues, and was not scalable
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to high-dimensional data. Uncertainty in confounder and/or effect modifier selection was not addressed by

these methods. Thus out of necessity, we have seen an evolution of estimation procedures to match the

increased complexity of our research questions and our data.

We contribute to the ongoing discussion by briefly reviewing and evaluating three general classes of mod-

eling approach, through a performance comparison of representative modern methods from each class. We

considered the ability of each method to detect subgroups in an exploratory, hypothesis-generating manner.

Our simulation studies revealed that GBM, as a representation of using propensity scores to estimate causal

effects, is not able to detect effect modifiers that are not associated with treatment; that is, effect modifiers

that are not also confounders. However, GBM is able to alert the analyst to positivity violations whereas the

representative methods from the other modeling classes extrapolate, possibly inappropriately. For example,

FS, as a representation of the joint modeling of outcome and treatment conditional on covariates, potentially

fails to disaggregate when the treatment prevalence is extreme, leading the analyst to draw conclusions on the

aggregate. BART, as a representation of modeling the outcome conditional on covariates, does not require

observations in both treatment arms to calculate the subgroup ATE so positivity violations may go unnoticed.

The ability of each method to estimate an unbiased subgroup-specific treatment effect is related to its ability

to group similar observations together, and to the number of subgroups that the sample is initially partitioned

into by the analyst. When the initial partition is too coarse, the resulting subgroups are still heterogeneous

with respect to the true subgroups, leading to biased treatment effect estimates. The conclusions drawn from

our simulation studies were used to evaluate the results of a comparative effectiveness analysis, looking at

the effect of stent type on an adverse cardiovascular outcome. Diabetes status and age are known in the

cardiovascular literature as an effect modifier, and presented itself as such in our analysis, although through

the correlated hypertension covariate.

Our analyses do have some limitations, that present opportunities for future work. Our heuristic study

was designed to gain some intuition about the more mathematically-rigorous evaluative measures, so we do

not address measurement of uncertainty in the subgroup-specific treatment effect estimates, nor any of the

classical statistical performance metrics (e.g., consistency). There are also potential problems with using the

same data to estimate subgroups and treatment effects, and future work would explore ways to avoid this.

Future work would also explore ways to estimate the number of underlying subgroups from the data, rather

than a priori specification by the analyst. Lastly, we explicitly explored methods designed to “automatically”
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detect which of the measured variables are confounders and/or effect modifiers. This was motivated by the

desire to address settings where the sheer number of measured covariates or limited contextual knowledge

precluded prior specification of such variables. However, such analyses entail important limitations. All

methods we consider rely on the assumption that the entirety ofX is measured pretreatment and thus unaf-

fected by T . If this assumption was violated, such automated procedures could be susceptible to forms of

bias such as posttretment selection bias or M-bias. Furthermore more, if the available variables inX do not

contain important confounders or proxies, then the methods explored here would still suffer from unobserved

confounding bias.
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Visualization software for exploring
treatment effect heterogeneity

Sarah C. Anoke1, Christine Choirat1, and Corwin M. Zigler1

1 Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA

Abstract

Identification of treatment effect heterogeneity (TEH) involves comparisons of covariate distributions,

both within and across subgroups. Feasibility quickly decreases as the number of covariates and/or sub-

groups increases. This chapter describes use of the web application framework shiny and statistical program-

ming language R to construct visualization software for exploratory, evidenced-based hypothesis-generating

analyses of treatment effect heterogeneity. The software consists of three main features: (1) a forest plot

displaying all subgroup-specific treatment effects, (2) subgroup profile plots displaying subgroup-specific

covariate means in a way that highlights the distinguishing features of subgroups, and (3) covariate profile

plots that facilitate the identification of effect modifiers by displaying covariate distributions as a function of

the subgroup-specific treatment effect. The ability of these tools to contribute to the identification of TEH

is demonstrated in a comparative effectiveness evaluation of drug-eluting versus bare-metal stents among

54,099 Medicare beneficiaries in the continental United States admitted to a hospital with acute myocardial

infarction in 2008.

To download hetviz, see instructions in the User Manual at

https://github.com/sanoke/hetviz/wiki.
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3.1 Introduction

A pioneer of visualization, statistician John W. Tukey has said that “the greatest value of a picture is when

it forces us to notice what we never expected to see” [72]. Statistics, as quantitative storytelling, and data

science, the combination of such storytelling with computer science, is enhanced by the use of data visual-

izations because such illustrations allow the analyst to tell a more complete story [46].

Visualization has important relevance to the identification of treatment effect heterogeneity (TEH), the ex-

istence of an underlying partition of a population into subgroups across which the effect of a treatment varies

systematically. Complete ascertainment of TEH is defined as correct estimation of the number of underlying

subgroups, interpretable characterization of the subgroups by observed covariates, and unconfounded esti-

mation of the treatment effect within each subgroup. As discussed in Chapter 2, there are several common

causal inference methods with the population causal effect as the target estimand, but they are able to be

repurposed for exploratory identification of TEH. The analyst must a priori specify a maximum number

of possible subgroups to investigate, relying on the ability to collapse across subgroups if the data indicate

fewer. After deciding on an estimation method and how to use the method to assign subgroup membership,

interpretation of which characteristics define each subgroup relies on the analyst’s ability to inspect covari-

ates distributions within each group to infer what characterizes them. Assuming ignorability is satisfied by

some subgroup-specific confounder covariate set Xsubgroup, unconfounded subgroup-specific treatment ef-

fect estimation is possible. TEH is present if the estimated treatment effects vary across the subgroups, and

the covariates that define this final partition are referred to as effect modifiers.

In high dimensional settings visualizations are important because they help the analyst overcome the

infeasibility of manual evaluation, allows the analyst to double-check their intuition regarding what they

expect to see, and to again quote Dr. Tukey, can reveal insights the analyst did not expect to see. The manual

comparison of several subgroup-specific high-dimensional covariate distributions is incredibly difficult, at

best. Thus we use visualization to assist in our ability to reason about the distinguishing features of these

distributions, and lead to the generation of hypotheses about which, out of many covariates, are important

effect modifiers. Manual evaluation is still important, because, at least in the public health setting, there are

some considerations that cannot be delegated to a computer. But we need methods that will help us process

this larger picture, because humans are susceptible to information blindness, a phenomenon where the brain
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stops absorbing information when there is too much to take in [23].

Thus “data visualization” allows for the coherent organization of large amounts of information. Although

this term has enjoyed recent popularity as the associated technology has become more powerful and less ex-

pensive, the use of high-resolution summary graphics dates back many decades. Referred to by Tufte [70] as

possibly “the best statistical graphic ever drawn”, the illustration of Napoleon’s 1812 march through Russia

by French engineer Charles Joseph Minard is renowned for its communication of complex, multivariate in-

formation in a clear and coherent manner. French cartographer Jacques Bertin [10] and statisticians William

Cleveland [20] and John Tukey [72] are among the first to add academic rigor to the field of information

design and are pioneers of the minimalist, high resolution statistical graphics that are common today. In

fact, the ubiquity of computers and available data have broadened the audience interested in the construc-

tion and consumption of such graphics, and Edward Tufte [67, 68, 69, 70, 71] and Garrett Grolemond and

Hadley Wickam [29] have taken the theoretical foundations of graphics design and made them accessible to

laypersons.

It is on the shoulders of these giants that we address the problem at hand: the creation of software for mak-

ing determinations of TEH by automating the comparison of several high-dimensional covariate distributions

and facilitating identification of distinguishing features, if any, of each. Noting that such features are easier to

distinguish visually, but not wanting the analyst to be debilitated by information blindness [23] or cognitive

overload [29], our proposed software hetviz is thoughtful in how this information is presented. Most exist-

ing data visualization software tends to be spatially-concerned; geography and mapping lend themselves to

visualization. However to our knowledge, this is the first visualization software that allows for exploratory,

hypothesis-generating analyses of subgroup-specific distributions in causal inference. It allows the user to

engage with their data in a way that numerical summaries preclude. This idea of engagement with the data

to inform future analyses is by no means new, advocated by Tukey [72], Tufte [70], Cleveland [20], and

Breiman [14], among others. To quote Cleveland [20, p. 219], the goal of our software is to “…convey…the

empirical distribution of the data and not to make formal statistical inferences about a population distribution

from which the data might have come”.

This introduction of the software will proceed as follows. In §3.2 we use simulated data to demonstrate the

general structure of data provided to the software for analysis and the three main functionalities of the soft-

ware: the creation of a forest plot summarizing the estimated treatment effect in each subgroup (§3.2.2), the
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visualization of subgroup profiles (§3.2.3), and the visualization of covariate distributions across subgroups

(§3.2.4). §3.3 details a real data application to demonstrate how this software can aid in the identification of

TEH in practice. We conclude in §3.4 with a summary and general guidance on how to include the software

in practice.

3.2 Functionality

When the application is first opened, the user will see an interface as displayed in Figure 3.1. The gray

left-hand sidebar allows the user to provide their data, and the right-hand panel displays information about

the provided data.

Figure 3.1 View of the initial hetviz user interface when the application is first opened.

3.2.1 Dataset provision

The major functionalities of hetvizwill be demonstrated using simulated data described in §2.4.1 and Table

2.2 on pages 30 and 31, respectively. These are the same data as provided in the “simple simulated data”
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option of the interface (Figure 3.1, top left). To briefly summarize, these data are comprised of 1,500 obser-

vations and 8 approximately equal-sized subgroups with 6 unique treatment effect values, (1, 2, 5, 6, 9, 10).

Additionally the software provides “complex simulated data”, data simulated to mimic observed health data.

These simulated datasets are provided to the user as examples that can be used to interactively explore the

functionality of hetviz.

The user is able to provide their own data for visualization within the software, either as (1) a local comma-

delimited (i.e., CSV) file, (2) a remote comma-delimited file with its location specified with a URL, or (2)

a table within a PostgreSQL database. At minimum, the dataset should contain an outcome variable (which

can be binary or continuous), a treatment variable (binary, coded as 0 for ‘control’ and ‘1’ as treated), and

a variable containing each observation’s subgroup assignment (integer-valued). Due to scalability issues of

third-party software, hetviz can accommodate up to 48 additional covariates (although there are plans to

extend this). Upon providing the location of the dataset, the user will be given an opportunity to provide the

name of the variables that correspond to the (binary) treatment, the outcome, and the subgroup specification.

Treatment effects are calculated within the software on the difference scale (i.e., risk differences).

Once the user has completed specification of their dataset to the software, s/he can press the green “Gen-

erate visualizations” button (Figure 3.1, bottom left). The first visualization that will appear is the forest

plot.

3.2.2 Feature 1: Forest plot

The forest plot visualization allows the analyst to compare the subgroup-specific treatment effects and iden-

tify any general patterns that would suggest effect heterogeneity. Examples of the graphs generated are

provided in Figures 3.2(a) and 3.2(b). On the y-axis of each graph is the subgroup-specific treatment effect,

and on the x-axis is an integer denoting subgroup membership. Internally, the software reassigns subgroup

membership labels so that subgroup 1 has the smallest estimated TE, subgroup 2 has the second smallest

estimated TE, etc.

Figure 3.2(a) displays the default forest plot. There are 10 red circles denoting the estimated treatment

effect for each of the 10 subgroups, as well as a thick error bar ranging from the 25th to the 75th quantile

of estimated ITEs for that subgroup (much like the central box of a box plot) and a thin error bar with a

maximum length of 1.5 times the interquartile range (much like the whiskers of a box plot). If the user does
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not provide estimated ITEs for each observation, then the error bars correspond to those of a 95% confidence

interval. This presentation was chosen to be more accommodating to large numbers of subgroups than the

traditional boxplot.

If the dataset is small (i.e., ≤ 5,000 observations and ≤ 30 subgroups) then the user is able to select an

alternative forest plot presentation displayed in Figure 3.2(b), that includes a traditional boxplot presentation

in addition to the specific estimated ITE values.

(a)

(b)

Figure 3.2 Forest plot visualization allows the user to compare the subgroup-specific treatment effects and identify
any general patterns that suggest effect heterogeneity. Subfigure (a) is the default forest plot presentation, that
includes vertical lines denoting the locations of the true subgroup-specific treatment effects. Subfigure (b) is an
additional, alternative presentation for small datasets.
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3.2.3 Feature 2: Subgroup profiles

While the associated plots will be explained in detail in the data analysis example of §3.3, a brief summary

is given here. An example of the plots generated by this functionality is given in Figure 3.4.

The main subgroup profile plot is displayed in Figure 3.4(a). On the x-axis is each covariate in the dataset.

On the y-axis is distance from each covariate’s marginal mean, measured in marginal standard errors*.

Thus in Figure 3.4(a), each line corresponds to a subgroup – each line is a subgroup profile. Plotting these

profiles together allows the user to visually compare the subgroups for distinguishing features. The user is

also able to hover their mouse pointer over any point in the graph to see what subgroup the datum corresponds

to. When an extreme value has been identified, as well as the associated subgroup, the user is able to use the

visualization in 3.4(b) to isolate that subgroup and look at entire subgroup-specific distributions (rather than

just the mean) of each covariate in that subgroup.

3.2.4 Feature 3: Covariate profiles

Again, the associated plots will be explained in detail in the data analysis example of §3.3, but a brief sum-

mary is given here. An example of the plots generated by this functionality is given in Figure 3.5.

Themain covariate profile plot is displayed in Figure 3.5(a). On the x-axis is an integer denoting subgroup

membership. Recall that internally hetviz numbers observations such that subgroup 1 corresponds to the

subgroupwith the smallest estimated treatment effect, somovement along the x-axis means that the subgroup

treatment effect is increasing. On the y axis is distance from each covariate’s marginal mean, measured in

marginal standard errors†. Note that this y-axis is the same as the y-axis in the subgroup profile plot.

Thus in Figure 3.5(a), each line corresponds to a covariate – each line is a covariate profile. Plotting these

profiles together allows the user to visually compare how covariate distributions change as a function of the

subgroup-specific treatment effect. If the covariate is an effect modifier, we would expect to see a nonlinear

profile, or a profile with a slope different from zero.

As with the subgroup profile plot, the user is able to hover their mouse pointer over any point in the graph

to see what covariate the datum corresponds to. When an extreme value has been identified, as well as the

* This will be changed to marginal standard deviations, so that for a given covariate, all subgroups have the same
unit of distance (rather than the unit of distance being dependent on subgroup size).

† This will be changed to marginal standard deviations, so that for a given covariate, all subgroups have the same
unit of distance (rather than the unit of distance being dependent on subgroup size).
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associated covariate, the user is able to use the visualization in 3.5(b) to isolate that covariate and look more

closely at how the distribution of that covariate changes as a function of the subgroup-specific treatment

effect. On the x-axis is the subgroup-specific treatment effect, and on the y-axis is the subgroup-specific

covariate average. Within the plot itself, there is a datum (i.e., a black point) for each subgroup. Each of

these subgroup points has red error bars, denoting the subgroup specific standard error (the subgroup-specific

standard deviation of that covariate divided by the number of observations in that subgroup).

A major benefit of such figures is being able to identify nonlinear TEH without having to know a priori

the relationship between the covariate and the subgroup-specific treatment effect.

3.3 Data Analysis Example

In this section we demonstrate the use of hetviz in a treatment effect heterogeneity analysis. In particular,

we will investigate the Medicare data described in §2.5.1 and Table 2.4 on pages 39 and 40, respectively.

When the data are first provided to the software, the first visualization that the user will see is Figure 3.3.

The red dots denote the subgroup-specific treatment effects, and the black lines are the error bars. Within the

software itself, we can zoom in to see that the error bars are so narrow that they can only be seen at a high

magnification. Figure 3.3 suggests that there may be heterogeneity, although the relatively narrow range of

the subgroup-specific risk differences (≈ 0 to -10%) imply that what we see is sampling variability, rather

than systematic.

Figure 3.3 Forest plot visualization of Medicare data analysis described in §2.5.

The next visualization is the subgroup profiles, displayed in Figure 3.4(a). We see one subgroup that

stands out in blue. When we hover our mouse over this subgroup, we see that this extreme value occurs with
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the Pneumon covariate, an indicator of prior pneumonia diagnosis, and this profile belongs to subgroup 293.

We then use the visualization in Figure 3.4(b) to see that this extreme value occurs because this subgroup

only has two observations, who both have pneumonia and are both in the “control” group.

(a)

(b)

Figure 3.4 Subgroup profile visualization allows the user to visually compare the subgroups for distinguishing
features. Subfigure (a) gives an overall comparison of all subgroups, allowing the user to select subgroups that
stand out as well as distinguishing covariates. When the user has selected a subgroup of interest, s/he is able to
focus on that subgroup using the visualization in Subfigure (b), and view the full subgroup-specific distribution
of each covariate.

We then decide to look at the profile of the Pneumon covariate, in Figure 3.5(a). The sharp blue spikes

correspond to this covariate, but occur when the subgroup size is very small, so there is not much information

in the spikes. Another covariate profile catches our eye, in the green – this covariate seems to be consistently

and significantly distant from its marginal mean when the treatment effect is small, then sharply increases its

distance as the treatment effect increases. When we place our mouse over a datum in that covariate profile,
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we see it belongs to HTN, an indicator of prior hypertension diagnosis. We use the visualization in Figure

3.5(b) to investigate this particular covariate more closely, and we find substantial evidence that HTN is an

effect modifier.

(a)

(b)

Figure 3.5 Covariate profile visualization allows the user to visually compare how a covariate’s distribution
(through its mean) changes as a function of the subgroup-specific treatment effect. If the covariate is an effect
modifier, wewould expect to see a nonlinear profile, or a profile with a slope different from zero. The visualization
of Subfigure (a) gives an overall comparison of all covariates, and Subfigure (b) allows the user to investigate a
specific covariate.

3.4 Conclusion

Visualization helps analysts reason about their data and turn information into conclusions. Recent increases

in the quality and quantity of available data present novel opportunities to strengthen the conclusions we are

able to draw from them. However in exploratory analyses where hypotheses are not defined at the outset,

we must take special care to familiarize ourselves with the content of our dataset. This familiarity leads to
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more informative conclusions when conducting formal analyses and making inferences.

The software hetviz facilitates this familiarity, by allowing for facile comparison of many subgroup-

specific covariate distributions, towards the identification of effect modifiers in high-dimensional settings.

This is accomplished through threemajor features: (1) a forest plot displaying all subgroup-specific treatment

effects, (2) subgroup profile plots displaying subgroup-specific covariate means in a way that highlights

the distinguishing features of subgroups, and (3) covariate profile plots that facilitate the identification of

effect modifiers by displaying covariate distributions as a function of the subgroup-specific treatment effect.

Furthermore, the publicly-available implementation of hetviz provides examples of the best practices of

software design, including usability testing, measures of coverage, and reproducability.

This manuscript marks the first release of hetviz, and future releases will include improvements on

current limitations. For example, hetviz can only visualize data stored in flat files. Large complex datasets

are stored in relational databases, and in the future hetviz will support queries from such data sources.

Additionally, it would be helpful for users to be able to generate and save customizable reports, containing

figures generated during their exploratory analyses. However in its current form, hetviz is able to contribute

to statistical analyses of large datasets by automating the generation of a holistic, broad investigation of the

contents of large datasets when investigating treatment effect heterogeneity.
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A

Detailed statistical results to accompany
Chapter 1

Values marked with an asterisk (*) as reported in the 2011 Ugandan DHS Final Report. If a quantity is

unmarked, it was calculated by the authors for this study. ‘Women’ are 15-49 years of age, ‘men’ are 15-

54, and ‘youth’ are 15-24. Prevalences are reported with their associated 95% confidence intervals (CIs).

Prevalences are compared using a two-sample two-sided z-test of proportions, and the associated p-value

reported.

Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of individuals who were coun-
seled and received an HIV test in last
12 months and know their results.

Women (n = 1445):
0.440 (0.414, 0.465)

Women (n = 1097):
0.388* (0.351, 0.425)*

0.024

Female youth (n = 781):
0.350 (0.317, 0.384)

Female youth (n = 451):
0.353 (0.306, 0.400)

0.921

Men (n = 1446):
0.294 (0.271, 0.318)

Men (n = 291):
0.217 (0.166, 0.268)

0.006

Male youth (n = 633):
0.204 (0.174, 0.237)

Male youth (n = 116):
0.161 (0.081, 0.240)

0.335

% of mothers of children 0-11
months who were counseled and re-
ceived an HIV test during the last
pregnancy and know the results.

Mothers (n = 1446):
0.870 (0.852, 0.886)

Mothers (n = 205):
0.820 (0.746, 0.893)

0.197

Table A.1 Comparison of HIV Counseling and Testing indicators.
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Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of mothers of children 0-11
months who were counseled for ‘pre-
vention of mother-to-child transmis-
sion’ services during last pregnancy.

Mothers (n = 1446):
0.913 (0.898, 0.927)

Mothers (n = 205):
0.785 (0.701, 0.868)

0.003

Table A.2 Comparison of Prevention of Mother-to-Child Transmission (PMTCT) of HIV indicators.
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Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of individuals who had sex with
more than one sexual partner in the
last 12 months.

Women (n = 1445):
0.029 (0.021, 0.039)

Women (n = 1097):
0.005* (0.001, 0.009)*

0.496

Female youth (n = 781):
0.028 (0.019, 0.042)

Female youth (n = 451):
0.002 (0, 0.006)

< 0.001

Men (n = 1446):
0.111 (0.096, 0.128)

Men (n = 291):
0.155 (0.106, 0.204)

0.095

Male youth (n = 633):
0.072 (0.056, 0.092)

Male youth (n = 116):
0.033 (0, 0.067)

0.058

% of individuals who have had sex-
ual intercourse with a non-marital or
non-cohabitating sexual partner.

Women (n = 1445):
0.086 (0.072, 0.101)

Women (n = 1097):
0.010 (0.004, 0.016)

< 0.001

Female youth (n = 781):
0.066 (0.051, 0.086)

Female youth (n = 451):
0.005 (0, 0.011)

< 0.001

Men (n = 1446):
0.198 (0.178, 0.219)

Men (n = 291):
0.069 (0.035, 0.102)

< 0.001

Male youth (n = 633):
0.111 (0.096, 0.146)

Male youth (n = 116):
0.016 (0, 0.040)

< 0.001

% of individuals who have had sex-
ual intercourse with a non-marital
or non-cohabitating sexual partner in
the last 12 months and used a con-
dom at last higher-risk sex.

Women (n = 128):
0.317 (0.243, 0.402)

Women (n = 11):
0.308 (0.012, 0.605)

0.957

Female youth (n = 54):
0.505 (0.376, 0.634)

Female youth (n = 2):
0.551 (0, 1)

0.894

Men (n = 186):
0.426 (0.357, 0.498)

Men (n = 20):
0.308 (0.088, 0.527)

0.372

Male youth (n = 82):
0.462 (0.358, 0.569)

Male youth (n = 2):
0

n/a

% of youth 15-24 years who have
had sexual intercourse before the age
of 15.

Female youth (n = 781):
0.045 (0.032, 0.061)

Female youth (n = 451):
0.054 (0.028, 0.080)

0.532

Male youth (n = 633):
0.076 (0.058, 0.099)

Male youth (n = 116):
0.062 (0.001, 0.115)

0.641

% of men who are circumcised.

Men (n = 1446):
0.102 (0.087, 0.119)

Men (n = 291):
0.088 (0.044, 0.132)

0.561

Male youth (n = 633):
0.072 (0.055, 0.095)

Male youth (n = 116):
0.099 (0.022, 0.176)

0.501

Table A.3 Comparison of HIV Knowledge and Sexual Behavior indicators.
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Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of children 0-59 months who had
fever in the two weeks preceding the
survey and received treatment with
ACT within 24 h of onset of fever.

0-11 months (n = 1353):
0.044 (0.031, 0.064)

0-23 months (n = 49):
0.068 (0, 0.138)

0.961

12-23 months (n = 752):
0.090 (0.071, 0.113)
Weighted average for
comparison:
0.070 (0.056, 0.084)

% of mothers of children 0-11
months who received two of more
doses of SP/Fansidar during their
last pregnancy.

Mothers (n = 1446):
0.649 (0.635, 0.684)

Mothers (n = 205):
0.267 (0.191, 0.343)

< 0.001

% of children 0-59 months who slept
under an insecticide-treated net the
night preceding the survey.

0-11 months (n = 1446):
0.658 (0.633, 0.682)

0-23 months (n = 412):
0.413 (0.346, 0.481)

< 0.001

12-23 months
(n = 1446):
0.657 (0.632, 0.681)
Weighted average for
comparison:
0.657 (0.639, 0.675)

Table A.4 Comparison of Malaria indicators. Weighted averages were calculated based on the proportion of the
aggregated sample that belonged to a particular group.
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Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of currently married women
who are using any family planning
method.

Mothers (n = 1158):
0.487 (0.458, 0.516)

Mothers (n = 681):
0.296* (0.242, 0.350)*

< 0.001

% of mothers of children 0-11
months who attended ANC at least
four times during their last preg-
nancy.

Mothers (n = 1446):
0.466 (0.441, 0.492)

Mothers (n = 205):
0.487 (0.392, 0.581)

0.677

% of mothers of children 0-11
months who delivered their last baby
in a health facility.

Mothers (n = 1446):
0.668 (0.644, 0.692)

Mothers (n = 205):
0.544 (0.433, 0.655)

0.034

% of mothers of children 0-11
months who were assisted by a
skilled health worker during their
last delivery.

Mothers (n = 1446):
0.645 (0.618, 0.672)

Mothers (n = 205):
0.562 (0.448, 0.677)

0.161

Table A.5 Comparison of Family Planning & Reproductive Health indicators.

Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of children 12-23 months who are
fully vaccinated, according to Defi-
nition 1 (1 BCG + 3 DPT + 4 POLIO
+ MEASLES).

12-23 months
(n = 1446):
0.286 (0.264, 0.310)

12-23 months (n = 171):
0.271 (0.190, 0.353)

0.729

% of children 12-23 months who are
fully vaccinated, according to Defi-
nition 2 (1 BCG + 3 DPT + 3 POLIO
+ MEASLES).

12-23 months
(n = 1446):
0.620 (0.595, 0.645)

12-23 months (n = 171):
0.616* (0.514, 0.717)*

0.940

% of children 0-11 months with diar-
rhea in the last two weeks receiving
oral rehydration therapy (ORT).

0-11 months (n = 393):
0.176 (0.141, 0.216)

12-23 months (n = 46):
0.231 (0.091, 0.371)

0.454

Table A.6 Comparison of Child Health indicators.
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Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of children under six months of
age who are exclusively breastfed.

0-5 months (n = 783):
0.540 (0.503, 0.576)

0-5 months (n = 110):
0.531 (0.412, 0.650)

0.887

% of children 12-23 months receiv-
ing vitaminA supplementation in the
last six months.

12-23 months
(n = 1446):
0.656 (0.631, 0.680)

12-23 months (n = 171):
0.545 (0.456, 0.635)

0.020

% of households using iodized salt.
Households with mothers
of children 12-23 months
(n = 1372):
0.922 (0.907, 0.935)

Households(1)
(n = 1049):
0.984 (0.975, 0.993)
(1)out of houses that
had salt that was tested
(denominator includes
only houses that had salt
that was tested) - DHS
uses this.

(1) < 0.001

Households(2)
(n = 1128):
0.915 (0.894, 0.937)
(2)out of all non-missing
values (denominator
includes houses with no
salt, and with untested
salt).

(2) 0.609

Children(3) (n = 171):
0.959 (0.929, 0.989)
(3)out of all children 12-23
months.

(3) 0.027

% of mothers of children 0-11
months who received vitamin A sup-
plementation within 2 months after
delivery.

Mothers (n = 1446):
0.507 (0.482, 0.533)

Mothers (n = 205):
0.294 (0.203, 0.385)

< 0.001

Table A.7 Comparison of Nutrition indicators.
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Indicator
LQAS estimate DHS estimate Comparison

(95% CI) (95% CI) (p-value)

% of households with safe water sup-
ply.

Households (n = 1445):
0.634 (0.609, 0.658)

Households(1)
(n = 1128):
0.311 (0.252, 0.370)
(1)LQAS safe water is
piped, protected well,
borehole, rainwater,
tanker/truck, bottled
water.

(1) < 0.001

Households(2)
(n = 1128):
0.430 (0.350, 0.510)
(2)DHS also includes
public tap/standpipe
and protected spring,
which is not in the LQAS
questionnaire (may be
classified differently
within LQAS).

(2) 0.005

% of households with latrine or toi-
let.

Households (n = 1445):
0.970 (0.959, 0.977)

Households (n = 1128):
0.978 (0.964, 0.992)

0.381

Table A.8 Comparison ofWater and Sanitation indicators.
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Absolute
Indicator Subpopulation Result at 5% difference

Table A.1: HIV
Counseling and
Testing

% of individuals who were counseled and
received an HIV test in last 12 months and
know their results.

Women Different 0.052
Female youth Same 0.003
Men Different 0.077
Male youth Same 0.043

% of mothers of children 0-11 months who
were counseled and received an HIV test
during the last pregnancy and know the re-
sults.

Same 0.050

Table A.2: Preven-
tion of Mother-to-
Child Transmis-
sion (PMTCT) of
HIV

% of mothers of children 0-11 months who
were counseled for ‘prevention of mother-
to-child transmission’ services during last
pregnancy.

Different 0.128

Table A.3: HIV
Knowledge and
Sexual Behavior

% of individuals who had sex with more
than one sexual partner in the last 12
months.

Women Same 0.024
Female youth Same 0.026
Men Same 0.044
Male youth Same 0.039

% of individuals who have had sexual in-
tercourse with a nonmarital or noncohabi-
tating sexual partner.

Women Different 0.076
Female youth Different 0.061
Men Different 0.129
Male youth Different 0.095

% of individuals who have had sexual in-
tercourse with a nonmarital or noncohabi-
tating sexual partner in the last 12 months
and used a condom at last higher-risk sex.

Women Same 0.009
Female youth Same 0.046
Men Same 0.118
Male youth n/a –

% of youth 15-24 years who have had sex-
ual intercourse before the age of 15.

Female youth Same 0.014
Male youth Same 0.014

% of men who are circumcised.
Men Same 0.027
Male youth Same 0.002

TableA.9 Summary of comparisons, using indicators fromTablesA.1, A.2, andA.3. Two indicators are concluded
to be the ‘same’ if the hypothesis test of proportion equality failed to reject at the 5% level. Otherwise, the
indicators are concluded to be ‘different’. Refer to the indicated table for more detailed information on that
indicator, including point estimates, confidence intervals, and p-values.
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Absolute
Indicator Result at 5% difference

Table A.4: Malaria % of children 0-23 months who had fever in the two
weeks preceding the survey and received treatment
with ACT within 24 h of onset of fever.

Same 0.002

% of mothers of children 0-11 months who received
two of more doses of SP/Fansidar during their last
pregnancy.

Different 0.382

% of children 0-23 months who slept under an
insecticide-treated net the night preceding the survey.

Different 0.244

Table A.5: Family
Planning & Repro-
ductive Health

% of currently married women who are using any fam-
ily planning method.

Different 0.191

% of mothers of children 0-11 months who attended
ANC at least four times during their last pregnancy.

Same 0.021

% of mothers of children 0-11 months who delivered
their last baby in a health facility.

Different 0.124

% of mothers of children 0-11 months who were as-
sisted by a skilled health worker during their last de-
livery.

Same 0.083

Table A.6: Child
Health

% of children 12-23 months who are fully vaccinated,
according to Definition 1 (1 BCG + 3 DPT + 4 POLIO
+ MEASLES).

Same 0.015

% of children 12-23 months who are fully vaccinated,
according to Definition 2 (1 BCG + 3 DPT + 3 POLIO
+ MEASLES).

Same 0.004

% of children 0-11months with diarrhea in the last two
weeks receiving oral rehydration therapy (ORT).

Same 0.055

Table A.7: Nutri-
tion

% of children under six months of age who are exclu-
sively breastfed.

Same 0.009

% of children 12-23 months receiving vitamin A sup-
plementation in the last six months.

Different 0.111

% of households using iodized salt. Different 0.037

% of mothers of children 0-11 months who received
vitamin A supplementation within 2 months after de-
livery.

Different 0.213

Table A.8: Water
and Sanitation

% of households with safe water supply. Different 0.204

% of households with latrine or toilet. Same 0.008

Table A.10 Summary of comparisons, using indicators from Tables A.4, A.5, A.6, A.7, and A.8. Two indicators
are concluded to be the ‘same’ if the hypothesis test of proportion equality failed to reject at the 5% level. Other-
wise, the indicators are concluded to be ‘different’. Refer to the indicated table for more detailed information on
that indicator, including point estimates, confidence intervals, and p-values.
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B

Supplementary material to accompany
Chapter 2

B.1 Definition of terms from the regression tree literature

Below is a brief summary of terms used in Chapter 2, as well as the regression tree literature.

A classifier or classification rule is “a systematic way of predicting what class a case is in” [15]. In the

most general sense, identifying TEH amounts to classifying observations according to how the treatment

affects their outcome. A tree is one type of classifier, a sequence of binary covariate-based decision rules

with its depth equal to the maximum number of decisions that have to be made to classify an observation.

The tree represents a partitioning of the covariate space into terminal nodes or “leaves”, where within each

leaf, observations are of the same class (i.e., a classification tree) or the predicted outcome is constant (i.e.,

a regression tree). Trees are summed into a new larger tree by adding an observation’s predictions from the

summand trees. Boosting is the summing of many low-depth trees (i.e., “weak learners”) into a larger tree,

a method known to improve predictive performance [32]. Bootstrap aggregation (bagging) is the averaging

of many full-sized trees, as grown from bootstrap samples [32, Chapter 8.7]. To prevent overfitting (i.e.,

an overly-fine partitioning of the covariate space that is particular to the sample used to build the tree), an

oversized tree is “grown” (constructed) then “pruned” (modified by removing “branches”, subtrees that do

not contain the root node). For specific details on how to grow and prune a tree, the reader is directed to

Breiman et al. [15].
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B.2 Table from Simulation Study 2.4.1

Scenario A Scenario B Scenario C Scenario D
confounding and effect effect effect

no effect modification and modification and modification and
modification no confounding confounding confounding by EMs

TE(1) 100 100 100 100
TE(2) 100 100 100 100
TE(3) 100 100 100 100
TE(4) 100 100 100 100
TE(5) 100 100 100 100
TE(6) 100 100 100 100
TE(7) 100 100 100 100
TE(8) 100 100 100 99
TE(9) 100 100 100 69
TE(10) 98 100 99 8

undefined TE 2 0 1 92

Table B.1 Summary of denominators used to calculate the cell-specific averages visualized in Figure 2.1 (on
page 32) as part of Simulation Study 2.4.1; scenarios are defined in Table 2.2 (on page 31). “TE(1)” denotes
the estimated subgroup with the smallest ATE. Note that GBM was the only estimation procedure that yielded
subgroups with an undefined treatment effect; the cell-specific averages presented for BART and FS were across
all 100 simulation iterations.
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B.3 Figure from Simulation Study 2.4.1: True Treatment Effects
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Scenario A Scenario B Scenario C Scenario D
confounding and effect modification effect modification effect modification

no effect modification and no confounding and confounding and confounding by EMs

B
A
RT

G
B
M

FS
-b
t

Figure B.1 Forest plots by true treatment effect, from Simulation Study 2.4.1. The structure of this grid is pattered after Figure 2.1, where each row is an
estimation method, and each column is a data generation scenario. To ease explanation, consider the forest plot associated with the BART analysis of data
generated under Scenario A. Letting j = 1, . . . , 100 denote the simulation iteration, each observation during the jth iteration is assigned to a subgroup, within
which an average treatment effect is estimated. Every observation in true Group 1 (say) has an associated ATE – the ATE estimated from the subgroup that the
observation was assigned to. We can then take everyone in true Group 1, and take an average of these ATEs; in fact, we can do this for all eight true Groups,
then plot the resulting eight averages. To generate the forest plots in this figure, these eight special averages were plotted, but for all 100 simulation iterations.
For each true subgroup, a boxplot is used to help visualize the distribution of estimates in that group. For clarity, the x-axes of the forest plots have been
omitted, but there are vertical dashed lines denoting the true average treatment effects (1, 2, 5, 6, 9, 10).
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B.4 Simulation Study: Simulated Treatment and Outcome

In this study, we consider the comparison of drug-eluting stents (DES) to bare-metal stents (BMS) as treat-

ment of myocardial infarction (MI), by looking at the association of each with the two-year revascularization

rate. We use real covariate data to simulate these two treatment options, as well as the two-year revascular-

ization rate, to begin exploring the ability of these methods to identify TEH in real data.

B.4.1 Data Structure and Analysis

De-identified inpatient data on 38 covariates were generated by 169,539 Medicare beneficiaries hospitalized

in the continental United States during 2009, 2010, or 2011 with their first MI. While the covariate sum-

mary given in Table 2.4 (on page 40) is of hospitalizations in 2008, the 2009-2011 covariate distribution is

very similar. As treatment, these patients underwent percutaneous coronary intervention (PCI) for the place-

ment of exactly one type of stent, either a DES or BMS. Let x denote the covariate vector of a patient and

T ∼ Bern(pℓ2) their binary treatment indicator, where pℓ2 = expit(x⊤α̂) is the probability of receiving a

DES. The value of coefficient α̂was set as the maximum likelihood estimate from the regression of observed

treatment on the 38 covariates. Binary outcome Y ∼ Bern(µℓ2) indicates that the patient had been readmit-

ted for revascularization (via CABG or a second PCI) within two years of discharge from their original MI

hospitalization, or died before they could experience the revascularization event. It is modeled by setting

µℓ2 = x⊤β̂−0.308T +0.6T (elig)−T (diabetes), where (β̂,−0.308) is the maximum likelihood estimate

from the regression of the observed outcome on (x, t), and (0.6,−1) the fixed interaction coefficients for

effect modifiers elig, an indicator of Medicaid eligibility, and diabetes, an indicator of prior diabetes diag-

nosis. The main effects of these covariates are contained in β̂. These two covariates define four subgroups,

with ATEs (−0.22,−0.08, 0.02, 0.16) measured on the risk difference scale.

A dataset was simulated by first sampling the observed covariate data of 10,000 Medicare beneficiaries

from the 169,539, then generating T and Y from the distributions described above. To preclude effect

estimation issues caused by empirical positivity violations, any covariate with a prevalence of less than

5% in either treatment arm was dropped. To preclude obfuscation of our argument within this artificial

simulation scenario, any dataset that did not include either effect modifier (i.e., after having been dropped

for low prevalence) was discarded. This process was repeated to generate 100 simulated datasets, and each
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Figure B.2 Visualization of results from Simulation Study B.4. Details regarding how the figure was constructed,
and how to interpret the figure, are given in §B.4.1.

analyzed as described in §4.1.1.

Results and Discussion Analysis results are summarized as described in §4.1.2 and visualized in Figure

B.2 of these Supplementary Materials (page 71, for one data generation scenario). Looking at the results

generated by FS, we draw conclusions similar to those drawn in Simulation Study 4.1; namely, FS is able

to detect effect modifiers that are strongly associated with either the outcome or treatment, where strength

is relative to the associations of the other covariates to the treatment and outcome. In this example, prior

diabetes diagnosis has a strong association with the outcome, and we see that FS is able to group observations

by the value of this covariate: the top two rows have a prior diabetes diagnosis, and the bottom two rows do

not.

An interesting point is the spread of color in the last two rows of the FS result block, which is caused

by the particulars of PAM’s estimation procedure. While we were able to prespecify that 10 subgroups be

estimated, and the “center” of each of these subgroups is an observation from the dataset (by design), if no

other observations are close to a selected center, then that center will remain in an estimated subgroup of

size one. As applied to Figure B.2 of these Supplementary Materials (on page 71), PAM is typically able
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subgroup-specific treatment effect

Figure B.3 Visualization of results from a single dataset from Simulation Study B.4. Covariates displayed are
age, Medicaid eligibility, prior diabetes diagnosis, and prior hypertension diagnosis. Details regarding how the
figure was constructed, and how to interpret the figure, are given in §B.4.1.
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to detect 2-4 substantive subgroups. The remaining subgroups have just one observation, so have an unde-

fined treatment effect; thus, empty columns 5 though 10 imply that PAM always had at least six estimated

subgroups with one patient in each. The spread of color is actually an average across simulation iterations

that detected differing numbers of subgroups.

Considering GBM, the results do not show evidence of being able to detect either EM, as demonstrated

by the relative homogeneity of color and row percentages.

Finally considering the analysis usingBART, this analysis procedure generated results that are aswewould

expect from correct identification of TEH. For example, the first row of this block represents observations

in the subgroup with the smallest ATE, that are eligible for Medicaid and do not have a previous diabetes

diagnosis, with a membership of 10, 000 × 0.11 × 0.73 = 803. Because a decile is 1000 observations, we

expect 100% of observations to be column 1, and this is what we see in Figure B.2 (page 71; slightly different

due to sampling variability). The remaining four rows also contain percentages as we expect.

A natural follow-up is to ask whether we can group individuals using their entire ITE posterior distribution,

rather than a point summary, and Figure B.3 of these Supplementary Materials (on page 72) attempts to

answer this. Here we visualize one of the 100 datasets summarized in Figure B.2 (page 71), to move our

argument towards what we would expect in a real data analysis. To ease explanation, consider the top-most

plot marked age. The y-axis represents the subgroup-specific average age in years, and the x-axis represents

the subgroup-specific ATE (again measured on the risk-difference scale). A red dot represents a subgroup,

generated as described earlier: the 10, 000 posterior means are partitioned into deciles, and the average age

and average TE (taken as the average of the posterior mean ITEs within that decile) are plotted. Thus, we

expect ten red dots in this single plot. These red dots are clustered into four groups because, by design, there

are four true subgroups. The number of red dots in these clusters is, as with the columns Figure B.2 (page

71), proportional to the size of the true subgroup (e.g., the largest true subgroup has an ATE of −0.08).

The posterior means of Figure B.3 are somewhat redundant with Figure B.2; it is the gray dots that provide

the additional information on the full distribution of each observation’s ITE. To generate the values that these

gray dots represent, we applied the subgrouping process used on the posterior means (i.e., partitioned into

ten subgroups and calculated subgroup-specific averages) to each of the 1000 posterior draws, and plotted a

random subset of 100. We note that the same cutpoints were used to partition each posterior draw; namely,

the deciles that were used to partition the posterior means. Thus from this figure we are able to visualize the
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posterior means in red, in addition to some measure of uncertainty in gray.

By design, age is not an EM, and does not present itself as such; its distribution remains approximately

constant as the subgroup-specific treatment effect increases. However diabetes is an EM, where its presence

is associated with a larger treatment effect, and we see this manifest as an upward trend within its plot.

We see analogous patterning in the plot forMedicaid eligibility. Interestingly, hypertension was not a priori

specified as an EM, but due to its positive correlation with diabetes (a known clinical phenomenon), displays

itself as one: the subgroup-specific ATE increases as the prevalence of hypertension increases.
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