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A p-adic Jacquet-Langlands Correspondence

Abstract

In this paper, we construct a candidate p-adic Jacquet-Langlands correspondence.

This is a correspondence between unitary continuous admissible representaitons of

GL
2

(Qp) valued in p-adic Banach spaces, and unitary continuous representations of

D⇥ valued in p-adic Banach spaces. Here, D is the quaternion algebra over Qp.

The characterizing properties that are shown are a local-global compatability and a

calculation of the locally algebraic vectors.

Erick Phillip Knight
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1. Introduction and Main Results

Let D/Qp be the unique quaternion algebra, and let E/Qp be a finite extension

that is “large enough”. Classical work of Jacquet and Langlands allows one to clas-

sify smooth representations of D⇥ in terms of smooth representations of GL
2

(Qp).

Recently, there has been a lot of interest in a di↵erent class of representations of

GL
2

(Qp), namely continuous unitary representations valued in Banach spaces over

E. The goal in this paper is to construct an analogue of the Jacquet-Langlands cor-

respondence for continuous unitary representations valued in E-Banach spaces. The

following theorem shows that there is an analogue of the classical theory, a “p-adic

Jacquet-Langlands correspondence.”

Theorem 1.0.1. Let ⇡ be a continuous unitary irreducible admissible representation

of GL
2

(Qp) in an E-Banach space. Then there is a continuous unitary representation

J(⇡) of D⇥ valued in an E-Banach space.

The representation J(⇡) is constructed purely locally. The above theorem is vac-

uous without any properties of J(⇡), and the following theorems are meant to give

some characterizing properties of J(⇡).

Let �/Q be a division algebra such that �Qp = D and �R = M
2

(R). Let G =

�⇥ as an algebraic group over Q and SG be the set of all primes ` 6= p such that

G(Q`) 6= GL
2

(Q`). We will assume from here on out that ` 6⌘ ±1 (mod p) for all

` 2 SG. Now, let S0

be a finite set of primes disjoint from SG, and let S = S
0

[ {p}.

Finally, let GS0 =
Y
`2S0

G(Q`). Choose a maximal compact KS
0

⇢ G(AS
f ), and to any

compact open subgroup Kp ⇥ KS0 ⇢ D⇥ ⇥ GS0 , we can associate a Shimura curve

ShKpKS0K
S
0
/Q. Following Emerton, define the completed cohomology as follows:
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Definition 1.0.2 (Completed Cohomology). The completed cohomology for G, de-

noted Ĥ1

OE ,G(KS0) is defined as

Ĥ1

OE ,G(KS0) =

 
lim
 �
s

lim
�!
Kp

H1

ét(ShKpKS0K
S
0 ,Q,OE/$

s
E)

!
.

Also, let Ĥ1

E,G(KS0) = Ĥ1

OE ,G(KS0)⌦OE E. This is a Banach space over E with unit

ball given by Ĥ1

OE ,G(KS0). Finally, let

Ĥ1

⇤,G,S = lim
�!

Ĥ1

⇤,G(KS0)

where ⇤ is either OE or E, and the limit is taken over all compact open subgroups

KS0 ⇢ GS0.

There are commuting unitary actions of GQ, D⇥, and a Hecke algebra T on

Ĥ1

⇤,G(KS0) and Ĥ1

⇤,G,S. Additionally, there is an action of GS0 on Ĥ1

⇤,G,S that com-

mutes with all of the aforementioned actions. Let ⇢ be a 2-dimensional continuous

representation of GQ that is unramified at all places ` 62 S [ SG. Assume further

that ⇢ is promodular (conjecturally odd), that ⇢|GQ`
= ( � ⇤

�✏ ) for all ` 2 SG (✏ is the

cyclotomic character, and ⇤ is non-zero in this case), and that ⇢|GQp
is neither

� � ⇤
�✏

�
,

( � ⇤
� ), nor (

�1
�2 ) (where � is any mod p character of GQp , ✏ is the mod p cyclotomic

character, and ⇤ may be zero or nonzero in this case). Let ⇡LL(⇢|GQ`
) be the repre-

sentation of GL
2

(Q`) associated to ⇢|GQ`
under the local Langlands correspondence

(see appendix A for a precise definition of ⇡LL).

Theorem 1.0.3. With the above assumptions on ⇢, there is a representation J(B(⇢|GQp
))

such that

HomGQ(⇢, Ĥ
1

E,G,S) ⇠= J(B(⇢|GQp
))⌦

O
`2S0

⇡LL(⇢|Q`
).

Here, B(⇢|GQp
) is the p-adic Langlands correspondence that is discussed in appendix

[? ]. The key point of this theorem is that the representation J(B(⇢|GQp
)) depends
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only on the local Galois representation ⇢|GQp
. The fact that it doesn’t depend on

all of ⇢, or even any of the choices made in constructing G is the main thrust of

the theorem. Additionally, in the above isomorphism, there is an action of T on

HomGQp
(⇢, Ĥ1

E,G,S). Importantly in the above theorem, one has that T` acts via

tr(Frob`|⇢); this is a compatability for the Hecke algebra.

A natural question to ask is “What are the locally algebraic vectors in J(B(⇢|GQp
))?”

More precisely, assume that ⇢|GQp
is potentially semistable with distinct Hodge-Tate

weights w
1

< w
2

. Then one can construct a Weil-Deligne represntation WD⇢|GQp
.

If WD⇢|GQp
is indecomposable, then there is an associated smooth admissible D⇥

representation Sm given by using the local Langlands and Jacquet-Langlands corre-

spondences on WD⇢|GQp
. Additionally, the weights w

1

+ 1 and w
2

are weights for an

algebraic representation Alg of D⇥. This construction is similar to the one performed

in [4].

Theorem 1.0.4. Let ⇢ be as in Theorem 1.0.3. If the assumptions on ⇢|GQp
in the

above construction hold, then the space of locally algebraic vectors J(B(⇢|GQp
))alg ⇠=

Sm⌦ Alg. If one of the assumptions does not hold, then J(B(⇢|GQp
))alg ⇠= 0.

Some more interesting notes about the locally algebraic vectors: following through

the construction of the locally algebraic vectors, one sees that there are no locally

algebraic vectors for crystalline representations. Additionally, the locally algebraic

vectors are still finite dimensional for a fixed representation J(B(⇢|GQp
)), and so they

are closed in J(B(⇢|GQp
)). However, J(B(⇢|GQp

)) is believed to be infinite dimensional

for all ⇢. Thus, even when the associated Galois representation ⇢|GQp
is irreducible,

one should have a proper closed subrepresentation of J(B(⇢|GQp
)). Thus, one would

not expect a statement like J(⇡) is “as irreducible as” ⇡ to be true. This also suggests

that J(B(⇢|GQp
)) is not directly characterized by the space of locally algebraic vectors

together with a continuous unitary admissible norm on said space.
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There is an auxillary group G/Q that arises in the proof of these theorems. This

group is an inner form of G with invariants at p and 1 swapped. Since G(Ap
f ) =

G(Ap
f ), one can identify subgroups of G(Ap

f ) with subgroups of G(Ap
f ). Continuous

functions on the double coset space XKS0
:= G(Q)\G(Af )/KS0K

S

0

valued in E gives

an analogue of the completed cohomology of G for G.

The idea behind the proof of Theorem 1.0.3 is as follows: there is a p-adic analytic

uniformization (called the Cerednik-Drinfel’d uniformization) ⌃n⇥XKS0
/GL

2

(Qp) ⇠=

ShKn
p KS0K

S
0 ,Cp

, where ⌃n is a cover of the Drinfel’d upper half plane. The plan is thus

to first analyze the space of continuous functions C0(XKS0
, E), and then apply that

knowledge to understanding what the uniformization says about completed cohomol-

ogy. It turns out that the Hecke algebra T will act on the space of automorphic forms

for G, and so the first step is to describe this space as a T[GL
2

(Qp)]-module. This can

be done by an adaptation of the main argument in [15]. There is a spectral sequence

relating the cohomology of ShKn
p KS0K

S
0
to that of ⌃n and XKS0

, and analysis of this

spectral sequence will give Theorem 1.0.3.

As for Theorem 1.0.4, the argument is an application of the results of [14]. That

paper gives a spectral sequence relating the locally algebraic vectors to the coho-

mology of various local systems VW on ShKn
p KS0K

S
0
. Since the cohomology of these

local systems is well understood, the only thing that is needed to compute the locally

algebraic vectors is to perform an analysis of the spectral sequence.

There is a more general version of the above theorems. Let F/Q be a totally

real field with one place v/p. If ⇡ is a representation of GL
2

(Fv), then one can

construct a representation J 0(⇡) of D⇥
Fv

⇥ GFv . Again, this construction is purely

local and depends only on Fv and not on any other choices. Now, one considers a

unitary group G/F that is DFv at Fv, U(1, 1) at exactly one infinite place, and U(2)

at every other infinite place. There is a Shimura curve ShKvKv/F , and one may
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talk about Ĥ1

E,G(K
v), as before. Additionally, there is an auxiliary group G with

G(F ) = GL
2

(F ) that arises in the uniformization of ShKvKv .

In this situation, there is the following weaker version of Theorem 1.0.3:

Theorem 1.0.5. If ⇡ arises as a representation of G, then J 0(⇡) arises in Ĥ1

E,G(K
v).

The proof of Theorem 1.0.5 follows the same lines as the proof of Theorem 1.0.3,

with the weakening coming from the fact that there is no p-adic Langlands corre-

spondence to understand the space C0(XKS0
, E) as there was in the Fv = Qp case.

2. The Drinfel’d Upper Half Plane

This section will introduce the local object that will be important throughout the

rest of the paper. As a rigid space, the Drinfel’d upper half plane ⌦2

Fv
/dF ur

v (which

we will use ⌦ for for the rest of this section) is just P1\P1(Fv). This is naturally a

rigid analytic variety. For the rest of this article, ⌦ will be viewed as an adic space,

primarialy due to the theory of étale cohomology for adic spaces.

This exposition will be based on the exposition in [6]. The results that are discussed

were originally proved in [11], [13], and [12], and there is a vast generalization that

can be found in [20].

2.1. The Moduli Interpretation and the Level Covers. A result of Deligne

(which can be found in [12]) shows that ⌦2

Fv
has the structure of a formal scheme. To

define the moduli problem that ⌦̆ represents, recall that DFv is the unique quaternion

algebra over Fv, and let ⌫ : DFv ! Fv be the reduced norm. Let M be the functor

associating to an OdFur
v
-scheme S with $dFur

v
OS locally nilpotent (such a scheme S is

said to be in the category NilpO dFur
v

) the set of triples (G, ◆DFv
, %). Here G is a two-

dimensional formal OFv -module over S with Fv-height four, ◆DFv
: ODFv

,! End(X)

gives an action of ODFv
on G. ◆DFv

is assumed to satisfy the following condition: let

F 0
v be the unramified quadratic extension of Fv. Then OF 0v ,! ODFv

, so, via ◆DFv
, one
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gets an action of OS ⌦OFv
OF 0v on Lie(G). The assumption is that this makes Lie(G)

a locally free sheaf of rank one over OS ⌦OFv
OF 0v . Finally, over kFv , there is only

one two-dimensional formal OFv -module G of height 4 with an action of ODv . Then

% : G⇥S S ! G⇥kFv
S is chosen to be a quasi-isogeny of height zero.

Theorem 2.1.1 (Drinfel’d). The functor M is represented by the formal scheme ⌦̆.

There is a universal formal OFv -module G ! ⌦. Inside G is the universal $n
DFv

-

torsion, written G [$n
DFv

]. G [$n
DFv

] is a free ODFv
/$n

DFv
-module over ⌦ of rank one.

There are maps G [$n
DFv

] ,! G [$n+1

DFv
] and G [$n+1

DFv
] ⇣ G [$n

DFv
]. The first is the natu-

ral inclusion, and the second is multiplication by $DFv
. Let ⌃n = G [$n

DFv
]\G [$n�1

DFv
]

for n > 0. As a note, ⌃n is the first object in this paragraph that is not naturally

a formal scheme, as the removal of G [$n�1

DFv
] cannot be done integrally. Multiplica-

tion by $DFv
gives rise to maps ⌃n+1 ! ⌃n. We will let ⌃ = lim

 �
⌃n. The only

operation that will be done to ⌃ is taking cohomology, by which it is meant that

H i(⌃, ⇤) = lim
�!

H i(⌃n, ⇤).

2.2. Group Actions. There are three di↵erent groups that act on ⌃. The first

group that will be discussed is GL
2

(Fv). PGL
2

is the group of automorphisms of

P1, and so there is a natural action of GL
2

on P1. Since P1(Fv) is a closed Fv-orbit

of the action of GL
2

(Fv), the action of GL
2

(Fv) on P1 preserves ⌦. This action,

however, doesn’t have a moduli theoretic interpretation, and so will not naturally

extend to G (and thus to ⌃n). If one twists the action by g ! Frob
vFv (det(g))
Fv

, where

FrobFv : dF ur
v ! dF ur

v is geometric Frobenius, one gets another action of GL
2

(Fv) on ⌦.

This action doesn’t preserve the structure morphism ⌦ ! dF ur
v . This is well-defined,

as the original action did preserve the structure morphism, and so one has that,

letting · be used for the original GL
2

(Fv)-action on ⌦, FrobFv(g · x) = g · FrobFv(x)

and thus g
1

· FrobvFv (det(g1))
Fv

(g
2

· FrobvFv (det(g2))
Fv

(x)) = g
1

· g
2

· FrobvFv (det(g1g2))
Fv

(x). This
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new action has a moduli interpretation ([11] and [13] have the details), and thus

extends to G (and thus to ⌃n and thus to ⌃).

Since ⌃n ! ⌦ is an (ODFv
/$n

DFv
)⇥-torsor, one gets an action of O⇥

DFv
on ⌃n. It is

straightforward to see that the maps ⌃n ! ⌃m are O⇥
DFv

-equivariant, and thus one has

an action of O⇥
DFv

on ⌃. If (xn) is a sequence of points xn 2 ⌃n with $DFv
xn = xn�1

(i.e. (xn) is a point of ⌃), then it is natural to define$DFv
·(xn) = (xn). But, as before,

the “correct” action is not this one, but rather this one twisted by d 7! FrobvF (⌫(d))
F .

This action of D⇥
Fv

commutes with the aforementioned action of GL
2

(Fv), giving rise

to an action of GL
2

(Fv)⇥D⇥ on ⌃.

While the action of GL
2

(F )⇥D⇥ doesn’t respect the structure morphism ⌃ ! dF ur
v ,

it does respect the the morphism ⌃ ! dF ur
v ! Fv. Thus, one gets an action of

GFv on H i(Res
dFur
v

Fv
(⌃) ⇥Fv Cp, ⇤) that automatically commutes with the action of

GL
2

(Fv) ⇥ D⇥
Fv

(Here, Res is standard restriction of scalars). Going a little deeper

into this action, one has that Res
dFur
v

Fv
(⌃)⇥Fv Cp is the union of Ẑ copies of ⌃⇥dFur

v
Cp,

with an element g 2 GFv shifting the index based on the image of g in GkFv
= Frob

ˆZ
Fv
.

For (g, d) 2 GL
2

(Fv)⇥D⇥, choose a w 2 GFv such that w|GkFv
= Frob

vFv (det(g)⌫(d))
Fv

.

From the definition of the above action, one has (g, d) : ⌃n⇥dFur
v
Cp !

⇣
⌃n ⇥dFur

v
Cp

⌘w
is an isomorphism (Here, if X is an adic space over Cp, Xw is X twisted by w). In

summary, one has the following:

Theorem 2.2.1. The group GL
2

(Fv)⇥D⇥
Fv

⇥GFv acts on Res
dFur
v

Fv
(⌃)⇥Fv Cp.

2.3. Connected Components. This version of the space ⌃n is not geometrically

connected. In order to describe the connected components, we need to introduce a

group P ⇢ GL
2

(Fv) ⇥ D⇥
Fv

⇥ GFv defined by P = {(m, d, g) 2 GL
2

(Fv) ⇥ D⇥
Fv

⇥

GFv |det(m)⌫(d)cl(g)�1 2 O⇥
Fv

}. Here, cl is the Artin map of local class field theory,

normalized so that geometric Frobenius goes to an element of valuation 1. The goal

will be to describe the connected components not just as a set, but also with an

action of P . Moreover, P is the largest subgroup of GL
2

(Fv)⇥D⇥
Fv

⇥GFv that could
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reasonably be expected to act on the connected components of ⌃n, as this is the

subgroup that preserves the morphism ⌃n ! dF ur
v .

Proposition 2.3.1. There is an identification

lim
 �
n

⇡
0

(⌃n ⇥dFur
v

Cp) ⇠= O⇥
Fv
.

For (m, d, g) 2 P , the action on lim
 �

⇡
0

(⌃n) is given by multiplication by the number

det(m)⌫(d)cl(g)�1 (which is guarenteed to be a unit due to the definition of P ).

The proof of this result will be outlined at the end of the next section.

3. The Global Picture

Choose a number field F/Q such that F is totally real, with real places v1,1, . . . , v1,d,

and there is exactly one plave v over p. If F 6= Q, we need to propertly define

the unitary group mentioned in the introduction. Choose a CM extension L/F

such that v splits as v
1

v
2

in L. Then choose a quaternion algebra �/L such that

�(Lv1) = �(Lv2) = DFv , and such that there is an involution i of the second kind

with signature (1, 1) at v1,1 and (2, 0) at v1,j for j > 1. Then G = {d 2 �|d · i(d) =

1}, an algebraic group over F . The assumptions listed imply that G(Fv) = D⇥
Fv
,

G(Fv1,1) = U(1, 1), and G(Fv1,j) = U(2) for j > 1. If K ⇢ G(AF,f ) is a compact

open subgroup, then there is a unitary Shimura curve ShK/L. It will be convienent

to define Kn
v = {d 2 O⇥

DFv
|d ⌘ 1 (mod $n

DFv
)} and to choose K = Kn

vK
v with Kv

a compact open subgroup of G(Av
F,f ). The goal of this section is to give a p-adic

analytic uniformization of ShKn
v K

v .

3.1. The Group G. To that end, we will introduce another group G over F . If

F = Q, let �/Q be the division algebra that has the same invariants as � away

from p and 1, and is now M
2

(Qp) at p and Hamilton’s quaternions H at 1. Define

G = �
⇥
as an algebraic group over Q. If F 6= Q, this group is an inner form of G
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that is isomorphic to G away from v and v1,1, is GL
2

at v, and U(2) at v1,1. Visibly,

one may identify G(Av
F,f )

⇠= G(Av
F,f ) in both cases. Choose an isomorphism that

comes from an algebra anti-isomorphism of the underlyling algebras. Then one may

identify Kv with a subgroup K
v
in G(Av

F,f ).

The theory of automorphic forms for G is related to the double coset spaces

G(F )\G(AF,f )/Kf where Kf is a compact open subgroup of G(AF,f ). These spaces

are finite sets of points which are sometimes called “Hida varieties.” In this paper,

the spaces XK
v := G(F )\G(AF,f )/K

v
will also be relevant. This space is a compact

GL
2

(Fv)-set and functions on this space will come from automorphic forms with any

level at p. Additionally, XK
v breaks up into finitely many orbits under the GL

2

(Fv)

action. The orbits are parameterized by the finite set G(F )\G(Av
F,f )/K

v
, and if

one chooses a set of double coset representatives gi, these orbits are of the form

�i\GL
2

(Fv)gi, where �i = {� 2 G(F )|gi�g�1

i 2 K
v} (inclusion is under the natural

map from G(F ) ! G(Av
F,f )). The �is are discrete cocompact subgroups of GL

2

(Fv).

3.2. C̆erednik-Drinfel’d Uniformization. The main result is the following:

Theorem 3.2.1 (C̆erednik-Drinfel’d Uniformization). With notation as above, there

is an isomorphism

(ShKvKn
v
⇥F Cp)

an ⇠=
⇣⇣

Res
dFur
v

Fv
⌃n ⇥Fv Cp

⌘
⇥XK

v

⌘
/GL

2

(Fv).

A few remarks are in order. Since there is a decomposition XK
v =

`
�i\GL

2

(Fv),

the right hand side of the isomorphism may be written as
`

�i\
⇣
Res

dFv
ur

Fv
⌃n ⇥Fv Cp

⌘
.

Additionally, if �0
i = �i\{g 2 GL

2

(Fv)|det(g) 2 O⇥
Fv

} and ni = [�i/�0
i, vFv(F

⇥
v )], then

there is an isomorphism �i\
⇣
Res

dFv
ur

Fv
⌃n ⇥Fv Cp

⌘
⇠=
`ni�1

j=0

⇣
�0
i\(⌃n ⇥ dFv

ur Cp)
⌘
Frob

j
Fv
.

In order to give a GFv action on
`ni�1

j=0

⇣
�0
i\(⌃n ⇥ dFv

ur Cp)
⌘
Frob

j
Fv
, one can give a

model of
`ni�1

j=0

(�0
i\⌃n)Frob

j
Fv over Fv. One thus needs to give a FrobFv -semilinear

map ' :
`ni�1

j=0

(�0
i\⌃n)Frob

j
Fv !

`ni�1

j=0

(�0
i\⌃n)Frob

j
Fv . If j < ni � 1, then define
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' : (�0
i\⌃n)Frob

j
Fv ! (�0

i\⌃n)Frob
j+1
Fv to just be Frobenius. If j = n

0

� 1, choose g 2 �i

such that vFv(det(g)) = ni, and define ' : (�0
i\⌃n)Frob

n�1
Fv ! (�0

i\⌃n) to be g�1·FrobFv .

It is easy to see that this is isomorphic to �i\Res
dFv

ur

Fv
⌃n over Fv.

Additionally, there are Hecke operators acting on both the Shimura curve, and the

set XK
v . The above isomorphism is an isomorphism of analytic varieties, together

with an action of GFv and of the Hecke operators. The action of all of GQ or GL in

the F 6= Q case is not completely lost, as one must have that there is compatability

between the Hecke operators and Galois representation.

The C̆erednik-Drinfel’d uniformization is what is needed to prove proposition 2.3.1,

which describes the connected components of ⌃n. The main idea is to use the reci-

procity law for Shimura varieties to describe the connected components of ShKvKn
v
.

Then, the C̆erednik-Drinfel’d uniforimzation lets you relate the connected compo-

nents of ShKvKn
v
to those of ⌃n and XK

v , and this gives the result. A full proof may

be found in [2].

4. Local-Global Compatibility for G over Q

Let S
0

be a finite set of places of F not containing v nor any infinte place, nor

any place where G is nonsplit. The goal of this section is to understand the space

XKS0
:= G(F )\G(AF,f )/KS0K

S

0

. It is a well-known fact that XKS0
is a compact

GL
2

(Fv)-set, which is equivalent to the pair of facts that XKS0
/Kv is finite for all

compact open subgroups Kv ⇢ GL
2

(Fv) and that XKS0
= lim

 �
Kv

XKS0
/Kv. The ideas in

this section are inspired heavily by chapters 5 and 6 of [15]. Additionally, [7] and [8]

are invaluable as references, especially to highlight some of the simplifications that

arise in this section.
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4.1. The Completed H0 for XKS0
. The main object of study in this section is the

Banach space

Ĥ0

E,G
(KS0) :=

 
lim
 �
s

lim
�!
Kv

H0(XKS0
/Kv,OE/$

s
E)

!
⌦OE E,

and its cousin Ĥ0

E,G,S
= lim

�!
KS0

Ĥ0

E,G
(KS0).

Proposition 4.1.1. Ĥ0

E,G
(KS0) = C0

E(XKS0
), where C0

E(XKS0
) is the space of con-

tinuous E-valued functions on XKS0
endowed with the sup-norm.

Proof. Let f : XKS0
! E be a continuous function. Since XKS0

is compact, there is

an integer i such that f factors as XKS0

f 0�! $i
EOE ,! E. Then f is continuous if

and only if f 0 is continuous, and the latter is equivalent to the functions f 0
j : XKS0

!

$i
EOE ! $i

EOE/$
i+j
E OE being continuous for all j.

The set $i
EOE/$

i+j
E OE is discrete, so f 0

j is continuous if and only if it is locally

constant. While local constancy is with respect to the natural topology of XKS0
, a

basis of open neighborhoods of a point x is just given by the translates x · Kv for a

basis of compact open subgroups Kv ⇢ G(Fv). That is to say, f 0
j is locally constant

if and only if for all x 2 XKS0
there is a compact open subgroup Kv depending on x

such that f 0
j is constant on x ·Kv. However, by compactness of XKS0

, we may choose

the subgroup Kp so that it doesn’t depend on x. Thus, f is continuous if and only if

f 0
j is smooth for all j.

The above process starts from an element of C0

E(XKS0
) and produces an element

of Ĥ0

E,G
(KS0). Moreover the process is clearly reversible due to all the equivalences

in the proof, which shows the desired equaility. ⇤

4.2. Completed Hecke Algebras. For a fixed Kv ⇢ G(Fv), there is a Hecke alge-

bra TG(KS0Kv). This is just the OE-subalgebra of End(H0(XKS0
/Kv, E)) generated

by the Hecke operators Tw and Sw for w 62 S [ SG. If K
0
v ⇢ Kv, then there is a

natural surjection TG(KS0K
0
v) ! TG(KS0Kv). Define the completed Hecke algebra
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TG(KS0) = lim
 �
Kv

TG(KS0Kv). Giving the algebras TG(KS0Kv) the $E-adic topology,

TG(KS0) inherits the inverse limit topology from those topolgies.

It is a theorem that TG(KS0) is a semilocal ring; i.e. TG(KS0) =
Q

m TG(KS0)m

where the product runs over all maximal ideals m ⇢ TG(KS0). Well-known results

about TG(KS0) imply that the maximal ideals of TG(KS0) are in correspondence with

the finite set of G-modular kE-valued representations ⇢ of GF , with a G-modular lift

⇢ that is unramified outside of S [ SG, with ramification at primes in S
0

specified by

the level KS0 and with ⇢|GFw
being an extension of an unramified character � by �✏

for all w 2 SG. However, it is possible that such a representation is decomposable

when restricted to GFw and reduced mod $E even though it is indecomposable in

OE. On the other hand, if ⇢|GFw
is a nonzero extension of � by �✏, then the following

lemma tells you that any (GL
2

-)modular lift of ⇢ will be G-modular.

Lemma 4.2.1. Assume that #(kw) 6⌘ ±1 (mod p), and let � be a mod $E character

of GFw . If ⇢w : GFw ! GL
2

(kE) is a nontrivial extension of � by �✏, then any

⇢w : GFw ! GL
2

(OE) with ⇢w⌦OE kE = ⇢w must be an extension of � by �✏ for some

unramified character �.

Proof. Let ⇢w and ⇢w be as above. Notice that IFw must act on ⇢w through {( 1 ⇤
1

)

(mod $E)}, which is a pro-p group. Thus, IFw acts through the Zp(1) factor in tame

inertia. Let � be a topological generator of Zp(1). First, we need to show that � does

not act semisimply on ⇢w.

If � acted semisimply on ⇢`, then one must have two eigenspaces generated by

vectors e
1

and e
2

, and with eigenvalues ⇣
1

and ⇣
2

. If Frobw does not switch the

eigenspaces, then the action of GFw on ⇢w and thus ⇢w must be through the abelian

quotient of GFw . But this would imply that ✏ is the trivial character and thus #(kw) ⌘

1 (mod p). Thus, Frobw must switch the eigenspaces.
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Now, using the fact that Frob`�Frob
�1

` = �`, one gets that ⇣#(kw)

1

e
1

= �#(kw)e
1

=

Frobw�Frob
�1

w e
1

= ⇣
2

e
1

, and similarly ⇣
#(kw)

2

e
2

= ⇣
1

e
2

. Thus, ⇣#(kw)

2�1

1

= 1. Since ⇣
1

is a p-power root of unity, one has #(kw)2 � 1 ⌘ 1 (mod p), a contradiction.

Since � does not act semisimply, ⇢` must be an extension of � by �✏ for some

character �. Since � is unramified and #(kw) 6⌘ 1 (mod p), O⇥
Fw

has no quotients

onto a p-group. Thus, � must also be unramified, proving the lemma. ⇤

The above lemma is an incredibly simple case of “Jacquet-Langlands in Families,”

an analogue of Emerton and Helm’s work on local Langlands in families for represen-

tations of quaternion algebras. This lemma forces that one has that the set of places

SG contains no places v with #(kv) ⌘ ±1 (mod p). From now on, we will assume

this condition. The nonexistence of this work in full generality is the obstruction to

letting there be level at the places in SG.

With the above discussion in mind, assume that ⇢ is modular, absolutely irre-

ducible, unramified outside of S [ SG, and has ⇢|GFw
=
�
� ⇤

�✏

�
with ⇤ nonzero for all

w 2 SG. If ⇢ corresponds to m, write TG,⇢(KS0) = TG(KS0)m. There is a deformation

⇢(KS0) over TG,⇢ such that tr(Frobw|⇢(KS0 )
) = Tw and det(Frobw|⇢(KS0 )

) = #(kw)Sw.

for all w 62 S [ SG. Since ⇢ is absolutely irreducible, there is a ring R⇢,S[SG param-

eterizing lifts of ⇢ unramified outside of S, together with a universal deformation

⇢u/R⇢,S[SG . One has a map from R⇢,S[SG ! TG,⇢(KS0). This map is surjective, as

TG,⇢(KS0) is topologically generated by the T` and S`s, which must be the image of

tr(Frob`|⇢u) and `�1det(Frob`|⇢u) respectively.

IfK
0
S0

⇢ KS0 , then one has a natural map from TG,⇢(K
0
S0
) ! TG,⇢(KS0). Moreover,

the map is surjective, as the following diagram commutes and all other maps are
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surjective:

R⇢,S[SG

TG,⇢(K
0
S0
)

?
- TG,⇢(KS0).

-

Any modular lift of ⇢ unramified outside of S [ SG will have conductor away from

{p} [ SG dividing some integer N⇢,S0 by results of Carayol and Livné in [5] and [19].

This implies that ifKS0 is su�ceintly small (for example, havingKS0 contained in the

principal congruence subgroup mod N⇢,S0 is su�cient), then the map TG,⇢(K
0
S0
) !

TG,⇢(KS0) is an isomorphism. Define TG,⇢,S = lim
 �
KS0

TG,⇢(KS0), and notice that the

transition maps are eventually isomorphisms. Thus, one has that TG,⇢,S is a complete

noetherian OE algebra. Moreover, there is a surjection from R⇢,S[SG ! TG,⇢,S, which

gives rise to a universal modular representation ⇢mS : GF ! GL
2

(TG,⇢,S). The char-

acterizing property of ⇢mS is that Tw = tr(Frobw|⇢mS ) and #(kw)Sw = det(Frobw|⇢mS ).

We will say KS0 is allowable if TG,⇢,S ! TG(KS0)⇢ is an isomorphism.

Since Ĥ0

OE ,G
(KS0) is a TG(KS0)-module, one may localize at m and obtain a

TG,⇢(KS0)-module, denoted Ĥ0

OE ,G,⇢
(KS0). Passing to the inverse limit over TG,⇢(KS0),

one gets a TG,⇢,S-module denoted Ĥ0

OE ,G,⇢,S
. This should be thought of as the ⇢-part

of Ĥ0

OE ,G,S
.

4.3. Local-Global Compatability. At this point, the discussion will focus on the

F = Q case, as everything that will be said relies on the existence of a p-adic Lang-

lands correspondence for GL
2

(Qp).

Let ⇡m
S = B(⇢mS |GQp

), the admissible unitary representation of GL
2

(Qp) over TG,⇢,S

given by the p-adic Langlands correspondence. We will let ⇡m
S be ⇡m

S ⌦TG,⇢,S
TG,⇢,S/m,

the mod p representation that ⇡m
S is a deformation of. Additionally, there is a rep-

resentation ⇡S0(⇢
m
S ) of GS0 , which is a smooth coadmissible representation of GS0
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over TG,⇢,S (see Appendix [? ] for an overview of the theory of local Langlands in

families). Recall that ⇡m
S

f
⌦TG,⇢,S

⇡S0(⇢
m
S ) := lim

�!
KS0

⇡m
S ⌦̂TG,⇢,S

⇡S0(⇢
m
S )

KS0 .

Theorem 4.3.1. There is an isomorphism of TG,⇢,S-modules with an action of D⇥⇥

GS0:

⇡m
S

f
⌦TG,⇢,S

⇡S0(⇢
m
S )!̃Ĥ0

OE ,G,⇢,S
.

4.4. Proof of Theorem 4.3.1. Let X = Hom
GL2(Qp),TG,⇢,S

(⇡m
S , Ĥ

0

OE ,G,⇢,S
). There

is an action of GS0 on X. There is a natural evaluation map evX : ⇡m
S

f
⌦TG,⇢,S

X !

Ĥ0

OE ,G,⇢,S
, and if Y is a submodule of X then one may consider evY as well. These

maps will be the object of study for the rest of the section.

Say that a maximal prime p ⇢ TG,⇢,S[
1

p
] is weakly allowable if ⇢mS (p)|GQp

is crys-

talline with distinct Hodge-Tate weights, and allowable if it is irreducible as well.

While a direct proof that the allowable points are Zariski-dense in Spec(TG,⇢,S) would

be desirable, it is easier to show that the closure of the allowable points contains the

weakly allowable points and the weakly allowable points are dense in Spec(TG,⇢,S).

We will first determine the structure of the locally algebraic vectors in Ĥ0

E,G,⇢,S
.

Let W be an irreducible algebraic representation of GL
2

(Qp) and Kp be a compact

open subgroup of GL
2

(Qp). Then the W,Kp-algebraic vectors in Ĥ0

E,G,⇢,S
are the

image of the evaluation map

W ⌦E HomKp
(W, Ĥ0

E,G,⇢,S
) ! Ĥ0

E,G,⇢,S
.

The W -algebraic vectors are the union over all Kp of the W,Kp-algebraic vectors and

the Kp-algebraic vectors are the union over all W of the W,Kp-algebraic vectors.

Lemma 4.4.1. For KS0 su�ciently small, one has the following:

(1) Ĥ0

E,G
(KS0)

GL2(Zp)�alg
⇢ =

L
p Ĥ

0

E,G
(KS0)⇢[p]

GL2(Zp)�alg with the sum taken over

all weakly allowable primes p.

(2) The GL
2

(Zp)-algebraic vectors are dense in Ĥ0

E,G
(KS0)⇢.
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Proof. Let W be an algebraic representation of GL
2

(Qp). There is a local system

VW over XKS0
/Kp whose sections are H0(XKS0

/Kp,VW ) = {f : XKS0
! W |f(gk) =

k�1 · f(g) 8k 2 Kp}. Let H0(XKS0
,VW ) = lim

�!
Kp

H0(XKS0
/Kp,VW ). The space has

a decomposition H0(XKS0
,VW ) =

L
⇡ ⇡p ⌦ (⇡p

f )
KS0K

S
0 , where the sum is taken over

all automorphic representations ⇡ of G(A) with ⇡1 = W̌ (this makes sense after

choosing an embedding E ,! C).

Applying Corolloray 2.2.25 of [14], one sees that Homgl2(W, Ĥ0

E,G
(KS0))

la = H0(XKS0
,V

ˇW
).

Thus, one has Ĥ0

E,G
(KS0)

alg = �W,⇡W ⌦ ⇡p ⌦ (⇡p
f )

KS0K
S
0 , the sum being taken over

all algebraic representations W of GL
2

(Qp) and automorphic representations ⇡ of

G(A) with ⇡1 = W . Comparing Hecke actions, one sees that if ⇡ corresponds to a

representation ⇢(p), then the image of the ⇡-part of the above decomposition must be

p-torsion. The GL
2

(Zp)-algebraic vectors arise when ⇡p has a GL
2

(Zp) fixed vector.

That happens only when p is crystalline with distinct Hodge-Tate weights, namely

when p is allowable. This shows part 1 of the lemma.

A few words about the results in [14]. The paper works in a large amount of gen-

erality. For any reductive group over a number field G/F and place v|p of F , there is

a locally symmetric space Y (KvKv) = G(Q)\G(AF )/K�
1KvKv. There are local sys-

tems VW for any algebraic representation W of G(Fv), and then the paper constructs

a spectral sequence with Ei,j
2

-page given by Extig(W̌ , Ĥ i
E(Y (Kv))la) ) H i+j(VW ).

Intuitively, this should be thought of as coming from the natural evaluation map

W ⌦ W̌ ! E, which will give rise to a map from H i(VW , Kv) ⌦W ! Ĥ i
E(Y (Kv)).

After using adjoint functors, this map is the edge map of the spectral sequence men-

tioned before. Finally, the spectral sequence degenerates instantly in this case, as

there are no H is for i � 1.

For part 2, we claim that Ĥ0

OE/$s
E ,G

(KS0) is an injective OE/$
s
E[Kp]-module. To

that end, let M be a smooth finitely generated OE/$
s
E[Kp] module. Define M_ =

HomOE/$s
E
(M,OE/$

s
E), the Pontrjagin dual ofM . IfKS0 is su�ciently small, there is



17

a local system M_ overXKS0
/Kp. Then one has HomOE/$s

E [Kp]
(M, Ĥ0

OE/$s
E ,G

(KS0)) =

H0(XKS0
/Kp,M_). Thus, if 0 ! M

1

! M
2

! M
3

! 0 is a short exact se-

quence of smooth finitely generated OE/$
s
E[Kp]-modules, there is a short exact

sequence of local systems 0 ! M_
3

! M_
2

! M_
1

! 0. This gives rise to

a long exact sequence on cohomology, but there are no H1s. Thus, the functor

M ! HomOE/$s
E [Kp]

(M, Ĥ0

OE/$s
E ,G

(KS0)) is exact, so Ĥ0

OE/$s
E ,G

(KS0) is an injective

OE/$
s
E[Kp]-module.

The injectivity of Ĥ0

OE/$s
E ,G

(KS0) as an OE/$
s
E[Kp]-module is equivalent to the

projectivity of Ĥ0

OE/$s
E ,G

(KS0)
_ as an OE/$

s
E[[Kp]]-module. It is well known that

OE/$
s
E[[Kp]] is a (noncommutative) noetherian local ring if Kp is a pro-p group.

Thus, one has that Ĥ0

OE/$s
E ,G

(KS0)
_ = (OE/$

s
E[[Kp]])rs for an rs that depends on s.

Consequently, Ĥ0

OE/$s
E ,G

(KS0) ⇠= C0(Kp,OE/$
s
E)

rs . Tensoring both sides with kE,

one gets Ĥ0

kE ,G
(KS0) = C0(Kp, kE)rs . The first side is visibly independent of s and so

the second side must be too. Letting r = rs, one gets that Ĥ0

OE ,G
(KS0) = C(Kp,OE)r,

i.e. Ĥ0

OE ,G
(KS0)

_ = OE[[Kp]]r, a free OE[[Kp]]-module.

Now, choose Kp to be a su�ciently small (pro-p and normal works) subgroup

of GL
2

(Zp). The natural map between HomE⌦(OE [[GL2(Zp)]])(Ĥ
0

OE/$s
E ,G

(KS0)
_, ⇤) and

HomE⌦(OE [[Kp]])
(Ĥ0

OE/$s
E ,G

(KS0)
_, ⇤)GL2(Zp)/Kp is an isomorphism. However, the sec-

ond functor is exact, as Ĥ0

OE/$s
E ,G

(KS0)
_ is free as an E ⌦ (OE[[Kp]])-module and

taking invariants of a finite group is an exact functor in characteristic 0. Thus,

Ĥ0

OE/$s
E ,G

(KS0)
_ is projective as an E ⌦ (OE[[GL

2

(Zp)]])-module. Since projectivity

is equivalent to being a summand of a free module, and taking duals, one gets that

Ĥ0

OE/$s
E ,G

(KS0) is a summand of C(GL
2

(Zp), E)t for some t. Since Ĥ0

OE/$s
E ,G

(KS0)⇢

is a summand of Ĥ0

OE/$s
E ,G

(KS0), to prove part 2, it is su�cient to show that

the GL
2

(Zp)-algebraic vectors are dense in C(GL
2

(Zp), E). However, the GL
2

(Zp)-

algebraic vectors in C(GL
2

(Zp), E) are the polynomial functions, and the theory of
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Mahler expansions shows that polynomials are dense in the space of continuous func-

tions. Thus, part 2 holds. ⇤

Corollary 4.4.2. The allowable points are Zariski-dense in Spec(TG,⇢,S).

Proof. Let t 2 \pp, the intersection being taken over all weakly allowable points.

Then one has that t · v = 0 for all v 2 (Ĥ0

E,G
(KS0)⇢)

GL2(Zp)�alg. Thus, by the

above lemma, one has t · Ĥ0

E,G(KS0)⇢ = 0. If KS0 is su�ciently small, one has that

TG,⇢,S = TG(KS0)⇢ and since the action of TG(KS0)⇢ on Ĥ0

E,G
(KS0)⇢ is faithful, t = 0.

This implies that the weakly allowable points are Zariski-dense in Spec(TG,⇢,S).

Proposition 5.4.9 in [15] shows that the set of allowable points are dense in the set

of weakly allowable points, completing the proof of the corollary. ⇤

For a maximal prime p ⇢ TG,⇢,S[
1

p
], define M(p) to be the colsure of Ĥ0

E,G,⇢,S
[p]alg

in Ĥ0

E,G,⇢,S
[p]. If p is an allowable prime, then one has that

Ĥ0

E,G,⇢,S
[p]alg = BS(⇢mS (p)|GQp

)⌦
O
`2S0

⇡LL(⇢
m
S (p)|GQ`

),

where BS(⇢mS (p)|GQp
) is the locally algebriac representation defined in [4]. The sem-

inal result of Berger and Breuil in [1] shows that for allowable points, ⇡m
S (p) is the

universal unitary completion of BS(⇢mS (p)|GQp
). Thus, taking the M(p)KS0 , one gets

a complete Banach space that contains BS(⇢mS (p)|GQp
) ⌦

 O
`2S0

⇡LL(⇢
m
S (p)|GQ`

)

!KS0

as a dense subspace. After taking the limit over KS0 , one gets

M(p) = ⇡m
S (p)⌦

O
`2S0

⇡LL(⇢
m
S (p)|GQ`

).
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At this point, We are in a position to compute (X ⌦ E)[p]. Using the fact that

⇡m
S (p) is the universal unitary completion of BS(⇢mS (p)|GQp

), one gets

(X ⌦ E)[p] = Hom
GL2(Qp)(⇡

m
S (p), Ĥ

0

E,G,⇢,S
[p])

= Hom
GL2(Qp)(BS(⇢mS (p)|GQp

), Ĥ0

E,G,⇢,S
[p])

= Hom
GL2(Qp)(BS(⇢mS (p)|GQp

), Ĥ0

E,G,⇢,S
[p]alg)

= Hom
GL2(Qp)(⇡

m
S (p),M(p))

=
O
`2S0

⇡LL(⇢
m
S (p)|GQ`

)

From the above chain, it is visible that evX : ⇡m
S (p)⌦

N
`2S0

⇡LL(⇢mS (p)|GQ`
) ! M(p)

is an isomoprphism.

Recall the following proposition from [15]:

Proposition 4.4.3. Let Y be a saturated coadmissible TG,⇢,S[GS0 ]-submodule of X.

Then the following are equivlant:

(1) Y is a faithful TG,⇢,S-module.

(2) For all allowable KS0, Y
KS0 is a faithful TG,⇢,S-module.

(3) For all allowable primes p, the inclusion Y [p] ,! X[p] is an isomorphism.

(4) For all allowable primes p and allowable levels KS0, the inclusion Y KS0 [p] ,!

XKS0 [p] is an isomorphism.

(5) Y � Xctf , where Xctf is the maximal cotorsion free submodule of X as in

definition C.39 in [15].

Proof. The proof will be recalled here as well. It is immediate that 2) ) 1) and that

3) , 4). Thus, all that is needed for the equivalence of 1) through 4) is 1) ) 3) and

4) ) 2).
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The above description of X[p] shows that X[p] is an irreducible GS0-representation

for p an allowable prime. Thus, Y [p] 6= 0 if and only if Y [p] ,! X[p] is an isomorphism.

But Proposition C.36 of [15] shows that, if Y is faithful, then Y [p] 6= 0. Thus, 1) ) 3).

Similarly, if Y KS0 [p] ,! XKS0 [p] is an isomorphimsm for allowable levels KS0 and

allowable primes p, then one has that Y KS0 [p] 6= 0 for all allowable primes. Proposi-

tion C.22 of [15] implies that the allowable primes are in the cosupport of Y KS0 and

thus by Zariski density of allowable primes, one has that the cosupport of Y KS0 is

(0), i.e. Y is a faithful TG,⇢,S-module.

The final step is to show that 5) is equivalent to any of the other parts. To that end,

it is useful to show thatXctf is the unique saturated cotorsion-free faithful TG,⇢,S[GS0 ]-

submodule ofX. Proposition C.40 of [15] shows that, sinceX is a saturated cotorsion-

free faithful TG,⇢,S[GS0 ]-module, so is Xctf . Letting Y be a saturated cotorsion-free

faithful TG,⇢,S[GS0 ]-submodule of X, one has that the image of Y in X lies in Xctf ,

and by 3), Y [p] ,! Xctf [p] is an isomorphism. Proposition C.41 in [15] shows that

Y ,! Xctf is an isomorphism.

Thus, if Y is any saturated faithful TG,⇢,S[GS0 ]-submodule ofX, then Yctf is faithful

as well. Since Yctf is cotorsion-free, one must have that Yctf = Xctf and thus Y � Xctf .

This shows that 1) ) 5). Conversely, if Y � Xctf , then Y contains a faithful TG,⇢,S-

module and thus must be faithful itself, showing 5) ) 1). This completes the proof

of the proposition. ⇤

Proposition 4.4.4. Let Y be a saturated submodule of X that satisfies the equivalent

conditions of the above proposition. Then one has that evY,E is surjective.

Proof. We will show that ev
Y

KS0 ,E
: ⇡m

S ⌦ Y KS0 ! Ĥ0

E,G
(KS0)⇢ is surjective for any

allowable KS0 . This implies the result after taking the limit over all KS0 .

If p is a weakly allowable prime, then one has that Ĥ0

E,G,⇢,S
[p]alg is irreducible as

a GL
2

(Qp) ⇥ GS0-representation. Thus, in order to show that im(evY,E) contains
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Ĥ0

E,G,⇢,S
[p]alg, it is necessary and su�cent to show that it contains one locally alge-

braic vector. However, one has that Y is faithful as a TG,⇢,S-module, and so im(evY,E)

contains a Jordan-Hölder factor of ⇡m
S (p). If ⇢mS (p) is irreducible, then so is ⇡m

S (p)

and remarks made above show that im(evY,E) contains locally algebraic vectors in

the p-torsion. Otherwise, the other possible Jordan-Hölder factors are either a prin-

cipal series associated to locally algebraic characters, a twist of the Steinberg by a

locally algebraic character, or a locally algebraic character. “By hand” calculations

on all three of the possibilities show that they all have locally algebraic vectors,

and so the image of evY,E contains one (hence all) of the locally algebraic vectors in

Ĥ0

E,G,⇢,S
[p]. Taking KS0-invariants, one gets that the image of ev

Y
KS0 ,E

contains all

of the GL
2

(Zp)-algebraic vectors.

Thus, one has that the image of ev
Y

KS0 ,E
contains a dense subspace of Ĥ0

E,G
(KS0)⇢.

Lemma 3.1.16 in [15] implies that ⇡m
S ⌦̂TG,⇢,S

Y KS0 is an admissible representation of

GL
2

(Qp). Moreover, the finiteness of the class group of G implies that H0

OE ,G
(KS0)⇢

is admissible. Proposition 3.1.3 of Emerton shows that the image of evY,E is thus

closed, and so must be everything. ⇤

Lemma 4.4.5. The following are equivalent:

(1) evY is an isomorphism.

(2) Y is a faithful TG,⇢,S-module, and evY (m) : (Y/$E)[m]⌦kE ⇡m
S ! Ĥ0

E,G,⇢,S
[m]

is injective.

If either of these conditions holds, then Y = Xctf .

Proof. Assume first that evY is an isomorphism. Because Ĥ0

E,G,⇢,S
is a faithful TG,⇢,S-

module, Y must be as well. Moreover, since evY is an isomorphism, the associated

map mod $E is injective and this remains true when passing to m torsion. Thus,

1) ) 2).
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If evY (m) is injective, the lemma C.46 of [15] implies that evY is injective as

well, with saturated image. Lemma C.52 of [15] implies that Y must necessarily be

saturated inX. Since Y is faithful, Y satisfies the conditions of Proposition 4.4.3, and

thus one has that evY,E is surjective. But, as before, one has that the image of evY

is saturated, so evY,E is surjective if and only if evY is. Thus, evY is an isomorphism,

showing 2) ) 1).

Now assume that evY is an isomorphism. Since Y is faithful, Proposition 4.4.3

shows that Y � Xctf . Additionally, one has that Xctf/$EXctf ,! Y/$EY as Xctf is

saturated in X and thus Y . This remains injective when passing to m torsion, and so

one has that Xctf satisfies the conditions of the lemma. Consequently one has that

evXctf
is an isomorphism and so since evXctf

= evY � ◆Xctf ,Y , one has that ◆Xctf ,Y is

an isomorphism as well. That is, Y = Xctf . ⇤

A key point to make in the above lemma is that it does not prove that evXctf
is

an isomorphism unconditionally. It only proves that if there is a submodule Y ⇢ X

such that evY is an isomorphism, then Y = Xctf . Indeed, the proof that Xctf satifies

condition 2) in Lemma 4.4.5 needs that there is a Y such that Y does.

Now, we will recall another key result in [15]. Recall that a Serre weight is a

representation of GL
2

(Fp) over kE. Such a weight is of the form Syma(Std) ⌦ detb,

with 0  a  p � 1 and 0  b  p � 2. If V is a Serre weight, then V is a global

Serre weight for ⇢ if Hom
GL2(Zp)(V, Ĥ

1

E,G,⇢,S
) 6= 0. The set of such weights is denoted

W gl(⇢). A weight V of the form Syma(Std) ⌦ detb in W gl(⇢) is called good if either

a < p � 1 or a = p � 1 and detb is not in W gl(⇢). Notice that if V is not good,

then necessiarly detb is a global Serre weight for ⇢ and that is a good Serre weight,

so W gl(⇢) contains a good Serre weight.

Theorem 4.4.6. (1) W gl(⇢) ⇢ W (⇢|GQp
).
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(2) If V 2 W gl(⇢) is a good weight, there is an isomorphism of H(V )-modules

FS0

⇣
socH(V )

⇣
HomkE [GL2(Zp)](V,H

0

kE ,G,⇢,S
)[m]

⌘⌘
⇠= socH(V )

m(V, ⇢|GQp
).

(3) For any V 2 W gl(⇢), the GS0-representation Homk[GL2(Zp)](V,H
0

kE ,G,⇢,S
[m]) is

generic.

Part one of this theorem is one direction in the weight part of Serre’s conjecture,

part two is a mod p multiplicity one result, and part three is Ihara’s lemma.

Corollary 4.4.7. HomGL2(Qp)(⇡
m
S , H

0

kE ,G,⇢,S
[m]) is a generic GS0 representation.

Proof. The proof breaks up into three cases: ⇢|GQp
is irreducible, ⇢|GQp

is an extension

of �
1

by �
2

with �
1

��1

2

6= ✏, or ⇢|GQp
is an extension of � by �✏�1.

In the first case, one then has that ⇡m
S is irreducible. Let V be a weight in

soc
GL2(Zp)(⇡

m
S ), chosen to be one-dimensional if possible. Since ⇡m

S is irreducible,

V generates ⇡m
S as a GL

2

(Qp) representation, and so the natural restriction map

Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]) ! Hom

GL2(Zp)(V,H
0

kE ,G,⇢,S
[m]) is injective. If the target

is nonzero, then V is in W gl(⇢) and is good, so part three of the above theorem shows

that Hom
GL2(Zp)(V,H

0

kE ,G,⇢,S
[m]) is generic and thus so is Hom

GL2(Qp)(⇡
m
S , H

0

kE ,G,⇢,S
[m]).

If the target is zero, then so is the source, and thus Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]) is

trivially generic.

In the second case, one has that ⇡m
S is an extension of irreducible representations

0 ! ⇡
1

! ⇡m
S ! ⇡

2

! 0. Letting Vi be a weight for ⇡i, the exact same argument

as above shows that Hom
GL2(Qp)(⇡i, H

0

kE ,G,⇢,S
[m]) is generic. Thus, since there is an

exact sequence

0 ! Hom
GL2(Qp)(⇡2

, H0

kE ,G,⇢,S
[m]) ! Hom

GL2(Qp)(⇡
m
S , H

0

kE ,G,⇢,S
[m])

! Hom
GL2(Qp)(⇡1

, H0

kE ,G,⇢,S
[m])
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which shows that Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]) has a quotient by a generic represen-

tation that lies inside a generic representation, and thus is generic.

In the final case, one has that there is a short exact sequence as above 0 ! ⇡
1

!

⇡m
S ! ⇡

2

! 0, where ⇡
2

= IndGL2(Qp)

B (�✏�1 ⇥ �✏) and ⇡
1

now lies in a short exact

sequence 0 ! (� � det) ⌦ St ! ⇡
1

! � � det ! 0. A simple calculation shows

that soc
GL2(Zp)(⇡2

) has one weight that is not in W (⇢|GQp
), and so one has that

Hom
GL2(Qp)(⇡2

, H0

kE ,G,⇢,S
[m]) = 0. Thus, the map Hom

GL2(Qp)(⇡
m
S , H

0

kE ,G,⇢,S
[m]) !

Hom
GL2(Qp)(⇡1

, H0

kE ,G,⇢,S
[m]) is an injection.

If ⇢|GQp
is trés ramifieé, then W (⇢|GQp

) contains no one dimensional weights. Thus,

Hom
GL2(Zp)(� � det, H0

kE ,G,⇢,S
[m]) = 0 and so Hom

GL2(Qp)(� � det, H0

kE ,G,⇢,S
[m]) = 0.

Conseqently, we get that Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]) embeds into Hom

GL2(Qp)((� �

det)⌦St,H0

kE ,G,⇢,S
[m]). Moreover, any weight for (��det)⌦St is good because there

are no one dimensional weights in W gl(⇢), and the argument used above shows that

Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]) is generic.

If, on the other hand, ⇢|GQp
is peu ramefieé, then the natural surjection ⇡

1

!

��det admits a GL
2

(Zp)-equivariant section whose image generates ⇡
1

as a GL
2

(Qp)-

representation. Thus, ��det is a weight for ⇢|GQp
, which must be good. Thus, arguing

as above, one sees that Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]) is generic. ⇤

Lemma 4.4.8. If evXctf
is an isomorphism, then one has that Xctf = ⇡S0(⇢

m
S )

Proof. We will let C be the set of weakly allowable primes in TG,⇢,S. Then, with this

choice of C, one needs to show that Xctf satisfies the conditions of Theorem A.4.1.

This will show that there is an isomorphism Xctf
⇠= ⇡S0(⇢

m
S ).

Because Xctf is saturated in X, there is a chain of embeddings

(Xctf/$EXctf )[m] ,! (X/$EX)[m] ,! Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]).
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Since the last term in the chain is generic as a GS0 representation by Corollary 4.4.7,

so is the first. This shows the first condition in Theorem A.4.1.

By the assumption, one has that evXctf
(m) is an embedding of (Xctf/$EXctf )⌦kE

⇡m
S ,! H0

kE ,G,⇢,S
. Letting V 2 W gl(⇢) be a good weight, one has an isomorphism

m(V, ⇢|GQp
) ⇠= Hom

GL2(Zp)(V, ⇡
m
S ). Then there is the following chain of maps which

are all embeddings (indeed, all but one are isomorphisms):

socH(V )

(m(V, ⇢|GQp
))⌦kE FS0((Xctf/$EXctf )[m])

= socH(V )

(Hom
GL2(Zp)(V, ⇡

m
S ))⌦kE FS0((Xctf/$EXctf )[m])

= FS0(socH(V )

(Hom
GL2(Zp)(V, ⇡

m
S ⌦kE (Xctf/$EXctf )[m])))

,! FS0(socH(V )

(Hom
GL2(Zp)(V,H

0

kE ,G,⇢,S
[m])))

⇠= socH(V )

(m(V, ⇢|GQp
)).

The last isomorphism is from part two of Theorem 4.4.6. This implies that the space

FS0((Xctf/$EXctf )[m]) is at most one-dimensional. This shows the second condition

in TheoremLocalLanglandsInFamilies.

By the discussion about allowable primes p, one has thatXctf [p]⌦TG,⇢,S
TG,⇢,S[

1

p
]/p =

Xctf [p]⌦OE E = ⌦`2S0⇡LL(⇢(p)|GQ`
), and then [17] shows that that representation is

generic. This shows the first half of condition 3 in Theorem A.4.1. All that is left is

to show that the closure of the saturation of ⌃p2CXctf [p] is all of Xctf .

If one lets Y be the closure of the saturation of ⌃p2CXctf [p], then one has that

E ⌦OE Y [p] = E ⌦OE X[p] for all allowable primes p, and thus Y � Xctf . But one

also has that Y is the closure of a subspace of Xctf , and thus Y = Xctf , showing part

c of 2. Thus, one has that Xctf = ⇡S0(⇢
m
S ). ⇤

Lemma 4.4.9. evXctf
(m) is injective.
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Proof. Recall that evXctf
: ⇡m

S ⌦kE (Xctf/$EXctf )[m] ! H0

kE ,G,⇢,S
[m]. Since one has

that (Xctf/$EXctf )[m] = Hom
GL2(Qp)(⇡

m
S , H

0

kE ,G,⇢,S
[m]), Lemma 6.4.15 of [15] shows

that it is su�cient to show that any non-zero map ⇡m
S ! H0

kE ,G,⇢,S
[m] is injective.

Again, the proof breaks up into three cases: ⇢|GQp
is irreducible, ⇢|GQp

is the extension

of �
1

by �
2

with �
1

��1

2

6= ✏, or ⇢|GQp
is the extension of � by �✏�1.

In the first case, one has that ⇡m
S is irreducible, and so any non-zero GL

2

(Qp)-

equivariant map must be injective.

In the second case, one has that ⇡m
S is an extension of IndGL2(Qp)

B (�
1

⇥ �
2

✏) by

IndGL2(Qp)

B (�
2

⇥ �
1

✏). W (⇢|GQp
) consists of a single Serre weight, and that weight

corresponds to the GL
2

(Zp)-socle of IndGL2(Qp)

B (�
1

⇥ �
2

✏). Since the GL
2

(Zp)-socle

of IndGL2(Qp)

B (�
2

⇥ �
1

✏) is not the same, one has that there is no non-zero map from

IndGL2(Qp)

B (�
2

⇥�
1

✏) ! H0

kE ,G,⇢,S
[m]. Thus, any non-zero map from ⇡m

S ! H0

kE ,G,⇢,S
[m]

must be non-zero on IndGL2(Qp)

B (�
1

⇥ �
2

✏) and thus is injective.

In the final case, there is a filtration 0 ⇢ ⇡
1

⇢ ⇡
2

⇢ ⇡m
S with ⇡

1

= (� � det)⌦kE St,

⇡
2

/⇡
1

= � � det, and ⇡m
S /⇡2

= IndGL2(Qp)

B (�✏�1 ⇥ �✏). The same Serre weight con-

siderations as above show that there is no non-zero map from ⇡m
S /⇡2

! H0

kE ,G,⇢,S
[m].

Additionally, Ihara’s lemma guarentees that there is no non-zero map from ⇡
2

/⇡
1

!

H0

kE ,G,⇢,S
[m], as the image would be one dimensional. Thus, any non-zero map must

have trivial kernel, and thus is injective. ⇤

Proof of Theorem 4.3.1. Lemmas 4.4.5 and 4.4.9 show that evXctf
is an isomorphism.

Lemma 4.4.8 shows that, if evXctf
is an isomorphism, then Xctf = ⇡S0(⇢

m
S ). Thus,

evXctf
provides an isomorphism between ⇡m

S

f
⌦TG,⇢,S

⇡S0(⇢
m
S ) and Ĥ0

OE ,G,⇢,S
, showing

the theorem. ⇤

5. Analysis of the Completed H1 for G

The aim of this section is to understand the completed cohomology for G. The

first main theorem of the paper will be shown here.
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5.1. Completed Cohomology and Completed Hecke Algebras. As before, let

S
0

be a finite set of places of F . Assume that v 62 S
0

and that any place w where

G(Fw) 6= GL
2

(Fw) is not in S
0

. Then let S = S [ {p} and SG = {w|G(Fw) 6=

GL
2

(Fw)}, and choose a maximal compact subgroup KS
0

⇢ G(AS
F,f ). Let GS0 =Q

w2S0
G(Fw). Then recall the following set of definitions:

Definition 5.1.1. If KS0 ⇢ GS0 is a compact open subgroup, then define

Ĥ i
OE ,G(KS0) = lim

 �
s

lim
�!
Kv

H i
ét(ShKvKS0K

S
0 ,Q,OE/$

s
E).

Additionally, let Ĥ i
E,G(KS0) = Ĥ i

OE ,G(KS0)⌦OE E and Ĥ i
⇤,G,S = lim

�!
KS0

Ĥ i
⇤,G(KS0).

Ĥ1

E,G(KS0) is an admissible unitary representation of D⇥
Fv
. Additionally, there is

an action of GL (or in the case of Q one gets an action of GQ) on Ĥ1

⇤,G(KS0) that

commutes with the action of D⇥
Fv
. Moreover, GS0 acts smoothly on H1

E,G,S. The last

action that needs to be discussed is that of a Hecke algebra. Let TG(KvKS0) be the

OE subalgebra of End(H1

ét(ShKvKS0K
S
0 ,F , E)) generated by the operators Tw and Sw

for w 62 S[SG. As before, there is a surjection TG(K 0
vKS0) ! TG(KvKS0) ifK

0
v ⇢ Kv.

As before, let TG(KS0) = lim
 �
Kv

TG(KvKS0), the completed Hecke algebra for KS0 . If ⇢

is a G-modular, absolutely irreducible 2-dimensional kE-valued representation of GL

that is unramified outside of S [ SG, then there is a maximal ideal m ⇢ TG(KS0)

such that Tw ⌘ tr(Frobw|⇢) (mod m) and Sw ⌘ #(kw)�1det(Frobw|⇢). We will let

TG,⇢(KS0) be TG(KS0)m. The same arguemnt from section 4.2 shows that there is

a compact open subgroup KS0 ⇢ GS0 such that if K 0
S0

⇢ KS0 , then the map from

TG,⇢(K 0
S0
) ! TG,⇢(KS0) is an isomorphism. Let TG,⇢,S be lim

 �
KS0

TG,⇢(KS0) and say that

KS0 is an allowable level if TG,⇢,S = TG,⇢(KS0).

Recall from section 4.2 that there is also a Hecke algebra TG(KS0). Since the

two Hecke algebras are determined by the corresponding Hecke eigensystems (that
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is, maps from T to finite extensions of E) and any Hecke eigensystem for G neces-

siarly gives one for G, there is a surjection from TG(KS0) ! TG(KS0). Additionally,

this map commutes with the localization mentioned above, so there is a surjection

TG,⇢(KS0) ! TG,⇢(KS0), and this extends to a surjection TG,⇢,S ! TG,⇢,S.

5.2. Statement of Results. Let p be a maximal ideal in TG(KS0). Then, by look-

ing at Ĥ0

E,G
(KS0)[p], one gets a representation of GL

2

(Fv) that depends only on p

and KS0 which will be denoted ⇡p,KS0
. Conjecturally, this representation should be

of the form ⇡p,KS0
= ⇡(⇢mS (p)|GFv

) ⌦ (
N

w2S0
⇡LL(⇢mS (p)|GFw

))KS0 with ⇡(⇢mS (p)|GFv
)

being a unitary representation of GL
2

(Fv) that depends only on ⇢mS (p)|GLv1
, but the

incomplete knowledge of the p-adic Langlands program prevents such a decompo-

sition from being known. Since TG(KS0) is a TG(KS0)-algebra, one may also talk

about Ĥ1

E,G(KS0)[p], which is a representation of D⇥
Fv

⇥GL. The first main result is

the following:

Theorem 5.2.1. The space Ĥ1

E,G(KS0)[p] depends only on ⇡p,KS0
as a D⇥

Fv
⇥ GFv-

representation.

Since the main di�culty in getting the optimal result in Theorem 5.2.1 is the lack

of a p-adic Langlands correspondence in generality, one would hope that there is a

stronger theorem for the case when F = Q and Fv = Qp. Indeed, there is, which is

given by the following:

Theorem 5.2.2. If ⇢ is a two-dimensional promodular representation of GQ, unram-

ified away from S, and such that ⇢|GQp
is indecomposable and not of the form ( � ⇤

� )

nor
� � ⇤

�✏

�
, ⇢|GQ`

is of the form
� � ⇤

�✏

�
for all ` 2 SG, and ⇢ is unramified away

from S [ SG, then there is a continuous unitary representation J(⇢|GQp
) of D⇥

Qp
that

depends only on ⇢|GQp
, and such that

HomGQ(⇢, Ĥ
1

E,G,⇢,S) = J(⇢|GQp
)⌦ (

O
`2S0

⇡``(⇢|GQ`
)).
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5.3. Proofs of Main Theorems. Recall that the C̆erednik-Drinfel’d uniformiza-

tion breaks up as ShKn
v KS0K

S
0 ,Cp

=
`

i �
0
i\⌃n

Cp
, with the �0

i being discrete cocompact

subgroups of SL
2

(Fv). We will drop the Cp-subscript and will write ⌃n for ⌃n
Cp

until

otherwise noted. Letting ⇡i : ⌃n ! �0
i\⌃n be the natural projection. Then there is a

commutative diagram of functors:

�0
i � étSh(⌃n)

H0(⌃n, ·)- �0
i �Mod

étSh(�0
i\⌃n)

⇡⇤
i

6

�
�

0
i\⌃n

- Ab.

(·)�0i

?

If KS0 is su�ciently small, then the action of �0
i is free on ⌃n and thus ⇡⇤ is

an equivalence of categories. Additionally, ⇡⇤
⇣

OE/$
s
E

⌘
= OE/$

s
E, so applying

the Grothendieck-Leray spectral sequence, one gets Ra(·)�0i
⇣
Rb�

⌃

n

⇣
OE/$

s
E

⌘⌘
)

Ra+b�
�

0
i\⌃n

⇣
OE/$

s
E

⌘
. Giving the functors their more common names, one gets

Ha(�0
i, H

b
ét(⌃

n,OE/$
s
E)) ) Ha+b

ét (�0
i\⌃n,OE/$

s
E). In low degree terms, there is

an exact sequence

0 ! H1(�0
i, H

0

ét(⌃
n,OE/$

s
E)) ! H1

ét(�
0
i\⌃n,OE/$

s
E) ! H1

ét(⌃
n,OE/$

s
E)

�

0
i

! H2(�0
i, H

0

ét(⌃
n,OE/$

s
E)).

The condition that �0
i is a discrete cocompact subgroup of SL

2

(Fv) means that �0
i

is an essentially free group. If one choose KS0 to be su�ciently small, then one has

that �0
i is a free group. Thus, for su�ciently small KS0 , there is no H2(�0

i, ⇤) for any

choice of ⇤.

The other term that admits easy analysis is the H1(�0
i, ⇤) term. Since (again, if

KS0 is su�ciently small) �0
i acts freely on the tree T for PGL

2

(Fv), one has that

H1(�0
i, ⇤) = H1(�0

i\T , ⇤) for any choice of ⇤. As a point of clarity, the cohomology

on the right in that equality is simply Betti cohomology of a graph.
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We will consider the space of harmonic cochains on the graphs �0
i\T . Since the

graphs that will be considered are all (p + 1)-regular and the coe�cient groups for

the cochains are all Zp-modules, the condition of harmonicity is insensitive to the

standard normalization issues and the choice of whether or not to divide by the

degree will not change whether a cochain is harmonic. Since the top dimensional

simplex is 1-dimensional, there is only one condition for a cochain f being harmonic,

namely that
P

v0 f(
�!
vv0) = 0 for all verticies v, where the sum is taken over all verticies

v0 adjacent to v. If H is a (p+ 1)-regular graph and M is an abelian group, then let

Harm1(H,M) be the space of M -valued harmonic 1-cochains on H.

There is always a map from Harm1(H,M) ! H1(H,M) sending a cocycle to its

image in H1. If M is a Q-vector space, then this map is an isomorphism. In more

generality, this map may have kernel and cokernel, but there is an integer N depend-

ing only on H such that the kernel and cokernel are N -torsion. Thus, passing to the

inverse limit over s, there is no kernel. Additionally, tensoring with E will kill the cok-

ernel, so one has an isomorphism between

✓
lim
 �
s

lim
�!
n

H1(�0
i, H

0(⌃n,OE/$
s
E))

◆
⌦OE E
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and

✓
lim
 �
s

lim
�!
n

Harm1(�0
i\T , H0(⌃n,OE/$

s
E))

◆
⌦OE E. Now, one has that

M
�

0
i

✓✓
lim
 �
s

lim
�!
n

Harm1(�0
i\T , H0

ét(⌃
n,OE/$

s
E))

◆
⌦OE E

◆

=
M
�

0
i

 ✓
lim
 �
s

lim
�!
n

Harm1(T , H0

ét(⌃
n,OE/$

s
E))

◆
�

0
i

⌦OE E

!

=
M
�

0
i

 ✓
lim
 �
s

Harm1(T ,OE/$
s
E)⌦OE/$s

E
C0(O⇥

F ,OE/$
s
E)

◆
�

0
i

⌦OE E

!

=
M
�i

 ✓
lim
 �
s

Harm1(T ,OE/$
s
E)⌦OE/$s

E
C0(F⇥,OE/$

s
E)

◆
�i

⌦OE E

!

=

 ✓
lim
 �
s

Harm1(T ,OE/$
s
E)⌦OE/$s

E
C0(F⇥ ⇥XKS0

,OE/$
s
E)

◆
GL2(F )

⌦OE E

!

=

✓✓✓
lim
 �
s

Harm1(T ,OE/$
s
E)

◆
⌦OE E

◆
⌦̂EC0(F⇥ ⇥XKS0

, E)

◆
GL2(F )

(1)

The equality between the first and second lines comes from the fact that a cochain

being hamonic is a local condition, and the condition to descend from T to �0
i\T is

just being invariant under the action of �0
i.

The following lemma is useful for the analysis of (1).

Lemma 5.3.1. There are no smooth harmonic OE/$
s
E-valued 1-cochains on T .

Proof. It is useful to recall what all the adjectives in the above lemma mean. A

1-cochain on T is a function f on directed edges such that f(
�!
ab) = �f(

�!
ba). Being

harmonic means
P

b f(
�!
ab) = 0 for all verticies a, where the sum is taken over all

verticies b that are adjacent to a. Finally, smooth means that, for one (equivalently

any) choice of vertex a to be the center of the tree, there is an integer n such that,

if the distance from e to a is greater than n, then f(e) depends only on the distance

from e to a and the edge of distance n from a along the shortest path from a to e.

The picture below shows the edges that must have the same value for p = 3 and
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n = 4.

a

Now, let e be an edge that is distance > n from a and oriented away from a (using

the notation of the previous paragraph). Then one has that f(e) =
P

e0 f(e
0), where

the sum is over all edges adjacent to e and one unit farther from a. But smoothness

implies that the values of f(e0) are constant. Thus, one has that p|f(e). The same

argument applies to f(e0) for e0 one unit further from a, and thus one gets p2|f(e).

One can repeat this process until one has that $s
E|f(e). But at that point, one must

have f(e) = 0. Thus, f(e) ⌘ 0 for all edges e distance greater than n from a. If e

is distance exactly n from a, then for all e0 adjacent to e and distance n+ 1 from a,

one has that f(e0) = 0. Thus, f(e) = 0 by harmonicity. This argument again repeats

until one sees that f ⌘ 0. ⇤

If there was a nonzero vector v 2
⇣⇣⇣

lim �
s
Harm1(T ,OE/$

s
E)
⌘
⌦OE E

⌘
⌦̂C0(XKS0

⇥ F⇥
v , E)

⌘
GL2(Fv)

,

one gets that there would be a nonzero v 2
⇣
Harm1(T ,OE)⌦̂C0(XKS0

⇥ F⇥
v ,OE)

⌘
GL2(Fv)

by rescaling. There must be an s such that v 6⌘ 0 (mod $s
E), but reducing v mod

$s
E, one gets that v ⌘

P
ci ⌦ fi (mod $s

E). But the fi are smooth when reduced

mod $s
E, so the cis must be as well. But then one has that v ⌘ 0 (mod $s

E), a

contradiction.

At this point, we have shown that the first and fourth terms in the exact sequence

above are both 0, and so this gives an isomorphism between the second and third

terms. To finish the analysis of the exact sequence, one needs to simplify the following
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two objects:

M
�

0
i

✓✓
lim
 �
s

lim
�!
n

H1

ét(�
0
i\⌃n,OE/$

s
E)

◆
⌦OE E

◆
and(2)

M
�

0
i

✓✓
lim
 �
s

lim
�!
n

H1

ét(⌃
n,OE/$

s
E)

�

0
i

◆
⌦OE E

◆
.(3)

Notice that, by definition of �0
i, there is an isomorphism ShKn

v KS0K
S
0 ,Cp

⌘
`

�

0
i
�0
i\⌃n.

Moreover, this decomposition respects connected components. Thus, one has thatL
�

0
i
H1

ét(�
0
i\⌃n,OE/$

s
E) = H1

ét(ShKn
v KS0K

S
0 ,Cp

,OE/$
s
E), and consequently, the term

in (2) is Ĥ1

E,G(KS0).

Term (3) can be simplified as follows:

M
�

0
i

✓✓
lim
 �
s

lim
�!
n

H1

ét(⌃
n,OE/$

s
E)

�

0
i

◆
⌦OE E

◆

=
M
�i

✓✓
lim
 �
s

lim
�!
n

H1

ét(⌃
n,OE/$

s
E)⌦OE/$s

E
C0(�i\GL

2

(F ),OE/$
s
E)

GL2(Fv)

◆
⌦OE E

◆

=

✓✓
lim
 �
s

lim
�!
n

H1

ét(⌃
n,OE/$

s
E)⌦OE/$s

E
C0(XKS0

,OE/$
s
E)

GL2(Fv)

◆
⌦OE E

◆
=
⇣
Ĥ1

E(⌃)⌦̂EĤ
0

E,G
(KS0)

⌘
GL2(Fv)

.

Putting these two equations together, one gets

(⇤) Ĥ1

E,G(KS0) ⇠=
⇣
Ĥ1

E(⌃)⌦̂Ĥ0

E,G
(KS0)

⌘
GL2(Fv)

.

As remarked, this is an isomorphism as TG(KS0)[D
⇥
Fv

⇥GL]-modules. We now prove

the main theorems of the section.

Theorem 5.3.2. Let p 2 maxSpec(TG(KS0)[
1

p
]) and ⇡p,KS0

= Ĥ0

E,G
(KS0)[p] (so that

⇡p,KS0
is a GL

2

(Fv)-representation). Then there is an isomorphism Ĥ1

E,G(KS0)[p] ⇠=⇣
Ĥ1

E(⌃)⌦̂⇡p,KS0

⌘GL2(Fv)

.
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The proof of this is immediate from (⇤) and the knowledge of what structures

are respected under the isomorphism there. This does not immediately show that

Ĥ1

E,G(KS0)[p] depends only on ⇢mS (p)|GF andKS0 , as it is not clear that ⇡p,KS0
depends

only on ⇢mS (p)|GFv
and KS0 . However, combining Theorem 5.3.2 with Theorem 4.3.1,

one gets the following stronger theorem in the F = Qp case.

Theorem 5.3.3. If F = Q and thus Fv = Qp, there is an isomorphism

Ĥ1

E,G,⇢,S[p] ⇠=
⇣
Ĥ1

E(⌃)⌦̂B(⇢mS (p))
⌘GL2(Qp) f

⌦⇡S0(⇢
m
S (p)).

Finally, if one defines J(⇢) := Hom

✓
⇢,
⇣
Ĥ1

E(⌃)⌦̂B(⇢)
⌘
GL2(Qp)

◆
, then the following

corollary is immediate from Theorem 5.3.3:

Corollary 5.3.4. Let ⇢ be a 2-dimensional promodular E-representation of GQ. As-

sume further that ⇢ satisfies all of the running assumptions. Then there is an iso-

morphism

HomGQ(⇢, Ĥ
1

E,G,⇢,S) ⇠= J(⇢|GQp
)
f
⌦⇡S0(⇢).

6. Locally Algebraic Vectors

Throughout this section, the assumption that E is “large enough” will include the

assumption that all algebraic representations of D⇥
Fv

as an algebraic group over Qp

that are defined over Qp are defined over E. This is equivalent to the assumption

that there is a fixed embedding E ! Qp such that every embedding ◆ : Fv ! Qp

factors through E ! Qp and for every ◆ there is a field H◆ such that ◆(F ) ⇢ H◆ ⇢ E

and [H◆ : ◆(F )] = 2.

The aim of this section is to describe the locally algebraic vectors in the represen-

tations J(⇡) in the Fv = Qp case and J 0(⇡) in the general case. In order to describe

the main result, we will introduce a Jacquet-Langlands map from finite length locally

algebraic representations of GL
2

(Fv) to finite length locally algebraic representations

of D⇥
Fv
. Since D⇥

Fv
⇥Qp E =

Q
◆:Fv!E GL

2

/E, the algebraic representations of D⇥
Fv
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and GL
2

(Fv) over E are naturally identified. Every finite length locally algebraic

representation of GL
2

(Fv) is of the form
M
i

⇡i ⌦Wi, where ⇡i is an indecomposable

smooth representation of GL
2

(Fv) and Wi is an algebraic representation of GL
2

(Fv).

There are 5 possabilities for ⇡i: ⇡i may be a character, an irreducible principle series,

a twist of the Steinberg representation, an extension of a character by the Steinberg,

or a supercuspidal representation.

Definition 6.0.5. Let ⇡ =
M
i

⇡i ⌦Wi as above. Define JL(⇡i ⌦Wi) to be 0 unless

⇡i is either a twist of the Steinberg representation or a spercuspidal representation.

If ⇡i = (� � det) ⌦ St, then define JL(⇡i ⌦Wi) = (� � ⌫) ⌦Wi, where Wi is viewed

as a representation of D⇥
Fv

as above. If ⇡i is a supercuspidal representation, then

define JL(⇡i ⌦ Wi) = JLcl(⇡i) ⌦ Wi, where JLcl is the classical Jacquet-Langlands

correspondence for smooth supercuspidal representations of GL
2

(Fv). Finally, define

JL

 M
i

⇡i ⌦Wi

!
=
M
i

JL(⇡i ⌦Wi).

The following is the main result of this section:

Theorem 6.0.6. • If F = Q, assume that ⇢ : GQ ! GL
2

(E) is as in the

introduction. Then J(B(⇢|GQp
))alg = JL(B(⇢|GQp

)alg).

• For a general L/F as in section 3, one has that, if ⇢ : GL ! GL
2

(E) arises

in the cohomology of ShKvKS0K
S
0
, and ⇡ is the ⇢-part of Ĥ0

E,G
(KS0), then

J 0(⇡)alg = JL(⇡alg).

This section is similar to section 4.2 in [14], but there are three main remarks to be

made. First of all, several of the results will be slightly less explicit. This is primarily

an issue of focus: the aim here is to determine what the locally algebraic vectors are,

whereas the aim in [14] is to elucidate the structure of the eigencurve. Secondly, there

is no di↵erence between compactly supported cohomology and regular cohomology

in this case. This means that the arguments that were specific to H i
c or H i in [14]
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will now be needed to be made at the same time. Finally, while one might imagine

that di↵erences between the groups GL
2

and D⇥ would come up, this is not the case.

The group theoretic properties of GL
2

that are used in [14] and thus the properties

of D⇥ that are used in this paper are all about the algebraic representation theory.

Since the algebraic representation theory of a group over a su�ciently large base

field depends only on the geometric isomorphsim type of the group, none of those

arguments will change.

6.1. Notation and Elementary Calculations. For this section, dFv will be the

Lie algebra of D⇥
Fv
. As remarked before, D⇥

Fv
will be viewed as a group over Qp. Let

sdFv be the Lie algebra of the group SD⇥
Fv

:= {d 2 DFv |⌫(d) = 1} and zFv be the

Lie algebra of Z(D⇥
Fv
) = F⇥

v . As remarked at the start of this section, one has that

dFv is a form of gl
2,Fv

and sdFv is a form of sl
2,Fv . There is a natural isomorphism

dFv = sdFv � zFv . This isomorphism arises from the group homomorphism SD⇥
Fv

⇥

Z(D⇥
Fv
) ! D⇥

Fv
sending (d, x) ! dx, which has finite kernel and cokernel. Notice that

zFv is abelian, as it is the Lie algebra of an abelian group, and sdFv is semisimple, as

it is a form of a semisimple Lie group. Let H i(g;W ) = Extig(W̌ , E); this is the Lie

algebra cohomology of g. An important result is the following:

Proposition 6.1.1. Let W be an irreducible algebraic representation of SD⇥
Fv
. Then

one has that H i(sdFv ;W ) = 0 unless W is the trivial representation, 3|i, and i 

3deg(F/Qp).

Proof. For irreducible representations W of SD⇥
Fv
, there is a tensor product decom-

position W =
N

◆:Fv ,!E W◆, where the terms W◆ are the base change of irreducible

representations of SD⇥
Fv

as a group over Fv to E along ◆. On the level of Lie alge-

bras, this decomposition arises becuase one has that sdFv ⌦Qp E =
L

◆ sdFv ⌦◆(Fv) E.

As a notational convience, let sd◆ be the summands of the direct sum decompo-

sition of sdFv ⌦Qp E. There is a Künneth formula, showing that H⇤(sdFv ;W ) =
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◆ H

⇤(sd◆;W◆). Thus, the statement in the theorem is reduced to the statement

that, for any irreducible representation W◆ of sd◆, then H i(sd◆,W◆) = 0 unless i = 0

or 3 and W◆ is trivial.

H0(sd◆;W◆) = W sd◆
◆ . This is visibly 0 unless W◆ is the trivial representation. Since

sd◆ is semisimple, there are no non-trivial extensions between finite dimensional

representations of sd◆, so H1(sd◆;W◆) = 0 for all W◆. Poincaré duality says that

H3(sd◆;E) = E, that the cup product pairing from H i(sd◆;W◆) ⇥ H3�i(sd◆; W̌◆) !

H3(sd◆;E) is a perfect pairing for 0  i  3, and that H i(sd◆;W◆) = 0 for all i > 3.

Since H1(sd◆, W̌◆) = 0 for all W◆, one has that H2(sd◆;W◆) = 0. If W◆ is not the

trivial representation, then H0(sd◆; W̌◆) = 0 so H3(sd◆;W◆) = 0 as well. Finally, if

i > 3, then H i(sd◆;W◆) = 0 directly because of Poincaré duality. ⇤

There are also a couple important results that are needed in order to apply the

results in [14].

Proposition 6.1.2. Ĥ i
OE ,G(KS0) is the $E-adic completion of lim

�!
Kp

H i
ét(ShKS0Kp,Q,OE).

Proof. ShKS0Kp is a complete curve, and thus one has that H i
ét(ShKS0Kp,Q,OE)⌦OE

OE/$
s
E = H i

ét(ShKS0Kp,Q,OE/$
s
E). This remains true when passing to the limit

along the Kps, and since the $E-adic completion of lim
�!
Kp

H i
ét(ShKS0Kp,Q,OE) is defini-

tionally lim
 �
s

lim
�!
Kp

H i
ét(ShKS0Kp,Q,OE)⌦OE OE/$

s
E, the result follows. ⇤

The importance of this proposition is that it identifies what we denote Ĥ i with

what is denoted Ĥ i in [14]. The other result is the following calculation:

Lemma 6.1.3. The space Ĥ2

E,G(KS0) vanishes.

Proof. We will show that, for allKp and s, there is a compact open subgroupK 0
p ⇢ Kp

such that the map from H2

ét(ShKS0K
0
p,Q,OE/$

s
E) ! H2

ét(ShKS0Kp,Q,OE/$
s
E) is 0.

This implies that lim
�!
Kp

H2

ét(ShKS0Kp ,OE/$
s
E) = 0 and thus that Ĥ2

E,G(KS0) = 0.
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Fixing Kp and s, choose K 0
p ⇢ Kp such that ps|[(K 0

p \ SD⇥) : (Kp \ SD⇥)].

H2

ét(ShKS0K
0
p
,OE/$

s
E) is freely generated by classes [C 0] for each connected curve C 0

of ShKS0Kp , and H2

ét(ShKS0Kp ,OE/$
s
E) is freely generated by by classes [C] for each

connected curve C of ShKS0Kp . If C 0 ! C with degree d, then the image of [C 0]

in H2

ét(ShKS0Kp ,OE/$
s
E) is d[C]. But, over a fixed connected curve C of ShKS0Kp ,

the map from ShKS0K
0
p
! ShKS0Kp sends [K 0

p : Kp]/[(K 0
p \ SD⇥) : (Kp \ SD⇥)]

connected curves C 0 onto C with degree [(K 0
p\SD⇥) : (Kp\SD⇥)]. Thus, the image

of H2

ét(ShKS0K
0
p
,OE/$

s
E) in H2

ét(ShKS0Kp ,OE/$
s
E) is divisible by ps, and thus $s

E,

and thus is 0. ⇤

Lemma 6.1.4. There is an integer r and a compact open subgroup H ⇢ F⇥
v such

that Ĥ0

E,G(KS0) ⇠= C0(H,OE)r.

Proof. In the F = Q case, the connected components of ShKpKS0K
S
0
are parameterized

by the double coset space R
+

⇥ Q⇥\A⇥/⌫(KpKS0K
S
0

). It is well known that A⇥ =

R
+

⇥Q⇥⇥
Q

6̀=p Z
⇥
` ⇥Z⇥

p . If we let S
p =

Q
6̀=p Z

⇥
` /⌫(KS0) and r = #(Sp), then one gets

that the connected components are parameterized by Sp⇥(Z⇥
p /⌫(Kp)). Additionally,

as Kp shrinks to {1}, ⌫(Kp) shrinks to {1} as well. An argument entirely analogous

to proposition 4.1.1 shows that Ĥ0

OE ,G(KS0) = C0(Z⇥
p ⇥ Sp,OE) = C0(Z⇥

p ,OE)r.

In the other case, let T = {x 2 L⇥|xx = 1}, a torus over F that is the determi-

nant group of G. Then the connected components of ShKvKS0
are parameterized by

the double coset space T (F )\T (AF,f )/det(KvKS0). Choose H ⇢ F⇥
v = T (Fv) su�-

ciently small that T (OF )\Hdet(KS0) = {1}. If Sv = T (F )\T (AF,f )/Hdet(KS0) and

r = #(Sv), then the description of the connected components shows that, for Kv suf-

ficiently small, the connected components are parameterized by Sv⇥H/det(Kv) as an

H-set. Now, a similar argument as before shows that Ĥ0

OE ,G(KS0) = C0(H,OE)r. ⇤

Corollary 6.1.5. Viewing Ĥ0

E,G(KS0) as a representation of SD⇥
Fv

⇥ Z(D⇥
Fv
), one

has that Ĥ0

E,G(KS0) = 1SD⇥Fv
⇥ Ĥ0

E,G(KS0)|Z(D⇥Fv
)

.
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Proof. This corollary is equivalent to the triviality of the action of SD⇥
Fv

on Ĥ0

E,G(KS0).

However, this is exactly the content of 6.1.4. ⇤

Proposition 6.1.6. Let W be an irreducible algebraic representation of D⇥. Then

ExtidFv
(W̌ , Ĥ0

E,G(KS0)
la) = 0

unless W is one dimensional, 3|i, and i  3deg(F/Q)

Proof. Let � be the central character of W . One may then write W̌ = E(��1) ⇥

W̌ |sdFv
where the first factor is a representation of zFv . Since the action of sdFv

on Ĥ0

E,G(KS0)
la is trivial, one may write Ĥ0

E,G(KS0)
la = Ĥ0

E,G(KS0)
la|zFv

⇥ E where

the second factor is the trivial representation of sdFv . Now, one can appeal to the

Künneth formula and get

ExtidFv
(W̌ , Ĥ0

E,G(KS0)
la) =

M
a+b=i

ExtazFv
(E(��1), Ĥ0

E,G(KS0)
la)⌦ ExtbsdFv

(W̌ , E).

The second term is equal to Hb(sdFv ;W ), which is zero unless b = 0 or 3 and

dim(W ) = 1. Thus, we may assume that dim(W ) = 1. To compute the first term,

choose a compact H ⇢ Z(D⇥) su�ciently small so that ⌫|H : H ! F⇥
v is an isomor-

phism onto its image and such that Ĥ0

E,G(KS0) = C0(H,E)r as H-representations for

some integer r. Then there is a sequence of isomorphisms

ExtazFv
(E(��1), Ĥ0

E,G(KS0)
la) ⇠= ExtazFv

(E, Ĥ0

E,G(KS0)
la ⌦ E(�))

⇠= ExtazFv
(E, (C0(H,E)la)r ⌦ E(�))

⇠= ExtazFv
(E, (C0(H,E)la)r)

⇠= Ha(zFv ; (C0(H,E)la)r).
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The third isomorphism arises because f(h) 7! �(h)f(h) is an automorphism on

C0(H,E), and the fourth isomorphism is an alternative definition of Lie algebra coho-

mology. Then by theorems 1.1.12 (v) and 1.1.13 in [14], one sees thatHa(zFv ; (C0(HE)la)r) =

0 unless a = 0. Thus, the only nonzero terms in the Künneth description are when

a = 0 and b = 0 or b = 3. That is, ExtidFv
(W̌ , Ĥ0

E,G(KS0)
la) is only nonzero when 3|i

and I  3deg(F/Q). ⇤

6.2. Conculsions About Locally Algebraic Vectors. The following notation will

be useful in this section. Recall that there is a local system VW , defined in [10] for

the F = Q case and in (much) more generality in e.g. [14], on ShKS0Kp . We will

let H i(VW , KS0) = lim
�!
Kp

H i
ét(ShKS0Kp,Q,VW ). This is a smooth E representation of

D⇥ that can be understood in terms of automorphic forms. Because the Shimura

curve is 1-dimensional, one has that H i(VW , KS0) vanishes if i > 2. Additionally,

Corollary 2.2.18 in [14] constructs a spectral sequence starting on the E
2

-page with

ExtidFv
(W̌ , Ĥj

E,G(KS0)
la) ) H i+j(VW , KS0). Since the Ei,j

2

terms are zero for j > 2,

the spectral sequence collapses on the E
3

page. Proposition 6.1.6 says that the Ei,0

terms are 0 unless 3|i and i  3deg(F/Q). Since Hn(VW , KS0) = 0 for n � 3, one

has that Ei,1
2

= 0 for i � 2. Additionally, one has that d
3

: E1,1
3

! E3,0
3

is surjective

with kernel H2, that E0,1
3

= H1, and that E0,0
3

= H0. Unwinding the terms in the

spectral sequence, one has the following equalities:

H0(VW , KS0) = HomdFv
(W̌ , Ĥ0

E,G(KS0)
la),(4)

H1(VW , KS0) = HomdFv
(W̌ , Ĥ1

E,G(KS0)
la), and(5)

Ext3j�2

dFv
(W̌ , Ĥ1

E,G(KS0)
la) = Ext3jdFv

(W̌ , Ĥ0

E,G(KS0)
la). (2  j  deg(F/Q))

(6)
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and the following short exact sequence:

0 ! H2(VW , KS0) ! Ext1dFv
(W̌ , Ĥ1

E,G(KS0)
la) ! Ext3dFv

(W̌ , Ĥ0

E,G(KS0)
la) ! 0.

Finally, notice that, unless W is one-dimensional, the left-hand term and hence the

right-hand term in (4) is 0.

For the reader that is unfamiliar with spectral sequences, here is a picture of the

E
2

-page with (possibly) non-zero terms written as Ei,j
2

to keep in mind when reading

the above:

...
...

...
...

...

0 0 0 0 0 . . .

E0,1
2

E1,1
2

E2,1
2

E3,1
2

E4,1
2

. . .

E0,0
2

0 0 E3,0
2

0 . . .

Recall the following fact proved using local-global compatability at p and multi-

plicity one results:

Fact 6.2.1. Let W have weights {(w◆,1, w◆,2)} where w◆,1 < w◆,2. Then one has

H1(VW , KS0) =
M
⇢

⇢⌦ JLcl(WD(⇢|GQp
))⌦

 O
6̀=p

0⇡LL(⇢|GQ`
)

!KS0

,

with the direct sum running over all G-modular representations ⇢ of GQ in the F = Q

case and GL case for general F with Hodge-Tate weights �w◆,2 � 1 and �w◆,1.

The following precise formulations of Theorem 6.0.6 can now be proved:

Theorem 6.2.2. Let ⇢ : GQ ! GL
2

(E) be a promodular representation of GQ un-

ramified outside of S. Assume further that ⇢|GQ`
is an extension of a character � by

�✏ for all ` 6= p such that G is ramified at `. Then one has that J(B(⇢|GQp
))alg =

JL(B(⇢|GQp
)alg).
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Proof. Consider the space HomGQ(⇢, Ĥ
1

E,G(KS0)
alg). On one hand, this is equal to0@J(B(⇢|GQp

))⌦
 O

6̀=p

0⇡LL(⇢|GQ`
)

!KS0

1Aalg

or equivalently, since being locally alge-

braic only depends on the D⇥
Q -action,

0@J(B(⇢|GQp
))alg ⌦

 O
` 6=p

0⇡LL(⇢|GQ`
)

!KS0

1A.

On the other hand, this is the union of the spaces W̌⌦HomGQ,dFv
(⇢⌦W̌ , Ĥ1

E,G(KS0)
la)

over all algebraic representations W . As above, one has that there is an equality

HomGQ,dFv
(⇢⌦ W̌ , Ĥ1

E,G(KS0)
la) = HomGQ(⇢, H

1(VW )).

If ⇢ is G-modular, then ⇢|GQp
is potentially semistable with distinct Hodge-Tate

weights w
1

< w
2

and moreover one has that WD(⇢|GQp
) is indecomposable. In this

case, one has that ⇢ arises in H1(VW0) where W
0

has weights �w
2

 �w
1

� 1 and

only for this W
0

. For this W
0

, W̌
0

has weights w
2

and w
1

+ 1, which means that

W̌
0

= Symw2�w1�1(Std)⌦detw1+1. Importantly, B(⇢|GQp
)alg = ⇡LL(WD(⇢|GQp

))⌦W̌ .

Thus, one has that JL(B(⇢|GQp
)alg) = JLcl(WD(⇢|GQp

)) ⌦ W̌ . Plugging this into

HomGQ(⇢, Ĥ
1

E,G(KS0)
alg), the following chain of equalities holds:0@J(B(⇢|GQp

))alg ⌦
 O

6̀=p

0⇡LL(⇢|GQ`
)

!KS0

1A
= HomGQ(⇢, Ĥ

1

E,G(KS0)
alg)

= HomGQ(⇢, H
1(VW , KS0))⌦ W̌

= JLcl(WD(⇢|GQp
))⌦

 O
`6=p

0⇡LL(⇢|GQ`
)

!KS0

⌦ W̌

= JL(B(⇢|GQp
)alg)⌦

 O
` 6=p

0⇡LL(⇢|GQ`
)

!KS0

.

Finally, it will su�ce to show that if ⇢ is not G-modular, then J(B(⇢|GQp
))alg and

JL(B(⇢|GQp
)alg) are both 0. Notice that, in the above argument, if ⇢ is notG-modular,
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then HomGQ(⇢, H
1(VW )) = 0 for all W , and so HomGQ(⇢, Ĥ

1

E,G(KS0)
alg) = 0 which

implies that J(B(⇢|GQp
))alg = 0.

One has that B(⇢|GQp
)alg is non-zero if and only if B(⇢|GQp

) is potentially semistable

with disticnt Hodge-Tate weights. Local-global compatability for G implies that ⇢ is

G-modular. Moreover, if ⇢ is not G-modular, one gets that WD(⇢|GQp
) is the sum of

two characters, and thus ⇡LL(WD(⇢|GQp
)) is either a principal series or the extension

of the Steinberg by a character. But then one has that JL(⇡LL(WD(⇢|GQp
))⌦W ) = 0

for all algebraic representations W of GL
2

(Qp), which implies that JL(B(⇢|GQp
)alg) =

0, showing the theorem. ⇤

Theorem 6.2.3. Let ⇢ : GL ! GL
2

(E) be a G-promodular representation. If ⇡ is

the ⇢-part of Ĥ0

E,G
(KS0), then J 0(⇡)alg = ⇢⌦ JL(⇡alg).

The proof is almost identical to the above proof, with the weaker results coming

from the weaker Theorem 5.3.2.

6.3. Conclusions about the representations J(⇡). At this point, all results will

be specialized to the F = Q case. The main result to be shown is that (Ĥ1

E,G,⇢,S)
alg

is dense in Ĥ1

E,G,⇢,S. In fact, a stronger version of that will be shown:

Theorem 6.3.1. Let KS0 be su�ciently small. Then Ĥ1

E,G(KS0)
O⇥D�alg
⇢ is dense in

Ĥ1

E,G(KS0)⇢.

Proof. Let KS0 be small enough that the action of G(Q) on G(Af )⇥H±/KpKS0K
S
0

is fixed point free for all compact open Kp ⇢ D⇥. Additionally, choose Kp small

enough that Kp is normal in O⇥
D and Kp is pro-p. The first goal is to show that

Ĥ1

OE/$s
E ,G(KS0)⇢ is injective as a smooth (OE/$

s
E)[Kp]-module.

To that end, letM be a smooth finitely generated (OE/$
s
E)[Kp]-module. Using the

smallness assumption on KS0 , there is a local system M over ShKpKS0K
S
0
aassociated

to M . One has that H i
ét(ShKpKS0K

S
0 ,Q,M) is a T(KS0)-module. We claim that
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H0(ShKpKS0K
S
0
,M)⇢ = 0 and H2(ShKpKS0K

S
0
,M)⇢ = 0. By Poincaré duality, it

is su�cient to show that H0(ShKpKS0K
S
0
,M)⇢ = 0 for all M . Moreover, since ⇢ is

irreducible, and the action of T(KS0) on H0 is through only reducible representations,

one must have H0(ShKpKS0K
S
0
,M)⇢ = 0. This implies that M 7! H1(ShKpKS0K

S
0
,M)

is an exact functor.

Now, we claim that HomKp(M, Ĥ1

OE/$s
E ,G(KS0)⇢) = H1(ShKpKS0K

S
0
,M_)⇢. Choose

K 0
p small enough that MK0p = M and such that K 0

p is normal in Kp. Then the

Hochschild-Serre spectral sequence gives an exact sequence

0 ! H1(Kp/K
0
p, H

0(ShK0pKS0K
S
0
,M_))

! H1

ét(ShKpKS0K
S
0 Q,M_)

! H1

ét(ShKpKS0K
S
0 Q,M_)Kp/K0p

! H2(Kp/K
0
p, H

0(ShK0pKS0K
S
0
,M_)).

Localizing at ⇢ kills the H0-terms, so one gets an isomorphism

H1(ShKpKS0K
S
0
,M_)⇢ ⇠= (H1(ShK0pKS0K

S
0
,M_)⇢)

Kp/K0p .

The assumption on K 0
p implies that there is an equality as Kp/K

0
p-representations:

H1(ShK0pKS0K
S
0
,M_) = HomOE/$s

E
(M,H1(ShK0pKS0K

S
0
,OE/$

s
E)).

Plugging that into the above isomorphism, one gets an isomorphism

H1(ShKpKS0K
S
0
,M_)⇢ ⇠= HomOE/$s

E
(M,H1(ShK0pKS0K

S
0
,OE/$

s
E)⇢)

Kp/K0p .

Finally, as K 0
p shrinks to {1}, one gets the isomorphism claimed at the start of the

paragraph.

Thus, M 7! HomOE/$s
E [Kp](M, Ĥ1

OE/$s
E ,G(KS0)⇢) is exact, as it is the composi-

tion of M 7! M_ 7! H1(ShKpKS0K
S
0
,M_), both of which are exact. Consequently,



45

Ĥ1

OE/$s
E ,G(KS0)⇢ is an injective OE/$

s
E-module, so (Ĥ1

OE/$s
E ,G(KS0)⇢)

_ is projective

as a OE[[Kp]]-module. Since Kp is assumed to be pro-p, (OE/$
s
E)[[Kp]] is a local

ring, so there is an integer rs such that (Ĥ1

OE/$s
E ,G(KS0)⇢)

_ ⇠= ((OE/$
s
E)[[Kp]])rs .

Dualizing, that says that Ĥ1

OE/$s
E ,G(KS0)⇢ ⇠= C0(Kp,OE/$

s
E)

rs .

Tensoring both sides with kE, one gets that Ĥ1

kE ,G(KS0)⇢ ⇠= C0(Kp, kE)rs . Thus, rs

doesn’t depend on s and, after taking the inverse limit over s, there is an isomorphism

Ĥ1

OE ,G(KS0)⇢ ⇠= C0(Kp,OE)r. Inverting p, one gets Ĥ1

E,G(KS0)⇢ ⇠= C0(Kp, E)r. The

map from HomE⌦(OE [[O⇥D]])

((Ĥ1

E,G(KS0)⇢)
_, ⇤) to HomE⌦(OE [[Kp]])((Ĥ

1

E,G(KS0)⇢)
_, ⇤)O⇥D

is an isomorphism. Moreover, the second functor is exact as taking the invariants

of a finite group is exact in characteristic 0. Thus, (Ĥ1

E,G(KS0)⇢)
_ is projective as

an E ⌦ (OE[[O⇥
D]])-module. Thus, it is a summand of a free module, and thus, after

dualizing, one has that Ĥ1

E,G(KS0)⇢ is a summand of C0(O⇥
D, E)t for some t. It is then

su�cient to show that the O⇥
D-algebraic vectors are dense in the C0(O⇥

D, E). But the

O⇥
D algebraic vectors in C0(O⇥

D, E) are exactly the polynomial functions, and Mahler

expansions express polynomials as a dense subspace of continuous functions. ⇤

The above proof, in addition to being similar to the one in [15], models the same

philosophy: H1 becomes exact when localizing at a non-Eisenstein prime. In ad-

dition, the above proof shows that Ĥ1

E,G,⇢,S is cofinitely generated as a D⇥ ⇥ GS0-

representation.

Appendix A. Local Langlands for ` 6= p

This is an expository section on the local Langlands correspondence in families,

due to Emerton and Helm in [16]. The main goal is to study what happens in

the local Langlands correspondence for GL
2

(Q`) for smooth representations over p-

adically complete rings. The motivating question is the following. Consider ⇢mS as a

representation of GQ over TG,⇢,S. For p ⇢ TG,⇢,S a characteristic 0 prime, there is a

representation ⇢(p) : GQ`
! GL

2

(k(p)) by restriction. This gives rise to a smooth
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representation ⇡(p) of GL
2

(Q`). Is it possible to find a smooth representation ⇡

of GL
2

(Q`) over TG,⇢,S such that ⇡ specialized to p is ⇡(p)? The results in this

section will be stated in larger generality, but this example should be kept in mind

throughout.

A.1. The Kirillov Functor. Recall that GS0 =
Q

`2S0
G(Q`) =

Q
`2S0

GL
2

(Q`).

The goal of this section is to study smooth representations of GS0 over a ring A that

is a complete noetherian local OE-algebra. Let

P
0

=

8<:
0@a b

0 1

1A�����a 2
Y
`2S0

Z⇥
` , b 2

Y
`2S0

Z`

9=; ⇢ GS0 .

Also let U` 2 OE[GS0 ] be
`�1X
i=0

0@` i

0 1

1A.

Definition A.1.1 (The Kirillov Functor). Let X be a smooth representation of GS0

over A. The functor FS0(X) := {x 2 XP0 |U`x = 0 for all ` 2 S
0

} sending smooth

represntations of GS0 over A to A-modules is called the Kirillov functor.

The key properties of FS0 are as follows (this may be found in [16])

Theorem A.1.2. (1) FS0 is exact.

(2) FS0 sends finite length smooth representations to finite length A-modules.

(3) If X/k is a smooth representation of GS0, then FS0(X) is at most one dimen-

sional.

(4) If S
0

is the singleton set {`} and X/k is an irreducible representation of GS0,

then FS0(X) = 0 if and only if X is a character of the determinant.

Definition A.1.3. A representation X/k is generic if and only if there are no sub-

representations W of X with FS0(W ) = 0.
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Lemma A.1.4. Let f : W ! X be a GS0 equivariant map from one smooth admis-

sible GS0 representation over k to another. If W is generic and FS0(f) is injective,

then so is f .

Proof. Let V ⇢ W be the kernel of f and assume that V 6= 0. By genericity, one

sees that FS0(V ) 6= 0. Exactness of FS0 implies that FS0(f)(V ) = 0, contradicting

the assumption that FS0(f) is injective. ⇤

A.2. Generic Local Langlands for GL
2

(Q`). Let A be a complete noetherian

OE-algebra. Assume further that A is a domain of characteristic 0, and let K be

the field of fractions of A. In [16], they define a correspondence between continuous

two-dimensional representations of GQ`
over K and generic smooth representations of

GL
2

(Q`) over K. This is usually given by the standard recipe: if ⇢ is a two-dimensional

representation of GQ`
over K, then one passes to the associated Weil-Deligne repre-

sentation WD(⇢) and then to the Frobenius-semisimplification WD(⇢)F�ss. From

here, one appeals to the standard local Langlands correspondence and gets a repre-

sentation of GL
2

(Q`). However, that representation is not always generic (recall that,

in the case of GL
2

(Q`), this means that the representation has no finite-dimensional

subrepresentations). Thus, a small modification is made to make sure that one al-

ways gets a generic representation. In order to fix that, the following construction is

made:

Definition A.2.1. Let ⇢ be a two-dimensional continuous representation of GQ`
as

above. One defines a smooth admissible generic representation ⇡LL(⇢) of GL
2

(Q`)

over K as follows

(1) If ⇢ is absolutely irreducible, then ⇡LL(⇢) is constructed as above. In partic-

ular, ⇡LL(⇢) is a supercuspidal representation with central character given by

det(⇢)| · |`.
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(2) If ⇢ is the sum of characters �
1

� �
2

with �
1

�
2

6= | · |±1

` , then ⇡LL(⇢) is

again constructed as above. In this case, ⇡LL(⇢) is a principal series, given

by taking IndGL2(Q`)

B (�
1

| · |` ⇥ �
2

). This representation is generic, irreducible,

and insensitive to the choice of ordering of the characters.

(3) If ⇢ is the sum of characters �
1

��
2

with �
1

�
2

= | · |±1

` , choose �
1

so that �
1

=

�
2

|·|`. Then ⇡LL(⇢) is again a principal series given by IndGL2(Q`)

B (�
1

|·|`⇥�
2

).

While this is the same formula as above, this representation is no longer

irreducible, but it is instead a nonsplit extension of �
1

� det by �
1

� det⌦ St.

This will be the only case that di↵ers from the standard construction.

(4) If ⇢ is a non-zero extension of � by �, then ⇡LL(⇢) is IndGL2(Q`)

B (�| · |` ⇥ �).

Again, this is the same formula as number 2. In this case, this is due to the

associated Weil-Deligne representation not being Frobenius semi-simple. The

Frobenius semplification of WD(⇢) is just the Weil-Deligne representation

associated to �� �.

(5) If ⇢ is a non-zero extension of �| · |` by �, then ⇡LL(⇢) is just defined to be

(�| · |`) � det⌦ St.

A.3. Mod p Local Langlands for GL
2

(Q`). Before constructing the local Lang-

lands correspondence in families, it is usefule to figure out what happens mod p. In

[16], there is a construction of a correspondence ⇢ ! ⇡(⇢) sending two-dimensional

representations of GQ`
over kE to smooth admissible representations of GL

2

(Q`).

Theorem A.3.1. The correspondence ⇢ ! ⇡(⇢) satisfies and is characterized by the

following properties:

(1) ⇡(⇢) is generic (again, this means that there are no finite-dimensional sub-

representations).

(2) For any K/E finite together with ⇢ : GQ`
! GL

2

(OK) such that ⇢⌦OK kK ⇠=

⇢ ⌦kE kK, there is a lattice ⇡LL(⇢)� in ⇡LL(⇢ ⌦OK K) such that ⇡LL(⇢)� ⌦OK
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kK ,! ⇡(⇢) ⌦kE kK. Additionally such a lattice is unique up to choice of

multiplication by scalar in K⇥.

(3) For any representation ⇡ that satisfies the above two conditions, there is a

GL
2

(Q`)-equivariant embedding of ⇡(⇢) ,! ⇡.

A.4. Local Langlands in Families. Recall that A is a complete noetherian local

OE-algebra with maximal ideal m. For this section, assume further that A is reduced

and flat over OE. For each prime ideal p ⇢ A, let (p) be the residue field of p. If

⇢ is a two-dimensional representation of GQ over A, then ⇢(p) will denote ⇢⌦A (p).

Additionall, ⇢ will be used to denote ⇢(m). The main result is the following:

Theorem A.4.1. Let ⇢ be as above. There is at most one representation X of GS0

satisfying the following properties:

(1) X/$EX[m] is generic.

(2) FS0(X/$EX[m]) is at most one-dimensional.

(3) There is a Zariski-dense set of closed primes S ⇢ Spec(A[1
p
]) such that

(X ⌦OE E)[p] ⇠=
O
`2S0

⇡LL(⇢(p)|GQ`
)

where ⇡LL is the correspondence described in defintion A.2.1, and such that

the closure in X of the saturation in X of
P

p2S X[p] is just X.

Moreover, for such an X and any closed prime p 2 Spec(A[1
p
]), one has that there is

a GS0-equivariant embedding

(X ⌦OE E)[p] ,!
O
`2S0

⇡LL(⇢(p)|GQ`
).

If X satisfies the conditions of Theorem A.4.1 then we will say that X = ⇡S0(⇢).
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Appendix B. The p-adic Langlands Correspondence for GL
2

(Qp)

This is a short introduction to the p-adic Langlands program for GL
2

(Qp). A good

source to see the results (without proofs) is section 2 of [3]. Throughout this section,

the following assumption will be in force:

Assumption B.0.2. For any representation ⇢ : GQp ! GL
2

(kE), one has that

⇢ 6⇠=

0@1 ⇤

✏

1A .

B.1. The mod p Theory. The mod p local Langlands correspondence is a cor-

respondence between smooth representations of GL
2

(Qp) valued in kE-vector spaces

and two-dimensional representations of GQp over kE. The explicit constructions given

here may seem unmotivated, but there is a characterization due to Colmez in [9] using

(',�)-modules.

First, let �
1

and �
2

denote two kE-valued characters of GQp .

Theorem B.1.1. If �
1

��1

2

6= ✏±1 and �
1

6= �
2

, then one has that

Ext1GQp
(�

1

,�
2

) ⇠= Ext1
GL2(Qp)

(IndGL2(Qp)

B (�
1

⇥ �
2

✏), IndGL2(Qp)

B (�
2

⇥ �
1

✏)).

The assumptions on �
1

and �
2

might seem restrictive, but they are consistent with

global assumptions made on the representation ⇢ : GQ ! GL
2

(kE). Additionally,

they guarantee both that the principal series are irreducible and that the Ext-groups

are one-dimensional. This theorem has a more general version that removes the

assumptions on �
1

and �
2

, but care needs to be made in those cases. In particular,

one has that for ⇡ = IndGL2(Qp)

B (� ⇥ �) is not irreducible but rather is an extension

of the form 0 ! (� � det) ⌦ St ! ⇡ ! � � det ! 0. Additionally, the dimension of

the Ext-groups can jump to 2 in these cases.
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In order to handle the irreducible case, let ! : IQp ! F⇥
p2 be the fundemental

character of niveau two. Concretly, !(g) ⌘ g·(�p)
1

p2�1

(�p)
1

p2�1

(mod p), which doesn’t depend

on choice of (p2 � 1)-th root of �p. Any irreducible representation ⇢ of GQp over kE

has inertial type ⇢|IQp
=
�
!a+pb

!pa+b

�
for some a, b with 0  a < b  p. Let ⇢a,b

be the unique representation of GQp whose restriction to inertia is
�
!a+pb

!pa+b

�
and

whose determinant is ✏a+b. Every irreducible representation is a twist of one of the

⇢a,bs by an unramified character.

Let � be an irreducible representation of GL
2

(Zp)Q⇥
p over kE. Then, a theorem

of Barthel and Livné shows that End(c� IndGL2(Qp)

GL2(Zp)Q⇥p
(�)) = kE[T ] for some Hecke

operator T . Letting ⇡(�, 0) = c� IndGL2(Qp)

GL2(Zp)Q⇥p
(�)/T , one gets a smooth irreducible

admissible representation of GL
2

(Qp). The beauty of this situation is that it is

possilbe to classify all such �s in a way that corresponds to the classification of

irreducible ⇢s as above. For any such �, one has that �|
GL2(Zp) factors through

GL
2

(Fp) and is isomorphic to Syms(Std)⌦ dett for 0  s  p� 1 and 0  t  p� 2.

The only information left to determine � is an unramified character of Q⇥
p . One then

gets a bijection by letting s = b� a� 1 and t ⌘ b+ a (mod p� 1), and matching up

unramified characters.

Theorem B.1.2 (The Mod p Langlands Correspondence). There is a correspondence

between smooth admissible representations ⇡ of GL
2

(Qp) over kE and two dimensional

representaions ⇢ of GQp over kE defined as follows:

(1) If ⇢ is a sum (resp. extension) of �
1

and (resp. by) �
2

, then ⇡ is a sum (resp.

extension) of IndGL2(Qp)

B (�
1

⇥ �
2

✏) and (resp. by) IndGL2(Qp)

B (�
2

⇥ �
1

✏).

(2) If ⇢ is irreducible, then one uses the recipe in the previous paragraph. That is

to say, for ⇢a,b, one chooses �|
GL2(Zp) = Symb�a�1(Std)⌦detb+a and �(p) = I,

and extends this correspondence to arbitrary representations by twisting by the

corresponding characters under class field theory.
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B.2. The Characteristic Zero Theory. The main objects of study in the p-adic

theory are a little more complicated than the main objects of study in the classical

local Langlands program. The representations of GL
2

(Qp) will be E-Banach spaces.

Definition B.2.1. A Banach space over E is a topological vector space B com-

plete with respect to a norm || · ||B satisfying the usual properties. Giving a norm is

equivalent to giving a unit ball B� ⇢ B that is a p-adically seperated and complete

OE-module. A representation of GL
2

(Qp) on a Banach space B is said to be unitary

if it preserves a norm giving the topology. It is said to be continuous if the evaluation

map GL
2

(Qp) ⇥ B ! B is continuous. If B is a unitary continuous representa-

tion of GL
2

(Qp), then the action of GL
2

(Qp) on B descends to a smooth action on

B�/$EB
�. Under the same assumptions on B, it is said to be admissible if B�/$EB

�

is admissible in the sense of smooth representations.

A word of warning: there are representations of GL
2

(Qp) that are unitary but not

continuous and representations that are continuous but not unitary. If B is a unitary

continuous admissible Banach space representation of GL
2

(Qp) and v 2 B, define

fv : GL
2

(Qp) ! B by fv(g) = g · v. Then there are two important subspaces of B:

Definition B.2.2. Let B be as above. Then make the following definitions:

• The locally analytic vectors in B are denoted Bla. This is defined to be the

subspace {v 2 B|fv is an analytic function in a neighborhood of I}.

• The locally algebraic vectors in B are denoted Balg. This is defined to be the

subspace {v 2 B|fv is an algebraic function in a neighborhood of I}.

The Lie algebra gl
2

acts on Bla as the deriative of the action of GL
2

(Qp). A

theorem of Schneider and Teitelbaum in [21] shows that Bla is always dense in B if

B is a continuous unitary admissible representation of GL
2

(Qp). On the other hand,

Balg is usually 0.

Work of many people produced the following theorem:
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Theorem B.2.3 (The p-adic Langlands correspondence for GL
2

(Qp)). There is an

association ⇢ ! B(⇢) sending 2-dimensional representations of GQp to continuous

unitary admissible representations of GL
2

(Qp) over E and inverse ⇡ ! V(⇡) going

in the other direction satisfying the following properties:

(1) ⇢ ⇠= ⇢0 if and only if B(⇢) ⇠= B(⇢0) if and only if B(⇢)la ⇠= B(⇢0)la.

(2) B(⇢)�/$EB(⇢)� corresponds to ⇢ up to semiplification under the mod p Lang-

lands correspondence.

(3) B(⇢)alg 6= 0 if and only if ⇢ is potentially semistable with distinct Hodge-Tate

weights.

(4) Conversely, if ⇢ is potentially semistable with distinct Hodge-Tate weights

w
1

< w
2

, then B(⇢)alg ⇠= ⇡LL(WD(⇢)F�ss)⌦ Symw2�w1�1(Std)⌦ detw1.

(5) B(⇢) is “as irreducible as” ⇢. That is to say, if ⇢ is irreducible, then so is

B(⇢). If ⇢ is reducible but indecomposable, then so is B(⇢). If ⇢ is semisimple

then so is B(⇢).

The conceptual framwork behind why the conjecture was initially made (espe-

cially the stu↵ about the locally algebraic vectors) is as follows: if ⇢ is potentially

semistable with distinct Hodge-Tate weights w
1

< w
2

, then the information needed

to recover ⇢ is the Weil-Deligne representation WD(⇢), the Hodge-Tate weights

w
1

< w
2

, and the weakly admissible filtration on the Weil-Deligne representation.

The locally algebraic representation ⇡LL(WD(⇢)F�s.s.) ⌦ Symw2�w1�1(Std) ⌦ detw1

recovers WD(⇢) and w
1

< w
2

. The belief that was borne out was that the weakly

admissible filtration should correspond to a GL
2

(Qp)-invariant admissible norm. In

particular, if ⇢ is crystabelline and absolutely irreducible, then the weakly admissible

filtration is unique up to isomorphism and so there should be exactly one norm on

⇡LL(WD(⇢)F�s.s.)⌦ Symw2�w1�1(Std)⌦ detw1 . The following theorem due to Berger

and Breuil in [1] shows exactly that:
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Theorem B.2.4 (Berger-Breuil). Let ⇢ be crystabelline and absolutely irreducible

with distinct Hodge-Tate weights w
1

< w
2

. Then B(⇢) is the universal unitary com-

pletion of ⇡LL(WD(⇢)F�s.s.)⌦ Symw2�w1�1(Std)⌦ detw1.

B.3. Deformation Theory. The final facet of the p-adic Langlands program that

needs to be mentioned is the deformation theory aspect. Let Comp(OE) be the cate-

gory of complete noetherian local OE-algebras whose residue field is a finite extension

of kE. Then there are a number of deformation functors that need to be discussed.

Definition B.3.1. Let ⇢ be a 2-dimensional representation of GQp over kE. Then

define Def(⇢) to be the following category fibered in groupoids over Comp(OE): let

A 2 Comp(OE). Then Def(⇢)(A) has objects that are free rank 2 A-modules V with

a continuous action of GQp, together with an isomorphism of GQp-representations

i : V ⌦AA/m ! ⇢⌦kE A/m. The morphisms are the isomorphisms of A-modules that

commute with the GQp-action and with the isomorphisms i.

Definition B.3.2. Let ⇢ be as above, and let ⇡ be the mod p representation of

GL
2

(Qp) that is attached to ⇢. Then define Def(⇡) to be the following category fibered

in groupoids over Comp(OE): let A be in Comp(OE). Then Def(⇡)(A) has objects

that are A-modules ⇡ that are also orthonormalizable admissible continuous represen-

tations of GL
2

(Qp), together with an isomorphism i : ⇡ ⌦A A/m ! ⇡ ⌦kE A/m. The

morphisms are again isomorphisms of GL
2

(Qp) representations that commute with

the isomorphisms i.

The p-adic Langlands correspondence induces a natural morphism Def(⇡) ! Def(⇢).

While this morphism is not necessiarly an isomorphism, there are natural subfunctors

that make this an isomorphsim when restricted to them.

Definition B.3.3. Let ⇢ and ⇡ be as before.

(1) Let Defcrys(⇢) be the Zariski closure of the crystalline points in the generic

fiber of Def(⇢).



55

(2) Let Def⇤(⇡) be the subfunctor where one has that, for ⇡ 2 Def(⇡)(A) and

V(⇡) 2 Def(⇢)(A), the central character � of ⇡ corresponds to det(V(⇡))✏

under class field theory.

(3) Let Defcrys(⇡) = Def⇤(⇡)⇥
Def(⇢) Def

crys(⇢).

The main result due to Kisin in [18] is the following

Theorem B.3.4. With ⇢ and ⇡ as above, one has the following:

• The morphism Def⇤(⇡) ! Def(⇢) is a fully faithful embedding.

• When restricted to Defcrys(⇡) ! Defcrys(⇢), it becomes an isomorphism.
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Priložen., 10(2):29–40, 1976.

[13] V. G. Drinfel0d. Elliptic modules. II. Mat. Sb. (N.S.), 102(144)(2):182–194, 325,
1977.

[14] M. Emerton. On the interpolation of systems of eigenvalues attached to auto-
morphic Hecke eigenforms. Invent. Math., 164(1):1–84, 2006.

[15] M. Emerton. Local-global compatability in the p-adic langlands programme for
GL

2/Q. Preprint, 2011.

[16] M. Emerton and D. Helm. The local Langlands correspondence for GLn in
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