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Abstract 

Molecules in cells collide and react randomly, creating stochastic fluctuations in synthesis 

and degradation which creates heterogeneity among genetically identical cells in the 

identical environments. However, the random motion of cellular components also creates 

spatial heterogeneity which at cell division means that the two sister cells can receive 

different amounts of each component. Such partitioning errors could in principle explain 

much of the heterogeneity that now is attributed to stochastic gene expression, but has 

been largely unexplored. This thesis aims to study the contribution of partitioning noise at 

cell division on cellular variability. The effect of partitioning errors on the overall 

heterogeneity can also accumulate over multiple divisions, depending on how quickly 

deviations are corrected during the cell cycle. Thus, its effect can only be properly 

estimated using accurate time-lapse measurements over many single cells while keeping 

track of sibling cells. In the first part, we present a microfluidic device that enables high-

throughput and accurate measurements under exceptionally homogeneous growth 

condition both in time and space. In the second part, using Schizosaccharomyces pombe 

as a model organism, we systemically measure partitioning noise for high-abundance 
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proteins with various localizations and reveal that a significant amount of partitioning 

noise composes protein noise at birth, ranging from 33% of cytoplasmic proteins to 57% 

of vacuolar proteins. Next, by leveraging our microfluidic device, we directly measure 

how partitioning noise is corrected over cell cycle. Surprisingly, all of the measured 

strains displayed a simple exponential correction curve with a half-life of 1 generation, as 

expected when cells produce the same amount regardless of their starting value. That is, 

the correction curve is fully described by a passive control model in which fluctuations 

are corrected by regression to the mean without feedback. We further use this model to 

identify the total contribution to protein noise from partitioning errors, and thus also to 

identify the noise component that appears to come from stochastic gene expression. 

Overall, our work demonstrates the significance of random partitioning on protein noise. 
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Chapter I:  

Introduction 

 Cellular life is full of randomness [1]. Inside a cell, biomolecules such as mRNAs 

and proteins are synthesized and degraded by biochemical reactions triggered by random 

collisions between their upstream components. For example, the transcription of an 

mRNA begins with RNA polymerase by chance finding and binding to a promoter region 

in the genome [2]. The times of the birth and death events of biological components is 

thus inevitably probabilistic [3-5], causing stochastic variation in abundances of all 

components [6, 7]. The most studied example is perhaps gene expression ‘noise’, where 

genetically identical cells grown under identical homogenous environments can differ 

greatly in protein levels due to stochastic transcription and translation [8-10]. Gene 

expression noise is sometimes conceptually separated into two components, based on 

how it originates: ‘intrinsic’ noise arises from probabilistic births and deaths within the 
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system itself and, ‘extrinsic’ noise arises from variability in other components that affect 

the system [11, 12]. Intrinsic noise stems from low copy numbers as limited numbers of 

reactions involved generally do not sufficiently average out randomness. Indeed, it has 

been directly measured that many mRNAs and proteins exist in only a handful of copy 

numbers per cell in E. coli [13], yeasts [14, 15], and mammalian cells [16, 17]. When 

such a component participates in biochemical reactions of another species, its fluctuation 

perturbs the chemical parameters, thereby propagating its noise to the downstream as an 

extrinsic noise [1, 6]. For example, fluctuation in concentration of mRNA affects the 

synthesis rate of its cognate proteins; thus, noise in mRNA thus transmits to protein noise. 

Therefore, even high abundance proteins can exhibit significant fluctuations as a 

consequence of randomness in its upstream factors such as ribosomes, transcripts, 

transcriptional factors, and even the states of chromatin [15, 18]. Given that chemical 

networks in a cell are highly interconnected [19-21], it has been suggested that gene 

expression noise may be a widespread phenomenon. 

 Supporting this view, many experimental studies indeed revealed significant non-

genetic heterogeneity in the concentrations of mRNAs and proteins under homogenous 

conditions, regardless of their expression levels for a variety of organisms [13, 17, 

22-24]. Notably, these genome-wide studies [13, 24, 25] highlighted the significance of 

stochastic gene expression by successfully fitting the observed distributions to simplified 

toy models consisting of random birth and death processes. These models, however, often 
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ignored one of the most fundamental stochastic processes that potentially contribute to 

molecular noise; every molecule randomly ends up being in one of daughter cells at cell 

division because its location inside a cell is inherently governed by stochastic movements 

[26-28].  

 Stochastic partitioning process can produce sister cells having asymmetric mixture 

of cellular components even at symmetric division in volume, thus their molecular 

concentrations are randomized at each division. Indeed, many studies on organelle 

inheritance revealed significantly asymmetric spatial patterns of cellular compartments 

between sister cells at cell division [29-35], yet its effect was not linked to protein noise 

in a quantitative way. More critically, Huh and Paulsson theoretically showed that noise 

arising from random partitioning is inherently indistinguishable from gene expression 

noise when using snapshot measurements because very different models can fit the same 

data; even when noise uniquely comes from partitioning, the shapes of the resulting 

distributions and the fold-change in variances to changes in transcription and translation 

rates can still be exactly as expected from models of stochastic gene expression [36]. 

Hence, the question of how much of protein noise comes from gene expression noise has 

not yet been answered at all.  

 The noise from partitioning can also accumulate over divisions. Thus to appreciate 

its total contribution two questions must be answered; 1) how much noise is generated 

per division? and 2) how rapidly is the noise corrected during cell growth? To address the 
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latter, we must follow the differences between sister cells over cell growth in high-

throughput. In Chapter II, we describe our invention of an experimental platform for 

high-throughput single cell imaging using microfluidics. In Chapter III, we systemically 

measure the noise from random partitioning in a quantitative an systematic manner and 

argue its significance on protein noise.  
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Chapter II: 

Microfluidic Device for High-

throughput Imaging of Fission Yeasts 

Contributions 

Development of a GUI program for manual correction of segmentation masks and algorithm to segment 

cells with phase-contrast images were done in collaboration with Sadik Yildiz. I performed all other works. 
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II.1. Introduction 

 The state of a cell reflects its past dynamics, but in a one-to-many relationship 

where many different paths can lead to the same current state. The same is true for 

statistical properties: just like many different distributions can produce the same bulk 

average, many different stochastic processes can produce the same overall distribution 

[37]. This has been a very real practical problem. Specifically, stochastic models are often 

evaluated by comparing predicted and measured distributions, but very different 

stochastic reaction mechanisms can create the exact same distributions. For example, 

bursty synthesis of mRNAs or proteins can produce the same distributions as many other 

non-bursty mechanisms that are equally plausible [18, 21], and yet they have been taken 

as evidence of the former.  

 Much more information can be gleaned by directly monitoring processes in 

individual cells through time-lapse imaging [38-40]. This idea has a long history in 

biology. For example, in the 1970s, a series of landmark papers [41, 42] by Paul Nurse 

revealed a surprisingly tight distribution of cell sizes at mitosis in fission yeast, 

demonstrating that it is achieved through negative feedback between initial size and 

generation time by periodically recording the images of cells on a panchromatic film. 

However, the molecular mechanisms that underlie the size control have only recently 

been established much thanks to the advent of fluorescent protein reporters [43, 44], 

which began to be used for quantification of protein level in the 2000s [11, 45-47]. 
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 Time-lapse fluorescence microscopy enables us to monitor intracellular dynamics 

with fluorescent reporters in a single cell level, and has helped to uncover many hidden 

aspects that cannot be appreciated in population level experiments. For example, time-

lapse experiment has helped us understand how cells make fate decisions to enter 

alternative states using noisy genetic networks [48-50]. In addition, it is a great platform 

to test how synthetically engineered circuits work and to how improve them [45, 51]. 

Thus, time-lapse imaging of single cells has established itself as a powerful tool to study 

a wide variety of cellular systems. 

 The conventional method for time-lapse measurement is simply to grow cells on an 

agarose pad, which can be applied for a wide variety of model organisms [49, 52-54]. 

However, several major challenges remain. First, it does not allow long-term imaging. 

The first few generations are often hard to interpret because cells are adjusting to the 

change in conditions from liquid culture to colony. Because the number of cells 

exponentially increases, the population then quickly accumulates and often forms second 

layers when the population size reaches a few hundred cells, i.e., in 7-8 generations. This 

severely limits the duration of experiments. Even doubling the field of view only extends 

the time series by one generation. Given that some transitions in cellular states occur on 

very long time scales (for example >50 generations for spontaneous changes of histone 

modifications in fission yeast [55]), much longer duration is needed to study rare events. 

A second challenge is that agar pad experiments do not provide homogeneous growth 
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conditions for cells. Since cell growth depends on nutrients diffused from the agarose 

pad, its local concentration is likely to fluctuate over time and space depending on 

density of nearby cells, thus each cell can have a different history in cellular 

environments. This makes it hard to distinguish if cellular changes come from 

intracellular reactions or from environmental changes. Third, tracking cells in growing 

colonies is nontrivial and often laborious because each cell is very similar in their size, 

are densely packed, and moves almost randomly due to growth of surrounding cells. 

When accurate lineage tracking is required, small errors in tracking can completely 

change the conclusions. Fourth, agar pads generally do not provide high-throughput 

measurements, because images in each field of view must be taken frequently enough to 

reliably track the cells and because the colonies must be spaced out to avoid the risk of 

merging colonies. Finally, because cells are being in close proximity over time, optical 

signals coming from nearby cells or ‘halo’ interfere with its own signal, distorting 

quantitative measurement due to the point-spread function of light.          

 To address the above challenges, alternative approaches using a microfluidic device 

have recently emerged [56-58]. One famous example is the ‘mother machine’, a 

microfluidic device originally developed for E. coli, which has been shown to overcome 

many experimental limitations of agarose pads [59]. The mother machine has cell growth 

channels, in which the rod-shaped E. coli cells fit and grow while aligned linearly due to 

structural constraints. One end of the cell channel is closed off, and thus a ‘mother’ cell 
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stays at the end, while its progeny are pushed out of the open end as they grow. The 

growth in an organized shape makes tracking of growing cells easier. Also, the cell 

growth channel is connected to a larger media channel where growth medium constantly 

flows by, allowing nutrients to diffuse around the cells and also washing away cells 

coming out of the growth channel. This simple yet effective design has allowed some labs 

to image single cells over time with high sampling depth under homogenous 

environments, and provided a great platform for many valuable studies in bacteria [50, 

51, 60-62]. However, for eukaryotes, there is a limited number of microfluidic devices 

that provide long-term imaging in a high-throughput way. For Saccharomyces cerevisiae, 

there is a similar version of mother machine that only confine mother cells taking 

advantage of their bigger cell size due to asymmetric division, but the duration of an 

experiment is limited since they eventually die because of aging effect (half life = 20 

generations) [63], and also there is possibility that cells are mechanistically stressed since 

they become larger as they age while dimensions of the chip stay constant (personal 

communication with Dirk Landgraf). For Schizosaccharomyces pombe, which does not 

seem to age significantly [64], there are two reported devices to our knowledge. The first 

one [65] is basically a version of mother machine with wider cell growth channels, such 

that cells form colonies in the cell channels as on an agarose pad, hence harboring the 

similar disadvantages including non-trivial tracking. The second one used a clever trick to 

slightly open the end of the cell channel with narrower trenches, rather than to close it as 

in the mother machine, so that medium can actively flow along the cell channel. 
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However, it was only possible to trap and track ~100 mother cells because loading of 

cells was inefficient and mother cells were often lost over time due to unstable flow [66]. 

More importantly, this device completely does not provide lineage information, as one of 

the two daughter cells is immediately washed out upon cytokinesis. As described in 

Chapter III, following both sister cells over time is critical to measure how partitioning 

errors is corrected over cell growth. Finally, the utility of high-throughput imaging and 

small statistical errors is severely compromised if systematic artifacts, e.g. due to 

systematic spatial or temporal biases in the device, instead come to dominate the total 

error. Therefore, we set out to design a new microfluidic device for fission yeasts based 

on the mother machine for bacteria [59]. 

II.2. Design of mother machine for fission yeast 

 In terms of designing microfluidic devices, the main difference between E. coli 

and S. pombe is their size. E. coli is ~2-5µm in length on average at division, depending 

on growth conditions, and ~0.5-0.8µm in width, whereas S. pombe is ~14-18 µm in 

length and ~3.8µm in width at division. The larger cell size requires the longer cell 

channel, which makes it more difficult to provide fresh growth medium to cells passively 

by diffusion as in the original design. To overcome this, I developed and tested a very 

large number of microfluidic devices, with different designs or dimensions to make sure 

that there are no any signs of poor or non-uniform feeding. Most of them enabled cell 
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growth yet with spatial biases inside the cell channel. For example, an original design 

with larger dimensions showed slower growth of old-pole cells.    

 The final solution included shallow media feeding layer on the side, surrounding 

the cell channel and connected to the main media channel where medium flow (Figure II.

1A). In this way, fresh medium has much more space to flow around cells and actively 

flows to cells from an inlet. The height of the shallow layer (2.2µm) is lower than the 

main cell channel (4.2µm), thus cells can only fit the main channel when loading (Figure 

II.1B) and over growth (Figure II.1C). To prevent the shallow layer from collapsing into a 

cover glass, we also included circular pillars to support it (Figure II.1A). As a result of 

active flow, we could not detect any spatial bias within or between growth channels, 

despite the great statistical throughput. To minimize the halo effects from nearby cells, 

the cell channels are separated by 12µm. The height of the cell channel was carefully 

optimized with two considerations: loading is not efficient if too low, while cells tilt if too 

high which makes it difficult to quantify the cell size. On average, eight newborn cells 

can be imaged per the cell channel (85µm long), and nine parallel channels can fit in one 

field of view with 60x magnification. Cells stay in the same horizontal plane over time, 

thereby helping subsequent image analysis such as segmentation and tracking (Figure II.

1C). A total of 10 independent lanes were embedded in a single microfluidic chip, 

therefore multiple experiments are possible in a parallel way. 
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Figure II.1 | Design of the mother machine for fission yeasts. (A)  A schematic  of  the 

modified microfluidic device for S. pombe.  The cell channel filled with cells is designed as 

4.2  um  x  4.2  um  rectangular  shape  (upper  panel)  to  fit  the  shape  of  fission  yeast  with  a 

diameter  of  ~3.8  um.  As  illustrated  in  a  top  view  of  the  device  (lower  panel),  each  cell 

channel  is  surrounded by the  shallow media  layer  (light  yellow) and the  main media  layer 

(dark  yellow),  and  growth  medium  actively  flows  in  both  of  layers.  The  shallow  media 

layer  is  supported  by  multiple  pillars  (white  circles)  of  2.2  um  height  to  keep  from 

collapsing  while  not  allowing  cells  to  enter.  Each  cell  channel  is   85  um long,  which  can 

accommodate  four  dividing  cells  (16  um  in  rich  media),  and  is  separated  by  12  um  to 

minimize  the  halo  effects  between  them.  (B)  An  example  bright-field  image  of  the  device 
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Figure II.1(continued) | after  loading the  cells  into  it.  With  a  60x objective,  a  maximum 

of  9  independent  channels  per  a  field  of  view can  be  imaged  simultaneously,  and  about  5 

dividing  cells  can  be  accommodated  within  a  channel.  (C)  An  typical  time-lapse  movie 

within  a  single  cell  channel  is  represented  as  a  kymograph.  The  images  were  taken  every 

15 minutes for the strain (DH115) in which mGFPmut3 is translationally fused to cnx1 that 

localizes  to  endoplasmic  reticulum.  The  red  lines  indicate  the  boundaries  of  segmentation 

masks for mother cells over time.

  

II.3. General pipelines to analyze a time-lapse movie 

 Our device described above allows us to trace thousands of individual cell lineages 

over hundreds of consecutive hours, generating a great amount of high-resolution time 

series data. To reliably analyze this data with minimal manual labors, we developed an 

automatic pipeline to extract various quantities from the time-lapse movies. The key 

feature of our analysis is to track and extract data from all cells, including siblings and 

cousins, unlike most previous analyses that only track mother cells. Also, we take 

advantage of the lineage information to detect segmentation errors, thereby reducing the 

efforts of manual corrections. First, using a fluorescent cytoplasmic marker, the 

boundaries of cells are identified by applying local thresholds on the intensity in pixels 

with the T-point algorithm [67]. Second, cells within a single cell channel were extracted 

from each image, and a kymograph was made by combining trimmed images over time 

(Figure II.1C and Supplemental Figure C.1B). Third, tracking is performed. Briefly, two 
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consecutive segmentation masks are matched from the top, a division event is detected if 

there is a decrease in the size of segmentation mask, and an indicator of segmentation 

error is raised if the sum of sizes of two daughter cells are significantly deviated from the 

mother cell size or if the ratio of cell size between sister cells significantly deviates from 

one. This simple tracking algorithm is possible because of the linear growth trenches in 

the mother machine that conserve the order of cells. By tracking the cells over subsequent 

images, growth patterns of individual cells are calculated, and an another indicator of 

segmentation error is raised if the growth pattern is not monotonic or severely deviates 

from fitted trend, or if the generation time is too short or long (Supplemental Figure C.

1A), raising an alarm for further manual checks. Fourth, segmentation masks with 

possible errors detected in the previous steps are visualized and validated in our custom 

interactive module, and are manually corrected by comparing the patterns in nearby 

frames (Supplemental Figure C.1B). Finally, quantities such as cell size, fluorescent 

intensity profile inside a mask, positions in a field of view, and cell cycle positions are 

extracted from each mask and grouped by each lineage.  Overall, this automatic pipeline 

enables to extract high-quality data for single-cell lineages in a fast yet reliable fashion. 

II.4. Homogeneous condition over time and space 

 Maintaining a stable environment over time and space is critical to study cellular 

variability, because interpretations otherwise become harder. Specifically, if the 
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environment such as a local concentration of available nutrients fluctuates over time, 

cells to some extent track the environmental changes by modifying its physiology and 

intracellular genetic networks. Similarly, if the environment varies depending on location, 

the difference between cells can no longer be straightforwardly attributed to the internal 

mechanisms. In fact, even if the environment is homogeneous at the time of data 

acquisition, the effects from previous inhomogeneities can still remain. For example, 

cells are often prepared at a temperature different from where they grow, and hence need 

some time to adapt to the new environment. To address this issue, we measured how long 

it does take to reach stationarity (in the sense of stochastic processes, with steady 

statistical patterns) after loading cells, and optimized the protocol to start the imaging 

only once the adaption effects are not measurable (usually >16 hours for our conditions). 

 In Figure II.2, we show the stationarity of our device by providing the stable 

statistics of cell growth over time and space. The experiments were performed for strain 

DH60 that contains mCherry driven by the constitutive adh1 promoter in the leu1 locus, 

which serves as a segmentation marker. Cells were loaded into the mother machine and 

grown for ~16 hours without imaging under rich synthetic medium (SC+PMG media) at 

32°C. After the adaptation period, images were taken every 5 minutes for ~3 days. After 

segmentation and tracking, a total of ~10,000 cell divisions were obtained and generation 

times and the length at division were quantified. The distributions of measured properties 

did not vary over time, and for presentational purposes we used two statistical quantities: 

!15



the average and coefficient of variation (CV = std(x)/mean(x) for random variable x) for 

each distribution. The mean generation time was ~144 minutes, which is slightly faster 

than the ~150 minutes measured in a bulk (likely because we run the experiments in the 

equivalent of extremely early exponential phase before any growth competition can set 

in), and virtually constant over time (orange line in Figure II.2A). The CV of generation 

time (~14% on average) also showed an almost flat pattern  (green line in Figure II.2A). 

The mean cell length at division was measured at ~16.7µm, consistent with previous 

reports [44]. Both the average and the CV (~9.59% on average) were stable over 3 days 

of the experiment (orange and green lines in Figure II.2B, respectively). To show spatial 

uniformity, we compared the distributions conditioned on the positions of cells 

represented by order within a cell channel (inset in Figure II.2C). The distributions of 

generation times and dividing lengths for each relative positions were similar to each 

other, except for slightly longer division times and shorter dividing lengths at the lowest 

position in some versions of the device (Figure II.2C and Figure II.2D). We validated that 

this was due to lack of outliers that divide at >25µm at this position, suggesting that even 

this small anomaly was not statistically significant. Indeed because this is the first 

position where cells are washed out, a division event of long cells is less likely to be 

observed. To minimize any artifacts from this bias, we only proceed with cell lineages 

that the division of their sister cells is observed for further analysis in Chapter III. 
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Figure II.2 | Stability of the mother machine for fission yeasts. Time-lapse experiment 

was performed for the strain (DH60) where Padh1-NES-mCherry is fused to the leu1 locus, 

which  served  as  a  segmentation  reporter.  Cells  were  grown  under  rich  synthetic  media 

(PMG)  at  32°C.  The  experiment  lasts  for  ~3  days  and  around  10,000  divisions  were   

observed.  (A)  Homogenous  generation  time  was  observed  over  time.  Each  dot  represents 

individual  division  event  and  their  density  was  represented  as  a  heatmap.  The  orange  line 

is  a  moving  average  of  generation  time  with  a  window  of  1  hour,  and  the  green  line  is  a 

coefficient of variation of generation times within moving windows of 2 hours. 
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Figure II.2(continued) | (B) Homogenous  division  length  was  observed over  space.  Each 

dot  represents  the  length  of  cell  at  division.  The  orange  line  is  a  moving  average  of 

division length with a window of 1 hour,  and the green line is  a coefficient  of  variation of 

division  length  within  moving  windows  of  2  hours.  (C) Homogenous  generation  time  was 

observed over space. The inset illustrates how we represent the position of cells within the 

cell  channel.  A box plot  shows the distributions of  generation time for  each position.  Blue 

box  measures  standard  deviations  and  the  ends  of  dotted  lines  shows  25th  and  75th 

quantiles  of  generation time.  (D) Homogenous division length was observed over  space.  A 

box  plot  shows  the  distributions  of  division  length  for  each  position.  Blue  box  measures 

standard deviations and the ends of  dotted lines shows 25th and 75th quantiles  of  division 

length.

We also tested stationarity in the concentration of fluorescent proteins 

(Supplemental Figure C.2). Since these bleach over time, we observed a period of slight 

decay in their intensities (~5 generations) before eventually stabilizing once bleaching 

and new production balance (shaded region in Supplemental Figure C.2). Considering 

this complication, we exclude the data before the stabilization, and further ran 

experiments with different intervals between images to ensure our conclusions were not 

affected. We also noticed that the estimated concentration was also somewhat dependent 

on spatial position in a field of view (Supplemental Figure C.3). This distinct pattern 

(~10% monotonic decrease to the right) was reproducible day by day, and for strain by 

!18



strain, and even when analyzing different organisms with a different setup (personal 

communication with Nathan Lord), suggesting uneven illumination from light sources. 

We indeed observed that the microscope stage was slightly titled. To correct this systemic 

bias, we computationally calculate a moving average curve of the concentration as a 

proxy for a illumination pattern to improve the flat field correction (Supplemental Figure 

C.3 and Appendix A.1). This allowed us to accurately estimate levels in single cells. To 

summarize, our microfluidic device is capable of maintaining fission yeast cells under 

exceptionally homogenous conditions temporally and spatially, allowing us to consider 

stable statistical patterns for the cellular quantities of interest.

II.5. Size control in fission yeast 

 We first used this set-up to evaluate the control of cell size in fission yeast. We 

observed a negative correlation between generation time and initial cell size (Figure II.

3A, Pearson correlation coefficient = 0.6), consistent with previous studies [68]. Unlike 

E. coli [60], a “sizer model” describes the data well, i.e., a model in which the cell grows 

until it reaches a specific size (Figure II.3B) by modulating its division time (dotted line 

in Figure II.3A). In this model, 10% smaller cells have 10% longer generation time on 

average. However, the sizer model was not perfect under our experimental condition 

(SC+PMG media), since small positive correlations between the initial newborn cell size 

and the dividing size was observed (Pearson correlation coefficient = 0.12). That is, the 
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initial size of newborn is to some extent inherited to the next generation. Though small, 

these effects can still be important to compare different models. To demonstrate that the 

relationships between two variables are reproducible, we binned data by when it was 

measured and calculated the correlation coefficients within each bin. We confirmed that 

the correlations are stable over time (Figure II.3C and Figure II.3D), demonstrating that 

our device provides robust statistics even for small effects by enabling us to have high-

quality data with enough sampling. 
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Figure II.3(previous page) | Size control in fission yeasts. Cells  (DH01)  were  grown 

under  rich  synthetic  media  (PMG)  at  32°C in  a  mother  machine.  The  experiment  lasts  for 

~3  days  and  around  10,000  divisions  were  observed.  Images  were  taken  every  5  minutes 

(A)  Newborn  length  at  birth  and  generation  time  are  plotted  after  normalizing  by  their 

means.  The red line indicates binned averages with windows of 1,000 events.  Black dotted 

line  represents  ‘sizer  model’,  while  red  dotted  line  shows  ‘timer  model’.  (B)  Newborn 

length  at  birth  and  length  at  division  are  plotted  after  normalizing  by  their  means.  Black 

dotted  line  represents  ‘sizer  model’ where  deviations  from the  mean  in  newborn  length  is 

completely  corrected  over  cell  cycle  on  average.  (C)  Correlation  coefficients  between 

generation  time  and  newborn  length  are  plotted  over  time  by  binning  data  with  equal 

widths.  Inset  shows  newborn  size  versus  generation  time  for  data  in  each  bin.  (C) 

Correlation coefficients between  newborn length and dividing length are plotted over time 

by binning data with equal widths. Inset shows length at birth versus length at division for 

data in each bin.
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II.6. Discussion and continuing works  

 Tracking the dynamics of processes in single cells can address many questions that 

could not be easily answered with snapshot experiments. For example, to explain why 

genetically identical cells are different from each other, it is very helpful to directly 

observe the processes over time. To facilitate interpretations, it is also important that 

measurements are made under homogeneous conditions, so that they are not convolved 

with fluctuations in the environment. Furthermore, to follow slow dynamics or rare 

events, long time series and high sampling depth are required.  

 In this work, we developed a microfluidic device for fission yeast that enables high-

throughput imaging under homogeneous conditions. We utilized active transport of fresh 

media rather than passive diffusion to accommodate larger dimensions than previous 

devices for E. coli. Thanks to our automated analysis pipeline, tracking many siblings 

over long periods of time became possible, which enabled us measure how partitioning 

errors arise and persist over time as described in Chapter III. We also used the device to 

measure long-term epigenetic switching dynamics in single cells, in collaboration with 

the Moazed group, which would not be possible with a conventional setup since the 

average switching time were extremely long (~14 generations on average [55]). Since the 

device potentially can be combined with other imaging techniques such as single 

molecule imaging, it may also be useful for other applications. For example, one could in 

principle perform single-molecule fluorescence in situ hybridization (FISH) 
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measurements after following cellular dynamics and lineage structure, similar to a recent 

report [69], but in greater throughput and correlating the FISH results to the preceding 

dynamics.  

 One caveat with the device described above is that it does not provide complete 

lineage structure since cell channel can contain four dividing cousins at best. To analyze 

relationship between cells distant in lineages (for example, cousins of cousins), the device 

needs to be much longer. Also, it is vulnerable to possible polarity effects since it only 

keep mother cells. To address these issues, we developed another device that can follow 

dynamics of complete lineages for 4 consecutive divisions (Figure II.4A). In this design, 

the cell channel is open in both ends and is surrounded by a side channel that only media 

can flow. Whenever there is difference in pressure between two parallel media channel, 

fresh media flow through side channel. This way we were able to provide homogenous 

environment for extremely long channels (320 um) that contains ~20 dividing cells (left 

panel in Figure III.4A and Figure III.4C). Our current project with this device is to study 

correlations in division time and cell size within lineage structures. To minimize the 

artificial effects from tagging fluorescent proteins, we also developed a pipeline to 

segment and track cells in phase images in collaboration with Sadik Yildiz in our lab 

(Figure II.4B). We anticipate that this new device will allow to study inheritance patterns 

in cell size and generation time between cells in a large lineage tree, which has been 

rarely measured in a controlled environment.   
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Figure II.4  | Open ended microfludic device for fission yeasts. (A)  Right panel shows a 

schematic  of  the  open  ended microfluidic  device  for  S.  pombe.  The  cell  channel  (320 um) 

filled  with  cells  is  designed  as  4.2  um x  4.2  um rectangular  shape  to  accommodate  cells, 

and is  surrounded by a side channel (2.2 um) in which cells  cannot enter and only medium 

flows.  Left  panel  is  a  phase-contrast  image  of  the  device  filled  up  with  cells.  Each  cell 

channel  can  have  >20  dividing  cells.  (B)  A  kymograph  for  a  single  cell  channel  with 
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Figure II.4(continued) |  tracking  lines.  Cells  (DH0)  were  segmented  in  phase  contrast 

images  and  tracked.  Images  were  taken  every  4  minutes.  Each  line  represents  a  trace  of 

centroid  of  cells  and  the  discontinuity  between  lines  shows  a  division  event.  (C) 

Generation  time over  position  inside  a  single  cell  channel  is  plotted.  A red  curve  shows a 

moving average with a window size of 30.
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Chapter III: 

Effects of Random Partitioning on 

Molecular Noise 

Contributions 

 This work will be submitted as  

Jung, Y.*, Huh, D.*, Paulsson, J. Noisy protein concentrations in S. pombe broadly reflect partitioning 

errors at cell division. 

All of the authors participated in developing general ideas and writing a manuscript. Dann Huh performed 

snapshot experiments with confocal microscopy. I performed time-lapse experiments in microfluidic 

devices. Both Dann Huh and I built strain libraries and developed imaging set-ups.  
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III.1. Introduction 

 The motion of molecules in cells is random to a large extent, whether driven by 

thermal fluctuations and/or energy-dissipating motors [70]. As a result, the molecular 

collisions leading to production or degradation of cellular components are inherently 

probabilistic, causing spontaneous fluctuations in concentrations [3, 21, 71, 72]. 

However, because the locations of those components are random, different parts of the 

cell will have different numbers of molecules even when the average levels are spatially 

homogenous. At cell division, this asymmetry can cause spontaneous differences in 

cellular concentrations simply because more molecules can by chance end up in one of 

daughter cells than another [26-28, 73]. In fact, it was mathematically demonstrated that 

the effects of such ‘partitioning errors’ can be surprisingly similar to the noise coming 

from random production and degradation [36]. For example, the shape of the resulting 

distributions of numbers of molecules per cell can be similar, and the variances can 

respond in the same way to perturbations in e.g. transcription or translation [36]. 

Furthermore, the resulting randomness can be very hard to suppress during the next cell 

cycle due to delays and information loss in feedback loops [71, 74].  

 Partitioning errors are particularly pronounced for low copy components. However, 

in many cases, molecules can segregate together in groups and the partitioning errors are 

then determined by the effective number of partitioning units rather than the number of 

individual molecules, suggesting that even components in high numbers can exhibit 
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significant errors at division if they segregate in a few compartments [33, 75]. Indeed, the 

intracellular space can be highly structured with various types of biomolecular groups 

composed of many different species. Some types of molecules naturally form clusters 

even in prokaryotes, for examples some types of plasmids [76, 77] or organelle-like 

structures such as carboxysomes in cyanobacteria [78]. Although prokaryotes have less 

spatial structures in cellular space, eukaryotes have a diverse range of organelles, 

concentrating certain proteins into compartments [79, 80]. Even the organelles 

themselves may be spatially structured, their locations in the cell are not necessarily 

quantitatively ordered. Therefore, we reasoned that protein levels in eukaryotes could be 

particularly sensitive to stochastic segregation, despite or even because of the the 

apparent spatial organization. 

 Several studies have indeed reported uneven patterns of localizations at cell 

division for a wide variety of organelles [29, 30, 32-35, 81], but the differences have not 

been systematic or quantitative. Furthermore, to evaluate the significance of random 

partitioning, the magnitude of the partitioning noise resulting from the partitioning errors 

should be compared to the total protein noise, to determine if the partitioning noise is 

overshadowed by other types of noise or if they themselves dominate the heterogeneity.  

 Another complication when analyzing the effect of random partitioning on protein 

noise is that the heterogeneity caused can remain incompletely corrected for several 

generations, thus the effect accumulates to some extent. Thus, even if minute partitioning 
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noise is generated per division, the total effect can be still significant when summed up 

over periodic cell divisions. Also, partitioning errors in one component can appear as 

production noise in another over cell cycle. For example, random segregation of mRNAs 

between two cells will cause random differences in protein production rates. Though 

partitioning errors occur almost instantaneously when cells divide, its effects on 

heterogeneity in cells can thus occur gradually over several cell cycles. Even if time-lapse 

movies revealed significant variation in production or degradation rates, it is thus 

possible that most heterogeneity ultimately ‘originates’ from uneven segregation at cell 

division, making it essential to measure now only the partitioning error but also how 

quickly the resulting partitioning noise is eliminated in subsequent cell cycles.  

 In this work, we set out to systemically evaluate the contribution of random 

partitioning on protein noise in Schizosaccharomyces pombe. We first build a library of 

non-intrusive and localization-verified reporter proteins for proteins with diverse 

localization patterns. We then quantitatively survey how much partitioning error is 

generated per division, and using a high-throughput microfluidic device, we measure how 

the resulting partitioning noise is corrected during subsequent cell growth by following 

the traces of sister cells after cell divisions. Finally, we develop analysis tools to extract 

the net contribution of random partitioning from the total protein noise, and compare it to 

gene expression noise. 
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III.2. Detecting sister cells that just completed a division 

 To systemically survey the contributions of partitioning noise to cellular 

heterogeneity, we chose fission yeast as a model organism because 1) it on average 

divides symmetrically in volume, 2) it has a wide range of organelles with different 

spatial patterns, and 3) its generation time is relatively fast (~140 minutes in synthetic 

rich media) for a eukaryote. We fused a monomeric version of GFPmut3 with the A206K 

mutation (mGFPmut3) [82] into 38 different proteins selected to cover various 

localizations including vacuole, mitochondria, nucleus, endoplasmic reticulum (ER), 

Golgi complex, periphery, and the cytoplasm (Figure III.1A and [91] for more details). 

mGFPmut3 was chosen over other fluorescence proteins evaluated because the 

fluorophore matures relatively quickly (half-time = 8 mins at 30ºC [91], Supplemental 

Figure C.3) and because it is highly monomeric and thereby minimizes artifactual 

clusters [82].    

Because the 3’UTR of the mRNA can affect protein localization [83], we used a 

‘seamless integration’ method that does not to leave any integration scars between the 

insert and the endogenous 3’UTR (Figure III.1A) [84, 91]. To minimize artifactual 

localization pattern due to tagging fluorescent proteins, we carefully chose proteins 

whose localization were reported previously [80] and where we could confirm that their 

patterns were unaltered [91]. A cytoplasmic mCherry was also expressed as a 

segmentation marker in all strains, driven by a constitutive adh1 promoter (Padh1-NES-

mCherry integrated in leu1 locus). The tagged proteins are in high abundance with >104 
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copies per average cell [85] to ensure sufficiently strong fluorescence signals. Thus we 

expect the partitioning errors would mostly come from organization into larger units or 

organelles, rather than from spontaneous low-copy noise.  

 We first asked how much partitioning error is generated at cell division. 

Partitioning error can be defined as the added variance in newborn cells compared to their 

mother cell (see Appendix A.2). We therefore sought to detect pairs of sister cells that just 

completed cytokinesis. Exponentially growing cells were plated on an agar pad, and 

imaged at room temperature under a spinning disk confocal microscopy. Cells were 

segmented using cytoplasmic mCherry signals, and pairs of divided cells with complete 

septum were selected based on segmentation masks. For some components it could be 

important to accurately identify the time that cells divide. For example, it was shown that 

mitochondria move to the cell poles together during chromosome segregation, but that 

they subsequently re-equilibrate over the cell just before division [81]. To confirm 

effective separation between cells in a putative sister pair, we photo-bleached mCherry or 

mGFPmut3 in one of the daughter cells and monitored changes in fluorescence in the 

other cell [91]. This showed that our segmentation algorithm was an excellent indicator 

of septum completion.  
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Figure III.1 |  Library generation of S. pombe  The left  image represents sample images of 

strains with diverse localization patterns in the mother machine. The outline of cells shows segmentation 

masks obtained from mCherry channel images. As in the right illustration, all strains conserve 3’UTR after 

tagging mGFPmut3 [91].

III.3. Significant amount of partitioning noise is generated per division 

 By measuring hundreds of just divided pairs of sister cells, we could accurately 

estimate the partitioning error for each protein reporter. As cell division occurs quickly, 

almost instantaneously relative to the rest of the cell cycle, the volumes and molecular 

abundances in the two daughters sum up to the volume and abundance in the mother (for 
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example, see a cytokinesis event in Supplemental Figure C.6B), allowing us to calculate 

the increase in protein noise after cell division (Figure II.2A).  

 The variability in protein levels among newborn cells was significantly higher than 

before division for all strains, ranging from 4.5% of cytoplasmic proteins to 10.2% of 

vacuolar proteins (green bars in Figure II.2B). We found this increase variability is well 

described as a normalized difference in concentration between sibling cells 

(Supplemental Figure C.4), similar to previous theoretical results for total abundance 

[91]. We further found that the partitioning error were largely determined by where 

proteins localize (green dots Figure II.2B), regardless of their expression levels 

(Supplemental Figure C.5), indicating that random partitioning of organelles is a major 

source of variability. We observed a similar pattern for the total protein noise after 

division (orange dots Figure II.2B), suggesting that the localization in organelles may 

indeed play a major role in shaping the molecular variability. To assess the contribution 

of random partitioning, we compared the measured partitioning noise (Q) to the protein 

noise of newborns (CV0) for each strain. A significant portion of the total protein noise 

indeed came from partitioning errors, ranging from 32.6% of cytoplasmic proteins to 

56.9% of vacuolar proteins (blue bars in Figure II.2C), with similar values for different 

proteins in the same organelle or each localization (blue dots in Figure II.2C).  Thus we 

confirmed theoretical speculations that partitioning errors can provide a substantial 

source of protein noise even for high abundance proteins. 
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 To better understand why each organelle has a different partitioning noise, we first 

tested if various organelles segregated in proportion to the volume of each daughter cell. 

For proteins in the cytoplasm or mitochondria we observed that the abundances in each 

daughter cell on average were proportional to the relative volume of the daughter (dotted 

line in Supplemental Figure C.6A), as expected when molecules are uniformly distributed 

over the cell. Thus, if a particular daughter cell after division happened to have 10% 

larger volume compared to its sister, it on average contained 10% more of the proteins. 

For proteins in the endoplasmic reticulum or nucleus, total abundances are more similar 

between daughters of different sizes, i.e., the larger cell did not contain proportionally 

more of the proteins (Supplemental Figure C.6A). We noted that mitosis happens earlier 

than cytokinesis in fission yeast (Supplemental Figure C.6B). Since the nucleus divides 

symmetrically prior to cell division, proteins localizing to the nucleus therefore partitions 

symmetrically, regardless of any asymmetry arising at cytokinesis.  Vacuoles showed the 

opposite pattern, i.e., the protein abundance exaggerated the volume skew: if one 

daughter cell was larger than the other, the abundance of vacuole proteins were more than 

proportionally larger. This might be explained by the fact that vacuoles are large objects, 

and therefore affect where the septum forms. 
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Figure  III.2  |  Significant  partitioning  noise  is  generated  at  cell  division   (A)  An 

illustration of  quantifying partitioning noise. The left schematic describes random segregation of molecules 

at cell division. A mother cell (left side) containing 4 molecules (blue stars) divides into two daughter cells 

(right side) in a probabilistic way. The daughter cells can have 0 to 4 molecules by chance even with 

symmetric division in volume, which elevates the variability in concentration. We define the increase noise 
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Figure  III.2(continued)  |  as  partitioning  noise  (Q)  as  written  in  the  equation.  The  right  panel 

describes the distributions of concentration before (red curve) and after the division (black curve) for the 

protein localizing into vacuoles (DH151, vma4-mGFPmut3). (B) The measured partitioning noises and the 

noise  for  newborns  in  protein  concentration  are  plotted  by  localization  patterns.  cytoplasm  (Cy), 

endoplasmic reticulum (ER), golgi complex (Gg),  mitochondria (Mt),  nucleus (Nu),  vacuole (Vc),  and 

actin patch (Ap). Each dot represents different strains, and the bars indicates the mean level of partitioning 

noise (green) and noise at birth (orange). (C) Partitioning comprises a significant portion of noise at birth in 

protein concentration. The ratio is calculated by dividing partitioning noise (Q) by noise at birth (CV0).

III.4. Half of partitioning noise transmits to the next cell cycle 

 The very significant partitioning error that we observed for many different 

proteins challenges the conventional view that protein noise primarily comes from 

stochastic gene expression. In fact, during repeated growth and division, the errors we 

observe for a single division can accumulate and may even dominate the total noise. 

Evaluating how quickly the effects of partitioning noise resulting from instantaneous 

partitioning error  are corrected is therefore essential.  

 To quantify how long partitioning noise from one division remains before it is 

corrected, the variability in protein concentration at certain cell cycle position needs to be 

decomposed into the noise originated from previous random partitioning and that from 

others. Separating one source of fluctuation from others is often challenging. However, 

our large time-series data sets allows us to bin the data, and consider the heterogeneity 
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observed in the small subset of individual cells that by chance had negligible partitioning 

errors in previous or subsequent divisions. Thus we identified the sibling pairs with 

insignificant partitioning errors, followed the cells over time, and compared how the 

protein noise changes during the cell cycle depending on whether or not there was a 

partitioning error. For this analysis it is important to track a large number of daughter cell 

pairs, which is why we modified published microfluidic devices for fission yeast, now 

enabling us to track the full traces of siblings and cousins for two consecutive divisions 

(see Chapter II). We confirmed that the growth environment was homogenous in that 

device as well (Supplemental Figure C.7), and that the partitioning statistics were stable 

over time (Supplemental Figure C.8). Thousands of cell divisions were observed for each 

strain, excluding strains where the signal was weak compared to the background 

autofluorescence, and we tracked both sister cells over at least one more cell cycle and 

division (Figure III.3A). 

 To find pairs that effectively have no partitioning errors, we quantified partitioning 

error for each division by calculating the discontinuity in protein concentration at division 

(Figure III.3A, Appendix A.2), and sorted newborn cells by it (Figure III.3B). Then, we 

set the maximum threshold on partitioning error that makes the closest distribution of 

newborns to that of mothers (Figure III.3B), and found that newborns cells with 

partitioning errors below the threshold have an almost identical distributions in protein 

concentration before and after division, meaning that the effect of partitioning error is 
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effectively removed upon conditioning (<4% difference between their cumulative 

distributions, Figure III.3C). Note that this is not a trivial result, since we compare the 

distribution in protein concentration but condition on the partitioning error, which is an 

independent variable, and yet the entire distributions became indistinguishable (Appendix 

A.2). We found no dependence on polarity (<3% difference in CDFs old-pole and new-

pole cells), implying two daughter cells carry identical amount of partitioning noise 

(Supplemental Figure C.9). 

 Figure III.3E illustrates how vacuolar protein noise changes over the cell cycle with 

and without partitioning errors in the most recent division (red and purple dots, 

respectively), revealing a substantial difference. Even when conditioning the data on 

insignificant partitioning error, the noise decreases to some extent over the cell cycle. 

This could reflect the effects on partitioning errors from previous cell cycles.   

 At the end of the cell cycle, where the mass of S. pombe goes through a plateau 

phase (green shaded area in Figure III.3E and Figure III.3F) where the cell volume does 

not increase, both protein noise and partitioning noise stayed constant, consistent with the 

expectation of very little gene expression in this phase. The slight increase in 

fluorescence signal from GFP during this window (black curve in Figure III.3D) was 

indeed as expected given the fluorescence maturation time (Supplemental Figure C.10). 

In contrast, during growth phase, the noise coming from the random partitioning at 

previous division exponentially decreased to half of its value (black curve in Figure III.
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3F) for all measured strains (Figure III.3G). This suggests that half of the noise created by 

partitioning errors are corrected during the subsequent cell cycle. 

 

Figure  III.3  |  Significant  partitioning  noise  persists  over  cell  division  Time-lapse 

experiment  was  performed  for  the  strain  (DH151,  ma4-mGFPmut3)  for  Figure  A-F,  while  Figure  G 
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Figure III.3(continued)  |  contains the measurements for all  strains. Cells were grown under rich 

synthetic media (PMG) at 32°C. The experiment lasts for ~3 days and images are taken every 15 minutes. 

(A)  Upper panel shows a sample kymograph visualizing a mother cell and its daughter cells.  The two 

daughter cells (red and blue) are followed after division, and their GFP concentration dynamics are plotted 

in the bottom panel. Partitioning error is quantified by a gap after division. (B) Thresholding on partitioning 

error removes partitioning noise. Pairs of sister cells having a partitioning error below certain threshold are 

collected, and Kolmogorov-Smirnov statistic (K-S statistic, blue line) and coefficient of variation (CV, red 

line) are calculated. The threshold with minimum of K-S statistic (blue shaded area), which makes the 

closest distance between cumulative distribution functions (CDF) of the conditioned pairs of newborns and 

mother cells, is calculated. At that threshold, the CV of conditioned newborns is similar to that of mother 

cell (red shaded area). (C)  Conditioned newborns have a similar distribution to a mother cell.  CDF of 

newborns  (blue curve) show wider distribution compared to that of mother cells (black curve), indicating 

added variability from random partitioning,  while CDF of conditioned newborns (red curve) is  almost 

identical to that of mother cells as if there were no partitioning errors. (D) Average cell length (black curve) 

and GFP abundance (green curve) doubles over cell cycle. Plateau phase where growth stops (green shaded 

area)  is  observed  for  ~  20%  end  of  cell  cycle.  (E)  Protein  noise  over  cell  cycle  with  and  without 

partitioning errors  (red and purple  dots,  respectively).  (F)  Persisting partitioning noise  over  cell  cycle 

(black dots). During growth phase, it decays exponentially (red curve) to half. In contrast, during plateau 

phase (green shaded area), it stays constant. (G) Persisting partitioning noise over growth phase for all 

measured strains show s a similar decay pattern. The initial partitioning noise is normalized. The red curve 

indicates exponential curve with a half life of 0.5.  
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III.5. Passive transmission of partitioning noise 

 Deviations from an average abundance can in principle be actively corrected by 

compensating feedback mechanisms. For example, bacterial plasmids use negative 

feedback loops to correct for any deviations that arise at cell division [86], and it was 

reported that the initial concentration of mitochondria affects growth rate in human cells 

in a way that indirectly controls noise [87]. In contrast to the strong feedback we observe 

in the cell size control (inset in Figure III.4A), the initial protein concentrations were 

independent of the individual generation time of the cells, for all measured strains (Figure 

III.4A). Furthermore, the synthesis rate was independent of the current protein 

concentration (Figure III.4B). This suggests a lack of active control, i.e., the cell does not 

appear to sense and compensate for fluctuating abundances.  

 To demonstrate this we analyzed how much of the difference between newborn 

sister cells is corrected during cell cycle on average. Consistent with our previous 

observations, for all measured proteins, we found that this difference were corrected by 

half over cell cycle (Figure III.4C, see Appendix A.2 for more details) and that the 

amount added during the cell cycle was independent of the starting value. This simple 

mechanism for correcting noise by simply passively regressing back towards the average 

– which was shared by all proteins we studied with various localizations, expression 

level, and noise level – perhaps makes sense in the light of recent theoretical work 
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suggesting how very challenging and energy consuming it is to suppress noise by 

feedback [71], and how negative feedback control easily can have the opposite effect.  

  

Figure  III.4  |  Passive  transmission  of  partitioning  noise  Each  dot  has  a  unique  color 

represented by localization patterns:  cytoplasm (blue),  mitochondria  (red),  ER (cyan),  nucleus (green), 

vacuole (purple)  (A)  Generation time is  independent  of  initial  protein concentration.  For each trace is 

binned with uniform width based on the distribution of initial protein concentration, and average generation 
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Figure  III.4(continued)  |  times  and  mean  initial  concentrations  are  calculated  for  each  bin  and 

normalized. Inset shows similar way of plotting with initial size and generation time with orange dotted line 

indicating ‘timer’. (B) Synthesis rate is independent of current protein concentration. Plots are made in a 

similar way to Figure (A). Inset indicates the production rate in total abundance is proportional to current 

cell size on average; 10% larger cell makes 10% more proteins on average. (C) Half of difference between 

sister cell is corrected during cell cycle on average. For each pair of daughter cells, the differences between 

them after  the  current  division  and  before  the  next  division  are  calculated,  and  normalized  by  mean 

concentration at birth. The plot is generated in a similar way as in previous graph.

III.6. Decomposing partitioning noise reveals gene expression noise 

 So far, we only addressed the effect of random partitioning at the most recent 

division, but as mentioned above we expect that partitioning noises from previous 

divisions also contribute to the total. To evaluate the total noise from partitioning errors, 

that is, the summed contributions from all previous random partitioning, one needs to 

know how partitioning noise decays beyond one generation. However, as observed 

above, the decay pattern is fully described by passive control, where the amount cells 

make is independent of how much they contain. For that mechanism, the noise (as 

measured by normalized variances) is reduced by a factor of two each cell cycle, i.e., in a 

geometric series (left panel in Figure III.5A). This means that the net partitioning noise 

can be quantified by summing up these contributions (right panel in Figure III.5A).  
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 After computing the total noise from partitioning errors (left panel in Figure III.5B), 

we observed that the remaining noise is almost constant during the cell cycle, for all 

measured strains (Figure III.5D). In principle it is possible that this remaining noise could 

also come from partitioning errors in other components, e.g. mRNAs, transcription 

factors, polymerases etc. However, if that were the case, the noise should decrease during 

the cell cycle, and we observe that it is constant during the cell cycle, suggesting other 

mechanisms such as gene expression etc. We confirmed this result by iterative 

conditioned sampling, where the traces are repeatedly sampled as if the distributions are 

identical before and after division, thus the effects of random partitioning being 

iteratively washed out (Figure III.5C). This result demonstrates that random partitioning 

can create significant dependency of protein noise on cell cycle even if gene expression is 

constant over the cell cycle. 
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Figure III.5 | Decomposing partitioning noise reveals flat gene expression noise (A) 

An  illustration  of  transmission  of  partitioning  noise  over  time  in  a  linear  system.  In  linear  system, 

fluctuations are corrected with same rate over time (left panel), the net contribution of partitioning noise 

(black curve in right panel) can be calculated by summing up the previous partitioning noises (dotted line in 

right panel). (B) An illustration of how decomposing the net partitioning noise from total noise is
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Figure  III.5(continued)  |  performed.  The  data  used  here  is  for  vacuolar  protein  (DH151,  ma4-

mGFPmut3). The measured total protein noise (black dots) are subtracted with the net partitioning noise 

(blue curve), which is calculated by multiplying 4/3 to the persisting partitioning noise in Figure III.3F 

(Appendix  A).  The  resulting  remained  noise  (green  dots)  is  almost  flat  over  cell  cycle.  (C)  Iterative 

conditioning reveals gene expression noise. Starting from randomly sampled 1,000 individual traces, the 

distribution of protein concentration at the end of cell cycle is obtained, and another 1,000 newborn cells at 

the beginning of  cell  cycle are sampled with replacement to have a similar  distribution with previous 

distribution at the end of cell cycle, these cells are followed over cell cycle again. This procedures goes on 

repeatedly for 6 generations. The error bar represents standard deviation obtained from 1,000 independent 

simulations starting with different newborn population. (D) Green curves represent the remained protein 

noise after decomposition, normalized by its mean. The partitioning noise shows how the net partitioning 

nose normalized by its mean decays over cell cycle.

To further test the decomposition above, we asked if gene expression noise and 

partitioning noise are altered differently upon perturbation of cellular system. For each 

organelle  except  for  endoplasmic  reticulum  which  seemed  lethal  after  cloning,  we 

generated a Δpom1 mutant where cells divide asymmetrically in volume, and performed a 

time-lapse experiment under the same conditions as above. What we inferred to be the 

total partitioning noise, except for cytoplasmic proteins, was indeed significantly elevated 

(orange curve in Figure III.6A) compared to wild type (blue curve in Figure III.6A), 

consistent with previous observations of non-volumetric division (Supplemental Figure 

C.6A), whereas what we inferred to be gene expression noise (orange shaded area in 
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Figure III.6A) indeed was similar to the wild type (blue shaded area in Figure III.6A), 

suggesting that major sources for protein noise acts in a unchanged way. Next, to see if 

we  can  perturb  gene  expression  noise,  we  grew  wild  type  cells  under  non-optimal 

temperature (25°C compared to an optimum of 32°C). In this case, partitioning noise 

were  unchanged  (green  curve  for  25°C  and  blue  curve  for  32°C  in  Figure  III.6B), 

suggesting the number of partitioning units and partitioning mechanisms are not severely 

perturbed  as  we  also  directly  observed,  while  the  gene  expression  noise  indeed  was 

significantly increased (green shaded area for 25°C and blue shaded area for 32°C  in 

Figure  III.6B),  implying  altered  biochemical  parameters  due  to  temperature  change. 

Chemical  parameters  such  as  a  transcription  rate  are  often  inferred  with  fitting  a 

distribution in snapshot measurement to a toy model [6, 13, 23, 24]. Our results show that 

snapshot measurements cannot be used for such fitting without first  decomposing the 

noise  to  identify  how  much  comes  from  partitioning,  which  requires  a  time-lapse 

measurement.
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Figure  III.6  |  Gene  expression  noise  and  partitioning  noise  react  differently  to 

perturbation See Appendix A for details about the strains. Net partitioning nose and gene expression are 

obtained as described in Figure III.5 (A) Gene expression noise and partitioning noise decomposed from 

the protein noise for wild type and Δpom1 mutant are compared to each other. For Δpom1 mutants, a time-

lapse measurement was performed with a identical condition to wild type cells. Solid line represents net 

partitioning noise, and shaded area represents gene expression noise (orange for mutants and blue for wild 

types). (B) Gene expression noise and partitioning noise at different temperature noise are compared. At 

25°C, images were taken every 30 minutes (15 minutes at 32°C) since cells were grown slower. Solid line 

represents net  partitioning noise,  and shaded area represents gene expression noise (blue for 32°C and 

green for 25°C).
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III.7. Discussion and outlooks 

 Protein concentrations in cells can exhibit significant variability even under 

homogenous environments [1, 11, 13, 23, 24, 88]. One of the main goals in this field has 

been to unravel the major sources of the heterogeneity [48, 49, 89], as well as to 

understand control circuits that exploits or compensates such ‘noise’ [45, 50, 51, 58, 62, 

90]. Many previous studies have attributed gene expression noise to inherent 

transcriptional and translational process, with models that ignore the effect of random 

partitioning at cell division. When testing such models, the most common way to 

measure protein noise has been to quantify protein levels in a snapshot of an 

asynchronous cell population [13, 24, 25]. However, such assumption is rarely validated 

with a time-lapse measurement by showing the protein noise indeed stays constant over 

cell cycle. Furthermore, while this assumption might intuitively hold for bacterial cells 

where cellular components are efficiently homogeneous, this might be not true for 

eukaryotes with diverse cellular compartments since even high copy proteins can have a 

low effective numbers of partitioning units at cell division.  

 In this study, we challenge this view. We systemically measured the difference 

between in protein noise level as a function of the cell cycle and explicitly measured 

partitioning errors at cell division. The results showed a significant increase in protein 

noise immediately after division even for high copy proteins. By comparing this increase 

in noise or partitioning noise to the total protein noise after division, we showed 
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partitioning noise at cell division indeed contribute significant portions of protein noise, 

ranging from 33% of cytoplasmic proteins to 57% of vacuolar proteins. We further found 

that both partitioning noise and total protein noise was very similar between proteins that 

localize in the same organelles, but different between organelles, suggesting that 

localization pattern could be a major determinant of protein noise.  

 We then asked how quickly partitioning noise decays over the cell cycle, motivated 

by the fact that random partitioning from previous divisions could accumulate. To this 

end, we developed a mother machine for fission yeast that enables us to follow the 

protein dynamics of sister cells over time in a high-throughput manner. By following 

traces of newborns, we first observed that the protein noise decreases significantly over 

cell cycle. This result suggests that protein noise measured in a snapshot experiment is 

contingent on the distribution of cell cycle in a population because the level of protein 

noise depends on when it is measured during cell growth. Considering that exponentially 

growing cells contain twice as many newborn as dividing cells, partitioning noise can be 

more weighted compared to constant gene expression noise.  

 By sorting pairs of sister cells according to their partitioning errors, particularly 

comparing the small sub-population of such pairs that by chance did not display 

significant errors in the last division to the population overall, we found that the impact of 

partitioning errors on cell heterogeneity, as measured by the normalized variance, decays 

exponentially to half of its starting value over cell cycle, for all measured proteins with 
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various protein levels and different localizations. This is precisely as expected for passive 

noise control mechanisms, where errors are eliminated by regression to the mean without 

active compensation or feedback. This in turn enables us to determine how the 

partitioning noises from previous divisions accumulate at each cell cycle time-points, to 

account for the full effect of partitioning errors rather than just the most recent event. 

After decomposition, we also observed that the remaining noise from other processes in 

the cell was stable over the cell cycle, suggesting it is mainly from random gene 

expression as opposed to partitioning errors in other components.  

 This observation suggests that noise in upstream components either does not 

efficiently transmit to the protein, or that the noise in those components are not 

dominated by partitioning noise. Our lab observed a similar phenomenon in E. coli, so 

this might stem from general principle. One possibility is the remaining noise comes from 

noisy but short-lived mRNA fluctuations, as suggested in the literature. Our current effort 

is to understand this issue by combining datasets from two distinct organisms, bacteria 

and yeast.     

 We further showed that only the gene expression part of the noise was elevated 

when perturbing chemical parameters in a cell by temperature shifts. In contrast, only the 

partitioning noise was changed when making cell divide asymmetrically with a division-

control mutant. Without the decomposition, these effects would be harder to interpret. 

!51



 Overall, this work reveals the great significance of random partitioning on protein 

noise, which has been largely ignored as a major source for molecular noise in the 

numerous studies that instead attributed expression noise to stochastic production and 

degradation.  
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Appendix A: Methods 

A.1 Chapter II experimental methods 

Strain table 

Mother machine chip preparation  

The silicon master wafer was briefly cleaned with a pressured airgun and placed flat on 

the top of folded aluminum foils. Dimethylsiloxane monomer (Sylgard 184, Dow 

Corning) was mixed in a 5:1 ratio with a thermal curing agent with PDMS mixer, and 

~30 ml was poured onto the wafer. To remove bubbles within mixture, degassing was 

performed with a vacuum pump for ~1 hour. Mixture was then cured at 65°C for 1 day, 

peeled off, and cut into individual devices. Holes to inlets and outlets were made using a 

biopsy punch, and residual debris in the device and a prepared cover slip were removed 

with scotch tape. On the day of experiment, each device was then bonded to cover slip 

using oxygen plasma treatment (45 seconds at 75W with O2 at ~170mTorr) and placing 

on a plate heater at 95°C for 3 minutes. We noticed much higher efficient loading of cells 

when chips were used immediately after bonding.  

Strain Genotype Parent
DH0 ura4-D18, leu1-32 h- FWP172
DH60 leu1::Padh1-GST-NES-mCherry-leu4+  leu1-32 ura4-D18 h- DH0
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Open ended chip preparation  

We noticed the cell channel in this device is prone to collapsing to cover slips when 

following the above protocol because it has much longer structure to support. To address 

this issue, we changed the protocol to make PDMS stiffer so that it is less vulnerable to 

structural deformation. The changes made were that PDMS mixture was made in 3:1 ratio 

rather than 5:1 and that it underwent the second round of incubation at 80°C for 3 days 

after peeling and punching steps. Also, the plasma was treated  longer (90 seconds). 

Other steps were identical.    

Cell preparation 

10 ml of Schizosaccharomyces pombe cells were grown until reaching early exponential 

phase (OD~0.2) in SC+PMG media or in YES media at 32°C,  pelleted by centrifuging at 

3,000g for 3 minutes, and resuspended in 500 ul of fresh medium. In the meantime, the 

device was filled with fresh media and incubated at 32°C for 10 minutes. We noticed 

passivating with bovine serum albumin (BSA) made cells look sick after loading, so did 

not use it. Cells were then injected through inlets with slow pipetting after putting another 

pipette tips in outlet to prevent cross-contamination between different lanes. The chip was 

then mounted on a custom mounting platform that can fit into a tabletop centrifuge, 

centrifuged at 3,000g for 10 minutes, and briefly imaged to check if cells were well 

loaded under a microscopy. Tygon tubings (VWR) were inserted to inlets and outlets. 
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Then, syringes containing medium was connected to tubings and mounted on a syringe 

pumps (Harvard Apparatus). Initially, flow rate was ~ 50-80 ul/min for ~1 hour to clean 

unloaded cells, and changed to 15-20 ul/min after confirming that inlets and outlets were 

clean.  

Microscopy and image acquisition  

Imaging was performed using a Nikon Eclipse Ti inverted microscope equipped with an 

Orca R2 (Hamamatsu) camera, a 60X Plan Apo oil objective (NA 1.4, Nikon), an 

automated stage (Ludl), a Lumencor SOLA fluorescent system, and a custom incubator 

that makes the imaging components stay at 32°C. We used a custom MATLAB program 

to control the equipment through microManager (A. Edelstein 2010). For fluorescence 

image acquisition, we used the following filter sets: GFP (Semrock GFP-1828A), 

mCherry (Semrock mCherry-B). The experiment for open ended device was performed 

with a 20X Cfi Super Fluor 20x dry objective (NA 0.75), and phase contrast images were 

obtained with  with Te-C Lwd Ph2 Module. Before starting image acquisition, cells were 

allowed to grow within the imaging setup for >14 hours to make sure that they adapt to a 

new environment. The typical exposure time were 80-200ms and z-stacking (5 slices with 

0.8 um intervals for GFP channel and 3 slices with 1 um for RFP channel) was performed 

to cover the total signal inside the cell. For GFP channel, 2x2 binning was used to 

increase the signal to noise ratio. To correct focal drift over time, the initial image in RFP 

channel for each lane underwent z-stacking (16 slices with 0.5 um intervals) and the z-
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position with highest summed signals was selected. This position was not used for 

subsequent analysis. We set one sacrificial for the last position near the edge of 

coverglass, made it stay there between consecutive rounds of image acquisition, and 

provided oil to an objective if needed. 

Image processing 

Images in RFP channel, which served as a segmentation marker, were summed over z 

axis. We applied a threshold obtained with T-point method to z-summed images, filtered 

out masks by their sizes and morphologies, and the resulting segmentation masks were 

refined with local profiles of intensities. Images was then again summed over y axis to 

find the locations of the cell channels, and cut into sub-images that contain each cell 

channel with segmented cells. For each segmented mask, the following quantities were 

measured: frame number, area, length in major axis, length in minor axis, the orientation, 

the eccentricity, the xy centroid positions in a field of view, and the number of masks 

above it (relative position). Images in GFP channel were then overlaid with binary 

segmentation masks, and the following quantities were calculated: the total intensity 

inside a mask (a proxy for total abundance), the mean intensity inside a mask (a proxy for 

concentration), and the z-position with a maximum total intensity (focal plane). The 

masks with different focal planes were disregarded later but it was minimal (<0.5%). We 

calculated the moving average curve of  GFP concentrations over frames, and only 

proceed with dataset after the bleaching effect was stabilized. For open ended 
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microfluidic device, the phase contrast images were subtracted by the images without 

cells to remove signal comes form edges in a device, then cell tips were identified by 

similar method. In this device, we observed cell grow linearly without tilting in the cell 

channel, hence the width of cell channel was used as a proxy of cell width. 

Lineage tracking 

After having segmentation masks for each cell channel, masks in consecutive frames 

were compare from the top. Masks were iteratively matched from the top end with 

comparing the cell size between them. Cell division was identified if observing a 

significant decrease in cell size.  For each newborn cell, the ratio of its size to that of a 

mother was calculated and used as an potential indicator of segmentation error if it is not 

within the range of (0.4, 0.6). When a new division events was detected, each daughter 

cell was assigned with a unique lineage ID, a lineage ID of its sister, a lineage ID of its 

mother, an indicator whether it has old pole or not, and an indicator if it completed a next 

division. We only proceeded with lineages that completed a division and a division time 

was calculated, which was also used as an indicator of errors. After completing a first 

round of lineage tracking procedures, a growth curve of each lineage was regressed with 

two linear lines (growth phase and plateau phase) and an indicator for segmentation error 

was assigned if there is a significant deviation from the regression lines. All above steps 

were automated with a custom MATLAB scripts. Kymographs were then generated, and 

potential errors detected in the above steps were manually inspected with a custom GUI. 
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Flat field correction 

We observed a spatial patterns of mean fluorescence intensities. Since this was 

reproducible independent experiments, we concluded this is due to uneven illumination 

of light sources. We computationally correct this flat field by assuming every cells should 

be statistically identical over space. To this end, all segmented masks including lineages 

that did not complete divisions were collected and mean fluorescences within each mask 

were plotted over x and y axis. We found a linear regression fits well the mean curve over 

space. Indeed, we found our stage holder is tilted in a linear way. Hence, we divided each 

fluorescence concentration by the linear curve for each segmentation mask. 
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A.2 Chapter III experimental methods 

Strain table 

Strain Genotype Localization Time-
lapse

DH110 eri1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Cytoplasm X

DH111 int6-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Cytoplasm O

DH112 sce3-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Cytoplasm O

DH113 tif452-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Cytoplasm X

DH114 wis1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Cytoplasm X

DH115 cnx1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h-

Endoplasmic 
reticulum O

DH116 ero12-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h-

Endoplasmic 
reticulum X

DH117 ogm2-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h-

Endoplasmic 
reticulum X

DH118 ogm4-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h-

Endoplasmic 
reticulum X

DH119 ost1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h-

Endoplasmic 
reticulum O

DH120 aur1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Golgi X

DH125 coq7-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH126 gut2-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH127 hsp10-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH128 isu1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria O

DH129 lon1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH130 mrpl8-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH131 mrps5-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH132 qcr7-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH133 shy1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria X

DH134 sod2-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Mitochondria O

DH137 cut15-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Nucleus X
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Transformation protocol 

We followed the protocol from Bahler lab (Bahler, J 1998). Briefly, cells were grown 

until OD~0.5 in YES media, 5ml of culture was pelleted by centrifuging at 3,000g for 3 

minutes. Pellets were washed twice with 1ml of LiAc/TE buffer and resuspended in 

100ul of LiAc/TE buffer. The mixture was combined with boiled 2ul of salmon sperm 

DNA and 10ul of linearized plasmids, incubated at room temperature for 10 minutes, 

mixed with 260ul of PEG4000/LiAc/TE buffer with gentle pipetting, incubated at 32 ̊C 

DH139 nup132-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Nucleus X

DH140 pla1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Nucleus O

DH141 prp43-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Nucleus O

DH142 skb15-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Nucleus X

DH149 abc2-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Vacuole O

DH150 vac8-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Vacuole X

DH151 vma4-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Vacuole O

DH153 arc3-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Actin patch X

DH156 fim1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 h- Actin patch X

YJ052 leu1-32 ura4-D18  pom1△::KanMX h- N/A O

YJ067 sce3-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18  pom1△::KanMX h- Cytoplasm O

YJ068 isu1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18  pom1△::KanMX h- Mitochondria O

YJ069 qcr7-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18  pom1△::KanMX h- Mitochondria O

YJ070 prp43-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32  ura4-D18 pom1△::KanMX h- Nucleus O

YJ071 vma4-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 pom1△::KanMX h- Vacuole O

YJ078 shm1-mGFPmut3 leu1::Padh1-GST-NES-mCherry-leu1+ 
leu1-32 ura4-D18 Mitochondria
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for 60 minutes. We noticed using fresh PEG4000 significantly improves the efficiency of 

transformation. Then, 43 ul of DMSO was added and incubated at 42 ̊C for 5 minutes in 

pre-heated water bath. Pellets were harvested by centrifuging for 3 minutes at 3,000g,  

resuspended in water, and plated on adequate selection plate. 

Seamless integration 

Refer to a published protocol for more details (D Landgraf, 2016). Briefly, ura4 cassettes 

flanked by homologous regions for target genes were first transformed and selected on 

SC+PMG plate. Then, mGFPmut3 cassettes flanked by the same homologous regions are 

transformed again and selected on SC+PMG plate with 2% 5FOA plate.  

Pom1 mutant construction 

We amplified pom1Δ::KanMX cassettes in YJ052 (a gift from Fred Winston) with using 

colony pcr, transformed it, and selected on YES+Kan plate to generate DH112, DH128, 

DH132, DH141, DH151 to generate YJ067, YJ068, YJ069, YJ070, YJ071, respectively. 

Confocal microscopy imaging protocol  

A confocal microscopy (Nikon TE2000U) at Nikon imaging center at Harvard Medical 

school was used. It was equipped with Yokagawa CSU-10 spinning disk head, Coherent 

3W water-chilled Krypton Argon laser, Hamamatsu ORCA-AG cooled CCD camera, and 

Prior Proscan II motorized stage. Cells were grown in SC+PMG media to OD = 0.3~0.5, 

and 60 ul was placed on an agarose pad containing SC+PMG. After the media is dried 
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out, clean coverslip was mounted and sealed. Measurement was performed at room 

temperature. 200 ms and 500 ms exposure times were applied to RFP and GFP channels, 

respectively. Both channels were measured with z-stacking (13 slices with 0.5 um 

intervals) with help of autofocus algorithm in DIC channel (Metamorph). To reduce the 

noise level, 2x2 binning was applied for both channels. Also, a fluorescent flat plastic 

was used to infer flat-field profile. 

Mother machine imaging protocol 

It was done in a similar way as described in Appendix A.1. Images were taken every 15 

minutes for wild type cells, 10 minutes for pom1 mutant cells, and 30 minutes for the 

measurement performed at 25 ̊C. For all measurements, there were >8 measurement per 

cell cycle on average. 

Image processing  

It was done in a similar way as described in Appendix A.1. In pom1 mutants, cells can be 

in smaller size compared to wild type due to asymmetric division. Accordingly, we 

changed the parameters for segmentation and detecting segmentation failure. Similarly, 

parameters changed for the measurement at 25 ̊C considering the different cell size and 

generation time. 
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Calculating partitioning error at cell division 

With detected a pair of just-divided sister cells, we calculated the coefficient of variation 

( ! ) in protein concentration for newborns ( ! ). Then, we 

summed up areas and total GFP abundances of sister cells to represent those of a mother 

cell, and calculated ! . Then, the partitioning error (Q) was calculated using the 

equation                                              . Note that Q = 0 if there were no randomness at cell 

division. The portion of partitioning noise to the noise of newborns were calculated as 

!  for each strain. 

Data processing 

We only proceeded with a pair of sibling lineages that completed a division. For each 

lineage, plateau phase and growth phase were detected with fitting with two lines to the 

trace of cell length. To plot the traces of quantities over cell cycle in a normalized time 

scale, the following steps were taken. First, to separately align the two distinctive phases, 

the transition point from growth to plateau phase was detected with fitting. Then, data 

points in each phase were replotted in a time scale normalized by its mean duration, and 

two phases were reconnected. Finally, we resampled data (10 data points per cell cycle) 

by interpolation between two nearby points. 

CV = std(x) /mean(x) CVdivided

CVdividing

Q /CV divided
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Conditioning newborns with minimal partitioning error 

For each lineage, we calculated concentration discontinuity between its mother and a 

daughter at cell division. We define this quantity as ! . Now let ! be the concentration 

right after the division (cellcycle = 0), and !  just before the division (cellcyle = 1), 

hence ! . Then, our goal is to find ! that effectively makes ! where the 

contribution of random partitioning is minimal. To this end, we calculated the following 

Kolmogorov-Smirnov statistic, which measures the difference between two distributions, 

for certain threshold ! :                                              , where F(x) is cumulative 

distribution function (CDF) for protein concentration x. The former represents CDF for 

! (for all mothers) and the latter is for ! for newborns whose absolute partitioning error 

! is less than ! , thus this value should be minimal when two distributions is closest to 

each other. We plotted the above statistic over a range of ! , picked the threshold that 

resulted in the minimum, and used it to sample lineages. We confirmed the mean and CV 

of distributions for newborns after conditioning matches to those for dividing cells.   

Calculating persisting partitioning noise over cell cycle 

For both of unconditioned lineage traces and conditioned traces, 500 traces were 

randomly sampled and the coefficient of variations over cel cycle were calculated. 

Sampling procedures were repeated for 100 time to have standard error of the mean. For 

Δ c0

c1

Δ = c0 − c1 Δ c1 ~ c0

δ

c1 c0

Δ δ

δ
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each sampled traces, the persisting partitioning noise were calculated with using the 

following equation: ! . 

Estimating synthesis rate 

Let X be the total abundance of some species and V be the cell volume, then the 

concentration ! . Taking a time derivative of c, the following is obtained. 

The first term measure the synthesis rate in concentration and the latter represents a 

dilution rate by cell growth. As an estimate of the first term, we calculated 

where f is a certain frame number and X(f) is the total GFP abundance at frame f. 

Partitioning error at cell division 

Consider two daughter cells right after cell division with the volume of L and R, and 

having the total amount of some species of X and Y, respectively. In other words, each 

daughter cell have the concentration of !  and ! , respectively. Then, the 

concentration discontinuity between a mother and daughter cell, which we refer to as 

partitioning error ( ! ) can be calculated as: 

CVunconditioned
2 −CVconditioned

2

c = X /V

cL = X / L cR = Y / R

Δ
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L + R

= R
L + R

(X
L
− Y
R
) = pR(cL − cR )

d
dt

c = 1
V
dX
dt

− 1
V 2

dV
dt

synthesis rate = 2
V ( f )+V ( f +1)

[X( f +1)− X( f )]



where                     measures the ratio in volume. Thus, partitioning error is proportional 

to the difference in concentration between sister cells. Note that partitioning error is zero 

when there is no difference between sister cells, which is a typical assumption of models 

that does not account for random partitioning. In such models, protein concentration is in 

stationary system because there is no perturbation at cell division. 

Error correction in passive dilution model 

A passive dilution model can be described as follows. 

where x is the number of molecules per given area, ! is a constant synthesis rate, and T is 

a generation time. On average, this system is governed by the following equation: 

Then, for a deviation from the mean ! , it can be shown that 

Thus, any deviation is corrected by half on average in one generation. Now consider a 

pair of siblings whose initial concentration at birth are !  and           , respectively, and   

define the difference between them as ! . Then, it can be shown  

λ

δ = x− < x >

cL (0)

Δ = cL − cR
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pR =
R

L + R

x λ⎯ →⎯ x +1

x
ln2
T

x
⎯ →⎯⎯ x −1

d
dt

< x(t) >= λ − ln2
T

< x(t) >

< δ (t) |δ (0) >= δ (0)2
− t
T

cR(0)

< Δ(t = T ) | Δ(t = 0) >= 1
2
*Δ(t = 0)



which was used in Figure III.4C.  

Transmission of partitioning noise in passive dilution model 

While the above simplified model (for simplicity, we assumed T = 1) is one of the most 

popular models describing gene expression noise, the effect of random partitioning is 

often ignored. Here, we consider the effect of random partitioning by including periodic 

perturbations at each division and compare the result to a conventional model. 

Specifically, the discontinuity in protein concentration arises at each division as follows:                                                   

 

where   represents a random partitioning error. Over repeated random processes, the 

system reaches a cyclostationary state where the statistics are stationary at a given time in 

the cell cycle, such that  

where V is a variance function and Q is a partitioning noise. Note that Q = 0 when 

ignoring random partitioning and the system reaches stationarity where all the statistics 

are identical for any cell cycle positions. 
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x λ⎯ →⎯ x +1
x (ln2)x⎯ →⎯⎯ x −1

xcellcycle=0 = xcellcycle=1 + Δ

Δ

Vcellcycle=0 =Vcellcycle=1 +Q
2



Consider we measure V(t) for current cell cycle position                 and let         be the 

partitioning error at -ith previous division. Then, we define ‘gene expression noise’ as 

! , which measures the remained noise given that all 

of previous divisions were perfect; the only remained randomness is stochasticity in 

synthesis and degradation. This gene expression noise is a stationary state for both of 

models with and without random partitioning since the underlying systems are identical, 

hence any deviations in variance moves towards gene expression noise. Since any 

deviation from a mean of the stationary state is corrected with a rate function of                                                 

  as shown in the previous section, the deviation from the variance of 

stationary state is corrected with a function of                               . Then, the persisting 

partitioning noise from 0th division can be calculated as follows. 

Noe that the coefficient of variation (CV) measures standard deviation rather than 

variance, hence the above result should be square-rooted to compare with the results in 

Figure III.3C.  

Vstationary =V (t | Δ 0= Δ−1 =!= Δ−∞ = 0)
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fmean (t) = 2− t

t ∈[0, 1]

fV (t) = (2− t )2 = 4− t

Δ− i

Persisting partitioning noise from 0th division
=V (t)−V (t | Δ 0= 0)
= [V (t)−Vstationary ]− [V (t | Δ 0= 0)−Vstationary ]
= [V (0)−Vstationary ]* fV (t)− [V (0 | Δ 0= 0)−Vstationary ]* fV (t)
= [V (0)−V (0 | Δ 0= 0)]* fV (t)
=Q2 4− t



Separating gene expression noise from partitioning noise  

Continuing with the above section, we further calculate the persisting partitioning noise 

from -ith division to calculate the net contribution of partitioning noises from previous 

divisions. With similar procedures, the below can be obtained. 

The last equality holds because of cyclostationarity assumption. To obtain the net 

contribution, we sum up all persisting partitioning noises from previous divisions. 

Rewriting the above equation yields decomposition equation of noise at cellcycle t as 

follows:     , where the former term is gene expression 

noise while the latter term represents net partitioning noise. Figure III.5B shows these 

terms as a coefficient of variation. In Figure III.5D, we calculated gene expression noise 

by subtracting the inferred net partitioning noise from the observed total protein noise.  
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Persisting partitioning noise from − ith division
=V (t | Δ 0=!= Δ − i+1= 0)−V (t | Δ 0=!= Δ − i= 0)
= [V (t | Δ 0=!= Δ − i+1= 0)−Vstationary ]− [V (t | Δ 0=!= Δ − i= 0)−Vstationary ]
= [V (t | Δ 0=!= Δ − i+1= 0)−Vstationary ]* fV (t + i)− [V (t | Δ 0=!= Δ − i= 0)−Vstationary ]* fV (t + i)
= [V (t | Δ 0=!= Δ − i+1= 0)−V (t | Δ 0=!= Δ − i= 0)]* fV (t + i)
=Q2 4−(t+i )

Net partitioning noise

= [V (t | Δ 0=!= Δ − i+1= 0)−V (t | Δ 0=!= Δ − i= 0)]
i=−∞

0

∑
=V (t)−Vstationary

= Q2 4−(t+i )

i=−∞

0

∑

= 4
3
Q2 * 4− t

V (t) = Vstationary + 4
3
Q2 * 4− t



Detailed explanation of Figure III.5C 

The alternative way to have gene expression noise is by conditioning zero partitioning 

errors forward because gene expression noise is a variance at the stationary state. In other 

words,         . To this end, the following procedures 

were repeated:  

Step I: Start with randomly sampled 1,000 traces. 

Step II: Calculate the noise over cell cycle. 

Step III: For each trace in the previous step, sample a trace from the entire traces that 

minimizes the discontinuity between two traces and connect them. This way, we 

artificially remove partitioning errors. Go to Step II.  

The above procedures were performed 1,000 times independently. 
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Vstationary = lim
t→∞

V (t | Δ 0= Δ1 =!= Δ∞ = 0)



Appendix B: Fabrication of Microfluidic Devices 

The devices were fabricated at the Center for Nanoscale Systems (CNS) at Harvard 

University. The autocad files containing the detailed designs for photolithography masks 

can be provided upon request. Although the designs of layers are different between 

mother machine and open-ended device, their vertical dimensions in z-axis are identical, 

hence the following protocol can be used either cases. The device contains four layers for 

alignment marker, a shallow media layer (a side channel for open-ended device) that 

provides nutrients around cells, cell channels where cell grows, and the main media layer 

where inlets and outlets are.  

We adapted a standard protocol that utilizes repetitive patterning of photo-curable 

polymers with UV photolithography. The typical procedures for fabricating three 

dimensional structures are 1) coating photo-curable polymers on a wafer with a desired 

height by spinning, 2) applying patterned UV on it, 3) developing uncured polymers, and 

4) repeat the steps with another patterns. However, we noticed coating photoresist on 

structured surface made from a previous step often produced nonuniform coating and was 

more sensitive to previous steps such as the duration of hard-baking and development 

time. This problem was particularly severe for our device because it has multiple layers 

and because the success of experiments requires precise and uniform dimensions. To 

address this issue, we developed the protocol with skipping development steps when 
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stacking up multiple layers so that spinning can be performed on flat surface. Since the 

spinning speed settings are optimized on the surface of a wafer rather than photoresist, 

we accordingly optimized these parameters for our purpose.     

The following abbreviation was used to describe program settings in a spin coater:  

speed (rpm)/acceleration (rpm/sec)/time (seconds). 

Layer for alignment marker 

The purpose of this step is to have alignment patterns by depositing copper to a wafer so 

that it is visible when aligning multiple masks through photoresist. Proceeding with 

multiple wafers for this step is recommended since it is a time-consuming step but can be 

performed in a parallel way. 

1) Place a new 3” Si wafer (380 um TEST grade wafers from University Wafer) on a 

spinner and clean it by applying acetone and then isopropanol while spinning 

(3000/300/60) 

2) Dehydrate the wafer on a hot plater at 150°C for 10 minutes. 

3) Place the wafer onto the spin coater and wait until it cooled down. 

4) Pour S1813 photoresist (Shipley) to cover ~2/3 of the wafer and spin with 

3000/300/60. 
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5)  Bake the wafer on a hot plater at 115°C for 1 minutes. (Be careful not to touch the 

area where alignment marker will be placed while placing it to different places.) 

6) Place the wafer on mask aligner (Suss MJB4) and apply a total power of 80 mJ/cm2  

with the vacuum contact. 

7) Develop the wafer for ~60 seconds in CD26 developer (Shipley), rinse it with 

deionized water, and remove residual water with an air gun.  

8) Check if the alignment marker are thoroughly developed under an inverted 

microscopy. If not, go back to 7). 

9)  To completely remove residual uncured photoresists, place the wafer in oxygen 

plasma barrel (Anatech LTD SCE106), and run the program with the following 

settings: 45 seconds at 30 sccm O2 with a power of 80W. 

10) To deposit a thin layer (~300nm) of Cu layer, we used thermal evaporator (Sharon) 

with the following settings: <10-6 torr of base pressure, <3*10-6 torr of working 

pressure, ~4 Å/sec of deposition speed. 

11) To peel off S1813 photoresist, place the wafer in ~50 ml of remover PG (MicroChem) 

on top of a hot heater at 80°C and leave it overnight. 

12) Next day, replace the remover with fresh one and incubate again for >2 hours. Most 

of Cu layer should be peeled off this time. 
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13) Place the dish containing the wafer to a bath sonicator, and sonicate for 5 minutes. If 

remained Cu other than alignment marker is visible, go back to 12) 

14) Rinse the wafer with isopropanol thoroughly and blow dry with an air gun.  

15) The resulting wafers can be stored at room temperature before proceeding to the next 

steps. 

Shallow media channel 

The desired height in this step is 4.2 um. We recommend to use fresh SU-8 photoresist 

since the old one was observed to have different viscosity, probably due to evaporations. 

Before starting this step, testing the speed setting for desired height with using a blank 

wafer is highly recommended since preparing the wafers with alignment marker takes >2 

days. 

1) Place the wafer with alignment marker on a spinner and clean it by applying acetone 

and then isopropanol while spinning (3000/300/60) 

2) Dehydrate the wafer on a hot plater at 150°C for 10 minutes. 

3) Place the wafer onto the spin coater and wait until it cooled down. 

4) Pour SU-8 2002 photoresist (Shipley) to cover ~2/3 of the wafer and spin with 

1800/300/45 with an initial acceleration of 500/100/5. 
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5) Bake the wafer (in this order), 1 minute at 65°C, 3 minute at 95°C, and 1 minute at 

65°C. 

6) Place the wafer on mask aligner (Suss MJB4), align the photoresist mask carefully, 

check if the alignment error is less than 1um after applying vacuum contact, and 

apply a total power of 85 mJ/cm2  with the vacuum contact. 

7) Bake the wafer (in this order), 1 minute at 65°C, 10 minute at 95°C, and 1 minute at 

65°C. Note that we intentionally extended the duration of this step so that the surface 

is not sticky when coating another layer of photoresist. 

8) Slowly cool the wafer down.  

9) Apply a small amount of SU-8 developer with a swab to the edge of wafer where 

there are no features. 

10) For developed region, measure the height using a profilometer. The expected height is 

~2.2 um. 

Cell channel 

The desired height in this step is 2.0 um. We noticed the height was generally lower on 

the surface of photoresist compared to on a wafer, probably because of different friction 
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parameters. Slowing down the spinning speed can be tried below 1,500 rpm/sec is not 

good for uniform coating. Here, we instead used a custom mixture of two photoresists.  

1) Place the wafer onto the spin coater. 

2) Prepare a mixture of SU-8 2002 (Shipley) and SU-8 2005 (Shipley) in the volume 

ratio of 3:1 and throughly mix with a clean swab. 

3) Pour the mixture to cover ~2/3 of the wafer and spin with 1800/300/45 with an initial 

acceleration of 3000/100/5. 

4) Bake the wafer (in this order), 1 minute at 65°C, 5 minute at 95°C, and 1 minute at 

65°C. 

5) Place the wafer on mask aligner (Suss MJB4), align the photoresist mask carefully, 

check if the alignment error is less than 1um after applying vacuum contact, and 

apply a total power of 75 mJ/cm2  with the vacuum contact. 

6) Bake the wafer (in this order), 1 minute at 65°C, 15 minute at 95°C, and 1 minute at 

65°C.  

7) Slowly cool the wafer down.  

8) Place in a bath filled with SU-8 developer and leave it there for ~10 minutes with 

gentle manual agitation. 
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9) Rinse the wafer with isopropanol throughly and blow dry with an air gun. If white 

undeveloped photoresist was observed, go back to 8) 

10) Measure the height using a profilometer. The expected height of this layer is ~2 um. 

11) Hard bake the wafer for 10 minutes by gradually increasing the temperature from 

65°C to 150°C on a hot plater. 

Main media channel 

The desired height in this step is ~30 um, which is not critical compared to the previous 

steps. 

1) Dehydrate the wafer on a hot plater at 150°C for 10 minutes. 

2) Place the wafer onto the spin coater and wait until it cooled down. 

3) Pour SU-8 2025 photoresist (Shipley) to cover ~2/3 of the wafer and spin with 

2500/300/60 with an initial acceleration of 500/100/5. 

4) Bake the wafer (in this order), 1 minute at 65°C, 6 minute at 95°C, and 1 minute at 

65°C. 

5) Place the wafer on mask aligner (Suss MJB4), align the photoresist mask carefully, 

check if the alignment error is less than 1um after applying vacuum contact, and 
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apply a total power of 150 mJ/cm2  twice with a waiting time of 30 seconds  with the 

vacuum contact. 

6) Bake the wafer (in this order), 1 minute at 65°C, 10 minute at 95°C, and 1 minute at 

65°C.  

7) Place in a bath filled with SU-8 developer and leave it there for ~10 minutes with 

gentle manual agitation. 

8) Rinse the wafer with isopropanol throughly and blow dry with an air gun. If white 

undeveloped photoresist was observed, go back to 8) 

9) Measure the height using a profilometer. The expected height of this layer is ~30 um. 

10)  Hard bake the wafer for 20 minutes by gradually increasing the temperature from 

65°C to 180°C on a hot plater.  

Silanizing of master mold 

The aim of silanizing is to produce a passivation of the surfaces to aid release from 

PDMS and prevents the PDMS form adhering to the master. We recommend to make >5 

devices after silanizing to remove possible toxicity. A silinazing agent is toxic, so it is 

highly recommended to perform this step in a appropriate environment. 

1) Blow dry the wafer with an air gun 

2) Prepare an aluminum foil cap and place it inside a vacuum desiccator. 
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3) Place the petri dish in a vacuum desiccator and put the wafer in it with a slight tilt. 

4) Put two drops of silanizing agent (tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane 

, Sigma) with pipettes. 

5) Run vacuum pump for ~10 minutes.  

6) Place the wafer on a hot plater at 150°C for 10 minutes to evaporate the excessive 

silane. 

!79



Appendix C: Supplemental figures 
 

Supplemental Figure C.1 | Pipeline to analyze time-lapse movie (A) The left panel shows 

the distribution of generation time for cells within a single cel channel. The red circle indicates a possible 

segmentation error. The right panel plots a growth in cell size over time. Dots in different colors represent 

different lineages. Dotted line shows the result of fitting with two phases (growth and plateau). Errors are 

also detected in this procedure if certain cell size greatly deviates from the fitting. (B) An example of our 

GUI platform that enables us to correct the segmentation error. The yellow segmentation mask represents a 

potential error.
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Supplemental Figure C.2 | Stable expression of GFP in the mother machine Narrow 

blue lines  show GFP concentration traces  of  randomly picked mother  cells  over  time.  Wide blue line 

represents a moving average of GFP concentration and the green line represents the coefficient of variation 

within the same moving windows. We noticed the stabilization period (shaded orange area) is required to 

reach stationary state due to bleaching effect.
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Supplemental Figure  C.3  |  Flat  field  correction  We noticed  uneven  illumination  over  the 

spatial position. Purple curve shows an example a flat field effect for cells within a single field of view, 

showing  10%  decrease  to  the  right.  After  gathering  all  cells  over  different  field  of  view,  the  mean 

illumination profile was calculated computationally and was applied to correct the flat-field effect (blue 

curve shows the corrected pattern).
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Supplemental Figure  C.4  |  Approximating  partitioning  error  as  a  normalized 

difference between sister cells For each strain, the increased CV after cell division versus estimated 

partitioning error defined as in the equation above is plotted. The partitioning error in concentration can be 

similarly defined as in [91], which represents a normalized difference between siblings at cell division.  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std(cL − cR )
mean(cL + cR )



Supplemental Figure C.5 | Partitioning noise does not depend on protein expression 

level For each strain, their mean protein concentration and partitioning noise (Q) is plotted, showing no 

significant patterns.
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Supplemental Figure C.6 | Non-volumetric and volumetric divisions for organelles 

(A) For each strain, we calculated volume ratio and total GFP ratio between siblings at birth and fitted with 

a  regression line.  In  case  of  volumetric  division,  the  curve should be on y=x (dotted black line).  We 

observed  the  fit  was  reproducible  since  the  curve  largely  cluster  by  localization  patterns.  Proteins  in 

cytoplasm and mitochondria was close to volumetric division. However, proteins localizing into vacuoles 

showed  over-volumetric  division  (larger  cell  takes  more  than  expected),  while  those  in  endoplasmic 

reticulum or  nucleus  displayed under-volumetric  division (larger  cell  takes  less  than expected).  (B)  A 

kymograph showing that mitosis happens earlier than cytokinesis in fission yeast.
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Supplemental Figure C.7 | Concentration was stable over time in mother machine. 

For typical experiments in Chapter III, the stable concentration profile was observed. Black dots shows 

binned error bars (standard errors).

 

!86



Supplemental Figure C.8 | Stable partitioning error over the course of experiment An 

absolute value of partitioning error or a discontinuity in protein concentration upon a division (see Figure 

III.3A) was  plotted  over  time for  a  typical  experiment.  Black dots  shows binned error  bars  (standard 

errors).
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Supplemental Figure C.9  |  Old pole  cell  is  statistically  identical  to  new pole  cell 

Cumulative distribution function (CDF) in protein concentration for old pole (red curve) and new pole cells 

(black curve) at birth are compared. For all measured strains, the Komologov-Smirnov statistic between 

them was less than 3%.
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Supplemental Figure C.10 | Concentration profile over cell cycle can be described 

with  maturation  process  The  mean  normalized  GFP concentration  profile  for  10  strains  were 

calculated over normalized cell cycle. The gray shaded area represents plateau phase. The green curve 

represents a simulation result including a maturation step with half life of 20 minutes.

!89



Reference 

1. Paulsson, J., Summing up the noise in gene networks. Nature, 2004. 427: p. 415-8. 

2. Elf, J., G.-W. Li, and X.S. Xie, Probing transcription factor dynamics at the single-
molecule level in a living cell. Science (New York, N.Y.), 2007. 316: p. 1191-4. 

3. Golding, I., et al., Real-time kinetics of gene activity in individual bacteria. Cell, 
2005. 123: p. 1025-1036. 

4. Raj, A., et al., Stochastic mRNA synthesis in mammalian cells. PLoS Biology, 2006. 
4: p. 1707-1719. 

5. Cai, L., N. Friedman, and X.S. Xie, Stochastic protein expression in individual cells 
at the single molecule level. Nature, 2006. 440: p. 358-362. 

6. Pedraza, J.M., Noise Propagation in Gene Networks. Science, 2005. 307: p. 
1965-1969. 

7. Pedraza, J.M. and J. Paulsson, Effects of molecular memory and bursting on 
fluctuations in gene expression. Science, 2008. 319: p. 339-343. 

8. Ozbudak, E.M., et al., Regulation of noise in the expression of a single gene. Nature 
genetics, 2002. 31: p. 69-73. 

9. Thattai, M. and A. van Oudenaarden, Intrinsic noise in gene regulatory networks. 
Proceedings of the National Academy of Sciences of the United States of America, 2001. 
98: p. 8614-9. 

10. Raser, J.M. and E.K.O. Shea, Control of Stochasticity in Eukaryotic Gene 
Expression Jonathan. Science, 2006. 304: p. 1811-1814. 

11. Swain, P.S., M.B. Elowitz, and E.D. Siggia, Intrinsic and extrinsic contributions to 
stochasticity in gene expression. Proceedings of the National Academy of Sciences of the 
United States of America, 2002. 99: p. 12795-800. 

!90



12. Hilfinger, A. and J. Paulsson, Separating intrinsic from extrinsic fluctuations in 
dynamic biological systems. Proceedings of the National Academy of Sciences of the 
United States of America, 2011. 108: p. 12167-12172. 

13. Taniguchi, Y., et al., Quantifying E. coli Proteome and Transcriptome with Single-
Molecule Sensitivity in Single Cells. Science (New York, NY), 2010. 329: p. 533-538. 

14. Ghaemmaghami, S., et al., Global analysis of protein expression in yeast. Nature, 
2003. 425: p. 737-41. 

15. Lipson, D., et al., Quantification of the yeast transcriptome by single-molecule 
sequencing. Nature biotechnology, 2009. 27: p. 652-658. 

16. Chen, K.H., et al., RNA imaging. Spatially resolved, highly multiplexed RNA 
profiling in single cells. Science (New York, N.Y.), 2015. 348: p. aaa6090. 

17. Albayrak, C., et al., Digital Quantification of Proteins and mRNA in Single 
Mammalian Cells. Molecular Cell, 2016. 61: p. 914-924. 

18. Paulsson, J., Models of stochastic gene expression. Physics of Life Reviews, 2005. 
2: p. 157-175. 

19. Hilfinger, A., et al., Constraints on Fluctuations in Sparsely Characterized 
Biological Systems. Physical Review Letters, 2016. 116: p. 1-5. 

20. Hilfinger, A., T.M. Norman, and J. Paulsson, Exploiting Natural Fluctuations to 
Identify Kinetic Mechanisms in Sparsely Characterized Systems. Cell Systems, 2016. 2: 
p. 251-259. 

21. Paulsson, J., Prime movers of noisy gene expression. Nature genetics, 2005. 37: p. 
925-926. 

22. Ras, W., et al., Noise in eukaryotic gene expression. 2003. 249: p. 247-249. 

23. Newman, J.R.S., et al., Single-cell proteomic analysis of S. cerevisiae reveals the 
architecture of biological noise TL  - 441. Nature, 2006. 441 VN  - p. 840-846. 

24. Bar-Even, A., et al., Noise in protein expression scales with natural protein 
abundance. Nature Genetics, 2006. 38: p. 636-643. 

!91



25. Newman, J.R.S., et al., Single-cell proteomic analysis of S . cerevisiae reveals the 
architecture of biological noise. Nature, 2006. 441. 

26. Birky Jr, C.W., The partitioning of cytoplasmic organelles at cell division. 
International review of cytology. Supplement, 1982. 15: p. 49-89. 

27. Birky, C.W., Relaxed cellular controls and organelle heredity. Science, 1983. 222: 
p. 468-476. 

28. Hennis, A.S. and C. Birky, Stochastic partitioning of chloroplasts at cell division in 
the alga Olisthodiscus, and compensating control of chloroplast replication. Journal of 
cell science, 1984. 70(1): p. 1-15. 

29. Bergeland, T., et al., Mitotic partitioning of endosomes and lysosomes. Current 
Biology, 2001. 11(9): p. 644-651. 

30. Sheahan, M.B., R.J. Rose, and D.W. McCurdy, Organelle inheritance in plant cell 
division: The actin cytoskeleton is required for unbiased inheritance of chloroplasts, 
mitochondria and endoplasmic reticulum in dividing protoplasts. Plant Journal, 2004. 37: 
p. 379-390. 

31. Mukherji, S. and E.K. O'Shea, Mechanisms of organelle biogenesis govern 
stochastic fluctuations in organelle abundance. eLife, 2014. 2014: p. 1-17. 

32. Rafelski, S.M., et al., Mitochondrial network size scaling in budding yeast. Science, 
2012. 338(6108): p. 822-824. 

33. Fagarasanu, A., et al., Molecular mechanisms of organelle inheritance: lessons 
from peroxisomes in yeast. Nature reviews. Molecular cell biology, 2010. 11: p. 644-654. 

34. Shima, D.T., et al., Partitioning of the Golgi apparatus during mitosis in living 
HeLa cells. Journal of Cell Biology, 1997. 137: p. 1211-1228. 

35. Conradt, B., et al., In vitro reactions of vacuole inheritance in Saccharomyces 
cerevisiae. Journal of Cell Biology, 1992. 119: p. 1469-1479. 

36. Huh, D. and J. Paulsson, Non-genetic heterogeneity from stochastic partitioning at 
cell division. Nature Genetics, 2011. 43: p. 95-100. 

!92



37. Locke, J.C.W. and M.B. Elowitz, Using movies to analyse gene circuit dynamics in 
single cells. Nature Reviews Microbiology, 2009. 7: p. 383-92. 

38. Trapnell, C., Defining cell types and states with single-cell genomics. Genome 
Research, 2015. 25: p. 1491-1498. 

39. Spiller, D.G., et al., Measurement of single-cell dynamics. 2010. 465. 

40. Longo, D. and J. Hasty, Dynamics of single-cell gene expression. Molecular 
Systems Biology, 2006. 2. 

41. Nurse, P., Genetic control of cell size at cell division in yeast. Nature, 1975. 256: p. 
547-551. 

42. Nurse, P., Growth in Cell Length in the Fission Yeast Schizosaccharomyces Pom Be. 
Journal of Cell Science, 1985. 376: p. 357-376. 

43. Martin, S.G. and M. Berthelot-Grosjean, Polar gradients of the DYRK-family 
kinase Pom1 couple cell length with the cell cycle. Nature, 2009. 459: p. 852-856. 

44. Wood, E. and P. Nurse, Pom1 and cell size homeostasis in fission yeast. Cell Cycle, 
2013. 12: p. 3228-3236. 

45. Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional 
regulators. Nature, 2000. 403: p. 335-338. 

46. Wan-Ling, C., et al., Engineered GFP as a vital reporter in plants. Current Biology, 
1996. 6: p. 325-330. 

47. Chalfie, M., et al., Green fluorescent protein as a marker for gene expression. 
Science, 1994. 263: p. 802-805. 

48. Süel, G.M., et al., An excitable gene regulatory circuit induces transient cellular 
differentiation. Nature, 2006. 440: p. 545-550. 

49. Süel, G.M., et al., Tunability and noise dependence in differentiation dynamics. 
Science (New York, N.Y.), 2007. 315: p. 1716-9. 

50. Norman, T.M., et al., Memory and modularity in cell-fate decision making. Nature, 
2013. 503: p. 481-6. 

!93



51. Nathan, L.P.-t., D.L. Glenn, and V. Johan, Synchronous long-term oscillations in a 
synthetic gene circuit. Nature, 2016. 538: p. 1-4. 

52. Locke, J.C.W., et al., Stochastic Pulse Regulation in Bacterial Stress Response. 
Science, 2011. 334: p. 366-369. 

53. Young, J.W., et al., Measuring single-cell gene expression dynamics in bacteria 
using fluorescence time-lapse microscopy. Nature protocols, 2012. 7: p. 80-88. 

54. Sprinzak, D., et al., Cis-interactions between Notch and Delta generate mutually 
exclusive signalling states. Nature, 2010. 465: p. 86-90. 

55. Ragunathan, K., G. Jih, and D. Moazed, Epigenetic inheritance uncoupled from 
sequence-specific recruitment. Science, 2014. 348: p. science.1258699-. 

56. Moffitt, J.R., J.B. Lee, and P. Cluzel, The single-cell chemostat: an agarose-based, 
microfluidic device for high-throughput, single-cell studies of bacteria and bacterial 
communities. Lab on a Chip, 2012. 12: p. 1487. 

57. Ullman, G., et al., High-throughput gene expression analysis at the level of single 
proteins using a microfluidic turbidostat and automated cell tracking. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 2013. 368: p. 20120025. 

58. Balaban, N.Q., et al., Bacterial Persistenceas a Phenotypic Switch. Science, 2004. 
305: p. 1622-1625. 

59. Wang, P., et al., Robust growth of escherichia coli. Current Biology, 2010. 20: p. 
1099-1103. 

60. Taheri-Araghi, S., et al., Cell-Size Control and Homeostasis in Bacteria. Curr. 
Biol., 2014: p. 385-391. 

61. Campos, M., et al., A constant size extension drives bacterial cell size homeostasis. 
Cell, 2014. 159(6): p. 1433-1446. 

62. Uphoff, S., et al., Stochastic activation of a DNA damage response causes cell-to-
cell mutation rate variation. Science, 2016. 351(6277): p. 1094-1097. 

63. Lee, S., et al., Whole lifespan microscopic observation of budding yeast aging 
through a micro fl uidic dissection platform. Pnas, 2012. 109: p. 4-8. 

!94



64. Coelho, M., et al., Fission yeast does not age under favorable conditions, but does 
so after stress. Current Biology, 2013. 23: p. 1844-1852. 

65. Nobs, J.-B. and S.J. Maerkl, Long-term single cell analysis of S. pombe on a 
microfluidic microchemostat array. PloS one, 2014. 9: p. e93466. 

66. Spivey, E.C., et al., 3D-printed microfluidic microdissector for high-throughput 
studies of cellular aging. Analytical Chemistry, 2014. 86: p. 7406-7412. 

67. Hoover, A., et al., An experimental comparison of range image segmentation 
algorithms. IEEE transactions on pattern analysis and machine intelligence, 1996. 18(7): 
p. 673-689. 

68. Sveiczer, A., B. Novak, and J.M. Mitchison, The size control of fission yeast 
revisited. Journal of Cell Science, 1996. 2957: p. 2947-2957. 

69. Hormoz, S., et al., Inferring Cell-State Transition Dynamics from Lineage Trees 
and Endpoint Single-Cell Measurements. Cell Systems, 2016. 3: p. 419-433.e8. 

70. Brangwynne, C.P., et al., Cytoplasmic diffusion: Molecular motors mix it up. 
Journal of Cell Biology, 2008. 183: p. 583-587. 

71. Lestas, I., G. Vinnicombe, and J. Paulsson, Fundamental limits on the suppression 
of molecular fluctuations. Nature, 2010. 467: p. 174-178. 

72. Yu, J., et al., Probing gene expression in live cells, one protein molecule at a time. 
Science (New York, N.Y.), 2006. 311: p. 1600-3. 

73. Birky, C.W. and R.V. Skavaril, Random partitioning of cytoplasmic organelles at 
cell division: the effect of organelle and cell volume. Journal of theoretical biology, 1984. 
106(4): p. 441-447. 

74. Huh, D. and J. Paulsson, Random partitioning of molecules at cell division. 
Proceedings of the National Academy of Sciences of the United States of America, 2011. 
108: p. 15004-9. 

75. Marshall, W.F., Stability and robustness of an organelle number control system: 
modeling and measuring homeostatic regulation of centriole abundance. Biophysical 
journal, 2007. 93(5): p. 1818-1833. 

!95



76. Summers, D.K. and D.J. Sherratt, Multimerization of high copy number plasmids 
causes instability: Cole 1 encodes a determinant essential for plasmid monomerization 
and stability. Cell, 1984. 36: p. 1097-1103. 

77. Bedbrook, J.R. and F.M. Ausubel, Recombination between bacterial plasmids 
leading to the formation of plasmid multimers. Cell, 1976. 9(4): p. 707-716. 

78. Savage, D.F., et al., Spatially ordered dynamics of the bacterial carbon fixation 
machinery. Science, 2010. 327(5970): p. 1258-1261. 

79. Huh, W.-K., et al., Global analysis of protein localization in budding yeast. Nature, 
2003. 425: p. 686-691. 

80. Matsuyama, A., et al., ORFeome cloning and global analysis of protein localization 
in the fission yeast Schizosaccharomyces pombe. Nature biotechnology, 2006. 24: p. 
841-7. 

81. Jajoo, R., et al., Accurate concentration control of mitochondria and nucleoids. 
Science, 2016. 351(6269): p. 169-172. 

82. Landgraf, D., Quantifying localizations and dynamics in single bacterial cells. 
2012. 

83. Haim, L., et al., A genomic integration method to visualize localization of 
endogenous mRNAs in living yeast. Nature methods, 2007. 4: p. 409-412. 

84. Landgraf, D., et al., Scarless gene tagging with one-step transformation and two-
step selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe. PloS one, 
2016. 11(10): p. e0163950. 

85. Wu, J.-Q. and T.D. Pollard, Counting cytokinesis proteins globally and locally in 
fission yeast. Science, 2005. 310(5746): p. 310-314. 

86. Paulsson, J. and M. Ehrenberg, Noise in a minimal regulatory network: plasmid 
copy number control. Quarterly reviews of biophysics, 2001. 34(01): p. 1-59. 

87. das Neves, R.P., et al., Connecting variability in global transcription rate to 
mitochondrial variability. PLoS Biology, 2010. 8. 

!96



88. Sigal, A., et al., Variability and memory of protein levels in human cells. Nature, 
2006. 444: p. 643-646. 

89. Spencer, S.L., et al., Non-genetic origins of cell-to-cell variability in TRAIL-
induced apoptosis. Nature, 2009. 459(7245): p. 428-432. 

90. Eldar, A., et al., Partial penetrance facilitates developmental evolution in bacteria. 
Nature, 2009. 460: p. 510-514. 

91.  Huh, Dann. Non-genetic Heterogeneity Originating at Cell Division. Harvard 
University, 2011. 

!97


