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Integrative analysis and refined design of CRISPR knockout screens 

 

 

Abstract 

  

Genome-wide CRISPR-Cas9 screen has been widely used to interrogate gene functions. 

However, the analysis remains challenging and rules to design better libraries beg further 

refinement. Here we present MAGeCK-NEST, which integrates protein-protein interaction 

(PPI) and improves the inference accuracy when fewer guide-RNAs (sgRNAs) are available. 

MAGeCK-NEST also adopts a maximum-likelihood approach to remove sgRNA outliers, 

which are characterized with higher G-nucleotide counts, especially in regions distal from the 

PAM motif. Noticing that various replication cycles affect knockout effects, we further 

normalized MAGeCK-NEST output considering cell replication cycles. Normalized CRISPR-

Cas9 screens using different libraries can thus be integrated as a ‘reference’, from which 

condition-specific hits could be derived. 

 

Moreover, we found that choosing non-targeting sgRNAs as negative controls lead to strong 

bias, which can be mitigated by sgRNAs targeting “safe harbor”, a region of the genome that 

is considered to be both transcriptionally active and its disruption does not lead to 

discernable phenotypic effects. Custom-designed screens confirmed our findings, and further 

revealed that 19nt sgRNAs consistently gave the best signal-to-noise separation. These 

methods and characterizations enabled development of an improved genome-wide CRISPR 
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screen library and application in dissecting the mechanism of methyltransferase EZH2 

inhibitors. 

 

Pharmacological inhibition of EZH2 preferentially suppresses the growth of lymphoma cells 

with activating mutations in EZH2 that augment PRC2-dependent silencing. However, it 

remains unknown whether these EZH2-targeting compounds have inhibitory effects in solid 

tumors that generally do not carry EZH2 mutations. In a panel of human prostate cell lines, 

we found those with competent androgen receptor (AR) signaling are sensitive to EZH2 

inhibitors. However, in both sensitive and insensitive prostate cancer cells, inhibitor treatment 

significantly reduced global H3K27 trimethylation (H3K27me3) levels, suggesting a PRC2-

independent mechanism. In sensitive CRPC cells, however, EZH2 inhibitors induce a 

specific gene signature that is highly associated with AR signaling. Compound treatment 

disrupted the interaction between EZH2 and AR, and impaired AR recruitment to its target 

gene loci. 

 

To further explore EZH2 function, we performed CRISPR-Cas9 screens in EZH2 inhibitor-

treated and un-treated conditions. Modeling and pathway analysis suggested that EZH2 

collaborates with base excision repair pathway, whose gene expression is down regulated by 

EZH2 inhibitors and promoters are enriched with PRC2-independent EZH2 bindings. 

Collectively, we used CRISPR screens to identify a novel function of EZH2 in prostate 

cancers. 
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Introduction 
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1.1: CRISPR-Cas9 system 

In 1987, Ishino et al. cloned the iap gene in Escherichia coli1 and identified a set of 29-

nucleotide (nt) repeats separated by unrelated, non-repetitive and similarly short sequences 

(spacers) in immediately downstream of iap gene. Termed CRISPR (clustered, regularly 

interspaced, short palindromic repeat) in 2002 by Jansen et al2, similar repeats were also 

identified in bacteria and archaea3, 4. A set of conserved protein-coding genes, named 

CRISPR-associated (cas) genes, were noted on one side of the repeat array and found to 

encode nucleases5, 6. Sequence analysis revealed that many spacers match sequences from 

bacteriophages or plasmids7, 8, and following studies further suggested the base-pairing 

potential of nucleic acids is exploited to defense against phase infection via sequence-based 

inference9, 10. The CRISPR-Cas mediated defense process can be divided into three stages: 

adaptation, expression, and interference. In adaptation, fragments of foreign DNA will be 

inserted as new spacers in the CRISPR locus6, 11, 12. Bactria then expresses cas genes and 

transcribes the CRISPR into a long precursor CRISPR RNA (pre-crRNA), which is 

subsequently processed into mature crRNA by Cas proteins13, 14. In interference stage, target 

nucleic acid is recognized and destroyed by the combined action of crRNA and Cas proteins. 

CrRNA bound to Cas protein(s) locate the corresponding protospacer, and Cas nucleases 

trigger degradation of the targets5, 13. 

 

The Cas9 protein (CRISPR associated protein 9) is an RNA-guided DNA endonuclease 

associated with the CRISPR type II adaptive immunity system in Streptococcus pyogenes15, 

16. Native Cas9 assists in all three CRISPR stages16: it participates in adaptation and crRNA 

processing, and it also cleaves the target DNA assisted by crRNA and trans-activating RNA 

(tracrRNA). Jennifer Doudna and Emmanuelle Charpentier re-engineered the Cas9 

endonuclease by fusing the two RNA molecules into a "single-guide RNA”, which could 



	 3	

easily be programmed to target any DNA sequence for cleavage by manipulating the 

nucleotide sequence of the guide RNA16. In this system, CRISPR-associated 9 (Cas9) 

endonucleases are directed to genomic loci by single guide RNAs (sgRNAs) containing 20 

nucleotides that are complementary to target DNA sequence and create double strand 

breaks (DSB)16-18. Two major DSB repair mechanisms may ensure: homology-directed repair 

(HDR) can repair precisely with an exogenous DNA template, yet non-homologous end 

joining (NHEJ) often introduces indels mutations at DSB sites. The commonly resulting 

coding frameshifts would lead to non-functional proteins, causing permanent genetic 

perturbations. 

 

1.2: Function genomics using CRISPR-Cas9  

Genomic wide genetic screens are powerful tools for the functional interrogations of genetic 

elements. Over the past decades, the mainstay of genetic screens was using the RNA 

interference (RNAi) pathway for gene knockdown. RNAi targets mRNA for degradation 

through sequence complementary19, 20, but their incomplete gene knockdown and extensive 

off-target activity hinder the interpretations21, 22. With sequence-specific CRISPR system 

emerging as a novel tool for genetic perturbation, the lentiviral delivery method enabled the 

creation of genome-scale CRISPR-Cas9 knockout (or 'GeCKO') libraries targeting 102 to 104 

genes23. These libraries allow both negative and positive selection screening to be conducted 

on mammalian cell lines in a cost-effective manner. In CRISPR-Cas9 knockout screens, 

each gene is targeted by several sgRNAs, and the mutant pool carrying different gene 

knockouts could be resolved by high-throughput sequencing23-26. Based on this system, 

CRISPR-Cas9 loss-of-function screens can interrogate the functions of coding genes23, 25-27 

and non-coding elements28-30, and generate hypotheses on cell dependency, drug response, 

and gene regulation in a high-throughput and unbiased manner24, 31-33.  
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1.3: Computational challenges of analyzing CRISPR-Cas9 Knockout screen 

The data generated by these CRISPR/Cas9 screens pose several computational challenges 

to biologists. First, different sgRNAs targeting the same gene might have different 

specificities and knockout efficiencies. Several algorithms have been developed to design 

sgRNAs with high specificity and efficiency34-36. Second, to accurately determine the 

knockout effect of gRNAs, sufficient cell count per gRNA is necessary. Such requirement 

limits the number of gRNAs against each gene in the genome-wide screening, especially for 

in vivo experiments. Thus, a robust method is needed to take these factors into account in 

the aggregation of information from limited gRNAs. Algorithms to analyze screening data 

using either ranking or likelihood approach have also been developed, such as RIGER37, 

RSA38, HitSelect39, ScreenBeam40, casTLE41, as well as the MAGeCK/MAGeCK-

VISPR/NEST algorithms we previously published42, 43.  

 

Within these methods, algorithms designed to rank genes in genome-scale short interfering 

RNA (siRNA) or short hairpin RNA (shRNA) screens can also be used for CRISPR/Cas9 

knockout screening data, which include RNAi Gene Enrichment Ranking (RIGER)37 and 

Redundant siRNA Activity (RSA). However, distinct expression patterns exist between 

knockout and knockdown of a gene: Knockout often abolishes gene function completely, yet 

knockdown only can partially diminish gene expression. Therefore, different strategies should 

be taken when dealing with different experiments. For example, RIGER, which was designed 

for siRNA or shRNA screen, takes weighted sum of first and second best ranked hairpins for 

a given gene assuming high probability of incomplete knockdown. However, for CRISPR 

screening, the majority of gRNAs are assumed to be efficient, and such preference of top-

ranked hairpins may be biased. 
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1.4: Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) 

Our laboratory has previously developed the algorithms MAGeCK and MAGeCK-VISPR for 

identifying CRISPR screen hits in different scenarios42, 43. In two-condition comparisons, 

MAGeCK uses a negative binomial model to assess the degree of selections of individual 

sgRNAs, and adopts robust rank aggregation (RRA) algorithm44 to aggregate multiple 

sgRNAs on a gene to evaluate gene selection. MAGeCK-VISPR43 further quantitatively 

estimates gene selection by optimizing a joint likelihood function of observing the read counts 

of different sgRNAs with varying behaviors in multiple conditions 42. Specifically, the read 

count of sgRNA ! in sample !, or !!" , is modeled as: 

!!" ∼ !" !!" ,!! − (1) 

Where !!" and !! are the mean and over-dispersion factor of the negative binomial (NB) 

distribution, respectively. The mean value !!" is further modeled as: 

!!" ! = !!!!!!! !!"!!"! − (2) 

Where !! is the size factor of sample ! for adjusting sequencing depths of the samples.  

!! = !"#$%!!
!!"
!!⋅

;  !! = !!"
!

!!!

!/!

− (3) 

To deal with complex experimental settings, we included design matrix (!). With ! samples 

affected by ! conditions, ! is a binary matrix with its element !!" = 1 if sample ! is affected 

by condition !, and 0 otherwise. The knockout effects of gene ! in condition ! are 

represented as the score “!!"”, a measurement of gene selections similar to the term of “log 

fold change” in differential expression analysis. “β” scores reflect the extent of selection in 

each condition: !!" >0 (or <0) means g is positively (or negatively) selected in condition !. !!" 
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is also dependent on !!!, the initial sgRNA abundance which is usually measured in plasmid 

or the day 0 of the experiment. 

 

Taking different cutting efficiencies into consideration, we used a binary variable !! to model 

whether sgRNA ! is efficient or not: !! = 1 corresponds to an efficient sgRNA ! and vice 

versa. Since !! is unknown, the probability of observing a read count ! from !!" is a mixture 

of two distributions: 

! !!" = ! = ! !!" = ! !! = 1 ! !! = 1 + ! !!" = ! !! = 0 ! !! = 0  

Where 

! !!" = ! !! = 1 ∼ !" !;!!",!! ;  !!" = !!!"! !!0 + !!"!!"
 

!
 

! !!" = ! !! = 0 ∼ !" !;!!",!! ;   !!" = !!!"! !!0  

The values of !!" are then derived using maximum likelihood estimation (MLE) approach for 

objective function: 

(!!∗
 ,!!∗) = !"#!"#

!!,!!
log  !(!!")

 

!∈!,
!!!,…!

  

1.5: Prediction of CRISPR screen hits from protein network neighbors  

To identify distinct features of gene essentiality in CRISPR screens, we developed a 

network-based method called NEST (Network Essentiality Scoring Tool)45. For each gene, 

NEST calculates neighbor expression as the sum of relative expression (in one cell 
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normalized against the average expression across all cell lines) of its interacting protein 

genes from STRING46, weighted by the interaction confidence. We applied MAGeCK with 

FDR 0.05 on the CRISPR loss-of-function screen data and use the gene hits as gold 

standard to test the performance of predicting the CRISPR screen hits. The area under the 

receiver operating curve (ROC) of NEST score is consistently better than network degree, 

gene expression, and shRNA screen.  

 

1.6: Prostate cancers and castration-resistant prostate cancers (CRPC) 

Prostate cancer is the development of cancer in the prostate, a gland in the male 

reproductive system. Prostate cancer is the third leading cause of cancer death in American 

men, behind lung cancer and colorectal cancer47. The development and progression of 

prostate cancer depend on androgen hormones acting through the androgen receptor (AR)48. 

Reduction in the levels of androgen hormones, either from surgery or pharmacologic 

castration, is currently the first-line treatment of metastatic prostate cancer49. However, most 

cases treated with castration eventually progress to castration-resistant prostate cancers 

(CRPC). Interestingly, even in the absence of exogenous androgen, AR signaling is 

aberrantly activated and remains crucial for survival and further evolution in the majority of 

CRPC, referred as AR-positive CRPC50, 51. Persistent AR activation is one of the survival 

pathways in CRPC cells for tumor growth despite of androgen deprivation. Therefore, 

pharmacological blockage of AR signaling has been a predominant strategy for CRPC 

treatment, leading to the development of several potent agents, such as enzalutamide and 

abiraterone acetate 52-54. Unfortunately, resistance to these inhibitors is typically inevitable, so 

it is urgent to identify alternative approaches to bypassing AR signaling or combination 

therapies to prevent and delay the refractory process.  
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1.7: The role of EZH2 in tumorigenesis 

Alterations in epigenetic machinery contribute to cancer development and progression55. 

Several agents that inhibit the protein enzymes that are responsible for specific epigenetic 

processes have been approved to treat hematological malignancies, supporting the ideas of 

epigenetic therapies in cancers56, 57. Therefore, tremendous efforts have been put forth to 

identify and validate more promising epigenetic molecules, such as the methyltransferase 

EZH2. The enhancer of zeste homolog 2 (EZH2), encodes a Histone-lysine N-

methyltransferase, which is the catalytic subunit of Polycomb-repressive complex 2 

(PRC2)58. By adding three methyl groups to lysine 27 of histone 3 (H3K27me3), PRC2 

complex leads to chromatin condensation and gene silencing 59. EZH2 is frequently mis-

regulated in a broad spectrum of cancers, such as diffuse large B-cell lymphoma, breast 

cancer, colon cancer, and prostate cancer 60, 61. Specifically, the gain-of-function mutations at 

residues Y641 or A677 within the catalytic domains of EZH2 have been identified in diffuse 

large B-cell lymphoma (DLBCL) and follicular lymphoma62, 63. These defects, by either 

overexpression or genetic mutations, have been shown to associate with multiple steps 

during tumor progression, including the epithelial-mesenchymal transition64, invasion65, 

metastasis66 and angiogenesis67. With all of these oncogenic features, EZH2 has long been 

proposed as an effective anticancer target. This concept was not proved until the selective 

inhibitors of EZH2 enzymatic activity were developed68-70. For instance, GSK126, a direct 

inhibitor of EZH2 developed by GlaxoSmithKline (GSK), can directly and specifically inhibit 

EZH2-mediated methyl transfer reactions by competing with the methyl donor S-

adenosylmethionine (SAM) for the binding pocket of EZH2 catalytic domain. All of these 

prototypes preferentially inhibited the growth of EZH2 mutant DLBCL cells, decreased global 

H3K27me3 levels and turned on genes that are repressed by PRC2 complex68. However, it is 
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unknown whether these compounds will be effective in solid cancer cells, which rarely bear 

EZH2 mutations and display more diverse mechanisms of EZH2 tumor-driving function. 

 

1.8: Non-PRC2 function of EZH2  

In our previous work71, we used ChIP-seq and showed that in LNCaP-abl (abl), a cell line that 

resembles clinical AR-positive CRPC tumors, there are two types of EZH2 binding sites: 

“ensemble” peaks with both EZH2 and H3K27me3 enrichment, and “solo” peaks with only 

EZH2 binding but not H3K27me3. The ensemble peaks represent the canonical PRC2 

binding sites where EZH2 represses gene expression through methylation of H3K27; the 

solo peaks suggest a non-canonical PRC2-independent mode of EZH2 binding. ChIP-seq 

profiling of SUZ12, a subunit of PRC2 complex, displays significant correlation with both 

H3K27me3 and EZH2 ensemble peaks, but little correlation with EZH2 solo peaks, 

confirming that EZH2 solo peaks are independent of the PRC2 complex 71. Moreover, in 

contrast to the canonical repressive function of EZH2 ensemble peaks, the solo peaks are 

enriched with active histone marks, such as H3K4 dimethylation, trimethylation (H3K4me2, 

H3K4me3) and Polymerase-II (PolII), suggesting the potential function of solo peaks in gene 

activation (Figure 1). 
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Figure 1. Patterns of EZH2 peak bindings. 

Heatmaps of EZH2, H3K27me3, H3K4me2, H3K4me3, and PolII ChIP-seq signal ±1 kb 

around EZH2 solo or ensemble peak summit in abl.	
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Goal 1: Method developments and integrative analysis for CRISPR screen analysis 

Despite previous efforts, methods for designing CRISPR screens and identifying hits from 

the screens are still being refined from different aspects. First, although 20-nt sgRNA 

spacers have been widely used, there is no systemic comparison of how lengths of sgRNA 

spacers affect their cleavage efficiencies.  Second, the number of sgRNAs in the library 

influences the sensitivity of the screens. Libraries with fewer sgRNAs per gene23, 35 often 

detect fewer statistically significant genes42, so algorithms to increase the analysis power of 

the screens are needed. We have demonstrated in a recent method NEST (Network 

Essentiality Scoring Tool)45 that existing biological knowledge such as protein-protein 

interaction (PPI) networks can improve CRISPR screen analysis. However, NEST did not 

directly incorporate such information in the statistical model to improve hit calling from the 

screens. Third, one major concern of mixture model in MAGeCK is in addition to inefficient 

sgRNAs, there may exist sgRNAs with unexpectedly stronger effects, which are not taken 

into consideration in mixture model. These sgRNAs outliers, or sgRNAs with discrepant 

knockout effects from other sgRNAs targeting the same gene, skew the hit calling results, 

especially when fewer sgRNAs target each gene. The rules to predict, detect, and remove 

outlier sgRNAs in CRISPR screens, and designing sgRNA libraries with high efficiency and 

specificity, are still lacking. Last, condition-specific hits in CRISPR screens are more 

scientifically interesting in some circumstances, but there is still no computational method 

that can integrate and compare screens conducted under various conditions using different 

sgRNA libraries. In Chapter 2, we presented our works regarding design and analysis of 

CRISPR-Cas9 screens (Figure 2). First, we performed custom-designed screens and 

identified the optimal spacer length for higher cutting efficiencies and better signal-to-noise 

ratios. We also found a strong bias on CRISPR screen gene selection when normalizing read 

counts with commonly used non-targeting sgRNAs, and proposed an alternative  
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Figure 2. Overview of method development for CRIPSR/Cas9 knockout screens. 

The major steps in CRISPR/Cas9 knockout screens (red) and the computational methods 

developed (blue). 
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normalization to mitigate such bias. Analysis wise, we presented an analytical framework 

MAGeCK-NEST (Figure 3) which extends our previous MAGeCK-VISPR and NEST 

algorithms43,45. The output of MAGeCK-VISPR is a “beta score” for each gene, analogous to 

the “log fold change” in differential gene expression analysis. MAGeCK-NEST is able to 

utilize protein-protein interaction information to improve the accuracy and statistical power of 

hit calling from CRISPR screens with limited number of sgRNAs per gene. Applying 

MAGeCK-NEST to published screens25, 31, we identified and removed outlier sgRNAs and 

uncovered their sequence features to inform future library design. MAGeCK-NEST also uses 

cell replication cycles to normalize analytic outputs, which could be directly used in screen 

integration and comparisons. Finally, we designed a genome-wide CRISPR/Cas9 screening 

library based on these new design rules, and demonstrated its performance in identifying 

known essential genes in different cell types. 

 

Goal 2: Pharmacological inhibition of EZH2 in castration resistant prostate cancer 

For prostate cancer, higher expression of EZH2 correlates with prostate cancer progression, 

especially to its lethal castration-resistant state72. Our previous research has shown EZH2 

targeting shRNA suppresses AR-positive CRPC growth more prominently71. However, 

whether the EZH2 inhibitors can suppress AR-positive CRPC growth remains unknown. 

Moreover, it has been shown that EZH2 can serve as transcriptional co-activator in a PRC2-

independent manner in CRPC, but its function remains poorly defined. In Chapter 3, we 

tested two EZH2-inhibitors in prostate cancer cells68, 69, and further defined the molecular 

signatures that underlie the drug action. We found that CRPC cells with competent AR 

signaling are especially sensitive to EZH2 inhibitors, but the inhibitory effects are PRC2-

independent. Upon the inhibition of the methyltransferase, AR-mediated gene expression 

was suppressed and its binding to chromatin was blocked. Using CRISPR screens with and  
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Figure 3. Overview of the MAGeCK-NEST workflow. 

The input of MAGeCK-NEST is a read count table to record the counts of every sgRNA in all 

samples. MAGeCK-NEST then builds a hierarchical model based on information from 

protein-protein interaction (PPI), and removes outliers that have aberrant fold changes 

compared with other sgRNAs within the same gene. MAGeCK-NEST outputs beta scores 

(measuring the degree of selections of all genes), p-values, and quality control metrics. 
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without EZH2-inhibitors, we modeled the EZH2-pathway and showed that EZH2 actively 

controls the base excision pathway in CRPC cells. These findings provided insights into the 

mechanism by which EZH2 and AR co-activate genes, and this non-PRC2 function of EZH2 

using small-molecule inhibitors is potential therapeutic target for AR-positive CRPCs.   
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Chapter 2:  

Method developments and integrative analysis for CRISPR screen analysis 
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2.1: 19-nt spacers give rise to higher cutting efficiencies and better signal-to-noise 

ratio 

In spCas9 gene editing systems, truncated sgRNAs have been reported to have a better 

cleavage specificity compared with full-length sgRNAs73. However, the performance of 

truncated sgRNAs in screens compared with full-length sgRNAs remains un-determined. 

Therefore, we designed a small library to compare how spacers with different lengths ranging 

from 17-nts to 20-nts influence the cleavage efficiencies. The library contains four major 

categories of sgRNAs: AAVS1-targeting sgRNAs, non-targeting sgRNAs, sgRNAs targeting 

51 ribosomal genes and 503 cancer-related genes, which were selected using published 

cancer signatures74-76. Detailed designs are summarized as following table. 

Target Spacer lengths  Number of each 
gene-length 

Total number of 
sgRNAs 

AAVS1 17-20 204 1632 

Non-targeting 17-20 100 400 

51 ribosomal genes 17- 20 20 4080 

503 selected cancer-related genes 20 12 6036 

 

We found that 19-nt sgRNAs give rise to significantly stronger log fold changes (LFCs) in 

ribosomal genes, reflecting higher cleavage efficiencies (Figure 4A). Further, we adopted D-

distance statistic from between Kolmogorov–Smirnov test (K-S test) positive-control sgRNAs 

(sgRNAs targeting ribosomal genes) and negative-control sgRNA (AAVS1-targeting 

sgRNAs) as a metric for signal-to-noise. The K-S test is a nonparametric test of the equality 

of continuous, one-dimensional probability distributions that can be used to compare two 

samples. We found 19-nt spacers gave better performance (Supplementary Figure 1) in 11 

of 12 screens. Moreover, for each ribosomal gene, 19-nt sgRNAs gave lower relative 

standard deviation (i.e. standard deviation divided by mean) of LFCs, indicating a more 
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stable behavior (and potentially less off-target cleavages) of gene knockout effects (Figure 

4B).  
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Figure 4. Comparing cleavage efficiencies and signal-to-noise ratios between different 

lengths of sgRNA spacers. 

(A) The log fold changes of sgRNAs with spacer lengths ranging from 17- to 20-nts, including 

non-targeting sgRNAs and sgRNAs targeting ribosomal genes. For each spacer length, there 

are 100 non-targeting sgRNAs and 1020 ribosomal genes-targeting sgRNAs. P values were 

calculated using two-sided Student's t-test. 

(B) The relative standard deviation of log fold changes of sgRNAs targeting ribosomal genes 

with spacer lengths ranging from 17- to 20-nts. There are 612 data points (51 ribosomes 

genes repeated in 12 screens) for each spacer length. P values were calculated using two-

sided Student's t-test. 

  

Non-targeting 
gRNAs 

Ribosomal genes 
targeting gRNAs 

-- 17  -- 18 
-- 19  -- 20 
 

B

17nt 18nt 19nt 20nt 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

R
el

at
iv

e 
st

an
da

rd
 

de
vi

at
io

n 
of

 L
FC

s 

Lo
g 

fo
ld

 c
ha

ng
e 

-2 

-1 

0 

1 

A p=6.4*10-6 p=5.3*10-6 

p=2*10-5 

P=0.007 



	 20	

2.2: SgRNAs targeting AAVS1 or non-essential genes as negative controls reduce 

false positives in the screen 

Correct interpretations of genome-wide screens require proper read count normalization. 

Since most sgRNAs should generate knockouts without causing phenotypes, a 

straightforward approach is to normalize based on the total read counts of all sgRNAs77 

(‘total normalization’). Alternatively, many screen libraries include ‘non-targeting’ negative 

control sgRNAs, which match nowhere in the genome, for normalization (‘non-targeting 

sgRNA normalization’). In public datasets25, 31, ‘total normalization’ resulted in a beta-score 

distribution centered on zero (Supplementary Figure 2), while ‘non-targeting sgRNA 

normalization’ led to a skewed distribution of beta scores and most of the genes seemed to 

be negatively selected (Figure 5A). The bias of ‘non-targeting sgRNA normalization’ is 

introduced when sgRNAs targeting non-essential genes still impede cell growth from genome 

cleavage toxicity78, 79, regardless of the gene knockout effects. Therefore, a more appropriate 

choice of negative controls should be sgRNAs that make cleavages at non-essential DNA 

regions. Indeed, when normalizing read counts using sgRNAs targeting the ‘gold standard’ 

927 non-essential genes previously derived from pooled shRNA screens80, the beta score 

distribution is centered on zero (Figure 5B).  

 

In genome-wide screens, normalizations using either sgRNAs targeting non-essential genes 

or all genes lead to similar results (Figure 5B, Supplementary Figure 2), as the majority of the 

genes are assumed to be non-essential. Such assumption may fail in focused (or custom) 

screens where many targeted genes may be under selection, which necessitates the 

selection of better negative control sgRNAs. AAVS1 (adeno-associated virus integration site 

1) has long been recognized as a “safe harbor” site preferred for gene knockins81, 82. This 

region appears to be epigenetically open for efficient cleavage, yet cutting or modification at 
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this site results in no phenotypic changes83. To test whether sgRNAs targeting AAVS1 could 

serve as good negative controls, we first designed a genome-wide screen library containing 

134 AAVS1-targeting sgRNAs, 349 non-targeting sgRNAs, as well as 5 sgRNAs per gene in 

the human genome, and performed screening in a prostate cancer LNCaP-abl cell line. 

SgRNAs targeting AAVS1 or non-essential genes induced similar LFCs that are stronger 

than non-targeting sgRNAs, confirming the existence of cleavage toxicity in non-essential 

regions (Figure 5C). Also, by comparing normalization methods using different sets of 

sgRNAs (all, non-targeting, AAVS1-targeting, and non-essential-gene-targeting sgRNAs, 

respectively), we found normalization using the AAVS1- and non-essential-genes targeting 

sgRNAs result in almost identical distribution of beta scores (Figure 5D). Moreover, both 

‘total normalization’ and ‘non-targeting sgRNA normalization’ lead to biases, though to 

different degrees (Figure 5D).  

 

To evaluate the normalization methods in a focused screen, we used the small screening 

library described above to compare the normalizations using AAVS1-targeting and non-

targeting sgRNAs. Similar to genome-wide screens, AAVS1-targeting sgRNAs induced 

stronger negative selections compared with non-targeting sgRNAs (Supplementary Figure 

3A). Furthermore, using AAVS1-targeting sgRNAs as negative controls in our MAGeCK 

algorithm greatly increases the sensitivity of the screen, while keeping the same level of false 

positives (Supplementary Figure 3B). These results validated the applicability of including 

AAVS1-targeting sgRNAs in focused screen libraries. 
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Figure 5. Normalizing read counts using sgRNAs targeting non-essential genes or 

AAVS1. 

(A-B) The distribution of beta scores using non-targeting sgRNAs (A) and sgRNAs targeting 

non-essential genes (B) for normalization.  

(C) The log fold change distribution of 349 non-targeting sgRNAs, 467 non-essential genes-

targeting sgRNAs, 133 AAVS1-targeting sgRNAs, and 725 essential genes-targeting 

sgRNAs. P values were calculated using two-sided Student's t-test. 

(D) The distribution of beta score using all sgRNAs (black), non-essential genes-targeting 

sgRNAs (green), AAVS1-targeting sgRNAs (red), and non-targeting sgRNAs (blue) for read 

counts normalizations, respectively. 
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2.3: The MAGeCK-NEST algorithm 

We proposed MAGeCK-NEST that adopts a Bayesian framework to integrate the salient 

features from MAGeCK-VISPR and NEST. First, MAGeCK-NEST uses MAGeCK-VISPR to 

estimate the beta score for each gene in a condition. Then for each gene of interest !, 

MAGeCK-NEST estimates a prior on the beta score of !, based on the weighted average of 

beta scores on !′s PPI neighbors (Figure 6A). The predicted beta score of gene ! in 

condition !, !!"! , was derived by weighted average of the beta scores of interacting gene ! in 

condition !, !!", with weighting to represent interacting strength, !!, provided by the String 

v9.146. 

!!"! = !! ∗ !!"!
!!! + !"#$%&#% − (4) 

  !" !!"# → ∞, !ℎ!" !!"! → !! ∗ !!"!
!!!

 – (5)

  !" !!"# → 0, !ℎ!" !!"! → 0                       – (6)
 

However, such formulation of !!"!  should be modified to meet certain desired characteristics. 

First, when there are only a few interacting genes, the predicted beta scores becomes 

unreliable. Therefore, the !!"!  should approximate to weighted average of !!" when number 

of interacting genes increases, but gets closer to zero when number of interacting genes 

decreases (Equation (5-6)). This requirement could be fulfilled by adding a positive !"#$%&#% 

in Equation (4). Second, in order to use !!"!  as a prior in estimating !!", an ideal !!"!  should 

be an unbiased estimator of !!". To fulfill these two requirements, we used published screen 

data and determined that when the number of sgRNAs per gene is between 4 and 10, using 

3 as !"#!!"#! would allow the predicted beta scores become unbiased estimator of observed 

beta scores. 
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Indeed, the good correlation between observed beta score and predicted prior in published 

screen datasets31, with correlation coefficients as high as 0.5, indicating the consistent gene 

knock-out effects between interacting proteins (Figure 6B). Finally, MAGeCK-NEST uses the 

actual CRISPR selection observed on ! to iteratively optimize the posterior probability 

likelihood of observing read counts of sgRNAs targeting !.  

 

In order to incorporate !!"!  in Bayesian framework to estimate !!", we reformulated the goal 

function to a regularization form: 

 

!!" = !"#$!% !"#!!" !!"; !!" ! ,!! + Λ(!)!  – (7) 

Where  

Λ ! = −(!!" − !!"! )!
2!!!!

 

In Equation (7), the regularization term, Λ ! , draws !!"  closer to the prior mean, !!"! , and 

the amount of movement depends on the observed Fisher information provided by the 

sgRNAs. In Equation (8), we assumed the empirical prior of !!" follows a normal distribution 

centered at !!"! . 

!!" − !!"! ~! 0,!!! − (9) 

The width of the prior distribution, !!, was calculated using the naive estimators of !!". For 

robust estimator of !!, we adopted quantile matching: the standard deviation !! is chosen 

such that (1-p) empirical quantile of the absolute value of the observed beta scores matches 

the (1-p/2) theoretical quantile of normal distribution !(0,!!),  and set default p value as 

0.05: 
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!! =
! !!" (1 − !)
!!(1 − !

2)
− (10) 

To solve Equation (7), we re-formulated the equation as the function of !!"! . Assume: 

!!"! = !!" − !!"!  

Then Equation (2) can then be re-written as:  

!!" ! = !!! !!"!!"!  

                           = !!! !!" !!"! !!!"!!     

                          = !! ∗ !! ∗ ! !!"!!"!!  

                         = !! ∗ !!" !!            

Where !! is a constant: 

!! = ! !!"!!"!!  

Then Equation (7) can thus be re-written as: 

!!" = !!"! + !!"!  

Where  

!!"! = !"#$!% !"#!!" !!"; !! ∗ !!" !! ,!! + Λ !!
!

          

              = !"#$!% !"#!!"
!!"
!!

; !!" !! ,!!! + −(!!"! )!
2!!!!!

– (11) 

In order to make  

!!"
!!"
!!

; !!" !! ,!!! = !!" !!"; !! ∗ !!" !! ,!!  

The transformed over-dispersion factor, !!!, can be deducted as: 

!!! =
!"# !!"

!! − !!" !!

!!" !!
!  
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   =

!"# !!"
!!!

− !!" !
!!

!!" !
!!

!  

  = !! +
1
! −

!!
!             

Now the re-formulated Equation (11) can be solved using the iteratively reweighted ridge 

regression algorithm as described43, 77, 84.  

 

To calculate sgRNA-wise over-dispersion factor, !, we adopted similar methods as 

DESeq277. Specifically, the over-dispersion factor of sgRNA !, !!, was obtained via 

maximizing the Cox-Reid adjusted likelihood of the dispersion.  

!! = !"#$!%ℓ!" !;  !! ,!!                                                                                         

= !"#$!% !"# !!" !!"; !!" ,!
!

− 1
2 !"# det !!!" − (12) 

The second term provides Cox-Reid bias adjustment, where ! is the diagonal matrix with its 

values given by !!! = !!!/(1/!! + !!). The equation (12) could then be solved using stepwise 

descent along !"#$ as described77. 

!"#!!!!! = !"#!!! + !"#$!%&# ∗  !ℓ!" !;  !! ,!!
!"#$% − (13) 

The derived sgRNA-wise over-dispersion factors were then used to fit the trend function: 

!! ! = !!
! + !! 

The major advantage of the Bayesian framework is that the Bayesian prior is negligible when 

the KO effects of sgRNAs on a gene are consistent, but it could potentially play a critical role 

when the KO effects from sgRNAs are inconsistent85. Also, incorporating the Bayesian prior 

from PPI does not sacrifice specificity (Supplementary Figure 4). To evaluate MAGeCK-
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NEST, we down-sampled sgRNAs from a CRISPR screen dataset containing 10 sgRNAs per 

gene31, and compared the number of significant genes called with or without PPI. Using 

genes called with 10 sgRNAs as gold standard, we found integrating PPI improved predictive 

power even with fewer available sgRNAs, as indicated by the higher Area Under Curve score 

in Receiver Operating Characteristic (Figure 6C).  One such example is the gene RPSA, an 

mitochondrial gene that is identified as essential when 10 sgRNAs are used31 by 

MAGeCK/VISPR but would be missed with 4 sgRNAs, and this essential gene could be 

rescued by applying the Bayesian prior (Supplementary Figure 5). 

 

Quality control (QC) is critical to ensure that data from CRISPR screens are of high quality 

and could be evaluated at different levels42. Since interacting genes often show similar 

selection in a screen (Figure 6B), this information can be used as a QC metric in genome-

wide screens. To test whether the correlation between observed and predicted beta scores 

(derived from interacting genes using PPI) can reflect screen quality, we calculated the 

correlation coefficients of these gene pairs in different settings. These include 33 “effective” 

screen comparisons (i.e., treatment vs. corresponding control conditions, where these pairs 

should have positive correlation) and 29 “ineffective” screen comparisons (i.e., replicated 

conditions where no genes should be selected)79. In each setting, we also compared the 

results using the original STRING PPI and randomized PPI as a control. A higher distribution 

of correlation coefficients in PPI gene pairs is observed in “effective” screens with the original 

PPI, compared to other three groups (Figure 6D). This suggests that the knockout effects 

show agreements between interacting genes, which could be used to evaluate screen 

quality.  
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Figure 6. Integrating PPI to call significant genes from genome-wide CRISPR-Cas9 

screens. 

(A) Predicting gene knockout effect using the weighted average of knockout effects of 

interacting genes in PPI. 

(B) The correlation between the PPI-predicted and observed beta scores. 

(C) The receiver operating characteristic (ROC) curves for identifying significant genes with 

or without PPI using different numbers of sgRNAs. The “gold standard” genes are defined as 

those that are statistically significant when 10 sgRNAs are used.  

(D) The distribution of correlation coefficients between predicted and observed beta scores, 

from 33 “effective screens” (treatments vs. corresponding controls) and 29 “ineffective 

screens” (comparisons between replicates). The interacting genes in PPI (blue) as well as 

randomized PPI (red) are used for calculating the correlation. P values were calculated using 

two-sided Student's t-test. 
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2.4: SgRNAs outlier identification, removal and characterization 

Different sgRNAs targeting the same gene may result in varying phenotypes or selection 

levels in the screen due to different cleavage and repair efficiencies, local chromatin 

structure, protein domains, and potential off-target effects, etc86-88. Some sgRNAs with outlier 

phenotypes compared with other sgRNAs on the same gene, regardless of the causes, may 

yield false positive or false negative calls in the screens (e.g., the outlier presented in 

Supplementary Figure 5, Supplementary Figure 6). In published screens 23, 25, 31, 2-8% of 

sgRNAs have log fold change (LFC) over 2 standard deviations (STDEV) away from LFC of 

other sgRNAs targeting the same gene (Figure 7A), suggesting that their existence is not 

ignorable. Some outliers behave consistently in multiple screen conditions31 (Supplementary 

Figure 6), suggesting that the discrepant phenotypes could arise from intrinsic features of the 

sgRNA in addition to random variances in the experiments.   

 

In MAGeCK-NEST, we implemented an approach to identify such outliers, which tests 

whether one sgRNA has big effect on the beta score estimators of a gene or the likelihood of 

observing the sgRNA conditioned on the beta score of the gene is low. More specifically, we 

tried to identify these outliers using 3-step approach: candidate outlier prediction, candidate 

outlier validation, and outlier detection.  

 

Step-1: Candidate outlier prediction 

An sgRNA is likely to be an outlier if its log fold is different from other sgRNAs. Therefore, in 

the first step, candidate outlier prediction, we identified the potential sgRNAs outliers by 

considering their log fold changes (LFCs). For each paired conditions, we calculated the 

median and standard deviation of the LFCs, and defined the candidate outliers if their LFCs 

fall beyond median ± 1.5 standard deviation. To make the standard deviation estimator 
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robust against extremely high absolute LFCs, we used quantile matching with p set by 

default to 0.34.  

 

! = ! !"# (1 − !)
!!(1 − !

2)
 

Step-2: Candidate outlier validation 

Noticing that an sgRNA outlier may significantly influence the beta score estimation, a 

candidate outlier is validated if there is a significant change of !!" after removing the 

candidate outlier. Therefore, in the second step, the candidate outlier validation, we 

calculated the beta score with and without the candidate outlier respectively using Equation 

(5). Define: 

!! = !!"#! !"" !"#$%!  

!! = !!!!!!"# !"#$%"&' !"#$%&'( ! 

Then candidate outlier ! is validated if: 

log(!"#(!! )/!"#(!!)) > (5 − 0.2 ∗ !"#$%& !" !"#$%) 

With outlier removal, we could prevent the beta score estimation from distortion by strong 

outliers. 

 

Step-3: Outlier detection 

With previous 2 steps, we could estimate the beta scores robustly. However, some moderate 

outliers remain un-identified if sufficient sgRNAs prevent the beta score from distortion by 

single outlier. Therefore, with robustly estimators of beta scores, in the final step we re-

defined an sgRNA as an outlier if the likelihood of observing its count and corresponding 

beta score falls below certain threshold. The threshold was determined using two strategies. 

The first one is using the validated outliers as “flags”, in which the threshold is determined so 
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that 90% of validated outliers defined in step 2 can be removed. In the second strategy, we 

directly assigned an sgRNA as outlier if its likelihood is in the lower 5% of all sgRNAs, a 

percentage same as what we observed in recently published screens (Figure 7A). 

 

This outlier detection and removal approach can significantly reduce the number of sgRNAs 

with aberrant LFC on a gene (Figure 7A-B). In published screens on four leukemia cell 

lines31, nine thousand out of 182K sgRNAs on average were identified as outliers, among 

which 911 are outliers in all four screens (Figure 7C). Among these, some outliers have 

much stronger absolute LFCs compared with other sgRNAs targeting the same gene (Figure 

7B). When examining the sequence features of these strong outliers, we found that they 

have higher G-nucleotide counts (but lower C-nucleotide counts) that spread across the 

spacers (Figure 7D, Supplementary Figure 7). Using elastic net regression84 to identify 

sequence features distinguishing between outliers and non-outliers, we found that outliers 

contain more G-nucleotides in the 10-nucleotide non-seed region distal from the PAM motif 

(Figure 7E).  

 

To implement elastic net regression, suppose ! = {!!,!!,… ,!!} is the set of encoded 

sequence vectors and ! = {!!,!!,… ,!!}  is the set of outputs representing whether the 

sgRNAs are stronger outliers, where ! is the number of sgRNAs samples for training. Let ! 

be the length of the input vectors, the Elastic-Net regression computes the parameters 

! = [!!,!!,… ,!!]! that minimizes an object function E: 

 

! = | ! − !!! |! + !(! ! ! + 1 − ! ! !) 
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Where ! and ! are parameters estimated using cross validation, ! ! = |!!|!  and 

! ! = !!!! . We used glmnet in R package to implement the Elastic-Net regression84. To 

illustrate the coefficients derived from Elastic-Net regression89, we used Seq2Logo 2.0 server 

(http://www.cbs.dtu.dk/biotools/Seq2Logo/). Our findings suggest that better CRISPR sgRNA 

design should avoid extreme G content in the non-seed region.  
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Figure 7. Removing and characterizing sgRNAs outliers using MAGeCK-NEST. 

(A) The numbers of sgRNAs that are repeatedly identified as outliers in four screening cell 

lines in a public screening dataset31. 

(B) The G-nucleotide counts of sgRNAs in three groups: stronger outliers (red), non-outliers 

(blue), and all sgRNAs (green). 

(C) The sequence features of stronger outliers versus non-outliers derived by elastic-net 

regression. The “seed” and “non-seed” regions are defined as a 10-nucleotide window 

proximal to and distal from the PAM motif, respectively. The data of Figure 7B-E come from a 

public screening dataset31. 

(D) The ratio of sgRNAs that fall beyond 2 standard deviations from the mean before and 

after outlier removal in published screening data23, 25, 31. 

(E) Identifying and removing aberrantly stronger outliers (red dots). Each row of dots 

represents the log fold changes (LFCs) of sgRNAs targeting the same gene.   
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2.5: Normalizing cell replication cycles in CRISPR screens using essential genes 

In time-series CRISPR screens, the cells are harvested at different time points32, and the 

beta score distributions widen as cell division cycles (proportional to incubation time) 

increase (Figure 8A). Noting that the equation of cell growth is equivalent to equation of beta 

score: 

! = !! ∙ !!!! ↔ ! = !! ∙ !!! 

Where !! is growth constant of cells with gene, !!, knockout, and ! is replication cycle of 

screen. The equivalence of these two equations suggested that beta scores are linearly 

dependent on replication cycles (Figure 8B), and further implied that normalizing the screens 

by equalizing the replication cycles would make screens comparable. 

 

Considering that the pan-essential genes are negatively selected similarly in different 

conditions, the absolute median beta scores of the pan-essential genes (termed ‘scaling 

values’) can indicate the number of replication cycles the screens went through (see 

Method). Assuming the !! of essential gens remain constant in various screen conditions, 

then: 

!!"!#$%&' !"#"$ ∝ !! 

Therefore, to normalize screens with various replication cycles, we rescaled the beta scores 

using the absolute median beta scores of essential genes: 

!!"#$%&'()* 

= !!
!!

 

= !!
|!"#$%&(!!""!#$%&' !"#"$)|
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Dividing beta scores with scaling values did normalize the screens with different replication 

cycles (Figure 8C), and the normalized screens become comparable. 

 

In some CRISPR screens79, the scaling values are close to zero and may result in 

normalization errors (Figure 9A). The qualities of these screens are also sub-optimal, 

indicated by their low QC metrics, including enrichment scores of pan-essential genes using 

Gene Set Enrichment Analysis90 (Figure 9B) and correlation coefficients between interaction 

genes in PPI (Figure 9C). Therefore, we removed these sub-optimal screens and only 

normalized screens with high scaling values (>0.15).  
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Figure 8. Normalizing cell replication cycles using median beta scores of essential 

genes. 

(A) Beta score distributions of screens32 with various incubation time before normalization. 

T08, T12, T15, T18 represent 8, 12, 15, 18 days of incubations, respectively. 

(B) The regression lines between beta scores in screens32 with different replication cycles. 

(C) Beta score distributions of screens32 with various replication cycles after normalizing 

screens using scaling values (absolute median beta scores of the pan-essential genes). 
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Figure 9. Quality controls for using essential genes to normalize cell replication 

cycles. 

(A) Median beta scores of essential genes in public CRISPR screens79. 

(B) Enrichment scores of essential genes in public CRISPR screens79 using Gene Set 

Enrichment Analysis (GSEA). 

(C) Correlation coefficients between interacting genes using PPI in public CRISPR screens79. 
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2.6: Deriving condition-specific hits  

Many strongly negatively selected genes in CRISPR viability screens are pan-essential 

genes, whose KO will cause cell death in most conditions (cell lines, tissues, etc.). However, 

when searching for drug targets, for instance, the condition-specific hits are more desired. To 

investigate whether a given gene is specifically positively or negatively selected in one given 

condition (specific cell line, tissue, disease, etc.), a straightforward approach is to compare 

its ‘condition-specific beta score’ with its ‘reference beta scores’ in a variety of conditions. To 

ensure the ‘reference beta scores’ are representative for diverse conditions, we combined 

multiple normalized screens from various cell lineages78 (Figure 10A). Normalization using 

scaling values equalized the beta score distributions (Figure 10B) and significantly 

decreased the average relative standard deviation (defined as standard deviation divided by 

mean) (Supplementary Figure 8). Genes with negative ‘reference beta scores’ were enriched 

with known essential pathways (Supplementary Figure 9A-B), and tissue-specific pathways 

were over-represented in genes with high standard deviations of ‘reference beta scores’ 

(Supplementary Figure 9C-D). 

 

With ‘reference beta scores’, condition-specific hits could be identified by its highly ranked 

‘relative beta score’, defined as subtracting the ‘original beta score’ with median ‘reference 

beta scores’. In CRISPR screens done in KBM7 cells31, a chronic myelogenous leukemia cell 

line driven by BCR-ABL oncogenic fusion, ‘relative beta scores’ ranked BCR and ABL1 

higher than ‘original beta scores’ did (Figure 10C-D). In contrast, pan-essential genes, 

including POLR2J3 and PTPMT1, were ranked lower using ‘relative beta scores’, suggesting 

that ‘relative beta scores’ better rank condition-specific hits. The superiority of ‘relative beta 

scores’ was further supported by the higher ranked ESR1 in two estrogen-dependent breast 

cancer cell lines, T47D and MCF7 cells (Figure 10E-F). 
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Figure 10. Establishing beta score references and deriving condition-specific hits.  

(A) The distribution of ‘reference beta scores’ inferred from combined public normalized 

CRISPR screens79. 
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Figure 10 (Continued). 

(B) The curves of beta score distributions from public screens79 before (red) and after (blue) 

normalizations using scaling values. 

(C-D) Ranked CRISPR screen hits using relative beta scores (original beta score minus 

median reference beta scores) (C) or original beta scores (D) in KBM7 cell line. The numbers 

in the bracket after the gene name are the ranks of gene using relative beta score or original 

beta score. 

(E-F) Ranked CRISPR screen hits using relative beta scores (original beta score minus 

median reference beta scores) (E) or original beta scores (F) in 2 breast cancer cell lines, 

including MCF7 and T47D replicate. The numbers in the bracket after the gene name are the 

ranks of gene using relative beta score or original beta score. 
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2.7: A new genome-wide library Improved screen performance  

Using the rules we uncovered in this study and our previous work34, we designed two sub-

libraries that target 18,493 human coding genes (named “H1” and “H2”). Each sub-library 

includes sgRNAs with 19-nt-long spacers, and contains 134 AAVS1-targeting sgRNAs, 349 

non-targeting sgRNAs, as well as 5 sgRNAs targeting each gene in the human genome. 

After removing sgRNAs that are enriched in G-nucleotide (>40%) and have perfect matches 

to other coding regions, we prioritized the remaining sgRNAs based on their predicted 

cleavage efficiencies34 and the number of perfect matches in the whole genome (see 

Methods). More specifically, we designed the new libraries using the following steps: 

 

Filter stage: 

1. Select all 19bp sequences upstream of the “NGG” PAM motif, in the coding regions of 

the target gene; 

2. Remove the sequences that: 

i) hit SNP / mutant loci; 

ii) with > 40% of G; 

iii) with off-target perfect match in the genome; 

3. Rank the remaining sequences in descending order of predicted efficiency score.  

4. If the number of remaining sequences is smaller than 10, go to Rescue stage, 

otherwise select the top 10 sequences with highest predicted efficiency scores to be 

sgRNA targets. 

 

Rescue stage: 

1. Select all remaining sequences in the Filter stage to be sgRNA targets; 
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2. Rescue the sequences with off-target perfect match in non-coding regions but not in 

coding regions; 

3. Rank the sequences rescued in 2) in ascending order of the number of off-target 

perfect matches. If two or more sequences has the same number of off-target 

matches, rank them in descending order of efficiency score; 

4. Add the rescued sequences in 2) to the sgRNA target list in order of the ranks in 3) 

until the list has a size of 10, or all the rescued sequences are added. If the target list 

has a size of 10, exit the Rescue stage. 

5. Rescue the sequences with off-target perfect match in coding regions; 

6. Rank the sequences rescued in 5) in ascending order of the number of off-target 

matches in the genome. If two or more sequences has the same number of off-target 

matches, rank them in descending order of efficiency score; 

7. Add the rescued sequences in 6) to the sgRNA target list in order of the ranks in 6) 

until the list has a size of 10, or all the rescued sequences are added.  

  

Finally, we separated all sgRNAs evenly to H1 and H2 sub-libraries as following table: 

 Gene-targeting 
sgRNAs 

Non-targeting 
sgRNAs 

AAVS1-
targeting 
sgRNAs 

Total sgRNRs 

H1 92,287 398 133 92,817 

H2 92,285 399 134 92,817 

 

The oligos were synthesized at CustomArray©. 
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We conducted screens in LNCaP-abl and T47D cell lines using the H1/H2 library and 

another popular genome-wide library, GeCKO223. We found that the pan-essential genes80 

are more negatively selected in either H1 or H2 libraries (5 sgRNAs per gene in each library) 

in both cell lines compared to GeCKO2 (6 sgRNAs per gene) (Figure 11), indicating an 

improved library performance using our new design rules. 
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Figure 11. A new genome-wide library Improved screen performance. 

The distribution of normalized pan-essential gene rankings in genome-wide CRISPR-Cas9 

screens using 2 custom-designed libraries (H1 and H2) and Gecko2 library in LNCaP-abl 

and T47D cell lines. 
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2.8: Methods 

Cell lines and cell culture for CRISPR sceeens 

LNCaP-abl (abl) cell line was provided by Zoran Culig (Innsbruck Medical University, 

Austria). The abl cells were cultured in the RPMI 1640 phenol red-free medium 

supplemented with 10% charcoal/dextran-treated fetal bovine serum (FBS), 2mM glutamine, 

100 ug/ml penicillin and 100units/ml streptomycin for the experiments. The T47D cells 

obtained from the American Type Culture Collection were maintained in RPMI 1640 phenol 

red medium plus 10% FBS.  The 293FT cells bought from ThermoFisher were cultured in 

DMEM media supplemented with 10% fetal bovine serum, glutamine and penicillin-

streptomycin. 

 

Plasmid construction and lentivirus production  

The sgRNA library synthesized at CustomArray© were amplified by PCR as previously 

described (PMC4089965). The PCR products were subsequently ligated into lentiCRISPR 

V2 plasmid, followed by transformation to competent cells for amplification according to a 

online protocol (GeCKO library Amplification Protocol from Addgene). After library plasmid 

had been amplified, we isolated the plasmid and construct a sequencing library for Miseq to 

ensure library diversity. To make lentivirus, T-225 flasks of 293FT cells were cultured at 

40%~50% confluence the day before transfection. Transfection was performed using X-

tremeGENE HP DNA Transfection Reagent (Roche). For each flask, 20 ug of lentivectors, 5 

ug of pMD2.G, and 15 ug of psPAX2 (Addgene) were added into 3 ml OptiMEM (Life 

Technologies). 100 uL of X-tremeGENE HP DNA Transfection Reagent was diluted in 3 mL 

OptiMEM and, after 10 min, it was added to the plasmid mixture. The complete mixture was 

incubated for 20 min before being added to cells. After 6 h, the media was changed to 30 mL 

DMEM + 10% FBS. After 60 h, the media was removed and centrifuged at 3,000 rpm at 4 °C 
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for 10 min to pellet cell debris. The supernatant was filtered through a 0.45 um low protein 

binding membrane. The virus was ultracentrifuged at 24,000 rpm for 2 h at 4 °C and then 

resuspended overnight at 4°C in DMEM + 10% FBS. Aliquots were stored at –80°C. 

 

CRISPR screens 

Cells of interest were infected at a low MOI (0.3�0.5) to ensure that most cells receive only 

1 viral construct with high probability. To find optimal virus volumes for achieving an MOI of 

0.3–0.5, each new cell type and new virus lots were tested by infecting 3x106 cells with 

several different volumes of virus. Briefly, 3x106 cells per well were plated into a 12 well plate 

in the appropriate standard media for the cell type (see below) supplemented with 8ug/ml 

polybrene. For T47D cells, standard media is RPMI 1640 supplemented with 10 % FBS. 

Each well received a different titrated virus amount (usually between 5 and 50 ul) along with 

a no-transduction control. The 12-well plate was centrifuged at 2,000 rpm for 2 h at 37°C. 

After the spin, media was aspirated and fresh media (without polybrene) is added. Cells were 

incubated overnight and then enzymatically detached using trypsin. Cells ere counted and 

each well was split into duplicate wells. One replicate received 4ug/mL puromycin for Abl 

cells or 3.5 ug/mL puromycin for T47D cells. After 3 days (or as soon as no surviving cells 

remained in the no-transduction control under puromycin selection), cells were counted to 

calculate a percent transduction. Percent transduction was calculated as cell count from the 

replicate with puromycin divided by cell count from the replicate without puromycin multiplied 

by 100. The virus volume yielding a MOI closest to 0.4 was chosen for large-scale screening.  

 

For the screens using ~600 gene library, spin-infection of 2x107 cells were performed by one 

12-well plates. And large-scale spin-infection of 2x108 cells was carried out using four of 12-

well plates with 4x106 cells per well for a genome-wide screen. Wells are pooled together into 
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larger flasks on the day after spinfection. After three days of puromycin selection, the 

surviving cells (T47D and abl) were divided into two groups: one group for 0 day control, and 

the other one was cultured in RPMI or DMEM medium plus 10% FBS for four weeks before 

genomic DNA extraction and analysis. Two rounds of PCR were performed after gDNA had 

been extracted, and 300ug DNA per sample was used for library construction. Each library 

was sequenced at 3~30 million reads to achieve ~300X average coverage over the two 

different CRISPR libraries. The 0 day sample library of each screen could serve as controls 

to identify positively or negatively selected genes or pathways. 

 

PCR primers for library construction 

The first round of PCR: 

AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG lentiCRISPR_F1 

TCTACTATTCTTTCCCCTGCACTGTACCTGTGGGCGATGTGCGCTCT
G 

lentiCRISPR_R
1 

 

The second round of PCR: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC
TCTTCCGATCTTCTTGTGGAAAGGACGAAACACCG Cri_library_F 

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCTXXXXXXTCTACTATTCTTTCCCCTGCACTGTACC Cri_library_R 

(XXXXXX denotes the sample barcode) 

Sequencing primer (read1): GCTCTTCCGATCTTCTTGTGGAAAGGACGAAACACCG 

Indexing primer: CATCGCCCACAGGTACAGTGCAGGGGAAAGAATAGTAGA 

 

Code availability 

The MAGeCK-NEST workflow is available open source at 

https://bitbucket.org/liulab/mageck_nest under the MIT license.  
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Chapter 3:  

Pharmacological inhibition of EZH2 in castration resistant prostate cancer 
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3.1: EZH2 inhibitors block the proliferation of AR-positive prostate cancer cells 

The selective small-molecule inhibitors targeting EZH2 block its methyltransferase activity by 

competing for the enzymatic cleft with the methyl donor S-adenosylmethionine (SAM). 

Although the functional SET domain is highly conserved across multiple methyltransferases, 

these prototypes showed hundred-to-thousand fold selectivity in suppressing EZH2 activity. 

Our previous work showed that the enzymatic activity of EZH2 is required for the proliferation 

of CRPC cells, and thus we tested two EZH2 selective inhibitors, GSK126 68 and EPZ-6438 

69, in a panel of human prostate cell lines, including benign prostate epithelial cells (2), AR-

null prostate cancer cells (2), and AR-signaling competent prostate cancer cells (8). To carry 

on the cell proliferation assay, we seeded normal prostate epithelial cells and prostate cancer 

cells at optimal density in 384-well plates using an automated dispensing system (BioTek 

EL406). EZH2 inhibitors (GSK126 or EPZ-6438) were subjected to a 10-point series of 

threefold dilution (from 0.632 nM to 20 uM) in DMSO and then added into cells by robotic pin 

transfer in a JANUS workstation. Each drug at a certain dose in every specific cell line had 

four replicates. After 7 days of incubation, cellular ATP levels were measured using ATPlite 

Luminescence Assay (PerkinElmer). Data were normalized to the number of cells under 

DMSO conditions, and IC50 were determined with GraphPad Prism software. Interestingly, 

only cancer cells with intact AR signaling are sensitive to both inhibitors (Figure 12A). EZH2-

targeting compounds generally showed higher potency in hormone-refractory prostate 

cancer cells, suggesting that these inhibitors represent a new therapeutic approach for AR-

positive, hormone-refractory prostate tumors. We further validated the biological effects of 

EZH2 inhibitors by long-term treatment of EZH2 inhibitor-sensitive abl cells and EZH2 

inhibitor-insensitive DU145 cells with the compounds (Figure 12B).  
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Again, AR-positive CRPC cell line abl showed a drastic retardation in cell growth from day 4 

and doses as low as 500 nM, while only minimal inhibitory effects in DU145 cells were 

detectable after 12-14 days of treatment. To explain discrepant effects of EZH2 inhibitors in 

abl and DU145 cells, we knocked down the methyltransferase in these two prostate cancer 

cell lines using EZH2-specific siRNAs. EZH2 silencing led to dramatic blockage of abl cell 

proliferation, while causing very weak growth delay in DU145 (Supplementary Figure 10). It 

has been recently showed that AR-negative prostate cancer cells, such as PC3 and DU145, 

are not sensitive to pharmacological or genetically inhibition of EZH291. Consistent with these 

studies, our result further implied that functional AR signaling is critical for the inhibitory 

effects of EZH2-targeting compounds in prostate cancer cells.  

 

To further dissect the biological result of EZH2 inhibitors, we performed cell cycle analysis. 

More specifically, we pre-treated prostate cancer cells with nocodazole (5 ug/mL) for 24 hrs, 

and then released the cells by replenishing them with fresh medium. Cells were then 

incubated with GSK126 or EPZ-6438 at final concentrations of 5 uM for days as indicated. 

Cell cycle analyses were performed using previously published protocols. Generally, cells 

were collected, washed with ice-cold PBS, and fixed in 70% ethanol for at least 1 hr on ice. 

Cells were then pelleted, washed with PBS, and incubated in propidium iodide solution 

(Sigma, P4864) with RNase A (Sigma, R6513) for 30 min at 37°C.  Flow cytometry analyses 

were done using an LSRII flow cytometer (Becton Dickinson). We found EZH2 inhibitor 

induced a cytostatic response in abl cells due to G0-G1 arrest, which became detectable as 

early as within 3 days of the drug treatment (Figure 12C).  This observation was further 

confirmed in several other susceptible CRPC cell lines, but not in the insensitive DU145 cells 

(Supplementary Figure 11). Notably, we found dramatic decreases in di- and tri-methylation 

levels of H3K27, in a dose- (Figure 12D) and time-dependent manner (Figure 12E). 
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Apparently, changes in the repressive epigenetic marks do not explain the phenotypic 

discrepancies of cellular response to EZH2 inhibitors, as they are also pronounced in the AR-

null RWPE-1 and DU145 cells. 
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Figure 12. Inhibitors of EZH2 methyltransferase activity show potent inhibitory effects 

in AR signaling-positive prostate cancer cells.  

(A) IC50 for two EZH2 inhibitors (GSK126, red bars; EPZ-6438, blue bars) in a panel of 

prostate normal and cancer cell lines after 6 days of treatment. Cells were grouped based on 

the basic characteristics. ADPC, androgen-dependent prostate cancer; CRPC, castration-

resistant prostate cancer.  

(B) Effects of EZH2 inhibitors (GSK126, left two panels; EPZ-6438, right two panels) on cell 

growth over time in abl (top two panels) and DU145 (bottom two panels) with indicated 

concentrations of the compounds.  
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Figure 12 (Continued).  

(C) Cell cycle analysis of abl cells with the treatment of vehicle (DMSO), 5 uM GSK126 

(GSK) or 5 uM EPZ-6438 (EPZ) over indicated days.  

(D, E) Evaluation of the levels of indicated proteins in prostate cell lines with the treatment of 

vehicle (DMSO), GSK126 (GSK) or EPZ-6438 (EPZ) at specified doses of the compounds 

(D) or over time (E). Numbers in (D), final concentrations (uM) of EZH2 inhibitors; numbers in 

(E), days of incubation. 
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3.2: EZH2 inhibition induces specific gene signatures in CRPC cells 

In DLBCL cells, similar reduction in H3K27 methylation levels were also detected in both 

sensitive and insensitive cells when treated with GSK126 68. However, the inhibitor induced a 

robust transcriptional activation in sensitive cell lines while barely any gene expression 

changes were detected in insensitive cells. To test whether prostate cancer cells present 

similar transcriptional response, we examined the gene expression profiles in both cell lines 

upon the treatment of GSK126 or EPZ-6438. To our surprise, a large number of genes were 

significantly down-regulated instead of being de-repressed in the treatment group of abl cells. 

Even more strikingly, we found significant transcriptional up-regulation in DU145 cells even 

though cell proliferation was not affected by EZH2 inhibition (Figure 13A). Although 

structurally dissimilar, GSK126 and EPZ-6438 induced highly similar gene expression 

patterns in either cell line, suggesting that the transcriptional profiles were unlikely to be off-

targets. To better understand the biological implications of these transcriptional changes, we 

performed functional annotations of differential expressed genes in abl or DU145 cells. 

Genes that were downregulated by both EZH2 inhibitors in abl cells were significantly 

enriched in the gene signatures involved in cell cycle progression, which was consistent with 

the cytostatic effects of the inhibitors and also indicated essential roles of these genes in cell 

proliferation (Figure 13B). There were no significant functional indications for the upregulated 

genes in abl or the differential genes in DU145. To verify that EZH2 inhibitor-mediated 

transcriptional downregulation in abl cells is caused by functional disruption of EZH2, we 

compared the differential genes induced by either EZH2 silencing or EZH2 inhibitors in abl 

cells using our previous data 71. High degrees of similarity in transcriptional changes between 

these two different conditions confirmed that these downregulated genes are regulated by 

EZH2 and that their expression changes are dependent on EZH2 enzymatic activity (Figure 

13C). We also confirmed in DU145 that those EZH2 inhibitor-upregulated genes were 
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reactivated when EZH2 was knocked down (Supplementary Figure 12). All pieces of 

evidence further support that selective EZH2 inhibitors are reliable and powerful tools to 

study the biological roles of EZH2 catalytic activity, and therefore differential genes induced 

by the compounds are indeed authentic targets of EZH2 rather than off-target effects. We 

selected several targets in abl cells for validation, and confirmed that their expression was 

suppressed by GSK126 and EPZ-6438 in a dose- and time-dependent manner 

(Supplementary Figure 13). We also examined the expression of these selected genes in 

other sensitive AR-positive CRPC cell lines. We consistently saw decreased expression 

levels of the downregulated genes in the treatment groups, but those de-repressed genes 

were not always upregulated by both compounds in these other CRPC cells (Figure 13D). 

We speculated that EZH2-repressed transcriptional programs may be highly context-specific, 

and that EZH2-activated genes are crucial for mediating the effects of EZH2 inhibition in 

CRPC. 
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Figure 13. EZH2 inhibitors regulate different gene sets in the sensitive and insensitive 

prostate cancer cells. 

(A) Heat map of differential gene expression patterns in abl and DU145 cells being treated 

with vehicle (DMSO), 5 uM GSK126 (GSK) or 5 uM EPZ-6438 (EPZ) for 60-72 hrs.  

(B) Top overrepresented functional annotations of genes that were significantly 

downregulated upon the treatment of EZH2 inhibitors in abl cells from Gene Ontology (GO) 

analysis. Blue bars, percentage of genes in each specific functional category; red line, p-

values for the particular GO term.  
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Figure 13 (Continued). 

(C) Heat map of differential genes mediated by EZH2 inhibitors comparing to nontreatment 

(GSK vs. DMSO and EPZ vs. DMSO) or EZH2 knockdown comparing to control siRNA 

(siEZH2 vs. siCtrl) in abl cells.  

(D) Quantitative real-time RT-qPCR showing the changes in mRNA levels of selected gene 

in CRPC cells being treated with vehicle (DMSO), 5 uM GSK126 (GSK) or 5 uM EPZ-6438 

(EPZ) for 60-72 hrs. Top panels, EZH2-activated genes in abl cells; bottom panels, EZH2-

repressed genes in abl cells. 
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3.3: EZH2 inhibitors decrease H3K27me3 globally in prostate cancer cells 

Before we are assured of the importance of EZH2 transactivation function in the action of 

EZH2 inhibitors, we examined how H3K27 trimethylation (H3K27me3) contributed to the 

inhibitory effects of the drugs. To accurately evaluate the changes in H3K27me3 levels, we 

adopted ChIP-Rx method, which uses a “SPIKE-IN” strategy and thus allows quantification of 

genome-wide histone modification relative to a reference epigenome with defined quantities 

92. Specifically, we spiked in the same amount of Drosophila chromatin in all samples and 

pulled down with the same amount of fly-specific H2A.Z antibody, while performing 

H3K27me3 ChIP with human chromatin. In contrast to the canonical normalization methods 

such as using the total sequencing reads (Supplementary Figure 14), normalization to the 

reference epigenome showed much more pronounced reduction in H3K27me3 signals when 

treating cells with EZH2 inhibitors. Compared to the control groups, we found that GSK126 

and EPZ-6438 attenuated the global signals of H3K27me3 in both abl and DU145 cells, with 

fold change as 0.12 and 0.07, respectively (Figure 14A, B). This difference may be caused 

by various kinetics of EZH2 inhibitor deteriorating H3K27me3 in distinct cell lines. 

Approximately 2 days after treatment, H3K27me3 remained similar in abl cell, but already 

decreased in DI145 (Figure 14C). To characterize the functional significance of H3K27me3 

changes, we examined their association with EZH2 inhibitor-induced differentially expressed 

genes. In both abl and DU145 cells, the basal level of H3K27me3 was higher at the promoter 

regions of EZH2 inhibitor-upregulated genes, but there were no differences regarding the 

extent of decline in the H3K27me3 among EZH2-repressed, EZH2-activated or even 

undifferential genes (Figure 14D). This suggested that although the steady status of 

H3K27me3 generally maintains the repressed transcription of downstream targets, 

fluctuation in its intensity on chromatin does not dictate the transcriptional changes of the 

regulated genes. Taken together, it implies that H3K27 methylation, readout of the polycomb 
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function of EZH2, is not the determining factor of molecular signatures or cellular response 

induced by EZH2 inhibitors in prostate cancer. We then tested EZH2 chromatin binding at 

selected solo or ensemble peaks, representing EZH2 transactivation and epigenetic 

repression functions, respectively 71. Recruitment of EZH2 to both types of regulatory regions 

was significantly reduced (Figure 14E). Dramatic reduction at the promoter regions of 

repressed targets was also detected for binding of EZH2 in DU145 or of other PRC2 complex 

subunit, such as SUZ12, in both prostate cancer cells (Supplementary Figure 15). 
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Figure 14. Genome-wide reduction in H3K27 trimethylation levels does not dictate the 

action of EZH2 inhibitors in prostate cancer cells.  

(A) Scatter plots of H3K27me3 peak signals, after being normalized to the Drosophila 

reference epigenome, in abl and DU145 cells under control condition (x-axis) or with the 

treatment of EZH2 inhibitors (y-axis).  

(B) Comparison of EZH2 inhibitor-induced changes in H3K27me3 levels between abl and 

DU145 cells after SPIKE-IN normalization. EPZ, EPZ-6438; GSK, GSK126; F.C., fold 

change.  

(C) Direct ChIP-qPCR of H3K27me3 at selected chromatin regions in abl and DU145 cells 

being treated with control (DMSO) or EZH2 inhibitors (GSK126 and EPZ-6438) for indicated 

number of days. KIAA0066 and PPIA, negative controls; inserts, H3K27me3 protein levels by 

immunoblotting in the particular ChIP samples. GSK, GSK126; EPZ, EPZ-6438.  

(D) Correlation of the changes in normalized H3K27me3 signals induced by EZH2 inhibitors 

with genes being upregulated (EZH2-repressed), downregulated (EZH2-activated) or with no 

differences (non-differential) upon the treatment of the compounds. F.C., fold change.  
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Figure 14 (Continued).  

(E) Direct ChIP-qPCR of EZH2 at selected ensemble or solo peaks in abl cells with the 

treatment of EZH2 inhibitors.  
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3.4: AR signaling is disrupted by EZH2 inhibitor treatment 

The results above suggested a non-canonical function of EZH2 in mediating the biological 

effects of EZH2 inhibitors in prostate cancer cells. Considering the facts that only AR-

signaling competent prostate cancer cells were sensitive to EZH2 inhibitors, and that EZH2 

and AR collaboratively drive CRPC-specific gene signature71, we hypothesized that EZH2 

inhibitors abolish AR signaling in the sensitive CRPC cells. GSEA analysis showed a 

significant enrichment of AR genes in GSK126- and EPZ-6438 regulating genes 93 (Figure 

15A). For genes whose promoters are bound by AR and expressions are significantly 

correlated with AR expression in metastatic prostate tumors, they are enriched in genes that 

are regulated by EZH2 inhibitor. This result suggested that AR-dependent transcriptional 

signaling was indeed compromised upon the treatment of EZH2 inhibitors. The hypothesis 

was further strengthened in gene expression data following the AR knockdown in human 

CRPC cells (Supplementary Figure 16)94. Moreover, ChIP signals of AR and EZH2 solo 

peaks, either proximal to or co-localized with each other, were highly enriched within ±20 kb 

of transcription start sites (TSSs) of EZH2 inhibitor-downregulated genes, but not for genes 

de-repressed by the compounds (Figure 15B). Besides, significantly higher percentage of 

EZH2 inhibitor-downregulated genes contained at least one AR and EZH2 solo co-binding 

event in the vicinity of their TSSs, compared with the upregulated genes (Figure 15C). This 

suggested a predominant role of the EZH2 and AR in jointly activating genes and mediating 

the actions of EZH2 inhibitors in CRPC cells.  

 

We next investigated whether EZH2 inhibitors affect global AR chromatin binding. As 

expected, AR binding was markedly attenuated globally by GSK126 or EPZ-6438 in abl cells 

(Figure 15D). Although the total protein level of AR remained unchanged, the diminished 

recruitment of AR to its target loci became discernible as early as 2 days after EZH2 
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inhibition (Supplementary Figure 17). Interestingly, the declines in AR binding intensity are 

more remarkable when they are co-localized with EZH2 solo peaks compared with AR 

binding regions without EZH2 signals (Figure 15E). Comparing the changes of AR peak 

intensity with gene expression, there was a more pronounced reduction in AR binding signal 

in promoters of EZH2-activated genes, but to a less extent around EZH2-repressed or 

undifferential genes (Figure 15F). Our data demonstrated the compounds disrupted the AR 

recruitment to its targets genes, and further block the AR-mediated transcriptional signaling.  
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Figure 15. AR signaling on transactivation is disrupted by EZH2 inhibitors in the 

sensitive prostate cancer cells.  

(A) GSEA analysis of AR target gene signatures retrieved from human prostate tumors in the 

transcriptional profiles mediated by EZH2 inhibitors in abl cells. Left panel, genes positively 

correlated with AR level in the metastatic prostate tumors and containing AR binding sites 

near the transcription start sites (TSSs); middle panel, genes that have AR binding near their 

TSSs but are negatively correlated with AR level in tumors; right panel, genes showing no 

correlation even though there were AR binding events. Green (red) bars, each individual 

gene in the specified AR-regulated gene signature, either downregulated (green) or 

upregulated (red) upon EZH2 inhibitor treatment in abl cells. 

(B) Radar plot showing the fold enrichment of the percentages of EZH2 inhibitor-regulated 

genes with binding peaks in the specified category within ±20 kb of their TSSs over the 

percentage of all genes with the same type of binding sites within the same window size from 

their TSSs. Down, genes downregulated upon EZH2 inhibitor treatment; up, genes 

upregulated by both compounds.  
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Figure 15 (Continued).  

(C) Fractions of EZH2 inhibitor-regulated genes (blue bars, genes downregulated by EZH2 

inhibitors; red bars, genes de-repressed by the compounds) containing binding enrichment of 

the following types of peaks within ±20 kb around their TSSs: EZH2 solo peaks only (EZH2 

solo unique), EZH2 ensemble peaks (EZH2 ensemble), AR peaks only (AR with no EZH2 

solo), EZH2 solo and AR peaks co-existing but not overlapping (EZH2 solo + AR), and co-

localized sites of EZH2 solo and AR peaks (EZH2 solo & AR cobinding).  

(D) Heat map of AR chromatin binding intensities in abl cells being treated with vehicle 

(DMSO), 5 uM GSK126 (GSK) or 5 uM EPZ-6438 (EPZ) for 48-60 hrs.  

(E) Comparison of EZH2 inhibitor-induced changes in AR chromatin recruitment in abl cells 

between AR peaks co-localized with EZH2 solo binding and AR peaks with no EZH2 binding 

signals. F.C., fold change.  

(F) Bar plots of EZH2 inhibitor-induced decline in AR binding to the regulatory elements of 

the following groups of genes: targets being downregulated upon EZH2 inhibitor treatment 

(EZH2-activated), targets being upregulated by two compounds (EZH2-repressed), genes 

showing no differential expression (un-differential). F.C., fold change.    
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3.5: Interplay between AR and EZH2 is critical for effects of EZH2 inhibitors  

Considering the direct interaction between EZH2 and AR 71, we further investigated whether 

EZH2 inhibitors could disrupt their interaction (Figure 16A). We found both GSK126 or EPZ-

6438 can disrupt the physical interaction between EZH2 and AR in abl cells in a 

concentration-dependent manner, while the binding of EZH2 with other PRC2 components, 

such as SUZ12, remained intact. Considering that these drugs target methyltransferase 

activity of EZH2 and block AR-mediated transcriptional program, it is compelling to test 

whether EZH2 inhibitors influence the methylation status of AR (Figure 16B). We found both 

EZH2 inhibitors decrease the AR-associated methylation. Since AR-competent CRPC cells 

were especially susceptible to EZH2 inhibitors, we tested whether EZH2-targeting 

compounds and AR antagonist can act synergistically (Figure 16C). Compared to mono-

therapy, co-treatment with both GSK126 and MDV3100 (Enzalutamide), the second-

generation anti-androgen, greater inhibited the androgen-independent growth of abl cells. 

The combined effects in another hormone-refractory prostate cancer cells CWR22Rv1 was 

confirmed by examining the cellular anchorage-independent growth in vitro (Figure 16D). 

Both GSK126 and EPZ-6438 resensitized abl cells to lower doses of Enzalutamide (Figure 

16E), suggesting that EZH2 inhibition may help overcome therapeutic resistance in CRPC.  
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Figure 16.  EZH2 inhibitors abolish the interaction between EZH2 and AR signaling, 

and show synergistic growth-inhibiting effects when combined with AR antagonist in 

CRPC cells.  
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Figure 16 (Continued).  

(A) and (B) Co-immunoprecipitation of EZH2 (A) or AR (B) in the nuclear extracts (NEs) from 

abl cells treated with vehicle (DMSO) or specified concentrations of EZH2 inhibitors (GSK, 

GSK126; EPZ, EPZ-6438) for 60-72 hrs.  

(C) Androgen-independent growth of abl cells in the presence of vehicle (DMSO), 10 uM 

MDV3100 (MDV) alone, 500 nM GSK126 (GSK) alone, or the combination of both drugs 

(MDV+GSK) at above concentrations over time as indicated.  

(D) The numbers (top panel) and the sizes (bottom panels) of the colonies formed by 

CWR22Rv1 cells in soft agar under hormone-depleted conditions with the treatment of 

vehicle (-, -; DMSO), 1 uM GSK126 alone (+, -; GSK), 1 uM MDV3100 alone (-, +; MDV) or 

both drugs (+, +; MDV+GSK).  

(E) Responses of abl cells to increasing concentrations of MDV3100 when being co-

incubated with vehicle (DMSO), 5 uM GSK126 (GSK), or 5 uM EPZ-6438 (EPZ) for 6 days.   
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3.6: CRISPR screens with and without inhibitor treatment reveal its functional pathway  

To dissect the PRC2-indepdent mechanism of EZH2 in CRPC cells, we conducted CRISPR-

Cas9 knockout screens in abl cells on two conditions: without GSK126 (termed ‘control’) and 

with GSK126 (termed ‘treatment’). We normalized the screens as previously described, and 

found that most of the genes have similar knockout effects in control and treatment 

conditions (Figure 17A). We further defined ‘relative beta scores’ (∆!) by subtracting 

‘treatment’ beta scores with ‘control’ beta scores (Figure 17A).  

∆! = !!"#!!!"#$ − !!"!!"#$ 

To interpret ‘relative beta scores’, we modeled these CRISPR screens as knocking out two 

groups of genes: EZH2-pathway genes and EZH2-unrelated genes (Figure 17B). Because 

abl is sensitive to EZH2 inhibitor, in ‘control’ condition, EZH2-pathways gene KO slows cell 

growth more than the majority of EZH2-unrelated genes KO do. In the ‘treatment’ condition, 

EZH2-unrelated genes KO slow cell growth, while EZH2-pathways genes KO no not change 

growth rates because of the functional redundancy of the KOs and EZH2 inhibitor. Since 

normalization step in screen analysis re-aligns the cell growth rates, the ‘relative beta scores’ 

of EZH2-pathway genes would be positive. The positive relative beta scores of two known 

EZH2 pathway members, EZH2 and AR71, further supported our model (Supplementary 

Figure 18)  
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Figure 17. Modeling CRISPR screens with and without EZH2 inhibitor treatment. 

(A) Deriving relative beta scores by subtracting beta-scores with-drug with beta-scores no-drug in 

CRISPR screens conducted under two conditions: ‘with drug’ and ‘no drug’. 

(B) Modeling the growth rates of cells with EZH2-pathway genes KO (red triangle) and 

EZH2-unrelated genes KO (blue triangle) in ‘no-drug’, ‘with EZH2 inhibitor (before 

normalization)’, and ‘with EZH2 inhibitor (after normalization)’ conditions. 
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3.7: EZH2 actively regulate base excision pathway in CRPC cells  

Using gene set enrichment analysis (GSEA)90 on genes with positive ‘relative beta scores’ in 

EZH2 inhibitor screens, we found the ‘base excision repair’ pathway is the most enriched one 

(Figure 18A). Indeed, most of the genes in the ‘base excision repair’ pathway have less 

negative beta scores in ‘treatment’ condition than ‘control’ condition, indicating the pathway 

becomes less essential in EZH2 inhibitor-treated abl cells (Figure 18B). According to the 

model (Figure 17B), we hypothesized the base excision repair pathway is the working 

pathway controlled by EZH2 in prostate cancers. The base excision repair (BER) is a cellular 

mechanism that repairs damaged DNA throughout the cell cycle. It is responsible primarily 

for removing small, non-helix-distorting base lesions from the genome.  

  

If the excision repair pathway were regulated by EZH2, the gene expression changes upon 

EZH2 inhibitors treatment would be expected. Indeed, EZH2 inhibitors, including GSK126 

and EPZ-6438, significantly down-regulated most genes in this pathway, suggesting the 

pathway is regulated by EZH2 (Figure 18C). GSEA further suggests the pathway is 

significantly down-regulated by EZH2 inhibitors (Figure 18D). To investigate whether the 

pathway genes are directly regulated by EZH2, we calculated the enrichment of EZH2 

binding peaks enrichment in the promoter regions of the pathway genes. We found the gene 

promoters were significantly enriched with EZH2 solo peaks but not EZH2 ensemble peaks 

(Figure 19 A-B), suggesting EZH2 directly activates this pathway in a PRC2-independent 

manner. It was suggested that AR regulates the base excision repair pathway in prostate 

cancer 95, and we did find AR peaks are also enriched in the promoters regions of the 

pathway genes. Moreover, reasoning that cell lines with higher expressions of EZH2-

pathway genes are more EZH2-dependent, we found the gene expressions are mostly 

positively correlated with sensitivity to EZH2 inhibitor (“BRD-K62801835-001-01-0” and 
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“SCHEMBL2586580”) in Cancer Cell Line Encyclopedia (CCLE)96 (Figure 19 C-D). These 

data collectively suggested the AR and EZH2 co-activate base excision repair pathway 

CRPC cells. 
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Figure 18. Base excision pathway functionally interacts with EZH2. 

(A, B) Pathways that are enriched in genes with positive relative beta scores (beta-scores 

treatment minus beta-scores control). 

(C) The gene expression changes in base excision pathway upon treatment with two EZH2 

inhibitors, GSK126 and EPZ-6438. 

(D) The Gene Set Enrichment Analysis of base excision pathway in genes that are down-

regulated upon treatment with EZH2 inhibitor, GSK126. 
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Figure 19. Base excision pathway is directly activated by EZH2 and associated with 

EZH2 inhibitor sensitivity. 

(A) The enrichment of EZH2 solo peaks�EZH2 ensemble peaks, and AR peaks within 1Kb 

of transcriptional start sites (TSSs) in base excision pathway genes and other genes. 

(B) The EZH2 solo peaks within 1Kb of TSSs in NTHL1, POLE, and POLD1. 

(C, D) The correlation coefficients between base excision pathway gene expressions and 

sensitivity to EZH2 inhibitor, BRD-K62801835-001-01-0, in CCLE data (C), exemplified by 

APEX1 (D).  
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3.8: Methods 

Antibodies and Reagents 

Antibodies used in this study include: αAR (H-280, sc-13062) for ChIP-qPCR and ChIP-seq; 

αAR (N-20, sc-816) for Western blot and immunoprecipitation; αH3K27me3 (C36B11, 

#9733S) for ChIP-qPCR, ChIP-Rx and Western blot; αH2Av (39715) for ChIP-Rx; αAR (441, 

sc-7305), αH3K27me1 (ab194688), αH3K27me2 (ab24684), αH1.2 (ab4086), αH3 (ab4086), 

αEZH2 (clone 11, 612666), αpan-methylated Lysine (HW099), αCDCA3 (FL-268, sc-134625), 

αKIAA0101 (SAB1406878) and αTACC3 (C-2, sc-376883) for immunoblotting; αEZH2 

(39933) for ChIP-qPCR and immunoprecipitation; αSUZ12 (D39F6, #3737S) for ChIP-qPCR 

and Western blot. EZH2 inhibitors were purchased from Xcessbio Biosciences Inc. (GSK126, 

M60071 and EPZ-6438, M60122), and Enzalutamide (MDV-3100) was commercially 

available at MedChem Express (HY-70002). The SMARTpool siRNAs (Dharmacon) used in 

this study were: siGENOME Non-Targeting siRNA Pool #2 (D-001206-14), SMARTpool ON-

TARGETplus EZH2 siRNA (L-004218-00) and SMARTpool siGENOME EZH2 siRNA (M-

004218-03). 

 

Normal and Cancer Prostate Epithelial Cell Lines and Culture Conditions 

Benign and malignant prostatic epithelial cell lines RWPE-1, DU145, PC3, and LNCaP were 

originally purchased from the American Type Culture Collection. LHSAR cell line was kindly 

provided by Dr. Matthew Freedman. LAPC4, LNCaP-AI and LAPC4-CR were all obtained 

from Dr. Philip W. Kantoff’s lab. LNCaP-abl (abl) cell line was generously shared by Zoran 

Culig (Innsbruck Medical University, Austria). VCaP and CWR22Rv1 cell lines were 

graciously provided by Dr. Steven P. Balk. C4-2B was obtained from ViroMed Laboratories 

(Minneapolis, MN). All of these cell lines were authenticated at Bio-Synthesis Inc. and 
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confirmed to be mycoplasma-free using MycoAlert Mycoplasma Detection Kit (Lonza). The 

specific culture conditions for each cell line were listed in Supplementary Table 1.  

 

Standard ChIP and ChIP-seq assays  

Chromatin immunoprecipitation (ChIP) experiments were performed as previously 

described71. Basically, cells were crosslinked with 1% formaldehyde and lysed in RIPA buffer 

with 0.3 M NaCl. ChIP DNA was purified using PCR Purification Kit (Qiagen) and then 

quantified by Quant-iTTM dsDNA HS Assay Kit (Invitrogen). Equal amounts of ChIP enriched 

DNA (5-10 ng) under each treatment condition (DMSO, GSK126 or EPZ-6438) were 

prepared for either targeted ChIP-qPCR or ChIP-seq libraries. For protein detection in ChIP 

samples, SDS sample buffer was added to the reverse crosslinked input lysates, which were 

then subjected to Western blot analysis. ThruPLEX-FD Prep Kit (Rubicon Genomics) was 

used to construct the sequencing libraries according to the manufacturer's protocol, and the 

final products were sequenced on the NextSeq 500. For targeted ChIP-qPCR, purified ChIP 

DNA was subjected to real-time quantitative PCR with specific primers as listed in 

Supplementary Table 2.  

 

ChIP-Rx of H3K27me3 in Prostate Cancer Cells 

To quantitatively measure the changes of H3K27me3 abundance upon EZH2 inhibitor 

treatments, H3K27me3 ChIP with reference exogenous genome (ChIP-Rx) was performed 

as described. Briefly, 5 ug of ready-to-ChIP human chromatin from abl or DU145 cells were 

mixed with 125 ng of Drosophila chromatin that has been sheared to proper sizes. 4 uL of 

H3K27me3 antibody together with 0.2 uL of Drosophila-specific H2Av antibody were added 

to the mixture. Each sample was then treated as one and subjected to standard processes of 

ChIP and sequencing. Short reads obtained from the sequencer were mapped to human 
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genome (hg19) and drosophila genome (dm3) respectively, and peaks were called using 

MACS v2.097. Overall, 12,114 and 131,469 peaks of H3K27me3 were identified in abl and 

DU145 cells under DMSO treatment condition based on FDR<0.01. Normalization ratios 

between treatment and control groups were calculated based on the H2Av read counts 

mapped to drosophila genome between EPZ-6438 and DMSO or GSK126 and DMSO. The 

enrichment changes of human H3K27me3 signals were then normalized by the 

corresponding normalization ratios.  

 

Cell Transfections  

A total of 50 pmol (for each well in 24-well plate) or 100 pmol (for each well in 6-well plate) of 

each siRNA was transfected into abl or DU145 cells using Lipofectamine RNAiMAX reagent 

(Invitrogen) according to the manufacturer's instructions. Cell from 24-well plates were 

collected at indicated time points and counted after Trypan Blue staining for cell numbers, or 

harvested 48 hrs after transfection for RNA extraction, or lysed 72 hrs post-transfection and 

subjected to Western blot.  

 

RNA isolation and RT-qPCR  

RNA was extracted and purified using the TRIzol Reagent combined with RNeasy Mini Kit 

(Qiagen) according to manufacturer’s protocols. 2 ug of total RNAs were then used for cDNA 

synthesis using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-

time quantitative RT-PCR was performed, and gene expression was calculated as described 

previously71, using the formula 2-ΔΔCt relative to the level of GAPDH as the internal control. 

Sequences of RT-qPCR primers were listed in Supplemental Table 3.  

 

Soft Agar Colony Formation Assay 
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Prostate cancer CWR22Rv1 cells were suspended in the top layer of 0.35% agarose (Sigma, 

A4018) supplemented with complete growth medium. The base layer consisted of 2 mL of 

0.5% agarose-medium solution. The cell suspension was treated with either GSK126 alone 

or in combination with MDV3100 with indicated concentrations for 7 days. Colonies were 

then counted under light microscopy and images were taken. 

 

Data Collection 

EZH2 ChIP-seq data and EZH2 siRNA microarray expression data were both retrieved from 

our previous study (GSE39461)71. AR-dependent gene signatures in prostate cancer cells 

were obtained from our prior work as well (GSE11428)98. The gene expression data in 

human prostate tumors were retrieved from Taylor’s study to define the sets of AR-regulated 

genes (GSE21032)93. 

 

Analysis of EZH2 Inhibitor-Mediated Gene Expression by RNA-seq 

Both abl and DU145 cells were treated with EZH2 inhibitors (GSK126 or EPZ-6438) at final 

concentrations of 5 uM for 60-72 hrs before RNAs were extracted. RNA-seq library was 

prepared using Illumina True-seq RNA sample preparation kit and sequenced to 50bp using 

Illumina Hi-seq platform. RNA-seq data was mapped to human genome (hg19) using TopHat 

version 2.0.699. DESeq2 was applied to calculate the logarithmic fold change (LFC) and p-

value in order to call any significantly changed genes between treatment and control groups. 

Differentially expressed genes were first filtered using LFC >0.5 or <-0.5, and then top 200 

genes were selected through ranking by their p-values. The authentic target genes of EZH2 

in abl cells were defined as those showing similar expression changes upon either EZH2 

silencing or inhibitor treatment.  
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Chapter 4:  

Discussion 
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CRISPR-Cas9 knockout screen has been used to systemically interrogate the functions of 

coding genes and non-coding elements, but data analysis and library design are still in their 

early stage. We presented MAGeCK-NEST, a computational algorithm to improve the power 

of CRSIPR screens by incorporating protein-protein interaction (PPI) network into the gene 

calling procedure. MAGeCK-NEST also employs a maximum-likelihood approach to identify 

and remove outlier gRNAs, and provides QC metrics to evaluate the quality of the screens. 

MAGeCK-NEST further uses absolute median beta scores of pan-essential genes to rescale 

the output for cross-screen comparisons and conditions-specific hits. MAGeCK-NEST not 

only improved CRISPR screen analysis accuracy, but also revealed some important factors 

in designing better CRISPR-Cas9 screen libraries. 

 

First, we applied MAGeCK-NEST to public genome-wide screen data and identified a set of 

sgRNA outliers and their sequence characteristics: a higher G-nucleotide counts especially in 

regions distal from PAM motif. Unexpectedly, the effect of the outliers is independent on the 

count of C-nucleotide, different from previously studies that suggest the role of ‘GC’ content 

in determining cleavage efficiencies25, 36. Since G-C hybridization strengths in DNA-RNA and 

RNA-DNA hybrids are similar, the distinct effect of G- and C-nucleotides suggests a more 

crucial role of DNA-endonuclease rather than DNA-RNA interaction in determining off-target 

effects. Moreover, these sgRNAs do not match to other genomic regions31, and the potential 

off-target cleavages induced by these sgRNAs may occur less frequently at regions not 

predictable by sequence similarity, and regions less likely to be detected using current off-

target detection technologies100, 101. Second, we found normalization using non-targeting 

sgRNAs, as compared to using all sgRNAs or sgRNAs targeting non-essential genes, leads 

to higher false positive rates. This might be because cleavage in non-essential regions can 

still induce toxicity in cell growth, consistent with two recent studies showing false positive 
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hits from highly amplified regions in cancer genomes78, 79. Through CRISPR screening 

experiments, we confirmed that sgRNAs targeting AAVS1 or non-essential genes could 

serve as better negative controls and result in fewer false positives compared with non-

targeting sgRNAs. Third, we discovered that 19-nt sgRNAs consistently provide better 

cleavage efficiencies and signal-to-noise separations compared with other lengths (17, 18, 

20-nt). Therefore, using 19nt sgRNAs in either low-throughput experiments or high-

throughput screens may give rise to a more accurate inference of gene knockout effects. 

Finally, we showed that the screen results depend on the cell replication numbers, and using 

pan-essential genes can mitigate the time effect. With normalized screens, we were able to 

compare screens in different conditions, and further integrate screens derived from different 

libraries. Comparing with integrated screens from diverse cell lines or tissues, we could 

derive condition-specific hits.  

 

Although we characterized multiple features of CRISPR screens using computational 

approaches, the exact mechanisms behind these findings remain unknown. First, it is unclear 

why sgRNAs with higher G-nucleotide content are associated with stronger outliers. We 

suspected that outlier gRNAs with high G-nucleotides have promiscuous off-target binding 

and cutting at many CpG islands in the genome. Existing experimental approaches to detect 

off-target cleavages100, 101 may be limited to study these gRNAs, as the cleavages in each 

binding site may be low. Second, although we have shown the advantages of using 19-nt 

sgRNA spacers from statistical perspectives, how different lengths of sgRNA spacers give 

rise to various cleavage strengths and off-targets remain to be determined. Last but not least, 

all the above findings are derived in SpCas9 system, and the rules in different RNA-guided 

DNA endonuclease systems require further investigations. We designed two genome-wide 

libraries using the rules we uncovered, and demonstrated their better performances 
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compared to GeCKO2. With the refined analytic methods and library design, we further used 

CRISPR screens to investigate the mechanism of EZH2-inhibitors in castration resistant 

prostate cancer (CRPC) cells. 

 

CRPC, the aggressive form of prostate cancer, is the major cause of death in patients who 

die from the disease102. New generation of AR-targeted therapies significantly prolong 

survival in men with CRPC, suggesting an indispensable role of AR in CRPC cells despite 

low level of exogenous androgen54. However, for patients who acquired resistance to these 

contemporary AR inhibitors, alternative therapeutic strategies are desperately needed. The 

methyltransferase EZH2 has been a focus of anticancer drug development for years. 

Compounds that selectively inhibit EZH2 enzymatic activity instead of leading to protein 

degradation are powerful tools to investigate the role of EZH2 methyltransferase activity in 

aggressive tumors. Effectiveness of the prototypes was evaluated based on their abilities to 

diminish tri-methylation of H3K27 68-70. However, we found that these EZH2 inhibitors block 

global H3K27 tri-methylation with similar enzyme kinetics irrespective to the cellular response 

to the compounds. Significant transcriptional upregulation occurred with EZH2 inhibitor 

treatment in DU145 cells whose growth is not affected by the drugs, while a large portion of 

genes were strikingly downregulated by both GSK126 and EPZ-6438 in the sensitive abl 

cells. This is surprisingly different from what was observed in the DLBCL cells, where robust 

transcriptional reactivation was noted in the sensitive cells upon EZH2 inhibition, and minimal 

gene expression changes occurred in the insensitive lines. These contrasting results 

between prostate cancer and lymphoma may stem from the facts that prostate cancer cells 

do not carry the gain-of-function mutations of EZH2 as the DLBCL cells do, and that 

polycomb-independent mechanisms underpinning the oncogenic functions of EZH2 have 

been suggested in solid tumors.  
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To investigate the polycomb-independent mechanisms of EZH2, we conducted CRISPR 

screens with- and without-EZH2 inhibitor treatments in CRPC cells. Comparing CRISPR 

screens with and without perturbations, such as drug treatments or gene knockouts, can 

reveal how genes or pathways functionally interact with the perturbations103. We modeled the 

behaviors of EZH2-pathway and EZH2-unrelated genes in CRISPR screens using relative 

beta scores, and identified the base excision pathway as the top candidate of EZH2-

pathway. ChIP-seq showed the enrichment of EZH2 solo peaks in the promoters of the 

pathway genes, and their expression was down regulated by EZH2 inhibitors, suggesting 

EZH2 directly activates this pathway in a polycomb-independent manner. The strongly 

positive correlation between the pathway expression and sensitivity to EZH2 inhibitors in 

CCLE further suggests the functional inter-dependence of EZH2 and base excision pathway 

might be a general phenomenon. 

 

However, these findings raise several questions that require further investigation. First, we 

showed EZH2 inhibitors are effective in AR-positive CRPC, and our previous work 

demonstrated that EZH2 is a co-activator for AR71, which has been shown to directly regulate 

DNA repair pathway95. Whether EZH2 collaborates with AR to directly regulate the base 

excision repair pathway remains to be investigated. Second, we observed the expression of 

genes in the pathway is positively correlated with the sensitivity to EZH2 inhibitor. Noticing 

that this pathway is important in determining the therapeutic effect of ionizing therapy104, it’s 

possible that the EZH2-targeting therapy can synergize with ionizing therapy in cancers that 

rely on the DNA repair pathway.  
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In conclusion, our study provides a series of analytic methods for CRISPR screens, and 

further characterizes CRISPR biological features. Using CRISPR screens, we delineated the 

mechanistic details of the action of EZH2-tareting drugs in CRPC cells, and highlighted the 

clinical potential of targeting EZH2 to impede DNA repair pathway in metastatic, hormone-

refractory prostate tumors. In the meantime, our data suggested some overlooked issues 

that require immediate attention when pharmacologically targeting EZH2 methyltransferase 

activity in aggressive solid tumors. Last but not least, we demonstrated a general scheme of 

using CRISPR screens to dissect biological mechanisms. 
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Appendix 1: Supplementary materials 

 

Supplementary Figure 1. The sgRNAs spacer lengths and signal-to-noise ratio. 

The D-distance statistic in Kolmogorov–Smirnov test between negative control sgRNAs 

(AAVS1) and positive control sgRNAs (ribosomal genes) with different lengths (17nt-20nt) of 

sgRNAs.  
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Supplementary Figure 2. The distribution of beta scores in total normalization. 

The distribution of beta scores using all sgRNAs for read count normalization.  
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Supplementary Figure 3. Comparison of read count normalization in focused screens. 

(A) The log fold changes of non-targeting sgRNAs, AAVS1-targeting sgRNAs, and essential 

genes-targeting sgRNAs in focused screen. 

(B) The number of significant hits in ineffective screens (replicate samples) and effective 

screens (control vs. treatment) using all sgRNAs, AAVS1-targeting sgRNAs, and non-

targeting sgRNAs for read count normalizations. 
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Supplementary Figure 4. The distributions of beta scores and corresponding p-values 

in replicated screen data.  

(A-B) The distribution of beta scores in replicated screen data without (a) or with PPI (b), 

respectively.  

(C-D) The QQ-plot of p-values against uniform distribution in replicated screen data without 

(C) or with PPI (D), respectively. 
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Supplementary Figure 5. Incorporating predicted beta score as Bayesian prior to 

estimate beta scores using 10 sgRNAs or 4 sgRNAs. 

(A) The read counts of 10 sgRNAs that target PRSA in control and treatment conditions. 

(B) The Beta scores and corresponding false discovery rate (FDR) with or without using PPI 

prior using 4 sgRNAs (marked by red lines) or 10 sgRNAs. 
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Supplementary Figure 6. Demonstration of stronger and weaker sgRNAs outliers. 

The log fold changes of sgRNAs in 4 screens (KBM7, K562, Jiyoye, and Raji) targeting 

FARP1 and RPSA, respectively. The red and blues lines represent sgRNAs outliers and 

other sgRNAs, respectively. 
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Supplementary Figure 7. The distribution of nucleotide counts in sgRNAs. 

(A, B, C) The counts of nucleotide “A” (A), “T” (B), and “C” (C) of sgRNAs in three groups: 

aberrantly outliers (red), non-outliers (blue), and all sgRNAs (green).  
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Supplementary Figure 8. Relative standard deviations of beta score references after 

normalization using scaling values. 

The relative standard deviation (defined as standard deviation divided by mean) for each 

gene significantly decreased after normalization in public screens. 
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Supplementary Figure 9. Median and standard deviation of reference beta scores in 

public screens. 

(A) The distribution of median beta scores for all the genes in public screens after 

normalization. 

(B) Gene Set Enrichment Analysis for genes with low median beta scores in public screens 

after normalization. 

(C) The distribution of standard deviation for all the genes in public screens after 

normalization. 

(D) Gene Set Enrichment Analysis for genes high standard deviation of beta scores in public 

screens after normalization. 
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Supplementary Figure 10. Effects of EZH2 silencing on the androgen-independent 

proliferation of abl and DU145 cells. 

(A). Both types of prostate cancer cells were transfected with either control siRNA (siCtrl) or 

two different siRNAs against EZH2 (siEZH2#1 and #2). Cells were collected on the indicated 

day post transfection, and subjected to direct counting after Trypan blue staining. 

(B). EZH2 in both abl and DU145 cells was knocked down as described above. 72 hrs after 

transfection, cell lysates from nuclear fraction were collected and immunoblotting against 

indicated proteins was performed.  
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Supplementary Figure 11. Distribution of cell cycle phases upon the treatment of EZH2 

inhibitors in prostate cancer cells. 

Prostate cancer cells were treated with vehicle (DMSO), 5 uM GSK126 (GSK) or 5 uM EPZ-

6438 (EPZ) for 3 days, and then subjected to propidium iodide staining followed by flow 

cytometry analysis. 
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Supplementary Figure 12. Expression changes of selected genes upon EZH2 

knockdown in DU145 cells. 

DU145 cells were transfected with control siRNA (siCtrl), or two independent siRNAs specific 

for EZH2 (siEZH2#1 and #2). Total RNA was extracted 48 hrs after transfection, and real-

time RT-qPCR was performed to detect the changes in mRNA levels of indicated genes.  
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Supplementary Figure 13. Dose- and time-dependent manners of expression changes 

of target genes upon EZH2 inhibitor treatment in abl cells. 

(A) and (B). Abl cells were treated with GSK126 or EPZ-6438 at different concentrations for 

60-72 hrs (A) or at 5 uM over time (B). Real-time RT-qPCR was carried out to examine the 

expression levels of selected genes. Top panels in (A) and (B), EZH2 inhibitor-

downregulated genes in abl cells; bottom panels in (A) and (B), EZH2 inhibitor-de-repressed 

genes in abl cells. 
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Supplementary Figure 14. Canonical method of normalizing genome-wide H3K27me3 

signals in prostate cancer cells upon the treatment of EZH2 inhibitors.  

(A). Intensity of each H3K27me3 peak was plotted and compared between control condition 

(DMSO, x-axis) and treatment condition (EZH2 inhibitors, y-axis) in abl cells, using reads per 

million methods.  

(B). H3K27me3 peak enrichment under the conditions of vehicle (DMSO), 5 uM GSK126 

(GSK) or 5 uM EPZ-6438 (EPZ) was normalized using canonical method and then compared 

between abl and DU145 cells.  
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Supplementary Figure 15. Changes in chromatin recruitment of PRC2 complex 

components induced by EZH2 inhibitors in prostate cancer cells.  

(A). DU145 cells were treated with DMSO, 5 uM GSK126 or 5 uM EPZ-6438 for 4-5 days, 

and direct ChIP-qPCR of EZH2 was performed at selected chromatin regions.  

(B). ChIP of SUZ12 was carried out in both abl and DU145 cells treated with DMSO or one of 

EZH2 inhibitors, GSK126 or EPZ-6438, and qPCR was followed to examine its binding 

signals at indicated sites. KIAA0066, negative controls.  
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Supplementary Figure 16. GSEA analysis of AR-dependent gene signatures in the 

transcriptional profiles mediated by EZH2 inhibitors in abl cells. 

AR-regulated gene expression profiling in abl cells was retrieved from the previous study 94. 

Three sets of AR signature genes were defined as those downregulated upon AR 

knockdown (siAR) (left panel), those upregulated upon AR silencing (middle panel) and 

those showing no expression changes (right panel). GSEA analysis was then performed on 

these three gene signatures in transcriptional profiles mediated by EZH2 inhibitors in abl 

cells. Green (red) bars, individual gene in the specific AR-regulated signature that was 

downregulated (upregulated) upon EZH2 inhibitor treatment in abl cells. 
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Supplementary Figure 17. Changes in AR binding to the regulatory elements of target 

genes in abl cells treated with EZH2 inhibitors.  

(A) Abl cells were treated with DMSO or 5 uM EZH2 inhibitors for indicated days, and AR 

ChIP was carried out followed by qPCR to determine the recruitment of AR to selected 

regulatory chromatin elements. GAPDH and KIAA0066, negative sites.  

(B) Inputs from above ChIP samples were reverse crosslinked, and added with SDS 

sampling buffer, subjected to immunoblotting against indicated proteins. GSK, GSK126; 

EPZ, EPZ-6438. 
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Supplementary Figure 18. EZH2 and AR in CRISPR screens treated with EZH2 

inhibitor. 

The ‘treatment’ beta scores and ‘control’ beta scores of two known EZH2-pathway genes in 

abl cells, EZH2 and AR. 
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Supplementary Table 1. Prostate cell lines and their culture conditions. 
 

Cell Names Culture Medium Supplements 
Culture 
Condition 

Prostate epithelial cell lines 

LHSAR 
PrEBM basal 
medium 

PrEGM SingleQuot Kit Suppl. & Growth 
Factors 37°C, 5% CO2 

RWPE-1 

Keratinoyte 
serum free 
medium 

0.05 mg/mL bovine pituitary extract 
(BPE), 5 ng/mL human recombinant 
epidermal growth factors (EGF) 37°C, 5% CO2 

AR-null prostate cancer cell lines 

DU145 
phenol-red-free 
RPMI1640  

10% charcoal-stripped FBS, 1% 
Penicillin-Streptomycin 37°C, 5% CO2 

PC3 regular DMEM 10% FBS, 1% Penicillin-Streptomycin 37°C, 5% CO2 
AR-positive, androgen-dependent prostate cancer cell lines 

LAPC4 
regular 
RPMI1640  10% FBS, 1% Penicillin-Streptomycin 37°C, 5% CO2 

LNCaP 
regular 
RPMI1640  10% FBS, 1% Penicillin-Streptomycin 37°C, 5% CO2 

VCaP regular DMEM 
15% FBS, 1% Penicillin-Streptomycin, 
1% Non-essential amino acids 37°C, 5% CO2 

AR-positive, androgen-independent prostate cancer cell lines 

C4-2B 
regular 
RPMI1640  10% FBS, 1% Penicillin-Streptomycin 37°C, 5% CO2 

CWR22Rv1 regular DMEM 10% FBS, 1% Penicillin-Streptomycin 37°C, 5% CO2 

LAPC4-CR 
phenol-red-free 
RPMI1640 

10% charcoal-stripped FBS, 1% 
Penicillin-Streptomycin 37°C, 5% CO2 

LNCaP-abl 
phenol-red-free 
RPMI1640 

10% charcoal-stripped FBS, 1% 
Penicillin-Streptomycin 37°C, 5% CO2 

LNCaP-AI 
phenol-red-free 
RPMI1640 

10% charcoal-stripped FBS, 1% 
Penicillin-Streptomycin 37°C, 5% CO2 
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Supplementary Table 2. Primers for quantitative real-time RT-PCR. 
 
Gene Names Sequences References 
TACC3 mRNA F GCACAGGATTCTAAGTCCTAGCA  

TACC3 mRNA R CCAGACCGGGTGTGAGTTTT  

KIAA0101 mRNA F ATGGTGCGGACTAAAGCAGAC 
71 

KIAA0101 mRNA R CCTCGATGAAACTGATGTCGAAT 
71 

BIRC5 mRNA F AGGACCACCGCATCTCTACAT  

BIRC5 mRNA R AAGTCTGGCTCGTTCTCAGTG  

CDCA3 mRNA F CTGGAGGGTCTTAAACATGCC  

CDCA3 mRNA R CACTGCTGGTCTTCATAGGTG  

SHH mRNA F CCAAGGCACATATCCACTGCT  

SHH mRNA R GTCTCGATCACGTAGAAGACCT  

VIM mRNA F AGTCCACTGAGTACCGGAGAC  

VIM mRNA R CATTTCACGCATCTGGCGTTC  

MAT1A mRNA F ATCAGGGTTTGATGTTCGGCT  

MAT1A mRNA R GCGTTGAGCTTGTGAGCAA  

TNFSF9 mRNA F GGCTGGAGTCTACTATGTCTTCT  

TNFSF9 mRNA R ACCTCGGTGAAGGGAGTCC  

CKS2 mRNA F TTCGACGAACACTACGAGTACC 
71 

CKS2 mRNA R GGACACCAAGTCTCCTCCAC 
71 

FOXC1 mRNA F TGTTCGAGTCACAGAGGATCG  

FOXC1 mRNA R ACAGTCGTAGACGAAAGCTCC  

ETV4 mRNA F GCAACGGAATTTCCTGAGATCC  

ETV4 mRNA R ACGGAGCTATGTTCCCCGA  

GATA6 mRNA F GTGCCAACTGTCACACCACA  

GATA6 mRNA R GAGTCCACAAGCATTGCACAC  

HOXD8 mRNA F GGAAGACAAACCTACAGTCGC  

HOXD8 mRNA R TCCTGGTCAGATAGGGGTTAAAA  

RUNX3 mRNA F AGCACCACAAGCCACTTCAG  

RUNX3 mRNA R GGGAAGGAGCGGTCAAACTG  

NFkB2 mRNA F AGAGGCTTCCGATTTCGATATGG  

NFkB2 mRNA R GGATAGGTCTTTCGGCCCTTC  

KCNMB4 mRNA F AGTGCTCCTATATCCCTCCCT  

KCNMB4 mRNA R GCTGGGAACCAATCTCATCTTT  

GAPDH mRNA F CGAGATCCCTCCAAAATCAA 
71 

GAPDH mRNA R TTCACACCCATGACGAACAT 
71 
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Supplementary Table 3. Primers for targeted ChIP-qPCR. 
 
Names Sequences References 
KIAA0066 F CTAGGAGGGTGGAGGTAGGG 

105 
KIAA0066 R GCCCCAAACAGGAGTAATGA 105 
PPIA F GCCAGGCTCCTGTTTTAATG  
PPIA R GCAGTCTCCGGTTTTGAGAG  
CCND2 F TCCAACCGAAACTCCAAAAC 71 
CCND2 R CTTTTCACCCTTCACGGAAA 71 
DAB2IP F CCTGCTCTGAGTCTGCACTG 71 
DAB2IP R TCGAATCTCTCCCATGGTTC 71 
p16 F AGGGGAAGGAGAGAGCAGTC 70 
p16 R GGGTGTTTGGTGTCATAGGG 70 
SHH F TCCTTCCATTTCCACTCCTG  
SHH R TCTTGCTACAATGGCCTTCC  
TNFSF9 F GCGATTTCTTGGCGTTACTT  
TNFSF9 R TCGGGGAGGTTAGAGTGCT  
VIM F CAATCTCAGGCGCTCTTTGT  
VIM R GAGCGGGAAGAGGAAAGAGTA  
ETV4 F TCTCCAGCCTATGCACTCCT  
ETV4 R CTTCCATTTGCACAAGCAGA  
FOXC1 F CCCTCTCTTGCCTTCTTCCT  
FOXC1 R CGTCAGGTTTTGGGAACACT  
GATA6 F CCCTAACTGGGAAAACACGA  
GATA6 R CGCCCAGGTAAATCCAAGTA  
HOXD8 F AATAGTTCGGGTGCGTTTTG  
HOXD8 R TCACTGGCCCAATCTTTTTC  
NFkB2 F GGGGTGGGGAAGTAATAGGA  
NFkB2 R CCTTAGCAGGTGCCATGAGT  
RUNX3 F CATGGACCGTAGTCTTTTCT  
RUNX3 R CACTGCCAAGAACGCACTTA  
CDCA3 F TGCACCATGGGACTTGTAGT  
CDCA3 R GGACGGTAGTCACACGACAG  
TACC3 F AGGTTCTGCACCGTGAGC  
TACC3 R TCACTCTCGCCTATCTGGTGT  
BIRC5 F GGAGGACTACAACTCCCGG  
BIRC5 R CTTCTGGGAGTAGAGGCGG  
KIAA0101 F CAACAAAGCAGGAAGAAGCA 71 
KIAA0101 R CTAGTTCCCTTCGCAACACC 71 
GAPDH F TACTAGCGGTTTTACGGGCG 

105 
GAPDH R TCGAACAGGAGGAGCAGAGAGCGA 105 
CKS2 F GTCCCCATTTTCCGCAAG 71 
CKS2 R GTCACAGCAAAGCGACAGAG 71 

 


