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Mechanotransduction Across Time and Length Scales 
 

Abstract 
 
 Mechanotransduction is a process that spans both time and length scales, 

from the nanoscale machines that sense substrate properties, to the morphogenesis 

and healing of whole organs. Studies of mechanotransduction have generated a 

wealth of knowledge about the mechanisms of the transmission of mechanical 

cues and their downstream effects, but these studies have largely been limited in 

the scope of key experimental parameters and outputs. A more comprehensive 

view of the mechanisms and implications of mechanotransduction would aid in 

the design of new therapies to leverage these phenomena. Here, we seek to 

broaden not only the view of the material parameters that cells can sense, but also 

the scope of the outputs of this sensing. We first focus on a relatively 

underexplored material property, stress relaxation, and show that stress relaxation 

can induce counterintuitive behaviors via the simple clutch mechanism of 

mechanosensing. We then exploit cells’ response to stress relaxation, showing 

that stress relaxation can be used to tune healing for bone tissue engineering. To 

integrate this complexity into a coherent picture, we then perform a global 

transcriptomic analysis of substrate sensing, uncovering relationships between the 

sensing of different material properties and exploring the extent of their 

downstream effects. Finally, given these developments in understanding the 

complexity of cell-material interactions, we propose a biomaterial design 
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methodology to fully leverage this complexity to maximize functionality of 

therapeutic biomaterials. 
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Abstract 
 
 Mechanotransduction is a ubiquitous cellular process that spans time and 

length scales. This chapter explores several key aspects of mechanotransduction 

that are addressed in later chapters, namely nanoscale mechanosensing 

mechanisms, the downstream cellular programs affected by substrate mechanics, 

and how mechanotransduction could be relevant in clinical settings. Finally, this 

chapter introduces big-picture questions in the field that later chapters seek to 

address. By better understanding mechanotransduction, we can better understand 

its misregulation in disease as well as design strategies to leverage it using 

therapeutic biomaterials or even drugs. 
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Introduction 
 
 The ability of cells to interact mechanically with their surroundings seems 

implicit when looking at large-scale organisms, which are clearly mechanical 

beings. However, only through recent advances in cell and molecular biology 

methods have researchers been able to identify mechanisms of this interaction. 

Cells manage and remodel the extracellular matrix (ECM)1-5, are responsive to 

properties of the ECM6-8, and respond to applied forces and strains1-5, 9, 10. 

 Clinical practices such as loading recovering soft tissues to improve 

healing signal11, 12 that there is a translation of cell-scale mechanosensing events 

to tissue-level outputs. Thus the cell can be viewed as a signal processing unit, 

taking in signals from its mechanical environment, processing those inputs to act 

accordingly, and managing the feedback between these inputs and outputs (Fig. 

1). 

 

Figure 1: The cell as a mechanical signal processing unit 
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 While initial studies of mechanotransduction used reconstituted ECM as 

the cell substrate, biomaterials have become an attractive alternative for these 

studies, since they are highly controllable13-18. Interestingly, many of the materials 

used to study mechanotransduction in vitro have the potential to be used 

therapeutically as scaffolds or cell carriers13-18. Furthering the understanding of 

mechanotransduction in conjunction with improving biomaterials design offers a 

path towards engineering better therapies8, 14, 19, 20. Moreover, the emerging 

importance of mechanics as morphogenetic cues21 combined with the field’s 

relative immaturity suggest that it will become increasingly important in the 

contexts of understanding disease as well as in designing regenerative therapies. 

 This chapter surveys aspects of mechanotransduction pertaining to each of 

the three sections in Figure 1, focusing on the nanoscale mechanisms of substrate 

sensing, moving up in scale to the integration of these signals, and finally moving 

to the tissue-level implications of mechanotransduction in clinical settings. It 

finally highlights key limitations in the field’s knowledge that subsequent 

chapters address. 

 

Cells sense substrate properties via integrin-based contacts 

 Although other mechanisms for stress and strain sensing exist, such as 

strain-dependent caveoli or mechanically-induced ion channels, cells primarily 

sense their substrates through their attachment points6. The main cell adhesion 

molecules are called integrins and these bind to specific motifs on ECM proteins6. 

Integrins are transmembrane proteins consisting of α and β subunits. These 
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subunits are not universally interchangeable and the specific combination of 

subunits determines the ECM ligand to be recognized. Integrins are linked to the 

force-generating actin cytoskeleton via a number of adapter proteins that assemble 

hierarchically. The core set of proteins that can bind both the cytoplasmic 

domains of β integrins and actin include talin, α-actinin, and filamin. If the 

adhesion is sufficiently long-lived, additional proteins such as vinculin and 

paxilin can be recruited, likely by the force-induced exposure of binding sites on 

talin6, 22, 23. This process is called adhesion strengthening and can also occur in the 

integrin-ECM bond, where a conformational change in the integrins is thought to 

increase bond strength when the bond is stressed. This arrangement is also known 

as a catch bond4, 6, 9. Conversely, slip bonds, where the bond strength decreases as 

a function of force application or strain, are found at the actin-talin interface. It is 

critical to note that this force can be externally applied or cell generated, in which 

case actomyosin tension generates the force, which is subsequently resisted to 

varying degrees by the ECM4, 6, 9. 

 These bond types are important to understanding the prevailing view of 

substrate stiffness sensing, which invovles a molecular clutch mechanism6. The 

molecular clutch consists of ECM bound to actin via integrins and associated 

adapters. Actin exhibits a characteristic rearward flow in the cell called 

treadmilling in which the F-actin rearward flow is exercised by myosin molecular 

motors while actin monomers polymerize on the F-actin leading edge and 

depolymerize on its trailing edge. When force is applied to the clutch, all 

intermediate bonds are stressed. As mentioned above, the talin-actin bond is a slip 
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bond. When an adhesion is established, actin rearward flow will stretch this bond 

relative to the ECM attachment point for that particular linkage. Force will 

continue to be transmitted until the threshold bond strain is reached, after which 

the talin-actin bond will rupture. Talin will then randomly bind actin again after 

some characteristic interval. Bond strengthening and recruitment of additional 

scaffolding proteins will occur if force persists and the clutch remains intact for 

longer than the dissociation time-scales of the other scaffolding proteins in the 

absence of applied force22, 23.  

Many individual clutches bind a single F-actin, meaning that if any of the 

linkages break, there are still many other linkages retarding the flow. Hence, the 

average number of intact linkages at any time determines the retardation of actin 

flow. It is worth noting that the consequence of having more intact linkages is not 

only the slowing of actin flow, but also the increased linkage lifetime, which in 

turn increases the duration of downstream signaling initiated at the linkage22, 23.  

 Collections of integrins can form a variety of structures, notably focal 

adhesions and focal complexes. Focal adhesions are clusters of integrins that 

assemble and strengthen under bundles of actin. They typically only form under 

large force application or in situations where the substrate stiffness and thus 

cytoskeletal tension is high. Focal complexes are found in filopodia and 

lamellapodia and are smaller than focal adhesions. Given their presence in 

transient cellular structures, they feature rapid disassembly associated with their 

smaller size6, 22, 23.  
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Mechanotransduction affects cell phenotype 

 There are a number of mechanisms that translate mechanical signals into 

phenotypic changes in the cell, which can be categorized into direct mechanical 

effects and indirect signaling effects.  

The focal adhesions and contacts mentioned above can be the nexus of 

signaling. Notably, FAK and Src can quickly be recruited to adhesion sites and 

initiate downstream signaling22-24. These downstream effects have been shown to 

involve a number of signaling pathways, including MAPK, TGF-β, and 

BMP/SMAD. As an example of the power of substrate-based signaling, cells from 

certain lineages lacking ECM adhesions and thus pro-survival MAPK signaling 

will undergo a special form of apoptosis known as anoikis25. Other processes tied 

into these pathways include cell cycle progression, and the feedback into the 

regulation of the cytoskeleton, adhesions, and ECM synthesis itself. For example, 

proteins such as RhoA, Cdc42, and Rac1 are involved in regulating the assembly 

of focal adhesions and contacts yet themselves are regulated by mechanical 

signals6, 24.  

A consequence of this feedback is that cell spreading, shape, and motility 

can be heavily influenced by mechanical signaling6, 10, 24, 26. For instance, the 

Chen lab has published that cytoskeletal stress can be modulated by confining the 

cell to different areas via micropatterned islands10, 11. A huge body of working 

involving culturing cells on ECM-coated purely elastic polyacrylamide and 

PDMS gels has established the relationship that cell spreading scales with 

substrate stiffness, although the universality of this view has been challenged as at 
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least partly an artifact of the purely elastic nature of these materials27-29. This 

point is address in detail in Chapters 2 and 3. 

A landmark paper by the Discher lab showed that mesenchymal stem cell 

(MSC) differentiation could be controlled by substrate stiffness30, building off of 

the Chen lab’s work showing that differentiation could be modulated by a cell 

confinement. This work has implications not only for understanding 

morphogenesis and how mechanical cues could guide cell fate, but also for 

regenerative medicine and tissue engineering, wherein a cell’s microenvironment 

could be tuned to optimize regeneration. That work has since been extended to 

other stem cell types, including pluripotent stem cells31, 32. 

Recent evidence suggests that substrate mechanics induce epigenetic 

changes in the cell. Work from Song Li’s lab has shown differential histone 

expression as a function of substrate nanotopography7, while other work has 

shown differences in iPS conversion mediated by substrate mechanics33. Chapter 

4 addresses some of these factors in more detail and provides additional evidence 

for these effects. 

The second class of mechanosensing mechanisms is direct in nature, 

involving direct mechanical linkages between loci of force generation and loci of 

signaling or transcriptional regulation. One important set of mechanisms is the 

stress-activated ion channel, which regulates ion flux via membrane stress22. 

Another, which is receiving increased interest, is the direct coupling of the ECM 

to the nucleus. Cytoskeletal proteins are linked to the nuclear envelope via the 

LINC complex, which consists of proteins such as SUNs and Nesprins34. Along 
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with lamins, the main class of inner nuclear membrane proteins, these proteins 

provide an important link between ECM mechanics and the nucleus. Lamins can 

bind and affect the activation of transcription factors, and since the Discher lab 

showed that Lamin A expression scales with substrate stiffness35, there exists a 

direct mechanism for nuclear transcriptional regulation. In addition, certain 

segments of DNA known as Matrix Attachment Regions bind to the nuclear 

envelope, potentially exposing or hiding large numbers of genes34. The 

modulation of force propagation through these linkages would potentially affect 

this direct chromatin manipulation as well. 

 

Cells sense different aspects of their material microenvironment 

 The phenotypic outputs affected by mechanotransduction serve as the 

basis for assays that evaluate the effects of various material parameters on cells. 

Cell spreading, motility, and MSC differentiation are the most common outputs 

for these studies and have identified material stiffness30, nonlinear elasticity36, 

stress relaxation29, nanotopography37, adhesion ligand composition and density38, 

degradability39, 40, and geometry41, among others, as driving differences in these 

outputs. Discrepancies in the data, however, do exist. For instance, it has become 

clear that culturing cells in 2D versus 3D is significantly different. Chen and 

Burdick showed that in covalently-crosslinked hydrogels with degradable 

crosslinks, degradation was necessary to induce MSC osteogenic differentiation40, 

even on stiff substrates, which was hypothesized to have to do with the ability of 

the cells to spread, similar to 2D culture. However, our group had previously 
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shown that even non-spread MSCs could be driven down an osteogenic lineage in 

stiff, calcium-crosslinked alginate gels5. The reconciliation, however, is that the 

reversible calcium crosslinks in the alginate gel allow for local rearrangement of 

adhesion ligands, as evidenced by FRET imaging, and thus the formation of focal 

adhesions and the buildup of cytoskeletal tension. The covalently-crosslinked 

gels, however, lacked this feature, requiring bulk degradation of the material to 

allow the cell to access sufficient numbers of adhesive ligands in order to build 

sufficient tension. Again, it is this tension that allows the persistent adhesions 

from which downstream signaling, and thus differentiation, occurs. 

 

Mechanotransduction in clinical settings 

 Mechanotransduction is important in a number of clinical settings, 

motivating its study. Briefly, it is involved in atherosclerosis, the healing of 

orthopedic injuries, cancer progression, and wound healing, among others, and is 

likely to be involved in other diseases such as Alzheimer’s disease which involves 

plaque formation or diseases of nerve demyelination42.  

 Mechanotransduction also represents a key process to be tuned by 

biomaterials. While many studies have examined the effects of substrate 

properties in vitro, few have translated these phenomena to in vivo settings in 

order to aid regeneration. One study from our group showed that bone healing 

could be improved by optimizing the stiffness of a transplanted alginate scaffold 

encapsulating MSCs43. Chapter 3 is an extension of this idea examining the 

effects of stress relaxation on bone regeneration. 
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Broadening the horizons for mechanotransduction 

As mentioned above, the studies showing phenotypic changes in cells in 

response to substrate mechanics generated the list of outputs to be used in 

evaluating the importance of various material properties to the cell. However, it is 

entirely possible that while these outputs are important, their selection by 

primarily historical means to determine the key material parameters influencing 

cells has biased the results of the field. Perhaps if different phenomena had been 

discovered earlier, the field would have been led down a different path. Thus, a 

global view of mechanotransduction would more thoroughly identify the key 

outputs and affected processes. 

 It is not only the experimental outputs that could contribute to a limited 

understanding of mechanotransduction, but also the experimental setups 

themselves. For instance, it is widely acknowledged that the different geometric 

boundary conditions and ECM attachment character of mechanotransduction 

studies using 2D cell culture contributes to different behavior than in 3D culture5. 

The 3D culture systems, however, are also not without biases. Synthetic polymer 

matrices might present adhesion molecules in different configurations than 

fibrular matrices44. Moreover, even if stiffness is examined using a controlled 

system, other material properties such as viscoelasticity and nonlinear elasticity 

are rarely characterized. It is likely that these material properties not only 

individually impact cells, but also do so through their interaction.  

 The above descriptions of mechanosensing mechanisms highlight the high 

level of detail of the understanding of adhesions themselves and the associated 
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phenotypic outputs, but the intermediate signaling is far less understood. Attempts 

to find a universal “mechanostat” which could be downstream of all 

mechanotransduction processes have not been fruitful. Even important 

transcription factors such as the Hippo pathway effector YAP, whose activation 

corresponds to cytoskeletal tension a large fraction of the time45, does not track 

with phenotypic outputs completely45, 46. Thus the question remains whether there 

is even one key pathway or signaling funnel for mechanotransduction or whether 

mechanotransduction is a network process that is biased in one direction or 

another based on substrate mechanics. 

 Advances in mechanotransduction have led to a complex view of its 

effects and mechanisms, but many questions remain. In order to fully exploit this 

important cellular process, the field would benefit from a more comprehensive 

view from which to distill key principles, both on the side of the material and on 

the side of the cell. In this way, by knowing the key material parameters to tune to 

impact various cellular processes, the biomaterials engineer would have an 

unprecedented level of control over their designs. By trying to answer the 

questions outlined above, both the key material properties and key cellular outputs 

involved in mechanotransduction could possibly be deduced. The subsequent 

chapters aim to address these questions, with Chapters 2 and 3 focusing on 

extending the understanding of substrate properties on cells by studying stress 

relaxation, both in mechanism and application. Chapter 4 provides a global view 

of mechanotransduction, mapping the networks involved and interactions among 

different material parameters. Finally, Chapter 5 acknowledges this increase in 
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biomaterials complexity, and proposes a new biomaterials design methodology 

through which engineers can maximize biomaterial functionality by leveraging 

advances in systems biology and experimental design.  
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Abstract 
 
 While many studies have shown the influence of adhesion substrate 

stiffness on phenotypic outputs such as cell spreading, proliferation, and YAP 

nuclear localization, the majority of these studies have been conducted on purely 

elastic materials. Recent evidence, however, illustrates that the viscoelastic 

properties of the material can also have a dramatic impact, one in which the 

traditional monotonic scaling of these phenotypic outputs with substrate stiffness 

is not maintained. We hypothesized that this effect was due to the coupling of 

adhesion ligand density with the time-dependent mechanical properties of the 

substrate and proposed a model of cell spreading as a function of substrate 

mechanics, accounting for adhesion ligand density, stiffness, viscoelasticity, and 

mechanical connectivity among adhesion sites. This lattice spring model was 

capable of recapitulating experimental results in which cell spreading is abrogated 

on high-stiffness, stress relaxing substrates and enhanced on low-stiffness, stress 

relaxing substrates relative to purely elastic ones, in a ligand density dependent 

manner. Moreover, we show that each of these behaviors is a function of whether 

creep or stress relaxation behavior dominates that specific regime. Overall, these 

results provide mechanistic insight into the sensing of substrate viscoelasticity and 

help to guide future materials development by through tuning these properties. 
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Introduction 
 
 The extracellular matrix (ECM) has been shown to influence cells in a 

multitude of ways1–5. The mechanical properties of a cell’s adhesion substrate 

have received significant recent interest since the substrate stiffness has been 

shown to regulate phenotypic outputs including cell spreading, proliferation, 

migration, and stem cell differentiation1–5. However, many of the substrates used 

to study the mechanisms of this sensing are purely elastic. Commonly used 

substrates include polyacrylamide and PDMS that have been coated with ECM 

proteins such as collagen to facilitate adhesion6.  

 While these studies have provided significant insight into substrate 

sensing, they do not reflect a number of the properties of native ECM. One of the 

most prominent differences between these substrate models and native ECM is 

that the fibrous nature of native ECM gives rise to viscoelastic behavior, meaning 

that the stress in the material will relax over time at a constant strain7-11. Given 

that cells are so sensitive to the elasticity of the matrix, our group hypothesized 

that viscoelasticity and this stress-relaxing quality, which in a sense modulates the 

instantaneous elasticity of a material, could be similarly sensed by the cells. 

 In order to address these questions, previous members of our group 

employed alginate hydrogels that could be either covalently or ionically 

crosslinked, yielding either elastic, or viscoelastic behavior, respectively12. In 

addition, the crosslink density could be varied to impact the stiffness of the gels, 

and the density of RGD adhesion ligands could be varied to alter the number of 

sites on the substrate available for the cells to engage. The canonical view of cell 
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spreading and proliferation was that these both increased with stiffness1-5. 

However, by plating cells on these gels, it was shown that the stress-relaxing 

substrates decreased cell spreading relative to purely elastic ones at high stiffness, 

and that, if the adhesion ligand density was high, viscoelasticity actually rescued 

cell spreading and proliferation on soft substrates13.  

 Since these experimental results suggested that the response of cells to 

stress relaxation was not monotonic and was ligand density-dependent, we sought 

to develop a computational model of this process to address the hypothesis that 

the response to stress relaxation could be captured by solely accounting for 

material-side effects without including additional sophistication in the cell-side 

substrate-sensing machinery. Thus, we hypothesized that the cell’s integrin-based 

adhesions could be manipulated by the stress relaxation and ligand density of the 

substrate into producing a mechanical response equivalent to that on very 

different, but elastic substrates. 

 In order to formulate a model that would satisfy these criteria, we adopted 

the basic architecture of a model of cell spreading by Chan and Odde14,15. This 

model captures the basic coarse-grained cell-side machinery needed to ask the 

question of whether the material viscoelasticity and adhesion ligand density are 

sufficient to manipulate the core sensing machinery of the cell and induce 

spreading. However, the previously published model lacks the ability to specify 

adhesion ligand density, incorporate more rich material mechanics, and to capture 

the mechanical coupling between adhesion sites.  
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 The model presented here extends the Chan and Odde model by including 

a lattice-spring representation of a material which gives fine-tuned control over 

substrate properties and allows adhesion sites to interact mechanically. Moreover, 

this representation offers a facile scheme for the incorporation of ligand density 

into the model. 

 By simulating a range of viscoelastic materials in this manner, we show 

that we can not only recapitulate the observed experimental spreading results, but 

can mechanistically generate hypotheses for the observed effects in each of the 

mechanical regimes in which behavior on viscoelastic substrates deviates from 

that on purely elastic ones.  

 

Results and Discussion 
 

 We modified the cell spreading model of Chan and Odde by incorporating 

additional material-side complexity in order to simulate the early effects of 

substrate viscoelasticity on cell spreading. In this model, actin polymerization at a 

speed that exceeds that of actin retrograde flow drives spreading. Actin is tethered 

to the substrate by force-dependent adhesions (slip bonds) that retard retrograde 

flow, yielding faster spreading. The stiffer the substrate, the faster the 

disengagement of the slip bonds and the shorter the distortion of the bonds, which 

restricts the degree of retrograde flow, resulting in more spreading. 

To allow for the capture of additional material complexity, the material was 

represented as a lattice spring network where the connections between mass-

bearing nodes can be represented by any spring/damper model of a material (Fig. 
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2A). This representation has a number of advantages. First, the node 

representation allows for the easy incorporation of adhesion ligand density by 

controlling the nodes to which the cell can adhere. Secondly, the modularity of 

the material models used between nodes allows purely elastic materials to be 

compared to different viscoelastic ones. Thirdly, the connectivity among 

adhesions allows for strain fields to propagate through a material, capturing 

coupling among nodes. 

 Formulating the model for comparison to the experimental results, we 

represented the material either by simple springs, representing an elastic material, 

or by a four-element Burger’s model, which allows for tuning the full spectrum of 

viscoelastic behavior, from creep-dominated Voigt behavior to stress-relaxation-

dominated Maxwell behavior.  

 We first tested the spreading behavior on a purely elastic representation. 

Consistent with the Chan and Odde model and our experimental results, we found 

that spreading increased with the stiffness of the substrate (Fig. 2B). If we varied 

the adhesion ligand density, we found that higher adhesion ligand densities 

allowed the cell to spread on softer substrates than they otherwise would. 

 Next, we searched for model parameters that would recapitulate the 

experimental result that viscoelasticity abrogates cell spreading as long as the 

adhesion ligand density is low, but enhances it if the substrate is soft and the 

adhesion ligand density is high. We were able to fine such a parameter set, 

reproducing the observed behavior (Fig. 2C). Fig. 2D depicts the differences 

between the viscoelastic and elastic conditions with these parameters, confirming 
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that spreading is enhanced on soft substrates and reduced on stiff substrates in a 

ligand density dependent manner as a function of stress relaxation.  

Figure 2: Stochastic lattice spring model predicts increased cell spreading at low 
initial stiffness on viscoelastic substrates that exhibit stress relaxation relative to 
elastic substrates. A) Schematic depicting model of cell spreading on elastic or 
viscoelastic substrates. Actin polymerization at the leading edge of the cell is 
coupled to the substrate through molecular clutches, and these clutches inhibit 
retrograde flow of the actin driven by myosin motors. The substrate is modeled as 
an array of nodes connected by either Hookean springs, representing an elastic 
substrate, or Burgers model elements, representing a viscoelastic substrate 
exhibiting stress relaxation. B) Simulation results for cell spreading area on elastic 
substrates as a function of initial substrate stiffness and adhesion ligand density. 
C) Simulation results for cell spreading area on substrates with stress relaxation as 
a function of initial substrate stiffness and adhesion ligand density. Voigt damping 
coefficient, h1, was 5x10-13, and Maxwell damping coefficient, h2, was 1x10-13 for 
this set of simulations. D) Difference in cell spreading area for cells on substrates 
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with stress relaxation relative to elastic substrates. Greater spreading on substrates 
with stress relaxation is observed for all conditions at low substrate stiffness.  
 

 In order to gain further mechanistic insight, we examined the nature of the 

Burger’s model parameter values that captured this behavior. We tuned the model 

to the Maxwell or Voigt limits, two common representations of viscoelasticity, in 

order to observe which representation gave rise to which experimentally observed 

behavior. We first observed the spreading-stiffness relationships for the Maxwell 

and Voigt limits by varying ligand density (Fig. 3A-D). We found that the Voigt 

limit captures the increase in spreading on soft substrates with high ligand density 

while the Maxwell limit captures the reduction in spreading on all stiff substrates. 

Next, by tuning the damping coefficients for each of those models at high ligand 

density, we see that the degree of spreading rescue or abrogation is mediated by 

those coefficients, suggesting that it is specifically the viscoelastic components 

that give rise to these two different regimes (Fig. 3E,F).  
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Figure 3: Supplemental model characterization. A,C) Stiffness-spreading 
relationship for different ligand densities in the Voigt and Maxwell limits of the 
Burger’s Model. B,D) Differences in spreading between the elastic and Voigt or 
Maxwell limits of the Burger’s Model. E,F) Stiffness-spreading relationship at 
high ligand densities for different damping coefficients for the Voigt or Maxwell 
limits of the Burger’s Model. 
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 To further examine the means by which the simulations predict these 

discrepancies between elastic and viscoelastic substrates, we observed the 

dynamics of node spacing throughout the simulations (Fig. 4A). Since cells have 

been shown to deform the matrix as a function of substrate stiffness, we thought 

that the node spacing could act as a proxy for material remodeling and give 

insight into the sensing mechanism. Strikingly, we found that the degree of creep 

in the material, as dictated by the Voigt damping coefficient, modulated the 

spacing of the nodes in front of the leading edge of the simulated cell (Fig. 4B). 

This decrease in internode spacing represents an increase in the effective local 

adhesion ligand density of the material (Fig. 4A). For materials with low initial 

adhesion ligand density, this increase in effective density is modest, but for 

materials with a high adhesion ligand density, this incremental increase represents 

a large increase in the percentage increase in density. For example, if the creep 

leads to an average leading edge internode spacing decrease of 10 nm, but the 

initial spacing was 100 nm, this effect results in a 10% increase in density. If, 

however, the initial spacing is 40 nm, this same 10 nm effect results in a 25% 

increase in density. As the previous simulations showed that for a constant 

stiffness, adhesion ligand density dramatically impacts a cell’s ability to spread, 

our mechanistic study of the internode spacing yielded a plausible mechanism for 

the coupling of adhesion ligand density to viscoelasticity. Intriguingly, these 

results are consistent with the experimental observation that cell spreading is 

correlated with clustering of adhered integrins. The decreased internode spacing 

demonstrated here is consistent with the notion of enhanced clustering. 
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Figure 4: Simulations predict that cell spreading on stress relaxing substrates is 
associated with flow and plastic deformation of the adhesion substrate. (a) 
Cartoon of cell spreading on elastic substrate or substrate with stress relaxation. 
(b) Simulation results for lead node spacing as a function of substrate stiffness for 
elastic substrates, and stress relaxing substrates with the indicated Burger’s model 
Maxwell damping coefficient (h1).    
 
Conclusions 

 In this chapter, a computational model was formulated to address the 

mechanism of differential spreading on viscoelastic versus elastic substrates. By 

extending an existing model of cell spreading to include a sophisticated 

representation of the adhesive substrate, we were able to recreate observed 

experimental behaviors. Moreover, we showed that the observed increase in 

spreading on soft viscoelastic substrates of high ligand density is linked to the 

creep behavior of the material and the resulting changes in local adhesion ligand 

density. Abrogation of spreading on other viscoelastic substrates was explained 

through the stress-relaxation of the material. These results suggest that the effects 

of viscoelasticity on cell substrate sensing can be explained by the temporal and 

adhesion density-dependent behavior of the substrate without accounting for 
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additional complexity of the cellular sensing mechanisms. We hope that this 

mechanistic understanding can be used to design new biomaterials to influence 

cell fate in therapeutic ways. 

 

Materials and Methods 
 
Model  Assumptions 

 This model builds upon the framework outlined by Chan and Odde14,15, by 

incorporating a variety of substrate behaviors as well as adhesion ligand density 

into a dynamic simulation of cell spreading. The goal of these simulations is to, 

even with a simple treatment of spreading mechanics, observe stark differences in 

cell mechanosensing as a function of material-side parameters. The use of a 

physical output such as cell spreading that, in some cases, correlates with other 

cell behaviors removes complications concerning intracellular signaling. To that 

end, the model assumes no feedback into the number or applied force of myosin 

motors and does not distinguish between bundled and filamentous actin. Due to 

the short timescales over which differences in cell spreading are simulated, the 

specific composition of linker proteins from the substrate to actin is not specified. 

Hence the linker proteins are treated as a simple spring and no adhesion-

strengthening is considered.  

The linkers are assumed, however, to undergo force-dependent 

dissociation, given by 𝑘!""∗ = 𝑘!""𝑒
!!"#$!!

!!"# , where 𝑘!""∗  is the force-

dependent off-rate, 𝑘!""  is the unloaded off-rate, 𝐹!"#$!!  is the retarding force 

imposed by each clutch, and 𝐹!"#  is the rupture force per bond. In addition, it is 
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assumed that integrins bind adhesion ligands prior to incorporation into the 

adhesion complex, allowing for linkage to actin upon the spreading front reaching 

a new available ligand.  

Inhibition of actin retrograde flow velocity is assumed to obey Eq. 1 as a 

function of the force sustained in the molecular clutches, where 𝑣!"#$%&   is the cell 

spreading velocity, 𝑣!"#$   is the actin leading edge polymerization velocity, 

𝐹!"#$!!!"#$!!  is the sum of retarding forces sustained in all of the adhesion sites, 

and 𝐹!"#$$ is the force required to stop actin retrograde flow velocity. The actin 

polymerization rate is treated as constant and the spreading velocity is thus given 

by 𝑣!"#$%& = 𝑣!"#$ − 𝑣!"#!$%!&'" where 𝑣!"#!$%!&'"   is the actin retrograde flow 

velocity. 

𝑣!"#!$%!&'" = 𝑣!"#$ 1−
𝐹!"#$!!!"#$!!

𝐹!"#$$
 

 The substrates is modeled as a 2D lattice of mass nodes, with each node 

connected to its neighbors via a simple spring in the purely elastic case, or, in the 

viscoelastic case, a Burger's model (Fig. 5A, Eq. 2), where 𝜎  is the stress 

sustained in the linkage, 𝜀  is the linkage strain, 𝐸!  is the Maxwell element 

stiffness, 𝐸! is the Voigt element stiffness, 𝜂! is the Maxwell element damping 

coefficient, and 𝜂!is the Voigt element damping coefficient. Alginate, the material 

used experimentally in this study, has previously been modeled using a Burger's 

model16. Material parameter ranges were calibrated based on canonical spreading 

responses to different parameters in the purely elastic case, with the low end for 
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stiffness being those purely elastic substrates on which cells do not spread and the 

high end being those on which cells do spread (Table 1). 

𝜎 +
𝜂!
𝐸!
+
𝜂!
𝐸!
+
𝜂!
𝐸!

𝑑𝜎
𝑑𝑡 +

𝜂!
𝐸!

𝑑!𝜎
𝑑𝑡! =

𝜂!!𝜂!
𝐸!𝐸!

𝑑𝜀
𝑑𝑡
𝑑!𝜀
𝑑𝑡! 

On the top level of nodes, only certain nodes are made available for binding by 

the cell, as determined by the ligand density. Ligand densities were approximated 

based on previous approaches to quantify spacing of RGD ligands on alginate 

hydrogels for varying degrees of substitution that are consistent with those used in 

this study17. 

Model Implementation 

 The following algorithm is carried out in MATLAB (Fig. 5B). At each 

time step (0.2 ms, Fig. 5C), it is determined whether the cell spreading front has 

passed a new available adhesion ligand on the substrate. If so, a new bond is 

formed, determined by 𝑘!" and the number of adhered clutches is incremented. 

Given the current filament velocity, a strain of 𝑑𝑡 ∗ 𝑣!"#    is imposed on the 

substrate via the clutches. Eq. 2 is discretized using a Backward Euler method and 

the force between each node and its neighbors is calculated based on the new 

strain. For each node in the lattice, the resultant horizontal and vertical forces are 

found by summing the horizontal and vertical components of the force between 

the node and each of its neighbors; the equations of motion are then solved using 

an implicit Beeman scheme to find the new position of each node in the lattice for 

that time step.  

At this point, based on the new strain profile of the lattice, the new force 

sustained in each molecular clutch is calculated using the clutch spring constant, 
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𝜅!"#$!!, and each molecular clutch is tested for dissociation per the Bell model 

described above. The new forces sustained in each clutch are used to update the 

actin retrograde flow velocity for the next time step.  

 

Figure 5: Model formulation. A) Schematic of lattice-spring network used to 
model the substrate. Simple springs are used as the linkages in a purely elastic 
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case and the four-element Burger's Model is used in the viscoelastic case. B) 
Flowchart depicting the simulation algorithm. C) Time-step dependence of 
algorithm. Simulations were run for 1 sec. in simulation time using various time 
steps and the resulting average spreading velocities for 20 simulation runs was 
recorded. Error bars represent S.D. (n=20). D) Average spreading velocity as a 
function of substrate stiffness if ligand density dependence and substrate lattice 
are removed. Data is reported as the mean of five simulation runs. E) Spreading 
velocity (blue) and number of molecular clutches (red) for a representative purely 
elastic substrate (k=1 pN/nm, 0.02 ligands/nm). Spikes are indicative of bond 
rupture. F) Example force/extension curves from simulated tensile testing. 
Substrates were strained at 0.17nm/ms and the resulting force in a given linkage 
was recorded. A representative purely elastic substrate is given in green and a 
representative viscoelastic substrate is given in blue, both of the same initial 
elastic modulus. 
 

Supplemental Model Characterization 

By eliminating the ligand density dependence and treating the substrate as 

a simple spring, the "load and fail" and "frictional slippage" regimes described by 

Chan and Odde are recreated (Fig. 5D). Upon incorporating the material lattice 

and ligand density, dissociation events as well as clutch addition due to spreading 

are noted (Fib. 4E). In order to validate the behavior of the lattice, simulated 

tensile tests were performed as to confirm purely elastic or viscoelastic behaviors. 

At a constant strain rate, purely elastic substrates demonstrate a linear 

force/extension relationship, while viscoelastic substrates demonstrate stress 

relaxation, confirming the capability of the substrate lattice to capture both purely 

elastic and viscoelastic behaviors (Fig. 5F).  

 
Associated Publication 
 
Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, et al. 
Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6. 
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CHAPTER 3 
 

Effects of Stress Relaxation on Bone Formation and Scaffold Remodeling In 
Vivo 
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Abstract 
 

The rate of stress relaxation of adhesion substrates potently regulates cell 

fate and function in vitro, and here we tested whether it could regulate bone 

formation in vivo by implanting alginate gels with differing rates of stress-

relaxation carrying human mesenchymal stem cells into rat calvarial defects. 

After three months, the rats that received fast-relaxing hydrogels (t1/2 ~ 50s) 

showed significantly more new bone growth than those that received slow-

relaxing, stiffness-matched hydrogels. Strikingly, substantial bone regeneration 

resulted from rapidly relaxing hydrogels even in the absence of transplanted cells.  

Histological analysis revealed that the new bone formed with rapidly relaxing 

hydrogels was mature and accompanied by extensive matrix remodeling and 

hydrogel disappearance. This tissue invasion was found to be prominent after just 

two weeks and the ability of stress relaxation to modulate cell invasion was 

confirmed with in vitro analysis. These results suggest that substrate stress 

relaxation can mediate scaffold remodeling and thus tissue formation, giving 

tissue engineers a new parameter for optimizing bone regeneration. 
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Introduction 

Biomaterials have been widely explored to promote tissue regeneration, in 

part due to their ability to tune the extracellular environment surrounding both 

transplanted and host cells. Tissue engineers have explored a wide array of cues 

that can be presented to cells, including but not limited to growth factors, drugs, 

other cell types, extracellular matrix ligands, and mechanical factors 1-4. These 

efforts seek to improve transplanted cell viability, control cell presence both 

spatially and temporally, and regulate cell fate decisions, all issues that are 

facilitated with material systems. Despite the broad in vitro characterization of the 

impact of many of these cues on cells, translation of these strategies into the 

complex in vivo milieu has been challenging 5-8. 

One set of material cues that has garnered increasing interest is 

mechanical in nature, involving material properties such as stiffness, porosity, and 

topography 9, 10. Since it was first shown that adhesion substrate stiffness can 

influence mesenchymal stem cell differentiation, that observation has been 

extended to a variety of cell types and outputs, including stem cells of all germ 

layers and pluripotent stem cells 2, 11. Recently, we, among others, demonstrated 

that one mechanical property that had been previously ill-explored with regards to 

its effect on cells, the rate of substrate stress relaxation, is a regulator of cell 

spreading, proliferation, and osteogenic differentiation of encapsulated 

mesenchymal stem cells in vitro, likely due to an increased ability of cells to 

remodel the extracellular matrix on these substrates relative to purely elastic 

substrates 12-15.  
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This manuscript addresses the hypothesis that substrate stress relaxation 

can regulate bone regeneration in vivo. Bone regeneration could be impacted by 

the ability of stress relaxation to directly impact osteogenesis, or to the ability of 

cells to readily remodel and invade rapidly relaxing hydrogels.  Cell invasion into 

implants has previously been shown to be necessary for scaffold-based bone 

regeneration, motivating past work to design degradability and porosity into 

engineered implants to allow for cell migration 16.To test our hypothesis, human 

mesenchymal stem cells (hMSCs) were encapsulated in alginate hydrogels with 

different stress relaxation time-scales and implanted in rat calvarial defects. To 

examine the intrinsic ability of rapidly relaxing hydrogels to promote bone 

regeneration, these gels were also placed in defects without hMSCs.  Previous 

studies have demonstrated the ability of substrate stress relaxation to regulate 

osteogenic differentiation of mouse mesenchymal stem cells in vitro 14, but this 

effect has not been extended to hMSCs or to an in vivo setting. Calcium-

crosslinked alginate hydrogels were chosen as cell scaffolds, since alginate has 

been previously shown to allow for the independent control of initial elastic 

modulus and stress relaxation time 12, 14. Crosslinking guluronic acid residues on 

adjacent alginate chains by divalent cations allows for the maintenance of 

hydrogel microscale architecture independent of crosslinking density and confers 

viscous damping effects to the hydrogels due to the dynamic nature of the 

crosslink formation and rupture. Moreover, decreasing the molecular weight of 

the alginate chains allows for increased chain mobility within the gel mesh and 

thus a faster relaxation timescale 8, 12, 14. Alginate hydrogels were fabricated at an 
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initial stiffness slightly lower than has been reported to be optimal for osteogenic 

differentiation of MSCs 17 in order to sensitize the cells to the effect of the stress 

relaxation and ensure that stiffness effects did not dominate the mechanical cues 

delivered to the cells. The gels were modified with an RGD peptide motif to 

support cell adhesion but contained no exogenous growth factors or other soluble 

factors. A recent study featuring similar hydrogels showed that the pore size and 

RGD distributions between groups were not significantly different 14.  The 

particular model of bone regeneration was chosen due to its wide use in the field 

and the possibility of creating a critical-sized defect that does not require external 

stabilization 18. After explantation, defects that contained implants with relatively 

fast stress relaxation times showed markedly more bone formation than defects 

that contained implants with relatively slow stress relaxation times, as well as 

extensive matrix remodeling and hydrogel disappearance. Analysis of the early 

events in this healing process revealed that the fast-relaxing gels are dramatically 

remodeled within two weeks and in vitro studies confirmed that cells are better 

able to migrate into fast relaxing gels, yielding a new way to control scaffold 

invasion without the need for engineered chemical degradation or porosity. These 

results demonstrate that substrate stress relaxation can be a potent parameter for 

tissue engineers to use to optimize bone regeneration. 
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Results 

We first determined if the native environment of healing bone, the 

hematoma, would exhibit stress relaxation, to validate the potential physiologic 

relevance of this parameter for bone regeneration.  Human hematomas from adult 

donors were obtained from the clinic, and subjected to compression testing. These 

hematomas demonstrated an average relaxation time of ~195 seconds (Fig. 6A), 

confirming these human tissues demonstrate significant and rapid stress relaxation 

(Fig. 6A).  

 
 
Figure 6 
In vitro characterization of alginate hydrogels, and their effects on hMSC 
osteogenic differentiation. (A) Stress-time curves of human hematomas subjected 
to compression testing. Curves depict stress relaxation of hematomas held at 15% 
strain. Inset shows time to 50% of the initial stress in these curves. (B) Young’s 
modulus as determined by compression testing of slow and fast-relaxing alginate 
hydrogels. (Student’s t-test, n=4)  (C) Time to 50% stress relaxation at 15% initial 
strain for slow and fast-relaxing alginate hydrogels. (Student’s t-test, n=4)  (D) 
Extent of gel contraction after culture with encapsulated hMSCs for two weeks. 
(Student’s t-test, n=4) (E) Representative von Kossa staining for matrix 
mineralization between slow and fast-relaxing gels with encapsulated hMSCs in 
osteo-inductive medium after two weeks. Scale bar represents 300 µm. (F) 
Representative pseudo-colored EDS elemental maps for slow and fast-relaxing 
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gels with encapsulated hMSCs in osteo-inductive medium after two weeks. 
Orange depicts phosphorous and marks phosphate deposition, while green depicts 
carbon.  
 

Alginate hydrogels were fabricated from either high or low molecular 

weight polymer to yield distinct rates of stress relaxation, which bracket the rates 

seen among the hematomas, and their mechanical properties and impact on 

hMSCs in vitro were first compared.  Compression testing confirmed no 

statistically significant difference in the initial elastic moduli of fast and more 

slowly relaxing hydrogels (Fig. 6B). As expected, hydrogels fabricated with the 

high molecular weight alginate demonstrated significantly longer relaxation times 

than the low molecular weight hydrogels (Fig. 6C).  Next, hMSCs were 

encapsulated in the two types of alginate hydrogels and cultured in osteogenic 

induction medium for two weeks in order to assess the differences in 

differentiation of hMSCs in hydrogels with different stress relaxation times. Fast-

relaxing gels contracted significantly more than slow-relaxing gels, and, 

consistent with previous results with mouse stem cells, von Kossa staining of the 

hydrogels showed significantly more matrix deposition and mineralization for the 

fast-relaxing hydrogels, indicative of osteogenic differentiation of hMSC (Fig. 

6D,E) 14.  To confirm the increased mineralization in fast relaxing gels, energy 

dispersive X-ray spectroscopy (EDS) was performed to map elemental 

phosphorous in the interior of the hydrogels. Substantially more phosphorous was 

found in the fast-relaxing gels, consistent with the von Kossa staining, again 

indicating a greater osteogenic differentiation of hMSCs and subsequent mineral 

deposition in the fast-relaxing gels (Fig. 6F).  
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In order to assess the in vivo effects of substrate stress relaxation, both 

types of hydrogels containing hMSCs, as well as an empty defect control and a 

fast-relaxing hydrogel without cells, were implanted into a rat (RNU rat) critical-

sized (8mm) calvarial defect. For the sake of animal welfare, a slow-relaxing 

hydrogel without cells was omitted, as in vitro results suggested that the condition 

with cells would already perform sub-optimally 19. After three months, the rats 

were euthanized and the skulls were explanted and examined for bone formation 

using X-ray micro-computed tomography (µCT). An increase in new bone was 

found for the fast-relaxing hydrogels, and quantification of the new bone volume 

confirmed a statistically significant difference in the amount of new bone formed 

and the average percentage of the defect that was spanned by bone, when 

compared to the gels with slower relaxation (Fig. 7). As expected, the empty 

defects showed minimal bone regeneration, but intriguingly, the fast-relaxing gels 

without cells showed healing only slightly less than that of the fast-relaxing gels 

with cells, with this difference not statistically significant (Fig. 7). 
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Figure 7 
Micro-computed tomography analysis of new bone formation after implantation 
of hydrogels in rat calvarial defect model. (A) Representative uCT renderings of 
rat calvaria three months post-injury. Scale bar - 1cm. (B) Maximum fraction of 
wound spanned after three months calculated by taking the maximum fraction of 
bone occupying any line drawn through the center of the defect. (One-way 
ANOVA, Tukey’s post-hoc test, n=3-4) (C) Fraction of the original wound area 
inhabited by new bone after three months. (One-way ANOVA, Tukey’s post-hoc 
test, n=5-8). 

a 

b 

c 

Fast Relaxing Slow Relaxing 

Fast 
Relaxing 
w/ Cells 

Slow 
Relaxing 
w/ Cells 

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

No 
Implant 

Fast 
Relaxing 
w/o Cells 

Fast 
Relaxing 
w/ Cells 

Slow 
Relaxing 
w/ Cells 

No 
Implant 

Fast 
Relaxing 
w/o Cells 

Fraction 
of Defect 
Filled by 

New Bone 

Maximum 
Fraction 
of Defect 
Spanned 
by New 
Bone 

p < 0.05 

p < 0.05 



 42 

The histology of the defects was next examined to assess the structure of 

the new bone (Figs. 3-4). Masson’s Trichrome staining revealed a difference in 

the thickness of the tissue residing in the defect site, with a nearly two-fold 

greater thickness in the slow-relaxing case  (Fig. 8A-C).  

 
Figure 8 
Histological staining and quantification of calvarial wound site remodeling three 
months post-injury. (A) Masson’s Trichrome staining of defect site in fast-
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relaxing (A) and slow-relaxing (B) gel conditions. Scale bar – 2mm in A and B. 
(C) Quantification of thickness of tissue residing in defect site, as determined by 
measuring tissue sections stained with Masson’s Trichrome at various points 
along the membrane that were incident with the implant (Student’s t-test, n=8-10). 
Error bars represent S.D. (D) Safranin O stain of defect site in slow-relaxing (D) 
and fast-relaxing (E) cases carrying cells after two weeks of implantation. Scale 
bars – 1mm. Residual alginate stains red and is marked “a.” (F) Quantification of 
fibroblast infiltration into hydrogels at one week in vitro after seeding on surface 
of gel (Student’s t-test, n=15 measurement sites). Error bars represent S.D. 
 

In order to gauge the contribution of hydrogel loss to this thickness effect, 

fast and slow-relaxing hydrogels bearing cells were explanted after two weeks. 

Safranin O staining for residual alginate showed an intact gel in the slow-relaxing 

case, but dramatic remodeling and fibrous tissue infiltration with little remaining 

alginate in the fast-relaxing case (Fig. 8D,E). Hypothesizing that this effect could 

be due to the ability of surrounding cells to infiltrate the scaffold, an in vitro 

experiment measuring the infiltration depth of fibroblasts initially seeded on top 

of the gels after one week showed that cells were able to migrate nearly twice as 

far into the gel in the fast-relaxing case, consistent with the notion that stress-

relaxation modulates the ability of cells to remodel and invade a scaffold (Fig. 

8F). 

H&E, van Gieson, and Masson’s Trichrome stainings of three month 

histology revealed that the new bone formed in the fast-relaxing condition with 

cells was mature, featuring collagen-rich and relatively acellular regions with 

sparse osteocytes (Fig. 9A-C). Furthermore, the presence of elongated osteoblasts 

on the periphery of the new bone, and osteoid regions rich in disorganized 

collagen suggest active bone growth. In contrast, the slow-relaxing condition 

showed sparse, disorganized collagen, without prominent bone growth centers or 



 44 

mature bone (Fig. 9A-C). Additionally, Alcian Blue staining for residual alginate 

revealed little remaining hydrogel in the fast-relaxing case, whereas significant 

residual hydrogel was noted in the slow-relaxing case (Fig. 9D). Coupled with a 

significantly larger defect thickness for the slow-relaxing condition, these results 

confirm that the differences in hydrogel remodeling seen at two weeks are 

maintained through three months (Fig. 8C, 4D). 

 
 

 
Figure 9 
Histological staining of calvarial wound sites three months post-injury. (A) 
Representative high and low magnification images of Hematoxylin and Eosin 
stained sections demonstrating new bone in the fast-relaxing case and a 
disorganized tissue in the slow-relaxing case. ‘os’ labels the osteoid region, ‘oc’ 
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labels osteocytes, and ‘ob’ labels elongated, activated osteoblasts on the new bone 
growth front. Low-mag scale bar represents 360 µm and high-mag scale bar 
represents 180 µm. (B) Representative Masson’s trichrome staining demonstrates 
mature bone (‘m’) in the fast-relaxing case and disorganized collagen in the slow-
relaxing case. Scale bar represents 360 µm. Note the discrepancy in scale due to 
remodeling effects noted in Figure 3. (C) Representative Van Gieson staining 
indicates mature bone (‘m’) in the fast-relaxing case and disorganized collagen in 
the slow-relaxing case. (D) Representative alcian blue staining to identify residual 
alginate hydrogel (‘g’) reveals small remnants in the fast-relaxing case and large 
remnants in the slow-relaxing case. Scale bar represents 360 µm in the fast-
relaxing case and 720 µm in the slow-relaxing case. 
 

In order to gauge the relative contribution of rat versus human cells to the 

new bone formed in the conditions with transplanted cells, and thus determine the 

ability of the remodeled scaffold environment to support the viability of 

transplanted cells, a human mitochondria stain was utilized to label all progeny of 

the transplanted human cells (Fig. 10).  
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Figure 10 
Localization of progeny of transplanted cells in calvarial defect site three months 
post-injury. (A) Human mitochondrial staining in defects treated with fast-
relaxing gels reveals human cells on the new bone periphery. The left panel 
depicts imaging of the stain used for human mitochondria, while the right depicts 
the mitochondria overlaid with nuclei stain. The inset shows a higher 
magnification version of the new bone interface. Scale bar represents 225 µm (B) 
Human mitochondrial staining in tissues treated with slow-relaxing gel depicting 
an absence of human cells. (C) Positive control for human mitochondrial staining 
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in human bone section. (D) Fraction of total cellular nuclei on the new bone 
perimeter co-localizing with human cells (Student’s t-test, n=4). No human cells 
were detected in the slow-relaxing case. Error bars represent S.D.  
 

Human cells were markedly absent from the slow-relaxing condition, while a 

small number of human cells were localized to the periphery of new bone in the 

fast-relaxing condition (Fig. 60A, B). Quantification of the number of cell nuclei 

on the perimeter of new bone islands co-localizing with human cells, as a measure 

of the contribution of the transplanted cells to new bone growth, revealed that 

20±11% of cells along the new bone periphery were of human origin (Fig. 60D).  

 

Discussion 
 

These results demonstrate that substrate stress relaxation can be a potent 

regulator of bone formation in vivo. Specifically, rat calvarial defects treated with 

stiffness-matched hydrogels carrying hMSCs or cell free showed significantly 

more bone formation after three months if the hydrogels exhibited a relatively fast 

stress relaxation time. As a recent study showed that substrate stiffness can play 

an important role in bone regeneration in vivo 19, those results combined with 

those of the present study suggest that substrate stiffness together with the stress 

relaxation timescale can be tuned to optimize the bone-forming capabilities of 

biomaterials. 

The new bone formed in defects with fast-relaxing implants exhibited a 

morphology of sparse osteocytes, mineralized matrix and osteoid, indicative of 

the activation of a robust bone regeneration cascade. Given the complicated 

material and biological environment of bone, the absence of any of these elements 
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would have suggested that the healing was not taking place in a concerted, 

directed way. This mature morphology is comparable to the results of previous 

studies that delivered growth factors such as BMP-2 to defect sites 20, a result that 

implies a great relative importance of extracellular mechanical properties to bone 

formation. Based on the apparent potency of both mechanical and biological 

factors in inducing bone formation, an approach combining mechanical 

optimization and growth factor delivery, such as one recently reported in vitro, 

could be a promising approach to bone healing in the future 21. That being said, 

optimizing each approach in perfect isolation may not be possible, as it has been 

shown that the interaction between soluble factors and biomaterials, and the 

resulting differences in the mode of factor presentation to cells are potent 

regulators of cell behavior 22. In this situation, biomaterial systems such as that 

used in this study that allow for the independent control of key material properties 

will become increasingly important. 

The presence of human-derived cells at the new-bone-periphery in 

conditions with fast-relaxing gels, but absence of human cells in slow-relaxing 

conditions indicates a role for fast-relaxing gels in providing survival cues to the 

transplanted cells as well as a persistent role for the remaining cells in the bone 

healing cascade. Moreover, the presence of these cells in the zone of new bone 

formation and not in the mature bone suggests that these cells are actively 

participating in new bone growth. The same fast-relaxing gels without cells 

demonstrated slightly less regeneration than with cells, supporting a role of the 

transplanted human cells in new bone formation. A previous study in which 
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MSCs were encapsulated in alginate hydrogels similar to the slow-relaxing 

condition here and implanted into subcutaneous pockets in rats reported a marked 

absence of transplanted cells after just two weeks 23. In contrast, a study in which 

MSCs were encapsulated in fibrin gels, which are known to demonstrate stress 

relaxation, and then implanted into a femoral defect model showed significant 

persistence of the transplanted cells after four weeks 24. The current study 

suggests stress relaxation as a possible mechanism underlying the discrepancy 

between the past studies. Additionally, previous work showing the effects of 

adhesion substrate degradation rate on the ability of transplanted osteoblasts to 

form bone in an ectopic site could perhaps also be related to effect of stress 

relaxation, as the mechanisms of stress relaxation and degradation in that study 

were coupled 25.  

This study introduces substrate stress relaxation rate as a key regulator of 

bone regeneration. Several studies using transplanted MSCs have shown the 

influence of hydrogel degradation on bone regeneration 26, 27, and the findings 

here raise the possibility that altered relaxation of the hydrogels as they degrade 

over time could be contributing to some of the results found in those studies. 

Additionally, in the early stages of bone fracture healing, periosteal MSCs are 

known to migrate into the hematoma and participate in intramembranous 

ossification, differentiating into osteoblasts 28, 29. This study suggests the stress 

relaxation property of hematomas could mediate both MSC invasion into sites of 

bone defects and their osteogenic differentiation during bone healing, though such 

effects are surely mediated by myriad factors such as defect stability and size. 
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Previously, tissue engineers were limited to chemical and biological factor 

delivery in order to influence bone regeneration, but as the findings of this and 

another recent study indicate, tissue engineers can leverage the physical properties 

of biomaterials, in addition to chemical/biological cues, to improve bone 

regeneration 19. 
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Materials and Methods 

Alginate Hydrogels 

Alginate type LF20/40 (FMC Biopolymer) was used as-received (average 

molecular weight of 280kDa) for the slow-relaxing hydrogels and was irradiated 

with an 8mRad cobalt source to form the fast-relaxing hydrogels (average 

molecular weight of 35kDa).  Irradiation lowers the molecular weight while 

maintaining the same G to M block ratio 8. Alginates were modified with 

GGGGRGDSP peptides (Peptide 2.0) at a ratio of 20 peptides per alginate with 

standard carbodiimide chemistry as described previously 8. After modification, 

alginates were dialyzed against a NaCl gradient, treated with activated charcoal, 

and sterile-filtered. After lyophilization, all alginate was dissolved in serum-free 

DMEM (Lonza) at 2.5%.  

Hydrogels were cast by rapidly mixing the alginate solution with a CaSO4 

slurry via two syringes and ejecting the mixture between two glass plates, where it 

gelled over 1.5 hours. Slow-relaxing gels consisted of 2% LF20/40 alginate and 

20mM Ca, while fast relaxing gels consisted of 2% LF20/40 8mRad alginate and 

42mM Ca. This difference in calcium concentration has previously been noted to 

have no effect on mesenchymal stem cell viability and differentiation 14. 8mm 

disks were then cut from the gel using a biopsy punch.  

 

Hydrogel Mechanical Characterization 

Hydrogels were fabricated as described above at a thickness of 2mm and 

subjected to compression testing using a mechanical testing device (Instron). Gels 
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were compressed at a strain rate of 1mm/min and the Young’s Modulus was 

calculated as the best-fit slope of the first 5-15% of the resulting stress/strain 

curve. At 15% strain, the strain was held and the time required for the stress to 

decay by a factor of two was noted. 

 

In Vitro hMSC Differentiation 

Human mesenchymal stem cells (Rooster Bio) were encapsulated in slow 

and fast relaxing hydrogels at a final concentration of 15 million cells/mL gel, 

gels were punched into disks, and placed into 24-well plates. The encapsulated 

cells were cultured in osteogenic differentiation medium (Stempro, Life 

Technologies) and cell culture medium was changed every 3-4 days for two 

weeks. 

At two weeks, samples were fixed in 4% paraformaldehyde for 45 min on 

an orbital shaker, exposed to increasing concentrations of OCT in a sucrose 

solution, and flash frozen for cryosectioning. Gels were sectioned at a thickness of 

50 µm before von Kossa Staining. Briefly, sections were incubated in a 1% silver 

nitrate solution under ultraviolet light for 20 seconds, rinsed with DI water, and 

incubated in 5% sodium thiosulfate for 5 min. 

 

Elemental Analysis of hMSC Differentiation 

A Tescan Vega environmental scanning electron microscope (SEM) with 

a Bruker XFlash 5030 energy dispersive X-ray spectrometer (EDS) was used for 

elemental characterization of in vitro hMSC differentiation. Gels were prepared in 
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frozen blocks as they were for von Kossa staining and then were sectioned at a 

thickness of 100 µm onto a p-type silicon wafer. Samples were washed in water, 

followed by drying under vacuum overnight. Elemental analysis and mapping of 

phosphorus were performed at an accelerator voltage of 20 keV and a pressure of 

12 Pa. 

 

Hydrogel Implantation in Rat Calvarial Defect Model 

All animal experiments were performed in compliance with National 

Institutes of Health guidelines and were approved by the Institutional Animal 

Care and Use Committee at Harvard University. The rat calvarial defect surgery 

was performed on four-week old RNU Rats (Charles River Laboratories) as 

described previously 19. Briefly, animals were anesthetized, and their heads were 

shaved. A sagittal incision was made along the head and the exposed periosteum 

was bluntly dissected to the level of the superior temporal line bilaterally. 8mm 

circular osteotomies were drilled under copious irrigation and the bone removed 

from the rat calvarium while maintaining the underlying dura intact. 8mm 

hydrogels encapsulating hMSCs at a density of 10 million cells/mL were 

implanted into the resulting void. Fascia and skin layers were sutured separately 

in order to keep the gels stationary.  

After two weeks or three months, animals were euthanized with CO2 and 

decapitated. The calvarium was removed using bone shears and placed in 10% 

formalin for 24 hours. Samples were then stored at 4°C in PBS until further use. 
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X-Ray Micro-Computed Tomography 

Rat calvaria were wrapped in paraffin to prevent dehydration and scanned 

in an X-tek HMXST225 micro-computed tomography system at the Harvard 

University Center for Nanoscale Systems. Samples were reconstructed using CT 

Pro and rendered using VG Studio Max software. For new bone quantification in 

VG Studio Max, an 8mm diameter cylinder volume of interest was centered over 

the defect site, with a height equivalent to the thickness of the adjacent bone. The 

volume within the cylinder encapsulated in an isosurface rendering was 

calculated, and the percent of defect filled was treated as the fraction of the 

cylinder, thus representing the original defect volume, filled by the new bone. The 

spanned fraction was calculated by drawing a line through the center of the defect 

and calculating the fraction of the original defect diameter that contains bone. The 

reported maximum fraction is the maximum per animal of all of these lines. 

 

Histology 

After tomography, samples were sent to the Dana Farber Cancer Rodent 

Histopathology Core for paraffin embedding and sectioning, as well as 

Hematoxylin and Eosin, Van Gieson, Masson’s Trichrome, and Alcian Blue 

staining. Imaging was performed on a Nikon histology microscope. Membrane 

thickness quantification was obtained by using the measure feature in ImageJ 

(NIH). 
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Immunofluorescence staining was performed using anti-human 

mitochondria primary antibodies (Abcam). Paraffin was removed from sections 

with two 5 minute xylene washes, and slides were rehydrated in successively 

lower concentrations of ethanol in DI water. For human mitochondria antigen 

retrieval, samples were incubated in sodium citrate buffer, pH 6.0, at 95°C for 

twenty minutes. Slides were blocked in 10% normal goat serum, 1% bovine 

serum albumin, and 0.05% Tween-20 in PBS for 1 hour at room temperature, and 

incubated in primary antibody solution using the manufacturer’s recommended 

concentrations overnight at 4°C. Slides were then incubated in goat anti-mouse 

Alexa 555 secondary antibodies (Abcam) for 1 hour at room temperature and 

counterstained with Hoescht. Imaging was performed on a Carl Zeiss LSM 710 

upright confocal microscope and pseudocolored using ImageJ. Quantification of 

human cells was obtained in ImageJ by first locating fields of view that 

previously contained hydrogel, thresholding and binarizing the nuclei, followed 

by masking the mitochondria channel and counting the masked regions that 

contained red signal, thus yielding the fraction of nuclei that belonged to human 

cells. Since human cells were not found outside of these fields, these quantities 

represent the composition of cells in the neighborhood of the implanted hydrogel.   

 

In Vitro Scaffold Invasion Assay 

Slow and fast relaxing hydrogels were fabricated as noted above and were 

cast on coverslips. Coverslips were placed in wells and NIH 3T3 fibroblasts were 

seeded at a density of 10,000 cells per square centimeter by pipetting a cell 
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suspension on top of the gels. After twelve hours, the hydrogels were moved to 

new wells to remove non-adherent cells and the hydrogels were cultured for one 

week at 37°C. The cells were then fixed with 4% paraformaldehyde for 15 

minutes, permeablized with 0.1% Triton X-100 and stained for 15 minutes with 

rhodamine-tagged phalloidin. The gels were then placed in custom PDMS gaskets 

on microscope slides and imaged using a Zeiss LSM 710 upright confocal 

microscope. Z-stacks were captured and the distance from the hydrogel surface to 

the deepest cell was sampled at five random locations across three different z-

stacks using Zeiss ZEN software. 
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Uncovering Complexity in Substrate Sensing Networks 
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Abstract 
 
        The extracellular matrix (ECM) within tissues and organs, and biomaterials 

that aim to mimic the ECM for therapeutic applications, have been subject to a 

great deal of experimentation that has revealed key features that regulate cell fate 

and various aspects of function[1-11]. However, a highly reductionist approach has 

largely been taken to date, with little effort to understand the interplay and overlap 

among these various features in terms of how and whether they regulate cell 

behavior. The lack of a global view of substrate sensing raises questions about our 

understanding of the number and extent of cellular processes that are sensitive to 

the substrate, which could impact both the design of new therapeutic biomaterials 

and the responses to cell and molecular therapies in different tissues. Here we 

used a material system that allows one to independently control three key 

variables, substrate stiffness, stress relaxation, and the adhesion ligand density 

presented to cells in three-dimensional culture to perform a global transcriptomic 

analysis characterizing early gene expression changes in mesenchymal stem cells 

(MSCs). We found that each of these variables dramatically impact early MSC 

gene expression, in a highly coupled manner, although the number of 

differentially expressed genes as each variable is independently altered varies by 

orders of magnitude. Gene co-expression network analysis revealed networks that 

involve overlap with canonical signaling pathways as well as crosstalk with 

metabolic, cell cycle, immune, and morphogenesis-related processes. Stemming 

from these networks, MSCs were found to modulate their immunosuppressive 

capacity in response to inflammatory cytokines as a function of substrate stiffness. 
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Our findings highlight the importance of crosstalk resulting from the sensing of 

different material parameters and how the material background of the cell can 

contextualize molecular inputs, which could have important implications for 

understanding the substrate contextualization of molecular therapies. 

Additionally, as biomaterials engineers move to drive desired cell phenotypes 

using defined material specifications, these results introduce the possibility of 

developing a quantitative biomaterial design framework. 
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 One of the most obvious differences between tissues in the body is their 

distinct mechanical and chemical properties, including stiffness.  Stiffness has 

been shown to impact the fate of various cell types in culture and to impact tissue 

regeneration in vivo[12, 13]. However, many materials systems vary stiffness in 

ways that are coupled to other material properties, or only allow two-dimensional 

culture. Here we use ionically-crosslinked alginate hydrogels since they afford 

independent control of multiple material properties presented to cells in three-

dimensional culture. Cell adhesion was enabled by covalently decorating the 

polymer with fibronectin mimicking RGD peptides[14]. MSCs are widely used 

today in various basic and clinical studies, with over 600 ongoing clinical trials[15], 

and here, a clonally-derived mouse MSC line was used to minimize the well 

described effects of cell-cell heterogeneity found in primary cultures[16]. MSCs 

encapsulated in these hydrogels maintained high viability and were distributed 

uniformly throughout the hydrogel (Fig. 11a, 16). Cells were cultured in 

hydrogels at both a low and a high stiffness that were previously shown to 

influence MSC fate choice (Fig. 11b)[5, 7]. The zonal mechanism of alginate 

crosslinking has been previously demonstrated to allow for the maintenance of 

hydrogel nanostructure even at different levels of crosslinking, minimizing 

differences in porosity and diffusion through the gels[17]. After 40 hours, we 

performed RNA-seq in order to, in a global and unbiased way, address the early 

events involved in MSC stiffness sensing. Hierarchical clustering by gene 

expression led to clear grouping of biological replicates by stiffness, as expected 

(Fig. 11c). Differential expression analysis revealed 241 differentially expressed 
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(DE) genes between soft and stiff materials, including the known 

mechanosensitive effectors zyxin, mmp9 and mmp13, as well as transcription 

factors such as E2F7 and TEAD4 (Fig. 11d,e). Enrichment analysis for gene 

ontology processes run on the 241 DE genes showed significant enrichment for 

cell cycle, morphogenetic, and metabolic processes (Fig. 11f), consistent with 

previous studies of the influence of stiffness on cell function.  

 In order to gain broader insight into the effects of stiffness, we used 

MetaCore to infer a regulatory network seeded from the DE genes, and from that 

network, identified significantly enriched regulatory hubs (Fig. 11g). Hubs were 

identified that relate to MAPK signaling, stem cell maintenance, and the cell 

cycle, as well as a set of transcription factors that included several early 

intermediate genes and that encompassed a large space of genetic targets[18, 19]. 

While consistent with previous studies concerning the role of substrate stiffness in 

regulating metabolism and the cell cycle[12], the identification of modular 

signaling hubs such as androgen receptor as well as promiscuous transcription 

factors such as E2F1 suggest that stiffness-sensing could be involved in crosstalk 

with a number of other cellular processes.  
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Figure 11: RNA-seq analysis of MSC stiffness-sensing. A) Schematic of MSCs 
encapsulated in alginate hydrogels with representative phalloidin stain showing 
actual encapsulated cell distribution. B) Young’s Moduli of soft and stiff alginate 
hydrogels. C) Dendrogram of RNA-seq transcripts per million (TPM) showing 
clustering of replicates by stiffness. The dendrogram uses a complete linkage and 
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 66 

Euclidean distance metric. Numbers indicate replicates, where 0-4 correspond to 
soft hydrogels and 5-10 correspond to stiff hydrogels. D) Volcano plot showing 
the log2 fold-change in expression of individual genes in soft versus stiff gels 
versus the FDR-adjusted p-value for the 8178 filtered genes. Differentially-
expressed genes (p<0.05 and log2FC>1) are shown in blue and selected DE genes 
are shown in orange and labeled. E) TPM of soft versus stiff samples across all 
filtered genes. DE genes are highlighted in blue. F) PathwayMap enrichment 
analysis of DE genes performed using MetaCore software using a hypergeometric 
test. P-values are FDR adjusted. G) Analysis of highly connected hub genes 
performed using MetaCore software. Shown are significantly (FDR p-value<0.05) 
enriched hub genes in sub-networks of up to 50 nodes inferred by seeding with 
DE genes. 
 

 Next we sought to understand how stiffness interacts with stress relaxation 

and ligand density. Adhesion ligand density was varied from 200 μM to 1500 μM 

(Fig. 17)[14], spanning an estimated physiologic range (calculations in Supp. 

Methods) and stress relaxation from t½ of 35s to 790s at 15% strain, comparable 

to stress relaxation values measured in coagulated bone marrow and liver, 

respectively (Fig. 17)[5]. In order to isolate the effects of each of the three 

parameters, hydrogels were prepared in eight combinations of the low and high 

values for each (Fig. 12a), and we again performed RNA-seq on incorporated 

cells. Hierarchical clustering on the pairwise Spearman correlations between each 

pair of materials revealed, surprisingly, that materials clustered first by ligand 

density, then by stress relaxation, and finally by stiffness (Fig. 12b). Pearson 

correlations of gene expression demonstrated minimal response of the cells to the 

calcium concentrations in different gels (Fig. 18).  
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Figure 12: Transcriptomic comparison of material parameter sensing. A) 
Schematic of experimental conditions. Hydrogels were fabricated in each of the 
eight combinations of the low and high parameter values. B) Hierarchical 
clustering of pairwise spearman correlations between each material condition. 
Correlations were calculated across all filtered genes using the sequencing 
replicates. Hierarchical clustering uses a complete linkage and Euclidean distance 
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metric. Dark purple corresponds to high absolute value Spearman correlation. 
White corresponds to low absolute value Spearman correlation. Fast, fast-
relaxing; slow, slow-relaxing; LLD, low adhesion ligand density; HLD, high 
adhesion ligand density. C) Principal component analysis of gene expression 
across all replicates for each material. Principal components 1 and 3 correspond to 
ligand density and stress relaxation separation, respectively. Percentages indicate 
percent of total variance explained by that component. Fig. 20 shows variance 
explained by all principal components. Triangles, slow-relaxing; circles, fast-
relaxing; Green, high ligand density; purple, low ligand density; Dark, stiff; Light, 
soft. D) Venn diagram of DE genes for each material parameter comparison after 
controlling for other parameters. The number of DE genes shared by two 
parameters are indicated in the overlap in circles. E) Number of DE genes for all 
pairwise material comparisons. Circle area corresponds to the number of DE 
genes as indicated in legend. F) Fraction of DE genes from e) described by 
deconvolved genes in d) for all pairwise material comparisons. Green, DE genes 
not found in the sets from (d); Blue, DE genes from ligand density set from (d); 
Red, DE genes from stress relaxation set from (d); Purple, DE genes from 
stiffness set from (d). Yellow, DE genes from overlapping ligand density and 
stress relaxation set from (d). G) Representative changes in network topology for 
comparing ligand density as a function of other background material parameters. 
The background network is inferred from the four ligand density comparisons 
(fast-relaxing, soft; fast-relaxing, stiff; slow-relaxing, soft; slow-relaxing, stiff) 
using Metacore software. These network nodes are arrayed in circles and 
connections between nodes correspond to Metacore-inferred regulatory 
connections for comparing ligand density in the specified material background. 
The network is visualized using Cytoscape. 
 

Principal component analysis identified two principal components that 

separated conditions based on ligand density and stress relaxation, respectively, 

but failed to separate conditions by stiffness. Intriguingly, the low ligand density 

condition that clustered most-closely to the high ligand density conditions was 

fast-relaxing (Fig. 12c), consistent with previous reports that substrate stress 

relaxation leads to adhesion ligand clustering[5]. We next used a linear model to 

extract DE genes affected by one of the parameters regardless of the background 

parameters. A venn diagram of the resulting deconvolved DE genes strikingly 

finds a large discrepancy in the number of DE genes for the different parameter 

comparisons (Fig. 12d). Mirroring the hierarchical clustering of gene expression 
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previously noted (Fig. 12b), ligand density drove the largest number of DE genes, 

followed by stress relaxation and then stiffness. qPCR on selected transcripts and 

material conditions mirrored the sequencing results (Fig. 18). We then performed 

all contrasts to get the number of DE genes for each material pairwise 

comparison, and found that the number of DE genes varies by over an order of 

magnitude, between 44 and 1679. This number far exceeded that of the 

deconvolved gene sets (Fig. 12e), which suggests the superposition of different 

independent material sensing mechanisms. We then mapped the deconvolved 

gene sets to those from each material comparison and found that the covariation 

of multiple material parameters gives rise to a large increase in the number of DE 

genes not noted in the deconvolved sets. Moreover, the relative contribution of 

these gene sets varied dramatically based on the background material parameters, 

indicating the presence of coupling and switching mechanics in these material-

sensitive gene networks (Fig. 12f). While many studies have focused on the 

effects of specific substrate parameters such as stiffness, few control for the 

material background parameters. This contextualization of a mechanosensing 

effect is analogous to other biological processes, such as alteration of growth 

factor activity by integrin binding[20]. We next explored how varying one material 

parameter effects the others by taking the DE genes from the four ligand density 

comparisons in our dataset, each having a different combination of background 

stress relaxation and stiffness, and using Metacore to infer a regulatory network 

taking into account all of these comparisons. We found that the regulatory 

relationships are highly dependent on the background parameters (Fig. 12g).  
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Figure 13: Cortical Neuron Progenitor Differential Expression. A) Venn 
Diagram of the number of DE genes tied to each material parameter. B) Heatmap 
of the number of DE genes for all pairwise comparisons. Darker color indicates 
more genes. C) Fractions of DE genes for each pairwise comparison 
corresponding to deconvolved genes from A). D) Metacore PathwayMap terms 
corresponding to the deconvolved gene sets from A) for each of the material 
parameters. 
 

 In order to test whether similar relationships generalized to different cell 

types, we again performed RNA-seq on human iPS-derived cortical neuron 

progenitor cells (NPCs) cultured in alginate hydrogels with all combinations of 

low and high stiffness, stress relaxation, and ligand density. We adjusted the low 

and high stiffnesses used to 1kPa and 10kPa, respectively to reflect the stiffnesses 

found in the CNS. We found that the deconvolved gene sets tied to each 

parameter obeyed a different relationship to that of the MSCs, with stress 

relaxation, then stiffness, then ligand density contributing the most DE genes, 

although we found more overlap among the different parameters for these cells 

(Fig. 13a). Mirroring the MSCs, we also found large discrepancies in the number 

of DE genes across all pairwise material comparisons and again noted the 

dependence of the response to one parameter on the background parameters (Fig. 

13b). Examining the composition of these DE genes revealed that, as with the 

MSCs, responses to combinations of material parameters result in the differential 

expression of many genes not otherwise found in the deconvolved sets. However, 

the presence of DE genes corresponding to the overlap of these deconvolved sets 

was enhanced (Fig. 13c). Metacore PathwayMap analysis of the deconvolved 

gene sets revealed terms for neurotransmitter secretion, cytoskeletal remodeling, 

cell cycle, immune signaling, and pathologies such as Alzheimer’s Disease, 
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suggesting that substrate sensing could play a role in regulating the physiology of 

the CNS (Fig. 13d). It should also be noted that he list of DE genes for the NPCs 

includes upwards of forty drug targets. Testing the efficacy of these drugs as a 

function of the microenvironmental mechanical properties could give insight into 

mechanical regulation of drug responses in vivo and possibly provide clues for 

how to enhance the efficacy of these drugs. The data from these neural 

progenitors is consistent with the view of substrate sensing as a complex, coupled, 

and context-dependent process. 

 Since certain features of regulatory networks might not be reflected in 

differential-expression analyses, weighted gene co-expression analysis[21] 

(WGCNA) was performed on the MSC data to identify modules of highly 

coexpressed genes that correspond to the sensing of each parameter (Fig. 14a). 

The three modules with the strongest correlations to our parameters of interest 

were chosen for further analysis (Fig. 19). Plotting the average module 

significance for each module as a function of the material confirmed the 

correspondence of each module to the parameter of interest (Fig. 14b). Metacore 

PathwayMap enrichment analysis on the member genes for these modules 

revealed processes involving cytoskeletal remodeling, cell adhesion, and PDGF 

signaling (Fig. 14c). Inspection of the top hub genes in these modules revealed 

modular genes involved in signal transduction and protein transport. Of particular 

note were Klf6 and Klf4 found in the ligand density and stiffness-associated 

modules, respectively, both of which have been shown to regulate stem cell 

differentiation. Also of note in the stiffness module were the immune related 
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kinase Prkra and the YAP target gene Ankrd26, while Ptges2, a key regulator of 

MSC immunomodulation was noted in the stiffness module (Fig. 14d). The 

correlation of each of these modules to the others identified by WGCNA, along 

with the corresponding ontology annotation provided a quantitative metric for the 

inferred regulatory connectedness of the sensing of a material property with other 

cellular processes (Fig. 14e). Intriguingly, we found that certain immune-related 

processes such as PDE4 expression, TNF-induced NFkB signaling, and IL-3 

signaling were enriched in modules with strong correlations to the one of the 

modules of interest (Fig. 14e). These results were used to inform a putative 

limited network of material-sensitive genes that again revealed the prominent 

presence of MAPK, Wnt, and TGFb signaling pathways, and genes involved in 

cell adhesion such as FAK and integrins was noted (Fig. 14f). These results are 

consistent with studies linking each of these pathways to substrate-sensing[1, 12]. 

Since a large number of ligands activate these pathways, including many drug 

targets, implications for crosstalk between molecular signaling and substrate 

sensing are potentially far reaching[22-24].  
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Figure 3: Weighted gene co-expression analysis of material parameter sensing 
networks. A) Cluster dendrogram of gene expression showing module 
identification from WGCNA analysis using an unsigned network and a soft 
thresholding parameter of 10. Genes appear on the horizontal axis and are 
clustered based on correlation across the RNA-seq dataset. Module colors 
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correspond to the clusters of coexpressed genes chosen from the dendrogram 
using the soft thresholding procedure. B) Selection of modules that most closely 
map to ligand density, stiffness, and stress relaxation. Average module 
significance is plotted as a function of each material, showing the correspondence 
between the module and that parameter of interest. These modules are identified 
in Fig. 19. C) Top Significant Metacore Enriched Pathway Maps for the member 
genes of the three modules of interest. D) Most significant hub genes for each 
module of interest. Genes were identified by the WGCNA networkScreening 
function as having high intramodular connectivity and correlation to the 
parameter of interest for each module (stiffness, stress relaxation, ligand density). 
E) Heatmap showing absolute value of spearman correlations between the 
turquoise, orange-red, and dark red modules and all other modules, calculated by 
correlating the expression levels of genes for each module. Module member genes 
for select comparisons showing particularly high or low correlations to the 
turquoise, orange-red, and dark red modules were selected and the most 
significant Metacore PathwayMaps were identified. Blue corresponds to high 
correlations and white to low correlations. F) Putative gene network seeded using 
the top hub genes from each of the modules corresponding to ligand density, 
stiffness, and stress relaxation (turquoise, red-orange, dark red). Enriched sub-
networks were inferred using Metacore software and the three most significantly-
enriched (highest z-score) sub-networks were chosen and merged to arrive at the 
network shown. Connections corresponding to the Wnt (teal), TGFb (orange), 
VEGF (pink), NFkB (brown), Jak/STAT (yellow), IGF (green), and MAPK 
(purple) pathways are highlighted. 
 

Inspection of the inferred gene networks, regulatory hubs, and enrichment 

analyses revealed a link between substrate sensing and immune modulation. 

While the influence of substrate properties on MSC differentiation has been 

widely studied, an understanding of their influence on immunosuppresion is 

lacking, in spite of the many clinical trials exploiting this function of MSCs[10]. 

We chose to focus on NF-kB, as it is responsive to substrate stiffness, acts as a 

signaling hub for immunosuppression[25, 26], and its enrichment in our inferred 

material-responsive networks suggests that substrate stiffness could affect NF-kB. 

We first selected a stiffness comparison from the RNA-seq data and performed 

Metacore network analysis on the DE genes. Inspection of the significant sub-
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networks revealed a network linking cell adhesion to an NFkB hub via the 

PI3K/Akt pathway (Fig. 15a).  

 
 
 
Figure 15: Effects of substrate stiffness on MSC immunosuppressive and 
differentiation markers. A) Network identified by Metacore AnalyzeNetwork 
function seeded with DE genes from RNA-seq data in soft vs. stiff slow-relaxing, 
low ligand density hydrogels. This network was selected as having enriched 
immune-related gene ontology processes as well as crosstalk between an NFkB 
hub and a cell adhesion hub. Network was visualized using Cytoscape. B) 
Significantly enriched inferred transcription factor hubs identified by Metacore 
after seeding with DE genes from RNA-seq data in soft vs. stiff slow-relaxing, 
low ligand density hydrogels. C) (Left) Overlaid representative flow cytometry 
histograms of pNFkB-p65 expression in MSCs stimulated for 4 days in soft or 
stiff slow-relaxing, low ligand density hydrogels with or without IFNg and TNFa. 
Orange, untreated (U), soft; Indigo, treated (T), stiff; Green, untreated (U), stiff; 
Red, treated (T), soft. (Right) Quantification of % pNFkB-p65+ cells. Green, with 
stimulation. Blue, without stimulation. (One-way ANOVA, Tukey post-hoc test, 
** p<0.01). D) Percentage of MSCs positive for IDO and COX-2, respectively, 
after stimulation for 4 days in soft or stiff slow-relaxing, low ligand density 
hydrogels with or without IFNg and TNFa. Green, with stimulation. Blue, without 
stimulation. (One-way ANOVA, Tukey post-hoc test, * p<0.05, ** p<0.01). E) 
Percentage of MSCs positive for TGFb and SDF-1, respectively, after stimulation 
for 4 days in soft or stiff slow-relaxing, low ligand density hydrogels with or 
without IFNg and TNFa. Green, with stimulation. Blue, without stimulation. 
(One-way ANOVA, Tukey post-hoc test, * p<0.05, ** p<0.01). 
 

Additionally, inference of transcription factors likely driving the DE genes 
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then compared in the same low-ligand density, slow-relaxing gels and the MSCs 

were cultured in media with or without the known NF-kB activators TNFa and 

IFNg. Analysis for activated NFkB-p65 showed that soft substrates enhanced 

enrichment with stimulation (Fig. 15c). The downstream effects of this 

enrichment were then explored by examining expression of MSC 

immunomodulatory markers IDO, TGF-b, SDF-1, and COX-2. Stimulation 

upregulated IDO and COX-2 to a greater extent on soft substrates that on stiff 

ones, indicating that the stiffness of the substrate can be used to enhance the 

immunomodulatory effects of MSCs (Fig. 15d). Altogether these results suggest 

that MSC immunomodulation is dependent on the inflammatory milieu and 

substrate of the cell.  This is likely to have implications in the use of MSCs in a 

variety of therapies. A precedent for these results is found in the context-

dependent regulation of transcriptional modules in immune cells[27].  

 

        These findings demonstrate that the influence of substrate adhesion ligand 

density, stiffness, and stress relaxation on MSCs is highly interdependent and far-

reaching. We also demonstrate that substrate mechanical properties modulate 

MSC immunomodulatory behavior in response to pro-inflammatory cytokines, 

showing that a molecular signal can be contextualized by the material 

microenvironment of the cell. As the design space open to biomaterials engineers 

is now vast, a systems-level understanding of substrate sensing will help define 

new material design rules. Additionally, given the diverse substrates in the body, 

mapping these axes of regulation is critical to designing and understanding new 
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molecular therapeutics as well as the delivery and engraftment of cell therapies. 

Overall, we expect that a global and network view of material-sensing will allow 

for a variety of new behaviors in various cell types to be engineered through 

biomaterials and an improved understanding of the context-dependence of 

molecular therapies. 
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Materials and Methods 
 
Casting of Alginate Hydrogels 

Alginate type LF20/40 (FMC Biopolymer) was used as-received for the slow-

relaxing hydrogels and was irradiated with an 8mRad cobalt source to form the 

fast-relaxing hydrogels.  Irradiation has been shown to lower the molecular 

weight while maintaining the same G to M block ratio1. Alginates were modified 

with GGGGRGDSP peptides (Peptide 2.0) at the reported densities with standard 

carbodiimide chemistry as described previously2. After modification, alginates 

were dialyzed against a NaCl gradient, treated with activated charcoal, and sterile-

filtered. After lyophilization, all alginate was dissolved in serum-free DMEM 

(Lonza) at 2.5%.  

 

Hydrogels were cast by rapidly mixing the alginate solution with a CaSO4 slurry 

via two syringes and ejecting the mixture between two glass plates, where it 

gelled over 1.5 hours. Stiff slow-relaxing gels consisted of 2% LF20/40 alginate 

and 20mM Ca, while fast relaxing gels consisted of 2% LF20/40 8mRad alginate 

and 42mM Ca. Soft slow-relaxing gels consisted of 2% LF20/40 alginate and 

8mM Ca, while fast relaxing gels consisted of 2% LF20/40 8mRad alginate and 

19mM Ca. This difference in calcium concentration has previously been noted to 

have no effect on mesenchymal stem cell viability and differentiation 3. 8mm 

disks were then cut from the gel using a biopsy punch.  

 

Estimation of Physiologic Range of Adhesion Ligand Concentration 
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Two methods were used to derive relevant physiologic ranges of adhesion ligand 

concentration. Developing de-cellularized myocardium was found by mass 

spectroscopy to contain predominantly Collagen I and at a concentration of 

~500ng collagen/g tissue4. At a 2% protein concentration, comparable to our 

hydrogel’s overall polymer content, this implies a 1e15 collagens/mL. With seven 

integrin binding sites per collagen, this value implies a 70 µM concentration of 

integrin binding sites.  

 

A second reference measured collagen concentrations in breast tissue, finding 

~50mg/mL collagen5. At a molecular weight of ~300kDa, this concentration is 

equivalent to 170 µM. Again, at seven integrin binding sites per collagen, this 

value implies a binding site concentration of 1190 µM. 

 

Hence, given these methods to estimate an order of magnitude for the number of 

adhesion sites, and given numerous other papers that show at least tenfold 

changes in ECM component concentrations as a function of tissue, age, and 

disease, our range of adhesion ligand densities falls within a physiologically 

reasonable range. 

 

Hydrogel Mechanical Characterization 

Hydrogels were fabricated as described above at a thickness of 2mm and 

subjected to compression testing using a mechanical testing device (Instron). Gels 

were compressed at a strain rate of 1mm/min and the Young’s Modulus was 
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calculated as the best-fit slope of the first 5-15% of the resulting stress/strain 

curve. At 15% strain, the strain was held and the time required for the stress to 

decay by a factor of two was noted. 

 

15% strain was chosen based on previous reports of cell-mediated strains in 

hydrogels and tissues. Material strains of 20-30% have been observed in the 

vicinity of fibroblasts in 3D hydrogel culture6, while strains of 40% have been 

reported in the skin of the knee7, 30% in muscles during contraction8, and around 

15% in the lung during breathing9, suggesting that materials experience 

comparable levels of strain in cell-laden environments. 

 

RGD Peptide Quantification 

RGD coupling density was determined using the LavaPep assay following the 

manufacturers instructions. Coupled alginate was dissolved at a concentration of 

0.1 mg/mL in PBS before incubation with the LavaPep reagents. A standard curve 

of GGGGRGDSP peptides was prepared in PBS containing 0.1 mg/mL uncoupled 

alginate as background. Fluorescence was read using a Biotek plate reader and the 

resulting concentration was used to find the molar ratio of alginate to peptide. 

Molar concentration of peptide was calculated assuming a 2% alginate gel from 

the molar ratio. 

 
Cell Culture 
 
D1 mouse mesenchymal stem cells (MSCs) (ATCC) were encapsulated in the 

hydrogels during the mixing step at a concentration of 10 million cells/mL. 



 84 

Immediately before mixing, cells were rinsed and centrifuged twice to ensure the 

removal of any residual ECM components. After casting and punching, gels were 

placed in 24-well plates and cultured at 37 C in DMEM (Lonza) with 10% fetal 

bovine serum and 1% penicillin/streptomycin.  

 

For the differentiation of iPSCs into NSCs, the protocol of Rigamonti was used in 

which a spinning bioreactor containing mTesr media (Stem Cell Technologies) 

including Rock inhibitor was seeded with single cells from the iPSC line 1016A. 

A neural fate was induced on day 2 through the addition of SB431542, 10µM; 

LDN193189, 100nM and XAV939, 2µM. Starting at day 3, the media was 

stepped from KSR media (15% Knock Out Serum Replacement, KnockOut 

DMEM, 1x Glutamax, 1x NEAA, 1x Pen/Strep, 1x BME) to NIM media 

(DMEM-F12,1x N2 supplememnt, 1x B27 -VitA Supplement, 1x Glutamax, 1x 

NEAA, 1x Pen/Strep). On day 10, the spheres were collected and dissociated with 

trypsin before seeding onto a tissue culture plate coated with laminin, 

polyornithine, and fibronectin. Cells were trypsinized and collected before 

encapsulation in the alginate gels. 

 

Live-Dead Staining 

Gels were treated with Life Technologies Live/Dead reagent per the 

manufacturer’s specifications and were then transferred to a microscope slide with 

a custom-made PDMS well. A coverslip was placed over the hydrated gel and the 

gels were imaged on a Zeiss LSM 710 upright confocal microscope. Viability was 
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quantified by computing the number of live and dead cells across five 

representative fields of view using ImageJ. 

 

Cell Retrieval from Gels 

After 40 hours of culture, gels were removed from the wells and placed into 

eppendorf tubes with 50mM EDTA in HEPES on ice for 10 minutes. An equal 

volume of trypsin-EDTA was then added to the tubes for an additional 5 minutes 

at 37C to ensure the removal of cells from the alginate chains. Cells were 

centrifuged and rinsed twice before proceeding to additional analysis.  

 

RNA-seq 

After cell retrieval as described above, cells were lysed and total RNA was 

extracted per manufacturer’s instructions with the Qiagen RNeasy Micro kit. 

Samples were then submitted to the Harvard Medical School Biopolymers 

Facility, where mRNA enrichment and library preparation was performed. 

Individual samples were barcoded and run on two lanes of an Illumina HiSeq 

2500 Rapid. The data presented here represents two independent sequencing 

experiments that were pooled to yield the reported number of replicates per 

sample. 

 

Flow Cytometry 

After cell retrieval as described above, cells were treated with the Life 

Technologies Fixable Live/Dead stain, then fixed for 10 minutes with 4% 
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paraformaldehyde on ice. For intracellular staining, an additional 10 minutes of 

permeablization with Triton-X100 was performed, before blocking for 30 minutes 

with 5% bovine serum albumin, 0.5% Tween-20 in PBS. Primary antibodies (or 

pre-conjugated antibodies) were incubated at the below indicated concentrations 

or two hours, and secondary antibodies were incubated at a concentration of 1 

µg/mL for one hour on ice. Samples were run on a BD LSRII flow cytometer at 

the Harvard Center for Systems Biology Bauer Core facility and data was 

analyzed using FlowJo. Example gates for are given in Figure 22. 

 

Statistical Methods 

Statistics for RNA-seq experiments are described in the RNA-seq Analysis 

section. For flow cytometry experiments, Igor Pro software was used to run one-

way ANOVA, followed by a Tukey-post-hoc test.  

 

RNA-seq Differential Expression Analysis 

Raw reads were aligned to the UCSC Genome Browser mm10 genome using 

Subread10 and counts were aggregated per gene using FeatureCount161. Since 

multiple independent sequencing experiments were run, we removed batch effects 

be applying ComBat to the counts data across the replicates for each experimental 

condition. After aggregating read counts, we performed TMM normalization. 

Voom12 and Limma13 were then used to perform differential expression analysis 

using a multi-level factorial design. Differentially-expressed genes were defined 

as those with a fold-change of at least 2 and a BH-adjusted p-value of less than 
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0.05. TPM was calculated after applying TMM normalization and variance 

stabilization. Principal component analysis was coded manually using the TPM 

for each biological replicate.  

 

Weighted Gene Coexpression Network Analysis (WGCNA) 

WGCNA14,15 was run on TPM data and the topological overlap matrix was 

calculated using an unsigned network and a soft power of 10. Modules were 

defined using the dynamic tree cut algorithm. Module significance for stiffness, 

stress relaxation, and ligand density was computed for each module by correlating 

the expression of module member genes each parameter encoded as low (0) or 

high (1) and taking the average gene significance for that module. The most 

significant genes for each module were found using the NetworkScreening 

function and were defined as those having high module membership and high 

intra-modular connectivity.  

 

Metacore Network Analysis 

For the Figure 1 analysis, the DE genes were imported into MetaCore and used as 

the seed genes for finding enriched PathwayMaps and hub genes using the 

MetaCore standard analysis pipelines. In Figure 2g, the DE genes from all four 

ligand density comparisons were aggregated and used as the seeds for the 

Metacore AnalyzeNetwork function, which yielded an overall network. Then for 

each individual comparison, the regulatory connections from the overall network 

that would have been yielded if the AnalyzeNetwork function had just been run 
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on that comparison were highlighted. These networks were imported into 

Cytoscape and visualized in order to give a qualitative picture for how the 

regulatory connections in a background material-sensitive network change as a 

function of the background material parameters. In  

 

For Figure 3, the member genes for the three modules of interest were used as the 

seed genes to identify inferred PathwayMaps (Fig. 14c) and regulatory hubs (Fig. 

14d). In Fig. 14e, the member genes corresponding to modules with high or low 

module-module correlations were used as seeds and the PathwayMap enrichment 

analysis was performed. P-values are BH-adjusted. In Fig. 14f, the member genes 

from the three modules of interest were combined and used as seeds for the 

Metacore AnalyzeNetwork function. This function yields sub-networks that are 

ranked by an enrichment score. We selected and merged the top three sub-

networks to arrive at the network shown in Fig. 14f, which represents a putative 

version of a network that captures material-sensing behaviors across our 

parameters of interest. In Fig. 15a, the AnalyzeNetwork function was again used 

after being seeded with the DE genes from the low ligand density, slow-relaxing, 

stiffness comparison. The sub networks were inspected to find a network enriched 

for immune processes as well as the presence of NFkB. This sub-network was 

selected and visualized using Cytoscape. 

 

 

qPCR 
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Cells were retrieved from gels as described above and total RNA was extracted 

using the Qiagen RNeasy micro kit following manufacturer’s instructions. 

Reverse transcription was carried out using BioRad iScript Advanced cDNA 

synthesis kit and PrimePCR validated primers (Table S2) along with BioRad sso 

Advanced Universal SYBR Green Supermix were used for the qPCR assay. 

Samples were run on a BioRad QFX96 at the Harvard Center for Systems 

Biology Bauer Core facility. Relative expression was calculated from normalized 

ΔCt values using a GAPDH housekeeping gene.  



 90 

 
Figure 16: Viability and distribution of MSCs in hydrogels 

a) Live/Dead staining of MSCs in hydrogels. Live cells appear green and 
dead cells appear red. 

b) Quantification of fraction of viable cells in hydrogels, computed from 
five representative fields of view for each gel. Cells were segmented 
and counted using ImageJ. Error bars represent S.D.  
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Figure 17: Characterization of RGD-coupled alginate hydrogels 
a) Quantification of RGD coupling per LavaPep assay. Error bars represent 

S.D. 
b) Time to achieve 50% relaxation of maximal stress in hydrogels when held 

at 15% strain. Error bars represent S.D. 
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Fig. 18: Distributions across all genes of Pearson correlations of gene expression 
as a function of hydrogel Ca concentration for soft and stiff hydrogels. All 
replicates were used to calculate the correlations.  
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Fig. 19: Validation of RNA-seq results by qPCR. Sampled DE genes for qPCR 
analysis were Ptges2, E2F7, Bmp3, Zyx, Klf6. This validation experiment was 
carried out in slow-relaxing soft LLD, slow-relaxing stiff LLD, slow-relaxing soft 
HLD, and slow-relaxing stiff HLD hydrogels. Each data point represents a 
specific transcript for a specific material.  
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-  
Fig. 20: % of variance described by each principal component.  
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Figure 21: Identification of WGCNA modules corresponding to material 
parameter of interest. Average gene significance for each module with respect to 
each parameter. The most significant modules were chosen for further analysis 
and are highlighted with arrows. Error bars represent S.D. 
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Fig. 22: Examples of gates for FSC/SSC (left), Live Cells (middle), and 
Stain +/- Cells (right). 

Supplemental Tables 
 
Supplier Number Antigen Concentration 
Abcam ab92486 

 

TGF-beta 1 μg/mL 

Abcam ab23672 
 

COX-2 1 μg/mL 

Abcam ab91655 
 

OPN 1 μg/mL 

BioLegend 122402 
 

IDO 1 μg/mL 

ThermoFisher 
MA5-23547 
 

SDF-1 1 μg/mL 

Santa Cruz sc-22538 
 

OSX 1 μg/mL 

Cell Signaling 3033S 
 

Phospho-NF-κB 

p65 (Ser536)  
  

1 μg/mL 

Cell Signaling 13008S 
 

Phospho-YAP 

(Ser127) 
 

1 μg/mL 

 
Table S1: Source and concentrations of antibodies used for flow 
cytometry. 
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Supplier Unique Assay ID Gene 
BioRad qMmuCID0005139 

 
Ptges2 

BioRad qMmuCID0018612 
 

Gapdh 

BioRad qMmuCID0008584 
 

Bmp3 

BioRad qMmuCID0010274 
 

E2F7 

BioRad qMmuCID0006114 
 

Zyx 

BioRad  qMmuCID0016866 
 

Klf6 

 
Table S2: PCR primers used for RNAseq validation 
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Abstract 
 
 Biomaterials have dramatically increased in functionality and complexity, 

allowing unprecedented control over the cells that interact with them. From these 

scientific and engineering advances arises the prospect of improved biomaterial-

based therapies, yet practical constraints favor simplicity. A biomaterial design 

approach is needed that uses these techniques to maximize functionality, yet 

incorporates these constraints upfront in the design process. Tools from the 

biology community are enabling high-resolution and high-throughput bioassays 

that, if incorporated into a biomaterial design framework, could help achieve 

unprecedented functionality while minimizing the complexity of biomaterial 

designs by identifying the most important material parameters and biological 

outputs. However, in order to avoid data explosions and to effectively match the 

information content of an assay with the goal of the experiment, material screens 

and bioassays must be arranged in specific ways. By borrowing methods to design 

experiments and workflows from the bioprocess engineering community, we 

outline a framework for the incorporation of next-generation bioassays into 

biomaterials design in order to effectively optimize function while minimizing 

complexity. The framework presented here can inspire biomaterials designs that 

maximize functionality and translatability.  
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Introduction 

 Recent advances in both interrogating and perturbing cells have generated 

a wealth of knowledge about the factors influencing cell behavior. Advances in 

biomaterials, in particular, have allowed engineers and biologists to not only learn 

about the myriad factors of a cell’s material environment that affect phenotype, 

but also design strategies to use that influence therapeutically. Leveraging this 

axis of control has led to a multitude of applications, including the use of 

biomaterials as carriers for cell therapy1, 2, scaffolds for tissue engineering3, 

medical devices4, and as miniature factories for manipulating the immune 

system5-8.  

Despite the powerful functionality of many new biomaterials, their 

complexity actually represents a barrier for translation into the clinic, as practical, 

economic, and regulatory hurdles favor simplicity. Balancing this need for 

simplicity with the large parameter space now available to the biomaterials 

engineer creates a demand for strategies to identify the biomaterial design with 

the minimum necessary complexity for a given application. The fine control 

possible over modern biomaterials need not contribute to more complex products, 

but rather enable more effective products that still meet translational constraints. 

A host of revolutionary technologies, such as next generation sequencing (NGS) 

and high-content imaging, that enable high-throughput and high-resolution 

interrogation of biological systems may allow the biomaterials engineer to test 

cell-material interactions along a spectrum of biological throughput and 

resolution. These technologies offer not only improved characterization of 
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materials designs, but also the prospect of uncovering novel functionality. A 

design strategy utilizing the right combinations of these technologies at specific 

stages of the design process could allow engineers to screen materials subject to 

arbitrary design constraints. However, these data-rich techniques must be 

employed in clever ways to avoid combinatorial data explosions.  

In this Progress Report, we highlight the technologies signaling a new era 

in biomaterials development and barriers to the most effective use of these 

technologies, focusing on biomaterials that are designed to guide cell fate and 

function. By leveraging design methods from the bioprocess field, we outline a 

biomaterial design approach that maximally leverages recent advances in both 

biology and materials methods. As a case study, we illustrate how this framework 

could be used for developing new biomaterials for pancreatic beta cell 

transplantation. We propose that these ideas will aid in the development of 

biomaterials that do not sacrifice functionality for translatability.  

 

Complexity in Biomaterials Design 

 The last several decades have seen the biomaterials field transform from 

the simple adoption of industrial materials for biomedical use to the leveraging by 

biomaterials engineers of the high degree of control afforded by appropriately 

designed chemical and structural features to design precise cell interactions and 

functions (Fig. 23). Here, we first survey a variety of prominent developments.  

Advances in polymerization and coupling chemistries, and the 

incorporation of different chemical and molecular functionalities have driven 
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many biomaterial improvements. For instance, living polymerization techniques 

enable highly uniform and monodisperse polymer chain growth9, while new 

strategies in fabricating hydrogels from artificial recombinant proteins have 

yielded new avenues to manipulate material properties10. In addition, the adoption 

of click chemistries for crosslinking biomaterials and coupling functional 

biomolecules such as adhesion peptides, nucleic acids, growth factors, and drugs 

to biomaterials has allowed for precise control over chemical functionalization in 

situ even in the presence of cells11, 12. The orientation of the coupling of these 

molecules can be controlled, affecting their cellular function13, 14. One particularly 

fruitful area of biomaterials chemistry has been the recapitulation of features of 

native ECM in controllable, synthetic systems. For example, a library of peptide 

mimics for adhesion ligands such as fibronectin and collagen has emerged that 

allows for cell adhesion by certain subsets of receptors15; similar advances have 

been made in the provision of morphogen binding and presentation peptides from 

hydrogels16.  

 In addition to chemical functionality, the physical and structural aspects of 

biomaterials have also proven to be biologically important, and techniques to 

control have improved dramatically. Material systems have been fabricated to 

specifically modulate biomaterial mechanical properties such as stiffness17, 18, 

viscoelasticity19, and nonlinear elasticity20 and subsequently shown to 

dramatically impact the phenotypes of cells exposed to those materials. In 

conjunction with the mechanical properties of a material, the nano- and micro-

scale structures of biomaterials exert potent effects on cells21. A variety of 
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techniques have been developed to build porosity into materials22, 23, while 

advances in self-assembly and supramolecular chemistry have allowed for a 

spectrum of tubular and fiber-like structures to be fabricated24-27. 3D printing of 

biomaterials is an emerging area that allows the further patterning of materials of 

different mechanical and structural properties in highly defined ways28, 29. 

 The native extracellular matrix of tissues is dynamic, and control over the 

temporal properties of biomaterials has also been shown to impact cell function. 

Namely, numerous strategies for designing degradability exist, from hydrolysis to 

the incorporation of protease-cleavable crosslinks30-32. Efforts to temporally vary 

biomaterial mechanical properties similar to what is seen during development 

have also been successful, as cells have been shown to retain a memory of their 

mechanical environments33-35.  Sequential delivery of morphogens from 

biomaterials, mimicking the temporal action of these agents during development, 

has also been used to control tissue formation with a variety of approaches36, 37. 

Combining the dynamic physical and chemical aspects of native ECM, recent 

work has demonstrated the ability for synthetic hydrogel systems to support 

organoid and stem cell culture previously only possible through chemically 

undefined, complex natural ECM systems such as matrigel38. 

 Recent innovations in material screening technologies have aided in the 

discovery of new biomaterials and the identification of material parameter 

combinations that influence cell fate and function in desired ways. For instance, 

arrays of artificial stem cell niches have been fabricated in microwells in order to 

assay stem cell differentiation or maintenance as a function of these niche 
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parameters39-41. Combinatorial chemistry techniques can be applied to discover 

biomaterials with novel functionality by arraying spots of randomly combined 

monomers from a chemical library and testing the surface chemistry or biological 

functionality of each combination42. Droplet microfluidics has also recently been 

applied to biomaterial screening. In this approach, materials are often polymerized 

on-chip around individual cells, allowing for the study of these materials on a 

single cell basis43-45. 

 

Advanced Biology Techniques Relevant to Biomaterial Design 

 Methods for assaying biology in unprecedented throughput and resolution 

have emerged, many of which could potentially be applied to biomaterials 

development (Fig. 23). One class of methods surrounds assaying the high-

resolution molecular state of the cell. In particular, transcriptomic methods such 

as qPCR and RNA-seq have offered an unparalleled global view of the cell’s 

transcriptional landscape, while proteomics is emerging as a complementary 

technology that captures the rich post-translational modifications that represent an 

increasingly important level of regulation. Meanwhile, methods for epigenomic 

profiling such as Hi-C46, FAIRE-seq47, and ATAC-seq48 give a snapshot of the 

epigenetic status of a cell, capturing genome-scale regulation. Glycobiology is 

emerging as an area important to diverse cellular processes and proteomics 

techniques are being increasingly employed to understand how these post-

translational modifications impact protein function49, 50. 
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Figure 23: Advances in biomaterials fabrication and bioassays. Biomaterials 
fabrication has advanced along several axes of control, while bioassays have 
advanced along spectra of data dimensionality and throughput. The concerted 
merging of these techniques offers strategies for biomaterials design. 
 

 Some of these technologies have been coupled with microfluidic 

technology to enable the single-cell profiling of the transcriptome51, 52, 

proteome53, and epigenome54, which provides information about the distribution 

of these outputs across a population of cells. These technologies offer high-

throughput molecular analysis, while technologies such as mass cytometry seek to 

expand the multiplexing capability of flow cytometry55. 

 Advances in imaging have also revolutionized biology in the last several 

decades. In particular, super-resolution imaging methods have allowed for sub-

diffraction limit imaging of labeled biomolecules, revealing previously hidden 
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biology56. At the same time, methods for imaging extremely large samples at high 

resolution enable a new view of the structure of tissues. For example, full 

developing embryos have been imaged dynamically using lightsheet 

microscopy57, while intact organs have been imaged at high resolution using 

CLARITY58. Additionally, driven by phenotypic screening in the pharmaceutical 

industry, high-content screening enables the multiplexed imaging of fluorescent 

reporters, cell morphology, and cell motility in thousands of samples in parallel59. 

The survey of techniques presented here is not comprehensive, but serves to 

illustrate the spectrum of methods that a biomaterials engineer has at their 

disposal. 

 

The Importance and Challenge of Marrying Advanced Biology and Next-

Generation Biomaterial Development 

 The marriage of advanced biology techniques with state of the art 

biomaterials control could yield unprecedented materials functionality. Yet 

translation of the myriad of new biomaterials currently under development must 

account for the practical, economic and regulatory constraints imposed on 

complex combination products, such as biomaterials that incorporate biologics, 

drugs, or cells60-62, and the reluctance of the medical industry to introduce new 

biomaterial chemistries into the body63. Incorporating additional components and 

complexity generates a multitude of issues that must be addressed. For instance, 

increasing the complexity of a design raises not just the synthesis and fabrication 

technical complexity and costs, but also the number of quality control steps. More 
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components leads to a more complicated supply chain, increases the chances of 

shelf life concerns or external environmental influences affecting the product, and 

makes failure mode analysis more complex, among others63. Altogether, these 

emphasize the importance of both defining the minimum necessary complexity to 

achieve the desired biological response, and optimizing the biomaterial design as 

early as possible, as one is unlikely to get multiple opportunities to navigate these 

issues at late stages of product development and clinical trials. 

Combining high-throughput and high-resolution control over material 

chemistry and physical properties with high-throughput and high-resolution 

biological assays is one promising avenue to address these challenges. Fully 

utilizing the biology techniques in biomaterials development would 

simultaneously allow the biomaterials engineer to more effectively screen 

material variants by identifying the best biomarkers for a given desired 

phenotype, while a subsequent high-resolution look at the resulting phenotypes 

would give a more complete view of the effects of the materials on the cells64. 

This would allow for a fuller exploration of the design space, yielding designs that 

could potentially satisfy functional, economic and regulatory constraints in non-

intuitive ways. 

 Despite the appeal of combining these techniques, the mixing and 

matching of material screening with biology methods can quickly lead to a data 

explosion. For example, performing a broad transcriptomic analysis on thousands 

of combinatorial material variants would produce terabytes of data and likely be 

cost and throughput-prohibitive64. A step-wise approach to biomaterial design is 
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clearly needed, in which data-intensive methods such as combinatorial screening 

and RNA-seq are used to identify the most high-leverage material parameters and 

biological outputs, respectively, while lower-throughput methods such as narrow 

parameter sweeps and functional assays are used later in the process to fine-tune 

the design.  

 Attempts to date to marry next-generation biology techniques with 

biomaterials development have demonstrated the potential of the approach, but 

have mostly either sacrificed screening throughput for resolution or visa versa64. 

Hence, these attempts would have difficulty scaling to a translational 

environment, where the increased number of constraints dictates that one needs 

both high resolution and throughput to effectively find acceptable designs. 

 

Design Strategies Borrowed from Bioprocess Engineering 

 Next-generation biomaterial design will likely involve optimizing a 

biological and thus inherently non-deterministic output by tuning parameters in a 

high-dimension design space. Unlike many other areas of engineering, 

constitutive equations that can be used to analytically optimize these designs often 

simply do not exist for biological systems. However, this design challenge is not 

without precedent. The bioprocess engineering field involves upstream process 

issues such as finding optimal sets of cell strain/line characteristics and culture 

conditions, and downstream process constraints such as purification in order to 

maximize the output of a pharmaceutical or industrial product.  Techniques used 

in upstream bioprocess engineering such as design of experiments (DOE) and 
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biomarker identification and validation are likely to be applicable to finding the 

most high-leverage material and biological parameters, respectively, in 

biomaterials design.   

 Bioprocesses feature many adjustable parameters, including temperature, 

pH, feedstock characteristics, and cell density. Testing all possible combinations 

of parameters to determine the best performing set is not practical, so DOE 

approaches save significant resources by capturing key characteristics of the 

parameter space by only sampling a subset. For example, fractional factorial 

designs such as Box-Behnken and Placket-Burman have been used successfully to 

dramatically reduce the number of experiments needed to identify dominant 

design parameters through clever sampling of the possible parameters space65-68. 

Since these methods vary multiple parameters simultaneously to find an optimal 

design, they reduce the likelihood of finding only a local optimum, as can result 

from approaches that attempt to tune one parameter at a time. Once a small 

number of the most dominant parameters have been identified, experiments are 

performed using all combinations of two or three values of each parameter, 

ideally bounding the global optimal solution. The response to each of these 

combinations maps a solution space that can be used to further tune the 

parameters, an approach referred to as response surface methodology (RSM)65, 68. 

In addition to these purely empirical approaches, if prior knowledge informs a 

relationship of how cells are known to respond to certain inputs, such as cell 

metabolism as a function of media glucose concentration, mathematical models 

can be used to reduce the number of experiments performed by both decreasing 
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the number of experimental parameters and by offering the possibility of 

analytically solving for an optimal solution65-68. It should be noted that if the 

response is especially nonlinear or stochastic, a larger number of experiments 

could be necessary to capture the behavior. 

 Upstream bioprocess optimization also involves identifying the set of 

biomarkers that are most predictive of success without the need for testing the 

entire manufacturing process to screen individual designs. Chinese Hamster 

Ovary (CHO) cells are the most commonly used mammalian platform for 

biomolecule production in the pharmaceutical industry69. Recent mapping of the 

CHO reference genome, metabolic profile, and proteome has given engineers a 

benchmark against which to reverse engineer successful process designs69, 70. For 

example, by comparing two processes and seeing which produces a higher titer 

product, engineers can now compare the transcriptomes, proteomes, and 

metabolomes from those two processes to each other and to the reference. This 

reverse engineering has led to new biomarkers as well as the identification of key 

pathways and processes most strongly tied to differences in output, directly 

leading to improvements in cell line development and culture conditions69, 70. 

However, despite the use of DOE techniques, using the above approaches 

invariably still leads to large biological datasets. Key features such as signaling 

pathway activity or biomarkers must be extracted from that data. Principal 

component analysis, hierarchical and k-means clustering, and Kalman filtering are 

all mature methods for extracting these important features, while artificial neural 

networks are emerging as a powerful tool for dealing with the most otherwise 
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intractable datasets65, 67, 71. The bioengineer could use these techniques to identify 

biomarkers that are most strongly correlated to the desired function of the material 

or to specific material parameters, enabling screening to be performed with the 

most informative outputs.  This approach is of course dependent on the existence 

of such biomarkers. 

Potential Next-Generation Biomaterial Design Framework 

 We propose that next-generation biomaterial design should maximally 

leverage the advantages of the available technologies in order to optimize designs 

in a high-dimension, yet highly-constrained design parameter space. The DOE 

and biomarker identification techniques mentioned above are directly applicable 

to biomaterials, but the design problem is overall markedly different. For 

example, in design of cell-interacting biomaterials, oftentimes the desired 

phenotype is defined by a specific set of molecular markers, a functional output, 

or a combination of the two, instead of merely maximizing the yield and purity of 

a biomolecule. These outputs could even respond in coupled, nonlinear, or 

stochastic ways. Additionally, because of regulatory and manufacturing 

considerations, the number of inputs and components should be minimized in a 

biomaterial. Hence the strategy for the placement of various techniques will likely 

need to differ. 

 We propose a framework for the design process that can be divided into 

three phases: screening, surface response, and optimization (Fig. 24). In the 

screening phase, materials are fabricated in combinations of the controllable 

parameters per a full or partial factorial design, depending on the number of 
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parameters. Cells are then exposed to these materials in 2D or 3D culture, 

depending on the end-use case and if the outputs being screened are dependent on 

phenotypic differences between 2D and 3D culture. If reliable biomarkers for the 

desired phenotype already exist, either genetic reporters or other outputs 

amenable to highly parallel interrogation can be used. Otherwise, a trial 

experiment using a small number of material parameter combinations followed by 

proteomics or transcriptomics can identify biomarkers that are both sensitive to 

the material parameters being tested and related to the desired phenotype. The 

large material screen can then be performed using these markers, allowing the 

engineer to identify the minority of parameters that have the largest effects. This 

selection of the smallest possible number of important parameters is critical to 

simplifying the design. 

 
 
Figure 24: General next-generation biomaterial design framework. A) 
Experimental designs and workflow. B) Associated bioassays for each design 
stage. 
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 At this point, a small number of material parameters will have been found 

to have the largest impact on the phenotype of the cells. Since the complexity of 

the material will scale with the number of design parameters, the ability to select 

the most high-leverage parameters is critical. The design process moves into the 

response surface phase, where the individual values of these parameters are tuned. 

At this phase, the scale and duration of the cultures and the complexity of outputs 

can also be increased since the experimental space has been reduced. In this way, 

more subtle differences in designs can also be captured. This stage can be iterated 

as necessary to converge on near-optimal designs.  

 Once a small number of near-optimal designs have been found in vitro, 

they can be moved to functional and use-case testing. For a biomaterial designed 

to support the culture of certain primary cell types, this functional testing could 

involve testing cells from many individual donors. For a regenerative medicine or 

tissue engineering application, this testing would involve in vivo studies. The 

previous steps are intended to have produced near-optimal candidate designs, with 

the goal that the smaller parameter space explored by these relatively low-

throughput experiments is not as costly. However, as issues with these candidate 

designs arise, these results can be fed back into the screening stage as different or 

additional parameters, or into the surface response stage as expanded parameter 

ranges or different constraints. Finally, once a successful design has been found in 

the final stage, high-resolution biology techniques such as –omics technologies 
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can be revisited to fully characterize the design before moving forward with the 

next stages of translation, whether that is scale-up or a clinical trial. 

 As an example of the application of this framework to a current 

biomaterials design challenge, Box 1 outlines an example approach to develop an 

optimal biomaterial coating for pancreatic beta cell transplantation. The general 

approach outlined here more closely resembles traditional engineering design in 

that engineering specifications are taken into account early in the design process 

and drive all stages of product development, as opposed to optimizing a design 

independent of these constraints and attempting to incorporate them later. This 

aspect aids in simplifying designs as less critical design parameters are eliminated 

earlier in the design process. It is also flexible enough to incorporate technologies 

that can be tailored to the individual problem. 
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BOX 1  
Integrative Biomaterial Design Challenge: Cell carrier for β-cell transplantation 
 
Background:  
Type I Diabetes Mellitus (T1DM) involves the autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Transplantation of 
allogeneic or xenogeneic islets has long been seen as a promising therapeutic strategy72. However, since transplantation of free islets requires the 
patient to undergo lifelong immunosuppression, biomaterial-based delivery strategies that obviate the need for immunosuppression have been 
developed72, and strategies such as transplantation site pre-vascularization have also been introduced73. Moreover, limitations in islet availability and 
donor-donor variability have driven attempts to produce β-cells directly from autologous or allogeneic pluripotent stem cells as the transplanted cell 
source74. The convergence of biology and materials trends promise to dramatically enhance the efficacy of cell therapy to treat T1DM. 
 
Hydrogels have been developed as β-cell carriers to allow diffusion of small soluble species such as insulin and glucose between the host and the 
cells, while physically and chemically localizing the cells to a specific anatomic location, and isolating the transplanted cells from immune cells and 
their secreted factors such as antibodies. Islet-laden hydrogel microcapsules can bypass the need for immunosuppression, and can be injected to 
lodge in small-diameter vessels, usually in the kidney, liver, or omentum72. These capsules provide a supportive substrate to the cells, aiding in 
viability and function, but the optimal hydrogel to provide these functions is unknown. In addition, most examples feature capsules that are 
significantly larger than the islets themselves, presenting a diffusion barrier and thus a lag in the response to glucose challenge. Variability in the islet 
size also represents a challenge for optimizing the microcapsules72. Conformal coating of small numbers of cells increases the number of potential 
transplantation sites and prevents the formation of a hypoxic core in the collection of encapsulated cells72, 75.  One can also incorporate islets into 
larger-scale biomaterial devices, as these facilitate the retrieval of the device from the patient72, but the islets are again often encapsulated within a 
hydrogel within these devices. Recent work has demonstrated that β-cells transplanted via material carriers can induce a long-term insulin response 
without inducing fibrosis2, demonstrating the promise of this approach, but the large parameter space available to the materials engineer for this 
application is still very underexplored, suggesting room for improvements.  
 
 
Design Approach: 
Many islet and β-cell transplantation strategies involve encapsulating cells in a hydrogel matrix. Thus, we here focus on designing hydrogels with 
optimal characteristics for β-cell transplantation. After optimization of the cell-material interaction, the material could be used in a variety of schemes 
such as conformal coating for intravascular injection or as the central reservoir of a macroencapsulation device. Given the potential plasticity in this 
cell source, careful characterization of the cells in each stage of the design process is important. For instance, donor variability could impact a beta 
cell’s response to a material, highlighting the need for the ability to include donor-donor variability upfront in the design process and the importance of 
involving advanced bioassays in biomaterials development.  
 
Biomaterial Design Specifications:  
• Not cytotoxic 
• Be able to support adhesion, viability, and insulin production of β-cells reliably across donors 
• Be able to support diffusion of insulin, glucose, and cellular metabolism waste products 
• Feature small pore size to prevent invasion of autoreactive T cells or outward migration of β-cells, as well as diffusion of antibodies  
• Provide sufficiently thick coating to minimize effects of rapidly-decaying, reactive oxygen species released by immune cells 
• Not pro-inflammatory or fibrosis-inducing 
• Be able to image in vivo to evaluate engraftment 

 
Example Design Framework: 
 
Note that for each phase, iteration might be necessary to achieve desired outputs. 

 
 

 

Using B cells cultured on spotted material arrays: 

Screen polymer composition, polymer molecular weight, 
hydrogel crosslinking density, cell adhesion ligand type and 
density for viability and insulin secretion. 

 

Characterize diffusion characteristics of material hits. 
 

Using encapsulated beta cells subject to glucose 
challenge: 
Characterize response surface for insulin secretion and 
biomarkers across donors, insulin secretion and biomarkers 
relative to primary healthy beta cells.   

Immunostaining, qPCR, on healthy β-
cell markers, -omics 

Immunostaining for insulin, viability, etc. 

Assay T cell invasion/β-
cell escape 

 
Characterize response surface for insulin 
secretion and viability. 

Varying cluster size and capsule thickness, 
encapsulate beta cells subject to glucose challenge : 

Immunostaining, qPCR, -
omics on healthy β-cell 
markers;  
 
ELISA for insulin secretion 
out of gels 
 

Using encapsulated beta cells transplanted into 
T1D animal model (mice then larger models): 
Examine histology for β-cell viability, inflammatory infiltrate 
into transplant, and fibrosis, as well as levels of serum insulin 
and glucose while fasting and following feeding.  

-omics Fully characterize finalist designs. Feedback into previous 
rounds if necessary. 

Screening Phase: Find material 
parameters with the largest impact on 
the primary design goal, namely β-cell 
viability and insulin production. Given 
the large number of material variants, 
2D culture will allow for the highest 
throughput in this phase. 
  
 
 
 
Surface Response Phase: After selecting 
parameters with greatest influence on 
viability and insulin production, bound 
those parameter ranges to find near-
optimal candidate designs. 
Characterize diffusion characteristics 
critical to function. Also, deepen 
characterization of phenotype of 
culture cells and move to 3D culture to 
ensure that results transfer in 3D 
environment.  
 
 
 
  
Optimization Phase: Once optimal 
solution bounded, tweak parameters to 
optimize biological output and ensure 
that secondary design constraints on 
inflammation, fibrosis, and T cell 
invasion are met . 

Phase 
 

Process 
 

Example Assays 
 

ELISA for insulin diffusion out of gels 

ELISA for serum insulin; Histology of implant 
site; Serum glucose assay 
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Conclusions 
 
 Biomaterials design now has the opportunity to benefit from the advances 

of both materials fabrication and bioassays. The vast experimental space available 

to the bioengineer necessitates a concerted design methodology but also calls for 

the use of experimental design and optimization techniques commonly used in 

other areas of engineering. Through the framework presented here, bioengineers 

could effectively explore the design space in order to simplify the design as much 

as possible upfront while still maximizing the functionality. We hope that through 

such a framework, biomaterials design can become even more rational and 

quantitative. Since a large design space can potentially be more effectively 

explored and more deeply characterized, functionality can be maximized and 

engineering specifications imposed by clinical or industrial translation will 

hopefully present a lower barrier, improving the chances for translational success 

of biomaterials. 
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