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Abstract

Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic 

disease and mortality, although little is known about the genetic variants influencing this trait. A 

genome-wide association study of usual sleep duration was conducted using 18 population-based 

cohorts totaling 47,180 individuals of European ancestry. Genome-wide significant association 

was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35–

80 kb upstream from the thyroid-specific transcription factor PAX8 (lowest p=1.1 ×10−9). This 

finding was replicated in an African-American sample of 4771 individuals (lowest p=9.3 × 10−4). 

The strongest combined association was at rs1823125 (p=1.5 × 10−10, minor allele frequency 0.26 

in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele 

associated with a sleep duration 3.1 minutes longer per night. The alleles associated with longer 

sleep duration were associated in previous genome-wide association studies with a more favorable 

metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the 

mechanisms underlying these associations may help elucidate biological mechanisms influencing 

sleep duration and its association with psychiatric, metabolic and cardiovascular disease.
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INTRODUCTION

Usual sleep duration is an important determinant of daytime sleepiness; moreover, both 

short and long sleep duration have been consistently associated with psychiatric illness, 

hypertension, diabetes mellitus, coronary heart disease and mortality, although the 

mechanisms underlying these associations are poorly understood. Significant heritability of 

usual sleep duration has been reported from twin studies, with heritability estimates 

generally in the range of 0.40–0.55 [1–3]. A number of neurotransmitters and neuropeptides 

are known to regulate sleep-wake behavior, and genetic screens in non-mammalian 

vertebrates have demonstrated an important role of ion channels, which regulate neural 

activity (reviewed in [4]). Polymorphisms in the human period 2 (PER2) and casein kinase 
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1d (CSNK1D) genes, known elements of the circadian molecular clock, are associated with 

autosomal dominant advanced sleep phase syndrome in isolated pedigrees [5,6]. The genetic 

basis for heritability of usual sleep duration, however, remains largely unknown. Candidate 

gene studies have inconsistently implicated genes associated with the mammalian circadian 

clock, including BHLHE41 (DEC2) and CLOCK [7–9], and the glutamate receptor-encoding 

GRIA3 [10]. In a small genome-wide association study (GWAS) of usual sleep duration in 

749 Framingham Heart Study participants, no genome-wide significant associations were 

identified [11]. Recently, a GWAS in over 4000 individuals in seven European cohorts 

identified a polymorphism in ABCC9, encoding an ATP-sensitive potassium channel, that 

explained approximately 5% of the variance in usual sleep duration [12]. This finding was 

not replicated in other cohorts; however, knockdown of this gene in Drosophila results in 

lack of sleep during the first 3 hours of the night. To date, no replicated associations 

between common genetic variants and sleep duration (or other sleep parameters) have been 

reported from GWAS studies. In the present study, we utilize self-report data on usual sleep 

duration, collected by 18 community-based cohort studies that have genotyped their cohorts, 

in order to identify common genetic variants associated with sleep duration. This study 

comprises a community-based sample of 47 180 individuals, approximately 10-fold larger 

than all previously reported GWAS studies of this phenotype [11, 12], and is the first to 

show replication in an independent sample.

METHODS

Cohorts

Participating cohorts were prospective studies that had collected self-report data on usual 

sleep duration. The analysis was initiated by the Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) [13], but was extended beyond that initial group in 

order to obtain sufficient power for the analysis. Eighteen cohorts were ultimately included 

in the discovery sample: the Atherosclerosis Risk in Communities (ARIC) Study [14], 

Cardiovascular Health Study (CHS) [15], Framingham Heart Study (FHS) [16–18], Health 

Aging and Body Composition (HABC) Study [19], Helsinki Birth Cohort Study (HBCS) 

[20], Invecchiare in Chianti (InCHIANTI) [21], Osteoporotic Fractures in Men (MrOS) 

Study [22, 23], Quebec Family Study (QFS) [24], Queensland Institute of Medical Research 

Twins Study (QIMR) [2], Rotterdam Study I and II (RSI and RSII) [25], Study of Health in 

Pomerania (SHIP) [26], Study of Osteoporotic Fractures (SOF) [27], TwinsUK [28], 

Wisconsin Sleep Cohort (WiSC) [29], Young Finns Study (YFS) [30], and genotyped 

subsets of the Health Professionals Follow-up Study (HPFS) [31] and the Nurses Health 

Study (NHS) [32]. As shown in Table 1, the discovery cohorts were located in Europe, 

Australia and North America. This analysis included only participants of European ancestry, 

as determined by self-report, with additional exclusion in some cohorts for failure to cluster 

with European samples in principal components analysis or multidimensional scaling 

(ARIC, HPFS, MrOS, NHS, RS I&2, SHIP, SOF, TwinsUK, WiSC). Replication of the 

findings of this meta-analysis was sought in the African-American participants of the 

Candidate Gene Association Resource (CARe), which included the Cleveland Family Study 

(CFS), the Coronary Artery Risk Development in Young Adults (CARDIA) study, the 

Jackson Heart Study (JHS), and the Multi-Ethnic Study of Atherosclerosis (MESA) [33].
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Phenotype definition

Phenotype data were obtained from standardized personal interviews or self-completion 

questionnaires (Supplementary Table 1). The most widely available measure of sleep 

duration in the participating cohorts was self-report of usual hours of sleep at night; response 

options were typically whole number values. A smaller number of cohorts also collected 

self-reported usual bed and rise times, from which time in bed could be calculated. The 

relation between self-reported usual sleep duration and calculated time in bed was assessed 

in 9400 participants in the ARIC, CHS and FHS cohorts with data for both measures. 

Although the correlation between measures was fairly high at r=0.70, values differed by at 

least 1 hour in 24.3% of subjects and by at least two hours in 7.1% of subjects. Based on 

these differences, and for consistency on phenotype definition, calculated time in bed was 

not used as a proxy for self-reported usual sleep duration in meta-analyses.

Measures of sleep duration were also ascertained separately for weekday nights and 

weekend nights in some cohorts. In advance of performing genetic association testing, the 

heritability of weekday versus weekend sleep duration, assessed by the questions, “How 

many hours of sleep do you usually get at night (or your main sleep period) on weekdays or 

workdays?” and “How many hours of sleep do you usually get at night (or your main sleep 

period) on weekends or your non-workdays?” was explored in the Framingham Heart Study 

Offspring cohort, which includes many sibling pairs, using the program SOLAR [34]. Based 

on 2388 individuals in 726 sibships, the estimated heritability of age- and sex-adjusted usual 

sleep duration on weekday nights was 23.6% (SD 7.7%), somewhat lower than the 

previously reported heritability of sleep duration from twin studies [1–3], while for weekend 

nights heritability was estimated at only 12.3% (SD 7.2%). Therefore, where weekday and 

weekend night sleep duration were both available, weekday night sleep duration was 

analyzed. In order to exclude subjects in whom night shift work might lead to spurious 

estimates of sleep duration, subjects reporting a usual bedtime between 5 AM and 6 PM 

were excluded from analysis, where these data were known. Those whose usual sleep 

duration differed by more than two hours between weekdays and weekends were also 

excluded from analysis, where this difference was known, as behavioral factors were 

presumed to have a major influence on this measure.

Genotyping and association analysis

Genotyping arrays and cohort-specific quality control filters are provided in Supplementary 

Tables 2a and 2b. Allele dosage was imputed using the software indicated. Association 

testing was performed independently in each of the contributing cohorts, using an additive 

model and untransformed sleep duration, adjusted for age and sex, which are both strong 

predictors of sleep duration, plus any covariates used by the individual cohorts to account 

for likely sources of population stratification or for relatedness among subjects 

(Supplementary Table 3). A fixed-effects meta-analysis of the cohort-specific results was 

performed using the inverse variance-weighted method in METAL [35], with a total of 

2,033,301 single nucleotide polymorphisms (SNPs) tested. Genomic control correction was 

applied at the time of meta-analysis; individual cohort inflation factors ranged from 0.98 to 

1.05. Only SNPs with minor allele frequency >0.05 and without significant heterogeneity 

across cohorts at p<0.01 were considered. A threshold p<5 × 10−8 was specified for 
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statistical significance, corresponding to a Bonferroni correction for an estimated 1 million 

independent tests. All SNPs for the replication in African-Americans were present on the 

Affymetrix 6.0 SNP array used to genotype the CARe African-American sample, and were 

thus directly genotyped rather than imputed. Association analyses were adjusted for age, sex 

and the first 10 principal components to control for population stratification, and results of 

the four cohorts combined using fixed-effects meta-analysis in METAL. Conditional multi-

SNP association testing was performed using GWAS summary statistics, as previously 

described [36]. Power analyses were performed using Quanto v1.2 [37].

Evaluation of possible SNP function

Evidence that SNPs significantly associated with sleep duration, and those in linkage 

disequilibrium (LD) with these SNPs at r2 >0.5 in HapMap Utah residents with ancestry 

from northern and western Europe (CEU), as defined by SNP Annotation and Proxy Search 

(SNAP) queries [38], had an influence on gene expression was sought in the expression 

quantitative trait locus (eQTL) database of the Pritchard Lab (eqtl.uchicago.edu, accessed 

November 18, 2012) and in a separate query of significant results from >50 gene expression 

datasets covering multiple tissues (Supplementary Table 4). Evidence for an effect of SNPs 

of interest on thyroid function was sought through a lookup of results of the Meta-Thyroid 

consortium [39]. Cohorts in the consortium include several participating in the current 

analysis of sleep duration (CHS, FHS, HBCS, InCHIANTI, Rotterdam Study and UK 

Twins), as well as multiple additional cohorts. Data on glycemic traits were contributed by 

MAGIC investigators and downloaded from www.magicinvestigators.org. Data on Type 2 

diabetes mellitus were contributed by DIAGRAM investigators and downloaded from 

diagram-consortium.org. Data on psychiatric illnesses was obtained from published GWAS 

analyses of the Psychiatric Genomics Consortium (PGC), with data visualized using the 

Ricopili tool (http://www.broadinstitute.org/mpg/ricopili/) and downloaded from the PGC 

website (http://www.med.unc.edu/pgc/data-sharing#SharingOpp).

RESULTS

Cohort-specific genome-wide association analyses of self-reported usual sleep duration from 

18 population-based cohorts were meta-analyzed (Fig. 1). All included subjects from these 

discovery cohorts were European or of European descent (Table 1). No evidence of 

population stratification was noted in the meta-analysis of self-reported usual sleep duration 

(Supplementary Fig. 1; overall λ=1.06; the range of inflation factors for individual cohorts 

was 0.98 – 1.05). Two independent loci showed genome-wide significant association with 

usual sleep duration (Table 2, Fig. 2, and Fig. 3).

Identification and replication of a novel sleep duration locus on chromosome 2

The most strongly associated locus is located between two genes on chromosome 2: 30–80 

kb upstream from paired box gene 8 (PAX8) and, on the opposite strand, 80–130 kb 

upstream from cobalamin synthase W domain-containing protein 2 gene (CBWD) (Fig. 2). 

PAX8 is a well-characterized transcription factor essential to the formation of thyroxine-

producing follicular cells during thyroid development. PAX8 mutations produce thyroid 

dysgenesis, but the transcription factor is more widely expressed and may have other 
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functions. In contrast, CBWD2 is a poorly characterized gene highly expressed in the brain. 

The intergenic region also overlies a poorly characterized, predicted non-coding RNA 

(LOC101927400). This locus contains four SNPs meeting pre-specified criteria for genome-

wide significance: rs1191685 (p=1.1 × 10−9), rs1823125 (p=1.7 × 10−9), rs1807282 (p=3.9 

× 10−9), and rs1964463 (p=1.1 × 10−8), with minor allele frequencies of 0.25 to 0.37, that 

were associated with an increase in self-reported usual sleep duration of 2.8 (SE 0.5) to 3.0 

(SE 0.5) minutes per night per copy of the minor allele, explaining an estimated 0.07% of 

phenotypic heterogeneity. Linkage disequilibrium between the most strongly associated 

SNP and each of the other three significantly associated SNPs at this locus was modest, with 

r2 values between 0.51 and 0.64 in the HapMap 2 CEU sample. Conditional association 

testing was performed using summary-level statistics from the meta-analysis as previously 

described [36] with LD estimates derived from a representative sample of 4000 unrelated 

Australians of European descent. Conditioning on rs1191685, the effect sizes for the other 

SNPs reported above were reduced by approximately 60% and were no longer genome-wide 

significant (range of p values 0.003 to 0.01).

The direction of effect was positive in all but one cohort (Supplementary Fig. 2). Although 

there was no significant heterogeneity across cohorts, in 9 of the European-descent cohorts, 

the estimated effect was >5.0 minutes per night per copy of the minor allele, while in 8 of 

the cohorts the estimated effect was <2.6 minutes per night. The former cohorts were on 

average substantially older, with a mean age of 70 (SD 8) years, versus a mean age of 50 

(SD 12) years in the latter group, and there was a strong correlation between mean age of 

cohort participants and estimated effect size (r=0.72, p=0.001). Although most of the 

participating cohorts excluded related individuals, two were twin studies (QIMR, TwinsUK) 

and two were family studies (FHS, QFS). A sensitivity analysis excluding these cohorts 

from the meta-analysis found a somewhat stronger effect size for all four SNPs, with effect 

estimates of 3.3 to 3.7 minutes per night. The strongest association in this sample was at 

rs1807282 (p=2.4 × 10−10).

Three of the significantly associated SNPs in this region were directly genotyped in the 

Candidate-gene Association Resource (CARe) [33] African-American sample (rs1823125, 

rs1807282, rs1964463); a fourth directly genotyped SNP (rs1191684) was in perfect linkage 

disequilibrium with rs1191685 in the HapMap 2 Yoruba in Ibadan, Nigeria (YRI) sample. 

Interestingly, these four SNPs have very little linkage disequilibrium in the HapMap 2 YRI 

sample, with r2 values of 0.001 to 0.04 (Supplementary Fig. 3). Association testing in this 

sample of 4771 individuals replicated the finding from the discovery cohorts (Table 3), with 

effect sizes in the African-American sample that were in the same direction and somewhat 

larger than those seen in the discovery sample in three of the four SNPs, with 2 out of 4 

SNPs reaching significance in the replication sample after Bonferroni correction. The 

strongest association in African-Americans was at rs1807282, with an effect size 11.2 (SE 

3.4) minutes per night per copy of the minor allele (p=9.34 × 10−4), explaining 0.15% of 

phenotypic variance in this sample. When meta-analyzed together, the strongest association 

was with SNP rs1823125, the minor allele of which was associated with a sleep duration 3.1 

minutes per night longer (p=1.47 × 10−10, Table 3).
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The locus of significant association is in the vicinity of an enhancer that is associated with 

an in vitro increase in PAX8 gene expression of up to 250-fold [40]. None of the SNPs that 

were significantly associated with sleep duration are associated with significant differential 

expression of PAX8 in published gene expression databases; no thyroid tissue gene 

expression databases are available, however. A lookup of these SNPs in the Meta-Thyroid 

consortium analysis of over 20,000 individuals of European ancestry [39] found no evidence 

for association of any of these SNPs with blood levels of either thyroid stimulating hormone 

or free thyroxine. The SNP rs1191685 is significantly associated with differential expression 

in skin of a transcript of IL1RN (p=3.30 × 10−5), which encodes the interleukin-1 receptor 

antagonist [41]. This eQTL signal peaks at rs1191683, which is in high LD with rs1191685 

(r2=0.80); a signal was not seen in a smaller skin eQTL dataset [42]. Because of a strong 

association of short sleep duration with diabetes mellitus and other glycemic traits [43], we 

performed a look-up of these SNPs in published GWAS analyses of these traits. Three of the 

SNPs (rs1807282, rs1823125, rs1964463) showed nominally significant association with the 

homeostatic model assessment of beta cell function (HOMA-β, p=0.04, [44]) and with 

glycated hemoglobin (HgbA1C, p=0.008 to 0.011, [45]). In each case, the minor allele, 

which is associated with longer sleep duration, is associated with a more favorable 

metabolic profile, i.e., higher HOMA-β and lower HgbA1C. No association of these SNPs 

with Type 2 diabetes mellitus was present in data from the DIAGRAM consortium 

(DIAGRAMv3.2012DEC17). Because sleep disturbance is a common symptom in a number 

of psychiatric illnesses, we also performed a lookup of these SNPs in published PGC GWAS 

analyses. Attention deficit hyperactivity disorder (ADHD) was associated with SNPs 

rs1823125, rs1807282, and rs1964463 (p=0.03 for each) [46]. In each case, the allele that 

was that associated with longer usual sleep duration in the present study was associated with 

a lower ADHD risk in the PGC analysis. No significant association of these SNPs, or any in 

LD with these SNPs at r2 >0.4, was present for schizophrenia, depression or bipolar 

disorder. The association of ADHD has two local peaks, at rs1191694 and rs13032628 (each 

p=0.004), which are in very low LD with one another (r2=0.07). The sleep duration-

associated SNPs rs1823125 and rs1807282 are approximately 5600 and 2800 bp, 

respectively, from these ADHD-associated SNPs (r2=0.12–0.13 for LD between sleep 

duration-associated SNPs and rs1191694; r2=0.06 for LD between sleep duration-associated 

SNPs and rs13032628).

Identification of a second novel sleep duration locus on chromosome 6

The second region of genome-wide significant association in the cohorts of European 

descent is located on chromosome 6 in an intergenic region approximately 50 kb upstream 

of IER3 and FLOT1 (Fig. 3), which also contains a long intergenic non-coding RNA 

(LINC00243) of uncertain function. The three SNPs with genome-wide significant 

association span only 924 bp and are in perfect linkage disequilibrium in both the CEU and 

YRI samples. In the discovery cohorts, the minor allele frequency was 0.20 and the strongest 

estimated association with sleep duration was 3.1 (SE 0.6) minutes less sleep per night per 

copy of the minor allele, explaining 0.07% of phenotypic heterogeneity. These SNPs are 

also in perfect linkage disequilibrium with two SNPs (rs4713380 and rs4713385) that are 

significantly associated with the expression in peripheral whole blood of transcripts of the 

genes IER3 (p=8.40 × 10−23), FLOT1 (p=4.00 × 10−17), VARS2 (p=4.60 × 10−12) and TUBB 
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(p=4.20 × 10−5) [47], and in both skin (p=1.60 × 10−9) and B-lymphoblastoid cell lines 

(p=6.49 × 10−5) with expression of IER3 [41]. A lookup in the PGC cross-disorder GWAS, 

which analyzed the association of genotype jointly with five psychiatric disorders (ADHD, 

autism spectrum disorders, bipolar disorder, major depressive disorder and schizophrenia), 

indicated that the three SNPs on chromosome 6 that are associated with sleep duration are 

significantly associated with psychiatric disorders (p=0.0003 to 0.001) [48]. These SNPs are 

part of a LD block spanning approximately 30,000 bp, and are in complete LD (r2=1.0) with 

10 additional SNPs in this block, each of which is associated with the psychiatric disorders 

at p=4.7–9.9 × 10−5. This association was driven by associations with major depressive 

disorder (p=0.02 to 0.05) [49] and schizophrenia (p=0.04 to 0.08) [50]. In each case, the 

allele associated with shorter sleep duration in the present analysis was associated with 

increased depression and schizophrenia risk in the PGC analyses. Notwithstanding these 

suggestive correlates, this region did not replicate in the African-American sample. The 

effect was in the same direction but somewhat smaller (2.2 – 2.6 minutes less sleep per night 

per copy of the minor allele), and not statistically significant (lowest p=0.39), although 

given a MAF of 0.09–0.10, the power to detect a significant replication of an effect of the 

magnitude seen in the discovery sample was low (range 17–18%).

Additional novel sleep duration loci and evaluation of candidate genes

An additional 11 loci were associated with usual sleep duration in the GWAS of the 

discovery cohorts at a nominal p <10−5 (Table 4); none was significantly associated with 

sleep duration in the replication cohort, albeit with low power to detect significant effects 

(power <30% for each locus). A number of genes have been associated with sleep duration 

or chronotype through smaller candidate gene or GWAS studies that had no overlap with the 

cohorts included in the present study. The present GWAS included multiple SNPs in these 

genes and other core mammalian clock genes, including ABCC9 (131 SNPs), PER2 (22 

SNPs), PER3 (56 SNPs), CLOCK (110 SNPs), ARNTL (114 SNPs), ARNTL2 (106 SNPs), 

and CSNK1D (6 SNPs). No SNPs in BHLHE41 were present in the GWAS. There was no 

evidence for association at any of these SNPs with usual sleep duration, using a liberal 

threshold of p<0.01. The SNP rs12649507 in CLOCK, previously reported to be associated 

with usual sleep duration with an effect size of approximately 5 minutes shorter sleep per 

night in homozygotes for the minor allele than in homozygotes for the major allele [8], had a 

smaller estimated effect in the present study of 0.9 minutes shorter sleep per night per copy 

of the minor allele (p=0.03). The SNP rs11046205 in ABCC9, previously reported to be 

associated with usual sleep duration with an effect size of approximately 10 minutes longer 

sleep per night per copy of the minor allele [11], had an estimated effect in the present 

analysis of only 0.9 minutes longer sleep per night per copy of the minor allele (p=0.11).

DISCUSSION

This genome-wide association study identified two loci with genome-wide significant age- 

and sex-adjusted association to self-reported usual sleep duration in a large, multi-national 

sample of adults from Europe or of European descent. One of these loci was replicated in a 

sample of African-Americans, strengthening the finding. This first locus is located 

approximately 30–80 kb upstream from the thyroid-specific transcription factor PAX8 and, 
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at a somewhat greater distance, upstream from CBWD2. It also overlies a predicted non-

coding RNA LOC101927400 and is approximately 200 kb from an interleukin-1 gene 

cluster. While little is known about the function of CBWD2, PAX8 is a transcription factor 

that is most highly expressed in thyroid tissue, where it is important both in thyroid 

development and in maintaining adult thyroid function [51]. Thyroid-stimulating hormone 

levels are reduced by sleep deprivation [52, 53], with both higher [52] and lower [53] free 

thyroxine levels reported. Hypothyroidism is associated with excessive sleepiness [54] and 

with reductions in slow-wave sleep that can be corrected with hormone replacement [55], 

while hyperthyroidism is associated with insomnia [56]. These findings suggest a role for 

thyroid hormone in sleep-wake regulation and thus a plausible role for PAX8 effects on 

sleep duration. The locus of interest is in the vicinity of an enhancer that is associated with 

an in vitro increase in PAX8 gene expression of up to 250-fold [40]. As no thyroid-specific 

eQTL databases are available, and PAX8 is expressed in adults primarily in the thyroid 

gland, it was not possible to assess whether these variants are associated with changes in 

PAX8 expression; however, these SNPs were not associated with measures of thyroid 

function in a genome-wide association study, albeit in a smaller sample [39]. An alternative 

possibility is suggested by the association of rs1191685 with expression of IL1RN, as its 

product, the interleukin-1 receptor antagonist, has been shown to block the somnogenic 

effect of interleukin-1 [57], which is hypothesized to be involved in the physiologic 

regulation of sleep. The IL1RN is located 100 kb downstream of PAX8 and a regulatory 

element for this receptor could be distantly located between PAX8 and CBWD2 (Fig.1). 

Although the mechanisms discussed above remain speculative, the cross-racial replication of 

the association suggests a true effect of this locus on usual sleep duration.

While the magnitude of the association of the SNPs upstream of PAX8 with sleep duration 

appears modest, with each copy of the minor allele associated with an estimated increase in 

usual sleep duration of approximately 3 minutes per night, the 0.07% of variance in sleep 

duration explained by this variant is typical of GWAS studies. For example, of 32 loci 

showing genome-wide significant association with body mass index in the GIANT 

Consortium analysis of almost 250 000 individuals, only four explained greater than 0.07% 

of the variance in body mass index, with the two most strongly associated loci (FTO and 

TMEM18) explaining 0.34% and 0.15% of variance, respectively, and the remaining 30 

variants explaining an average of 0.03% of variance each [58]. Moreover, self-reported 

usual sleep duration is likely to be an imprecise correlate of the underlying biological 

construct of interest, which is the innate sleep period of the individual free of environmental 

constraints. This reflects both technical factors, including imprecision in self-report 

estimates of sleep duration compared to objective measures such as actigraphy [59] and the 

coarse-grained response options typical of sleep duration questionnaires, as well as 

extensive socio-environmental influences on sleep behaviors, including the widespread 

consumption of caffeine and alcohol, the impact of medical and psychiatric illness on sleep, 

and most importantly the impact of work and social schedules that are often unrelated to 

individual differences in optimal sleep duration. In older individuals, retirement from work 

and lack of childrearing responsibility often reduce the impact of social demands on sleep 

schedule, perhaps explaining the stronger effect observed in the older cohorts included in 

this analysis.

Gottlieb et al. Page 8

Mol Psychiatry. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although the present study is more than 10-fold larger than the two previously published 

GWAS studies of sleep duration, it remains small compared to recent studies of traits such 

as body mass index and hypertension, which are more widely available in large population-

based cohorts. The replicated locus upstream from PAX8 is therefore likely to represent the 

first of a larger number of associations that will appear as future population-based GWAS 

studies of sleep duration benefit from more rigorous phenotyping and larger sample size. 

Self-reported short sleep duration and experimental sleep restriction are strongly associated 

with impaired glucose metabolism [43]. Sleep disturbance and short sleep duration are also 

common in psychiatric disorders, including ADHD. It is therefore of interest that the alleles 

upstream from PAX8 that are associated with longer sleep duration in this study were in 

prior GWAS studies associated with higher HOMA-β and lower HgbA1C [44,45] and with 

lower ADHD risk [46]. As sleep duration is associated with other important illnesses, 

including incident post-traumatic stress disorder [60], obesity, hypertension, and coronary 

heart disease, as well as with mortality, elucidating the molecular pathways that regulate 

sleep duration may both identify novel mechanisms affecting sleep regulation and help to 

explain its association with psychiatric and cardiometabolic disease.
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Figure 1. 
Manhattan plot for genome-wide association with usual sleep duration in cohorts of 

European descent.
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Figure 2. 
Chromosome 2 regional association plot for usual sleep duration in cohorts of European 

descent. Figure was constructed using the Broad Institute SNAP tool (http://

www.broadinstitute.org/mpg/snap/).
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Figure 3. 
Chromosome 6 regional association plot for usual sleep duration in cohorts of European 

descent. Figure was constructed using the Broad Institute SNAP tool (http://

www.broadinstitute.org/mpg/snap/).
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