Perspectives on Proterozoic Surface Ocean Redox From Iodine Contents in Ancient and Recent Carbonate

Citation

Published Version
doi: 10.1016/j.epsl.2017.01.032

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41306982

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Iodine constraints on Proterozoic shallow ocean redox
and their biological implications

Dalton S. Hardisty1,2*, Zunli Lu3, Andrey Bekker1, Charles W. Diamond1, Benjamin C. Gill4, Ganqing Jiang5, Linda C. Kah6, Andrew H. Knoll7, Sean J. Loyd8, Magdalena R. Osburn9, Noah J. Planavsky10, Chunjiang Wang11, Xiaoli Zhou3, and Timothy W. Lyons1

1Department of Earth Sciences, University of California, Riverside, CA USA (*correspondence: dhardisty@whoi.edu)
2Department of Geology and Geophysics, Woods Hole Oceanographic Institute, Woods Hole, MA USA
3Department of Earth Sciences, Syracuse University, Syracuse, NY USA
4Department of Geosciences, Virginia Polytechnic and State University, Blacksburg, VA USA
5Department of Geoscience, University of Nevada, Las Vegas, NV USA
6Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN USA
7Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA USA
8Department of Geological Sciences, California State University, Fullerton, CA USA
9Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL USA
10Department of Geology and Geophysics, Yale University, New Haven, CT USA
11College of Geosciences, China University of Petroleum, Beijing, China

Key Words: Proterozoic oxygen; Shuram isotope anomaly; carbonate diagenesis; Bahamas; iodine; metazoan evolution

Abstract

Surface ocean oxygen levels during the Proterozoic Eon—the location and time interval hosting the emergence and initial recorded diversification of eukaryotes—were lower than today’s, although how much lower is debated. Here, we use concentrations of iodate (the oxidized iodine species) in shallow-marine carbonate rocks (limestones and dolostones)—a proxy sensitive to both local oxygen availability and the relative proximity to anoxic waters—to generate the first comprehensive record of Proterozoic near-surface marine redox conditions. To assess the validity of our approach, Neogene-Quaternary carbonates are used to demonstrate that diagenesis most often decreases carbonate-iodine contents and is unlikely to increase them. Despite the potential for diagenetic loss, maximum Proterozoic carbonate iodine levels are elevated relative to those of the Archean, particularly during the Lomagundi and Shuram carbonate carbon isotope excursions of the Paleo- and Neoproterozoic, respectively. For the Shuram specifically, comparisons to Neogene-Quaternary carbonates suggest that diagenesis is not responsible for the observed iodine trends. The predominantly low iodine levels of Proterozoic carbonates relative to the Phanerozoic are most parsimoniously linked to a shallow oxic-anoxic interface, with O_2 concentrations in overlying surface water that were at least intermittently above the threshold required to support complex life. However, the diagnostically low iodine data from mid-Proterozoic shallow-water
carbonates relative to those of the bracketing time intervals suggest shallow and dynamic anoxic waters that episodically mixed upward and laterally, resulting in weakly oxygenated surface waters. This redox instability may have challenged early eukaryotic diversification and expansion, creating an evolutionary landscape unfavorable for the emergence of animals.

1. Introduction

The shallow oceans of the Proterozoic Eon were the host to both oxygen production and the sequential radiations of eukaryotes and animals (Knoll, 2014). Nevertheless, the current conversation about the oxygenation of the biosphere, the first appearances and diversification of the earliest eukaryotes and animals, and their associated oxygen demands (Mills et al., 2014; Sperling et al., 2013) has often focused instead on conditions in the atmosphere (Planavsky et al., 2014) and sub-photic deep-marine waters (Sperling et al., 2015). Such comparisons are indirect, since *in situ* oxygenic photosynthesis in the shallow photic zone provides the potential for elevated shallow-ocean oxygen at micromolar (μM) levels even under an anoxic atmosphere (Reinhard et al., 2016). This disconnect reflects a shortage of temporally expansive paleoredox records specific to the shallow ocean. The need to fill this knowledge gap is particularly critical through the mid-Proterozoic (ca. 1.8 to 0.8 billion years ago or Ga), which precedes the evolution of the earliest metazoans (Knoll, 2014).

Chromium isotope data have recently yielded estimates for atmospheric O₂ during the mid-Proterozoic as low as < 0.1-1% of present atmospheric levels (PAL), in contrast to previous estimates of >1-40% of PAL (Gilleaudeau et al., 2016; Planavsky et al., 2014). If these low estimates are correct, the predicted nanomolar (nM) to low μM equilibrium-driven levels of dissolved O₂ in the surface ocean would challenge most complex life (Planavsky et al., 2014; Reinhard et al., 2016). Generally consistent with low atmospheric \(pO_2 \) through portions of the Proterozoic, however, accumulations of redox-sensitive metals (Mo, Cr, U, and Fe) in basinal black shale specifically fingerprint an anoxic deeper ocean dominated by a combination of ferruginous and sulfidic (euxinic) waters (Gilleaudeau and Kah, 2015; Reinhard et al., 2013; Sperling et al.,
2015). Uncertainties about relationships among the atmosphere, deep ocean, and surface waters elevates the need for proxy perspectives specific to the shallowest layers of the ocean.

Ratios of iodine-to-calcium-magnesium, or I/(Ca+Mg), in shallow-marine carbonates can track the presence or absence of O$_2$ in the shallow ocean (Hardisty et al., 2014) and the position of the oxic-anoxic interface in the water column relative to the site of carbonate precipitation (Lu et al., 2016). The oxidized and reduced iodine species, iodate (IO$_3^-$) and iodide (I$^-$), respectively, constitute the bulk of total dissolved iodine in seawater (Chance et al., 2014; Emerson et al., 1979; Farrenkopf and Luther III, 2002; Rue et al., 1997; Wong and Brewer, 1977). Concentrations of total dissolved iodine in modern seawater, near 450-500 nM (Chance et al., 2014), are globally uniform and have a residence time (~300 kyrs) that is orders of magnitude longer than the mixing time of the ocean. Importantly, IO$_3^-$ exists exclusively in oxic waters, with IO$_3^-$ reduction occurring in weakly oxic waters prior to the onset of iron and sulfate reduction (Fig. 1; Emerson et al., 1979; Farrenkopf and Luther III, 2002; Kennedy and Elderfield, 1987a; Kennedy and Elderfield, 1987b; Rue et al., 1997; Wong and Brewer, 1977). Quantitative IO$_3^-$ reduction is observed within anoxic basins (Emerson et al., 1979; Wong and Brewer, 1977) and in reducing pore waters (Kennedy and Elderfield, 1987a; Kennedy and Elderfield, 1987b). The redox behavior of iodine can be traced for ancient oceans because IO$_3^-$ is the sole iodine species that co-precipitates with carbonate rocks (Lu et al., 2010). Thus, carbonate minerals formed in these anoxic waters—where I$^-$ is the predominant dissolved iodine species—are not expected to incorporate iodine during precipitation, as demonstrated in calcite synthesis experiments (Lu et al., 2010). This expectation is consistent with previous reports noting a lack of iodine in carbonate rocks prior to the Great Oxidation Event (GOE) (Hardisty et al., 2014).

Although quantitative reduction of IO$_3^-$ occurs within hours in low-oxygen and anoxic waters (Farrenkopf et al., 1997), I$^-$ oxidation can be a slower process, with rate estimates ranging from weeks to years (Chance et al., 2014; Luther III et al., 1995). Due to this redox asymmetry, the
largest gradients in marine IO₃⁻ concentrations occur within the oxycline of oxygen minimum zone (OMZs) or anoxic basins (Fig. 1; Farrenkopf and Luther III, 2002; Rue et al., 1997). In this zone, weakly oxic conditions allow for IO₃⁻ accumulation, while *ex situ* input of the relatively slow oxidizing I⁻—transported from underlying waters characterized by IO₃⁻ reduction—results in steep [IO₃⁻] gradients (Farrenkopf and Luther III, 2002; Lu et al., 2016; Rue et al., 1997; Wong and Brewer, 1977). Modern seawater non-zero [IO₃⁻] values of <250 nM are almost exclusively found in such settings (Fig. 1; Chance et al., 2014; Lu et al., 2016). This low range of seawater [IO₃⁻] would be recorded as I/[Ca+Mg] ratios of < ~2.6 μmol/mol in carbonate, as observed in both laboratory calcite-precipitation experiments (Lu et al., 2010) and direct measurements of modern carbonate from low oxygen settings (Glock et al., 2014; Lu et al., 2016). Analogous to the oxyclines of modern OMZs and anoxic basins, ancient carbonate with non-zero I/(Ca+Mg) of less than ~2.6 μmol/mol are interpreted to reflect precipitation within waters with local O₂ levels above those necessary to sustain IO₃⁻ accumulation but which are also characterized by or in frequent exchange with waters hosting active IO₃⁻ reduction (Lu et al., 2016).

Importantly, diagenetic effects on I/(Ca+Mg) ratios have not been examined in previous studies. However, given that carbonate diagenetic mineral transformations occur most often in anoxic pore fluids marked by IO₃⁻ reduction (Loyd et al., 2012; McClain et al., 1992; Schrag et al., 2013), carbonate phases are expected to be particularly sensitive to diagenetic iodine loss. Carbonates of the Proterozoic Eon host the largest positive and negative δ¹³C_carb excursions in Earth history—the Paleoproterozoic Lomagundi and Ediacaran Shuram anomalies, respectively. Although differing in direction, both have been interpreted as large-scale Proterozoic oxidation events bracketing the overall mid-Proterozoic low oxygen atmosphere (Fike et al., 2006; Lyons et al., 2014). However, these records are at best only indirect measures of redox conditions in the surface ocean, and their relationships to the broader workings of the carbon cycle as manifested in marine water column signals can be lost or overprinted during diagenesis by pore fluid chemistry (Schrag et al., 2013; Swart and Kennedy, 2012). If the effects of diagenesis on I/(Ca+Mg) are
understood, examination of I/(Ca+Mg) through Proterozoic carbon isotope excursions may provide a means of testing whether these records represent pore fluid or water column chemistry.

Here we provide the first comprehensive record of Proterozoic surface ocean redox, specifically tracking temporal marine IO₃⁻ availability through a compilation of I/(Ca+Mg) ratios from mostly shallow-marine carbonate rocks (limestones and dolostones). This data set includes carbonates capturing the Shuram δ¹³C_carb excursion. We also provide the first constraints on iodine proxy expressions linked to diagenetic alteration of recent carbonates. Through comparisons of dissolved iodine cycling in modern low-oxygen versus well-oxygenated marine waters, I/(Ca+Mg) records from pristine modern carbonates from both redox end members, and diagenetic carbonates from Neogene-Quaternary settings, we suggest that oxygenation in the surface ocean following the GOE was sufficient to sustain eukaryotic life. At the same time, we provide evidence against diagenesis as a driver of the Shuram excursion. However, we further propose that the low I/(Ca+Mg) ratios typical of the mid-Proterozoic reflect carbonate precipitation in waters with overall low and unstable oxygen levels in close spatial proximity to anoxic waters.

2. Materials

To evaluate the effects of diagenetic mineral transformations on I/(Ca+Mg) ratios, we include a series of Neogene-Quaternary case studies to provide a comprehensive view of initial iodine precipitation and subsequent modification as a function of varying primary carbonate mineralogy, carbonate burial history, and related diagenetic pathways—specifically, meteoric diagenesis, marine burial diagenesis, and dolomitization. The case studies are outlined below (along with citations to detailed previous studies of the same localities or samples), in Table 2, and in the Supplemental Materials:

(1) Short (ca. <16 cm) bank-top cores from the modern Great Bahama Bank, or GBB (Romaniello et al., 2013; Zhang et al., Accepted). These samples capture initial iodine
deposition in primary carbonates from a range of settings and primary mineralogies near Little Darby and Lee Stocking islands (Table 3; Supplementary Fig. 1 and 2).

(2) *Montastrea annularis* coral heads from the Pleistocene Key Largo Limestone, south Florida. This sample set includes aragonite-to-low-Mg calcite (LMC) transitions driven by subaerial exposure and subsequent diagenesis in meteoric pore waters. Post-depositional organic matter remineralization during aragonite-to-calcite neomorphism has resulted in negative $\delta^{13}C_{\text{carb}}$ in some of the LMC samples (Gill et al., 2008).

(3) The Neogene-Quaternary Clino and Unda cores, Great Bahama Bank. These cores were drilled ~8 km apart along the western edge of the Great Bahama Bank (Supplementary Fig. 1). The Clino core contains a negative $\delta^{13}C_{\text{carb}}$ excursion in the upper portion reflecting multiple periods of subaerial exposure and subsequent aragonite-to-calcite neomorphism in meteoric pore fluids (still ongoing at the top of the core), along with intervals with aragonite-to-calcite neomorphism occurring exclusively in marine pore fluids and minor dolomite, which were all sampled in detail (Melim et al., 1995; Swart and Melim, 2000; Swart and Kennedy, 2012). The Unda and Clino cores have similar depositional histories; however, for the purposes of this study, we did not sample the Unda core in the same stratigraphic detail as the Clino core. For the Unda core, we specifically sampled two intervals with extensive dolomite that formed in marine pore fluids.

(4) Dolomite concretions of the Miocene Monterey Formation, California. These samples represent dolomite derived mainly from alkalinity production and authigenic carbonate precipitation during remineralization of organic carbon in marine pore fluids, in contrast to neomorphism of carbonate precursors (Loyd et al., 2013).

With the exception of the Monterey Formation, the waters that hosted primary carbonate precipitation are constrained to have been well oxygenated, which implies that presently low and dramatically varying $I/(Ca+Mg)$ ratios do not record shifts in the IO_3^- content of the local waters of
deposition. Instead, potential low I/(Ca+Mg) values or variations likely track secondary processes related to depositional setting, mineralogy, and related diagenetic overprinting of primary values.

We also measured I/(Ca+Mg) ratios of carbonate rocks (n=518) from 20 sedimentary successions spanning the late Paleoproterozoic to late Neoproterozoic (Table 1) and combined these results with previously published data (Glock et al., 2014; Hardisty et al., 2014; Loope et al., 2013; Lu et al., 2016; Lu et al., 2010; Zhou et al., 2015; Zhou et al., 2014). Details regarding age, stratigraphy, and complementary geochemistry for the individual sections are included in the Supplementary Materials. This data set also includes new results from four previously studied carbonate sections that capture the Ediacaran Shuram negative δ^{13}C$_{carb}$ anomaly: the Khufai Formation of the Sultanate of Oman (Osburn et al., 2015); the Doushantuo Formation of South China; the Johnnie Formation of Death Valley, USA; and the Clemente Formation of northern Mexico (Loyd et al., 2013). For this and the previously published Precambrian iodine data (Hardisty et al., 2014), emphasis was placed on carbonate successions with independent sedimentological evidence for shallow-marine deposition and units with clear indications of secondary alteration, such as veins and metamorphism above greenschist grade, were avoided.

3. Methods

Iodine-to-calcium-magnesium ratios and magnesium-to-calcium ratios were measured at Syracuse University using a Bruker M90 quadrupole inductively-coupled-plasma mass spectrometer (ICP-MS) and at the University of California, Riverside, using a Agilent 7900c ICP-MS, according to standard methods (Hardisty et al., 2014; Lu et al., 2016; Lu et al., 2010; Zhou et al., 2015; Zhou et al., 2014). All samples from the Clino and Unda cores and the Monterey and Tieling formations were measured at UC Riverside and the remainder at Syracuse University. Approximately 3-5 mg of powdered carbonate was used for each analysis. Samples were sonicated in 1 mL DI water that was then centrifuged and decanted. Following this, 3% HNO$_3$ was added to each sample allowing for complete dissolution of all carbonate, and these were similarly sonicated
for ~10 minutes and centrifuged. The supernatant was diluted in a matrix with combinations of nitric acid and an iodine-stabilizing solution (tertiary amine or tetramethyl ammonium hydroxide) to obtain Ca concentrations of approximately 50 ppm. Calibration standards were made fresh each day from powdered potassium iodate in a similar matrix with the addition of 50 ppm Ca. The coral standard JCP-1 was analyzed intermittently with average values at Syracuse University and UC Riverside that were identical within error.

The mineralogical determinations for the Clino and Unda cores, Monterey, Key Largo, and Bahamas Bank top cores were performed at the University of Miami using a Panalytical X-Pert Pro via a method published previously (Melim et al., 1995). The associated error is ± 2 wt. %. Carbon and oxygen isotope values for the Johnnie Formation, the Clino and Unda cores, and portions of the GBB short cores were measured at the University of California, Riverside, using a GasBench II interface coupled, via continuous flow, to a Delta V Thermo Advantage IRMS (Isotope Ratio Mass Spectrometer). Carbon and oxygen isotope values for the C1, C4, C6, and C7 Bahamas Bank top cores were analyzed at The Center for Stable Isotope Biogeochemistry at UC, Berkeley, using a MultiCarb system connected with a GV IsoPrime mass spectrometer in dual inlet mode. Carbon and oxygen isotopes for the Doushantuo Formation were measured at the University of Nevada, Las Vegas, using a Kiel IV carbonate device connected to a Finnigan Delta V Plus mass spectrometer in dual inlet mode. All values are presented in the standard delta notation as per mil (‰) deviation from Vienna Pee Dee Belemnite (V-PDB), with replicate standard analyses yielding standard deviations typically better than 0.10 ‰ for carbon and oxygen isotopes.

4. Results

The highest I/(Ca+Mg) values in our Neogene-Quaternary samples, ranging from 6.0-11.6 μmol/mol, are found in predominantly aragonite and HMC samples from bank-top cores from the well-oxygenated GBB (Table 3; Fig. 4). The Key Largo coral heads contain I/(Ca+Mg) values that show little change across the meteoric fluid-driven aragonite-to-calcite mineralogy transition, with
only KL-11 containing samples with decreased iodine contents in some, but not all, LMC-
dominated samples. The carbon and oxygen isotopic and mineralogical trends and values within
specific intervals are generally consistent with that of previous work of different samples from the
same core (e.g., Melim et al., 1995; Swart and Melim, 2000; Swart and Kennedy, 2012), including
the negative $\delta^{13}C_{\text{carb}}$ excursion characterizing the meteoric zone in the Clino core (Fig. 3). The Clino
core contains I/(Ca+Mg) ranging from below detection to 5.71 μmol/mol. The highest I/(Ca+Mg)
values overlap with intervals containing relatively higher aragonite content, with most LMC- and
dolomite-dominated intervals generally containing relatively lower I/(Ca+Mg) ratios. The Unda
and Monterey samples have I/(Ca+Mg) values ranging from below detection to 0.46 and 1.01
μmol/mol, respectively. Of the samples containing greater than 20 wt.% dolomite, I/(Ca+Mg) ratios
are < 0.46 and 0.40 μmol/mol for the Monterey Formation and the Unda core, respectively, with
most values below detection.

Our Proterozoic samples contain both dolomite and limestone (Fig. 5), and iodine is present
in some of the samples from nearly all the units evaluated (Fig. 6). Proterozoic I/(Ca+Mg) ratios
from carbonates older than the late Ediacaran Shuram anomaly are ≤2.8 μmol/mol and are often
much less—notably within the range observed in primary carbonate from modern low oxygen
settings (yellow squares, Fig. 6). There is a drop in maximum I/(Ca+Mg) to ≤0.8 μmol/mol around
~2.0 Ga following the Lomagundi positive carbon isotope excursion (LE; ~2.2-2.1 Ga). In the
following interval, from 2.0 to 1.0 Ga, maximum values of ≤0.8 μmol/mol are found in 13 of the
14 studied units with the only exception being the Tieling Formation of North China, where
maximum I/(Ca+Mg) ratios are similar to those characterizing the LE and Neoproterozoic (Fig. 6).
Starting at roughly 1.0 Ga, maximum values are more frequently elevated relative to the mid-
Proterozoic. Lastly, all four of our Ediacaran, Shuram-age sections show a marked increase in
I/(Ca+Mg) in phase with the dramatic decrease in $\delta^{13}C_{\text{carb}}$ (Fig. 7).

5. Discussion

5.1 Iodine behavior during Neogene-Quaternary carbonate diagenesis
Multiple previous studies have measured bulk iodine in ancient carbonate (Hardisty et al., 2014; Loope et al., 2013; Zhou et al., 2015); however, published studies of modern carbonate iodine contents have focused solely on calcitic foraminifera, and no study has measured carbonate iodine contents within an independent framework of well-constrained diagenetic alteration. Below we provide a context for interpreting our Proterozoic bulk carbonate data through a process-oriented perspective that progresses from modern carbonate precipitation to deposition, burial, and subsequent variable styles of diagenetic mineral transformations.

The highest I/(Ca+Mg) ratios in our Neogene-Quaternary sample set come from the GBB bank-top cores (Table 3), which is the least altered sample set of this study and representative of the carbonate iodine signature of initial deposition. The range in I/(Ca+Mg) values from bulk aragonite-HMC in all the GBB bank-top core samples (6.0-11.6 μmol/mol; Table 3) is higher than that found in LMC foraminifera, which in previous studies of well-oxygenated settings spans from 4.7 μmol/mol (Glock et al., 2014; Lu et al., 2016). None of our I/(Ca+Mg) profiles from any of the seven GBB short cores increases with depth (Table 3; Supplementary Fig. 2), indicating that the elevated I/(Ca+Mg) values are unrelated to post-burial processes. If we apply the partition coefficients from laboratory LMC precipitation experiments (Lu et al., 2010; Zhou et al., 2014) to the I/(Ca+Mg) ratios from our aragonite-HMC-dominated GBB carbonate, we predict local marine IO₃⁻ abundance from ~600 nM to approaching 1 μM, which is not consistent with the typical range observed in marine surface waters (roughly 300 to 450 nM; Chance et al., 2014). Uncertainties surrounding partition coefficients for HMC and aragonite and potential vital effects associated with uncharacterized skeletal debris may lead to errors in the estimated IO₃⁻ content of ambient waters. However, the wide and elevated range in I/(Ca+Mg) from the GBB is not easily attributed to any one factor, as the GBB I/(Ca+Mg) ratios differ even between adjacent oolitic shoals of similar composition and show no clear covariation with mineralogy, δ¹³C_carb, or modern depositional setting (Table 3; Supplementary Fig. 2). Regardless, our observations are consistent with previous works indicating that the I/(Ca+Mg) ratios of primary carbonate minerals precipitated from well-
oxygenated seawater do not overlap with the 0-2.6 μmol/mol value observed for calcitic foraminifera found within low oxygen settings (Lu et al., 2016). Variations above this 0-2.6 μmol/mol range should be interpreted with caution, if at all.

The Key Largo coral heads provide a case study specific to initial aragonite precipitation and post-depositional meteoric aragonite-to-calcite neomorphism during subaerial carbonate exposure (Gill et al., 2008). In this case, the I/(Ca+Mg) ratios of primary aragonite fall within the range reported for LMC foraminifera from well-oxygenated settings (Fig. 2). Previous work from these same samples has shown that lower dissolved elemental abundances (e.g., S, Sr) in fresh (meteoric) waters versus seawater, which is also true of iodine (Fehn, 2012), lead to decreases in their concentrations in diagenetic LMC relative to primary aragonite (Gill et al., 2008). Opposite of this expectation, however, the primary I/(Ca+Mg) ratios general change little across the aragonite-to-calcite transitions of our samples. The only exception is a LMC interval directly at the reaction front of KL-11 that contains lower I/(Ca+Mg) relative to the primary aragonite (Fig. 2), but there are no discernable differences between these and other LMC samples with relatively elevated I/(Ca+Mg). The maintenance of high, primary I/(Ca+Mg) ratios during meteoric diagenesis in the Key Largo may represent a special case where oxic diagenetic conditions allowed for the iodine content of the primary aragonite to buffer iodine contents of the diagenetic LMC. Sulfate reduction is known to partially promote aragonite-to-calcite neomorphism during meteoric diagenesis in the Bahamas (McClain et al., 1992)—conditions where iodine would be present primarily as I-. However, the δ³⁴S values of carbonate-associated sulfate (CAS) in both our original aragonite and secondary calcite Key Largo samples are similar to those of Pleistocene/modern seawater sulfate (Gill et al., 2008), arguing against substantial sulfate reduction during meteoric diagenesis. Nonetheless, the Key Largo profiles support that I/(Ca+Mg) ratios have the potential to be maintained but are unlikely to increase following deposition and neomorphism driven by diagenesis in meteoric fluids.
The Clino core best illustrates the range in diagenetic zones and related geochemical and mineralogical variability possible from the GBB (Fig. 3, 4). The diagenetic zones reflect a temporal transition from a slope to a platform depositional setting during the Neogene-Quaternary, with a negative δ¹³C carb excursion in the upper portion due to multiple periods of subaerial exposure and subsequent aragonite-to-calcite neomorphism within meteoric fluids (Melim et al., 1995; Swart and Melim, 2000). Below this depth, aragonite-to-calcite neomorphism and minor dolomitization occurred exclusively in marine pore waters (Melim et al., 1995; Swart and Melim, 2000). The I/(Ca+Mg) ratios from the aragonite-HMC GBB short cores and aragonitic portions of the Key Largo Limestone are most like those expected for primary I/(Ca+Mg) ratios from the Bahamian Clino core (i.e., I/(Ca+Mg) > 3 μmol/mol). Indeed, although the Clino core sample set no longer contains intervals with 100% aragonite and has only sparse HMC, the samples with higher aragonite contents do generally contain the I/(Ca+Mg) ratios that are above those observed from low oxygen depositional settings (Fig. 3, 4a). However, the core shows clear diagenetic iodine loss in secondary LMC and dolomite phases, as most of the Clino core I/(Ca+Mg) ratios overlap with the <2.6 μmol/mol values observed from low oxygen marine settings. The ratios show no distinct trends with δ¹³C carb, with regard to diagenetic zones, specific to lithology, or across the facies transitions (Fig. 3). Instead, the inferred decreases in I/(Ca+Mg) ratios during diagenesis in the Clino core are consistent with previous inferences for neomorphism of aragonite and HMC to LMC and dolomite in marine pore waters hosting significant sulfate reduction and closed to seawater exchange (Swart and Melim, 2000). Despite initial deposition in a well-oxygenated setting with temporally varying facies likely hosting a large array of high primary I/(Ca+Mg) ratios, we surmise that progressive diagenesis will ultimately decrease ratios to relatively low values within a small range for the entire core, including the currently high I/(Ca+Mg) values in the aragonitic intervals near the top and bottom of our sampled profile.

The samples from the Unda core and Monterey concretions were specifically selected to provide constraints on iodine contents in dolomites that are well constrained to have precipitated
within marine pore waters (Fig. 4b). Our samples from the Unda core contain 100% dolomite in many cases, which previous studies have linked to reefal sediments that experienced aragonite-to-LMC neomorphism prior to dolomitization (Swart and Melim, 2000). Dolomite concretions of the Monterey Formation are not dominantly derived from neomorphism of primary marine carbonate. Instead, they represent authigenic dolomite precipitated in phase with extensive pore water alkalinity production during remineralization in organic-rich sediments marked by anoxic pore fluids closed to exchange with seawater (Blättler et al., 2015; Loyd et al., 2012). Despite the very different mechanisms of dolomite precipitation, the two diagenetic dolomite sample sets reveal similar results, yielding the lowest I/(Ca+Mg) ratios of our entire diagenetic data set. Most values are below detection, and the highest value is 0.46 μmol/mol. We suggest that the extremely low values reflect multiple generations of diagenetic mineral transformation for dolomites of the Unda core and anoxic diagenetic conditions in both cases. The simple presence of any iodine in some Monterey dolomite samples may indicate minor contributions from neomorphism of primary carbonate that initially contained some iodine. The low I/(Ca+Mg) values from both dolomite sample sets are not likely to reflect differences in partition coefficients for dolomite relative to LMC, as many Proterozoic dolomites from this study have high ratios relative to the Neogene sample set (discussed in the next section; Fig. 5). Ultimately, our results reveal that dolomitization of carbonate precursors and authigenic dolomite precipitation in marine pore fluids will dramatically lower I/(Ca+Mg) ratios from those characteristic of primary carbonate formed in well-oxygenated water columns. Without proper caution, low dolomite ratios could lead to underestimation of IO₃⁻ and hence the O₂ availability of the overlying water column.

5.2 Neogene-Quaternary perspectives on Proterozoic carbonate diagenesis

Our proxy validation efforts with the Neogene-Quaternary samples indicate that I/(Ca+Mg) ratios should not increase post-depositionally during diagenesis in reducing pore fluids. Given this observation, the simple presence of iodine in ancient carbonate is a robust fingerprint of oxic
conditions. Again, ‘false positives’ are not anticipated and have not been observed in young sediments. Iodine’s redox relationship distinguishes it from other common paleoredox proxies (e.g., Fe speciation, S isotopes and concentrations, and Mo and U concentrations), which specifically fingerprint local anoxic water columns and are most commonly applied to deeper basinal shales. These approaches are far less effective at characterizing local oxic conditions because of complicating factors, such as relationships to sedimentation rate and diagenetic controls that can be insensitive to the redox conditions in the overlying waters. Beyond the simple presence-absence of surface ocean O₂, detailed comparison of Proterozoic I/(Ca+Mg) trends to Neogene-Quaternary diagenetic carbonate and dolomite support that Proterozoic temporal trends may reflect seawater redox evolution, including relative changes in the depth of anoxic waters relative to that of carbonate precipitation, when interpreted with the appropriate caution. For instance, there are no known temporal variations in diagenesis that would cause the observed first-order, long-term patterns through the Precambrian and preferentially favor the diagnostic persistence of low maximum values during the mid-Proterozoic and the absence of iodine in Archean samples (Fig. 6).

An additional, valuable case study in our effort to distinguish seawater versus pore water origins for Proterozoic I/(Ca+Mg) signals comes from a comparison between the I/(Ca+Mg) trends spanning the Shuram negative δ¹³C_{carb} anomaly (Fig. 7) and our sample set recording Neogene-Quaternary diagenesis (Fig. 4), most notably that linked to the negative δ¹³C_{carb} values of the Clino core (Fig. 2). Both meteoric and marine diagenesis have been invoked to explain the extremely negative δ¹³C_{carb} values of the Shuram anomaly and other negative Neoproterozoic δ¹³C_{carb} excursions (Schrag et al., 2013; Swart and Kennedy, 2012), with values trending from +5 to -12‰ (Fig. 7). The meteorically driven negative δ¹³C_{carb} excursion of the Clino core has specifically been invoked to suggest the possibility that ancient negative δ¹³C_{carb} excursions are products of diagenesis rather than secular evolution of the global carbon cycle (Swart and Kennedy, 2012). If diagenetic, the Shuram δ¹³C_{carb} data would most likely reflect post-depositional mineralogical
transformations and the associated low δ13C of dissolved inorganic carbon produced in pore fluids during organic matter remineralization under anoxic or reducing subsurface conditions. Our iodine data from the Clino core and other Neogene-Quaternary sediments confirm that I/(Ca+Mg) values do not increase during diagenesis and show no relationship with δ13C\textsubscript{carb} (Fig. 2), as IO3- is quantitatively reduced under the anoxic conditions typical of diagenetic carbonate precipitation (Kennedy and Elderfield, 1987a; Kennedy and Elderfield, 1987b). In contrast, however, I/(Ca+Mg) ratios across the Shuram excursion, at each of our four paleogeographic localities, increase in parallel with decreasing δ13C\textsubscript{carb} and do so consistently despite variable mineralogy and sedimentary facies (Fig. 7). Notably, the maximum observed I/(Ca+Mg) ratios vary among the Shuram sections, which could be the result of spatially varying, redox-driven local water column IO3- concentrations or a range of secondary factors that can lower the values in different ways (see diagenesis discussion). Regardless, the observed stratigraphic increase in I/(Ca+Mg) at all four locations in phase with the lower, falling δ13C\textsubscript{carb} limb of the Shuram anomaly is opposite of the pattern expected with diagenesis (Fig. 2, 4). Collectively, these data support the likelihood that the Shuram anomaly at least partially captures local seawater availability of IO3- and is a primary δ13C feature tracking trends, likely global, in seawater chemistry. A primary contribution to the Shuram anomaly is further braced by records of CAS (Kaufman et al., 2007; Loyd et al., 2013; Osburn et al., 2015), U concentrations (Zhao et al., 2016), detailed Ca-Mg-C isotope comparisons (Husson et al., 2015), and compound-specific δ13C of organic carbon (Lee et al., 2015), all of which show trends counter to those expected from diagenetic alteration.

Lastly, dolomitization in Proterozoic samples is not necessarily a source of false secular trends or, more generally, a fingerprint of severely altered samples with no confidence of recording signals of primary ocean chemistry. Instead, previous workers have argued from a combination of retention of primary sedimentary fabrics (Fairchild et al., 1991; Kah, 2000; Tucker, 1982), geochemical data (Husson et al., 2015; Kah, 2000; Tucker, 1982) and petrographic evidence (Tucker, 1982; van Smeerdijk Hood et al., 2011) that many dolomites formed
penecontemporaneous with deposition in Proterozoic sediments, in open exchange with seawater, and in some cases at or near the sediment-water interface. Although stoichiometrically disordered dolomite is subject to continued maturity during diagenesis (Vahrenkamp and Swart, 1994), one implication is that the relatively long-term stability of dolomite relative to other carbonate phases could mean that early Proterozoic dolomite, even if replacive, may be a strong and even preferred geochemical archive of ancient marine conditions relative to stratigraphically associated, limestone subject to diagenetic alteration during neomorphism. A comparison of iodine data from our Neogene diagenetic dolomite from the Bahamas and Monterey to Proterozoic samples further reinforces the potential frequency and benefit of early Proterozoic dolomite and points to processes regulating I/(Ca+Mg) other than dolomitization in some of our samples (Fig. 5). Specifically, the highest I/(Ca+Mg) ratios from our Proterozoic carbonates are found often in dolomite—a trend opposite to that seen in our Neogene samples. Late stage diagenetic processes, such as contact with anoxic brines, provide an unlikely explanation for the elevated I/(Ca+Mg) ratios in our Proterozoic dolomite (Derry, 2010), as these fluids would not support elevated IO₃⁻ contents. Given the early redox sensitivity of IO₃⁻ reduction with declining [O₂], our data reinforce the idea that in some cases Proterozoic dolomite precipitation likely occurred near or at the sediment-water interface and hence should record at least partial seawater signals (Fairchild et al., 1991; Kah, 2000; Tucker, 1982; van Smeerdijk Hood et al., 2011).

Given the combination of observations here and in previous work, broad first-order temporal trends in maximum I/(Ca+Mg) ratios are cautiously considered in discussions below as records of shallow ocean redox evolution. We emphasize again that our combined diagenetic data explicitly reveal that post-depositional increases in I/(Ca+Mg) are unlikely, and hence, if anything, the maximum I/(Ca+Mg) value from a given section is a minimum estimate of local seawater IO₃⁻ availability. While we are not linking I/(Ca+Mg) ratios to a specific seawater IO₃⁻ concentration, we do maintain that the first-order trends over billions of years are difficult to attribute to secondary effects.
5.3 Comparing the modern and Proterozoic dissolved marine iodine reservoir

Our temporal I/(Ca+Mg) record in Figure 6 suggests the likelihood of changes in marine IO$_3^-$ concentrations through time. Modern settings indicate that the control responsible for the largest shifts in local marine IO$_3^-$ concentration is the local redox state (Fig. 1; Emerson et al., 1979; Farrenkopf and Luther III, 2002; Rue et al., 1997; Wong and Brewer, 1977); however, changes in the size of the total marine dissolved iodine reservoir (both IO$_3^-$ and I$^-$) could control IO$_3^-$ concentrations if oxic conditions prevailed. We consider this possibility below.

The Precambrian iodine reservoir was likely large relative to today’s or, more generally, that of the Phanerozoic as a whole due to the absence or limited role of algal primary production and burial in marine sediments during the Precambrian. Marine sediments and sedimentary rocks are estimated to host as much as ~96% of crustal iodine, with the remaining fraction present in the hydrosphere and igneous and metamorphic rocks (Muramatsu and Hans Wedepohl, 1998). Algae, particularly brown algae, host the largest iodine enrichments in any known natural material by orders of magnitude, ultimately contributing to iodine concentration in organic-rich sediments (Muramatsu and Hans Wedepohl, 1998), which is recycled back to the ocean during weathering, diagenesis, and subduction (Fehn, 2012; Lu et al., 2010). Importantly, the first fossil evidence for algae does not appear until the late Mesoproterozoic Era (reviewed in Knoll, 2014), and algal-derived sterane biomarkers—representing eukaryotes—do not support algae being dominant contributors to marine organic matter until the latest Proterozoic (e.g., Brocks et al., 2016; Luo et al., 2015). Relatively lower iodine sinks in both Proterozoic sedimentary organic matter and carbonate (Fig. 6) point to a likely larger Proterozoic seawater iodine reservoir relative to today. These observations imply that our trends of low I/(Ca+Mg) in the Precambrian relative to the modern are unlikely to reflect a smaller marine reservoir of total dissolved iodine or shifts in that pool but instead derive from lower marine IO$_3^-$ concentrations at the site of carbonate precipitation as related primarily to local redox.
For the Shuram anomaly specifically, we speculate that the oxidation of algae-derived organic matter could drive a temporally isolated increase in the total dissolved marine iodine reservoir. Oxidation of organic matter, as suggested in previous studies (Fike et al., 2006), also provides a mechanism for the input of isotopically light DIC into the ocean to produce the negative $\delta^{13}C_{\text{carb}}$ characteristic of the Shuram excursion. For instance, simple mass balance calculations suggest that the input of DIC from organic carbon oxidation (with a $\delta^{13}C$ of -25 ‰) necessary to drive a whole-ocean -17‰ $\delta^{13}C$ excursion (equivalent to that often inferred for the Shuram anomaly) in the modern ocean would increase the total marine dissolved iodine reservoir by a factor of ~1.6 (using the typical algae I/TOC ratio of 10^-4). However, given that I/(Ca+Mg) tracks IO$_3^-$ and not total iodine, it is unlikely that the Shuram increase in I/(Ca+Mg) is simply a product of an increase in the total marine iodine reservoir. For example, regardless of an increase in the total iodine reservoir, IO$_3^-$ concentrations (and hence I/(Ca+Mg) ratios) would decrease (the opposite of what is observed) during the excursion if oxidation of reduced carbon acted to simultaneously expand anoxia (Lu et al., 2010; Zhou et al., 2015). We suggest instead that an increase in marine IO$_3^-$ through the Shuram anomaly would also require an expansion of oxic settings in the shallow ocean. Supporting this, concentrations and S isotope data for CAS through the Shuram anomaly provide evidence for an increase in marine sulfate concentrations and hence a general expansion of oxidizing conditions (Fike et al., 2006; Kaufman et al., 2007; Loyd et al., 2013; Osburn et al., 2015). Importantly, however, our iodine data do not demand that an oxidation event driving the negative $\delta^{13}C_{\text{carb}}$ excursion was linked to deep ocean ventilation. Oxygenation may instead have been limited to near-surface settings. This assumed redox stratification is supported by decreased I/(Ca+Mg) ratios following the event and thus an inferred return to more reducing conditions in the ocean (Fig. 7c), geochemical studies supporting widespread anoxia before and after the excursion (e.g., Johnston et al., 2013; Sperling et al., 2015), as well as mass balance calculations highlighting the challenges of maintaining the oxidants necessary to drive the $\delta^{13}C$ excursion if reflective of the whole-ocean ventilation (Bristow and Kennedy, 2008). Explaining the origin of the Shuram $\delta^{13}C_{\text{carb}}$
excursions remains a challenge; however, future models should consider the growing evidence for spatiotemporally limited oxidation specific to shallow settings.

5.4 Proterozoic surface ocean redox

In light of our study of diagenetic effects in recent carbonates, the simple presence of iodine in most of the Proterozoic carbonate units we analyzed provides strong evidence for surface ocean \([\text{O}_2]\) above the low threshold required for IO\(_3^-\) accumulation. Previous studies have argued for an \([\text{O}_2]\) requirement of at least 1-3 µM for marine IO\(_3^-\) accumulation and the presence of carbonate-bound iodine (Hardisty et al., 2014). Further support for Proterozoic surface ocean \([\text{O}_2]\) at or above low µM levels comes from the fossil evidence for the presence of eukaryotic microfossils in mid-Proterozoic oceans (Knoll, 2014), as well as from modeling efforts indicating the potential for single digit µM surface ocean \(\text{O}_2\) concentrations from \textit{in situ} oxygenic photosynthesis under even a completely anoxic atmosphere (Reinhard et al., 2016). Importantly, the >1-3 µM \(\text{O}_2\) levels inferred for the Proterozoic surface ocean are above those predicted from equilibrium calculations, assuming the very low mid-Proterozoic atmospheric \(p\text{O}_2\) suggested recently by Cr isotope measurements (Fig. 6; Gilleaudeau et al., 2016; Planavsky et al., 2014). Collectively, the two proxies may provide evidence for a disequilibrium between the atmosphere and surface ocean favored by \textit{in situ} photosynthetic oxygen production in the shallow waters (Reinhard et al., 2016).

Alternatively, the apparent discrepancy could reflect the uncertainties in our current understanding of modern iodine (Chance et al., 2014; Luther III et al., 1995) and chromium cycling (compare Gilleaudeau et al., 2016, and Planavsky et al., 2014).

\(I/(\text{Ca+Mg})\) ratios also provide new constraints on the degree of mixing of near-surface oxic waters with shallow anoxic waters (Lu et al., 2016). Given the relatively low \(I/(\text{Ca+Mg})\) ratios observed through most of the Proterozoic (Fig. 6), we suggest that the iodine record most strongly supports a weakly oxidized surface ocean with shallow anoxic waters near or within the surface ocean for most of the Proterozoic. In other words, Proterozoic surface ocean redox was analogous
to the oxycline of modern anoxic basins and OMZs (Fig. 1). These modern settings—where oxygen
is locally present, but IO$_3^-$ reduction is active in resident and/or adjacent exchanging water
masses—are characterized by sustained IO$_3^-$ accumulation but with diagnostically low
concentrations and corresponding I/(Ca+Mg) ratios in the range observed throughout the
Proterozoic (yellow squares, Fig. 6). That pattern manifests in a predominance of low I/(Ca+Mg)
ratios during the Proterozoic interrupted only episodically by largely minor increases (Fig. 6)
during some intervals previously described as oxygenation events, such as at the GOE (Lyons et
al., 2014), the Lomagundi excursion (Fig. 6; Lyons et al., 2014), at 1.4 Ga (Mukherjee and Large,
2016), the Neoproterozoic broadly (Planavsky et al., 2014), and the Shuram anomaly specifically
(Fike et al., 2006). Collectively, these trends suggest a history of protracted and dynamic
oxygenation within a largely anoxic ocean (Reinhard et al., 2013; Sperling et al., 2015) through the
Proterozoic—rather than a unidirectional rise.

We specifically link the generally low but non-zero mid-Proterozoic iodine values to an
extremely shallow oxycline that facilitated direct advective exchange between weakly oxic surface
waters and underlying or adjacent waters that were dominantly anoxic (Reinhard et al., 2013;
Sperling et al., 2015). In such a setting, it is likely that both upward and lateral mixing of O$_2$-free
waters frequently perturbed and intruded into already poorly oxygenated shallow ocean waters.
Reinforcing this interpretation, mid-Proterozoic records of chromium isotopes (Planavsky et al.,
2014), Mo and Cr concentrations (Reinhard et al., 2013), rare earth elements (Tang et al., 2016),
Zn/Fe ratios (Liu et al., 2016), and CAS (e.g., Kah et al., 2004) all indicate limited mid-Proterozoic
biospheric oxygenation. Together with independent evidence for mid-depth euxinia throughout the
mid-Proterozoic based on iron speciation analysis of shale (Fig. 6), the upward and lateral mixing
of anoxic waters into weakly oxygenated surface waters may also have resulted in frequent episodic
incursions of hydrogen sulfide into particularly shallow settings.

6. Summary and implications for Proterozoic life
The Proterozoic iodine record provides a comprehensive window to oxygen dynamics that may have dominated ancient, marginal shallow-marine settings—the ecological hot spots that likely hosted the emergence and diversification of eukaryotes, including animals (Jablonski et al., 1983; Knoll, 2014). This conclusion highlights the value of I/(Ca+Mg) data relative to other Proterozoic paleoredox records that are specific to the atmosphere (Cr isotopes) or to anoxic conditions in deeper marine settings (trace metals and Fe mineral speciation in shales). The overarching trends in our dataset are not easily linked to diagenetic processes, and there is strong support for a primary origin of iodine records across the heavily discussed Shuram excursion.

Previous debate regarding the potential for redox controls on the timing of early animal evolution has focused on experimental and ecological analyses of animal physiology (Mills et al., 2014; Sperling et al., 2013) as related to indirect estimates of atmospheric pO2 (Planavsky et al., 2014). The iodine data provide a more direct perspective, suggesting the possibility of a Proterozoic surface ocean that was at least intermittently hospitable to eukaryotes and that may have been at, near, or above the lower limits of oxygen required for small, simple (but not large and energetic) animals (Mills et al., 2014; Sperling et al., 2013). Critically, however, our data also support the likelihood that the marginal shelf settings in which early protistan and, later, animal fossils are found were characterized by low and variable O2 conditions (Gilleaudeau and Kah, 2015) most analogous to those within the oxyclines directly overlying modern OMZs and within anoxic basins. We argue that these conditions were particularly common through the mid-Proterozoic, with weakly oxygenated shallow waters impacted frequently if not persistently by upward and lateral intrusion of abundant anoxic waters. Despite maximum shallow ocean [O2] that was likely near the proposed thresholds for simple, early animals, such dynamic conditions could have challenged eukaryotic and, later, animal emergence and diversification during the mid-Proterozoic for at least a billion years (Johnston et al., 2012).

Author Contributions
DH, ZL, XZ and CD analyzed $I/(Ca+Mg)$ ratios. AB, BG, CW, DH, GJ, LK, AK, SL, MO, NP and PS provided sample material or aided with fieldwork. DH designed the study and wrote the manuscript, with major contributions from ZL and TL. MO, NP and AB also provided essential input throughout. All authors discussed the results and commented on and approved manuscript submission.

Acknowledgments

TL, ZL, and DH thank NSF EAR-1349252. ZL further thanks OCE-1232620. DH and TL acknowledge further funding from a NASA Early Career Collaboration Award. TL, AB, NP, DH, and AK thank the NASA Astrobiology Institute. TL and NP received support from the Earth-Life Transitions Program of the NSF. AB acknowledges support from NSF grant EAR-05-45484 and an NSERC Discovery and Accelerator Grants. We also thank Peter Swart for providing the Unda and Clino drill cores, which was supported by NSF funding to PS.

References

Table 1. Approximate ages and number of samples for Proterozoic geologic units measured for I/(Ca+Mg) ratios in this study. References to ages and lithological descriptions can be found in the supplementary materials.

Table 2. Approximate ages and number of samples for Neogene-Quaternary geologic units measured for I/(Ca+Mg) ratios in this study. Also shown are the diagenetic conditions affecting mineralogy at each study site. The relevant previous publications providing lithological, geochemical, and diagenetic constraints are provided in the Supplementary Materials and in some cases in the main text. The citations are relevant to the exact same samples (KL and Monterey), cores (Clino, Unda), and sampling localities (LD and LS Islands) as the samples measured for I/(Ca+Mg) ratios in this study.

Table 3. Coordinates, water depth, and key depositional features, and mineralogy for cores from near Little Darby and Lee Stocking Islands, Bahamas. Mineralogy is shown in wt. % high-Mg calcite (HMC). None of the cores contained dolomite and only minor calcite was found in the cores, with HMC + aragonite > 93.52 wt. %, meaning the sediments mostly consist of aragonite. The detailed mineralogy, $\delta^{13}C_{\text{carb}}$, $\delta^{18}O_{\text{carb}}$, and I/(Ca+Mg) for each sample can be found in Supplementary Table 1. Also shown is the I/(Ca+Mg) surface-most value and range for each short core.
Figure Legends

Fig. 1. Water column dissolved [IO₃⁻] and [O₂] from a vertical transect through the Peruvian OMZ (Rue et al., 1997). The vertical dashed line highlights the range of [IO₃⁻] (<250 nM) that is nearly exclusively observed in settings within or below the oxycline of marine anoxic basins and OMZs (Lu et al., 2016). The shaded box outlining this zone refers to the portion of the profile where corresponding I/(Ca+Mg) ratios are anticipated to be <2.6 μmol/mol, which is discussed in the main text.

Fig. 2. The (a) facies and lithology (vertical and slanted lines represent ramp paleo geometry; Swart and Melim, 2000), (b) carbonate mineralogy (aragonite-dark grey; HMC-red, LMC-white; dolomite-blue), (c) δ¹³C_carb, and (d) I/(Ca+Mg) ratios for core the Clino core of the Great Bahama Bank. References to the lithological descriptions can be found in the supplementary materials.

Fig. 3. (a) I/(Ca+Mg) and (b) δ¹³C_carb for transects from three aragonite-dominated to calcite-dominated portions of (c) Montastrea annularis coral heads of the Pleistocene Key Largo Limestone of south Florida. The samples and transects are the exact same as those use in Gill et al. (2008). A picture of the KL-1 coral head and drilled transect is shown in part c, with the circles representing discrete sampling locations. The transects are drilled at centimeter intervals across a mineralogical transition from aragonite to calcite driven by subarial exposure and diagenesis in meteoric pore fluids. The aragonite can be discerned by the lighter color and the calcite by the darker color, with the reaction void occurring between KL1-3 and KL1-4.

Fig. 4. The composition of (A) primary aragonite and high-Mg calcite and (B) diagenetic dolomite relative to I/(Ca+Mg) ratios for the diagenetic sample set described in the main text and shown in the key. The horizontal dashed line is at an I/(Ca+Mg) of 2.6 μmol/mol, the threshold below which, as discussed in the text, is characteristic of reducing marine settings (Glock et al., 2014; Lu et al., 2016).

Fig. 5. Comparison of I/(Ca+Mg) to Ca/Mg for the Neogene dolomite-bearing sample sets relative to the Proterozoic sample set from this and previous studies (Hardisty et al., 2014). The lower panel shows the relative proportion of limestone versus dolomite for varying Ca/Mg ratios. Ca/Mg ratios >80 are present in the sample sets, but not shown in order to emphasize the relevant trends.

Fig. 6. Compilation of proxy data distinguishing the redox state of the atmosphere, surface ocean, and deeper ocean. Events specified in the text are labeled, including the period marked by the first known major eukaryotic diversification (vertical gray bar Knoll, 2014). **Upper panel:** The secular trends in atmospheric oxygen as discussed in recent compilations (Lyons et al., 2014; Planavsky et
Dashed lines in upper panel represent uncertainty due to a lack of quantitative constraints. **Middle panel:** δ^{13}C$_{\text{carb}}$ (upper thick black line) and I/(Ca+Mg) (Glock et al., 2014; Hardisty et al., 2014; Loope et al., 2013; Lu et al., 2016; Lu et al., 2010; Zhou et al., 2015; Zhou et al., 2014). I/(Ca+Mg) ratios represent surface ocean redox conditions. Blue symbols on the right side represent samples from modern to recent settings with independent evidence for well-oxygenated water columns and lacking indicators of diagenetic overprinting. This includes foraminifera (Lu et al., 2016), aragonitic coral heads of the Key Largo Limestone of this study, and aragonite to HMC-dominated bulk carbonate from the modern Great Bahama Bank of this study. The yellow symbols correspond to modern foraminifers from within the oxycline of reducing settings (Glock et al., 2014; Lu et al., 2016). The square symbols indicate data representing I/Ca from calcitic foraminifers, equivalent to I/(Ca+Mg) in the case of calcite. **Bottom panel:** Generalized deep ocean redox redox, as inferred from previous works utilizing iron mineral speciation (Sperling et al., 2015). Red and purple boxes represents ferruginous and euxinic deep-marine waters, respectively.

Fig. 7. The δ^{13}C$_{\text{carb}}$, I/(Ca+Mg) ratios, and stratigraphic profiles for Ediacaran successions capturing the Shuram anomaly. (A) Khufai Formation, Oman (δ^{13}C$_{\text{carb}}$ from Osburn et al., 2015), (B) the Johnnie Formation, Death Valley, USA, (C) Clemente Formation, Northern Mexico (δ^{13}C$_{\text{carb}}$ from Loyd et al., 2013), and (D) Doushantuo Formation, Siduping of South China. 1σ for I/(Ca+Mg) is equal to 0.2 μmol/mol (see Methods), twice the width of the data points. References to stratigraphic and paleogeographic details are in the Supplementary Materials.
Table 1.

<table>
<thead>
<tr>
<th>Geologic Unit</th>
<th>Approximate Age (billions of years)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wooly Dolomite, Australia</td>
<td>2.03</td>
<td>11</td>
</tr>
<tr>
<td>Snare Group, Canada</td>
<td>1.97</td>
<td>4</td>
</tr>
<tr>
<td>Taltheilei Formation, Canada</td>
<td>1.88</td>
<td>14</td>
</tr>
<tr>
<td>Duck Creek Formation, Australia</td>
<td>1.80</td>
<td>22</td>
</tr>
<tr>
<td>Paradise Creek Formation, Australia</td>
<td>1.65</td>
<td>10</td>
</tr>
<tr>
<td>Helena Formation, USA</td>
<td>1.45</td>
<td>9</td>
</tr>
<tr>
<td>Tieling Formation, China</td>
<td>1.44</td>
<td>45</td>
</tr>
<tr>
<td>Kaltasy Formation, Russia</td>
<td>1.43</td>
<td>12</td>
</tr>
<tr>
<td>Dismal Lakes Group, Canada</td>
<td>1.30</td>
<td>16</td>
</tr>
<tr>
<td>Mescal Formation, USA</td>
<td>1.26</td>
<td>4</td>
</tr>
<tr>
<td>Angmaat Formation, Canada</td>
<td>1.15</td>
<td>17</td>
</tr>
<tr>
<td>Atar and El Mreiti Groups, Mauritania</td>
<td>1.10</td>
<td>17</td>
</tr>
<tr>
<td>Sukhaya Tunguska Formations, Russia</td>
<td>1.04</td>
<td>7</td>
</tr>
<tr>
<td>Shaler Group, Canada</td>
<td>0.85</td>
<td>17</td>
</tr>
<tr>
<td>Akademikberbeen Group, Svalbard; Limestone-Dolomite Series, Greenland</td>
<td>0.83</td>
<td>36</td>
</tr>
<tr>
<td>Beck Springs Dolomite, USA</td>
<td>0.75</td>
<td>20</td>
</tr>
<tr>
<td>Khufai Formation, Sultanate of Oman</td>
<td>0.58</td>
<td>122</td>
</tr>
<tr>
<td>Johnnie Formation, USA</td>
<td>0.58</td>
<td>30</td>
</tr>
<tr>
<td>Clemente Formation, Mexico</td>
<td>0.58</td>
<td>31</td>
</tr>
<tr>
<td>Doushantuo Formation, China (Siduping)</td>
<td>0.64-0.58</td>
<td>74</td>
</tr>
<tr>
<td>Age</td>
<td>Location</td>
<td>Diagenetic Setting</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>modern</td>
<td>Little Darby and Lee Stocking Islands, Bahamas</td>
<td>initial deposition</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>Key Largo Limestone, South Florida</td>
<td>initial deposition, meteoric</td>
</tr>
<tr>
<td>Neogene-Quaternary</td>
<td>Clino, Bahamas</td>
<td>meteoric, marine burial, dolomitization</td>
</tr>
<tr>
<td>Neogene-Quaternary</td>
<td>Unda, Bahamas</td>
<td>dolomitization</td>
</tr>
<tr>
<td>Miocene</td>
<td>Monterey Fm, Central California</td>
<td>dolomite concretions</td>
</tr>
</tbody>
</table>
Table 3.

<table>
<thead>
<tr>
<th>Core</th>
<th>Coordinates</th>
<th>Water Depth (m)</th>
<th>Key Features</th>
<th>HMC (wt. %)</th>
<th>I/(Ca+Mg) (µmol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface</td>
<td>Range</td>
</tr>
<tr>
<td>C1</td>
<td>23°51'24.59"N 76°13'30.85"W</td>
<td><1</td>
<td>intertidal</td>
<td>6.6-23.0</td>
<td>8.1-10.2</td>
</tr>
<tr>
<td>C3</td>
<td>23°51'24.68"N 76°13'33.25"W</td>
<td><5</td>
<td>subtidal/Thalassia testudinum bed</td>
<td>15.2-25.6</td>
<td>6.7-7.6</td>
</tr>
<tr>
<td>C4,</td>
<td>23°46'11.21"N 76°6'48.92"W</td>
<td><10</td>
<td>subtidal/former ooid shoal/peloid rich/Thalassia testudinum bed</td>
<td>13.7-31.3; 8.1-26.5</td>
<td>8.4-10.8; 7.7-9.4</td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td></td>
<td></td>
<td>10.0; 9.4</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>23°45'57.18"N 76°8'3.00"W</td>
<td><10</td>
<td>subtidal/active ooid shoal/ooid aggregates or grapestones</td>
<td>4.7-9.3</td>
<td>6.0-11.6</td>
</tr>
<tr>
<td>C7</td>
<td>23°46'10.78"N 76°6'51.48"W</td>
<td><10</td>
<td>subtidal/active ooid shoal/ooid aggregates or grapestones</td>
<td>4.3-10.3</td>
<td>6.7-7.5</td>
</tr>
<tr>
<td>C8</td>
<td>23°51'21.55"N 76°13'33.52"W</td>
<td><2</td>
<td>subtidal/active ooid shoal/ooid aggregates or grapestones</td>
<td>8.8-24.1</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Figures

Fig. 1
Fig. 2

Lithology and facies:
- Platform
- Reef complex
- Proximal slope
- Deeper slope

Mineralogy (wt. %):
- LMC
- DOL
- HMC
- ARAG

δ¹³C_carbonate (%):
- Meteoric marine burial

I/(Ca+Mg) (µmol/mol):
- Subaerial exposure

Legend:
- Peloidal-skeletal packstone to wackestone (<150 µm)
- Cemented skeletal and/or foraminiferal packstone to grainstone (>125 µm)
- Peloidal packstone to grainstone (<150 µm)
- Coarse peloidal-skeletal packstone to grainstone (>250 µm)
- Porous peloidal-skeletal packstone (<250 µm)
Fig. 3

[Graph showing the distribution of aragonite and calcite with distance from the reaction void (cm), and δ13C values for the same.]