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Preface

This report aggregates the papers presented at the first miniKanren and Relational Programming Workshop, hosted on
August 2nd, 2019 in Berlin, Germany and co-located with the twenty-second International Conference on Functional
Programming.

The miniKanren and Relational Programming Workshop is a new workshop for the miniKanren family of relational
(pure constraint logic programming) languages: miniKanren, microKanren, core.logic, OCanren, Guanxi, etc. The
workshop solicits papers and talks on the design, implementation, and application of miniKanren-like languages. A
major goal of the workshop is to bring together researchers, implementors, and users from the miniKanren community,
and to share expertise and techniques for relational programming. Another goal for the workshop is to push the
state of the art of relational programming—for example, by developing new techniques for writing interpreters, type
inferencers, theorem provers, abstract interpreters, CAD tools, and other interesting programs as relations, which are
capable of being “run backwards,” performing synthesis, etc.

6 papers were submitted to the workshop, and each submission was reviewed by two to three members of the program
committee. After deliberation, all submissions were accepted to the workshop.

In addition to the six full papers presented

• William E. Byrd gave a morning tutorial on miniKanren,

• Daniel P. Friedman and William E. Byrd gave a closing Q&A with audience.

Thanks to all presenters, participants, and members of the program committee.

William E. Byrd & Nada Amin

Program Committee

Claire Alvis, Sparkfund
Nada Amin, Harvard University (Program Chair)
Tom Gilray, University of Alabama at Birmingham
Jason Hemann, Northeastern University
Eric Holk, Google
Kanae Tsushima, National Institute of Informatics
William E. Byrd, University of Alabama at Birmingham (General Chair)
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Towards a miniKanren with fair search strategies

KUANG-CHEN LU, Indiana University, USA
WEIXI MA, Indiana University, USA
DANIEL P. FRIEDMAN, Indiana University, USA

We describe fairness levels in disjunction and conjunction implementations. Specifically, a disjunction implementation can be
fair, almost-fair, or unfair. And a conjunction implementation can be fair or unfair. We compare the fairness level of four
search strategies: the standard miniKanren interleaving depth-first search, the balanced interleaving depth-first search, the
fair depth-first search, and the standard breadth-first search. The two non-standard depth-first searches are new. And we
present a new, more efficient and shorter implementation of the standard breadth-first search. Using quantitative evaluation,
we argue that each depth-first search is a competitive alternative to the standard one, and that our improved breadth-first
search implementation is more efficient than the current one.

1 INTRODUCTION
miniKanren is a family of relational programming languages. Friedman et al. [3, 4] introduce miniKanren and its
implementation in The Reasoned Schemer and The Reasoned Schemer, 2nd Ed (TRS2). Hemann et al. [5] describe
microKanren, a minimal core of miniKanren comprised of only 54 LOC, miniKanren has been implemented in
many other languages, including multiple ones using the same language (e.g. OCanren[7]). As demonstrated in
Byrd et al. [2], miniKanren can be used to naturally express difficult computations, such as using an interpreter
to perform example-based program synthesis, or using a proof checker as a theorem prover. The papers, talks,
and tutorials on miniKanren.org present many other unusual problems, and their solutions in miniKanren.

A subtlety arises when a conde contains many clauses: not every clause has an equal chance of contributing to
the result. As an example, consider the following relation repeato and its invocation.

(defrel (repeato x out)

(conde

((≡ `(,x) out))

((fresh (res)

(≡ `(,x . ,res) out)

(repeato x res)))))

> (run 4 q

(repeato '* q))

'((*) (* *) (* * *) (* * * *))

Next, consider the following disjunction of invoking repeato with four different letters.

Authors’ addresses: Kuang-Chen Lu, Indiana University, USA, kl13@iu.edu; Weixi Ma, Indiana University, USA, mvc@iu.edu; Daniel P.
Friedman, Indiana University, USA, dfried@indiana.edu.
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1:2 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

conde intuitively relates its clauses with logical or. And thus an unsuspicious beginner would expect each letter
to contribute equally to the result, as follows.

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

The conde in TRS2, however, generates a less expected result.

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

The miniKanren in TRS2 implements interleaving DFS (DFSi ), the cause of this unexpected result. With this
search strategy, each conde clause takes half of its received computational resources and passes the other half to
its following clauses, except for the last clause that takes all resources it receives. In the example above, the a
clause takes half of all resourses. And the b clause takes a quarter. Thus c and d barely contribute to the result.
DFSi is sometimes powerful for an expert. By carefully organizing the order of conde clauses, a miniKanren

program can explore more “interesting” clauses than those uninteresting ones, and thus use computational
resources efficiently.
DFSi is not always the best choice. For instance, it might be less desirable for novice miniKanren users—

understanding implementation details and fiddling with clause order is not their first priority. There is another
reason that miniKanren could use more search strategies than just DFSi . In many applications, there does not
exist one order that serves all purposes. For example, a relational dependent type checker contains clauses for
constructors that build data and clauses for eliminators that use data. When the type checker is generating
simple and shallow programs, the clauses for constructors had better be at the top of the conde expression. When
performing proof searches for complicated programs, the clauses for eliminators had better be at the top of
the conde expression. With DFSi , these two uses cannot be efficient at the same time. In fact, to make one use
efficient, the other one must be more sluggish. Boskin et al. [1] propose and implement a means to eliminate or
re-order disjunctive clauses to accommodate varying search needs such as these.
The specification that gives every clause in the same conde equal “search priority” is fair disj. And search

strategies with almost-fair disj give every clause similar priority. Fair conj, a related concept, is more subtle.
We cover it in the next section.

Our research compares four search strategies with different features in fairness (Table 1). To summarize our
contributions, we
• propose and implement balanced interleaving depth-first search (DFSbi )
• propose and implement fair depth-first search (DFSf )
• implement in a new way the standard breath-first search. We refer to BFSser as the original implementation
by Seres et al. [9] and BFSimp as our new one. When we use BFS without subscripts, we mean both BFSser
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Towards a miniKanren with fair search strategies • 1:3

and BFSimp . We formally prove that the two implementations are semantically equivalent, however, BFSimp
runs faster in all benchmarks and is shorter.

Source code of implementations, examples, benchmarks, and formal proofs are available at the following URL:
https://github.com/LuKC1024/Towards-a-miniKanren-with-fair-search-strategies

Search Strategies disj conj
DFSi unfair unfair
DFSbi almost-fair unfair
DFSf fair unfair
BFS fair fair

Table 1. Fairness of all search strategies

2 SEARCH STRATEGIES AND FAIRNESS
In this section, we define fairness levels in disjunction and conjunction implementations. Specifically, a disjunction
implementation can be fair, almost-fair, or unfair. And a conjunction implementation can be fair or unfair. Fairness,
intuitively, measures how evenly a search strategy allocates computational resource to “sibling” spaces.
Before going further into fairness, we give a short review of the terms: state, space, and goal. A state is a

collection of constraints. (Here, we restrict constraints to unification constraints.) Every answer corresponds to a
state. A space is a collection of states. And a goal is a function from a state to a space. Every state in the output
space includes the input state and possibly more constraints.

Now we elaborate fairness by running more queries about repeato . We never use run∗ here because fairness
is more interesting when we ask for a bounded number of answers. It is perfectly fine, however, to use run∗ with
any search strategy.

2.1 Fair disj
Given the following program, it is natural to expect lists of each letter to constitute 1/4 in the answer list. DFSi ,
TRS2’s search strategy, however, results in many more lists of as than lists of other letters. And some letters (e.g.
c and d) are rarely seen. The more clauses, the worse the situation.

;; DFSi (unfair disj)

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

The miniKanren and Relational Programming Workshop 2019 3



1:4 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

Under the hood, the conde here allocates computational resources to four trivially different spaces. The unfair
disj in DFSi allocates many more resources to the first space. On the contrary, fair disj would allocate resources
evenly to each space.

;; DFSf (fair disj)

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

;; BFS (fair disj)

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

Running the same program again with almost-fair disj (e.g. DFSbi ) gives a similar result, where b and c are
swapped. Almost-fair, however, is not completely fair, as shown by the following example.

;; DFSbi (almost-fair disj)

> (run 16 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))

((repeato 'e q))))

'((a) (c) (b)

(a a) (c c) (b b) (d)

(a a a) (c c c) (b b b) (e)

(a a a a) (c c c c) (b b b b) (d d)

(a a a a a))

DFSbi is fair only when the number of goals is a power of 2, otherwise, it allocates some goals with twice
as many resources as the others. In the above example, where the conde has five clauses, DFSbi allocates more
resources to the clauses of a, b, and c.
We end this subsection with precise definitions of all levels of disj fairness. Our definition of fair disj is

slightly more general than the one in Seres et al. [9], which is only for binary disjunction. We generalize it to a
multi-arity one.

Definition 2.1 (fair disj). A disj is fair if and only if it allocates computational resources evenly to spaces
produced by goals in the same disjunction (i.e., clauses in the same conde ).

Definition 2.2 (almost-fair disj). A disj is almost-fair if and only if it allocates computational resources
so evenly to spaces produced by goals in the same disjunction that the maximal ratio of resources is bounded by a
constant.

Definition 2.3 (unfair disj). A disj is unfair if and only if it is not almost-fair.
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2.2 Fair conj
Given the following program, it is natural to expect lists of each letter to constitute 1/4 in the answer list. Search
strategies with unfair conj: DFSi , DFSbi , and DFSf , however, results in many more lists of as than lists of other
letters. And some letters are rarely seen. Here again, as the number of clauses grows, the situation worsens.

Although some strategies have a different level of fairness in disj, they have the same behavior when there is
no call to a relational definition in conde clauses, including this case.

;; DFSi (unfair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

;; DFSf (unfair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

;; DFSbi (unfair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

Under the hood, the conde and the call to repeato are connected by conj. The conde goal outputs a space
including four trivially different states. Applying the next conjunctive goal, (repeato x q), produces four
trivially different spaces. In the examples above, all search strategies allocate more computational resources to
the space of a. On the contrary, fair conj would allocate resources evenly to each space. For example,

;; BFS (fair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

A more interesting situation is when the first conjunct produces an unbounded number of states. Consider
the following example: a naive specification of fair conj might require search strategies to produce all sorts of
singleton lists, but there would not be any lists of length two or longer, which makes the strategies incomplete. A
search strategy is complete if and only if “every correct answer would be discovered after some finite time” [9],
otherwise, it is incomplete. In the context of miniKanren, a search strategy is complete means that every correct
answer has a position in large enough answer lists.

The miniKanren and Relational Programming Workshop 2019 5
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;; naively fair conj

> (run 6 q

(fresh (xs)

(conde

((repeato 'a xs))

((repeato 'b xs)))

(repeato xs q)))

'(((a)) ((b))

((a a)) ((b b))

((a a a)) ((b b b)))

Our solution requires a search strategy with fair conj to organize states in buckets in spaces, where each
bucket is a finite collection of states and every space contains possibly infinite buckets, and to allocate resources
evenly among spaces derived from states in the same bucket. It is up to a search strategy designer to decide by
what criteria to put states in the same bucket, and how to allocate resources among spaces related to different
buckets.

BFS puts states of the same cost in the same bucket, and allocates resources carefully among spaces related to
different buckets such that it produces answers in increasing order of cost. The cost of an answer is its depth in
the search tree (i.e., the number of calls to relational definitions required to find the answer) [9]. In the above
examples, the cost of each answer is equal to their lengths because we need to apply repeato n times to find an
answer of length n. In the following example, every answer is a list of a list of symbols, where inner lists in the
same outer list are identical. Here the cost of each answer is equal to the length of its inner lists plus the length
of its outer list. For example, the cost of ((a) (a)) is 1 + 2 = 3.

;; BFS (fair conj)

> (run 12 q

(fresh (xs)

(conde

((repeato 'a xs))

((repeato 'b xs)))

(repeato xs q)))

'(((a)) ((b))

((a) (a)) ((b) (b))

((a a)) ((b b))

((a) (a) (a)) ((b) (b) (b))

((a a) (a a)) ((b b) (b b))

((a a a)) ((b b b)))

We end this subsection with precise definitions of all levels of conj fairness.

Definition 2.4 (fair conj). A conj is fair if and only if it allocates computational resources evenly to spaces
produced from states in the same bucket. A bucket is a finite collection of states. And search strategies with fair conj
should represent spaces with possibly unbounded collections of buckets.

Definition 2.5 (unfair conj). A conj is unfair if and only if it is not fair.
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#| Goal × Goal → Goal |#

(define (disj2 g1 g2 )

(lambda (s)

(append∞ ( g1 s) ( g2 s))))

#| Space × Space → Space |#

(define (append∞ s∞ t∞)
(cond

((null? s∞) t∞)
((pair? s∞)
(cons (car s∞)

(append∞ (cdr s∞) t∞)))
(else (lambda ()

(append∞ t∞ (s∞))))))

(define-syntax disj
(syntax-rules ()

((disj) (fail))

((disj g0 g ...) (disj+ g0 g ...))))

(define-syntax disj+
(syntax-rules ()

((disj+ g) g)

((disj+ g0 g1 g ...) (disj2 g0 (disj+ g1 g ...)))))

Fig. 1. implementation of DFSi (Part I)

3 INTERLEAVING DEPTH-FIRST SEARCH
In this section, we review the implementation of DFSi . We focus on parts that are relevant to other strategies. TRS2,
chapter 10 and the appendix, “Connecting the wires”, provide a comprehensive description of the miniKanren
implementation but limited to unification constraints (≡). Fig. 1 and Fig. 2 show parts that are later compared
with other search strategies. We follow some conventions to name variables: ss name states; gs (possibly with
subscript) name goals; variables ending with ∞ name spaces. Fig. 1 shows the implementation of disj. The first
function, disj2, implements binary disjunction. It applies the two disjunctive goals to the input state s and
composes the two resulting spaces with append∞. The following syntax definitions say disj is right-associative.
Fig. 2 shows the implementation of conj. The first function, conj2, implements binary conjunction. It applies
the first goal to the input state, then applies the second goal to states in the resulting space. The helper function
append-map∞ applies its input goal to states in its input space and composes the resulting spaces. It reuses
append∞ for space composition. The following syntax definitions say conj is also right-associative.

The miniKanren and Relational Programming Workshop 2019 7
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#| Goal × Goal → Goal |#

(define (conj2 g1 g2 )

(lambda (s)

(append-map∞ g2 ( g1 s))))

#| Goal × Space → Space |#

(define (append-map∞ g s∞)
(cond

((null? s∞) '())

((pair? s∞)
(append∞ (g (car s∞))

(append-map∞ g (cdr s∞))))
(else (lambda ()

(append-map∞ g (s∞))))))

(define-syntax conj
(syntax-rules ()

((conj) (fail))

((conj g0 g ...) (conj+ g0 g ...))))

(define-syntax conj+

(syntax-rules ()

((conj+ g) g)

((conj+ g0 g1 g ...) (conj2 g0 (conj+ g1 g ...)))))

Fig. 2. implementation of DFSi (Part II)

4 BALANCED INTERLEAVING DEPTH-FIRST SEARCH
DFSbi has almost-fair disj and unfair conj. Its implementation differs from DFSi ’s in the disj macro. When
there are one or more disjunctive goals, the new disj builds a balanced binary tree whose leaves are the goals
and whose nodes are disj2s, hence the name of this search strategy. In contrast, the disj in DFSi constructs the
binary tree in a particularly unbalanced form. We list the new disj with its helper in Fig. 3. The new helper,
disj+, takes two additional ‘arguments’. They accumulate goals to be put in the left and right subtrees. The first
clause handles the case where there is only one goal. In this case, the tree is the goal itself. When there are more
goals, we partition the list of goals into two sublists of roughly equal lengths and recur on the two sublists. We
move goals to the accumulators in the last clause. As we are moving two goals each time, there are two base
cases: (1) no goal remains; (2) one goal remains. We handle these two new base cases in the second clause and the
third clause, respectively.

5 FAIR DEPTH-FIRST SEARCH
DFSf has fair disj and unfair conj. Its implementation differs from DFSi ’s in disj2 (Fig. 4). The new disj2 calls
a new and fair version of append∞. append∞f air immediately calls its helper, loop, with the first argument, s?,

8 The miniKanren and Relational Programming Workshop 2019
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(define-syntax disj
(syntax-rules ()

((disj) fail)

((disj g0 g ...) (disj+ () () g0 g ...))))

(define-syntax disj+
(syntax-rules ()

((disj+ () () g) g)

((disj+ ( gl ...) ( gr ...))

(disj2 (disj+ () () gl ...)

(disj+ () () gr ...)))

((disj+ ( gl ...) ( gr ...) g0 )

(disj2 (disj+ () () gl ...)

(disj+ () () g0 gr ...)))

((disj+ ( gl ...) ( gr ...) ga g ... gz )

(disj+ ( gl ... ga ) ( gz gr ...) g ...))))

Fig. 3. implementation of DFSbi

#| Goal × Goal → Goal |#

(define (disj2 g1 g2 )

(lambda (s)

( append∞f air ( g1 s) ( g2 s))))

#| Space × Space → Space |#

(define ( append∞f air s∞ t∞)
(let loop ((s? #t) (s∞ s∞) (t∞ t∞))

(cond
(( null? s∞) t∞)
((pair? s∞)
(cons (car s∞)

(loop s? (cdr s∞) t∞)))
(s? (loop #f t∞ s∞))
(else (lambda ()

(loop #t (t∞) (s∞)))))))

Fig. 4. implementation of DFSf

initialized to #t, which indicates that we haven’t swapped s∞ and t∞. The swapping happens at the third cond
clause in loop, where s? is updated accordingly. The first two cond clauses essentially copy the cars and stop
recursion when one of the input spaces is obviously finite. The third clause, as we mentioned above, is just for

The miniKanren and Relational Programming Workshop 2019 9
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#| Goal × Space → Space |#

(define (append-map∞f air g s∞)
(cond

((null? s∞) '())

((pair? s∞)
( append∞f air (g (car s∞))

(append-map∞f air g (cdr s∞))))
(else (lambda ()

(append-map∞f air g (s∞))))))

Fig. 5. stepping-stone toward BFSimp (based on DFSf )

swapping. When the fourth and last clause runs, we know that both s∞ and t∞ end with thunks, and that we
have swapped them. In this case, we construct a new thunk. The new thunk swaps back the two spaces in the
recursive call to loop. This is unnecessary for fairness—we do it to produce answers in a more readable order.

6 BREADTH-FIRST SEARCH
BFS has both fair disj and fair conj. Our first BFS implementation (Fig. 5) serves as a “stepping-stone” toward
BFSimp . It is so similar to DFSf (not DFSi ) that we only need to apply two changes: (1) rename append-map∞ to
append-map∞f air and (2) replace append∞ with append∞f air in append-map∞f air ’s body.

This implementation can be improved in two ways. First, as mentioned in subsection 2.2, BFS puts answers in
buckets and answers of the same cost are in the same bucket. In the above implementation, however, it is not
obvious how we manage cost information—the cars of a space have cost 0 (i.e., they are all in the same bucket),
and every thunk indicates an increment in cost. It is even more subtle that append∞f air and the append-map∞f air
respects the cost information. Second, append∞f air is extravagant in memory usage. It makes O(n +m) new
cons cells every time, where n andm are the sizes of the first buckets of two input spaces. DFSf is also space
extravagant.

In the following paragraphs, we first describe BFSimp implementation that manages cost information in a more
clear and concise way and is less extravagant in memory usage. Then we compare BFSimp with BFSser .
We simplify the cost information by changing the Space type, modifying related function definitions, and

introducing a few more functions. The new type of Space is a pair whose car is a list of answers (the bucket),
and whose cdr is either #f or a thunk returning a space. The #f here means the space is obviously finite, just
like empty list in other implementations. We list functions related to the pure subset in Fig. 6. The first three
functions are space constructors. none makes an empty space; unit makes a space from one answer; and step
makes a space from a thunk. The remaining functions are as before. Luckily, the change in append∞f air also
fixes the miserable space extravagance—the use of append helps us to reuse the first bucket of t∞. Functions
implementing impure features are in Fig. 7. The first function, elim, takes a space s∞ and two continuations fk
and sk. When s∞ contains no answers, it calls fk. Otherwise, it calls sk with the first answer and the rest of the
space. This function is similar to an eliminator of spaces, hence the name. The remaining functions are as before.

Kiselyov et al. [6] have demonstrated that aMonadPlus hides in implementations of logic programming systems.
BFSimp is not an exception: append-map∞f air is like bind, but takes arguments in reversed order; none, unit, and
append∞f air correspond to mzero, unit, and mplus, respectively.
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#| → Space |#

(define (none)

`(() . #f))

#| State → Space |#

(define (unit s)

`((,s) . #f))

#| (→ Space) → Space |#

(define (step f)

`(() . ,f))

#| Space × Space → Space |#

(define ( append∞f air s∞ t∞)
(cons (append (car s∞) (car t∞))

(let ((t1 (cdr s∞)) (t2 (cdr t∞)))
(cond

((not t1) t2)

((not t2) t1)

(else (lambda () ( append∞f air (t1) (t2))))))))

#| Goal × Space → Space |#

(define (append-map∞f air g s∞)
(foldr

(lambda (s t∞)
( append∞f air (g s) t∞))

(let ((f (cdr s∞)))
(step (and f (lambda () (append-map∞f air g (f))))))

(car s∞)))

#| Maybe Nat × Space → [State] |#

(define (take∞ n s∞)
(let loop ((n n) (vs (car s∞)))

(cond
((and n (zero? n)) '())

((pair? vs)

(cons (car vs)

(loop (and n (sub1 n)) (cdr vs))))

(else (let ((f (cdr s∞)))
(if f (take∞ n (f)) '()))))))

Fig. 6. New and changed functions in BFSimp that implements pure features
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#| Space × (State × Space → Space) × (→ Space) → Space |#

(define (elim s∞ fk sk)

(let ((ss (car s∞)) (f (cdr s∞)))
(cond

(( pair? ss) (sk (car ss) (cons (cdr ss) f)))

(f (step (lambda () (elim (f) fk sk))))

(else (fk)))))

#| Goal × Goal × Goal → Goal |#

(define (ifte g1 g2 g3 )

(lambda (s)

(elim ( g1 s)

(lambda () ( g3 s))

(lambda (s0 s∞)
(append-map∞f air g2

( append∞f air (unit s0) s∞))))))

#| Goal → Goal |#

(define (once g)

(lambda (s)

(elim (g s)

(lambda () (none))

(lambda (s0 s∞) (unit s0)))))

Fig. 7. New and changed functions in BFSimp that implement impure features

Nowwe compare the pure subset of BFSimp with BFSser . We focus on the pure subset because BFSser is designed
for a pure relational programming system. We prove in Coq that these two search strategies are semantically
equivalent, since the result of (run n ? g) is the same either way. (See the GitHub repository for the formal
proofs.) To compare efficiency, we translate BFSser ’s Haskell code into Racket. (See the GitHub repository for
the translated code.) The translation is direct due to the similarity of the two relational programming systems.
The translated code is longer than BFSimp . And it runs slower in all benchmarks. Details about differences in
efficiency are in section 7.

7 QUANTITATIVE EVALUATION
In this section, we compare the efficiency of the search strategies. A concise description is in Table 2. A hyphen
means “running out of 500 MB memory”. The first two benchmarks are from TRS2. reverso is from Rozplokhas
and Boulytchev [8]. The next two benchmarks about generating quines are based on a similar test case in Byrd
et al. [2]. We modify the relational interpreters because we don’t have disequality constraints (e.g. absento ). The
sibling benchmarks differ in the conde clause order of their relational interpreters. The last two benchmarks are
about synthesizing expressions that evaluate to ’(I love you). They are also based on a similar test case in
Byrd et al. [2]. Again, we modify the relational interpreters for the same reason. And the sibling benchmarks
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benchmark size DFSi DFSbi DFSf BFSimp BFSser
very-recursiveo 100000 184 180 510 554 1328

200000 409 249 984 1063 2477
300000 520 549 2713 2344 5815

appendo 100 25 26 24 23 89
200 196 202 179 183 172
300 556 536 540 560 524

reverso 10 5 5 5 25 48
20 46 48 47 4363 5145
30 434 419 436 106746 151759

quine-1 1 109 123 28 - -
2 289 308 71 - -
3 522 541 99 - -

quine-2 1 23 23 12 - -
2 52 51 24 - -
3 80 75 34 - -

’(I love you)-1 999 76 96 64 260 635
1999 158 210 115 332 669
2999 453 330 279 331 672

’(I love you)-2 999 733 326 63 276 639
1999 1430 859 114 334 674
2999 2496 1137 280 327 683

Table 2. The results of a quantitative evaluation: running times of benchmarks in milliseconds

differ in the conde clause order of their relational interpreters. The first one has elimination rules (i.e. application,
car, and cdr) at the end, while the other has them at the beginning. We conjecture that DFSi would perform
badly in the second case because elimination rules complicate the problem when synthesizing (i.e., our evaluation
supports our conjecture.)

In general, variants of DFS usually performs better than BFS. The reason might be that BFS tends to remember
more states at the same time. Among the three variants of DFS, which all have unfair conj, DFSf is most resistant
to clause permutation in quines and ’(I love you)s, followed by DFSbi then DFSi . Thus, we consider DFSbi
and DFSf competitive alternatives to DFSi . Among the two implementations of BFS, BFSimp constantly performs
as well or better.

8 RELATED RESEARCH
In this section, we describe related research. Yang [10] points out that a disjunct complex would be ‘fair’ if it were
a full and balanced tree. Seres et al. [9] describe BFS. We present another implementation. Our implementation is
semantically equivalent to theirs. But, ours is shorter and performs better in comparison with a straightforward
translation of their Haskell code. Rozplokhas and Boulytchev [8] address the non-commutativity of conjunction,
while our work about disj fairness addresses the non-commutativity of disjunction.

9 CONCLUSION
We analyze the definitions of fairness. Implementation of disj can be fair, almost-fair, or unfair, depending on
how evenly it allocates computational resources to spaces related to disjunctive goals. Implementation of conj
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can be fair or unfair, depending on how evenly it allocates computational resources to spaces related to states in
the same bucket. Our definition of fair conj, unlike the one by Seres et al. [9], is orthogonal with completeness.

We devise two new search strategies (i.e., DFSbi and DFSf ) and devise a new implementation of BFS, BFSimp .
These strategies have different features in fairness: DFSbi has an almost-fair disj and unfair conj. DFSf has fair
disj and unfair conj. BFS has both fair disj and fair conj. No search strategy here combines unfair disj and
fair conj. This is because we haven’t seen a case where these kinds of search strategies would be interesting.
Our quantitative evaluation shows that DFSbi and DFSf are competitive alternatives to DFSi , the current

miniKanren search strategy, and that BFSimp is more practical than BFSser .
We prove formally that BFSimp is semantically equivalent to BFSser . But, BFSimp is shorter and performs better

in comparison with a straightforward translation of their Haskell code.
Although there are very few benchmarks, this is preliminary work where we are making a point that certain

levels of fairness come without cost in some cases, and that each of the search strategies: DFSi , DFSbi , DFSf , and
BFS, can co-exist inside one’s head. Constructing a miniKanren with all levels of fairness is future work.
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First-order miniKanren representation: Great for tooling and search
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We present a first-order implementation of miniKanren that makes it easy to build a miniKanren debugger, and allows
any other processes (including a human or a neural network) to guide the search. Typical miniKanren implementations
use procedures to represent data structures like goals and streams. Instead, our implementation uses Racket structs, which
are transparent, decomposable, manipulable, and not coupled with a particular search strategy. We obtain this first-order
implementation by carefully applying defunctionalization rules to a higher-order implementation, deriving two compatible
versions with the same search behavior and comparable performance. Decoupling the search in the first-order implementation
makes it possible to analyze, transform, and optimize a miniKanren program, even while that program is running. We use
a “human guided” search as a miniKanren debugger, and to demonstrate the breadth of supported search strategies. The
flexibility in how we interpret goals and streams opens up possibilities for new tools, and we hope to inspire the community
to build better miniKanren tooling.

CCS Concepts: • Software and its engineering → Functional languages; Constraint and logic languages; Con-
straints.

Additional Key Words and Phrases: miniKanren, microKanren, logic programming, relational programming, Scheme, Racket,
program synthesis

1 INTRODUCTION
While miniKanren has been applied successfully to at least seven different programming problems [1], under-
standing how miniKanren arrives at answers is challenging for all but the simplest examples. Well-hidden typos
and inefficient ordering of conjuncts can be difficult to detect. Why is it that after more than a decade of work,
miniKanren still lacks developer tools, like a basic debugger?

A seemingly different challenge is supporting different miniKanren search strategies. Different strategies may
be better-suited to particular miniKanren programs, so flexibility in choosing search strategies can make programs
run faster. Unfortunately, in Byrd et al. [1], changing the search strategy required significant modifications to a
miniKanren implementation, as well as a tedious, ad hoc reimplementation of a relational interpreter to work
around the default search behavior.

These two problems—building a debugger, and implementing various search strategies—can seem very different
on the surface. However, they are actually symptoms of one design decision common to most miniKanren
implementations: a higher-order representation of programs coupled to a particular search strategy.
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Most miniKanren implementations represent an executing relational program using goals and streams. In
a higher-order implementation, goals and streams are represented using procedures. Procedures encapsulate
computational behavior, defining the search strategy for satisfying constraints. Unfortunately, procedures can’t
be modified or decomposed. Printing one yields:
> (fresh (x y)

(conde ((== 10 x) (== 20 y))
((== 30 x) (== 40 y))))

#<procedure:...>

Our proposal is to use a first-order program representation, where goals and streams are data structures not
coupled to any search strategy. These data structures are decomposable, inspectable and manipulable:
> (fresh (x y)

(conde ((== 10 x) (== 20 y))
((== 30 x) (== 40 y))))

#s(disj
#s(conj #s(== 10 #s(var x 1)) #s(== 20 #s(var y 2)))
#s(conj #s(== 30 #s(var x 1)) #s(== 40 #s(var y 2))))

The rest of the paper is organized as follows: we begin in Section 2 with an example of how a miniKanren
stepper could be useful. Section 3 describes the requirements of a miniKanren implementation to support such a
stepper. In Section 4, we implement a first-order version of miniKanren alongside a higher-order version with the
same search behavior. In Section 5, we explain the program transformations that make the stepper output easier
to understand. Section 6 describes applications of the first-order representation, such as building the stepper,
using a neural guided search strategy, and using dynamic search strategies, as well as providing ideas for other
miniKanren tools that have been difficult to implement in the past. We hope to inspire you to build these tools.

2 APPENDOH THE DEFICIENT: A MINIKANREN EMERGENCY
We begin this paper with a miniKanren emergency that we want you—dear readers—to help us resolve. Nub Let,
a hapless but earnest beginner miniKanren programmer, has accidentally replaced our beloved “appendo the
Magnificent” relation with appendoh the deficient.
As might be expected of such a dubious relation, appendoh has been failing left and right. Even worse, Nub

Let forgot to email the code for appendoh as part of the bug report. Fortunately, Nub Let included a transcript of
an interactive stepper session, enabled by using a first-order representation of miniKanren code.

Will you help us save this paper from the embarrassment of including a buggy five-line program?
Recall that a correct implementation of appendo looks like this:

(define-relation (appendo l s ls)

(conde

((== '() l) (== s ls))

((fresh (a d res)

(== ‘(,a . ,d) l)

(== ‘(,a . ,res) ls)

(appendo d s res)))))

The output of interactively stepping through an appendoh query is shown in Figure 1. The execution of the
query is broken down into steps. Each step of evaluation corresponds to expanding one branch of a logical
disjunction.
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Stepping through query: (query (x y) (appendoh x y '(1 2 3)))
================================================================================
Current Depth: 0 Number of Choices: 1

| Choice 1:
| x = #s(var x 15)
| y = #s(var y 16)
| Constraints:
| * (appendoh #s(var x 15) #s(var y 16) (1 2 3))

[h]elp, [u]ndo, or choice number> 1
================================================================================
Current Depth: 1 Number of Choices: 2

| Choice 1:
| x = ()
| y = (1 2 3)
| No constraints

| Choice 2:
| x = (1 . #s(var b 18))
| y = #s(var y 16)
| Constraints:
| * (appendoh #s(var b 18) #s(var y 16) (1 2 3))

[h]elp, [u]ndo, or choice number> 2
================================================================================
Current Depth: 2 Number of Choices: 2

| Choice 1:
| x = (1)
| y = (1 2 3)
| No constraints

| Choice 2:
| x = (1 1 . #s(var b 21))
| y = #s(var y 16)
| Constraints:
| * (appendoh #s(var b 21) #s(var y 16) (1 2 3))

[h]elp, [u]ndo, or choice number>

Initial miniKanren query

A disjunct that can
be expanded

Query variables value
Zero or more constraints in the disjunct

User choice

Fig. 1. Interactive stepper output for the buggy appendoh
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Let us explain what you see in Figure 1: at each step, the user picks a disjunct to expand from a list of numbered
choices. In the appendoh case, the disjuncts correspond to the conde branches in its definition, each of which
constrains the query variables in some way. For each choice, the stepper shows the values the query variables
will have if we take that choice. The stepper also shows zero or more constraints associated with a choice. These
constraints correspond to goals that must be satisfied if we take the choice.

To prevent an explosion of choices, the stepper only displays the new choices that are descendants of the choice
we just made in the previous step. We retain a history of user choices to provide the option of revisiting previous
choices by backtracking. Not all choices will have descendants: some may fail entirely, and some successful
choices may not have descendants.
Based on the stepper output in Figure 1 alone, can you deduce what the error is in the implementation of

appendoh? The stepper output of the correctly specified appendo is in Appendix A.
It turns out that Nub Let hid the appendoh implementation in Appendix B. Even without the code, a keen

reader may have noticed that in all the recursive calls to appendoh shown in the interactive stepper (look at the
constraints), the value of the last argument never changes from (1 2 3). This suggests that the bug is somewhere
in the recursive call portion of the appendoh code, and that perhaps the last argument is incorrect.

3 DESIDERATA
The appendoh example is simple and has a linear search space. Even so, we hope that this example convinces you
that a miniKanren stepper can be a useful debugging tool. In particular, being able to choose which disjuncts to
explore is even more helpful for complex miniKanren programs with many disjuncts. Only some of the disjuncts
might be buggy, so bugs would only manifest in queries that explore that disjunct. Being able to choose the order
of execution allows the programmer to determine which portion of the search space is of interest.

To build a stepper like the one in Section 2, our miniKanren implementation must satisfy two requirements:
(1) Streams should be decomposable, and thus inspectable. We need some other data structure that,

unlike procedures1, can be programmatically transformed into a human-readable, textual representation.
(2) Small-step execution should be possible. We need to be able to take one small step to expand the

chosen disjunct. Fine-grained control is important. The idea is not to search the disjunct exhaustively,
but to see just a little further in order to inform our next decision. We may even end up deciding that
continuing search of this disjunct will be a waste of effort, and prefer to revisit an earlier choice.

In short, we need the search state—the data representation of the stream—to be decoupled from the search
behavior—the search strategy that miniKanren uses. Unfortunately, typical miniKanren implementations use
a higher-order representation where these are hard to tease apart. Streams are represented as procedures that
bundle the search state (the data) with the search behavior (a single interpretation of that data). To satisfy our
requirements, we need a representation where the search state is accessible, so we can use it in at least two
different ways: as information to be examined by the user, and as a stream to be stepped. If we instead use a
first-order representation of the search state, we can view the stream as syntax, writing a different interpreter to
satisfy each requirement.
If both functionalities are present, then the interactive stepper is straightforward to implement. The stepper

extracts the list of disjuncts, presents these disjuncts as choices to the user, displays the query variable values
and constraints associated with each choice, reads user input, takes a step to expand the chosen disjunct, and
repeats until the user is satisfied.

1Technically, it is possible to use procedures implemented in an object-oriented style, with a method that prints a human-readable textual
representation of its internal state. The issue with this approach is that supporting a new behavior requires implementing a new method. To
avoid this issue, we could implement a method that provides a complete representation as a data structure suitable for any purpose. But at
that point, we might as well just represent the stream as that data structure, and not use a procedure at all.
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4 IMPLEMENTATIONS OF MINIKANREN
In this section, we build two miniKanren implementations, one of which uses a first-order representation of
the search state to decouple it from the search behavior. That miniKanren implementation satisfies the two
requirements from Section 3: that streams should be decomposable, and small-step executions should be possible.
Our plan is to build miniKanren on top of a version of µKanren. We start by implementing a higher-order

µKanren to use as a familiar reference point. Our implementation is inspired by that of Hemann and Friedman
[2], but modified for improved performance. We encourage interested readers to review Hemann and Friedman
[2] for a detailed presentation of the µKanren language.

To obtain first-order µKanren, we will defunctionalize [4] the higher-order version. In particular, the first-order
µKanren uses Racket’s struct, which can be decomposed using match expressions (Section 4.1.1). This version of
µKanren also has a small step interpreter step that performs a small, finite expansion of a stream (Section 4.3.1).
For comparability, both µKanren versions implement the same search behavior.
The first-order and higher-order implementations share a portion of code, presented in Section 4.1. The

remaining portions of both implementations are shown side by side in Figure 2 on page 8. We discuss the
higher-order portion in Section 4.2, and compare with the first-order portion in Section 4.3. We recover a version
of miniKanren in Section 4.4, compatible with both first-order and higher-order µKanren.

4.1 Common Implementation
The common portion defines logic variables, constraint states, unification, and reification:

4.1.1 Logic Variables. Logic variables2 are defined using struct, which has the benefit of avoiding type collision
with vectors. This allows support for vectors as terms, though for simplicity we do not include this support.

The declaration (struct NAME (FIELD...) #:prefab) defines a new record type, automatically generating
a constructor named NAME and field accessors named NAME-FIELD for each FIELD. The match form can pattern
match against values of this new type. Additionally, using #:prefab gives values of this type the printable
notation #s(NAME FIELD ...).
A logic variable contains the name it was given in the program, to help with debugging, and a non-negative

integer index used to identify it. Unlike the implementation of Hemann and Friedman [2], a fresh logic variable
is constructed with an index allocated from a shared, mutable counter, using var/fresh. This simplifies the
role of states, which would otherwise carry a functional counter [2]. Additionally, without this simplification, a
first-order implementation would be burdened with managing the functional counter to resolve unbound logic
variables3.

;; Logic variables

(struct var (name index) #:prefab)

(define (var=? x1 x2)

(= (var-index x1) (var-index x2)))

(define initial-var (var #f 0))

(define var/fresh

(let ((index 0))

(lambda (name) (set! index (+ 1 index))

(var name index))))

2Recall that a logic variable is a term that acts as a placeholder for an unknown value.
3Because we would like to implement many interpreters, this burden would multiply, because each interpreter would have to include support
for resolving unbound logic variables.
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4.1.2 States. States containing constraints are defined using struct and track equality information using a
substitution. Other kinds of constraints could be supported, but for simplicity we will only consider equality
constraints in this implementation.
Substitutions are implemented as in Hemann and Friedman [2], though we choose to enforce acyclic term

structure using the occurs? check when extending a substitution via extend-sub. Our choice is consistent with
typical miniKanren implementations.
;; States

(define empty-sub '())

(define (walk t sub)

(let ((xt (and (var? t) (assf (lambda (x) (var=? t x)) sub))))

(if xt (walk (cdr xt) sub) t)))

(define (occurs? x t sub)

(cond ((pair? t) (or (occurs? x (walk (car t) sub) sub)

(occurs? x (walk (cdr t) sub) sub)))

((var? t) (var=? x t))

(else #f)))

(define (extend-sub x t sub)

(and (not (occurs? x t sub)) ‘((,x . ,t) . ,sub)))

(struct state (sub) #:prefab)

(define empty-state (state empty-sub))

4.1.3 Streams and Unification. Unification enforces equality between two terms and returns a substitution. It is
defined as unify, and is implemented as in Hemann and Friedman [2].
;; Unification

(define (unify/sub u v sub)

(let ((u (walk u sub)) (v (walk v sub)))

(cond

((and (var? u) (var? v) (var=? u v)) sub)

((var? u) (extend-sub u v sub))

((var? v) (extend-sub v u sub))

((and (pair? u) (pair? v)) (let ((sub (unify/sub (car u) (car v) sub)))

(and sub (unify/sub (cdr u) (cdr v) sub))))

(else (and (eqv? u v) sub)))))

(define (unify u v st)

(let ((sub (unify/sub u v (state-sub st))))

(and sub (cons (state sub) #f))))

4.1.4 Reification. Reification normalizes the presentation of terms containing logic variables for easier reading
and comparison. We implement reify as in Hemann and Friedman [2], except using a local, mutable counter to
simplify allocation of normalized variable identifiers.
;; Reification

(define (walk* tm sub)

(let ((tm (walk tm sub)))

(if (pair? tm)
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‘(,(walk* (car tm) sub) . ,(walk* (cdr tm) sub))

tm)))

(define (reified-index index)

(string->symbol

(string-append "_." (number->string index))))

(define (reify tm st)

(define index -1)

(walk* tm (let loop ((tm tm) (sub (state-sub st)))

(define t (walk tm sub))

(cond ((pair? t) (loop (cdr t) (loop (car t) sub)))

((var? t) (set! index (+ 1 index))

(extend-sub t (reified-index index) sub))

(else sub)))))

(define (reify/initial-var st)

(reify initial-var st))

4.2 Higher-order µKanren
Goals, immature streams, and stream maturation are implemented differently in higher- vs first-order µKanren.
The remaining implementation of higher-order µKanren is shown on the left-hand-side of Figure 2 on page 8.

4.2.1 Goals. Goals include binary disjunctions and conjunctions, equality constraints, and calls to user-defined
relations.

Binary disjunctions and conjunctions are constructed by disj and conj, which are defined as in Hemann and
Friedman [2], except that our implementation introduces explicit pauses.

Equality constraints are constructed with ==, which uses unify.
A call to a user-defined relation applies the relation to argument terms. Each call is represented as a thunk,

wrapped with the constructor relate. A user-defined relation is expressed as a Racket procedure, such that
forcing a call’s thunk corresponds to applying the procedure to the call’s arguments. (Higher-order µKanren
places no restrictions on what a Racket procedure implementing a relation may do, but Section 4.3.2 will describe a
few restrictions when defunctionalizing relation definitions in first-order µKanren.) A use of relate is also passed
first-order metadata describing the call, but this information is discarded by our higher-order implementation.

4.2.2 Streams. Streams define a search strategy for finding answers, which are states that satisfy all of a program’s
constraints. For improved performance4, we approximate the behavior of the interleaving search used in Byrd
et al. [1].

A mature stream is either the empty stream #f, or a pair of an answer and a remaining stream. An immature
stream is a thunk that has suspended the search before its completion. Forcing this thunk causes the search to
continue. Streams will typically be constructed with the help of mplus, bind, and pause.

In our first-order implementation, we represent suspension more explicitly than in Hemann and Friedman [2].
A pause produces an immature stream by introducing a thunk that delays transition of a goal to a stream. When
forced, the thunk applies the goal to a state.
The stream constructor mplus combines two streams. To improve answer diversity, our implementation of

mplus interleaves more often to prevent highly productive branches from monopolizing search resources. We

4Compared with the search described by Hemann and Friedman [2], this implementation can synthesize quines about twice as fast, and
twines and thrines nearly three times as fast, using a simple relational interpreter.
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;; higher-order microKanren

(define (mature? s) (or (not s) (pair? s)))

(define (mature s)

(if (mature? s) s (mature (s))))

(define (disj g1 g2)

(lambda (st) (mplus (pause st g1)

(pause st g2))))

(define (conj g1 g2)

(lambda (st) (bind (pause st g1) g2)))

(define (relate thunk _)

(lambda (st) (pause st (thunk))))

(define (== t1 t2) (lambda (st) (unify t1 t2 st)))

(define (mplus s1 s2)

(let ((s1 (if (mature? s1) s1 (s1))))

(cond ((not s1) s2)

((pair? s1)

(cons (car s1)

(lambda () (mplus s2 (cdr s1)))))

(else (lambda () (mplus s2 s1))))))

(define (bind s g)

(let ((s (if (mature? s) s (s))))

(cond ((not s) #f)

((pair? s)

(mplus (pause (car s) g)

(lambda () (bind (cdr s) g))))

(else (lambda () (bind s g))))))

(define (pause st g) (lambda () (g st)))

1 ;; first-order microKanren

2 (struct disj (g1 g2) #:prefab)

3 (struct conj (g1 g2) #:prefab)

4 (struct relate (thunk description) #:prefab)

5 (struct == (t1 t2) #:prefab)

6 (struct bind (bind-s bind-g) #:prefab)

7 (struct mplus (mplus-s1 mplus-s2) #:prefab)

8 (struct pause (pause-state pause-goal) #:prefab)

9

10 (define (mature? s) (or (not s) (pair? s)))

11 (define (mature s)

12 (if (mature? s) s (mature (step s))))

13

14 (define (start st g)

15 (match g

16 ((disj g1 g2)

17 (step (mplus (pause st g1)

18 (pause st g2))))

19 ((conj g1 g2)

20 (step (bind (pause st g1) g2)))

21 ((relate thunk _)

22 (pause st (thunk)))

23 ((== t1 t2) (unify t1 t2 st))))

24

25 (define (step s)

26 (match s

27 ((mplus s1 s2)

28 (let ((s1 (if (mature? s1) s1 (step s1))))

29 (cond ((not s1) s2)

30 ((pair? s1)

31 (cons (car s1)

32 (mplus s2 (cdr s1))))

33 (else (mplus s2 s1)))))

34 ((bind s g)

35 (let ((s (if (mature? s) s (step s))))

36 (cond ((not s) #f)

37 ((pair? s)

38 (step (mplus (pause (car s) g)

39 (bind (cdr s) g))))

40 (else (bind s g)))))

41 ((pause st g) (start st g))

42 (_ s)))

Fig. 2. Comparison of higher-order vs. first-order µKanren

The miniKanren and Relational Programming Workshop 2019 23



First-order miniKanren representation: Great for tooling and search • 2:9

interleave each time an answer is popped off of a mature stream, rather than popping all available answers before
interleaving. To make this possible, bind needs to introduce a pause every time an answer is discovered.
Our implementation of mplus also delays forcing a child stream until it is ready to be examined. This small

detail can significantly reduce wasted work and memory usage.

4.2.3 Stream maturation. Stream maturation is implemented by mature. In order to extract an answer from a
stream, mature will continue forcing execution of an immature stream until it is mature.

4.3 First-order µKanren
We defunctionalize the higher-order representation of goals and streams to obtain the first-order implementation
of µKanren shown in Figure 2. This new version of µKanren represents goal and streams as decomposable data
structures, and interprets streams using step, with the help of a goal interpreter start.

The goal constructors disj, conj, relate, and ==, along with the stream constructors bind, mplus, and pause,
are now defined using struct to allow decomposition by pattern matching via the keyword match. Mature
streams are represented the same way as in higher-order µKanren, as either the empty stream #f, or a pair of an
answer and a remaining stream.
We add two new procedures, step and start, which are small-step interpreters for streams and goals re-

spectively. These interpreters work together to implement the same interleaving search strategy defined by the
higher-order representation. More specifically, step interprets an immature stream by making a finite amount of
progress in searching for an answer. It interprets a mature stream by simply returning the stream. The interpreter
start interprets a goal in the context of a state, producing a new stream.

4.3.1 Defunctionalizing goals and streams. Each higher-order goal and stream definition maps to a pattern
matching clause in the corresponding interpreter.We have aligned the higher-order and first-order implementation
listings in Figure 2 to make this correspondence easy to see: for each line in the higher-order definition on the
left, scan along the same line to see the first-order version on the right.

We need to be careful when translating from higher-order to first-order. Failing to apply step at the right time
may impede search progress, and change the order in which answers are found. Applying step too soon may
lead to an infinite loop when a recursive relation is involved. These issues may not manifest immediately, so
when they show up, it is unclear whether they are due to a particular query, the definition of a relation, or a
problem with the search implementation. To avoid causing these issues when defunctionalizing the higher-order
representation, we must match its order of evaluation. We follow these rewrite rules to defunctionalize:

Rule: Top-level higher-order constructors become match clauses
• Every top-level higher-order goal constructor becomes a struct pattern clause of the match expression in
start.
• Every top-level higher-order stream constructor becomes a struct pattern clause of the match expression
in step.
• In each case, the pattern decomposes the struct, naming its components the same way the higher-order
constructors name their parameters. The clause bodies will then be defunctionalized.

Rule: Delaying goal/stream interpretation
• Anywhere that lambda is used in the higher-order implementation to delay construction of a goal or stream,
we simply apply the corresponding struct constructor.
• Justification: though the higher-order constructors are procedures which immediately execute their inter-
pretation when applied, the enclosing lambda leaves them inert until forced. Likewise, newly-constructed
struct data remains inert until interpreted by step or start.
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Rule: Interpreting a goal/stream
• Anywhere that the higher-order implementation does not delay construction of a goal, we apply start to
the result of the corresponding struct constructor.
• Except in the case of pause, anywhere that the higher-order implementation does not delay construction
of a stream, we apply step to the result of the corresponding struct constructor.
• Anywhere the higher-order implementation uses pause, we simply apply the pause struct constructor.
• Justification: We apply start and step in this way because the higher-order constructors also immedi-
ately execute their interpretation. But pause is an exception because it does not immediately execute its
interpretation. Instead, it delays interpretation by producing an immature stream (a thunk).

Rule: Forcing immature streams
• Anywhere that the higher-order implementation forces progress of an immature stream, which corresponds
to applying a thunk, we apply step to that stream to also force progress. Look at the definition of mature
in Figure 2 for a simple example of this.

4.3.2 Defunctionalizing user-defined relations. As in the higher-order implementation, we represent calls to
user-defined relations using thunks wrapped with the constructor relate. Forcing such a thunk applies a Racket
procedure to the call’s arguments. Unlike the higher-order implementation, uses of first-order relate will
retain the call description metadata passed alongside the thunk. While an entirely first-order representation of
user-defined relations is possible, we prefer retaining this use of thunks because it allows us to leverage Racket’s
implementation5 of lexical scope and procedure abstraction, rather than reimplement this ourselves.

Despite continuing to use thunks to represent calls to relations, it is still possible to perform arbitrary manip-
ulation of relation definitions if we make some assumptions about what such definitions may do. Specifically,
we will assume the use of Racket is limited to constructing µKanren goals. When these goals include terms, the
terms may be expressed using constants, references to lexical variables, pair construction, or fresh logic variable
construction.

Given our assumptions, we can obtain a first-order representation of a user-defined relation by applying it to
fresh logic variables to represent the parameters. Any goals in the result are those specified in the body of the
relation. Any terms in those goals are also either those specified, or they are logic variables. If a logic variable
is one of those used to represent a parameter of the relation, then the relation definition must reference that
parameter at that location. All other logic variables were created fresh. Additionally, since each use of relate
wraps metadata describing the call, we can always reconstruct a complete first-order description of a relation,
even if it is recursive.

4.4 Recovering miniKanren
In Appendix C we implement miniKanren on top of µKanren, using syntax-rules definitions similar to those in
Hemann and Friedman [2], with a notable addition: we define query, which describes the initial stream built by a
corresponding run. Since we are interested in manipulating streams in more ways than just extracting answers,
we need to separate stream construction from answer extraction. To extract answers from a stream, we provide
stream-take such that:

(run N body ...) ==> (stream-take N (query body ...))

We will make use of the metadata wrapped by relate when visualizing program representation in Section 5.
The metadata is a list containing the relation procedure (to allow unambiguous identification), the name of that
procedure, and all of the argument terms.

5Hemann and Friedman [2] leverages Scheme in the same way.
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4.5 Performance
When comparing the higher-order and first-order implementations, we notice a small performance difference
when generating twines and thrines using a simple relational interpreter, and when running relational arithmetic
benchmarks. On these tests, the first-order implementation is roughly 5 percent slower and spends about 10
percent more time in the garbage collector. Chez Scheme runs a Scheme version of our benchmarks about 25
percent faster than Racket, but the first-order vs. higher-order performance ratio remains about the same.

5 PROGRAM TRANSFORMATIONS
With the first-order miniKanren implementation given in Section 4, streams are decomposable (and therefore
printable), and small-step executions are possible.

You might wonder whether we could stop here. After all, we can apply the procedure step to progress through
a query, and print the structure of the stream at each step. Appendix D shows the output of stepping through the
query (query (xs) (appendo xs xs '(a a))) using interleaving search.
Unfortunately, this presentation is intolerably verbose, even for such a simple query. It is difficult to extract

useful information about actual available choices. In addition, many useless steps are taken to expand goals that
are obviously failing. In order to obtain a simpler program representation that is actually human-readable, we
need to extract the useful information about each disjunct, and remove obviously failing disjuncts.

This section recovers the useful trace information that we saw in Figure 1 by introducing stream transformations.
Section 5.1 describes how to prune obviously failing disjuncts, so they need not be considered by a human.
Section 5.2 describes how to transform the stream into disjunctive normal form (DNF), to provide a flat tree of
disjuncts to choose from.

5.1 Pruning obvious failures
Some streams and goals in Appendix D are obviously failing. Examples include streams of the form (bind #f _),
(mplus #f #f), goals of the form (== A B), where A and B are unequal terms, and other streams and goals that
depend on failing components. We would prefer to eliminate these immediately so we can focus on meaningful
parts of the search state.

We can define a pruning transformation that uses equality information to identify constraints that will definitely
fail. Since streams and goals depending on these constraints may fail to produce any results, we will prune them
accordingly, producing a simplified stream.
Before taking a look at the implementation, it is important to consider that a transformation may change

the observed behavior of our program. We should decide what sorts of changes we will tolerate. Viewing a
miniKanren program as a search for answers that satisfy a query, we feel the following concessions are acceptable:
(1) Answers may be reordered.
(2) The contents of a state may be rearranged as long as its constraints express the same meaning.
(3) The number of steps required to find an answer may change, but will remain finite.
(4) Unproductive, infinite streams may become finite.
With that in mind, let us take a look at the implementation. The interpreters prune/stream and prune/goal

partially evaluate == constraints, using the resulting state to propagate equality information. Any failing stream
or goal will cause its parent bind and conj to also fail. A mplus or disj containing a failing child will be replaced
by the remaining child.

(define (prune/stream s)

(match s

((mplus s1 s2) (match (prune/stream s1)
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(#f (prune/stream s2))

(s1 (match (prune/stream s2)

(#f s1)

(s2 (mplus s1 s2))))))

((bind s g) (match (prune/stream s)

(#f #f)

(‘(,st . #f) (prune/goal st g))

((pause st g1)

(match (prune/goal st g)

(#f #f)

((pause st g) (pause st (conj g1 g)))))

(s (match (prune/goal empty-state g)

(#f #f)

((pause _ _) (bind s g))))))

((pause st g) (prune/goal st g))

(‘(,st . ,s) ‘(,st . ,(prune/stream s)))

(s s)))

(define (prune/goal st g)

(define (prune/term t) (walk* t (state-sub st)))

(match g

((disj g1 g2)

(match (prune/goal st g1)

(#f (prune/goal st g2))

((pause st1 g1)

(match (prune/goal st g2)

(#f (pause st1 g1))

((pause _ g2) (pause st (disj g1 g2)))))))

((conj g1 g2)

(match (prune/goal st g1)

(#f #f)

((pause st g1) (match (prune/goal st g2)

(#f #f)

((pause st g2) (pause st (conj g1 g2)))))))

((relate thunk d) (pause st (relate thunk (prune/term d))))

((== t1 t2)

(let ((t1 (prune/term t1)) (t2 (prune/term t2)))

(match (unify t1 t2 st)

(#f #f)

(‘(,st . #f) (pause st (== t1 t2))))))))

Since pruning performs obvious clean up work without spending steps to do so, pruning often leads to a trace
containing fewer steps.

The miniKanren and Relational Programming Workshop 2019 27



First-order miniKanren representation: Great for tooling and search • 2:13

5.2 Disjunctive Normal Form
In Figure 1, we actually do one more thing—we provide the user with a flat list of choices. We can obtain those
choices by first transforming the stream into disjunctive normal form (DNF).

The general DNF transformation rewrites goals and streams in the following way:
(conj (disj A B) C) ==> (disj (conj A C)

(conj B C))

(conj C (disj A B)) ==> (disj (conj C A)
(conj C B))

(pause st (disj A B)) ==> (mplus (pause st A)
(pause st B)

(bind (mplus A B) C) ==> (mplus (bind A C)
(bind B C))

(bind C (disj A B)) ==> (mplus (bind C A)
(bind C B))

This transformation has the effect of lifting all disjunctions out of conjunctions.
(define (dnf/stream s)

(define (push-pause st g)

(match g

((disj g1 g2) (mplus (push-pause st g1) (push-pause st g2)))

(g (pause st g))))

(match s

((bind s g)

(let loop1 ((s (dnf/stream s)) (g (dnf/goal g)))

(define (loop2 s g)

(match g

((disj ga gb) (mplus (loop2 s ga) (loop2 s gb)))

(g (bind s g))))

(match s

((mplus sa sb) (mplus (loop1 sa g) (loop1 sb g)))

(‘(,st . ,s) (mplus (push-pause st g) (loop1 s g)))

(s (loop2 s g)))))

((pause st g) (push-pause st (dnf/goal g)))

((mplus s1 s2) (mplus (dnf/stream s1) (dnf/stream s2)))

(‘(,st . ,s) ‘(,st . ,(dnf/stream s)))

(s s)))

(define (dnf/goal g)

(match g

((conj g1 g2)

(let loop1 ((g1 (dnf/goal g1)) (g2 (dnf/goal g2)))

(define (loop2 g1 g2)
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(match g2

((disj g2a g2b) (disj (loop2 g1 g2a) (loop2 g1 g2b)))

(g2 (conj g1 g2))))

(match g1

((disj g1a g1b) (disj (loop1 g1a g2) (loop1 g1b g2)))

(g1 (loop2 g1 g2)))))

((disj g1 g2) (disj (dnf/goal g1) (dnf/goal g2)))

(g g)))

Aside from preparing a stream for choice extraction, DNF has the added benefit of allowing equality information
to propagate more deeply, making pruning more effective. Consider the following goal:
(conj (disj (== x 5) A) B)

In this situation, information flow is impeded. Though we constrain x to be equal to 5, we cannot propagate
this information into the goal B, because it is possible that goal A may not express the same constraint.

We can allow this information to flow more freely by lifting the disjunction out of the conjunction like so:
(disj (conj (== x 5) B)

(conj A B))

Because each child of the disjunction now has its own copy of the goal B, it is safe to propagate the equality
information into the affected copy of B.

Another interesting property of DNF is that if we apply the full pruning transformation on a DNF stream, all
remaining == constraints will be trivial in the sense that they are guaranteed to succeed, and will not provide
new information. This is because all available equality information will have already been gathered in a pause
state. These trivial constraints may be safely removed.
One downside of DNF transformation is that program representations can become larger due to copying

children of conjunctions. In the worst case, the increase is exponential in the size of the original program. This
potential increase in size may be mitigated by an increased likelihood of prunable, obvious failures, thanks to the
improved flow of equality information.
Once we have a pruned DNF stream, we are finally in a position to provide choices of the form shown in

Figure 1. In section 6.1 we will explain how we extract this list of choices from such a stream.

6 APPLICATIONS

6.1 The miniKanren stepper
In this section, we implement explore/stream, theminiKanren stepper described in Figure 1. The implementation
of explore/stream is shown below. The main stepping loop follows the outline given at the end of Section 3.
We describe each facet of this loop in chronological order.

The first thing the explore/stream loop does is use the procedure stream->choices to extract a list of
choices from a stream. To prepare for extraction, we transform the stream into disjunctive normal form (DNF)
using dnf/stream, and perform pruning with prune/stream. Recall that these procedures were implemented in
Section 5. With a pruned DNF stream, we are guaranteed to find all disjunctions at the top (after any available
answers), as a mplus tree, with leaves of the form (pause STATE GOAL). Each of these leaves represents a choice,
and all choices can be extracted while traversing the tree.
Once we have our list of choices, we need to present each choice in a digestible form. We handle this with

print-choice. The GOAL in each choice is either a trivial == constraint (i.e., both terms are guaranteed to
be equal), a relate call, or a conj tree whose leaves are goals of this form. Traversing this conj tree, as in
goal->constraints, extracts these goals as a list of the choice’s constraints. As mentioned in Section 5.2, pruning
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in DNF has the emergent property that any remaining == constraints are guaranteed to be trivial, so we may
discard them, allowing us to focus on the relate calls. Finally, pruning in DNF also guarantees that, of the
variables mentioned in STATE, only those reachable from query variables are referenced in non-trivial constraints.
Therefore, we can discard STATE, keeping only the query variable values.

With the interesting part of the implementation out of the way, all we have left to do is read user input and
act accordingly. When the user makes a choice, we use step to expand the choice, providing the resulting stream
as input to the next iteration of explore/stream.

(define (explore/stream qvars s)

(define margin "|␣")

(define (pp prefix v) (pprint/margin margin prefix v))

(define (pp/qvars vs)

(define (qv-prefix qv) (string-append "␣" (symbol->string qv) "␣=␣"))

(define qv-prefixes (and qvars (map qv-prefix qvars)))

(if qv-prefixes

(for-each (lambda (prefix v) (pp prefix v)) qv-prefixes vs)

(for-each (lambda (v) (pp "␣" v)) vs)))

(define (print-choice s)

(match s

((pause st g)

(pp/qvars (walked-term initial-var st))

(define cxs (walked-term (goal->constraints st g) st))

(unless (null? cxs)

(displayln (string-append margin "␣Constraints:"))

(for-each (lambda (v) (pp "␣*␣" v)) cxs))

(when (null? cxs)

(displayln (string-append margin "␣No␣constraints"))))))

(let loop ((s (stream->choices s)) (undo '()))

(define previous-choice

(and (pair? undo)

(let* ((i.s (car undo)) (i (car i.s)) (s (cdr i.s)))

(list-ref (dropf s state?) (- i 1)))))

(define results (takef s state?))

(define choices (dropf s state?))

(display "\n========================================")

(displayln "========================================")

(unless (= (length results) 0)

(printf "Number␣of␣results:␣~a\n" (length results))

(for-each (lambda (st)

(pp/qvars (walked-term initial-var st))

(newline))

results))

(when (and previous-choice (null? results))

(printf "Previous␣Choice:\n")

(print-choice previous-choice)

(newline))
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(printf "Current␣Depth:␣~a\n" (length undo))

(if (= 0 (length choices))

(if (= (length results) 0)

(printf "Choice␣FAILED!␣␣Undo␣to␣continue.\n")

(printf "No␣more␣choices␣available.␣␣Undo␣to␣continue.\n"))

(printf "Number␣of␣Choices:␣~a\n" (length choices)))

(for-each (lambda (i s)

(printf (string-append "\n" margin "Choice␣~s:\n") (+ i 1))

(print-choice s))

(range (length choices)) choices)

(printf "\n[h]elp,␣[u]ndo,␣or␣choice␣number>␣")

(define (invalid)

(displayln "\nInvalid␣command␣or␣choice␣number.\nHit␣enter␣to␣continue.")

(read-line) (read-line)

(loop s undo))

(define i (read))

(cond ((eof-object? i) (newline))

((or (eq? i 'h) (eq? i 'help))

(displayln

(string-append "\nType␣either␣the␣letter␣'u'␣or␣the"

"␣number␣following␣one␣of␣the␣listed␣choices."

"\nHit␣enter␣to␣continue."))

(read-line) (read-line)

(loop s undo))

((and (or (eq? i 'u) (eq? i 'undo)) (pair? undo))

(loop (cdar undo) (cdr undo)))

((and (integer? i) (<= 1 i) (<= i (length choices)))

(loop (stream->choices (step (list-ref choices (- i 1))))

(cons (cons i s) undo)))

(else (invalid)))))

6.2 Search Strategies
A first-order miniKanren with the small-step interpreter step gives us fine-grained control over the search
strategy. Even thoughwe begin Section 4.2 by reimplementing the biased-interleaving search, we can use whatever
search strategy we like. In this section, we describe a few different search strategies to illustrate the potential.

6.2.1 Human-guided search. One way of interpreting what we did in Section 6.1 is that we hijacked the search
strategy. That is, the miniKanren stepper is actually an implementation of a human-guided search strategy! Since
human behavior is as unpredictable as any program can be, the miniKanren stepper shows that any kind of
search strategy is possible.

6.2.2 Neural-guided search. Another idea is to replace the human-guided search strategy with an artificial human,
namely a neural network. In Zhang et al. [6] a neural network learns to guide the search of first-order miniKanren
performing a Programming by Example (PBE) task. In such a task, miniKanren is used to synthesize a procedure
specified using input/output pairs.
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For example, if we have a relational interpreter (eval-expo program environment output), then an example
PBE query with two input-output pairs is:

(query (p)
(eval-expo p '(a) '(a a a))
(eval-expo p '(b) '(b b b)))

The neural network evaluates each choice (disjunct) independently. It takes as input all the constraints
corresponding to each choice, and chooses the highest-scoring choice to expand in each step.
There are several deviations from Section 6.1 required for this setup. First, unlike in Figure 1, the neural

network can choose to expand any choice in each step, not just descendants of the previous step. So, the neural
network would not need the "undo" functionality at all. This revised setup means that the neural network does
not need to remember any past information, and can treat each step independently.

Another deviation is including a powerful strategy appropriate to PBE problems, which specializes the expansion
behavior of eval-expo constraints. In a PBE problem, each input-output example imposes constraints on the same
program to be synthesized, using eval-expo. However, a typical miniKanren search will attempt to satisfy each
eval-expo constraint completely before moving on to the next. This is unfortunate because only information
from one input-output example is considered at any given time, leading to deep exploration of impossible
synthesis choices that could have been ruled out immediately. Instead, we implement an expansion step that
will simultaneously expand all eval-expo constraints that share the same program argument. Combined with
DNF transformation and pruning, simultaneous expansion leads to immediate feedback being provided by all
input-output examples for each synthesis choice made. Aside from refuting bad choices more quickly, this
simultaneous expansion allows the neural network to observe related constraints all at once.

The network in Zhang et al. [6] is trained on generated PBE problems to which we know the answer, so that
the correct choice is known for each step. During training, the neural network guides the search by making
choices, and incorrect choices are penalized. We refer interested readers to Zhang et al. [6] for more details about
the model architecture and training.

6.2.3 Dynamic Goal Reordering. Though we have mostly discussed transformations while developing the
interactive stepper, there are other ways to improve a search strategy. One source of possibilities is Byrd et al.
[1], which makes use of a relational interpreter that performs various forms of conjunction reordering based on
heuristics specific to the interpreter definition. For instance, goals are reordered based on determinism annotations
on conde expressions, where at most one clause of a conde may succeed if we know the value of a particular
subset of logic variables. The conde expressions recognized as deterministic are expanded before any others. This
reordering would be more natural to implement with a decoupled representation, where it is easier to compose
with transformations and other strategies.

6.3 More possibilities
Beyond improvements to the search, a first-order representation is a natural medium for program analysis and
compilation. For instance, though we have not explored these ideas, we believe it should be possible to implement
garbage collection of constraints and substitutions, and just-in-time compilation, possibly benefiting from mode
analysis.

7 RELATED WORK
There have been previous unpublished implementations of miniKanren search using a first-order implementation.
For example, Michael Ballantyne has implemented a small-step miniKanren interpreter that uses a first-order
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representation.6 Ballantyne has also implemented a big-step interpreter with a first-order representation of the
search tree, in order to implement backjumping search 7. Both of these implementations decouple the program
representation from the search.

To our knowledge, this paper is the first first-order representation of a miniKanren search that preserves the ex-
act search order of the standard higher-order search representation, or that provides rules for a defunctionalization
that preserves this search order.

We are happy to report that in this sameworkshop, two other papers also make use of first-order representations.
We hope this is the start of a new trend. Lozov et al. [3] performs supercompilation (as conjunctive partial
deduction) using a first-order representation of goals that is similar to our representation of the search state.
Rozplokhas et al. [5] also uses a similar first-order goal representation to formalize semantics for miniKanren.

8 CONCLUSION
Both higher-order and first-order representations of miniKanren have their advantages. For both pedagogical
reasons and for the beauty and abstractness of the implementation, higher-order representations have been
dominant in the miniKanren literature. On multiple occasions, however, implementors have had to switch to
first-order representations in order to inspect or control the execution of miniKanren code.
Currently it is a burden to switch representations, not just because of the effort of defunctionalization, but

because any changes to the search order may break existing tests, and make it difficult to compare benchmark
results.

The rules for defunctionalization presented in Section 4.3, which preserve the exact search order, allow us to
have the best of both worlds. We can have a higher-order implementation for pedagogical purposes, for example,
and switch to a first-order implementation when it is time to debug or trace the code. And we can be confident
that our existing tests, applications, and benchmark programs will not need to change. Of course, while we are
living in the first-order world, we can easily change the search, or use an external process to guide the search.

We hope that there will be two positive outcomes to making it easier to switch between higher-order and first-
order implementations of miniKanren. First, the wider availability of first-order implementations should make it
much easier to produce the tools that the miniKanren ecosystem desperately needs, such as tracers, steppers, and
debuggers. The rules in Section 4.3 imply that a programmer can debug a program in a first-order implementation
of miniKanren, and be sure the program would show equivalent behavior in a higher-order miniKanren. Secondly,
by decoupling the search from the program representation, it should be easier to experiment with novel search
techniques, such as driving the search from an external process, or mixing different searches within a single
miniKanren program. This should make it easier and faster to explore program synthesis and other advanced
relational programming topics.
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A STEPPER OUTPUT FOR APPENDO
This appendix shows the interactive stepper output for the query (query (x y) (appendo x y '(1 2 3)))
with a correctly implemented appendo shown in Section 2. Compare this output with that of a buggy appendoh
implementation in Figure 1

Stepping through query: (query (x y) (appendo x y '(1 2 3)))
================================================================================
Current Depth: 0 Number of Choices: 1

| Choice 1:
| x = #s(var x 1)
| y = #s(var y 2)
| Constraints:
| * (appendo #s(var x 1) #s(var y 2) (1 2 3))

[h]elp, [u]ndo, or choice number> 1
================================================================================
Current Depth: 1 Number of Choices: 2

| Choice 1:
| x = ()
| y = (1 2 3)
| No constraints

| Choice 2:
| x = (1 . #s(var b 4))
| y = #s(var y 2)
| Constraints:
| * (appendo #s(var b 4) #s(var y 2) (2 3))

[h]elp, [u]ndo, or choice number> 2
================================================================================
Current Depth: 2 Number of Choices: 2

| Choice 1:
| x = (1)
| y = (2 3)
| No constraints

| Choice 2:
| x = (1 2 . #s(var b 7))
| y = #s(var y 2)
| Constraints:
| * (appendo #s(var b 7) #s(var y 2) (3))

[h]elp, [u]ndo, or choice number>
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B IMPLEMENTATION OF APPENDOH
This appendix shows the implementation of the buggy appendoh that generated the stepper output in Figure 1.

(define-relation (appendoh l s ls)

(conde

((== '() l) (== s ls))

((fresh (a d res)

(== ‘(,a . ,d) l)

(== ‘(,a . ,res) ls)

(appendoh d s ls)))))

C RECOVERING MINIKANREN
We show an implementation miniKanren on top of µKanren. This version of miniKanren is compatible with both
the higher-order µKanren implemented in Section 4.2, and the first-order µKanren implemented in Section 4.3.

(define-syntax define-relation

(syntax-rules ()

((_ (name param ...) g ...)

(define (name param ...)

(relate (lambda () (fresh () g ...)) ‘(,name name ,param ...))))))

;; Low-level goals

(define succeed (== #t #t))

(define fail (== #f #t))

(define-syntax conj*

(syntax-rules ()

((_) succeed)

((_ g) g)

((_ gs ... g-final) (conj (conj* gs ...) g-final))))

(define-syntax disj*

(syntax-rules ()

((_) fail)

((_ g) g)

((_ g0 gs ...) (disj g0 (disj* gs ...)))))

;; High level goals

(define-syntax fresh

(syntax-rules ()

((_ (x ...) g0 gs ...)

(let ((x (var/fresh 'x)) ...) (conj* g0 gs ...)))))

(define-syntax conde

(syntax-rules ()

((_ (g gs ...) (h hs ...) ...)

(disj* (conj* g gs ...) (conj* h hs ...) ...))))

;; Queries

(define-syntax query

(syntax-rules ()

((_ (x ...) g0 gs ...)
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(let ((goal (fresh (x ...) (== (list x ...) initial-var) g0 gs ...)))

(pause empty-state goal)))))

(define (stream-take n s)

(if (eqv? 0 n) '()

(let ((s (mature s)))

(if (pair? s)

(cons (car s) (stream-take (and n (- n 1)) (cdr s)))

'()))))

(define-syntax run

(syntax-rules ()

((_ n body ...) (map reify/initial-var (stream-take n (query body ...))))))

(define-syntax run*

(syntax-rules () ((_ body ...) (run #f body ...))))

D RAW APPENDO TRACE
This appendix shows how the search representation changes aswe step through the query (query (xs) (appendo xs xs '(a a)))
using interleaving search. We need to transform this representation to recover the easier-to-read textual repre-
sentations in Figure 1 and Appendix A.
Step 0:
(pause
(state ())
(conj
(== (#s(var xs 1)) #s(var #f 0))
(relate (appendo #s(var xs 1) #s(var xs 1) (a a)))))

Step 1:
(mplus
(bind #f (relate (appendo #s(var xs 1) #s(var xs 1) (a a))))
(pause
(state ((== #s(var #f 0) (#s(var xs 1)))))
(disj
(conj (== #s(var xs 1) ()) (== #s(var xs 1) (a a)))
(conj
(conj
(== (#s(var a 2) . #s(var b 3)) #s(var xs 1))
(== (#s(var a 2) . #s(var c 4)) (a a)))
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4)))))))

Step 2:
(pause
(state ((== #s(var #f 0) (#s(var xs 1)))))
(disj
(conj (== #s(var xs 1) ()) (== #s(var xs 1) (a a)))
(conj
(conj
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(== (#s(var a 2) . #s(var b 3)) #s(var xs 1))
(== (#s(var a 2) . #s(var c 4)) (a a)))

(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4))))))

Step 3:
(mplus
(pause
(state ((== #s(var #f 0) (#s(var xs 1)))))
(conj
(conj
(== (#s(var a 2) . #s(var b 3)) #s(var xs 1))
(== (#s(var a 2) . #s(var c 4)) (a a)))

(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4)))))
(bind #f (== #s(var xs 1) (a a))))

Step 4:
(mplus
(bind #f (== #s(var xs 1) (a a)))
(mplus
(bind
(mplus (bind #f (== (#s(var a 2) . #s(var c 4)) (a a))) #f)
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4))))
(pause
(state
((== #s(var c 4) (a))
(== #s(var a 2) a)
(== #s(var xs 1) (a . #s(var b 3)))
(== #s(var #f 0) ((a . #s(var b 3))))))

(disj
(conj (== #s(var b 3) ()) (== (a . #s(var b 3)) (a)))
(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))
(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7))))))))

Step 5:
(mplus
(bind
(mplus (bind #f (== (#s(var a 2) . #s(var c 4)) (a a))) #f)
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4))))
(pause
(state
((== #s(var c 4) (a))
(== #s(var a 2) a)
(== #s(var xs 1) (a . #s(var b 3)))

38 The miniKanren and Relational Programming Workshop 2019



2:24 • Rosenblatt et al.

(== #s(var #f 0) ((a . #s(var b 3))))))
(disj
(conj (== #s(var b 3) ()) (== (a . #s(var b 3)) (a)))
(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))
(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7)))))))

Step 6:
(pause
(state
((== #s(var c 4) (a))
(== #s(var a 2) a)
(== #s(var xs 1) (a . #s(var b 3)))
(== #s(var #f 0) ((a . #s(var b 3))))))

(disj
(conj (== #s(var b 3) ()) (== (a . #s(var b 3)) (a)))
(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))

(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7))))))

Step 7:
Answer: (state ((== #s(var #f 0) ((a)))))
Remaining stream:
(mplus
(pause
(state
((== #s(var c 4) (a))
(== #s(var a 2) a)
(== #s(var xs 1) (a . #s(var b 3)))
(== #s(var #f 0) ((a . #s(var b 3))))))

(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))

(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7)))))
(mplus (bind #f (== #s(var xs 1) #s(var c 4))) #f))

E PRUNING
We show the code used to eliminate obviously failing goals from our stream.

(define (prune/stream s)

(match s
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((mplus s1 s2) (match (prune/stream s1)

(#f (prune/stream s2))

(s1 (match (prune/stream s2)

(#f s1)

(s2 (mplus s1 s2))))))

((bind s g) (match (prune/stream s)

(#f #f)

(‘(,st . #f) (prune/goal st g))

((pause st g1)

(match (prune/goal st g)

(#f #f)

((pause st g) (pause st (conj g1 g)))))

(s (match (prune/goal empty-state g)

(#f #f)

((pause _ _) (bind s g))))))

((pause st g) (prune/goal st g))

(‘(,st . ,s) ‘(,st . ,(prune/stream s)))

(s s)))

(define (prune/goal st g)

(define (prune/term t) (walk* t (state-sub st)))

(match g

((disj g1 g2)

(match (prune/goal st g1)

(#f (prune/goal st g2))

((pause st1 g1)

(match (prune/goal st g2)

(#f (pause st1 g1))

((pause _ g2) (pause st (disj g1 g2)))))))

((conj g1 g2)

(match (prune/goal st g1)

(#f #f)

((pause st g1) (match (prune/goal st g2)

(#f #f)

((pause st g2) (pause st (conj g1 g2)))))))

((relate thunk d) (pause st (relate thunk (prune/term d))))

((== t1 t2)

(let ((t1 (prune/term t1)) (t2 (prune/term t2)))

(match (unify t1 t2 st)

(#f #f)

(‘(,st . #f) (pause st (== t1 t2))))))))

F TRANSFORMATION TO DISJUNCTIVE NORMAL FORM
We show the code used to transform our streams into Disjunctive Normal Form (DNF).
(define (dnf/stream s)
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(define (push-pause st g)

(match g

((disj g1 g2) (mplus (push-pause st g1) (push-pause st g2)))

(g (pause st g))))

(match s

((bind s g)

(let loop1 ((s (dnf/stream s)) (g (dnf/goal g)))

(define (loop2 s g)

(match g

((disj ga gb) (mplus (loop2 s ga) (loop2 s gb)))

(g (bind s g))))

(match s

((mplus sa sb) (mplus (loop1 sa g) (loop1 sb g)))

(‘(,st . ,s) (mplus (push-pause st g) (loop1 s g)))

(s (loop2 s g)))))

((pause st g) (push-pause st (dnf/goal g)))

((mplus s1 s2) (mplus (dnf/stream s1) (dnf/stream s2)))

(‘(,st . ,s) ‘(,st . ,(dnf/stream s)))

(s s)))

(define (dnf/goal g)

(match g

((conj g1 g2)

(let loop1 ((g1 (dnf/goal g1)) (g2 (dnf/goal g2)))

(define (loop2 g1 g2)

(match g2

((disj g2a g2b) (disj (loop2 g1 g2a) (loop2 g1 g2b)))

(g2 (conj g1 g2))))

(match g1

((disj g1a g1b) (disj (loop1 g1a g2) (loop1 g1b g2)))

(g1 (loop2 g1 g2)))))

((disj g1 g2) (disj (dnf/goal g1) (dnf/goal g2)))

(g g)))
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Relational Interpreters for Search Problems∗

PETR LOZOV, EKATERINA VERBITSKAIA, and DMITRY BOULYTCHEV, Saint Petersburg State
University, Russia and JetBrains Research, Russia

We address the problem of constructing a solver for a certain search problem from its solution verifier. The main idea behind
the approach we advocate is to consider a verifier as an interpreter which takes a data structure to search in as a program
and a candidate solution as this program’s input. As a result the interpreter returns “true” if the candidate solution satisfies
all constraints and “false” otherwise. Being implemented in a relational language, a verifier becomes capable of finding a
solution as well. We apply two techniques to make this scenario realistic: relational conversion and supercompilation. Relational
conversion makes it possible to convert a first-order functional program into relational form, while supercompilation (in the
form of conjunctive partial deduction (CPD)) — to optimize out redundant computations. We demonstrate our approach on a
number of examples using a prototype tool for OCanren — an implementation of miniKanren for OCaml, — and discuss the
results of evaluation.

CCS Concepts: • Software and its engineering→ Constraint and logic languages; Source code generation;

Additional Key Words and Phrases: relational programming, relational interpreters, search problems

1 INTRODUCTION
Verifying a solution for a problem is much easier than finding one — this common wisdom can be confirmed by
anyone who used both to learn and to teach. This observation can be justified by its theoretical applications, thus
being more than informal knowledge. For example, let us have a language L. If there is a predicate VL such that

∀ω : ω ∈ L ⇐⇒ ∃pω : VL(ω,pω )
(with pω being of size, polynomial on ω) and we can recognize VL in a polynomial time, then we call L to be in
the class NP [Garey and Johnson 1990]. Here pω plays role of a justification (or proof) for the fact ω ∈ L. For
example, if L is a language of all hamiltonian graphs, then VL is a predicate which takes a graph ω and some
path pω and verifies that pω is indeed a hamiltonial path in ω. The implementation of the predicate VL , however,
tells us very little about the search procedure which would calculate pω as a function of ω. For the whole class of
NP-complete problems no polynomial search procedures are known, and their existence at all is a long-standing
problem in the complexity theory.

There is, however, a whole research area of relational interpreters, in which a very close problem is addressed.
Given a language L, its interpreter is a function evalL which takes a program pL in the language L and an
input i and calculates some output such that

evalL(pL , i) = ⟦pL⟧L (i)
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where ⟦•⟧L is the semantics of the language L. In these terms, a verification predicate VL can be considered
as an interpreter which takes a program ω, its input pω and returns true or false . A relational interpreter is an
interpreter which is implemented not as a function evalL , which calculates the output from a program and its
input, but as a relation evaloL which connects a program with its input and output. This alone would not have
much sense, but if we allow the arguments of evaloL to contain variables we can consider relational interpreter
as a generic search procedure which determines the values for these variables making the relation hold. Thus,
with relational interpreter it is possible not only to calculate the output from an input, but also to run a program
in an opposite “direction”, or to synthesize a program from an input-output pair, etc. In other words, relational
verification predicate is capable (in theory) to both verify a solution and search for it.

Implementing relational interpreters amounts to writing it in a relational language. In principle, any conven-
tional language for logic programming (Prolog [Clocksin and Mellish 2003], Mercury [Somogyi et al. 1996], etc.)
would make the job. However, the abundance of extra-logical features and the incompleteness of default search
strategy put a number of obstacles on the way. There is, however, a language specifically designed for pure rela-
tional programming, and, in a narrow sense, for implementing relational interpreters — miniKanren [Friedman
et al. 2005]. Relational interpreters, implemented in miniKanren, demonstrate all their expected potential: they
can synthesize programs by example, search for errors in partially defined programs [Byrd et al. 2017], produce
self-evaluated programs [Byrd et al. 2012], etc. However, all these results are obtained for a family of closely
related Scheme-like languages and require a careful implementation and even some ad-hoc optimizations in the
relational engine.
From a theoretical standpoint a single relational interpreter for a Turing-complete language is sufficient:

indeed, any other interpreter can be turned into a relational one just by implementing it in a language, for which
relational interpreter already exists. However, the overhead of additional interpretation level can easily make
this solution impractical. The standard way to tackle the problem is partial evaluation or specialization [Jones
et al. 1993]. A specializer specM for a languageM for any program pM in this language and its partial input i
returns some program which, being applied to the residual input x , works exactly as the original program on
both i and x :

∀x : ⟦specM (pM , i)⟧M (x) = ⟦pM⟧M (i,x).
If we apply a specializer to an interpreter and a source program, we obtain what is called the first Futamura

projection [Futamura 1971]:

∀i : ⟦specM (evalML ,pL)⟧M (i) = ⟦evalML ⟧M (pL , i).
Here we added an upper indexM to evalL to indicate that we consider it as a program in the languageM.
In other words, the first Futamura projection specializes an interpreter for a concrete program, delivering
the implementation of this program in the language of interpreter implementation. An important property
of a specializer is Jones-optimality [Jones et al. 1993], which holds when it is capable to completely eliminate
the interpretation overhead in the first Futamura projection. In our caseM = miniKanren, from which we
can conclude that in order to eliminate the interpretation overhead we need a Jones-optimal specializer for
miniKanren. Although implementing a Jones-optimal specializer is not an easy task even for simple functional
languages, there is a Jones-optimal specializer for a logical language [Leuschel et al. 2004], but not forminiKanren.

The contribution of this paper is as follows:
• We demonstrate the applicability of relational programming and, in particular, relational interpreters for
the task of turning verifiers into solvers.
• To obtain a relational verifier from a functional specification we apply relational conversion [Byrd 2009;
Lozov et al. 2018] — a technique which for a first-order functional program directly constructs its relational
counterpart. Thus, we introduce a number of new relational interpreters for concrete search problems.
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• We employ supercompilation in the form of conjunctive partial deduction (CPD) [De Schreye et al. 1999] to
eliminate the redundancy of a generic search algorithm caused by partial knowledge of its input.
• We give a number of examples and perform an evaluation of various solutions for the approach we address.

Both relational conversion and conjunctive partial deduction are done in an automatic manner. The only thing
one needs to specify is the known arguments or the execution direction of a relation.

As concrete implementation of miniKanrenwe use OCanren [Kosarev and Boulytchev 2016] — its embedding
in OCaml; we use OCaml to write functional verifiers; our prototype implementation of conjunctive partial
deduction is written in Haskell.
The paper is organized as follows. In Section 2 we give a complete example of solving a concrete problem —

searching for a path in a graph, — with relational verifier. Section 3 recalls the cornerstones of relational
programming in miniKanren and the relational conversion technique. In Section 4 we describe how conjunctive
partial deduction was adapted for relational programming. Section 5 presents the evaluation results for concrete
solvers built using the technique in question. The final section concludes.

2 SEARCHING FOR PATHS IN A GRAPH WITH A RELATIONAL VERIFIER
In this section we demonstrate how to solve a concrete problem of searching for paths in a directed graph with a
relational verifier. A directed graph is a tuple (N ,E, start , end), where N is a finite set of nodes, E is a finite set of
edges, functions start , end : E → N return a start and an end nodes for a given edge respectively. A path in a
directed graph is a sequence:

⟨n0, e0,n1, e1, . . . ,nk , ek ,nk+1⟩
such that

∀i ∈ {0 . . .k} : ni = start (ei ) and ni+1 = end (ei ).
The problem of searching for paths in a graph is to find a set {p | p is a path in д}, where д is a graph. There are

many concrete algorithms which search for paths in a graph. Implementing any of them involves determining in
which way to traverse the graph, how to ensure one does not get stuck exploring a cycle in the graph (a cycle
is a path in the graph of form ⟨n0, e0, . . . ,nk , ek ,n0⟩), how to ensure one path is not processed multiple times,
and so on. A much easier task is to implement a simple verifier, which checks if a sequence is indeed a path in a
graph, and generate the path searching routine from it by the relational conversion.

Below is the implementation of the verifier “isPath”. This function takes as an input a list of nodes “ns” and
a graph “g”. We represent the graph as a list of edges, stipulating there are no parallel edges. Each edge e is
represented as a pair of nodes (n,m), where n = start(e),m = end(e). Given ns = [n0, . . . ,nk+1] and a graph
д = [e0, . . . , el ], the function returns true, if ∃i0 . . . ik such that ⟨n0, ei0 ,n1, ei1 , . . . , eik ,nk+1⟩ is a path in д.

1 let rec isPath ns g =
2 match ns with
3 | x1 : : x2 : : xs → elem (x1 , x2 ) g && isPath (x2 : : xs ) g

4 | [_] → true

The function “elem” checks if an edge “e” exists in the graph “g”. We omit the definition of equality check for
edges “eq”, since it is trivial to implement and is not relevant for the example.

let rec elem e g =
match g with
| [ ] → false
| x : : xs → if eq e x then true else elem e xs
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We stipulate that a path must include at least two nodes, since searching for shorter paths is trivial. Line 3
of the “isPath” definition checks that the first two nodes of the list form an edge of the graph. Then it checks
that what is left after deleting the first node from the list is still a path in the graph. Line 4 may come off a little
counterintuitive, since it states that a path which includes a single arbitrary node is in the input graph. However
we only execute this branch by a recursive call of “isPath”, which only happens after we have already ensured
with the call to the “elem” function that the said node is in the graph.

The relational conversion of the verifier function “isPath” generates a relation “isPatho” defined for a path
“ns”, a graph “g” and a boolean value “res”, which is true if “ns” is a path in the graph “g” and false otherwise. The
function “elem” is transformed into a relation “elemo” defined for an edge “e”, a graph “g” and a boolean value
“res”, which is true if “e” is an edge in the graph “g” and false otherwise. The result of the relational conversion
of the functions “isPath” and “elem” is presented below.

5 let rec elemo e g res = conde [
6 (g ≡ nil ( ) ∧ res ≡ ↑false ) ;
7 ( fresh (x xs resEq ) (
8 (g ≡ x % xs ) ∧
9 (eqo e x resEq ) ∧
10 (conde [
11 (resEq ≡ ↑true ∧ res ≡ ↑true ) ;
12 (resEq ≡ ↑false ∧ elemo e xs res ) ] ) ) ) ]
13
14 let rec isPatho ns g res = conde [
15 ( fresh (el ) (
16 (ns ≡ el % nil ( ) ) ∧
17 (res ≡ ↑true ) ) ;
18 ( fresh (x1 x2 xs resElem resIsPath ) (
19 (ns ≡ x1 % (x2 % xs ) ) ∧
20 (elemo (pair x1 x2 ) g resElem ) ∧
21 (isPatho (x2 % xs ) g resIsPath ) ∧
22 (conde [
23 (resElem ≡ ↑false ∧ res ≡ ↑false ) ;
24 (resElem ≡ ↑true ∧ res ≡ resIsPath ) ] ) ) ) ]

Here we use the syntax of OCanren. A new relation is defined as a recursive function with the keywords
“ let rec”. The body of the relation is a goal created with the following goal constructors.

• Disjunction д1 ∨д2, where д1,д2 — some goals. The two goals are evaluated independently and their results
are combined.
• Disjunction of goal list conde [д1; . . . ;дn], where д1; . . . ;дn — some goals.
• Conjunction д1 ∧ д2, where д1,д2 — some goals. The goal д2 is evaluated only if the evaluation of д1
succeeded; the evaluation of д2 uses the results of д1.
• Syntactic unification t1 ≡ t2, where t1, t2 — some terms. Unification is a basic goal constructor. If t1 and t2
can be unified, the goal is considered successful and failed otherwise.
• Relation call rnt1 . . . tn where rn is a name of some n-ary relation, and ti are terms.
• To introduce fresh variables into scope, one should use fresh (x) д, where x is a list of variable names.
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Besides goal constructors we use some syntactic sugar for values and lists. “↑” is used to transform a value into
a logic value. The empty list is represented as “nil () ”, and to construct a new list from a value “h” and a list “t”
we use “h % t”. A tuple of “x” and “y” is created with “pair x y”.

Regrettably, this relational interpreter suffers from poor performance. Query “isPatho q <graph> true” for
path searching takes more than ten minutes even for graphs of 5 nodes. This is somewhat expected, considering
that the relational conversion generates a relation which can be used for many different queries, which is
excessive when any particular query is in question. This is, of course, not a desirable behaviour. Fortunately,
further transformation of the relation can improve the performance.
For example, if we consider a query “isPatho q <graph> ↑true”, we can simplify lines 18 through 24 of its

definition. First, we notice that, having “res” be equal to “↑true”, we can safely remove the disjunct in line 23,
after what the whole “conde” becomes unnecessary and can be removed. After moving the unifications for
“resElem” and “resIsPath” to the top level, we get the following equivalent definition of the “isPatho” relation.
Note, that the call to the “elemo” relation is done with the last argument being unified with “↑true”, so further
specialization is still possible.

25 let rec isPatho ns g res = conde [
26 ( fresh (el ) (
27 (ns ≡ el % nil ( ) ) ∧
28 (res ≡ ↑true ) ) ) ;
29 ( fresh (x1 x2 xs resElem resIsPath ) (
30 (resElem ≡ ↑true ) ∧
31 (resIsPath ≡ ↑true ) ∧
32 (ns ≡ x1 % (x2 % xs ) ) ∧
33 (elemo (pair x1 x2 ) g resElem ) ∧
34 (isPatho (x2 % xs ) g resIsPath ) ) ) ]

The specialized version of the relation is much more performant than the original one. Before, searching paths
of length 5 took more than 10 minutes while the specialized version finds paths of length 10 in the graph with
100 edges in a few seconds.

This transformation can be performed automatically with conjunctive partial deduction. The result of partially
deducing the “isPatho q p ↑true”, where “p” and “q” are fresh variables is about 40 lines of code long and it has
the same performance as the manually transformed relation. We omit the transformed program because of the
space concerns, but it can be found in the repository1.

3 RELATIONAL CONVERSION
In this section we describe how the relational conversion in the form of unnesting [Byrd 2009] is done. Unnesting
constructs a relational program by a first-order functional program.

First, a new variable for every subexpression is introduced with the let -expression. Then, all pattern matching
and if-expressions are translated into disjunctions, in which unifications are generated for the patterns. Free
variables are introduced into scope with the fresh . Every n-ary function becomes (n + 1)-ary relation with the
last argument unified with the result. As a final step, unifications are reordered with relation calls such that to be
computed as early as it is possible.

The example of unnesting is shown in Fig. 1. The input functional program is presented in Fig. 1a. The result
of introducing fresh variables for subexpressions is in Fig. 1b. The relational program before the conjuncts are
reordered is shown in Fig. 1c and the result of the unnesting is presented in Fig. 1d.
1https://github.com/Lozov-Petr/miniKanren-2019-Relational-Interpreters-for-Search-Problems
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let rec append a b =
match a with
| [ ] → b

| x : : xs →
x : : append xs b

(a)

let rec append a b =
match a with
| [ ] → b

| x : : xs →
let q = append xs b in
x : : q

(b)

let rec appendo a b c =
(a ≡ [] ∧ b ≡ c ) ∨
( fresh (x xs q ) (

(a ≡ x : : xs ) ∧
(appendo xs b q ) ∧
(c ≡ x : : q ) )

(c)

let rec appendo a b c =
(a ≡ [] ∧ b ≡ c ) ∨
( fresh (x xs q ) (

(a ≡ x : : xs ) ∧
(c ≡ x : : q ) ∧
(appendo xs b q ) )

(d)

Fig. 1. Example of unnesting

Note, that the unnesting has limitations: it does not support higher-order functions and partial application.
A more general method of translation which does not impose the same limitations was developed [Lozov et al.
2018]. Unfortunately, it uses higher-order relations which are not currently supported in conjunctive partial
deduction, so we use unnesting.
The forward execution of the relation mimics the execution of the function from which it was constructed

by relational conversion. This makes forward execution quite efficient, to the detriment of the execution in the
backwards direction. The unnesting can be modified to improve the performance of backward execution. Let us
consider the conversion of a functional conjunction “f1 x1 && f2 x2”.
λ res →

fresh (p ) (
(f1 x1 p ) ∧
(conde [

(p ≡ ↑false ∧ res ≡ ↑false ) ;
(p ≡ ↑true ∧ f2 x2 res ) ] ) )

Mimicking the function evaluation, the forward execution of this code first computes “f1 x1”. If it fails, then the
result “res” is unified with “ false ”, otherwise the second conjunct “f2 x2” is executed and its result is unified with
the result. This strategy is not efficient in the backward direction, when we know what “res” is. The following
relation is much more performant when executed in the backward direction:
λ res →

conde [
(res ≡ ↑false ∧ f1 x1 ↑false ) ;
(f1 x1 ↑true ∧ f2 x2 res ) ]

In particular, if “res ≡ ↑true”, both conversions execute “f2 x2 res”, but when the first conversion computes
“f1 x1 p” with fresh “p”, the second executes “f1 x1 ↑true”. Using the second conversion is enough to significantly
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increase the performance in the backward direction. For example, the path search takes several minutes if the
first conversion strategy is used, whereas it finishes in less than a second in the second case.
Choosing the second conversion strategy comes with a price for the forward execution. Instead of executing

“f1 x1 p”, where “p” is fresh, the second strategy executes both “f1 x1 ↑false” and “f1 x1 ↑true”. In the worst case
scenario, when the execution of “f1” does not depend on the last argument, it doubles the number of executions
of “f1”.

To sum up, by choosing different strategies of the relational conversion we can achieve significant performance
improvement. There is no single right way of doing the conversion which improves the performance of the
execution in every possible direction. Choosing a strategy per each relation and each direction manually is
not feasible, but it can be achieved with a fully-automatic program transformation, such as conjunctive partial
deduction.

4 CONJUNCTIVE PARTIAL DEDUCTION
Specialization [Jones et al. 1993] is a natural way to tackle the problem of redundant computations when a part of
the input is known. A fully-automatic specialization technique developed in the domain of logic programming is
called partial deduction [Komorowski 1982; Lloyd and Shepherdson 1991]. It is related to the supercompilation of
functional languages [Glück and Sørensen 1994; Turchin 1986]. The particular flavour of the partial deduction we
are interested in is called conjunctive partial deduction [De Schreye et al. 1999]. As opposed to the partial deduction,
conjunctive partial deduction handles conjunctions of atoms, thus being able to perform such optimizations
as tupling [Hu et al. 1997] and deforestation [Wadler 1988]. Below we demonstrate by example the features of
conjunctive partial deduction.

Deforestation is a program transformation which gets rid of intermediate data structures. The following example
demonstrates deforestation. Consider a goal “appendo xs ys ts ∧ appendo ts zs rs” (note the shared “ts”),
where “appendo x y xy” describes concatenation, “nil () ” constructs the empty list, and “h % t” constructs a
new list from the value “h” and another list “t” (similarly to “cons” in Scheme and “ :: ” in OCaml).
let rec appendo x y xy = conde [

(x ≡ nil ( ) ∧ xy ≡ y ) ;
( fresh (h t ty ) (

(x ≡ h % t ) ∧
(xy ≡ h % ty ) ∧
(appendo t y ty ) ) ) ]

This goal concatenates three lists: “xs”, “ys”, “zs”, constructing an intermediate list “ts”. During the execution
of this goal, elements of the list “xs” are examined twice: first when “ts” is constructed, and then when the result
“rs” is constructed. What is worse, “ts” is only constructed to be immediately deconstructed. Deforestation gets
rid of “ts” in this example.
A better program would be such that does not construct “ts” at all. Such a program be generated from the

original definition by conjunctive partial deduction and is shown below:
let rec doubleAppendo xs ys zs rs = conde [

(xs ≡ nil ( ) ∧ appendo ys zs rs ) ;
( fresh (h t ts ) (

(xs ≡ h % t ) ∧
(rs ≡ h % ts ) ∧
(doubleAppendo t ys zs ts ) ) ) ]
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Conjunctive partial deduction is also capable of tupling. This transformation makes sure that the same data
structure is traversed once even if computing several results. The following example demonstrates such a case.

The goal “maxLengtho xs m l” computes both the maximum value of the list “xs” and its length. The elements
of the list are Peano numbers with “zero () ” as the zero and “succ” as the successor function. The third argument
“b” of the relation “leo x y b” is “↑true” if “x” is less or equal than “y”, and “↑ false ” otherwise. The relation
“gto x y b” is similar to “leo x y b”, but it checks for “x” to be greater than “y”.

let maxLengtho xs m l = maxo xs m ∧ lengtho xs l

let rec lengtho xs l = conde [
(xs ≡ nil ( ) ∧ l ≡ zero ( ) ) ;
( fresh (h t m ) (
xs ≡ h % t ∧ l ≡ succ m ∧ lengtho t m ) ) ]

let maxo xs m = maxo1 xs (zero ( ) ) m

let rec maxo1 xs n m = conde [
(xs ≡ nil ( ) ∧ m ≡ n ) ;
( fresh (h t ) (

(xs ≡ h % t ) ∧
(conde [

(leo h n ↑true ∧ maxo1 t n m ) ;
(gto h n ↑true ∧ maxo1 t h m ) ] ) ) ) ]

let rec leo x y b = conde [
(x ≡ zero ( ) ∧ b ≡ ↑true ) ;
( fresh (x1 ) (
x ≡ succ x1 ∧ y ≡ zero ( ) ∧ b ≡ ↑false ) ) ;

( fresh (x1 y1 ) (
x ≡ succ x1 ∧ y ≡ succ y1 ∧ leo x1 y1 b ) ) ]

let rec gto x y b = conde [
(x ≡ zero ( ) ∧ b ≡ ↑false ) ;
( fresh (x1 ) (
x ≡ succ x1 ∧ y ≡ zero ( ) ∧ b ≡ ↑false ) ) ;

( fresh (x1 y1 ) (
x ≡ succ x1 ∧ y ≡ succ y1 ∧ gto x1 y1 b ) ) ]

Execution of the goal “maxLengtho xs m l” leads to “xs” being traversed twice. There is a way to rewrite the
program so that “xs” is traversed once, but this requires fusing together the definitions of “lengtho” and “maxo”,
which either restricts code reuse, or leads to code duplication. A better way is to only fuse the definitions when it
is needed, and do it automatically by employing tupling.
The desirable implementation of the “maxLengtho xs m l” relation is the following (the definitions of “gto”

and “leo” are left out for brevity). It can be achieved with conjunctive partial deduction as well:
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let maxLengtho xs m l = maxLengtho1 xs m (zero ( ) ) l

let rec maxLengtho1 xs m n l = conde [
(xs ≡ nil ( ) ∧ m ≡ n ∧ l ≡ zero ( ) ) ;
( fresh (h t l1 )

(xs ≡ h % t ) ∧
(l ≡ succ l1 ) ∧
(conde [

(leo h n ∧ maxLengtho1 t m n l ) ;
(gto h n ∧ maxLengtho1 t m h l ) ] ) ) ]

4.1 CPD for Prolog-like languages
Initially, conjunctive partial deduction was developed for Prolog-like languages. Conjunctive partial deduction
partially evaluates goals, which are conjunctions of atoms, using two levels of control: local and global [Glück
et al. 1996]. The global control determines which atoms are to be partially deduced. The local control — what
the definitions for the atoms selected at the global control shall be. Both local and global control construct tree
structures which represent the input program.

Local control constructs finite SLD-trees for conjunctions of atoms. The construction is guided with an unfold
operator: it selects a literal from the leaf of the partially constructed SLD-tree and adds its resolvents as children
at each step. Since, in general, SLD-trees are infinite, a decision to stop unfolding should be made at some point.
There are several techniques for doing this, the most promising of them combine determinacy and either some
well-founded or well-quasi order, such as homeomorphic embedding, or other measures.

Global control determines the set of the conjunctions for which partial SLD-trees are built. The important goal
of the global control is to ensure termination. The termination is achieved with the abstraction. If there is a goal
which is embedded into the current goal, it points to the possibility of nontermination. The embedding tells that
there is a certain similarity between the two goals, and if a current goal keeps being processed, then their similar
subpart will appear again and again, causing nontermination. Whenever the embedding goals are detected, the
current goal is abstracted to remove the common subgoal from consideration.
When the partial deduction is done, the only thing left is to construct the residual program. The clauses are

generated from a partial SLD-tree, one tree per conjunction at the global level. A conjunction is uniquely renamed
to give a name for the predicate being defined. All free variables of the root of the tree become arguments of the
predicate. For each non-failing path in the SLD-tree a clause is generated: a substitution collected along the path
is substituted into the head of the clause, and the body is generated from what is in the leaf.

4.2 CPD for miniKanren
In this section we describe how we adapted conjunctive partial deduction for miniKanren. We describe the
particular unfolding and generalization strategies as well as discuss how the conjunctive partial deduction had to
be modified as a response to the differences between Prolog and miniKanren.

4.2.1 Local Control. Goals in miniKanren are different from those in Prolog-like languages: besides con-
junction, disjunction and relation calls, there are explicit unification and introduction of fresh variables. We
normalize the input goal so that it was a disjunction of conjunctions of relation calls. To do so, we first pop
all the fresh variables to the top level (“fresh (x ) (p (x ) ∧ fresh (y ) (q (x ) ∨ r (y , x ))) ” becomes
“fresh (x y ) (p (x ) ∨ q (x ) ∧ r (y , x )) ”). Then we transform the goal to be a disjuction of conjunctions
of relation calls or unifications. All unifications in each conjunction are evaluated to some substitution (or the
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conjunct is discarded, if some unification fails). The normalization allows us to only consider conjunctions of
relation calls while doing conjunctive partial deduction.

The local control constructs the following tree structure which represents the goal:

type local_tree =
Fail

| Success of subst

| Leaf of goal list ∗ subst

| Disj of local_tree list

| Conj of local_tree ∗ goal list

Leaf nodes can be either “Fail”, “Success” or “Leaf”. The “Fail” node is created whenever the evaluation of
the current goal fails. When the current goal evaluates to some substitution, we create the “Success” node with
this substitution. The last leaf node is called “Leaf”, it corresponds to some partially evaluated goal. This type of
node contains a substitution which has been computed up to this point, and a residual goal. The goal in this type
of node is then examined at the global level.
“Disj” node corresponds to a disjunction in a goal: its children are the local control trees constructed for all

disjuncts. The last type of nodes is a “Conj” node. It is a transient node, which keeps track of a conjunction being
unfolded.
In general, unfolding replaces some of the relation calls with their bodies and partially evaluates them. The

particular unfolding strategy we adhere to is the following. At each step only one relation call is replaced
with its body: the leftmost selectable relation call. The selectable relation call is the one which does not embed
any of its predecessors — goals which were unfolded in order to get the current goal. Embedding here is the
modification of the homeomorphic embedding defined for the conjunctions of goals in conjunctive partial
deduction literature [De Schreye et al. 1999]. Since using pure embedding to control unfolding leads to hideously
big programs, we also allow only one non-deterministic unfold.

4.2.2 Global Control. The conjunctions in the “Leaf” nodes are processed at the global level. This step is
responsible for the termination of the transformation. Generally speaking, the danger for nontermination arises
whenever we encounter a subgoal which we have encountered before: processing the same thing will lead to
itself over and over again. To break the vicious circle, one needs to stop unfolding the encountered subgoal, this
is what abstraction serves for.

The simplest case here is when we come upon the goal which is equal up to variable renaming to any other goal
at the global level. When this happens, we stop exploring the goal. This is called variant check in the literature,
and it is done both at the global and the local control levels.
The more complicated case is when a subpart of the goal repeats. This case we test with the modification of

the homeomorphic embedding relation (strict homeomorphic embedding), initially developed for conjunctions. A
conjunction A is considered embedded into a conjunction B when there is an ordered subconjunction within A,
each conjunct of which is embedded into the corresponding conjunct of B:

A = A0 ∧A1 ∧ · · · ∧An ⊴ B0 ∧ B1 ∧ · · · ∧ Bm = B, if ∃{i0 . . . im | ∀j .i j < i j+1} : ∀j ∈ {0 . . .m}.Ai j ⊴ Bj

A single conjunct is embedded into another (Ai ⊴ Bj ) when the following relation holds and Ai is not a strict
instance of the second one Bj :

X ⊴ Y ,where X and Y are variables
f (x0,x1, . . . ,xn) ⊴ f (y0,y1, . . . ,yn) ⇔ ∀i ∈ {0 . . .n}.xi ⊴ yi

f ⊴ д(y0,y1, . . .ym) ⇔ ∃i ∈ {0 . . .m}. f ⊴ yi
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This check determines two major causes of the growth within the conjunctions. The conjunction can grow
in some argument of a relation call or the number of conjuncts itself can grow. To mitigate the first source of
the growth, the bigger conjunction can be replaced with a most specific generalization of the two conjunctions.
Otherwise we need to split the embedded subconjunction from the rest and start processing them separately.
This process called abstraction removes the subconjunctions which cause potential nontermination, and what is
left should indeed be processed further.

4.2.3 Residualization. After the transformation is finished, a residual program is constructed from the global
control tree. A relation definition is generated for each conjunction at the global level (this is done with the
renaming step of the original conjunctive partial deduction). First, a unique name is given for each conjunction.
Then free variables of the conjunction are collected to become the arguments of the relation: the constructors and
constants are omitted (for example “f x (succ y ) ∧ g (zero ()) z” becomes “fG x y z”. The body of the
definition is generated from the local control tree which corresponds to the conjunction under consideration. The
body is formed as a disjunction of conjunctions for the non-failure nodes of the local control tree. A computed
substitution is transformed into a conjunction of unifications. Suitable definitions are chosen for a goal in a leaf,
and the conjunction of their applications is generated. As a final step we perform redundant argument filtering
as described in [Leuschel and Sørensen 1996], and introduce fresh variables where necessary.

5 EVALUATION
In this section we present an evaluation of the proposed approach. We have implemented several relational
interpreters for different search problems which can be found in the repository mentioned before. Some of the
simpler interpreters demonstrate good performance for different directions on their own and for them CPD
transformation is not needed. Thus, we will focus on two search problems which are more complex: searching
for a path in a graph and searching for a unifier [Baader and Snyder 2001] of two terms. For each problem we
compare four programs.
(1) The solver generated by the unnesting alone.
(2) The solver generated by the unnesting strategy aimed at backward execution.
(3) The solver generated by the unnesting and then specialized by conjunctive partial deduction for the

backward direction.
(4) The interpretation of the functional verifier with the relational interpreter implemented in Scheme [Byrd

et al. 2017].
First, let us compare the performance of the solvers for the path searching problem. The implementation of the

functional verifier for this problem is described in Section 2. We ran the search on a graph with 20 nodes and 30
edges, consequentially searching for paths of the length 5, 7, 9, 11, 13, and 15. We averaged the execution times
over 10 runs of the same query. We the limited the execution time by 300 seconds, and if the execution time of
some query exceeded the timeout, we put “>300s” in the result table and did not request the execution of queries
for longer paths. The results are presented in Table 1.

We can conclude that the execution time increases with the length of the path to search, which is expected, since
with the length of the path the number of the subpaths to be explored is increasing as well. The solver generated
by the unnesting alone and the interpretation with the relational intepreter demonstrate poor performance.
The first one is due to its inherently inefficient execution in backward direction, while the second suffers from
the interpretation overhead. Both the unnesting aimed at the backward execution and the solver automatically
transformed with conjunctive partial deduction show good performance. Conjunctive partial deduction performs
more thorough specialization, thus producing more efficient program.
Now let us consider the problem of finding a unifier of two terms which have free variables. A term

is either a variable (X ,Y , . . . ) or some constructor applied to terms (nil , cons(H ,T ), . . . ). A substitution
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Path length 5 7 9 11 13 15
Only conversion 0.01s 1.39s 82.13s >300s — —

Backward oriented conversion 0.01s 0.37s 2.68s 2.91s 4.88s 10.63s
Conversion and CPD 0.01s 0.06s 0.34s 2.66s 3.65s 6.22s
Scheme interpreter 0.80s 8.22s 88.14s 191.44s >300s —

Table 1. Searching for paths in the graph

Terms f(X, a) f(a % b % nil, c % d % nil, L) f(X, X, g(Z, t))
f(a, X) f(X % XS, YS, X % ZS) f(g(p, L), Y, Y)

Only conversion 0.01s >300s >300s
Backward oriented conversion 0.01s 0.11s 2.26s

Conversion and CPD 0.01s 0.07s 0.90s
Scheme interpreter 0.04s 5.15s >300s

Table 2. Searching for a unifier of two terms

maps a variable to a term. A unifier of two terms t and s is a substitution σ which equalizes them:
tσ = sσ by simultaneously substituting the variables for their images. For example, a unifier of the terms
cons(42,X ) and cons(Y , cons(Y ,nil)) is a substitution {X 7→ cons(42,nil),Y 7→ 42}.

We implemented a functional verifier which checks if a substitution equalizes two input terms. We represent a
variable name as a unique Peano number. A substitution is represented as a list of terms, in which the index of the
term is equal to the variable name to which the term is bound, so the substitution {X 7→ cons(42,nil),Y 7→ 42} is
represented as a list “[cons (42, nil ); 42]”. The verifier returns true if the input terms can be unified with the
candidate substitution and false otherwise.

As in the previous problem, we compare four solvers generated for the verifier described. With each solver, we
search for a unifier of two terms and compare the execution times. The time comparison is presented in Table 2.
The first two rows of each column contain two terms being unified. We use uppercase letters from the end of
the alphabet (X ,Y , . . . ) to denote variables, lowercase letters from the beginning of the alphabet (a,b, . . . ) to
denote constants (constructors with zero arguments), identifiers which start from the lowercase letter (f ,д, . . . )
to denote constructors.
Note, we compute a unifier for two terms, but not necessarily the most general unifier. We can implement

the most general unification in miniKanren, but achieving the comparable performance using relational ver-
ifiers requires additional check that the unifier is indeed the most general. We are currently working on the
implementation of such relational verifier.

Here four solvers compare to each other similarly to the previous problem: unnesting demonstrates the worst
execution time, relational interpretation in Scheme is a little better, while unnesting aimed at backward execution
and conjunctive partial deduction significantly improve the performance.
There exist pairs of terms, for which either of the solvers fails to compute a unifier under 300 seconds. The

example of such terms is “f (A ,B ,C ,A ,B ,C ,D ) ” and “f (B ,C ,D ,x (R ,S ), x (a ,T ), x (Q ,b ), x (a ,b )) ”. This is caused
by how general and declarative the verifier is: there is nothing in it to restrict the search space. We can modify
the verifier with the additional check to ensure that there are no bound variables in the candidate unifier. This
modification restricts the search space when there are many variables in the input terms. But it also changes the
semantics of the initial verifier and, as a consequence, the solvers: only idempotent unifiers can be found.
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To sum up, we demonstrated by two examples that it is possible to create problem solvers from verifiers by
using relational conversion and conjunctive partial deduction. Currently conjunctive partial deduction improves
the performance the most, as compared to interpreting verifiers with Scheme relational interpreter or doing
relational conversion which is solely aimed at backward or forward execution.

6 CONCLUSION AND FUTURE WORK
We have presented a way to construct a solver for a search problem from its solution verifier by first doing a
relational conversion and then specializing the relation according to the desired execution direction by means of
conjunctive partial deduction.

There are a few directions for future work.
Even if we generate a relation optimized for the particular direction, executing it with miniKanren still carries

some overhead of interpretation. We believe that the best performance can be achieved by generating a functional
program from the relation optimized for the particular direction. This way we can avoid interpretation overhead
but still get the benefits of the approach. The second direction is to explore other specialization techniques besides
conjunctive partial deduction which are better suited for miniKanren programs.
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Constructive Negation for MiniKanren

EVGENII MOISEENKO, Saint Petersburg State University and JetBrains Research, Russia

We present an extension of MiniKanren with the negation operator based on the method of constructive negation. The idea of
this method is to constructively build a stream of answers for the negated goal by collecting and negating individual answers
to the positive version of the goal. As we demonstrate on the series of examples constructive negation suits to pure logical
nature of MiniKanren: the relations involving the negation operator still can be “run” in various directions.

CCS Concepts: • Software and its engineering→ Functional languages; Constraint and logic languages;

Additional Key Words and Phrases: relational programming, constructive negation, OCanren

1 INTRODUCTION
MiniKanren [Byrd 2010; Friedman et al. 2005] is a minimalistic domain-specific language which brings features
of logic programming into a host language. TypicalMiniKanren implementation introduces only a few operators:
conjunction, disjunction, unification (which can be seen as equality constraint) and fresh variable introduction
(existential quantification). Although this basis constitutes a Turing-complete language, in practice there are
some cases when the availability of negative reasoning is desirable.
For example, consider the following problem. Suppose we want to write a program which removes the first

occurrence of a given element from a list. In order to do that inMiniKanren we have to first define a ternary
relation remove which binds the desired element, original list, and the same list after the deletion. Substituting
the first argument of the relation with some element e, the second argument with some list xs and the third
argument with a free variable q gives us a goal which is a proof search procedure. When passed to the run
function, the goal will produce a lazy stream of answers. Each answer is represented by substitution which binds
free variables to some terms. In the case of remove, we would expect a single answer, which binds q to the list,
equal to xs, except that the first occurrence of e is removed.

The code on Listing 1 demonstrates a possible implementation of remove. It consists of three disjuncts, which
represent three different cases. First, if the original list is empty, then the resulting list should also be empty. If
the original list is not empty and its head is equal to the given element, then the resulting list should be equal to
the tail. Finally, in the case when the head is not equal to the given element, the resulting list should be equal to
the original, from the tail of which the occurrence of the element e is deleted.

Given the definition of remove from Listing 1, the following query run (remove 2 [1;2;3] q ) will wrongly
return two answers: q =[1;3] and q =[1;2;3] . The redundant (and, indeed, incorrect) answer q =[1;2;3] arose
because of the third disjunct from remove definition, which always succeeds and thus generates a copy of
the original list. We can prevent this behavior using disequality constraint, yet another primitive, which some
MiniKanren implementations provide. Adding constraint x . e to the third case makes all disjuncts mutually
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Russia.
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disjoint. With the fixed definition of remove (Listing 2), the query given above returns the single answer q =[1;3]
as expected.

let remove e xs ys =
(xs ≡ [] ∧ ys ≡ [ ] )
∨
fresh (x xs ′ ) (
x ≡ e ∧
xs ≡ x : : xs ′ ∧
ys ≡ xs ′

) ∨
fresh (x xs ′ ys ′ ) (
xs ≡ x : : xs ′ ∧
ys ≡ x : : ys ′ ∧
remove e xs ′ ys ′

)

Listing 1. A flawed definition of
remove relation

let remove e xs ys =
(xs ≡ [] ∧ ys ≡ [ ] )
∨
fresh (x xs ′ ) (
x ≡ e ∧
xs ≡ x : : xs ′ ∧
ys ≡ xs ′

) ∨
fresh (x xs ′ ys ′ ) (
x . e ∧
xs ≡ x : : xs ′ ∧
ys ≡ x : : ys ′ ∧
remove e xs ′ ys ′

)

Listing 2. The correct definition of
the remove relation

let remove p xs ys =
(xs ≡ [] ∧ ys ≡ [ ] )
∨
fresh (x xs ′ ) (
p x ∧
xs ≡ x : : xs ′ ∧
ys ≡ xs ′

) ∨
fresh (x xs ′ ys ′ ) (
¬(p x ) ∧
xs ≡ x : : xs ′ ∧
ys ≡ x : : ys ′ ∧
remove p xs ′ ys ′

)

Listing 3. A generalized version of
the remove relation

A disequality constraint represents a very limited form of negation, which is often not sufficient. Imagine that
we want to generalize remove, so that instead of taking an element, it takes a predicate p and removes the first
element of the list which satisfies the predicate (Listing 3). In order to do that and avoid similar pitfalls as in
our first attempt to define remove, we need to ensure that the third disjunct succeeds only when the predicate p
fails on the head element of xs. Thus we need a general negation operator. Unfortunately, none of the existing
MiniKanren implementations provide this feature.

In the world of Prolog, negative reasoning is usually implemented using so-called negation as failure approach.
Under this rule, a goal ¬p succeeds whenever p fails, and it fails whenever p succeeds. Unfortunately, negation as
failure is unsound if the negated goal p contains free variables. For example, the query run (q ≡ 0) ∧ ¬(q ≡ 1)
succeeds, although run ¬(q ≡ 1) ∧ (q ≡ 0) fails. The failure in the last case is due to the fact that at the time
of negation execution the variable q is free, thus q ≡ 1 succeeds, and conversely ¬(q ≡ 1) fails. This example
demonstrates that negation as failure goes against the philosophy of MiniKanren, which positions itself as a
pure relational language without non-logical features.
In this work we present an implementation of the negation operator based on the method of constructive

negation. It overcomes several shortcomings of negation as failure and provides a more expressive form of
negative reasoning than disequality constraints. The idea of this method is to constructively build a stream of
answers for the negated goal. It is achieved by first collecting all answers to the positive version of the goal and
then negating them. The constructive negation approach while being an improvement over negation as failure
still has its own drawbacks. For example, applying the negation operator to the goal that has infinitely many
answers results in a non-terminating computation.
Although constructive negation was first proposed as an extension of Prolog, to the best of our knowledge

our work is the first attempt to adapt it for MiniKanren. We have developed a prototype implementation
for OCanren [Kosarev and Boulytchev 2018], a MiniKanren dialect embedded in OCaml. Like the rest of
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MiniKanren, our version of constructive negation is developed in a pure functional style using persistent data
structures. This makes it different from the earlier implementations for Prolog.

Our paper is structured as follows. In Section 2 we give more examples of constructive negation usage. Section 3
describes our implementation. Next, Section 4 presents the evaluation of the negation on a series of examples. In
Section 5 we discuss the limitations of our approach and directions for future work. Section 6 reviews related
works. The final Section 7 concludes.

2 MOTIVATING EXAMPLES
In this section we give further motivation for adding the negation into relational programming. We present
several examples of how the negation can be used.

2.1 Relational If-then-else
In the Prolog one can simulate the conditional if-then-else operator using so-called soft cut [Naish 1995]. The
behavior of the soft cut c →∗ t ; e can be described as follows:
• if the goal c succeeds (i.e. produces at least one answer) then the result of c →∗ t ; e is equivalent to
c ∧ t;
• if the goal c fails (i.e. produces no answers at all) then the result of c →∗ t ; e is equivalent to e.

The soft cut is an example of a non-relational feature. Such features usually do not compose well in the
sense that they are sensitive to the order in which they appear in a program. For example, consider the goal
(c →∗ t ; e) ∧ g, and assume that c ∧ g always fails regardless of the order of conjuncts. Then if c succeeds
the result of the above goal will be equivalent to c ∧ t ∧ g and thus it will fail. Suppose we reorder the
conjuncts as follows: g ∧ (c →∗ t ; e). Now the goal c, when executed after g, certainly fails, and thus the
result of the whole goal will be equivalent to g ∧ e which does not fails necessarily. One can see that the simple
reordering of subgoals in the program can lead to the different results.

With the help of constructive negation if-then-else can be simply expressed as follows:
let ifte c t e =

(c ∧ t ) ∨ (¬ c ∧ e )
The behavior of if-then-else defined in this way subsumes the behavior of the soft cut. That is, every answer to

the query run (c →∗ t ; e) is also an answer to the query run (ifte c t e ) . Moreover, ifte is not sensitive
to the order of subgoals in the program.

2.2 Classical Implication and Universal Quantification
With the negation added to the language, one can easily express other connectives of the classical first-order
logic, namely the implication and universal quantification1, using the well-known equivalences.

let (⇒) : goal → goal → goal =
fun g1 g2 → ¬ g1 ∨ (g1 ∧ g2 )

let forall : ( ′a → goal ) → goal =
fun g → ¬ fresh (x ) (¬ g x )

However, we should make a few remarks here. It is well known that the search implemented in conventional
MiniKanren is complete, meaning that every answer to an arbitrary query will be found eventually. In the
presence of constructive negation (and thus implication and universal quantification defined through negation)
1 It is easy to see that c ⇒ t is equivalent to ifte c t succ

60 The miniKanren and Relational Programming Workshop 2019



4:4 • Evgenii Moiseenko

the search becomes incomplete as we will later see. Moreover, constructive negation is computationally heavy
and thus the double usage of it, as in the definition of forall, can be inefficient in some cases.

Despite all this trouble we have found that the above definitions are still useful. Some of the previousMiniKan-
ren implementations introduced eigen variables, adopted from λProlog [Miller and Nadathur 2012]. Eigen
variables act as a universally quantified variables. Yet, to the best of our knowledge, there is no sound implemen-
tation of eigen variables with the support of disequality constraints. We observed that our implementation of
universal quantifications through double negation works nicely with disequalities (we give some examples in the
Section 4).

2.3 Graph Unreachability Problem
One of the classical examples of negation application in logic programming is a problem of checking whether
one node of the graph is unreachable from the another [Przymusinski 1989]. The code on Listing 4 defines binary
relation edge, which binds pairs of nodes in graph, connected by some edge, and binary relation reachable,
which is nothing more than a transitive closure of the edge relation. Then the relation unreachable is simply
negation of reachable.

let edge x y =
(x , y ) ≡ ( ′a ′ , ′b ′ ) ∨
(x , y ) ≡ ( ′b ′ , ′a ′ ) ∨
(x , y ) ≡ ( ′b ′ , ′c ′ ) ∨
(x , y ) ≡ ( ′c ′ , ′d ′ )

let reachable x y =
x ≡ y ∨
fresh (z ) (
edge x z ∧ reachable z y

)

let unreachable x y =
¬(reachable x y )

Listing 4. Unreachability in a graph

Given this definition the query run unreachable ′c ′ ′a ′ will succeed. A knowledgeable reader might notice
that constructive negation is not necessary in this case because negation as failure will deliver the same result.
But the query run unreachable ′c ′ q will fail under negation as failure because of the free variable q which
will appear under the negation. However constructive negation will succeed delivering the constraint q . ′d ′ .

2.4 Unreachability in Labeled Transition Systems
One can consider a special kind of graphs — labeled transition systems [Baier and Katoen 2008]. Labeled transition
system is defined by a set of states S , a set of labels L and a ternary transition relation R ⊆ S ×L×S . By existential
quantification over labels one can then obtain a binary relation. Taking its transitive closure gives the reachability
relation. The negation of the reachability relation can be used to check that some state s ′ is not reachable from
the initial state s . The Listing 5 shows an encoding of an abstract labeled transition system in OCanren.

Labeled transition systems are often used to describe the behavior of imperative languages. Although the naive
encoding of transition relation in OCanren with simple enumeration of reachable states is often not tractable for
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checking reachability (or unreachability) in huge state spaces arising in practical imperative programs, it still can
be used, for example, for the task of prototyping the semantics of such languages.
module type LTS = sig

type state

type label

val transition : state → label → state → goal

end

module LTSExt (T : LTS ) = struct

let reachable : T .state → T .state → goal =
fun s s ′ ′ →

s ≡ s ′ ′

∨
fresh (l s ′ ) (
T .transition s l s ′ ∧
reachable s ′ s ′ ′

)

let unreachable : T .state → T .state → goal =
fun s s ′ →
¬(reachable s s ′ )

end

Listing 5. Unreachability in a labeled transition system

3 IMPLEMENTATION
In this section we present our implementation of constructive negation. We start with the general ideas behind
the method (Section 3.1). We describe how the constructive negation behaves in concrete examples, starting
from trivial ones and moving to more sophisticated. During this presentation, we will observe, that in order to
implement constructive negation, we need a solver for universally quantified disequality constraints. We will
show that such solver can be implemented on top of existing MiniKanren disequality solver with just a few
modifications (Section 3.2). In the Section 3.3, we describe how the OCanren search can be extended to support
constructive negation. We will also discuss how negation interacts with recursion and present the notion of
stratification (Section 3.4).

3.1 General Ideas
Constructive negation is based on the following idea: given a goal ¬g, one can construct an answer for this goal by
collecting all answers to its positive version g and then taking their complementation. In order to do that, a notion
of “negation” of an answer is needed. Since each answer can be matched to some logical formula [Przymusinski
1989; Stuckey 1991], a “negation” of an answer corresponds to the logical negation of this formula.
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Example 1. Consider the goal¬(q ≡ 1 ∧ r ≡ 2) . Its positive version (q ≡ 1) ∧ (r ≡ 2) has single answer,
a substitution {q 7→ 1, r 7→ 2} which corresponds to the formula q = 1 ∧ r = 2. By negating this formula we
obtain q , 1 ∨ r , 2. This formula still can be represent by a single substitution {q 7→ 1, r 7→ 2}. However, we
now treat this substitution differently, as a disequality constraint.

SomeMiniKanren implementations (including OCanren) already have the support for disequality constraints.
A programmer can use them with the help of . primitive, as we have seen in the remove example (Listing 2).
Usually, the support for disequalities is implemented as follows.
• A current state is maintained during the search. The state consists of a substitution, which represents
positive information, and a disequality constraint store, which represents negative information. A constraint
store can be implemented simply as a list of substitutions, or as a more efficient data structure.
• Each time a subgoal of the form t . u is encountered during the search, its satisfiability in current
substitution is checked. If it is satisfiable, then disequality is added to the constraint store.
• Each time a subgoal of the form t ≡ u is encountered during the search, the current substitution is refined
by the result of unification of terms t and u. Then the satisfiability of disequality constraints is rechecked
in the refined substitution.

Various optimizations can be applied to the scheme above. For example, there is no need to recheck every
disequality in the store after each unification. We will not discuss these optimizations here, as they are irrelevant
to our goals.
Unfortunately, as the next example illustrates, disequalities presented above are not sufficient to implement

constructive negation.

Example 2. Consider a goal ¬(fresh (x ) (q ≡ (x , x )) , which states that q should not be equal to some pair
of identical terms. The subgoal fresh (x ) (q ≡ (x , x )) succeeds, delivering the substitution {q 7→ (x, x)}.
Because the variable x occurs under fresh , the corresponding formula is existentially quantified: ∃x .q = (x ,x).
By the negation of this formula we obtain ∀x .q , (x ,x). This formula differs from disequality formula from
example 1 as it contains universally quantified variable x.

Thereby, in order to support the negation of goals, containing fresh , we need to extend disequality constraint
solver, so it can check the satisfiability of universally quantified disequality constraints in the form ∀x . t , u 2 [Chan
1988; Stuckey 1991]. Later, in Section 3.2 we will show how it can be done, for now let us assume we have such a
solver.

We took care about fresh under negation. It led us to a more complicated representation of the state. During
the search we maintain a pair of a current substitution and a universally quantified disequality constraint store.
But now an interesting question arises: is this representation closed under negation? If we perform negation one
more time, will we obtain a finite number of states in a similar form?
Lucky for us, it is the case. In order to verify it, let us consider a logical formula which corresponds to the

representation of the state:

∃x .
(∧

i

(vi = ti ) ∧
∧
j

∀yj .
∨
k

(w jk , ujk )
)

(1)

Here vi and w jk denote some variables, ti and ujk denote some terms. Existentially quantified variables x
correspond to the variables occurred under fresh . The left conjunct corresponds to the substitution, the right
conjunct corresponds to the constraint store. The constraint store itself is represented as a conjunction of
individual universally quantified disequalities. As we have seen in example 1, each disequality corresponds to a
2 x notation denotes a vector of variables, t and u are terms that may or may not contain variables from x
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disjunction of individual inequalities over variables3. Besides existential variables x and universal variables yj ,
there are free variables q that may occur in the formula (such as variables q and r in the examples 1, 2).

By logical negation of the above formula, we get the following:

∀x .
(∨

i

(vi , ti ) ∨
∨
j

∃yj .
∧
k

(w jk = ujk )
)

(2)

The left disjunct, which corresponded to the substitution in the original formula, now became a disequality
constraint. Looking at the right disjunct, we can see that each disequality has transformed into a substitution.
However, there is one subtlety here. Variablesw jk may be universally quantified, that isw jk ∈ x for some j,k .
Moreover, the terms ujk may contain universally quantified variables as well, Vars(ujk ) ⊆ x for some j,k . In the
section 3.2 we will show, that each disjunct ∃yj .

∧
k (w jk = ujk ) is either unsatisfiable or could be rewritten as

∃yj .
∧

k∗ (w∗jk∗ = u∗jk∗ ), such that universally quantified variables do not occur among variablesw∗jk∗ or in terms
u∗jk∗ [Liu et al. 1999].

Taking this into account, we can rewrite the formula 2 as follow:

(
∨
j

∃yj .
∧
k∗
(w∗jk∗ = u∗jk∗ )) ∨ ∀x .

∨
i

(vi , ti ) (3)

In the obtained formula each disjunct corresponds to one state in the form, similar to the given in formula 1.
In the left disjunct, each sub-disjunct corresponds to a substitution with an empty disequality constraint, the
right disjunct corresponds to the single universally quantified disequality constraint with an empty substitution.
Thereby, the proposed representation of states is closed under negation.

One can perform further manipulations on the formula 3. Given that equivalence a ∨ ¬b = a ∧ b ∨ ¬b holds in
classical logic, we can rewrite formula 3 in the following way:

(∃x .
∧
i

(vi = ti ) ∧
∨
j

∃yj .
∧
k∗
(w∗jk∗ = u∗jk∗ )) ∨ ∀x .

∨
i

(vi , ti ) (4)

The latter transformation, while vacuous from the logical point of view, could improve the performance of
the search in practice. It follows from the fact, that the subpart ∃x .∧i (vi = ti ) of the formula extends each
substitution with additional mappings, thus delivering more positive information. If the negation constitutes a
subpart of some larger goal, this positive information could lead to the earlier failure during the search.

Finally let us consider the negation in general case. A goal can be matched to a logical formula in the following
way. Each answer to the goal corresponds to the state which itself corresponds to a logical formula in the form
similar to one in formula 1. Goal can have multiple answers (even an infinite number). In the corresponding
logical formula these answers will be connected by the disjunction:

∨
n

(
∃xn .

(∧
i

(vni = tni ) ∧
∧
j

∀ynj .
∨
k

(wnjk , unjk )
))

(5)

The negation of this formula after an application of the transformations described above will become:

∧
n

(
(∃xn .

∧
i

(vni = tni ) ∧
∨
j

∃ynj .
∧
k∗
(w∗njk∗ = u∗njk∗ )) ∨ ∀xn .

∨
i

(vni , tni )
)

(6)

3 We will give further explanation in section 3.2
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In this way, we have obtained the result of the negation of the goal as a conjunction of the negation of individual
answers to the positive version of the goal. However, one of the pitfalls of this construction is that the process
will not terminate if the positive version of the goal has an infinite number of answers. Thus, in the general case,
it makes the OCanren search incomplete for the goals involving negation.

3.2 Constraint Solver, Formally
In this section we will formally define the satisfiability of universally quantified disequality constraints and
quantified equalities, mentioned in section 3.1. We will also present a simple decision procedure for satisfiability
checking. To do that we need a rather standard notions of terms, substitutions, unifiers, etc. For the sake of
completeness we give these definitions here. We also mention a standard unification algorithm as a decision
procedure for equality constraints. This view of unification bridges the gap between the conventional and
constraint logic programming.

Let us start with definitions of terms and substitutions.

Definition 1. Given an infinite set of variables V and a finite set of constructor symbols C = {Ci
ni }i , each with

associated arity ni , the set of terms T is inductively defined as follow:
• ∀v ∈ V .v ∈ T — every variable is a term;
• ∀ck ∈ C . ∀t1 . . . tk ∈ T . ck (t1, . . . , tk ) ∈ T — every application of k-ary constructor symbol to k terms is a
term.

From now on we will assume that terms are untyped (unsorted) and that there exists an infinitely many
constructors of any arity.

Definition 2. Two terms t and u are syntactically equal, denoted as t = u, iff either
• t = v and s = v for some variable v ;
• t = ck (t1, . . . , tk ), s = ck (s1, . . . , sk ) and ∀i ∈ {1..k}. ti = si .

Definition 3. A substitution σ is a function from variables to terms: σ : V → T , s.t. σ (x) , x only for a finite
number of variables. Every substitution σ can be represented as a finite list of pairs {x1 7→ t1, . . . ,xn 7→ tn}.
By dom(σ ) we denote the set {x1, . . . ,xn} and by codom(σ ) we denote the set {t1, . . . , tn}. We denote empty
substitution as ⊤. We also extend the set of substitutions defined above with the one additional element ⊥.
Definition 4. A substitution can be applied to a term. The result of an application of σ (σ , ⊥) to t , written as
tσ , is a term defined in the following way:
• xσ ≜ σ (x);
• ck (t1, . . . , tk )σ ≜ ck (t1σ , . . . , tkσ ).

The result of the application of ⊥ to any term is undefined.

Lemma 1. Given two substitutions σ and θ , if ∀v ∈ V . σ (v) = θ (v) then ∀t . tσ = uθ .
Proof. Can be proved by the induction on t . □

We are now ready to define the the satisfiability of equality constraint.

Definition 5. Equality constraint t ≡ u is
• satisfiable if ∃σ . tσ = uσ ; such σ is called a unifier of t and u;
• unsatisfiable otherwise.

Next, we show that the standard unification algorithm can be seen as a decision procedure for checking
satisfiability of equality constrains. Before that we need to introduce several definitions.
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Definition 6. A term t is subsumed by the term u, denoted as t ⊑ u, iff ∃σ . t = uσ . If t ⊑ u we will also say that
t is a more specific term than u, or u is a more general term than t .
Definition 7. A substitution σ is subsumed by a substitution τ , denoted as σ ⊑ τ , iff ∀t . tσ ⊑ tτ . If σ ⊑ τ we
also say that σ is a more specific substitution than τ , or σ is a more general substitution than τ .
Definition 8. Given terms t and u their unifier σ is called the most general unifier, iff for every other unifier τ σ
is more general that τ , τ ⊑ σ .
Theorem 1. Given terms t and u they are either not unifiable (meaning that ∀σ . tσ , uσ ), or there exists their
most general unifier.

Proof. Proof of this statement can be found in [Robinson et al. 1965]. Proof of the termination and correctness
of the unification algorithm, used by the most MiniKanren implementations, can be found in [Kumar and
Norrish 2010]. □

From now on we will denote the most general unifier of two terms t and u as mgu(t ,u). In case of t is not
unifiable with u, we assume that mgu(t ,u) = ⊥.
Remark 1. Note we can associate with an equality constraint t ≡ u a logical first-order formula t = u.
Additionally, we can associate with each substitution a logical first-order formula by the following rules:
• empty substitution ⊤ is associated with the truth constant ⊤;
• ⊥ is associated with the falsity constant ⊥;
• {x1 7→ t1, . . . ,xn 7→ tn} is associated with the formula x1 = t1 ∧ · · · ∧ xn = tn .

Now we can have yet another view on unification. We can say that giving the problem of deciding satisfiability
of the formula t = u, a unification algorithm reduces it to checking satisfiability of a simpler formula, which
corresponds to a substitution. Such a formula is either trivially unsatisfiable (in the case of⊥) or trivially satisfiable.

Later on we will need the notion of idempotent substitution and idempotent unifier.
Definition 9. Substitution σ is idempotent iff ∀t . tσσ = tσ

Lemma 2. If two terms are unifiable, there exists their idempotent unifier.
Proof. For the proof of this statement (for the case of unification algorithm, used in MiniKanren), we refer

an interested reader to [Kumar and Norrish 2010]. □

We are ready to move on to disequality constraints. We start with the regular (not quantified) disequalities.
Definition 10. A disequality constraint t . u is
• satisfiable if ∃σ . tσ , uσ ;
• unsatisfiable otherwise.

Next lemma gives us a simple decision procedure for checking satisfiability of disequalities.
Lemma 3. Disequality constraint t . u is
• satisfiable if mgu(t ,u) , ⊤;
• unsatisfiable otherwise.

Proof. Let θ = mgu(t ,u). Let us first show that if θ = ⊤ then disequality is unsatisfiable. By the definition of
⊤ we have tθ = t and uθ = u, by the definition of unifier tθ = uθ , and thus t = u. From that, it is easy to show
that ∀σ . tσ = sσ , which means that the disequality is unsatisfiable according to the definition 10. If θ , ⊤ then
there exists a substitution σ , s.t. θ ⊑ σ (e.g. σ = ⊤). Since θ is most general unifier, and σ is more general that θ ,
then σ is not a unifier, and thus tσ , uσ . □
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Given lemma 3, the satisfiability of constraint t . u can be checked easily. One need to compute mgu(t ,u) and
if it is not an empty substitution, then constraint is satisfiable.

Remark 2. Given disequality constraint t . u, a substitution mgu(t ,u), can be matched to the logical formula in
the following way:
• the empty substitution ⊤ is associated with falsity constant ⊥;
• ⊥ is associated with the truth constant ⊤;
• {x1 7→ t1, . . . ,xn 7→ tn} is associated with the formula x1 , t1 ∨ · · · ∨ xn , tn .

The following definition introduces universally quantified disequalities.

Definition 11. Universally quantified disequality constraint ∀x . t . u is
• satisfiable iff ∃σ . ∀τ , dom(τ ) ⊆ x . tτσ , uτσ
• unsatisfiable iff ∀σ . ∃τ , dom(τ ) ⊆ x . tτσ = uτσ

For the decision procedure of this type of disequalities, we need one auxiliary lemma.

Lemma 4. Given terms t and u consider θ = mgu(t ,u). Assume without the loss of generality that x ⊈ codom(θ )
(if v 7→ x ∈ θ for some x ∈ x consider θ̂ such that it is equal to θ except that instead of mapping v to x it maps x
to v). Universally quantified disequality constraint ∀x . t . u is
• satisfiable if θ = ⊥ or dom(θ ) ⊈ x
• unsatisfiable if dom(θ ) ⊆ x

Proof. First, let us show that θ = ⊥ or dom(θ ) ⊈ x implies satisfiability.We need to show that∃σ . ∀τ , dom(τ ) ⊆
x . tτσ , uτσ . Take σ = ⊤. Thus tτσ = tτ and uτσ = uτ . It is left to show that ∀τ , dom(τ ) ⊆ x . tτ , uτ . If
θ = ⊥ then t and u are not unifiable, which implies the above statement. Otherwise, consider some τ such that
dom(τ ) ⊆ x . If tτ = uτ then τ is a unifier of t and u. Thus τ ⊑ θ . If we will show that dom(θ ) ⊆ dom(τ ) ⊆ x
we will get a contradiction with the our assumptions and therefore tτ , uτ . Indeed, consider v ∈ dom(θ ). If
v < dom(τ ) consider two cases:
• v 7→ w ∈ θ for somew ∈ V . From the assumptions follows thatw < x and thusw < dom(τ ). Consider the
term f (v,w) for some binary constructor f . It is easy to see that
f (v,w)τ = f (v,w) ̸⊑ f (w,w) = f (v,w)θ , which contradicts τ ⊑ θ . Thus it should be that v ∈ dom(τ ).
• v 7→ s ∈ θ for some term s < V . Then, trivially vτ = v ̸⊑ s = vθ , which contradicts τ ⊑ θ . Thus it should
be that v ∈ dom(τ ).

Finally, let us show that if dom(θ ) ⊆ x then ∀σ . ∃τ , dom(τ ) ⊆ x . tτσ = uτσ . Indeed, consider some σ . Take
τ = θ . Then tτ = uτ and thus tτσ = uτσ . □

By the above lemma, if the substitutionmgu(t ,u)maps only universally quantified variables, then the disequality
is unsatisfiable and satisfiable otherwise.

Finally, it is left to show how to check satisfiability of the quantified equalities of the form ∀x . ∃y. t ≡ u. As we
will see soon, if the constraint of this form is satisfiable, then the logical formula, corresponding to the constraint,
∀x . ∃y. t = u is equivalent to the formula ∃y∗.∧i vi = ti such that vi ∈ V and vi < x and Vars(ti ) ∩ x = ∅ for all
i [Liu et al. 1999].

Definition 12. Quantified equality constraint of the form ∀x∃y. t ≡ u is
• satisfiable iff ∃σ . ∀τ , dom(τ ) ⊆ x . ∃ϕ, dom(ϕ) ⊆ y. tϕτσ = uϕτσ
• unsatisfiable iff ∀σ . ∃τ , dom(τ ) ⊆ x . ∀ϕ, dom(ϕ) ⊆ y. tϕτσ , uϕτσ
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Lemma 5. If terms t and u are not unifiable then the constraint is unsatisfiable. Otherwise let θ be an idempotent
unifier of t and u (Lemma 2 states that if terms are unifiable there exists their idempotent unifier). Let θy ≜ {y 7→
t | y 7→ t ∈ θ ∧ y ∈ y}. Let θ̂ = {v 7→ t | v 7→ t ∈ θ ∧v < y}. Then the quantified equality constraint of the form
∀x∃y. t ≡ u is
• satisfiable if dom(θ̂ ) ∩ x = ∅ and ∀p ∈ codom(θ̂ ). Vars(p) ∩ x = ∅
• unsatisfiable if dom(θ̂ ) ∩ x , ∅ or ∃p ∈ codom(θ̂ ). Vars(p) ∩ x , ∅

Proof. First, it is obvious that if t and u are not unifiable then the constraint is unsatisfiable. Next, let
us prove the statement involving satisfiability. We need to show that if the given condition is met, then
∃σ . ∀τ , dom(τ ) ⊆ x . ∃ϕ, dom(ϕ) ⊆ y. tϕτσ = uϕτσ . Take σ = θ̂ . Given an arbitrary τ such that dom(τ ) ⊆ x
take ϕ to be equal to θy . To complete the proof we will need an auxiliary statement.
• ∀s . sτθ̂ = sθ̂τ̂ where τ̂ ≜ {x 7→ tθ̂ | x 7→ t ∈ τ }.

Proof. By the Lemma 1 it is sufficient to show that ∀v ∈ V .vτθ̂ = vθ̂τ̂ . Consider the cases:
– v ∈ x . Then vτθ̂ = τ (v)θ̂ . Since dom(θ̂ ) ∩ x = ∅, θ̂ (v) = v . Then vθ̂τ̂ = vτ̂ and by the construction
vτ̂ = τ (v)θ̂ .

– v < x . Then vτθ̂ = θ̂ (v). Since ∀p ∈ codom(θ̂ ). Vars(p) ∩ x = ∅, vθ̂τ̂ = vθ̂ and trivially vθ̂ = θ̂ (v).
■

By this statement tθyτθ̂ = tθyθ̂τ̂ and uθyτθ̂ = uθyθ̂τ̂ . Because θ is idempotent tθ = tθyθ̂ and uθ = uθyθ̂ .
Finally, since θ is a unifier tθ = uθ .

It is left to prove the statement involving unsatisfiability. In fact, we will prove more general statement.
• Let t̃ and ũ be two arbitrary unifiable terms, let θ̃ be their unifier. Then
∀x ⊆ dom(θ̃ ) ∪⋃

p∈codom(θ̃ )Vars(p),x , ∅. ∀σ . ∃τ , dom(τ ) ⊆ x . t̃τσ , ũτσ

Proof. By the induction on t :
– t̃ = v for some v ∈ V . Consider the cases for u:
∗ ũ = w for somew ∈ V . Then θ̃ = {v 7→ w} and either v ∈ x orw ∈ x .
Let the former be true (the other case is similar). Given some arbitrary σ
take τ ≜ {v 7→ z | z ∈ V \ (dom(σ ) ∪⋃

p∈codom(σ )Vars(p))}. Then vτσ = z andwτσ , z.
∗ ũ = д(ũ1, . . . , ˜um) for some constructor д. Then θ̃ = {v 7→ u}. If v ∈ x then pick some constructor
f , д (because we assume there exists an infinite number of constructor symbols, we can always do it).
Take τ ≜ {v 7→ f (z1, . . . , zn) | zi ∈ V }. Then vτσ = f (t̃ ′1, . . . , ˜t ′n) and ũτσ = д(ũ ′1, . . . , ˜u ′m), and thus
these terms are not equal. Ifv < x then take some x ∈ x . For some i it should be that x ∈ Vars(ũi ). Given
σ consider σ (v), pick some s such that σ (v) , д(ũ1, . . . , ˜um){x 7→ s} (it can be done by the induction
on σ (v)). Then τ ≜ {x 7→ s}.

– t̃ = f (t̃1, . . . , ˜tn). Consider the cases for u:
∗ ũ = w for somew ∈ V . Then the proof proceeds in the same way as in the previous case.
∗ ũ = f (ũ1, . . . , ũn) (ũ cannot be equal to some constructor д , f by our assumption of unifiability
of terms). Then by our assumption t̃1 ≡ ũ1 ∧ · · · ∧ ˜tn ≡ ũn . For some i it should be the case that
x ⊆ dom(θ̃i ) ∪

⋃
p∈codom(θ̃i )Vars(p) where θi ≜ mgu(t̃i , ũi ). By the induction for an arbitrary σ there

exists τ such that t̃iτσ , ũiτσ and thus t̃τσ , ũτσ .
■

□
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Given this lemma, we compute mgu(t ,u) in order to check the constraint ∀x∃y. t ≡ u. By mgu(t ,u) we can
construct an idempotent substitution θ that is also a unifier of t and u. We take θ̂ — a part of θ that does not bind
existentially quantified variables y. Then we check if θ̂ binds variables from x , or some term from codomain of θ̂
contains variables from x . If it does then the constraint is unsatisfiable, because in this case we can always pick
an assigment for x that will make the terms not unifiable. Otherwise it is satisfiable.

3.3 Extending the Search
In this section we describe how OCanren search interacts with negation. Also we finally present the code of
negation operator itself.

In OCanren (as in any typicalMiniKanren implementation) the search is implemented on top of backtracking
lazy stream monad [Kiselyov et al. 2005]. During the search the current state is maintained. The state contains
accumulated constraints plus some supplementary information stored in the environment (for example, the
identifier of last allocated variable). A goal is simply a function which takes a state and returns a lazy stream
of states. All logical primitives, such as individual constraints, conjunction, disjunction, and fresh variable
introduction, can be implemented based on this representation of goals (an interested reader may refer to [Hemann
and Friedman [n. d.]; Kiselyov et al. 2005]).

Now we can define the negation operator ¬ (see Listing 6). Let us describe it in details.
1 let (¬) g st =
2 let sts ′ = g st in
3 let cexs = Stream .map (diff st ) sts ′ in
4 let sub ss cex =
5 let ss ′ = negate cex in
6 Stream .bind ss (fun s →
7 Stream .bind ss ′ (fun s ′ →
8 Stream .unit (merge s s ′ )
9 ) )
10 in
11 Stream .fold sub (Stream .unit st ) cexs

Listing 6. Implementation of the negation operator

Negation operator is a function which takes a goal and returns a negated goal. Because a goal is itself a function
taking a state, (¬) takes two arguments: the goal g and the state st (line 1).

The first step of constructive negation is to run the positive version of the goal, as code in line 2 does. We run it
in the current state st and thus the call g st returns a stream of refined states sts ′ . Each state from this stream
will contain the constraints from the original state st as its subpart. However, we need to negate only constraints
originated from g solely. Thus, on the line 3 we map every state from the stream sts ′ to its difference with respect
to the original substitution st. In order to compute difference of two states st and st ′ (Listing 7), given that st
is more general that st ′ we need to compute difference of their substitutions and disequality constraints stores.
The difference of substitution s ′ with respect to s (Listing 8) is just a substitution containing all mappings from
s ′ which are not simultaneously in s. The difference of constraint store c ′ with respect to c is a constraint store
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containing all disequalities that are in c ′ but not in c (Listing 8). As long as persistent data structures are used to
implement substitutions and constraint stores, the diff can be computed4.
Line 4 defines auxiliary function sub which takes two arguments: a stream of states ss and some state cex,

and returns another stream. The purpose of this function it to “subtract” cex from every element of ss. It is done
as follows. First, the state cex is negated as described in section 3.1 (line 5). As we have seen, as a result of the
negation of a single state the stream of states (the disjunction of formulas) can be obtained. Thus the result of
the call negate cex is the stream of states ss ′ . For every combination of some state s from the given stream
ss (line 6) and some state s ′ from the stream ss ′ representing the result of negation (line 7) we compute their
conjunction (line 8). The conjunction of two states is computed by the function merge (Listings 7, 8).

Finally, on the line 11 fold is called on the stream cexs, which is a stream of answers for the positive version
of the goal g, with function sub defined above and the initial accumulator Stream .unit st. The function
Stream .fold is implemented as a regular left fold over a possibly infinite list. Intuitively with folding over stream
cexs we “subtract” from the original state st every answer obtained from the goal g.

4 In the Listing 8 we present a simple representation of the constraint store as a list of substitutions. In the actual implementation, we use
more sophisticated representation, that also provides the diff function. The simpler version presented here gives some intuition on how to
implement diff for the constraint stores.
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module State = struct
type t = Env .t ∗ Subst .t ∗ CStore .t

. . .

let diff (e , s , cs ) (e ′ , s ′ , cs ′ ) =
let e = Env .diff e e ′ in
let s = Subst .diff s s ′ in
let cs = CStore .diff cs cs ′ in
(e , s , cs )

let merge (e , s , cs ) (e ′ , s ′ , cs ′ ) =
let e = Env .merge e e ′ in
match Subst .merge s s ′ with
| None → None

| Some s →
let cs = CStore .merge cs cs ′ in
match CStore .recheck s cs with
| None → None

| Some cs → (e , s , cs )
end

Listing 7. Implementation of the auxiliary functions

module VarMap = Map .Make (Var )

module Subst = struct
(* Substitution is a mapping from variables to terms *)

type t = Term .t VarMap .t
. . .

let diff s s ′ =
VarMap .fold (fun v t a →

if not (VarMap .mem v s ) then
VarMap .add v t a

else a

) s ′ VarMap .empty

let merge s s ′ =
VarMap .fold (fun v t → function

| None → None

| Some a → unify a v t

) s ′ (Some s )
end

module CStore = struct
(* Constraint store is a list of substitutions *)

type t = Subst .t list

. . .

(* cs ′ must be obtained from cs by

* the addition of new constraints

*)

let diff cs cs ′ =
if cs ′ = cs then []
else
match cs ′ with
| _ : : cs ′ → diff cs cs ′

(* cs ′ = [] implies cs = [] *)

| _ → assert false

let merge cs cs ′ =
List .append cs ′ cs

end

Listing 8. Implementation of the auxiliary functions
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3.4 Stratification
A negation, when combined with recursion, might become a source of confusion for a programmer. Consider the
program in Listing 9. It encodes a two-players game. The positions in the game are given as single-character
strings ′a ′ , ′b ′ , ′c ′ and ′d ′ . A binary relation move encodes the game field as the set of possible moves. An
unary relation winning determines the set of winning positions, meaning that if the first player starts from some
winning position, by making “good” moves the player has an opportunity to win the game. According to the
definition of winning, the position is winning if there exists a move from this position to some non-winning
position. Clearly, every position with no moves from it is losing.
Given the suchlike definition of winning, there is no doubt, that the position ′d ′ is losing position, and thus

the goal winning ′d ′ should fail, which, in turn, means that winning ′c ′ should succeed. However, whether
the goal winning ′a ′ (or winning ′b ′ ) should fail or succeed is not clear.

let move x y =
(x , y ) ≡ ( ′a ′ , ′b ′ ) ∨
(x , y ) ≡ ( ′b ′ , ′a ′ ) ∨
(x , y ) ≡ ( ′b ′ , ′c ′ ) ∨
(x , y ) ≡ ( ′c ′ , ′d ′ )

let winning x =
fresh (y ) (

(move x y ) ∧ ¬(winning y )
)

Listing 9. Encoding of two-players game

The problem with the semantics of program in Listing 9, originates from the interaction of negation and
recursion. Definition of the relation winning refers to itself under negation. Logic programs that have this
property are called non-stratified [Przymusinski 1989]. Vice versa, programs that do not have loops over negation,
are called stratified.

Our current implementation handles only stratified programs. We leave the task of supporting non-stratified
programs as a direction for future work.

4 EVALUATION
In this section, we present an evaluation of implemented constructive negation on a series of examples.

4.1 If-then-else
Using relational if-then-else operator, presented in section 2.1, we have implemented several higher-order relations
over lists, namely find (Listing 10), remove5 (Listing 11) and filter (Listing 12). These relations are almost
identical (syntactically) to their functional implementations. We have tested that these relations can be run in
various directions and produce the expected results. For example, the goal filter p q q with the predicate p
equal to

fun l → fresh (x ) (l ≡ [x ] )
stating that the given list should be a singleton list, starts to generate all singleton lists. Vice versa, the goal

filter p q [] with that same p generates all lists, constrained to be not a singleton list.
5Note, this implementation differs from the one in Section 1, but it is easy to see that these two are semantically equivalent.
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Listings 13-16 give more concrete examples of queries to these relations. In the listing the syntax run n q g
means running a goal gwith the free variable q taking the first n answers (“∗” denotes all answers). After the sign{
the result of the query is given. The result failmeans that the query has failed. The result succ {{ a1 }; ... {an }}
means that the query has succeeded delivering n answers. Each answer represents a set of constraint on free
variables. Constraints are of two forms: equality constraints, e.g. q = (1, _ . 0), or disequality constraints, e.g.
q , (1, _ . 0). The terms of the form _ . i in the answer denote some universally quantified variables.

let find p e xs =
fresh (x xs ′ ys ′ ) (
xs ≡ x : : xs ′ ∧
ifte (p x )

(e ≡ x )
(find p e xs ′ )

)

Listing 10. A definition of find
relation

let remove p xs ys =
(xs ≡ [] ∧ ys ≡ [ ] )
∨
fresh (x xs ′ ys ′ ) (
xs ≡ x : : xs ′ ∧
ifte (p x )

(ys ≡ xs ′ )
(ys ≡ x : : ys ′ ∧
remove p xs ′ ys ′ )

)

Listing 11. A definition of remove
relation

let filter p xs ys =
(xs ≡ [] ∧ ys ≡ [ ] )
∨
fresh (x xs ′ ys ′ ) (
xs ≡ x : : xs ′ ∧
(ifte (p x )

(ys ≡ x : : ys ′ )
(ys ≡ ys ′ ) ) ∧

filter p xs ′ ys ′

)

Listing 12. A definition of filter
relation

let p l = fresh (x ) (l ≡ [x ] )

Listing 13. Definition of the predicate p

run 3 q ( fresh (e ) find p e q )
{ succ {

{ q = [_ . 0 ] : : _ . 1 }
{ q = _ . 0 : : [_ . 1 ] : : _ . 2 ;

_ . 0 , [_ . 3 ] }
{ q = _ . 0 : : _ . 1 : : [_ . 2 ] : : _ . 3 ;

_ . 0 , [_ . 4 ] ; _ . 1 , [_ . 5 ] }
}

Listing 14. Example of queries to find

run ∗ q ( fresh (e ) remove p q [[ ] ] )
{ succ {

{ q = [[_ . 0 ] ; [ ]] }
{ q = [[ ]] }
{ q = [[ ] ; [_ . 0 ]] }

}

run 3 q ( fresh (e ) remove p q q )
{ succ {

{ q = [] }
{ q = [_ . 0 ] , _ . 0 , [_ . 1 ] }
{ q = [_ . 0 ; _ . 1 ] ;

_ . 0 , [_ . 2 ] ; _ . 1 , [_ . 3 ] }
}

Listing 15. Example of queries to remove
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run 3 q (filter p q q )
{ succ {

{ q = [ ] }
{ q = [_ . 0 ] }
{ q = [_ . 0 ; _ . 1 ] }

}

run 3 q (filter p q [1] )
{ succ {

{ q = [[1]] }
{ q = [_ . 0 ; [ 1 ] ] ; _ . 0 , [_ . 1 ] }
{ q = [ [1 ] ; _ . 0 ] ; _ . 0 , [_ . 1 ] }

}

run 3 q (filter p q [ ] )
{ succ {

{ q = [] }
{ q = [_ . 0 ] ; _ . 0 , [_ . 1 ] }
{ q = [_ . 0 ; _ . 1 ] ;

_ . 0 , [_ . 2 ] ; _ . 1 , [_ . 3 ] }
}

Listing 16. Example of queries to filter

4.2 Universal quantification
In the Section 2.2 we presented the forall goal constructor which is implemented through the double negation.
We have observed, that although forall g does not terminate when the goal g x has an infinite number of
answers (assuming x is a fresh variable), it does terminate in the case when g x has a finite number of answers.
The behavior of forall in this case is sound even in the presence of disequality constraints or nested quantifiers.

The Table 1 gives some concrete examples. The left column contains the tested goals6 and the right column
gives the obtained results. For the results we use the same notation as in the previous section.

5 LIMITATIONS AND FUTURE WORK
In this section we discuss the limitations of constructive negation in general and our implementation in particular.
Also we consider possible directions for future work.

5.1 Type Constraints
Although the program written in OCanren typechecks statically (thus, for example, preventing the user from
unifying two terms of distinct types), at runtime the type information is erased. In the presence of even regular
disequality constraints it can lead to the incorrect results. As an example, consider the following program:

6 We typeset the goals in terms of first-order logic syntax instead of OCanren syntax for brevity and clarity.
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∀x . x = q fail

∀x . ∃y. x = y succ {[q = _.0]}

∀x . ∃y. x = y ∧ y = q fail

∀x .q = (1,x) fail

∀x . ∃y.y = (1,x) succ {[q = _.0]}

∀x . ∃y. x = (1,y) fail

∀x . x , q fail

∀x . ∃y. x , y succ {[q = _.0]}

∀x . ∃y. x , y ∧ y = q fail

∀x .q , (1,x) succ {[q , (1, _.0)]}

(∃x .q = (1,x)) ∧ (∀x .q , (1,x)) fail

∀x . (x ,x) , (0, 1) succ {[q = _.0]}

∀x . (x ,x) , (1, 1) fail

∀x . (x ,x) , (q, 1) succ {[q , 1]}

∃a b .q = (a,b) ∧ ∀x . (x ,x) , (a,b) succ {[q = (_.0, _.1); _.0 , _.1]}

Table 1. forall evaluation

type bool = true | false

let g =
fresh (x y z : bool ) (

(x . y )
(y . z )
(z . x )

)
The goal g states that there exists at least three different non-equal terms of type bool, which, as we know, is

not true. Yet the query run g will succeed.
In order to prevent unsoundness in cases like this, type information in the form of type constraints should be

somehow attached to the variables at runtime. The satisfiability of type constraints then should be rechecked
each time when the new disequality is added to some variable. An extension of OCanren with type constraints
is a direction for future work.
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5.2 Non-stratified Programs
As we have already discussed in the section 3.4 our current implementation handles only stratified logic programs.
One of the possible extensions is to support non-stratified programs, such as one given in Listing 9, with respect
to well-founded and/or stable model semantics (see section 6 for the details).

5.3 Negation of Goals With an Infinite Number of Answers
Consider the following program:

let zeros l =
l ≡ [0]
∨
fresh (l ′ ) (

(l ≡ 0 : : l ′ )
(zeros l ′ )

)
The unary relation zeros defines lists consisting of zeros. Now, intuitively, the query run ¬(zeros q ) should

enumerate all lists that are not built out of zeros only. Yet this query will fail to deliver even a single answer.
Why? Consider its operational behavior. First the positive version of the goal, that is zeros q, should be executed.
Then all answers to this goal should be collected and complemented. However, there is an infinite number of
answers to zeros q and thus this process will never terminate.
It is a significant drawback of constructive negation that the negation of the goal cannot be computed if the

goal has an infinite number of answers. This limitation cannot be avoided in general, however in some cases
it is possible to narrow the number of answers to some subgoal by the reordering of surrounding subgoals.
For example, the query run ¬(zeros q ) ∧ (q ≡ [1]) can be executed in finite time by the reordering of
conjuncts. It seems that the best strategy is to delay negative subgoals as long as possible, but we do not have a
formal proof of that.

6 RELATED WORKS
There are two directions of work in the process of incorporating negative reasoning in the logic programming:
the first considers the semantics of negation, and the second is focused mainly on implementation aspects.
The first attempt to give a semantics for negation in logic programming was done by Clark [Chan 1988;

Clark 1978] with his completion semantics. It was then realized, that Clark’s semantics has various draw-
backs [Van Gelder et al. 1991].
Przymusinski [Przymusinski 1989] has studied the semantics of stratified logic programs. He introduced the

notion of perfect model semantics for such programs. Stratified logic programs have a variety of good properties,
including the property that each stratified program has a unique minimal model.

In an attempt to extend the semantics of negation to non-stratified programs the well-founded semantics was
proposed [Van Gelder et al. 1991]. However, this semantics is three-valued, meaning that for some queries it can
return answer unknown. For example, given the relation winning (section 3.4, listing 9), queries winning ′a ′

and winning ′b ′ would return unknown.
An alternative approach is stable model semantics [Gelfond and Lifschitz 1988]. Under this semantics, non-

stratified logic program can have several stable models. Program, that defines winning, has two stable models,
in one of these models goal winning ′a ′ succeeds and winning ′b ′ fails, in the other winning ′a ′ fails and
winning ′b ′ succeeds. Logic programming under stable model semantics is also known under the name answer
set programming (ASP).
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The works [Dovier et al. 2000; Stuckey 1991] are theoretical studies of constructive negation in the context of
constraint logic programming. They give a necessary and sufficient condition for the constraint structures that
are compatible with constructive negation. Namely, the constraint structure should be admissible closed.
From an implementation side, Chen et al. [Chen et al. 1995; Chen and Warren 1996] developed a Prolog

system based on SLG resolution, which is sound with respect to well-founded semantics. However, they used
negation as failure with delaying of non-ground negative subgoals. [Liu et al. 1999] is an extension of this system
with the support of the constructive negation. Works [Álvez et al. 2004; Barták 1998] implement a constraint
logic programming systems with the support of constructive negation. Yet, as with our implementation, the
constructive negation in these systems supports only equality and disequality constraints over first-order terms.
We are not aware of any practical implementation that is parametric over arbitrary admissible closed constraint
structures.

Many tools were developed to compute stable models of logic programs, among them are [Gebser et al. 2007;
Giunchiglia et al. 2006]. These systems usually require to perform grounding of logic program. The problem of
finding stable models of ground logic program then is encoded as propositional formula and solved by some
SAT solver. Unfortunately, some logic programs do not have finite grounding, but even if a program has it,
grounding may cause an exponential blow-up. Recently, a goal-directed system for computing stable models was
developed [Arias et al. 2018; Marple et al. 2012, 2017]. To the best of our knowledge, it is the only ASP system, that
does not require grounding. The key components of this system are the usage of tabling, constructive negation,
coinductive logic programming, and non-monotonic reasoning check. It is an interesting and challenging task to
extend MiniKanren with the support of stable model semantics in the spirit of this line of work.

7 CONCLUSION
We have presented an implementation of constructive negation for relational programming language OCanren,
a dialect of MiniKanren. Unlike the negation as failure, constructive negation is consistent with the pure logical
nature of MiniKanren. As we have demonstrated the negative reasoning increases the expressive power of
relational language by allowing to compose more relations in a natural and intuitive form.
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We present two formal semantics for the core miniKanren. First, we give denotational variant which corresponds to the
minimal Herbrand model for definite logic programs. Second, we present operational semantics which models interleaving,
and prove its soundness and completeness w.r.t. denotational semantics. Our development is supported by formal Coq
specification, thus making it certified.

CCS Concepts: • Theory of computation → Constraint and logic programming; Denotational semantics; Opera-
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1 INTRODUCTION
The introductory book on miniKanren [Friedman et al. 2005] describes the language by means of an evolving

set of examples. In the series of follow-up papers [Alvis et al. 2011; Byrd and Friedman 2007; Hemann and
Friedman 2013, 2015; Hemann et al. 2016; Swords and Friedman 2013] various extensions of the language were
presented with their semantics explained in terms of Scheme implementation. We argue that this style of semantic
definition is fragile and not self-evident since it requires the knowledge of semantics of concrete implementation
language. In addition the justification of important properties of relational programs (for example, refutational
completeness [Byrd 2009]) becomes cumbersome. In the area of programming languages research a formal
definition for the semantics of language of interest is a de-facto standard, and in our opinion in its current state
miniKanren deviates from this standard.

There were some previous attempts to define a formal semantics for miniKanren. Lozov et al. [2017] present a
variant of nondeterministic operational semantics, and Rozplokhas and Boulytchev [2018] use another variant of
finite-set semantics. None of them was capable of reflecting the distinctive property of miniKanren search —
interleaving [Kiselyov et al. 2005], thus deviating from the conventional understanding of the language.

In this paper we present a formal semantics for core miniKanren and prove some its basic properties. First, we
define denotational semantics similar to the least Herbrand model for definite logic programs [Lloyd 1984]; then
we describe operational semantics with interleaving in terms of labeled transition system. Finally, we prove the
soundness and completeness of the operational semantics w.r.t the denotational one. We support our development
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C = {Cki
i } constructors with arities

TX = X ∪ {Cki
i (t1, . . . , tki ) | tj ∈ TX } terms over the set of variables X

D = T∅ ground terms
X = {x ,y, z, . . . } syntactic variables
A = {α , β ,γ , . . . } semantic variables
R = {Rkii } relational symbols with arities

G = TX ≡ TX unification
G ∧ G conjunction
G ∨ G disjunction
fresh X . G fresh variable introduction
Rkii (t1, . . . , tki ), tj ∈ TX relational symbol invocation

S = {Rkii = λ x i1 . . . x
i
ki
.дi ; } д specification

Fig. 1. The syntax of the source language

FV (x) = {x}
FV (Cki

i (t1, . . . , tk )) =
⋃FV (ti )

FV (t1 ≡ t2) = FV (t1) ∪ FV (t2)
FV (д1 ∧ д2) = FV (д1) ∪ FV (д2)
FV (д1 ∨ д2) = FV (д1) ∪ FV (д2)
FV (fresh x . д) = FV (д) \ {x}
FV (Rkii (t1, . . . , tk )) =

⋃FV (ti )
Fig. 2. Free variables in terms and goals

with a formal specification using Coq [Bertot and Castéran 2004] proof assistant1, thus outsourcing the burden
of proof checking to the automatic tool.
The paper organized as follows. In Section 2 we give the syntax of the language, describe its semantics

informally and discuss some examples. Section 3 contains the description of denotational semantics for the
language, and Section 4 — the operational semantics. In Section 5 we overview the certified proof for soundness
and completeness of operational semantics. The final section concludes.

2 THE LANGUAGE
In this section we introduce the syntax of the language we use throughout the paper, describe the informal

semantics and give some examples.
The syntax of the language is shown on Figure 1. First, we fix a set of constructors C with known arities and

consider a set of terms TX with constructors as functional symbols and variables from X . We parameterize this
set with an alphabet of variables, since in the semantic description we will need two kinds of variables. The first
kind, syntactic variables, is denoted by X. We also consider an alphabet of relational symbols R which are used
to name relational definitions. The central syntactic category in the language is a goal. In our case there are
1https://github.com/dboulytchev/miniKanren-coq
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five types of goals: unification of terms, conjunction and disjunction of goals, fresh variable introduction and
invocation of some relational definition. Thus, unification is used as a constraint, and multiple constraints can be
combined using conjunction, disjunction and recursion. For the sake of brevity we abbreviate immediately nested
“fresh” constructs into the one, writing “fresh x y . . . . д” instead of “fresh x . fresh y . . . . д”. The final
syntactic category is specification S. It consists of a set of relational definitions and a top-level goal. A top-level
goal represents a search procedure which returns a stream of substitutions for the free variables of the goal. The
definition for set of free variables for both terms and goals is given on Figure 2; as “fresh” is the sole binding
construct the definition is rather trivial. The language we defined is first-order, as goals can not be passed as
parameters, returned or constructed at runtime.
We now informally describe how relational search works. As we said, a goal represents a search procedure.

This procedure takes a state as input and returns a stream of states; a state (among other information) contains a
substitution which maps semantic variables into terms over semantic variables. Then five types of scenarios are
possible (dependent on the type of the goal):
• Unification “t1 ≡ t2” unifies terms t1 and t2 in the context of the substitution in the current state. If terms are
unifiable, then their MGU is integrated into the substitution, and one-element stream is returned; otherwise
the result is an empty stream.
• Conjunction “д1 ∧ д2” applies д1 to the current state and then applies д2 to the each element of the result,
concatenating the streams.
• Disjunction “д1 ∨ д2” applies both its goals to the current state independently and then concatenates the
results.
• Fresh construct “fresh x . д” allocates a new semantic variable α , substitutes all free occurrences of x in
д with α , and runs the goal.
• Invocation “Rkii (t1,...,tki )” finds a definition for relational symbol Rkii = λx1 . . . xki .дi , substitutes all free
occurrences of formal parameter x j in дi with term tj (for all j) and runs the goal in the current state.

We stipulate, that the top-level goal is preceded by an implicit “fresh” construct, which binds all its free
variables, and the final substitutions for these variables constitute the result of the goal evaluation.

Conjunction and disjunction form a monadic [Wadler 1995] interface with conjunction playing role of “bind”
and disjunction — of “mplus”. In this description we swept a lot of important details under the carpet — for
example, in actual implementations the components of disjunction are not evaluated in isolation, but both
disjuncts are being evaluated incrementally with the control passing from one disjunct to another (interleaving);
instead streams the implementation can be based on “ferns” [Byrd et al. [n. d.]] to defer divergent computations,
etc.

As an example consider the following specification:

appendo = λ x y xy .
( (x ≡ Nil ) ∧ (xy ≡ y ) ) ∨
( fresh h t ty .

(x ≡ Cons (h , t ) ) ∧
(xy ≡ Cons (h , ty ) ) ∧
(appendo y t ty )

) ;
reverso = λ x y .

( (x ≡ Nil ) ∧ (y ≡ Nil ) ) ∨
( fresh h t t ' .

(x ≡ Cons (h , t ) ) ∧
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(appendo t ' (Cons (h , Nil ) ) y ) ∧
(reverso t t ' )

) ;
reverso x x

Here we defined two relational symbols — “appendo” and “reverso”, — and specified a top-level goal
“reverso x x”. The symbol “appendo” defines a relational concatenation of lists — it takes three arguments
and performs a case analysis on the first one. If the first one is an empty list (“Nil”), then the second and the
third arguments are unified. Otherwise the first argument is deconstructed into a head “h” and a tail “t”, and the
tail is concatenated with the second argument using a recursive call to “appendo” and additional variable “ty”,
which represents the concatenation of “t” and “y”. Finally, we unify “Cons (h , ty )” with “xy” to form a final
constraint. Similarly, “reverso” defines relational list reversing. The top-level goal represents a search procedure
for all lists “x”, which are stable under reversing, i.e. represent palindromes. Running it results in an infinite
stream of substitutions:

α 7→ Nil

α 7→ Cons (β0 , Nil )
α 7→ Cons (β0 , Cons (β0 , Nil ) )
α 7→ Cons (β0 , Cons (β1 , Cons (β0 , Nil ) ) )
. . .

where “α” — a semantic variable, corresponding to “x”, “βi ” — free semantics variables.
The notions above can be formalized in Coq in a natural way using inductive data types. We have made a few

non-essential simplifications and modifications for the sake of convenience.
Specifically, we restrict the arities of constructors to be either zero or two:

Inductive term : Set :=
| Var : var → term

| Cst : con_name → term

| Con : con_name → term→ term→ term.

Here “var” and “con_name” — types representing variables and constructor names, whose definitions we
omitted for the sake of brevity. Similarly, we restrict relations to always have exactly one argument:

Definition rel : Set := term → goal.

These restrictions do not make the language less expressive in any way since we can represent a sequence of
terms as a list using constructors Nil0 and Cons2.

We also introduce one additional type of goals — failure — for deliberately unsuccessful computation (empty
stream). As a result, the definition of goals looks as follows:

Inductive goal : Set :=
| Fail : goal

| Unify : term → term→ goal

| Disj : goal → goal→ goal

| Conj : goal → goal→ goal

| Fresh : ( var → goal) → goal

| Invoke : rel_name → term→ goal.
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x [t/x] = t
y [t/x] = y y , x

Cki
i (t1, . . . , tki ) [t/x] = Cki

i (t1 [t/x], . . . , tki [t/x])
(t1 ≡ t2) [t/x] = t1 [t/x] ≡ t2 [t/x]
(д1 ∧ д2) [t/x] = д1 [t/x] ∧ д2 [t/x]
(д1 ∨ д2) [t/x] = д1 [t/x] ∨ д2 [t/x]

(fresh x .д) [t/x] = fresh x .д
(fresh y .д) [t/x] = fresh y . (д [t/x]) y , x

(Rkii (t1, . . . , tki ) [t/x] = Rkii (t1 [t/x], . . . , tki [t/x])

Fig. 3. Substitutions for terms and goals

Note that in our formalization we use the higher-order abstract syntax for variable binding [Pfenning and
Elliott 1988]. We preferred it to the first-order syntax because it gives us the ability to use substitution and
inductive principle provided by Coq. However, we still need to carefully ensure some expected properties on the
structure of syntax trees. For example, we should require that the definitions of relations do not contain unbound
variables:

Definition closed_goal_in_context ( c : list var) ( g : goal) : Prop :=
∀ n, is_fv_of_goal n g → In n c.

Definition closed_rel ( r : rel) : Prop :=
∀ ( arg : term), closed_goal_in_context ( fv_term arg) ( r arg).

Definition def : Set := { r : rel | closed_rel r}.

In the snippet above “def” corresponds to a set of relational symbol definitions in a specification.
We set an arbitrary environment (a map from relational symbol to the definition of relation) to use further

throughout the formalization. Failure goals allow us to define it as a total function:

Definition env : Set := rel_name → def.

Variable Prog : env.

3 DENOTATIONAL SEMANTICS
In this section we present a denotational semantics for the language we defined above. We use a simple

set-theoretic approach which can be considered as an analogy to the least Herbrand model for definite logic
programs [Lloyd 1984]. Strictly speaking, instead of developing it from scratch we could have just described the
conversion of specifications into definite logic form and took their least Herbrand model. However, in that case
we would still need to define the least Herbrand model semantics for definite logic programs in a certified way.
In addition, while for this concrete language the conversion to definite logic form is trivial, it may become less
trivial for its extensions (with, for examples, nominal constructs [Byrd and Friedman 2007]) which we plan to do
in future.

To motivate further development, we first consider the following example. Let us have the following goal:
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x ≡ Cons (y , z )
There are three free variables, and solving the goal delivers us the following single answer:
α 7→ Cons (β , γ )

where semantic variables α , β and γ correspond to the syntactic ones “x”, “y”, “z”. The goal does not put any
constraints on “y” and “z”, so there are no bindings for “β” and “γ ” in the answer. This answer can be seen as the
following ternary relation over the set of all ground terms:

{(Cons (β ,γ ), β,γ ) | β ∈ D, γ ∈ D} ⊂ D3

The order of “dimensions” is important, since each dimension corresponds to a certain free variable. Our main
idea is to represent this relation as a set of total functions

f : A 7→ D
from semantic variables to ground terms. We call these functions representing functions. Thus, we may refor-

mulate the same relation as

{(f (α), f (β), f (γ )) | f ∈ Jα ≡ Cons (β ,γ )K}
where we use conventional semantic brackets “J•K” to denote the semantics. For the top-level goal we need to

substitute its free syntactic variables with distinct semantic ones, calculate the semantics, and build the explicit
representation for the relation as shown above. The relation, obviously, does not depend on concrete choice of
semantic variables, but depends on the order in which the values of representing functions are tupled. This order
can be conventionalized, which gives us a completely deterministic semantics.

Now we implement this idea. First, for a representing function

f : A → D
we introduce its homomorphic extension

f : TA → D
which maps terms to terms:

f (α) = f (α)
f (Cki

i (t1, . . . .tki )) = Cki
i (f (t1), . . . f (tki ))

Let us have two terms t1, t2 ∈ TA . If there is a unifier for t1 and t2 then, clearly, there is a substitution θ which
turns both t1 and t2 into the same ground term (we do not require θ to be the most general). Thus, θ maps (some)
ground variables into ground terms, and its application to t1(2) is exactly θ (t1(2)). This reasoning can be performed
in the opposite direction: a unification t1 ≡ t2 defines the set of all representing functions f for which f(t1) = f(t2).

Then, the semantic function for goals is parameterized over environments which prescribe semantic functions
to relational symbols:

Γ : R → (TA∗ → 2A→D)
An environment associates with relational symbol a function which takes a string of terms (the arguments

of the relation) and returns a set of representing functions. The signature for semantic brackets for goals is as
follows:
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J•KΓ : G → 2A→D

It maps a goal into the set of representing functions w.r.t. an environment Γ.
We formulate the following important completeness condition for the semantics of a goal д:

∀α < FV (д) ∀d ∈ D ∀f ∈ JдK ∃f′ ∈ JдK : f′ (α) = d ∧ ∀β , α : f′ (β) = f (β)

In other words, representing functions for a goal д restrict only the values of free variables of д and do not
introduce any “hidden” correlations. This condition guarantees that our semantics is complete in the sense that it
does not introduce artificial restrictions for the relation it defines. It can be proven that the semantics of goals
always satisfy this condition.

We remind conventional notions of pointwise modification of a function

f [x ← v] (z) =
{

f (z) , z , x
v , z = x

and substitution of a free variable with a term in terms and goals (see Figure 3).
For a representing function f : A → D and a semantic variable α we define the following generalization

operation:

f ↑ α = {f [α ← d] | d ∈ D}

Informally, this operation generalizes a representing function into a set of representing functions in such a
way that the values of these functions for a given variable cover the whole D. We extend the generalization
operation for sets of representing functions F ⊆ A → D:

F ↑ α =
⋃
f∈F
(f ↑ α)

Now we are ready to specify the semantics for goals (see Figure 4). We’ve already given the motivation for the
semantics of unification: the condition f(t1) = f(t2) gives us the set of all (otherwise unrestricted) representing
functions which “equate” terms t1 and t2. Set union and intersection provide a conventional interpretation for
disjunction and conjunction of goals, and the semantics of relational invocation reduces to the application of
corresponding function from the environment. The only interesting case is “fresh x . д”. First, we take an
arbitrary semantic variable α , not free in д, and substitute x with α . Then we calculate the semantics of д [α/x].
The interesting part is the next step: as x can not be free in “fresh x . д”, we need to generalize the result
over α since in our model the semantics of a goal specifies a relation over its free variables. We introduce some
nondeterminism, by choosing arbitrary α , but it can be proven by structural induction, that with different choices
of free variable, semantics of a goal won’t change. Consider the following example:

fresh y . (α ≡ y ) ∧ (y ≡ Zero )

As there is no invocations involved, we can safely omit the environment. Then:

86 The miniKanren and Relational Programming Workshop 2019



5:8 • Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev

Jt1 ≡ t2KΓ = {f : A → D | f (t1) = f (t2)} [UnifyD ]
Jд1 ∧ д2KΓ = Jд1KΓ ∩ Jд1KΓ [ConjD ]
Jд1 ∨ д2KΓ = Jд1KΓ ∪ Jд1KΓ [DisjD ]

Jfresh x .дKΓ = (Jд [α/x]KΓ) ↑ α , α < FV (д) [FreshD ]
JR (t1, . . . , tk )KΓ = (Γ R) t1 . . . tk [InvokeD ]

Fig. 4. Denotational semantics of goals

Jfresh y . (α ≡ y) ∧ (y ≡ Zero )K = (by FreshD )
(J (α ≡ β)∧ (β ≡ Zero)K) ↑ β = (by ConjD )
(Jα ≡ βK ∩ Jβ ≡ Zero)K) ↑ β = (by UnifyD )
({f | f (α) = f (β)} ∩ {f | f (β) = f (Zero)}) ↑ β = (by the definition of “f”)
({f | f (α) = f (β)} ∩ {f | f (β) = Zero}) ↑ β = (by the definition of “∩”)
({f | f (α) = f (β) = Zero}) ↑ β = (by the definition of “↑”)
{f | f (α) = Zero, f (β) = d,d ∈ D} = (by the totality of representing functions)
{f | f (α) = Zero}

In the end we’ve got the set of representing functions, each of which restricts only the value of free variable α .
The final component is the semantics of specifications. Given a specification

{Ri = λ x i1 . . . x
i
ki
.дi ; }ni=1 д

we have to construct a correct environment Γ0 and then take the semantics of the top-level goal:

J{Ri = λ x i1 . . . x
i
ki
.дi ; }ni=1 дK = JдKΓ0

As the set of definitions can be mutually recursive we apply the fixed point approach. We consider the following
function

F : (TA∗ → 2A→D)n → (TA∗ → 2A→D)n
which represents a semantic for the set of definitions abstracted over themselves. The definition of this function

is rather standard:

F (p1, . . . ,pn) = (t11 . . . t1k1 7→ Jд1 [t11/x11 , . . . , t1k1/x
1
k1
]KΓ,

. . .
tn1 . . . t

n
kn
7→ Jдn [tn1 /xn1 , . . . , tnkn/x

n
kn
]KΓ)

where Γ Ri = pi
Here pi is a semantic function for i-th definition; we build an environment Γ which associates each relational

symbol Ri with pi and construct a n-dimensional vector-function, where i-th component corresponds to a function
which calculates the semantics of i-th relational definition application to terms w.r.t. the environment Γ. Finally,
we take the least fixed point of F and define the top-level environment as follows:

Γ0 Ri = (f ix F ) [i]
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where “[i]” denotes the i-th component of a vector-function.
The least fixed point exists by Knaster-Tarski [Tarski 1955] theorem — the set (TA∗ → 2A→D)n forms a

complete lattice, and F is monotonic.
To formalize denotational semantics in Coq we can define representing functions simply as Coq functions:

Definition repr_fun : Set := var → ground_term.

We define the semantics via inductive proposition “in_denotational_sem_goal” such that

∀д, f : in_denotational_sem_goal д f⇐⇒ f ∈ JдKΓ

The definition is as follows:

Inductive in_denotational_sem_goal : goal → repr_fun→ Prop :=
| dsgUnify : ∀ f t1 t2, apply_repr_fun f t1 = apply_repr_fun f t2 →

in_denotational_sem_goal ( Unify t1 t2) f

| dsgDisjL : ∀ f g1 g2, in_denotational_sem_goal g1 f →
in_denotational_sem_goal ( Disj g1 g2) f

| dsgDisjR : ∀ f g1 g2, in_denotational_sem_goal g2 f →
in_denotational_sem_goal ( Disj g1 g2) f

| dsgConj : ∀ f g1 g2, in_denotational_sem_goal g1 f →
in_denotational_sem_goal g2 f →
in_denotational_sem_goal ( Conj g1 g2) f

| dsgFresh : ∀ f fn a fg, (~ is_fv_of_goal a ( Fresh fg)) →
in_denotational_sem_goal ( fg a) fn →
( ∀ x, x <> a → fn x = f x) →
in_denotational_sem_goal ( Fresh fg) f

| dsgInvoke : ∀ r t f, in_denotational_sem_goal ( proj1_sig ( Prog r) t) f →
in_denotational_sem_goal ( Invoke r t) f.

Here we refer to a fixpoint “apply_repr_fun” which calculates the extension “•” for a representing function,
and inductive proposition “is_fv_of_goal” which encodes the set of free variables for a goal.
Recall that the environment “Prog” maps every relational symbol to the definition of relation, which is

a pair of a function from terms to goals and a proof that it has no unbound variables. So in the last case
“( proj1_sig ( Prog r) t) ” simply takes the body of the corresponding relation; thus “Prog” inCoq specification
plays role of a global environment Γ.

It is interesting that in Coq implementation we do not need to refer to Tarski-Knaster theorem explicitly since
the least fixpoint semantic is implicitly provided by inductive definitions.
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4 OPERATIONAL SEMANTICS
In this section we describe operational semantics of miniKanren, which corresponds to the known implemen-

tations with interleaving search. The semantics will be given in the form of labeled transition system (LTS). From
now on we assume the set of semantic variables to be linearly ordered (A = {α1,α2, . . . }).

We introduce the notion of substitution

σ : A → TA
as a (partial) mapping from semantic variables to terms over the set of semantic variables. We denote Σ the set

of all substitutions, Dom (σ ) — the domain for a substitution σ ,VRan (σ ) = ⋃
α ∈Dom (σ ) FV (σ (α)) — its range

(the set of all free variables in the image).
The states in the transition system have the following shape

S = G × Σ × N | S ⊕ S | S ⊗ G
As we will see later, an evaluation of a goal is separated into elementary steps, and these steps are performed

interchangeably for different subgoals. Thus, a state has a tree-like structure with intermediate nodes corre-
sponding to partially-evaluated conjunctions (“⊗”) or disjunctions (“⊕”). A leaf in the form ⟨д,σ ,n⟩ determines
a goal in a context, where д — a goal, σ — a substitution accumulated so far, and n — a natural number, which
corresponds to a number of semantic variables used to this point. For a conjunction node its right child is always
a goal since it cannot be evaluated unless some result is provided by the left conjunct.

We also need extended states

S = ⋄ | S
where ⋄ symbolizes the end of evaluation, and the following well-formedness condition:

Definition 1. Well-formedness condition for extended states:
• ⋄ is well-formed;
• ⟨д,σ ,n⟩ is well-formed iff FV (д) ∪ Dom (σ ) ∪ VRan (σ ) ⊂ {α1, . . . ,αn};
• s1 ⊕ s2 is well-formed iff s1 and s2 well-formed;
• s ⊗ д is well-formed iff s is well-formed and for all leaf triplets ⟨_, _,n⟩ in s FV (д) ⊆ {α1, . . . ,αn}.

Informally the well-formedness restricts the set of states to those in which all goals use only allocated variables.
Finally, we define the set of labels:

L = ◦ | Σ × N
The label “◦” is used to mark those steps which do not provide an answer; otherwise a transition is labeled by a

pair of a substitution and a number of allocated variables. The substitution is one of the answers, and the number
is threaded through the derivation to keep track of allocated variables; we ignore it in further explanations.
The transition rules are shown on Figure 5. The first two rules specify the semantics of unification. If two

terms are not unifiable under the current substitution σ then the evaluation stops with no answer; otherwise it
stops with the answer equal to the most general unifier.
The next two rules describe the steps performed when disjunction (conjunction) is encountered on the top

level of the current goal. For disjunction it schedules both goals (using “⊕”) for evaluating in the same context as
the parent state, for conjunction — schedules the left goal and postpones the right one (using “⊗”).
The rule for “fresh” substitutes bound syntactic variable with a newly allocated semantic one and proceeds

with the goal; no answer provided at this step.
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⟨t1 ≡ t2,σ ,n⟩ ◦−→ ^, ∄mдu (t1, t2,σ ) [UnifyFail]

⟨t1 ≡ t2,σ ,n⟩
(mдu (t1,t2,σ ), n)−−−−−−−−−−−−−→ ^ [UnifySuccess]

⟨д1 ∨ д2,σ ,n⟩ ◦−→ ⟨д1,σ ,n⟩ ⊕ ⟨д2,σ ,n⟩ [Disj]

⟨д1 ∧ д2,σ ,n⟩ ◦−→ ⟨д1,σ ,n⟩ ⊗ д2 [Conj]

⟨fresh x .д,σ ,n⟩ ◦−→ ⟨д [αn+1 /x ],σ ,n + 1⟩ [Fresh]

Rkii = λ x1 . . . xki .д〈
Rkii (t1, . . . , tki ),σ ,n

〉 ◦−→ 〈
д [t1 /

x1 . . .
tki

/
xki ],σ ,n

〉 [Invoke]

s1
◦−→ ^

(s1 ⊕ s2) ◦−→ s2
[DisjStop]

s1
r−→ ^

(s1 ⊕ s2) r−→ s2
[DisjStopAns]

s
◦−→ ^

(s ⊗ д) ◦−→ ^
[ConjStop]

s
(σ ,n)−−−−→ ^

(s ⊗ д) ◦−→ ⟨д,σ ,n⟩
[ConjStopAns]

s1
◦−→ s ′1

(s1 ⊕ s2) ◦−→ (s2 ⊕ s ′1)
[DisjStep]

s1
r−→ s ′1

(s1 ⊕ s2) r−→ (s2 ⊕ s ′1)
[DisjStepAns]

s
◦−→ s ′

(s ⊗ д) ◦−→ (s ′ ⊗ д)
[ConjStep]

s
(σ ,n)−−−−→ s ′

(s ⊗ д) ◦−→ (⟨д,σ ,n⟩ ⊕ (s ′ ⊗ д))
[ConjStepAns]

Fig. 5. Operational semantics of interleaving search

The rule for relation invocation finds a corresponding definition, substitutes its formal parameters with the
actual ones, and proceeds with the body.

The rest of the rules specify the steps performed during the evaluation of two remaining types of the states —
conjunction and disjunction. In all cases the left state is evaluated first. If its evaluation stops with a result then
the right state (or goal) is scheduled for evaluation, and the label is propagated. If there is no result then the
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conjunction evaluation stops with no result (ConjStop) as well while the disjunction evaluation proceeds with
the right state (DisjStop).
The last four rules describe interleaving, which occurs when the evaluation of the left state suspends with

some residual state (with or without an answer). In the case of disjunction the answer (if any) is propagated, and
the constituents of the disjunction are swapped (DisjStep, DisjStepAns). In case of conjunction, if the evaluation
step in the left conjunct did not provide any answer, the evaluation is continued in the same order since there is
still no information to proceed with the evaluation of the right conjunct (ConjStep); if there is some answer, then
the disjunction of the right conjunct in the context of the answer and the remaining conjunction is scheduled for
evaluation (ConjStepAns).

The introduced transition system is completely deterministic. There was, however, some freedom in choosing
the order of evaluation for conjunction and disjunction states. For example, instead of evaluating the left substate
first we could choose to evaluate the right one, etc. In each concrete case we would end up with a different (but
still deterministic) system which would prescribe different semantics to a concrete goal. This choice reflects the
inherent non-deterministic nature of search in relational (and, more generally, logical) programming. However,
as long as deterministic search procedures are sound and complete, we can consider them “equivalent”2.

A derivation sequence for a certain state determines a trace — a finite or infinite sequence of answers. We may
define a set of finite or infinite sequences Xω over an alphabet X as a set of functions from natural numbers into
a lifted set X⊥ = X ∪ {⊥}:

Xω = {ω : N→ X⊥ | ∀n ∈ N, ω (n) = ⊥ ⇒ ω (n + 1) = ⊥}
Informally speaking, we represent a sequence as a function which maps positions (treated as natural numbers)

into the elements of the sequence. We use “⊥” to specify that there is no element at given position, and we
stipulate, that there are no “holes” in this representation: if there is no element at given position then there are
no elements at greater positions as well.

For this representation we may define the empty sequence ϵ and operations of prepending a sequence ω with
an element a and taking a suffix of a sequence ω from a position n as follows:

ϵ = i 7→ ⊥

aω = i 7→
{

a , i = 0
ω (i − 1) , otherwise

ω [n :] = i 7→ ω (n + i)
For a given state s a trace Trs ∈ Lω is a sequence of labels, defined as follows simultaneously with the sequence

of states {si }:

so = s

Trs (n) = a , sn+1 = s
′ if sn , ⋄, sn a−→ x ′

Trs (n) = ⊥ , sn+1 = ⋄ if sn = ⋄
The trace corresponds to the stream of answers in the reference miniKanren implementations.
To formalize the operational part in Coq we first need to define all preliminary notions from unification

theory [Baader and Snyder 2001] which our semantics uses.

2There still can be differences in observable behavior of concrete goals under different sound and complete search strategies: a goal can be
refutationally complete [Byrd 2009] under one strategy and non-complete under another.
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In particular, we need to implement the notion of the most general unifier (MGU). As is it well-known [McBride
2003] all standard recursive algorithms for calculating MGU are not decreasing on argument terms, so we can’t
define it as a simple recursive function in Coq due to the termination check. There is no such obstacle when we
define MGU as a proposition:

Inductive MGU : term → term→ option subst → Set := ...

However, we still need to use a well-founded induction to prove the existence of the most general unifier and
its defining properties:

Lemma MGU_ex : ∀ t1 t2, { r & MGU t1 t2 r}.

Definition unifier ( s : subst) ( t1 t2 : term) : Prop := apply_subst s t1 = apply_subst s t2.

Lemma MGU_unifies:
∀ t1 t2 s, MGU t1 t2 ( Some s) → unifier s t1 t2.

Definition more_general ( m s : subst) : Prop :=
∃ ( s' : subst), ∀ ( t : term), apply_subst s t = apply_subst s' ( apply_subst m t).

Lemma MGU_most_general :
∀ ( t1 t2 : term) ( m : subst),
MGU t1 t2 ( Some m) →
∀ ( s : subst), unifier s t1 t2 → more_general m s.

Lemma MGU_non_unifiable :
∀ ( t1 t2 : term),
MGU t1 t2 None → ∀ s, ~ ( unifier s t1 t2).

For this well-founded induction we use the number of free variables in argument terms as a well-founded
order on pairs of terms:

Definition terms := term ∗ term.

Definition fvOrder ( t : terms) := length ( union ( fv_term ( fst t)) ( fv_term ( snd t))).

Definition fvOrderRel ( t p : terms) := fvOrder t < fvOrder p.

Lemma fvOrder_wf : well_founded fvOrderRel.

After this preliminary work, the described transition relation can be encoded naturally as an inductively
defined proposition (here “state ' ” stands for an extended state):

Inductive eval_step : state → label→ state' → Set := ...

We state the fact that our system is deterministic through existence and uniqueness of a transition for every
state:

Lemma eval_step_ex : ∀ ( st : state), { l : label & { st' : state' & eval_step st l st'}}.
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Lemma eval_step_unique :
∀ ( st : state) ( l1 l2 : label) ( st'1 st'2 : state'),
eval_step st l1 st'1 → eval_step st l2 st'2 → l1 = l2 ∧ st'1 = st'2.

To work with (possibly) infinite sequences we use the standard approach in Coq — coinductively defined
streams:

Context { A : Set }.

CoInductive stream : Set :=
| Nil : stream

| Cons : A → stream→ stream.
Although the definition of the datatype is coinductive some of its properties we are working with make sense

only when defined inductively:
Inductive in_stream : A → stream→ Prop :=
| inHead : ∀ x t, in_stream x ( Cons x t)
| inTail : ∀ x h t, in_stream x t → in_stream x ( Cons h t).

Inductive finite : stream → Prop :=
| fNil : finite Nil

| fCons : ∀ h t, finite t → finite ( Cons h t).
Then we define a trace coinductively as a stream of labels in transition steps and prove that there exists a

unique trace from any extended state:
Definition trace : Set := @stream label.

CoInductive op_sem : state' → trace→ Set :=
| osStop : op_sem Stop Nil

| osState : ∀ st l st' t, eval_step st l st' →
op_sem st' t →
op_sem ( State st) ( Cons l t).

Lemma op_sem_ex (st' : state') : { t : trace & op_sem st' t}.

Lemma op_sem_unique :
∀ st' t1 t2, op_sem st' t1 → op_sem st' t2 → equal_streams t1 t2.

Note, for the equality of streams we need to define a new coinductive proposition instead of using the standard
syntactic equality in order for coinductive proofs to work [Chlipala 2013].

One thing we can prove using operational semantics is the interleaving properties of disjunction. Specifically,
we can prove that a trace for a disjunction is a one-by-one interleaving of streams for its disjuncts:

CoInductive interleave : stream → stream→ stream→ Prop :=
| interNil : ∀ s s', equal_streams s s' → interleave Nil s s'
| interCons : ∀ h t s rs, interleave s t rs → interleave ( Cons h t) s ( Cons h rs).
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Lemma sum_op_sem : ∀ st1 st2 t1 t2 t, op_sem ( State st1) t1 →
op_sem ( State st2) t2 →
op_sem ( State ( Sum st1 st2)) t →
interleave t1 t2 t.

This allows us to prove the expected properties of interleaving in a more general setting of arbitrary streams:
• the elements of the interleaved stream are exactly those of two interleaved streams;
• the interleaved stream is finite iff both interleaving streams are finite.

The corresponding Coq lemmas are as follows:
Lemma interleave_in : ∀ s1 s2 s, interleave s1 s2 s →

∀ x, in_stream x s ↔ in_stream x s1 ∨ in_stream x s2.

Lemma interleave_finite : ∀ s1 s2 s, interleave s1 s2 s →
( finite s ↔ finite s1 ∧ finite s2).

5 SEMANTICS EQUIVALENCE
Now when we defined two different kinds of semantics for miniKanren we can relate them and show that

the results given by these two semantics are the same for any specification. This will actually say something
important about the search in the language: since operational semantics describes precisely the behavior of the
search and denotational semantics ignores the search and describes what we should get from mathematical point
of view, by proving their equivalence we establish completeness of the search which means that the search will
get all answers satisfying the described specification and only those.

But first, we need to relate the answers produced by these two semantics as they have different forms: a trace
of substitutions (along with numbers of allocated variables) for operational and a set of representing functions
for denotational. We can notice that the notion of representing function is close to substitution, with only two
differences:
• representing function is total;
• terms in the domain of representing function are ground.

Therefore we can easily extend (perhaps ambiguously) any substitution to a representing function by composing
it with an arbitrary representing function and that will preserve all variable dependencies in the substitution. So
we can define a set of representing functions corresponding to substitution as follows:

[σ ] = {f ◦ σ | f : A 7→ D}
And denotational analog of an operational semantics (a set of representing functions corresponding to answers

in the trace) for given extended state s is then defined as a union of sets for all substitution in the trace:

JsKop = ∪(σ ,n)∈Trs [σ ]
This allows us to state theorems relating two semantics.

Theorem 1 (Operational semantics soundness). For any specification {. . . } д, for which the indices of all
free variables in д are limited by some number n

J⟨д, ϵ,n⟩Kop ⊂ J{. . . } дK.
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J^KΓ = ∅
J⟨д,σ ,n⟩KΓ = JдKΓ ∩ [σ ]
Js1 ⊕ s2KΓ = Js1KΓ ∪ Js2KΓ
Js ⊗ дKΓ = JsKΓ ∩ JдKΓ

Fig. 6. Denotational semantics of states

It can be proven by nested induction, but first, we need to generalize the statement so that the inductive
hypothesis would be strong enough for the inductive step. To do so, we define denotational semantics not
only for goals but for arbitrarily extended states. Note that this definition does not need to have any intuitive
interpretation, it is introduced only for proof to go smoothly. The definition of the denotational semantics for
extended states is on Figure 6. The generalized version of the theorem uses it:

Lemma 1 (Generalized soundness). For any top-level environment Γ0 acquired from some specification, for any
well-formed (w.r.t. that specification) extended state s

JsKop ⊂ JsKΓ0 .
It can be proven by induction on the number of steps in which a given answer (more accurately, the substitution

that contains it) occurs in the trace. The induction step is proven by structural induction on the extended state s .
It would be tempting to formulate the completeness of operational semantics as the inverse inclusion, but it

does not hold in such generality. The reason for this is that denotational semantics encodes only dependencies
between the free variables of a goal, which is reflected by the completeness condition, while operational semantics
may also contain dependencies between semantic variables allocated in “fresh”. Therefore we formulate the
completeness with representing functions restricted on the semantic variables allocated in the beginning (which
includes all free variables of a goal). This does not compromise our promise to prove the completeness of the
search as miniKanren provides the result as substitutions only for queried variables, which are allocated in the
beginning.

Theorem 2 (Operational semantics completeness). For any specification {. . . } д, for which the indices of all
free variables in д are limited by some number n

{f |{α1, ...,αn } | f ∈ J{. . . } дK} ⊂ {f |{α1, ...,αn } | f ∈ J⟨д, ϵ,n⟩Kop }.
Similarly to the soundness, this can be proven by nested induction, but the generalization is required. This

time it is enough to generalize it from goals to states of the shape ⟨д,σ ,n⟩. We also need to introduce one more
auxiliary semantics — bounded denotational semantics:

J•Kl : G → 2A→D

Instead of always unfolding the definition of a relation for invocation goal, it does so only given number of
times. So for a given set of relational definitions {Rkii = λ x i1 . . . x

i
ki
.дi ; } the definition of bounded denotational

semantics is exactly the same as in usual denotational semantics, except that for the invocation case:

JRkii (t1, . . . , tki )Kl+1 = Jдi [t1/x i1, . . . , tki /x iki ]K
l

It is convenient to define bounded semantics for level zero as an empty set:
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JдK0 = ∅
Bounded denotational semantics is an approximation of a usual denotational semantics and it is clear that any

answer in usual denotational semantics will also be in bounded denotational semantics for some level:
Lemma 2. JдKΓ0 ⊂ ∪l JдKl
Formally it can be proven using the definition of the least fixed point from Tarski-Knaster theorem: the set on

the right-hand side is a closed set.
Now the generalized version of the completeness theorem is as follows:
Lemma 3 (Generalized completeness). For any set of relational definitions, for any level l , for any well-formed

(w.r.t. that set of definitions) state ⟨д,σ ,n⟩,

{f |{α1, ...,αn } | f ∈ JдKl ∩ [σ ]} ⊂ {f |{α1, ...,αn } | f ∈ J⟨д,σ ,n⟩Kop }.
It is proven by induction on the level l . The induction step is proven by structural induction on the goal д.
The proofs of both theorems are certified in Coq, although the proofs for a number of (obvious) technical

facts about representing functions and computation of the most general unifier as well as some properties of
denotational semantics, proven informally in Section 3, are admitted for now. For completeness we can not just
use the induction on proposition in_denotational_sem_goal, as it would be natural to expect, because the
inductive principle it provides is not flexible enough. So we need to define bounded denotational semantics in
our formalization too and perform induction on the level explicitly:

Inductive in_denotational_sem_lev_goal : nat → goal→ repr_fun→ Prop :=
...
| dslgInvoke : ∀ l r t f,

in_denotational_sem_lev_goal l ( proj1_sig ( Prog r) t) f →
in_denotational_sem_lev_goal ( S l) ( Invoke r t) f.

The lemma relating bounded and unbounded denotational semantics is translated into Coq:
Lemma in_denotational_sem_some_lev: ∀ ( g : goal) ( f : repr_fun),

in_denotational_sem_goal g f →
∃ l, in_denotational_sem_lev_goal l g f.

The statements of the theorems are as follows:
Theorem search_correctness: ∀ ( g : goal) ( k : nat) ( f : repr_fun) ( t : trace),

closed_goal_in_context ( first_nats k) g) →
op_sem ( State ( Leaf g empty_subst k)) t) →
in_denotational_analog t f →
in_denotational_sem_goal g f.

Theorem search_completeness: ∀ ( g : goal) ( k : nat) ( f : repr_fun) ( t : trace),
closed_goal_in_context ( first_nats k) g) →
op_sem ( State ( Leaf g empty_subst k)) t) →
in_denotational_sem_goal g f →
∃ ( f' : repr_fun), ( in_denotational_analog t f') ∧

∀ ( x : var), In x ( first_nats k) → f x = f' x.

96 The miniKanren and Relational Programming Workshop 2019



5:18 • Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev

One important immediate corollary of these theorems is the correctness of certain program transformations.
Since the results obtained by the search on a specification are exactly the results from the mathematical model
of this specification, after the transformations of relations that do not change their mathematical meaning the
search will obtain the same results. Note that this way we guarantee only the stability of results as the set of
ground terms, the other aspects of program behavior, such as termination, may be affected. This allows us to
safely (to a certain extent) apply such natural transformations as:
• changing the order of constituents in conjunction or disjunction;
• swapping conjunction and disjunction using distributivity;
• moving fresh variable introduction.

and even transform relational definitions to some kinds of normal form (like all fresh variables introduc-
tion on the top level with the conjunctive normal form inside), which may be convenient, for example, for
metacomputation.

6 CONCLUSION AND FUTURE WORK
In this paper we presented a formal semantics for core miniKanren and proved some its basic properties,

which are believed to hold in existing implementations. We consider our work as an initial setup for a future
development of miniKanren semantics. The language we considered here lacks many important features, which
are already introduced and employed in many implementations. Integrating these extensions — in the first hand,
disequality constraints, — into the semantics looks a natural direction for future work. We also are going to
address the problems of proving some properties of relational programs (equivalence, refutational completeness,
etc.).
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Relational Processing for Fun and Diversity
Simulating a CPU relationally with miniKanren
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Defining a central processing unit relationally using miniKanren is proposed as a new approach for realizing assembly code
diversification. Software diversity has long been championed as a means of protecting digital ecosystems from widespread
failures due to cyberattacks and faults, but is often difficult to achieve in practice. Using relational programming to simulate a
processor allows large-scale automatic synthesis of assembly-level code. Early experiments with the technique indicate that
such synthesis might lead to better automation of code diversification by breaking the synthesis problem into manageable
chunks. An early prototype is presented, with some sample synthesis tasks and discussion of possible future applications.

CCS Concepts: • Software and its engineering → Search-based software engineering; Software safety; Interpreters;
Source code generation; • Security and privacy→ Software security engineering;

Additional Key Words and Phrases: program synthesis, relational programming, miniKanren, software artificial diversity,
malware polymorphism

1 INTRODUCTION
Software diversity has long been recognized as valuable for protecting digital ecosystems fromwidespread failures
due to cyberattacks and faults [Cohen 1993]. Higher diversity of software implementations reduces the likelihood
that a single, common flaw pervades all its deployments, and therefore that a single attack can compromise all
members of the ecosystem or affect them all in the same way. Unfortunately, most software ecosystems today
remain highly monocultural—all deployments of a given software product for a given architecture are almost
identical, save for minute differences. This homogeneity often allows individual, low-cost cyberattacks to have a
devastating impact on large numbers of computer systems. For example, the 2015 Stagefright 2.0 vulnerability
left nearly all Android devices susceptible to remote compromise due to almost identical multimedia library
implementations being used by nearly all apps on all the devices [Peters 2015].
One reason why software monoculture continues to abound despite its brittleness against attack is the

uniformity of most present-day tools for developing software products. Compilers are typically designed to solve
an optimization problem that translates a given source program into a single, efficient, equivalently behaved object
program. Compiler design goals therefore typically include semantic transparency (behavioral preservation),
runtime efficiency, and space efficiency, but not diversity. The source semantics of mainstream imperative
languages (e.g., C/C++), the optimization stages of their compilers, and their backend code generation algorithms
are all designed to search for a single, good solution to this optimization problem.

Authors’ addresses: Gilmore R. Lundquist, University of Texas at Dallas, USA, gilmore.lundquist@utdallas.edu; Utsav Bhatt, University of
Texas at Dallas, USA, utsav.bhatt@utdallas.edu; Kevin W. Hamlen, University of Texas at Dallas, USA, hamlen@utdallas.edu.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

© 2019 Copyright held by the authors.
2475-1421/2019/8-ART6

100 The miniKanren and Relational Programming Workshop 2019



6:2 • Gilmore R. Lundquist, Utsav Bhatt, and Kevin W. Hamlen

Our research seeks to shift the compiler optimization problem to pursue diversity as a design goal of software
development. In particular, a diversifying software development methodology should attempt to yield a maximally
dissimilar collection of object code implementations that are all semantically transparent to the original source
code and that meet a certain baseline efficiency.

Although a few code diversification strategies have attained widespread deployment in practice, most provide
only limited forms of diversity that continue to leave ecosystems vulnerable to exploitation. For example, Address
Space Layout Randomization (ASLR) diversifies programs by randomly choosing the base addresses of libraries
at load-time. While this does help mitigate some attacks, the resulting diversity is low, leaving the software
vulnerable to derandomization attacks [Shacham et al. 2004]. We believe that changing implementations in a more
fundamental way, such as modifying how values are computed, will protect against broader classes of attacks.
Historically, however, this type of diversity has been expensive to obtain and difficult to achieve in an auto-

mated fashion. Prior work [Lundquist et al. 2016] proposes merging the fields of artificial diversity of software
with that of program synthesis, leveraging the natural diversity of search-style problems in order to create a
plethora of program implementations. Because they spring from search problems, these implementations could
be fundamentally different ways of solving a given computational problem.

One approach to program synthesis makes use of miniKanren1 [Byrd 2009], a family of logic languages typically
implemented as an embedded Domain-Specific Language (DSL). Since it is a relational language, miniKanren
programmers write specifications that relate values, and users submit queries that yield sets of values within the
relation. Since any value can queried by the system, values in computations that are traditionally thought of as
“inputs” or “outputs” need not be. Querying for “inputs” that relate to a specified “output” effectively reverses the
computation.

Prior work [Byrd et al. 2017, 2012] has proposed realizing program synthesis in miniKanren by implementing
the relational specification of an interpreter that relates input code to the output values it produces. Reversing the
computation by querying for inputs from given outputs then produces possible code that produces the desired
output values.

Program synthesis in miniKanren seems particularly well suited to the goal of code diversity givenminiKanren’s
natural ability to easily produce multiple answers for a query. The user simply specifies how many answers (at a
maximum) the system is to search for, and a list of results is returned.
In the interest of being source code-agnostic with our diversification efforts, we would like to synthesize

programs at the assembly level. This potentially has the advantages of breaking the synthesis problem into
manageable chunks, as well as allowing existing code (of any origin) to be diversified in a largely automated
fashion.

Since we wish to achieve program diversity at the assembly level, we propose writing a relational specification
of a central processing unit. This miniKanren program interprets assembly code by relating that code to the
states of the processor before and after code execution. A user can then query for assembly code that produces a
desired output state.

2 MODES OF OPERATION
We envision the following ways of using an assembly language synthesis system, such as our miniKanren
prototype:

2.1 For Diversification
Our main goal is to explore automated diversification of assembly-level code. Potential approaches include the
following:

1See http://minikanren.org
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• Use of code sketches:
A standard approach to program synthesis is that of the program sketch [Solar-Lezama 2008, 2009]: a partial
program with holes to be filled with synthesized code. In a logic programming environment, a sketch is a
partial program with portions (here instruction mnemonics, instruction arguments, etc.) represented by
logic variables. Those variables are then queried using a run command to determine possible values. To
control which output is being computed, a sketch must also include a formal specification of what is to be
computed. In assembly diversification, these specifications are constraints dictating the possible processor
states after a computation runs. (We use sketches in this paper.)
Constraints collectively define correctness of synthesized answers. Correct synthesis algorithms yield
only answers that are correct with respect to the constraints. For code diversification, constraints must
therefore also define what is meant by program equivalence. For example, a user may decide to specify result
values for processor status flags, or leave them unconstrained. The latter option broadens the definition
of equivalence to include relations on processor states. For example, diversification might be required to
preserve register and memory values but be permitted to vary status flag values.
When diversifying existing code, either the program to be diversified already has a formal (mathematical)
specification, or (more commonly) there will a priori be no formal notion of correctness. In the ideal
former case, we need only convert the specification into miniKanren constraints. In the latter case, quality
assurance and testing processes must be applied to check program correctness or equivalence; however,
for diversity to be tractable, this assurance process should be (semi-)automated to easily apply it to the
multitude of variants generated.
• Basic blocks bracketed by control flow instructions:
Generating proper control-flow using program synthesis is known to be a hard problem [Solar-Lezama
2008]. To avoid this, sketches can explicitly specify most or all control-flow transfer instructions [Solar-
Lezama 2008]. Instructions in the basic block(s) between control-flow transfers are synthesized in entirety
or in part. Program constraints include loop invariants to dictate what is synthesized. (The GCD examples
in the following section illustrate this approach.)
• Use of effect traces:
In addition to dividing code up into basic blocks, another approach is to generate code based on a known
effect trace, synthesizing portions between calls to other functions, system routines, or other side effects not
otherwise modeled by our processor relation. The format and construction of arguments to these external
routines are determined by constraints provided in the sketch. Since trace equivalence is a common way to
define program equivalence, this approach provides an intuitive starting point for solving the equivalence
problem mentioned above.
• Diversification of existing code:
One of our primary goals for this project is the automated diversification of existing code. To achieve this,
processor states could be generated by running existing assembly code forwards in our system. Enhanced
by constraints describing known properties of how the code should function, these processor states become
the end goals for new code to satisfy.
• Gadget-oriented program composition:
A gadget can be defined as any arbitrary string of assembly language instructions, usually one found
in pre-existing code. As shown in prior work [Lundquist et al. 2016; Mohan and Hamlen 2012] (and as
shown by Return-Oriented Programming in general [Schwartz et al. 2011]), programs can be constructed by
stringing chains of gadgets together in an order determined by the synthesis engine as a means of reaching
a particular goal. Return-Oriented Programming (ROP) is an exploit technique that repurposes gadgets
found in existing benign code to implement attack payloads. While gadget-oriented programming was
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originally used for malicious purposes, we speculate that this technique could be adapted for more general
synthesis tasks.

The overall theme of the techniques described above is that of breaking the problem of synthesis into small,
manageable chunks at a low level. Rather than trying to synthesize an entire program at once, a program is
broken down into sub-pieces, which are then synthesized. This avoids traditional problems associated with
synthesizing large or complex code fragments, and mitigates state-space explosion.

2.2 For Use by a Compiler
Since programming using processor states and constraint sets is likely to be difficult, we envision this system
as a target of higher level tools, such as compilers or interpreters. Replacing the back-end code generation
of a compiler with a synthesis system allows for automatic diversification while keeping programming tasks
manageable. Compilers are potentially in a unique position to know what constraints must be preserved from
higher-level source in the generated assembly. Further, allowing compilers and other code-generation tools to
programmatically break the result into known intermediate states allows for smaller and more frequent synthesis
tasks, once again keeping with the theme of reducing synthesis problems into smaller sub-problems. Sub-problems
can be divided at whatever level is appropriate for the tool based on its knowledge and analysis of the code being
generated, or based on what size tasks the synthesis engine is capable of handling efficiently.

We plan to use our system to explore each of the above approaches in future work.

3 IMPLEMENTATION
To explore assembly language synthesis, we have developed a prototype relational assembly interpreter in
miniKanren.2 Our prototype uses a subset of Intel x86 assembly language instructions with the limited set of
32-bit general purpose registers available for that architecture. The implementation uses a modified version of
faster-miniKanren3 written in Racket.
A full scale system must support enough instructions and processor features to synthesize programs that

work; but like existing compiler back-ends (which emit only a subset of the available instructions), this does not
necessitate supporting the entire instruction set architecture (ISA). Supporting more of the ISA allows for more
diversity in the resulting programs, potentially at the cost of synthesis time. However, prior work [Mohan and
Hamlen 2012] has found that only a small portion of the architecture is needed to achieve high code diversity.

3.1 The x86o Relation
Our processor relation x86o relates assembly code, an input processor state, and an output processor state.
Processor state is modeled as a set of association lists, one mapping registers to values and another mapping
memory locations to values. The memory mapping is a partial function, only containing those values that have
been updated by the program. Addresses read from an uninitialized address return a default value, typically 0.
The interpreter models assembly code as a list of instructions, using a fall-through approach to execute (or

synthesize) a basic block. Since we do not yet represent code addresses in our model, execution always necessarily
continues to the subsequent instruction in the list. Each instruction is a list containing an instruction mnemonic
and the appropriate number of operands for the instruction. Each operand describes a register, an immediate
value, or a memory address.

2Code is available for download at https://www.utdallas.edu/~hamlen/lundquist-miniKanren19.zip or https://www.utdallas.edu/~hamlen/
lundquist-miniKanren19.tar.gz.
3Obtained from https://github.com/gregr/tutorial-relational-interpreters. This version contains modifications by Greg Rosenblatt to
speed up the evalo relational interpreter. The original faster-miniKanren can be obtained from https://github.com/michaelballantyne/
faster-miniKanren/blob/master/README.md.
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The interpreter calls sub-relations to decode arguments (which relate operands to their values with respect to
some processor state) and then interprets the instruction by operating on those values and creating an updated
processor state. A fragment of the relation with a few instructions is shown below:

;; The x86 processor relation.
(define (x86o code rstore new-rstore)

(conde
[(≡ '() code) (≡ rstore new-rstore)]

[(fresh (opcode arglist morecode op1 op2 res rstore1)
(≡ code `((,opcode . ,arglist) . ,morecode))
(conde

;; add
[(≡ opcode 'add)
(decode-2argso arglist op1 op2 rstore)
(pluso op1 op2 res)
(update-argo arglist res rstore rstore1)
(x86o morecode rstore1 new-rstore)]

. . .
;; div
;; uses implicit arguments -
;; dividend is edx:eax,
;; divisor is op1,
;; destination (result quotient) is eax,
;; (result) remainder is edx
[(≡ opcode 'div)
(decode-1argo arglist op1 rstore)
(fresh (edx eax n rem rstore2)
(lookupo 'R_EDX rstore eax)
(lookupo 'R_EAX rstore edx)
(appendo eax edx n) ; n=dividend: eax=low order bits, edx=high order bits
(divo n op1 res rem)
(updateo 'R_EAX res rstore rstore1)
(updateo 'R_EDX rem rstore1 rstore2)
(x86o morecode rstore2 new-rstore))]

. . .
;; xor
[(≡ opcode 'xor)
(decode-2argso arglist op1 op2 rstore)
(xoro op1 op2 res)
(update-argo arglist res rstore rstore1)
(x86o morecode rstore1 new-rstore)]

. . .
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Numeric values in our system are represented as Oleg numerals—little-endian lists of binary digits that encode
the base-2 representation of the number. Most arithmetic operations are the definitions4 found in The Reasoned
Schemer [Friedman et al. 2018], with a few of our own added to implement missing operators (e.g., logical
operations) needed for the instructions we’ve included. For example, here is our implementation of integer
division and remainder:

; integer division with remainder
(define (divo a b q r)

(conde
[(≡ q '()) (≡ r a) (<lo a b)]
[(fresh (p)

(<=lo b a)
(<lo r b)
(pluso p r a)
(*o b q p))]))

3.2 ExampleQueries
3.2.1 Synthesis 1: Generating Some Assembly. Our first example interaction demonstrates a query for generating
lots of assembly code quickly. The goal of each synthesized program is to place the result value 1875 (Oleg
numeral (1 1 0 0 1 0 1 0 1 1 1)) into register EAX.

We begin by providing the following assembly program sketch:

mov ECX ?x
mov EDX ?y
mov EAX ?p
mov EBX ?q
mov EDI ?s
mov ESI ?t

?д ECX ESI
?f EDX EDI
?d EAX ECX
?e EBX EDX
?c EAX EBX

The question marks denote holes to be filled in by the synthesizer, subscripted with the name of the logic
variable used to denote the hole. The first six instructions denote mov instructions with a particular destination
operand (one for each general-purpose register) and a hole to be filled in for the source operand. The remaining
five instructions give concrete destination and source operands but leave the choice of instruction open to be
synthesized.

Constraints are then added to further limit what will be synthesized. The first set of constraints prevent any of
the final instructions from being additional mov instructions. The second set prevents some source operands from

4Obtained from https://github.com/miniKanren/CodeFromTheReasonedSchemer2ndEd.
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being the same as some of the other source operands. The third set of constraints disallow source operand holes
from containing 1875, which prevents the goal value from being moved directly into a register. Finally, source
operands must be positive (non-zero).

We use our processor relation to relate the sketch code, an initial empty processor state, and a final processor
state. Constraining this final state by the value in EAX forces our desired goal to be met. We then query for the
fully synthesized code (in variable v1) and the resulting processor state (in variable z).
For our queries, we make use of Racket’s time operator, which reports (in milliseconds) CPU time, real time,

and garbage collection time spent for expression evaluation. The full query and first 2 (of 200) results are as
follows:

> (time
(run 200 (v1 z)
(fresh (d x p e q y c s t f g)

(≡ v1 `((mov R_ECX ,x)
(mov R_EDX ,y)
(mov R_EAX ,p)
(mov R_EBX ,q)
(mov R_EDI ,s)
(mov R_ESI ,t)

(,g R_ECX R_ESI)
(,f R_EDX R_EDI)
(,d R_EAX R_ECX)
(,e R_EBX R_EDX)
(,c R_EAX R_EBX)))

(. c 'mov) (. d 'mov) (. e 'mov) (. f 'mov) (. g 'mov)
(. p q) (. x q) (. y p) (. y q) (. x p) (. x y)
(. x '(1 1 0 0 1 0 1 0 1 1 1))
(. y '(1 1 0 0 1 0 1 0 1 1 1))
(. q '(1 1 0 0 1 0 1 0 1 1 1))
(. p '(1 1 0 0 1 0 1 0 1 1 1))
(. s '(1 1 0 0 1 0 1 0 1 1 1))
(. t '(1 1 0 0 1 0 1 0 1 1 1))
(poso x) (poso y) (poso p) (poso q) (poso t) (poso s)
(x86o v1 initial-store z)
(lookupo 'R_EAX z '(1 1 0 0 1 0 1 0 1 1 1))

)))
cpu time: 21109 real time: 21481 gc time: 9204
'(((((mov R_ECX (_.0 . _.1))

(mov R_EDX (_.2 . _.3))
(mov R_EAX (1))
(mov R_EBX (0 1 0 0 1 0 1 0 1 1 1))
(mov R_EDI (_.2 . _.3))
(mov R_ESI (_.0 . _.1))
(sub R_ECX R_ESI)
(sub R_EDX R_EDI)
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(add R_EAX R_ECX)
(add R_EBX R_EDX)
(add R_EAX R_EBX))
((R_EAX 1 1 0 0 1 0 1 0 1 1 1) (R_EBX 0 1 0 0 1 0 1 0 1 1 1) (R_ECX) (R_EDX)
(R_EDI _.2 . _.3) (R_ESI _.0 . _.1)))

(=/=
((_.0 0) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 ()))
((_.0 _.2) (_.1 _.3))
((_.2 0) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 ()))))

((((mov R_ECX (_.0 . _.1))
(mov R_EDX (_.2 . _.3))
(mov R_EAX (0 1 0 0 1 0 1 0 1 1 1))
(mov R_EBX (1))
(mov R_EDI (_.2 . _.3))
(mov R_ESI (_.0 . _.1))
(sub R_ECX R_ESI)
(sub R_EDX R_EDI)
(add R_EAX R_ECX)
(add R_EBX R_EDX)
(add R_EAX R_EBX))

((R_EAX 1 1 0 0 1 0 1 0 1 1 1) (R_EBX 1) (R_ECX) (R_EDX) (R_EDI _.2 . _.3) (R_ESI _.0 . _.1)))
(=/=
((_.0 0) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 ()))
((_.0 _.2) (_.1 _.3))
((_.2 0) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 ()))))

. . .

3.2.2 Synthesis 2: Reverse ALU. Next we give an example of Angelic Execution—determining which sets of inputs
successfully result in a particular output [Bodik et al. 2010; Chandra et al. 2011]. Here the output value 65,535
must be assigned to register EAX after computing the following assembly fragment:

mul EAX EBX
or ECX EDX
add ESI EDI
dec EAX
xor ESI ECX
inc ECX
xor EAX ECX
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Each synthesized output contains a set of possible positive input values, one for each of the six general-purpose
registers. Each input set successfully results in the desired output.

The full query and first 5 (of 200) results are shown below:

> (time
(run 200 (v1 v2 v3 v4 v5 v6)
(fresh (a b c x y z str)

(poso a) (poso b) (poso c) (poso x) (poso y) (poso z)
(x86o `((mov R_EAX ,x)

(mov R_EBX ,y)
(mov R_ECX ,z)
(mov R_EDX ,a)
(mov R_ESI ,b)
(mov R_EDI ,c)
(mul R_EAX R_EBX)
(or R_ECX R_EDX)
(add R_ESI R_EDI)
(dec R_EAX)
(xor R_ESI R_ECX)
(inc R_ECX)
(xor R_EAX R_ECX))

initial-store
str)

(lookupo 'R_EAX str '(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1))
(≡ `(R_EAX ,x) v1)
(≡ `(R_EBX ,y) v2)
(≡ `(R_ECX ,z) v3)
(≡ `(R_EDX ,a) v4)
(≡ `(R_ESI ,b) v5)
(≡ `(R_EDI ,c) v6)

)))
cpu time: 14062 real time: 14129 gc time: 4384
'(((R_EAX (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_EBX (1)) (R_ECX (1))

(R_EDX (1)) (R_ESI (1)) (R_EDI (1)))
((R_EAX (1)) (R_EBX (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_ECX (1))
(R_EDX (1)) (R_ESI (1)) (R_EDI (1)))
((R_EAX (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_EBX (1)) (R_ECX (1))
(R_EDX (1)) (R_ESI (1)) (R_EDI (0 _.0 . _.1)))
((R_EAX (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_EBX (0 1)) (R_ECX (1))
(R_EDX (1)) (R_ESI (1)) (R_EDI (1)))
((R_EAX (0 1)) (R_EBX (1)) (R_ECX (1))
(R_EDX (0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_ESI (1)) (R_EDI (1)))

. . .
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3.2.3 Specifying Loop Constraints: Euclid’s GCD Algorithm. For our final example, we use a slightly higher-level
code fragment to demonstrate how we handle looping or stitching together multiple code blocks. Our prototype
currently only handles straight-line code with no jumps. To specify code with loops or more complicated control
flow, one can specify how the blocks are to be sequenced using miniKanren.

As our example, we use Euclid’s algorithm for finding the Greatest Common Divisor (GCD) of two integers a
and b. Recall that the algorithm proceeds as follows:

(1) Find the remainder r when dividing a and b. (Equivalently, find integers q and r such that a = qb + r ).
(2) If r = 0 then b already divides both a and b, and is the largest integer that divides both a and b; return b.
(3) Otherwise, any number that divides a and b must also divide b and r . Repeat from step (1) to find the GCD

of b and r .

To implement this algorithm, first we adopt the convention that the values for a and b are held in registers EAX
and EBX, respectively. We then write a miniKanren relation gcd_testero to run the loop. Given an assembly
code body and input values, the code is run in a processor environment with values in their proper registers. It
then checks the remainder result, and either associates the output with the final value (if the remainder is zero)
or recursively calls itself on the resulting b and r values.

; recursive loop which calls the basic block [the loop body]
(define (gcd_testero code a b gcd)

(fresh (s s+ stmp)
(updateo 'R_EAX a initial-store stmp)
(updateo 'R_EBX b stmp s)
(gcd_block_codeo code s s+)
(conde
[(lookupo 'R_EBX s+ '() ) ; final remainder is 0
(lookupo 'R_EAX s+ gcd)] ; result is in EAX

[(fresh (r)
(lookupo 'R_EBX s+ r)
(. r '()) ; r is non-0
(gcd_testero code b r gcd))]))) ; otherwise loop

Relation gcd_block_codeo specifies a loop invariant for our algorithm. It runs our x86 simulator on the given
code, assuming the above register convention and specifying mathematical constraints for outputs that a correct
run should produce. In this case, the constraints require that after the code runs, the new a value is the original b
value and the new b value is the remainder of a and b.

; spec for gcd loop invariant
(define (gcd_block_codeo code s s+)

(fresh (old_eax old_ebx new_eax new_ebx q r)
(lookupo 'R_EAX s old_eax) ; a
(lookupo 'R_EBX s old_ebx) ; b
(x86o code s s+)
(lookupo 'R_EAX s+ new_eax)
(lookupo 'R_EBX s+ new_ebx)
(≡ new_eax old_ebx) ; a ← b
(divo old_eax old_ebx q r) ; a = qb + r, r < b
(≡ new_ebx r)))
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Using this infrastructure, we now run an algorithm on our processor and verify the answers computed are
correct.
; euclid's gcd algorithm
(define euclid '(

(xor R_EDX R_EDX)
(div R_EBX)
(mov R_EAX R_EBX)
(mov R_EBX R_EDX)))

; test euclid's algorithm and get an answer
> (time (run* (d) (gcd_testero euclid (build-num 12) (build-num 9) d)))
cpu time: 78 real time: 80 gc time: 0
'((1 1))

> (time (run* (d) (gcd_testero euclid (build-num 42) (build-num 30) d)))
cpu time: 203 real time: 213 gc time: 15
'((0 1 1))

We see that we get the correct answers of 3 and 6, resepectively (in Oleg numeral representation). As with any
miniKanren relation, we can query for multiple answers at once; here we simultaneously obtain the gcd of 12
and all values of b up to 12, and verify that the answers are correct:
> (time (run* (b d) (<=o b (build-num 12)) (gcd_testero euclid (build-num 12) b d)))
cpu time: 1329 real time: 1336 gc time: 937
'(((0 0 1 1) (0 0 1 1))

((1) (1))
((0 1) (0 1))
((1 1) (1 1))
((0 0 1) (0 0 1))
((0 1 1) (0 1 1))
((1 1 0 1) (1))
((1 0 1) (1))
((0 1 0 1) (0 1))
((0 0 0 1) (0 0 1))
((1 0 0 1) (1 1)))

Interestingly, we see three different classes of answers to this query, generated in order: the first six are those
for which b = d , namely the factors of 12 (12, 1, 2, 3, 4, and 6). The next group (11 and 5) are those that are
relatively prime with 12, for which the only common divisor is 1. The remaining three answers (10, 8, and 9) are
those that are not factors of 12, yet still have common factors (2, 4, and 3, respectively) with 12.

3.2.4 Synthesis 3: Synthesizing Euclid’s Algorithm with a Sketch. We now synthesize a similar algorithm by
querying for the code. An initial, naïve approach attempts to synthesize the code directly using the relations we
have so far:
> (time (run 1 (c) (gcd_testero c (build-num 12) (build-num 9) (build-num 3))))
. . .

; [Fails with out-of-memory error]
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The out of memory error occurs because this naïve query is too vague, resulting in a state space explosion.
To narrow the search space, we employ a program sketch. Using the intuition that only a division operation
and moving some data around should be sufficient, we create a program sketch that only allows div and mov
instructions, with a specified program length. We take advantage of relational programming to auto-generate a
suitable sketch:

(define (gen-mov-div-listo depth out)
(conde

[(≡ depth '()) (≡ out '())]
[(. depth '())
(fresh (n l)

(minuso depth '(1) n)
(conde

[(fresh (op1 op2) (≡ out `((mov ,op1 ,op2) . ,l) ))]
[(fresh (op) (≡ out `((div ,op) . ,l) ))]

)
(gen-mov-div-listo n l) )]))

> (time (run 1 (c) (gen-mov-div-listo (build-num 4) c)
(gcd_testero c (build-num 12) (build-num 9) (build-num 3))))

cpu time: 361204 real time: 362308 gc time: 84412
'(((mov R_ECX ()) (div R_EBX) (mov R_EAX R_EBX) (mov R_EBX R_EDX)))

Here we have limited possible sketches to programs of length 4 with only div or mov instructions, and the
system is now able to produce an answer. Upon running the test queries below, we see that this new code produces
the same correct GCD answers as the original code above.

(define new-code '((mov R_ECX ()) (div R_EBX) (mov R_EAX R_EBX) (mov R_EBX R_EDX)))
> (time (run* (d) (gcd_testero new-code (build-num 12) (build-num 9) d)))
cpu time: 110 real time: 107 gc time: 46
'((1 1))
> (time (run* (d) (gcd_testero new-code (build-num 42) (build-num 30) d)))
cpu time: 265 real time: 262 gc time: 31
'((0 1 1))
> (time (run* (b d) (<=o b (build-num 12)) (gcd_testero new-code (build-num 12) b d)))
cpu time: 422 real time: 437 gc time: 76
'(((0 0 1 1) (0 0 1 1))

((1) (1))
((0 1) (0 1))
((1 1) (1 1))
((0 0 1) (0 0 1))
((0 1 1) (0 1 1))
((1 1 0 1) (1))
((1 0 1) (1))
((0 1 0 1) (0 1))
((0 0 0 1) (0 0 1))
((1 0 0 1) (1 1)))
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4 RELATED WORK
Rosette [Torlak and Bodik 2013] is another DSL embedded in Racket capable of program synthesis and angelic
execution. Instead of backtracking search, Rosette uses a satisfiability modulo theories (SMT) solver to find
solutions to synthesis and constraint problems. This gives it the potential to be more efficient than miniKanren in
finding solutions that are arithmetic in nature. While any sufficiently general program synthesis system should
be able to synthesize assembly code in a similar fashion to our approach, we found the Rosette system to be
focused on returning a single optimal answer to queries. This makes it more cumbersome to achieve large-scale
diversity with Rosette than with miniKanren in our experience.
Minimips5 is a miniKanren implementation of a MIPS architecture assembler/dissassembler. Its relation

converts between MIPS assembly language programs and their binary encodings. Minimips contains a full
syntactic description for MIPS instructions, but doesn’t appear to have an interpreter. It therefore has no
semantic description of the instructions, or the ability to synthesize code that satisfies a formal specification.
We chose to use the x86 architecture rather than a RISC architecture such as MIPS because a CISC architecture
naturally allows for more diversity of implementations. As future work we plan to implement a similar relational
assembler/disassembler for our x86 system.
Automated generation of assembly code is a common task of compilers and other similar tools. As noted in

Section 1, these tools do not have diversity of implementation as a goal. Some systems (e.g., [Hong and Gerber
1993; Pu et al. 1988]) do synthesize assembly code for specific tasks using algorithms unique to the task. However,
these systems do not synthesize general-purpose assembly code from arbitrary program constraints, or for the
purpose of implementation diversity.

5 CONCLUSION
This paper proposed the implementation of an assembly-level interpreter in miniKanren for the purpose of
synthesizing assembly code, motivated by the need for increased software diversity. This allows synthesis
problems to be broken up into small, manageable pieces. Such problems can be subdivided using specific sketches,
basic blocks, or effect traces; and can be driven by various inputs, including effect traces, processor states obtained
from existing code, availability of particular gadgets, or compiler-driven information. Our working prototype
implements an assembly interpreter for a small subset of x86, and experiments demonstrate its use for synthesizing
code in both straight-line and looping programs. Synthesis examples show the potential to synthesize large
numbers of diverse implementations.
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