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ABSTRACT
We construct numerical models of mildly triaxial elliptical galaxies with central density cusps. Using a

technique we call ““ adiabatic squeezing,ÏÏ we begin with a spherical c\ 1 Hernquist model and apply a
drag to the velocities of the particles along each principal axis. The Ðnal models are stable in isolation,
preserving their density structure and Ðgure shape over many dynamical timescales. The density proÐle
and axial ratios compare well to the observed properties of elliptical galaxies. The orbital structure of
these models show a mixture of tubes, boxes, and boxlets, as expected for triaxial systems, with very few
chaotic orbits. These N-body realizations of cuspy triaxial galaxies provide a basis for the study of
dynamical evolution of elliptical galaxies.
Subject headings : galaxies : elliptical and lenticular, cD È galaxies : kinematics and dynamics È

galaxies : structure È methods : n-body simulations

1. INTRODUCTION

There is good reason to believe that many elliptical gal-
axies are at least moderately triaxial systems. Obser-
vationally, the distribution of isophotal shapes of elliptical
galaxies argues that there are few perfectly spherical or
axisymmetric members of the present-day elliptical popu-
lation (Tremblay & Merritt 1995 ; Ryden 1996). Using mor-
phological and kinematic data, Franx, Illingworth, & de
Zeeuw (1991) have shown that elliptical galaxies show mild
triaxiality, while more recently Bak & Statler (2000) have
arrived at a similar conclusion by modeling the kinematics
of ellipticals. There is strong theoretical support for tri-
axiality as well. Under the gravitational collapse model of
elliptical galaxy formation, models of protogalaxies
undergo a nonspherical collapse, which results in a viria-
lized system that is decidedly triaxial (Dubinski & Carlberg
1991). Similarly, in the hierarchical merging picture, the
remnants of simulated galaxy mergers show strong tri-
axiality (e.g., Hernquist 1992 ; Barnes 1988, 1992 ; Hernquist
1993), even when multiple mergers are considered (Weil &
Hernquist 1996). Either model of elliptical galaxy formation
predicts that a dynamically young elliptical galaxy should
possess a fair degree of triaxiality, although subsequent
evolution may drive the system toward axisymmetry.

There is also good reason to believe that many ellipticals
have cuspy density proÐles. While elliptical galaxies were
once characterized by Ñat, isothermal cores, studies using
the Hubble Space Telescope have shown that, in fact, the
density proÐle of ellipticals rarely becomes perfectly Ñat in
the inner region. Instead, the density proÐle continues to
rise as o P r~c, where 0.25\ c \ 2 (e.g., Lauer et al. 1995 ;
Byun et al. 1996 ; Gebhardt et al. 1996 ; Faber et al. 1997).
Furthermore, correlations exist between the cusp slope c
and the global properties of the galaxy, including shape in
the form of boxy or disky isophotes (Faber et al. 1997).
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Dynamical arguments suggest also that the presence of a
strong central cusp (c[ 1) acts to drive chaos in the orbit
families that populate the galaxy, driving the system away
from strong triaxiality (e.g., Gerhard & Binney 1985 ;
Norman, May, & van Albada 1985 ; Merritt & Valluri 1996 ;
Holley-Bockelmann et al. 2001).

While real elliptical galaxies most probably are cuspy and
moderately triaxial, most self-consistent modeling of ellip-
tical galaxies to date has focused either on cuspy spherical
or axisymmetric models or triaxial models with constant
density cores (i.e., c\ 0). The perfect ellipsoid of de Zeeuw
(1985) allows for di†ering degrees of triaxiality but has a Ñat
c\ 0 core. Self-consistent N-body models of elliptical gal-
axies used in studies of black hole growth have either exam-
ined triaxiality in a cD 0 proÐle (e.g., Norman et al. 1985 ;
Merritt & Quinlan 1998) or focused on cuspy models that
are spherical (Sigurdsson, Hernquist, & Quinlan 1995 ;
Quinlan & Hernquist 1997) or axisymmetric (van der
Marel, Sigurdsson, & Hernquist 1997). The problem lies in
the lack of an analytic distribution function for systems that
are both cuspy and triaxial ; without such a distribution
function, generating initial conditions for simulations is dif-
Ðcult.

Here we employ an alternative approach to generating
triaxial galaxy models with well-deÐned shapes and cusps.
We apply an adiabatic drag on the particles in a spherical
c\ 1 Hernquist model to mold the system into triaxial
shape. This process preserves the cusp slope and results in
models that are moderately triaxial and have axis ratios
that are reasonably constant with radius. More important-
ly, the models are stable, exhibiting little evolution in their
structural properties over many crossing times. We charac-
terize the orbit families that populate such models and Ðnd
a rich mixture of tubes, boxes, and boxlets, with very few
chaotic orbits. This technique has also been applied suc-
cessfully in a c\ 0 model and can, in principle, generate
models with a wide range in cusp slopes. These well-deÐned
models thus present a useful tool for studying the evolution
of elliptical galaxies or triaxial halos.

2. MODELING TECHNIQUE

Because there is no known distribution function for tri-
axial elliptical galaxies, we cannot simply sample an analy-
tic distribution function to generate initial conditions for
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the model. Instead, we begin with an object with a known
distribution functionÈa spherical, isotropic model that has
a distribution function f (E) that is a function only of
energyÈand mold that model into a triaxial shape by
applying an artiÐcial drag on the particles.

We begin with a spherical Hernquist (1990) model, which
has the density proÐle

o(r)\ M
2n

a
r

1
(r ] a)3 ,

where M is the total mass and a is a scale length. In projec-
tion, this model follows closely an R1@4 law and possesses a
three-dimensional central density cusp of the form o D r~1
as r ] 0. This model belongs to a family of c models
(Dehnen 1993 ; Tremaine et al. 1994) whose density proÐle is
given by
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such that the Hernquist proÐle corresponds to c\ 1. The
Hernquist model has the distribution function (Hernquist
1990)
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To generate the initial spherical model, we sample this dis-
tribution using a multimass scheme developed by Sigurds-
son et al. (1995), wherein particles have a mass that is
roughly inversely proportional to their pericentric radius.
In this manner, in the central regions of the model the parti-
cle number density rises faster than the mass density, per-
mitting better resolution and sampling of the phase space
distribution of the nuclear region. Because of the self-
consistent Ðeld (SCF) method of force calculation (see
below), this multimass technique does not introduce any
spurious mass segregation or relaxation into the model.

Once the initial model is constructed, we apply a time-
varying adiabatic drag on the motions of the particles to
mold the system into a triaxial shape. The construction is a
three-step process. A drag is Ðrst applied to the z-axis of the
model while forcing axisymmetry on the system through the
zeroing of odd terms in the SCF expansion of the gravita-
tional potential. This drag term is smoothly turned on as

m(t)\ m0
C
3
A t
tgrow

B2[ 2
A t
tgrow

B3D
,

where m is the drag factor applied to the velocities and tgrowis the timescale over which the drag grows. This form results
in a smooth development of the drag factor, as atm5 \ 0
t \ 0 and The drag is then used to modify particlet \ tgrow.

velocities as

¿@\ ¿ 1 [ 0.5m*t
1 ] 0.5m*t

,

which ensures a smooth onset and termination of the drag
coefficients. After the drag remains at full strengtht \ tgrow,
for a time after which it is slowly turned o† over a timetdrag,For the models discussed here, we employedtdecay. tgrow \

and compared to a half-mass dynami-tdecay \ 10 tdrag\ 30,
cal timescale for the model of tdyn,1@2\ 8.33.

During the squeezing process, the model contracts in
radius as the system adjusts to the induced change in
binding energy. Once the z-dragging is complete, the radius
and velocity vectors of the particles are rescaled so that the
system is in equilibrium with scale radius a \ 1. The
axisymmetry requirement is then relaxed, and dragging
ensues along the y-axis on similar timescales but with a
di†erent drag coefficient When y-dragging is complete,(m0).the system is again rescaled to a \ 1 and is evolved forward
in time with all dragging shut o†, allowing it to settle into
an equilibrium conÐguration.

The models are evolved using the self-consistent Ðeld
method of Hernquist & Ostriker (1992). The SCF method
expresses the density and potential as an expansion in a set
of basis functions, the lowest order of which represents the
spherical Hernquist density proÐle. The expansion coeffi-
cients are determined from the particle distribution, using n
radial terms and l, m angular terms. For the high-resolution
N \ 512,000 particle models shown in the next section, we
use while for smaller modelsnmax \ 10, mmax\ lmax\ 6,
(N \ 128,000), we use to reducenmax\ 6, mmax\ lmax\ 4
root-N noise in the determination of the coefficients. The
orbits of the particles are integrated using a high-order
hermite integrator with variable time steps.

3. GENERATING A TRIAXIAL MODEL

We demonstrate this process with an N \ 512,000 parti-
cle M \ a \ 1 Hernquist model. For this model, we use
squeezing coefficients and withm0,z \ 0.03 m0,y\ 0.025,

andtgrow \ tdecay\ 10 tdrag \ 30.
During the squeezing, the system retains its initial density

proÐle (once the model is rescaled so that a \ 1). Figure 1
shows the density proÐle of the model throughout the
squeezing process. The proÐle is virtually unchanged from
its original shape, save for a minor ““ kink ÏÏ in the density
proÐle at large radius (r D 50). Certainly, out at this dis-
tance the dynamical timescale is signiÐcantly longer than
the dragging timescale, and these particles simply have not
responded as strongly to squeezing. The density is
extremely low at this distance, however ; only 4% of the
total mass is found outside this radius. The bulk of the
system is well within this radius, where the density proÐle is
very well behaved. To amplify this, we show in Figure 2 the
slope of the central density cusp as a function of time. Again
there is very little evolution away from the original c\ 1
slope. Evaluated at log r \ [2, the slope does show a
gradual Ñattening over the course of the simulation from
c\ 1 to c\ 0.9 ; however, this evolution is consistent with
the e†ects of wandering of the expansion centroid due to
root-N Ñuctuations in the expansion. The low-N model
shows stronger evolution, as would be expected if the
change in cusp slope was driven by particle noise. This
small evolution aside, the model exhibits an unchanging
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FIG. 1.ÈDensity of the model (plotted as a function of ellipsoidal
radius q) as a function of time during and after the squeezing process. The
curves show the density proÐle at times T \ 0, 50, 100, and 150. Curves are
o†set from one another for clarity. The heavy line shows a c\ 1 slope.

density proÐle over D5 orders of magnitude during and
after the squeezing process.

The evolution in Ðgure shape is shown in Figure 3, evalu-
ated at three di†erent ellipsoidal radii. As the Ðrst phase of
squeezing begins along the z-axis, the model becomes very
oblate (c/a D 0.6). Once squeezing begins along the interme-
diate axis, the model becomes triaxial, although the short

FIG. 2.ÈCentral density slope c of the model, Ðtted over a range
[2 \ log q \ [1.3. The slope is slightly greater than c\ 1 at early times
due to the fact that the density proÐle steepens in the outer portion of the
Ðtted range.

FIG. 3.ÈIntermediate and minor axes lengths as a function of time. The
axes lengths are iteratively calculated from the ellipsoidal density distribu-
tion using the moment of inertia tensor. See text for details.

axis rebounds a bit so that when squeezing is complete the
Ðnal model is only moderately triaxial, with axis ratios
1 :0.85 :0.7. The rebound of the minor axis may reÑect the
incompatibility of a c\ 1 cusp slope with a strongly triaxial
system (e.g., Merritt 1997 ; Valluri & Merritt 1998), as the
box orbits that support strong triaxiality become chaotic in
a the presence of a strong central cusp. It is not clear that
this explanation is correct ; given the nonphysical drag and
rapidly changing potential, other e†ects may be in play. To
some degree, however, understanding the detailed dynamics
at these intermediate stages is rather ill motivated given the
nonphysical adiabatic drag we apply. Of more importance
is the postdrag equilibrium conÐguration, which we explore
in more depth in the next section.

To explore the variety of shapes that could be con-
structed using this method, a suite of smaller (N \ 128,000)
models was also calculated in which the dragging coeffi-
cients were varied. Table 1 gives the drag coefficients and
Ðnal shape of these models, while Figure 4 shows the
models on the triaxiality plot. The models populate a region
of moderate triaxiality, with shapes that range from some-
what oblate to somewhat prolate systems. Ideally, there
would be a unique mapping of drag coefficients to Ðnal
Ðgure shape ; this, unfortunately, is not the case. As such it
remains difficult to predict the Ðnal shape for a given set of
drag coefficients. Nonetheless, the calculations do present a
set of stable, triaxial, and self-consistent c\ 1 galaxy
models useful for studying the evolution of triaxial ellip-
ticals.

4. INTERNAL STRUCTURE

Here we look at the internal structure of the high-
resolution Ðducial model in more detail. Figure 5 shows the
properties of the model as a function of ellipsoidal radius q
(\[x2] (y/b)2] (z/c)2]1@2) at a time t \ 150, or 7.5tdynafter squeezing has terminated. For the plots of density and
velocity dispersion (Fig. 5, upper left, lower left, lower right),
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FIG. 4.ÈHalf-mass axes ratios of models generated with di†erent drag
coefficients, plotted on the triaxiality plot of Franx et al. (1991).

q is calculated using a constant (b, c) evaluated at the half-
mass radius. To calculate shape as a function of radius (Fig.
5, upper right), we use a technique described by Dubinski &
Carlberg (1991), wherein particles are Ðrst binned into a
spherical shell at a given radius, and the moment of inertia
tensor for the binned particle distribution is used to esti-
mate the ellipticity of the particles. The bin shape is then
adjusted based on the estimated ellipticity, and the pro-
cedure continues iteratively until the bin shape and the
ellipticity match.

Figure 5 (upper left) shows that the model retains its c\ 1
character over many orders of magnitude in radius. The
model also has fairly constant shape (Fig. 5, upper right),
although there is a slight trend for the outer regions of the
model to be more axisymmetric than the inner regions. This
probably reÑects the fact that the squeezing timescale was
independent of radius, so that the squeezing lasted for a
shorter dynamical timescale at large radius. In the outskirts
of the model, the particles have not responded as strongly
as those in the inner regions.

The projected velocity dispersion (Fig. 5, lower left) shows
a rollover at small radius, as is to be expected from the
Hernquist distribution function (Hernquist 1990). The
velocity ellipsoid reÑects the triaxial shape of the model,
with where x and z are the major and minorp

x
[ p

y
[p

z
,

axes of the model, respectively. The model also displays a

TABLE 1

TRIAXIAL MODELS

Model m0,z m0,y b1@2 c1@2
1 . . . . . . 0.030 0.025 0.85 0.70
2 . . . . . . 0.030 0.045 0.87 0.59
3 . . . . . . 0.045 0.045 0.75 0.61
4 . . . . . . 0.045 0.030 0.77 0.63
5 . . . . . . 0.010 0.020 0.94 0.78
6 . . . . . . 0.045 0.020 0.75 0.60

slight radial anisotropy in the velocity ellipsoid (Fig. 5,
lower right ; At large radiusb \ 1 [ Sv

t
2T/Sv

r
2T [ 0).

(log q [ 1), the model becomes strongly anisotropic ; for
these particles the squeezing has not been adiabatic, as they
experienced the squeezing for a fraction of an orbital time-
scale. In the outer regions of the model, the system has not
yet come into full equilibrium, and the model is somewhat
suspect. However, the energy and angular momentum
content of these particles is large, and they will not greatly
a†ect the equilibrium dynamics in the inner regions of the
model. Indeed, the stability of the density proÐle and shape
support this conjecture.

5. ORBITAL PROPERTIES

Since the intrinsic shape of any galaxy is dictated by the
time average of its orbital content, orbital structure analysis
is an essential probe of the viability and stability of any
galaxy model. For example, triaxiality in galaxies is sup-
ported by the large fraction of stars on box orbits (or
boxlets) as determined by the shape and density proÐle of
the potential (e.g., Schwarzschild 1979). The fact that box
orbits can travel arbitrarily close to the potential center
argues that steep density cusps may destabilize these orbits,
seeding chaotic motion and driving galaxies away from tri-
axiality (Merritt 1997). Indeed, Merritt Ðnds that c\ 1 rep-
resents a critical proÐle and suggests that galaxies with
steeper cusps should quickly evolve away from triaxiality.
Given that our models represent moderately triaxial
systems with c\ 1 cusps, it is interesting to characterize
their allowed orbit families and level of chaos. In fact, as we
demonstrate below, the equilibrium state of these models
displays a mixture of tubes, boxes, and resonant orbits and
is not strongly chaotic.

Characterizing the orbital content of these models also
allows us to lay the groundwork for future studies of evolu-
tion in triaxial ellipticals. The growth of a massive black
hole in a triaxial potential can destabilize centrophilic box
orbits through stochastic di†usion, driving the global shape
of a galaxy toward axisymmetry in a few crossing times
(Gerhard & Binney 1985 ; Norman et al. 1985 ; Merritt &
Quinlan 1998 ; Wachlin & Ferraz-Mello 1998 ; Valluri &
Merritt 1998). The change induced in the orbital content
(and hence the galaxy structure) by a central black hole will
thus be very sensitive to the initial orbit content of the
triaxial system. As a case in point, strong shape evolution
could be tempered by a population of centrophobic boxlets
that could avoid scattering by the black hole, thereby main-
taining triaxiality. An analysis of the orbit populations in
these triaxial models will help address this possibility and
provide an important contrast to the orbital families
present under the inÑuence of a central black hole (Holley-
Bockelmann et al. 2001). For this exercise, it is necessary to
determine the initial orbital content and set up the tech-
nique here.

Orbit analysis has traditionally been explored in a static,
analytic potential. Since an N-body representation of the
Ðnal potential can scatter orbits artiÐcially, it is crucial to
reduce the coarse-grained nature of the Ðnal model as much
as possible. Fortunately, a triaxial Ðgure has a mirror sym-
metry about each axis, such that a particle at x, y, z,

could also exist at [x, y, z, withoutv
x
, v

y
, v

z
[ v

x
, v

y
, v

zdistorting the potential (and so on for each axis). We take
advantage of this eightfold symmetry by seeding the Ðnal
state of the model with these symmetric pseudoparticles.
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FIG. 5.ÈStructural and kinematic properties of the model at T \ 150. Upper left : Density proÐle. Upper right : Intermediate and minor axes lengths as a
function of ellipsoidal radius. L ower left : Projected velocity dispersion along the fundamental axes, as a function of projected ellipsoidal radius. L ower right :
True radial and tangential velocity dispersion and velocity anisotropy parameter as a function of ellipsoidal radius.

The SCF code was then used with these pseudoparticles to
obtain the coefficients for the potential expansion. With the
e†ective particle number increased from 512,000 to over
4 ] 106, the noise in the potential was drastically reduced.
Hence, all the orbits in this discussion were evolved in the
frozen potential dictated by the expansion coefficients from
this symmetrically seeded Ðnal state.

5.1. Orbit ClassiÐcation Techniques
The large number of particles in each model demands an

automated classiÐcation technique. In this subsection, we
will describe our classiÐcation scheme Ðrst for two-
dimensional and then for three-dimensional orbits. In
general, we designed a method based on two common clas-
siÐcation techniques : axis-crossing pattern recognition and
Fourier spectral analysis.

The axis-crossing technique relies on the fact that a
regular orbit displays resonances that are recognizable by
the pattern that emerges as the particle crosses an axis
along its orbit (Fulton & Barnes 2001). For example, in the
simplest case, a tube orbit conÐned to the x-y plane crosses
Ðrst the x-axis, then the y-axis, and will repeat exactly that
pattern ad inÐnitum. Therefore, its axis-crossing pattern
will be xyxy. . . . A boxlet commonly called a ““ Ðsh ÏÏ will have
the pattern xyxyxxyxyx. . . ; in fact, every planar resonant
orbit will have a characteristic axis-crossing pattern. Planar
box orbits, on the other hand, are characterized by their
lack of a regular axis-crossing pattern. This technique is
excellent for the analysis of N-bodyÈgenerated orbits
because the act of crossing an axis is insensitive to noise in
the potential. Unfortunately, this technique is not useful in
discriminating between a pure box orbit and a chaotic orbit
since neither orbit has a unique axis-crossing pattern.
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ClassiÐcation by Fourier spectral analysis is similar in
spirit to the axis-crossing technique in that it looks for the
characteristic patterns in Fourier space that are generated
by a regular orbit. For a regular orbit, the Fourier trans-
form of the time sequence for each degree of freedom results
in a spectrum with frequencies that correspond to the quasi-
periodic motion of the particle, and the frequencies with the
maximum amplitude for each coordinate are the dominant
frequencies.

In two dimensions, our technique was based loosely on
the Fourier classiÐcation scheme of Carpintero & Aguilar
(1998). In short, from the Fourier transform of each coordi-
nate, the orbit is classiÐed by resonances between each pair
of coordinates, such that where m and nÂmf1[ nf2 Â[ v,
are integers, and are the dominant frequencies, and v isf1 f2an accuracy parameter that depends on the frequency
resolution and orbital accuracy (due to potential noise and
integration errors). For example, the x-y planar tube orbit
will exhibit a 1 :1 resonance between the dominant fre-
quencies in the x- and y-directions, while Ðsh boxlets will
have a 3:2 resonance. Planar box orbits will contain many
peak frequencies that are nearly as large as the dominant
frequency, so box orbits can be identiÐed both by their
resonance and by the number of signiÐcant peaks.

The classiÐcation of three-dimensional orbits is not a
trivial ““ scaling up ÏÏ of these two-dimensional methods.
Since many three-dimensional resonant orbits do not
project to an identiÐable planar periodic orbit in any plane,
the axis-crossing technique may misidentify a resonant
orbit (i.e., a 2 :1 : [ 2 orbit) as a box (Merritt & Valluri
1999). This misidentiÐcation is important because resonant
orbits avoid the center and are thus thought to be more
stable against a central density cusp or black hole than a
centrophilic box. Fortunately, any stable resonant orbit still
obeys a Ðxed ratio between the dominant frequencies in
each coordinate, so on a frequency map (a plot of vs.f

x
/f
zresonant orbits stand out as a complex gridÈthef

y
/f
z
),

slope and intercept of any line on this grid identiÐes the
particular resonance (Laskar 1993 ; Valluri & Merritt 1998).

Aside from the ability to identify nonplanar three-
dimensional resonant orbits, the true advantage of the
Fourier technique is that it can easily quantify the stability
of any orbit. Since the dominant frequency in a chaotic
orbit will change with time, it is simple, in principle, to
determine the number of chaotic orbits in a given potential.
Stochasticity is calculated by the change in the dominant
frequency over successive time intervals. So, while the axis-
crossing technique cannot di†erentiate between boxes and
chaotic orbits, this Fourier method easily identiÐes the
chaotic orbit as one with a changing dominant frequency.
Unfortunately, the Fourier technique is sensitive to noise in
a potential, so it is unable to detect a subtle onset of chaos.
However, since we are interested in the global stability of
our models over many dynamical times, it is sufficient to
detect only the stochasticity that is strong enough to change
the bulk properties of the model over this time.

5.2. Methods and Results
There are two di†erent questions that can be addressed :

(1) What orbits are possible in a given potential ? and (2)
What orbits are actually populated by the particles? The
Ðrst question can be explored with an analysis of the surface
of section, a two-dimensional technique, while the second
question must focus on a fully three-dimensional analysis.

We addressed both questions, and this section describes the
technique and results of each.

5.2.1. Two-Dimensional Surfaces of Section

We integrated orbits with initial conditions designed to
evenly trace the phase space along the x-y and x-z planes.
There are four sets of O(104) particles for each plane, corre-
sponding to binding energies of E\ [1.0, [ 0.65, [ 0.40,
and [ 0.20 and typical mean radii of SqT \ 0.2, 0.6, 1.3,
and 3.9. The particles are followed in the frozen Ðnal poten-
tial and are conÐned to the initial plane to reduce scattering
by noise.

To classify the two-dimensional orbits conÐned to the x-y
and x-z planes, we integrated the particles for up to a total
of 50 dynamical times or until T \ 8000, whichever
occurred Ðrst.4 In sets of 12.5 dynamical times (i.e., 50 circu-
lar orbits), a particleÏs trajectory was equally sampled
524,288 times, and the Fourier transform of this time series
was calculated by an FFT with a Hann window function.
The Ðrst two Fourier series were used to determine two
independent orbital classiÐcations and each subsequent
time series was used only to determine if the orbit had
become chaotic. A strongly chaotic orbit was deÐned in the
convention of Valluri & Merritt (1998) as *f4 Â f1where and are the dominant fre-[ f2 Â /f0 T [*fcrit, f1 f2quencies at the Ðrst and second time intervals, is thef0frequency of a tube about the long axis, and T is the time
interval. We set where is the*fcrit\ 0.05(t12.5/T )1@2, t12.5integration time over 12.5 dynamical times. That is not to
say that orbits with are not chaotic ;0 \ *f \ *fcrithowever, the di†usion timescales of these orbits were too
slow to produce substantial changes in the shape over 50
dynamical times. Since we are interested only in stochasti-
city strong enough to induce bulk evolution of the model,
we can neglect more subtly chaotic orbits (see also Valluri
& Merritt 1998 for a discussion). The coarse-grained poten-
tial also prevented us from distinguishing subtly chaotic
orbits from slightly noisy ones, so the detection of mildly
chaotic orbits is not reliable.

To complement the Fourier classiÐcation, each orbit was
also classiÐed according to its axis-crossing pattern. Up to
100 axis crossings were counted to compile the axis-crossing
pattern and were compared to template patterns with reso-
nances up to 7:6. The higher resonances were relatively
insigniÐcant in this model, so they were not tracked.
Approximately 200 orbits were cross-checked by visual
identiÐcation to determine the accuracy of the classiÐcation
method and to tune the technique, and less than 1% of the
orbits were misidentiÐed in each subsample.

Figure 6 shows the surface of section for each energy slice
along the x-y and x-z planes. Notice the profusion of boxes
and lower order boxlets in the most bound sets of orbits,
characteristic of a cuspy triaxial potential (e.g., Miralda-
Escude & Schwarzschild 1989). In our model, boxlets com-
prise a larger fraction of phase space along the x-z plane
than along the x-y plane. Among boxlets, Ðsh orbits (3 :2)
are the dominant boxlet on the x-z plane, and pretzels (4 :3)
are dominant on the x-y plane. A common boxlet in many
analytic potentials, bananas (2 :1), are an insigniÐcant part
of this model, most probably due to the relatively modest

4 This hard limit of T \ 8000 was chosen to correspond to approx-
imately a Hubble time of total integration for an elliptical galaxy with
M

V
\[22.
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FIG. 6.ÈSurfaces of section for the triaxial model at T \ 150, plotted for orbital populations of di†ering binding energies. Top : Surfaces of section for
orbits in the x-z plane. Bottom : Surfaces of section for orbits in the x-y plane. Orbits are coded by point typeÈloops : Ðlled squares ; boxes : small points ; Ðsh :
open triangles ; pretzels : crosses ; 5 :4 resonance : open pentagons ; 6 :5 resonance : Ðlled hexagons ; and 7:6 resonance : asterisks. This plot was created by taking
an average of all orbit types at a particular position on the surface of section. We zoom in on the x-axis of the plot to show as many box and boxlets as
possible ; the orbits outside the limits of the plot are all tubes. If plotted to the full extent of the x-axis, the boxlet region would comprise D50% of the most
bound panels and only D10% of the least bound panels.

Ñattening of the Ðgure along each axis (Fridman & Merritt
1997). On either plane, it is clear that tubes occupy a larger
amount of phase space in the outer parts of the potential. In
addition, less than 0.2% of planar orbits were stochastic, as
deÐned above.

5.2.2. T hree-Dimensional Population

It is also important to know the actual mixture of orbits
traced by the particles in the N-body model. With this in
mind, we initialized the orbits directly from the Ðnal state of
the N-body model. The pool of 512,000 particles were
sorted according to binding energy and binned in nine
energy slices. As before, particles in the slices corresponding
to binding energies E\ [1.0, [ 0.65, [ 0.40, and [ 0.20
were followed in the Ðnal frozen potential, although the
orbits were allowed to move in all three dimensions. Since
the particles are not conÐned to a plane, the three-
dimensional orbits were much more susceptible to noise in
the coarse-grained potential, which makes accurate classi-
Ðcation more difficult.

Nonetheless, using the same Fourier routine, integration
length, and sampling parameters, we were able to extract
the fundamental frequencies from these orbits and identify

the major resonances using the three-dimensional technique
outlined above. Figure 7 presents the frequency map for
each energy slice. Notice the strong (1 : [ 2:1) resonance,
which persists from the smallest to the largest radii. In the
Ðrst two energy slices, many planar boxlets are visible, both
in the region around 1.0) and in the( f

x
/f
z
, f

y
/f
z
) \ (0.8,

clump around (0.7, 0.9). The region at B(0.8, 1.0) corre-
sponds to orbits that project to tubes in one direction and
low-order boxlets, like Ðsh, in another. The clump at (0.7,
0.9) contains a conÑuence of planar boxlets, low-order
three-dimensional resonances, boxes (which are nonreso-
nant and therefore Ðll regions o† a grid of resonant lines),
and orbits that could be identiÐed as either mildly chaotic
or noise dominated. In the outer slices, most planar boxlets
all but disappear, though the resonant orbit (2, 0, [3) is still
present. As in the surface of section, the gradual takeover by
tubes is apparent in the outer parts of the model, as we go
from nearly 60% tubes (by mass) in the inner region to over
90% in the outermost slice.

Since a frequency map represents the frequency ratios at
a single time, it is not possible to accurately identify sto-
chastic orbits using this plot. Stochasticity for these three-
dimensional orbits was determined in the same manner as
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FIG. 7.ÈFrequency map for the triaxial model at T \ 150, plotted for orbital populations of di†ering binding energies. The gray scale represents the
number of orbits at a given frequency ratio. The lightest gray is one orbit, while black is greater than 50 orbits.

the planar orbits, by determining the change in the domi-
nant frequency over the integration interval. In this stable
model, we observe less than 1% of the particles on substan-
tially stochastic orbits. In fact, the large fraction of tubes
versus boxes in our models, a reÑection of the modest tri-
axiality, may preclude the existence of many chaotic orbits.
Indeed, nearly every stochastic orbit was found in the inner-
most slice, where noise from the potential dominates ; thus,
it is not clear that even these apparently stochastic orbits
represent the chaotic orbits found in strongly cuspy, strong-
ly triaxial Ðgures (e.g., Merritt 1997), where boxes are a
mainstay. The small number of stochastic orbits found in
our model may simply have resulted from noise in the
potential.

6. SUMMARY

Using a technique we refer to as ““ adiabatic squeezing,ÏÏ
we have constructed models of triaxial galaxies with central

density cusps. These models preserve a Hernquist (1990)
c\ 1 proÐle over many orders of magnitude, from
[2 \ log (r/a) \ 2 or 10 pc \ r \ 100 kpc when scaled to a
luminous elliptical galaxy with half-mass radius 1.5 kpc.
The models possess fairly constant axis ratios as a function
of ellipsoidal radius, showing the range of triaxiality
(0.3\ T \ 0.75) and modest Ñattening inferred for massive
elliptical galaxies. The models are stable in isolation,
showing little evolution in either the density proÐle or Ðgure
shape over many dynamical times.

A combination of Fourier spectral classiÐcation and axis-
crossing pattern recognition have been used to classify the
orbit content of a characteristic model. At the most tightly
bound energies, the models possess a rich variety of orbits,
including tubes, boxes, and resonant boxlets, reÑecting the
triaxial nature and central cusp of the model. Moving to
progressively less bound energy slices, the ratio of loops to
boxes rises such that the outer regions contain predomi-
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nantly loop orbits. While the presence of noise in the poten-
tial expansion limits our ability to detect modest chaos in
the orbit populations, we Ðnd no strongly chaotic orbits in
the model of the type that would result in rapid evolution of
the model.

These models thus represent a useful tool for studying the
self-consistent dynamical evolution of triaxial galaxies and
halos. We are currently using these techniques to explore
the evolution of elliptical galaxies harboring central massive
black holes (Holley-Bockelmann et al. 2001). Other poten-
tial uses include studying the inÑow of gas in triaxial

systems, the response of triaxial dark halos to baryonic
accretion and disk formation, and the infall of satellite com-
panions into elliptical galaxies.

This work is supported through a grant of computing
time from the National Partnership for Advanced Compu-
tational Infrastructure and the San Diego Supercomputer
Center and by NASA through grants NAG5-7019 and HF-
01074.01-94A. We thank Colin Norman for many useful
discussions, and Rebecca Stanek for help with data analysis.

REFERENCES
Bak, J., & Statler, T. 2000, AJ, 120, 110
Barnes, J. 1988, ApJ, 331, 699
ÈÈÈ. 1992, ApJ, 393, 484
Byun, Y.-I., et al. 1996, AJ, 111, 1889
Carpintero, D., & Aguilar, L. 1998, MNRAS, 298, 1
Dehnen, W. 1993, MNRAS, 265, 250
de Zeeuw, T. 1985, MNRAS, 216, 273
Dubinski, J., & Carlberg, R. 1991, ApJ, 378, 496
Faber, S. M., et al. 1997, AJ, 114, 1771
Franx, M., Illingworth, G., & de Zeeuw, T. 1991, ApJ, 383, 112
Fridman, T., & Merritt, D. 1997, AJ, 114, 1479
Fulton, E., & Barnes, J. 2001, MNRAS, in press (astro-ph/0010143)
Gebhardt, K. et al. 1996, AJ, 112, 105
Gerhard, O. E., & Binney, J. 1985, MNRAS, 216, 467
Hernquist, L. 1990, ApJ, 356, 359
ÈÈÈ. 1992, ApJ, 400, 460
ÈÈÈ. 1993, ApJ, 409, 548
Hernquist, L., & Ostriker, J. P. 1992, ApJ, 386, 375
Holley-Bockelmann, K., et al. 2001, ApJ, submitted

Laskar, J. 1993, Physica D, 67, 257
Lauer, T. R., et al. 1995, AJ, 110, 2622
Merritt, D. 1997, ApJ, 486, 102
Merritt, D., & Quinlan, G. 1998, ApJ, 498, 625
Merritt, D., & Valluri, M. 1996, ApJ, 471, 82
ÈÈÈ. 1999, AJ, 118, 1177
Miralda-Escude, J., & Schwarzschild, M. 1989, ApJ, 339, 752
Norman, C. A., May, A., & van Albada, T. S. 1985, ApJ, 296, 20
Quinlan, G., & Hernquist, L. 1997, NewA, 2, 533
Ryden, B. S. 1996, ApJ, 461, 146
Schwarzschild, M. 1979, ApJ, 232, 236
Sigurdsson, S., Hernquist, L., & Quinlan, G. D. 1995, ApJ, 446, 75
Tremaine, S., et al. 1994, AJ, 107, 634
Tremblay, B., & Merritt, D. 1995, AJ, 110, 1039
Valluri, M., & Merritt, D. 1998, ApJ, 506, 686
van der Marel, R. P., Sigurdsson, S., & Hernquist, L. 1997, ApJ, 487, 153
Wachlin, F. C., & Ferraz-Mello, S. 1998, MNRAS, 298, 22
Weil, M. L., & Hernquist, L. 1996, ApJ, 460, 101


