
Ab initio determination of coarse-grained 
interactions in double-stranded DNA

Citation
Hsu, Chia Wei, Maria Fyta, Greg Lakatos, Simone Melchionna, and Efthimios Kaxiras. 2012. “Ab 
Initio Determination of Coarse-Grained Interactions in Double-Stranded DNA.” The Journal of 
Chemical Physics 137 (10): 105102. https://doi.org/10.1063/1.4748105.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384025

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384025
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Ab%20initio%20determination%20of%20coarse-grained%20interactions%20in%20double-stranded%20DNA&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=055437fc0ac15617e99cd33e0a53533c&department
https://dash.harvard.edu/pages/accessibility


THE JOURNAL OF CHEMICAL PHYSICS 137, 105102 (2012)

Ab initio determination of coarse-grained interactions
in double-stranded DNA

Chia Wei Hsu,1 Maria Fyta,1,2 Greg Lakatos,1,3 Simone Melchionna,3,4

and Efthimios Kaxiras1,3,a)
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, Technical University of Munich, Garching 85748, Germany
3School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
4IPCF-CNR, Istituto Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Università La Sapienza,
P.le A. Moro 2, 00185 Rome, Italy

(Received 12 December 2011; accepted 13 August 2012; published online 12 September 2012)

We derive the coarse-grained interactions between DNA nucleotides from ab initio total-energy cal-
culations based on density functional theory (DFT). The interactions take into account base and se-
quence specificity, and are decomposed into physically distinct contributions that include hydrogen
bonding, stacking interactions, backbone, and backbone-base interactions. The interaction energies
of each contribution are calculated from DFT for a wide range of configurations and are fitted by
simple analytical expressions for use in the coarse-grained model, which reduces each nucleotide
into two sites. This model is not derived from experimental data, yet it successfully reproduces the
stable B-DNA structure and gives good predictions for the persistence length. It may be used to re-
alistically probe dynamics of DNA strands in various environments at the µs time scale and the µm
length scale. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748105]

I. INTRODUCTION

Biological systems exhibit high degrees of complexity
that are essential to the functions they perform. The DNA
double helix is one such example: the properties of this
macromolecule are directly influenced by its conformational
variability as well as by environmental factors that include
counterions, impurities, and temperature, as it performs a
wide variety of vital cellular functions such as transcription
and replication.1 A full account of such biological functions
must rely on a realistic description of the physical processes
that underlie them. Fine-grained calculations of DNA at the
atomic level2, 3 can provide this level of detailed description,
but they are restricted to very small systems of order tens of
base pairs and time scales of order ns, whereas most biologi-
cal processes involve DNA behavior at the scale of more than
a hundred base-pairs and take place at the µs time scale and
beyond. To probe these biologically relevant processes, a real-
istic and efficient coarse-grained model of DNA is necessary.
Examples of crucial functions under current investigation that
could benefit from a coarse-grained model of DNA include
the translocation of DNA through nanopores4, 5 in the con-
text of ultra-fast electronic sequencing, DNA capture in and
ejection from nanoscale capsules/wells, and the study of the
interplay between histones and DNA during mitosis.6

The main theoretical challenge in biological systems is to
bridge the scales between the atomistic and the macroscopic
without wasting computational resources on uninteresting be-
haviors, such as the internal dynamics within a base which
practically never changes shape, or the motion of solvent
molecules far from the biomolecule. Computational methods

a)Electronic mail: kaxiras@physics.harvard.edu.

of this type have been used before, for example, in the study
of protein dynamics.7 Multiscale simulations have also been
successfully applied to the study of the electronic behavior
and electron localization in stretched dry DNA.8 Our ultimate
goal is to enable the study of variations in the DNA struc-
ture using multiscale approaches that do not sacrifice accuracy
while achieving high efficiency. In the present work we focus
on the first stage toward this goal, namely, the development
of a coarse-grained model capable of accurately reproducing
the structure of double-stranded DNA (ds-DNA) in solution,
and simple enough to be efficiently combined with multiscale
simulation techniques.

Many coarse-grained models of DNA have been pro-
posed in the past few years.9–21 Most of them are constructed
in a “top-down” fashion,9–17 where the interaction poten-
tials are chosen to reproduce certain sets of experimental
data. Bead-string models10 have been used to study diffu-
sion and structural relaxation of single strands. Rigid base-
pair models11 have been used to describe the elastic prop-
erties of DNA.22, 23 The three-site-per-nucleotide model by
Knotts and coworkers14 captures the salt-dependent melt-
ing of DNA, and has been extended to include solvent-
induced attraction between DNA strands24 that helped to
gain insights on hybridization25–27 and on certain sequence-
dependent effects;28 this model has also been adapted to
describe the mechanical denaturation of long DNA29 and
to include explicit solvent molecules.30 Starr and cowork-
ers proposed a simple model that captures the basics of
hybridization,13 and this model has been used to study
Holliday junctions31 and the self-assembly of DNA-linked
nanoparticles.32 Ouldridge and coworkers proposed another
model that is sequence independent, but can reproduce sev-
eral structural, mechanical, and thermodynamic properties
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DNA.16, 33 Another family of models starts from all-atom em-
pirical force fields, and construct the coarse-grained model
potentials from bottom-up.18–21 The model by Savelyev and
coworkers18, 34 was parametrized by matching moments of ob-
servables in the Hamiltonian. Other approaches to a bottom-
up construction include minimizing difference between the
all-atom and coarse-grained potentials,19 imposing molecular
bonding geometry constraints,20 and inverting the Boltzmann
function to get the coarse-grained potentials.21

Each of these models has its regime of validity, depend-
ing on what experimental data were used for the model deriva-
tion. In this work, we develop a minimal model of ds-DNA
that incorporates sequence specificity and has realistic me-
chanical robustness to bending and untwisting forces. We seek
a model that is chemically accurate, yet not based on empiri-
cal observations. For these purposes, we take a bottom-up ap-
proach, and construct the potentials of the coarse-grained sys-
tem directly from first-principles calculations. We divide the
interaction potentials into independent parts that come from
physically distinct contributions, and for each contribution we
carry out ab initio calculations to find the functional forms of
the potentials. We impose no a priori assumption on the func-
tional forms of the potentials—these are determined based on
results of the ab initio calculations. The present form of the
model has its limitations that we will discuss, but it is flexible
for future improvements.

This paper is organized as follows: in Sec. II we describe
the methodology employed for the first-principles calcula-
tions. In Sec. III we present the ab initio data for each energy
contribution and the analytical forms of the corresponding po-
tentials. The implementation and performance of the coarse-
grained model is described in Sec. IV. Finally, we present val-
idations of the model in Sec. V, and conclude in Sec. VI.

II. METHODOLOGY OF AB INITIO CALCULATIONS

We carry out the first-principles calculations using den-
sity functional theory (DFT).35 In our DFT calculations,
we do not deal with environmental factors such as solvent
molecules and ions, and the calculations are carried out at the
ground state (zero temperature). The environment and tem-
perature factors are added a posteriori in the coarse-grained
model through electric field screening and through Brownian
dynamics. A more accurate approach will include tempera-
ture dependence in the coarse-graining procedure, but this is
a challenging task and is not yet taken into account in the cur-
rent work. Presence of the water molecules and ions may also
affect the energetics, but their effects are not investigated in
this work.

We use SIESTA,36 an electronic structure code based on
atomic-like orbitals, to carry out the DFT calculations. This
approach has been previously applied in similar studies of
gas-phase DNA bases37 and successfully reproduces proper-
ties such as optical response in comparison to available exper-
imental data.38 We use the Troullier-Martins scheme39 to ob-
tain pseudopotentials to eliminate the core electrons from the
calculation and to produce a smoother valence charge density.
We use a basis of double-ζ polarized atomic orbitals for all the
atoms involved (13 orbitals for C, N, O, and P; 5 orbitals for

H). An auxiliary real space grid equivalent to a plane-wave
cutoff of 100 Ry is used for the calculation of the Hartree and
exchange-correlation energies. For geometry optimization, a
structure is considered fully relaxed when the magnitude of
force on every atom is smaller than 0.04 eV/Å.

We use the generalized gradient approximation (GGA)
with the PBE exchange-correlation functional40 to describe
the backbone-base and the inter-base-pair interactions, as this
functional is known to describe covalent and hydrogen bonds
well.41, 42 Interactions within the backbone are treated with
the local-density approximation (LDA),43 which is adequate
for describing small radial and angular deviations of covalent
bonds from their equilibrium values. The interaction between
stacked base-pairs has a large contribution from long-ranged
van der Waals (vdW) forces and exhibits an elaborate energy
landscape that depends sensitively on the geometry.44, 45 Lo-
cal or semi-local exchange-correlation functionals cannot de-
scribe such long-range effects:46 they do not reproduce the
∼r−6 behavior at large separation r that is characteristic of
vdW interactions, and usually underestimate the stacking dis-
tance between two planar structures. There exists empirical
corrections that add the vdW effects to the energies obtained
from DFT calculations,47 but we find that such correction still
leads to underestimation of the stacking distance. Therefore,
we employ a non-empirical long-range vdW density func-
tional developed by Dion et al.48 to carry out calculations for
the stacked base-pairs interactions.

The calculated interaction energy between two con-
stituents may be susceptible to the basis set superposition
error (BSSE), which results in unphysical lowering of the
interaction energy when the two constituents come close to
each other. To correct for BSSE, we take the full counterpoise
approach:49 at each separation r, we optimize the dimer ge-
ometry and carry out four additional calculations (constituent
A along and constituent B along, with and without ghost or-
bitals), and obtain the BSSE-corrected interaction energy as

E(r) = EAB(r) − E′
A(r) − E′

B(r) + EA(r) + EB(r)

−EA∗ − EB∗ , (1)

where the subscript denotes the geometry: AB is the opti-
mized dimer geometry, A and B are its constituent geometries,
and A∗ and B∗ are the individually optimized constituent ge-
ometries; the prime indicates that ghost orbitals of the other
constituent are used in the energy calculation.

III. CONSTRUCTION OF MODEL POTENTIALS

We coarse-grain each nucleotide into two interaction
sites: one for the base and one for the sugar-phosphate back-
bone. The base site is identified with the position of the nitro-
gen atom (N1 for pyrimidines; N9 for purines) that connects
the base to the sugar, and the backbone site is identified with
the position of the sugar C1′ atom. This representation is illus-
trated in Fig. 1. This choice of coarse-grained site coordinates
allows for unambiguous determination of bonding distance,
bonding angles, etc., that enter the model variables. It also
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FIG. 1. Schematic of an adenine-thymine (AT) base-pair showing the geo-
metric variables in the hydrogen bond potential in (a) the atomic structure
calculations and (b) the coarse-grained model. The distance rhb, the two flip-
angles φ

(i)
hb , and the dihedral angle θd (angle between the two base planes, not

shown) are used to describe interaction between the two bases. The vectors
rCC and r(i)

CN are used to define the normal vectors of the two bases and the
dihedral angle. In this figure and Figs. 4 and 7, the colored spheres represent
C (cyan), H (white), N (blue), O (red), and P (brown) atoms.

facilitates direct comparison to experimental structures dur-
ing validation of the model.

To derive the effective interaction between these coarse-
grained sites, we follow earlier work50 and decompose the
total interaction energy into contributions that have distinct
physical meanings: the hydrogen bond between complemen-
tary bases Ehb, the stacking energy between neighboring base-
pairs Est, contributions from the backbone Ebb, and electro-
static interaction between the charged phosphate groups Eel:

Etotal = Ehb + Est + Ebb + Eel. (2)

These are physically distinct contributions, and in our model
they are treated as independent and additive. Each contribu-
tion depends on several variables, and the effect of these vari-
ables are not taken as independent.

The choice of the coarse-grained sites and the decompo-
sition of the interaction potentials has determined the struc-
ture of the model. The remaining construction of the model is
to find explicit functional forms for each contribution, which
we address in the following.

A. Hydrogen bonding

We consider first the interaction between two comple-
mentary bases: adenine-thymine (AT) or guanine-cytosine
(GC), which comes from hydrogen bonds. We consider its
dependence on the base-to-base separation and on the rela-
tive angles between the planes of the two bases. The angular
dependence keeps the two bases coplanar and maintains the
correct base-pair geometry.

We calculate the interaction energy as a function of the
distance rhb between the pyrimidine N1 atom and the purine
N9 atom (see Fig. 1), by starting from the energy-minimized
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FIG. 2. Hydrogen bonding energy versus distance rhb between two compli-
mentary bases. Inset shows the dependence on the dihedral angle θd between
the two bases. Symbols are BSSE-corrected results from DFT calculations,
and lines are fittings to Eqs. (3) and (4) with parameters given in Table I.

geometry and varying rhb by translating the two bases parallel
to the direction of the hydrogen bonds. At each rhb value, we
optimize the geometry while fixing the four atoms that cor-
respond to the coarse-grained sites (N1 and H1 of the pyrim-
idine, and N9 and H9 of the purine) to preserve rhb and the
relative angles. At small rhb values, the atoms are also con-
strained on the base-pair plane to prevent the two bases from
rotating out of plane. The effect of flipping angles and of non-
planarity will be examined separately.

Figure 2 shows the calculated interaction energy, which
can be described by the universal binding energy relation
(UBER)51

Ehb_r(rhb) = E0(1 + a∗)e−a∗
, a∗ = (rhb − r0)/l, (3)

with its minimum at rhb = r0, Ehb_r = E0. The parameters E0,
r0, and l are given in Table I. The energy at the minimum is
−0.64 eV for AT and −1.17 eV for GC, in agreement with the
values −0.60 eV and −1.17 eV, respectively, obtained in pre-
vious calculations of the DNA hydrogen bonds.42 We do not
parametrize the base-to-base interaction between mismatched
base-pairs, but doing so will be a straightforward extension of
the current work.

Next we examine the effect of non-planarity of the bases:
when the two planes of the bases are not aligned, the hydrogen
bond weakens. We measure non-planarity by the dihedral an-
gle θd between the planes of the two bases. Starting from the
energy-minimized geometry (θd = 0), we vary θd by rotating
the two bases in opposite directions around the line from the
pyrimidine N1 atom to the purine N9 atom. To keep θd fixed,
we optimize the geometry while holding the 6-fold ring of the

TABLE I. Fitting parameters for the radial dependence of the hydrogen
bond interaction in Eq. (3) and the dihedral angle dependence in Eq. (4).

bp E0 (eV) r0 (Å) l (Å) kd

AT −0.639 8.866 0.703 1.800
GC −1.165 9.018 0.727 1.288
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TABLE II. Fitting parameters for the flip-angle interaction in Eqs. (6) and
(7), and the backbone base-sugar-sugar angle potential in Eq. (18). kbss is in
10−4 eV/deg2, all angles are in degrees.

Base φ
(i,0)
hb σ (i) kbss θ

(0)
3′ θ

(0)
5′

A 54.53 18.67 3.489 94.17 61.36
T 55.93 16.82 4.689 92.67 68.40
G 52.69 25.57 4.165 90.30 63.69
C 54.87 22.43 6.178 91.55 66.37

two bases fixed. The resulting energies are shown in the inset
of Fig. 2. We fit the interaction energy with the expression

Ehb_d(θd) = E0e
kd(cos θd−1), (4)

where E0 is the same as in Eq. (3); values of the parameter kd

are given in Table I.
The interaction between the two bases also depends on

the in-plane angles of the two bases. In our coarse-grained
model, this is described by the flip-angle φ

(i)
hb for the two bases

(i = 1, 2), defined as the base1-sugar1-sugar2 angle for i = 1
and the base2-sugar2-sugar1 angle for i = 2 (see Fig. 1(b)).
The flip-angles in the ground-state configuration, φ

(i,0)
hb , are

listed in Table II. Starting from the energy-minimized geom-
etry (φ(i)

hb = φ
(i,0)
hb ), we consider either rotating the pyrimidine

around the H1 atom, or rotating the purine around the H9
atom. The anchoring hydrogen atom mimics the backbone,
which in physiological conditions remains relatively station-
ary when base flipping occurs. To keep φ

(i)
hb fixed at each ro-

tated configuration, we optimize the geometry while fixing
the pyrimidine atoms N1 and H1, and the purine atoms N9
and H9. For rotation inward, the atoms are constrained on the
base-pair plane to prevent the two bases from rotating out of
plane.

The resulting energies are plotted as a function of
%φ

(i)
hb = φ

(i)
hb − φ

(i,0)
hb in Fig. 3. When %φ

(i)
hb is positive, the en-

ergy is attractive and decays to zero. When %φ
(i)
hb is negative,

the two bases repel each other. We describe these two types
of behavior separately, and fit the base-flipping interaction en-

-50 0 50 100
∆φhb (deg)

-1

-0.5

0

0.5

1

E
hb

_f
 (

eV
)

A

G

FIG. 3. Hydrogen bonding energy versus flip-angle φhb of A and G (results
for T and C are similar and are not shown). Symbols are BSSE-corrected
results from DFT calculations, and lines are fitting to Eq. (5) with parameters
given in Table II.

ergy to the expression

E
(i)
hb_f

(
φ

(i)
hb

)
= E

(a,i)
hb_f

(
%φ

(i)
hb

)
+ E

(b,i)
hb_f

(
%φ

(i)
hb

)
(i = 1, 2),

(5)
where E

(a,i)
hb_f is described by an exponential and E

(b,i)
hb_f is de-

scribed by a harmonic spring

E
(a,i)
hb_f = E0

[

exp

(

−
(
%φ

(i)
hb

)2

2σ 2

)

&
(
%φ

(i)
hb

)
+ &

(
− %φ

(i)
hb

)
]

,

(6)

E
(b,i)
hb_f = E0

(

−
(
%φ

(i)
hb

)2

2σ 2

)

&
(
− %φ

(i)
hb

)
, (7)

and & is the step function. Again, E0 is the same as in Eq. (3).
The values of the parameter σ are listed in Table II.

Up to this point we have the interaction potential be-
tween the two complementary bases as a function of rhb, θd,
φ

(1)
hb , and φ

(2)
hb individually while keeping other variables fixed

at the equilibrium values. Here we assume that the interac-
tion depends only on these four variables; even in this case,
the general dependence is not trivial, as the four variables
are not independent. For example, when θd or %φ

(i)
hb is large,

the hydrogen bond is basically broken, and there should no
longer be a strong dependence on rhb. To capture the inter-
dependences between the variables while keeping a reason-
ably simple form for the interaction, we define the following
functions

τhb_d(θd) = Ehb_d(θd)/E0,

τ
(i)
hb_f

(
φ

(i)
hb

)
= E

(a,i)
hb_f

(
%φ

(i)
hb

)
/E0 (i = 1, 2) (8)

and take the final expression of the hydrogen bonding energy
to be

Ehb
(
rhb, θd,φ

(1)
hb ,φ

(2)
hb

)
= Ehb_r(rhb)τhb_d(θd)

2∏

i=1

τ
(i)
hb_f

(
φ

(i)
hb

)

+
2∑

i=1

E
(b,i)
hb_f

(
φ

(i)
hb

)
. (9)

Note that the repulsive part of the flipping interaction E
(b,i)
hb_f

is treated as additive since it does not serve to weaken the
bond; this also ensures that the modulation functions τ

(i)
hb_f

take values strictly between 0 and 1. Equation (9) is reduced to
Eqs. (3)–(5) for close-to-minimum geometries, i.e.,

Ehb
(
rhb, 0,φ

(1,0)
hb ,φ

(2,0)
hb

)
= Ehb_r(rhb), (10a)

Ehb
(
r0, θd,φ

(1,0)
hb ,φ

(2,0)
hb

)
= Ehb_d(θd), (10b)

Ehb
(
r0, 0,φ

(1)
hb ,φ

(2,0)
hb

)
= Eflip

(
φ

(1)
hb

)
. (10c)

Therefore, we expect that close to equilibrium, Eq. (9) serves
as a good approximation to the interaction energy between the
two bases.
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2
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(b)

θ
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FIG. 4. Schematic showing two stacked base-pairs in (a) the atomic structure
calculation (top view), and (b) the coarse-grained model (side view). In (a),
the bottom base-pair is shown in gray for clarity. The atoms used to define the
twist angle θ tw are colored in green, and the axis of the double helix (shown
as a dotted circle) is defined as the 1:2 weighted center of the green atoms.
In (b), the planes of the two base-pairs are shown. The twist angle is reduced
for clarity of illustration. The four vectors d1, d′

1, d2, and d′
2 as indicated are

used to define the stacking distance rst in the coarse grained representation.
See main text for description of the other geometric variables involved in
stacking.

B. Stacking interactions

We turn next to the interaction between two stacked base-
pairs. We consider the dependence on the stacking distance
rst between the two base-pairs first. The two base-pairs are re-
laxed and stacked in parallel. Following usual conventions,1

we define the axial point of each base-pair to be the 1:2
weighted center of the pyrimidine C4 atom and the purine
C6 atom, and define the twist angle θ tw to be the angle made
by the C4–C6 vector of the two base-pairs. This is illustrated
in Fig. 4(a). The two base-pairs are stacked so that their axial
points align at a distance rst apart in the direction normal to
the base-pair plane, and so that the twist angle θ tw is 36◦. The
precise definition of rst and θ tw in the coarse-grained model
will be described in the Sec. IV.

There are ten different combinations of stacking, known
as the ten Watson-Crick nearest-neighbors. For each of these
ten combinations, we vary rst from 2.5 Å to 5.0 Å and cal-
culate the interaction energy without further relaxation. The
results are shown in Fig. 5. At this range of rst, the energy
variation is well described by the expression

Est_r(rst) = −ϵ

[

5
(

rm

rst

)6

− 6
(

rm

rst

)5
]

, (11)

3 4 5
rst (Å)

-1

0

1

2

3

4

E
st

_r
 (

eV
)

AT-AT

GC-GC

GC-AT

AT-TA

GC-CG

GC-TA

FIG. 5. Stacking energy between two neighboring base-pairs (results for AT-
GC, CG-GC, TA-GC, and TA-AT stacking are similar and are not shown).
Symbols are BSSE-corrected results from DFT calculations using vdW den-
sity functionals, and lines are fitting to Eq. (11) with parameters given in
Table III. For clarity, curves are shifted upward by increments of 0.6 eV; the
curve for AT-AT stacking is not shifted. In our notation, GC-AT indicates the
stacking of GC base-pair and AT base-pair with GA and TC following the
3′–5′ direction.

which has a minimum at rst = rm, Est_r = ϵ. The resulting
values of the parameters from fitting the ab initio values with
this expression are listed in Table III. It may seem surprising
that the attractive part of the interaction behaves as r−5

st . This
is no coincidence: the attraction between the two base-pairs
is due to the vdW force, which behaves as r−6 for two point
particles and as r−4 for two thin sheets (assuming additivity of
the vdW interaction). The range of rst being considered here
is comparable to the radius of the base-pairs (about 4 Å), so
we expect a power in between the two, i.e., r−5

st . We find this
is indeed the case; expressions with any other integer power
of rst lead to poor fitting. Again, we do not parametrize the
stacking interaction for mismatched base-pairs, which can be
a straightforward extension to the current work.

Another dependence of the stacking interaction comes
from the twist angle θ tw. To examine this dependence, we
fix rst at 3.4 Å and vary θ tw from 0◦ to 360◦. Again, the two
base-pairs are parallel and have their axial points aligned. The

TABLE III. Fitting parameters of the stacking interaction in Eq. (11) for
the ten Watson-Crick nearest-neighbors. In our notation, GC-AT indicates
the stacking of GC base-pair and AT base-pair with GA and TC following
the 3′–5′ direction.

bps rm (Å) ε (eV)

AT-AT 3.550 −0.567
GC-GC 3.580 −0.477
GC-AT 3.566 −0.555
AT-TA 3.546 −0.530
GC-CG 3.498 −0.632
GC-TA 3.543 −0.549
AT-GC 3.535 −0.538
CG-GC 3.537 −0.563
TA-GC 3.613 −0.529
TA-AT 3.668 −0.513
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FIG. 6. Twisting energy between two neighboring base-pairs. Symbols are
BSSE-corrected results from DFT calculations using vdW density function-
als, and lines are fitting to Eq. (12) with parameters given in Table IV. For
clarity, curves are shifted upward by increments of 0.3 eV; the curve for AT-
AT stacking is not shifted. Notation is same as in Fig. 5. Note that, although
there are 10 unique stacking combinations, only 6 are necessary in the eval-
uation of Etw. For example, Etw(θ tw) of AT-GC is given by Etw(360◦ − θ tw)
of GC-AT.

resulting energies Etw are shown in Fig. 6. This energy term
has a complex dependence on θ tw, defying a simple analyti-
cal expression. Given its periodicity, we fit Etw with a Fourier
series:

Etw(θtw) = a0 +
7∑

n=1

[an cos(nθtw) + bn sin(nθtw)] . (12)

The resulting values of the coefficients in this expansion
are given in Table IV. For AT-AT and GC-GC stacking,
Etw(− θ tw) = Etw(θ tw) by symmetry, and so the coefficients
bn are zero. We note that although Eq. (12) involves many
trigonometric functions, the higher terms can be obtained
from trigonometric addition rules or from the Chebyshev
method. Therefore, its computational cost is similar to that
of Eq. (11).

The stacking interaction also depends on the tilt-angle θ tl,
which we define as the angle between the normal vectors of
the two base-pair planes. The two base-pairs can tilt in a vari-
ety of ways, and so this dependence can be complex. We find
that close to the optimal stacked configuration (at small θ tl,
and rst = rm, θ tw = 36◦), the interaction energy dependence
can be approximately described by

Etl(θtl) = ϵ cos2(θtl), (13)

where ε is the same as in Eq. (11). This expression also has
the physical meaning that the energy is at a minimum in the
case of parallel (θ tl = 0) and anti-parallel (θ tl = π ) stacking,
and is zero when the two base-pairs are perpendicular to each
other (θ tl = ±π /2).

The interaction between two stacked base-pairs depends
on rst, θ tw, and θ tl. To capture all three dependences and their
correlations with a reasonably simple form, we define the fol-
lowing functions:

τtw(θtw) = Etw(θtw)/ϵ, τtl(θtl) = Etl(θtl)/ϵ (14)

and take the final expression of the stacking interaction to be

Est(rst, θtw, θtl) = Est_r(rst)τtw(θtw)τtl(θtl), (15)

similar to our treatment of the hydrogen bond. Equation (15)
involves much simplification, as the true interaction energy
may depend on more than these three variables, and the
dependence on rst, θ tw, and θ tl may not factorize. By the
same argument as for the hydrogen bonds, though, we expect
Eq. (15) to be a good approximation close to equilibrium.

The stacking potential here is formulated as interaction
between neighboring base-pairs, rather than between neigh-
boring bases. This approach is sufficient when dealing with
ds-DNA structures. However, we note that it may not be
appropriate in processes like melting or hybridization that
involve single-stranded DNA or broken base-pairs. In such
situations, the stacking interaction should be reformulated as
interaction between bases instead and be constructed in a
similar fashion.

C. Backbone contribution

We next consider contributions from the backbone. First,
to extract interactions within the sugar-phosphate backbone
as distinct from any electrostatic or stacking interactions, we
take the phosphate groups to be protonated and carry no
charge, and replace the bases with terminating hydrogens.
Starting from the energy-minimized geometry, we uniformly
stretch or compress the backbone along the helical direction,
as illustrated in Fig. 7(a), and allow the phosphate units to
relax. The resulting energy Ebb_r is shown in Fig. 8 as a func-
tion of rss, the distance between the C1′ atoms of neighboring
sugars. The interaction energy per sugar-phosphate unit can
be described by the expression

Ebb_r(rss) = c2(rss − rss_0)2 + c4(rss − rss_0)4 (16)

with c2 = 18.773 eV/Å2, c4 = 0.333 eV/Å4, and rss_0

= 4.976 Å.

TABLE IV. Fitting parameters of the twisting interaction in Eq. (12). All parameters in units of 0.01 eV. Notation is same as in Table III.

bps a0 a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7

AT-AT − 49.2 2.89 5.52 5.88 3.07 5.93 4.55 2.73
GC-GC − 49.0 8.84 5.29 2.65 2.33 5.43 1.96 2.13
GC-AT − 50.1 1.56 1.18 2.29 1.07 4.48 1.87 1.09 1.13 − 2.00 0.37 0.97 − 1.02 − 0.02 − 0.34
AT-TA − 49.4 − 5.01 2.62 1.57 − 0.16 − 1.19 − 2.01 − 1.20 4.70 − 2.71 − 0.67 − 1.41 2.21 2.39 − 0.82
GC-CG − 49.2 − 11.0 − 2.39 0.21 1.12 − 0.72 0.25 − 0.94 2.43 − 3.57 0.05 1.14 3.85 1.34 1.34
GC-TA − 50.1 − 5.73 2.53 0.56 1.06 − 1.86 − 0.37 − 0.86 4.72 − 2.73 − 0.46 − 0.34 3.16 1.16 0.48
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FIG. 7. (a) A single backbone strand in its relaxed B-DNA form, used to
evaluate the backbone interaction Ebb_r. The variable rss is the distance be-
tween the C1′ atoms of neighboring sugars, and is shown in the magnified
part. (b) Structure used to evaluate the base-sugar-sugar interaction Ebb_b.
The vectors used to define the angles θ3′ and θ5′ are shown.

The base is covalently bonded to the backbone. For this
interaction, we consider only a base and a sugar, with the
phosphate groups replaced by hydrogen atoms. Starting from
the energy-minimized geometry, we translate the base and the
sugar groups in opposite directions along the vector connect-
ing the two. Then we hold the two atoms of the base-sugar
covalent bond fixed, optimize the geometry, and calculate the
interaction energy. We find results for the four bases to be
nearly identical, so only results for guanine will be discussed.
These are shown in Fig. 9, with a fit to the UBER expression
that includes two additional terms

Ebb_c(rCN) = E0(1 + a∗ + f2a
∗2 + f3a

∗3)e−a∗
,

a∗ = (rCN − r0)/l, (17)

where rCN is the distance between the sugar C1′ atom and
the base N atoms (N9 of purines or N1 of pyrimidines). The
values of the parameters are: E0 = −3.542 eV, r0 = 1.455 Å,
l = 0.400 Å, f2 = −0.132, and f3 = 0.215.

The base also interacts with neighboring backbone
groups, and this gives rise to the 5′/3′ asymmetry of the
double-helix. We characterize this interaction using the an-
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FIG. 8. Backbone energy per sugar-phosphate unit as a function of rss,
the distance between adjacent C1′ atoms of the sugars. Solid line is fitting
to Eq. (16).
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FIG. 9. Interaction energy between the backbone and the base. Main plot
shows the covalent bond energy between the sugar and the base, as a function
of the distance between the sugar C1′ atom and the base N1 or N9 atom to
which it is bonded; solid line is fitting to Eq. (17). Inset shows the energy as
a function of the sugar-sugar-base angle θ5′ defined in Fig. 7(b), and lines are
fits to Eq. (18) with parameters given in Table II.

gle between the backbone strand and the base. We consider
a segment of single-stranded DNA, with three sugar groups
connected by two protonated phosphate groups. The first and
third bases are replaced with terminating hydrogen atoms,
and the middle base is either A, C, G, or T (see Fig. 7(b)).
From the energy-minimized geometry, we rotate the mid-
dle base around the vector rCC5′ × rCN (both are shown in
Fig. 7(b)), with the pivot point at C1′ of the middle sugar. For
each rotated configuration, we relax the system while hold-
ing the connecting N atom of the base (N9 of purines or N1
of pyrimidines) and the C1′ atoms of the three sugars fixed.
The resulting energy is shown in the inset of Fig. 9. We con-
sider this energy to be a function of the two angles θ3′ and θ5′ ,
where θ3′ is the angle between rCN and rCC3′ , and θ5′ is the an-
gle between rCN and rCC5′ (see Fig. 7(b)). We fit this energy
term with the function

Ebb_b = kbss

2

[(
θ3′ − θ

(0)
3′

)2 +
(
θ5′ − θ

(0)
5′

)2]
, (18)

where θ
(0)
3′ and θ

(0)
5′ are the angles in the initial configura-

tion relaxed without constraint, and kbss is obtained from fit-
ting. The resulting values for these parameters are listed in
Table II.

We treat Eqs. (16)–(18) as independent interactions, and
so the total contribution of the backbone and its interaction
with the base-pairs is given by

Ebb = Ebb_r + Ebb_c + Ebb_b. (19)

D. Electrostatics

All the potentials considered so far represent bonded
or short-ranged interactions between components of DNA.
The DFT calculations considered DNA as being composed
of strictly neutral components in vacuum. However, under
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physiological conditions, DNA is solvated in an aqueous elec-
trolyte, and the phosphate groups in DNA are deprotonated.
Therefore, we place a charge of −e on each sugar-phosphate
group of the coarse grained model, and include a Coulomb
potential between these groups

Eel(r) = e2

4πε0ε(r)r
(20)

with a distance-dependent dielectric function ε(r), r being the
distance between the charges and ε0 the dielectric constant in
vacuum. This ε(r) plays two roles: (i) it incorporates the ef-
fects of ionic screening, and (ii) it accounts for the fact that
closely spaced interacting groups are only partially solvated
by the surrounding electrolyte. We use the following expres-
sion, closely related to the formulation of Ref. 52, for the di-
electric function:

ε(r) =

⎧
⎪⎪⎨

⎪⎪⎩

εint, for r < r0

εinte
α(r−r0), for r0 < r < r1

ε∞eκr , for r > r1

, (21)

where ε∞ = 78 is the dielectric constant of water, and εint is
the dielectric constant in the interior of the DNA helix, which
we take to be 3.52 The Debye length is κ−1, related to the ionic
strength I through

κ−1 =

√
ε0ε∞kBT

2NAe2I
, (22)

where kBT is the thermal energy and NA is Avogadro’s num-
ber. For example, at [Na+] = 0.1 M, the Debye length is
9.6 Å. The values r0 and r1 determine the boundary between
unscreened and screened electrostatic interactions. The char-
acteristic sizes of the chemical groups represented by our
coarse-grained units range from about 2 Å to about 5 Å. Con-
sequently we set r0 = 4 Å. Similarly, we choose r1 = 13 Å,
approximately five times the mean water oxygen–water oxy-
gen distance in bulk water,53 as the distance where the ef-
fective dielectric constant recovers the value predicted from
the Debye-Hückel theory of screening in a bulk electrolyte.
The value of α is then chosen such that ε(r) is continuous.
Between the two charged groups within the same base-pair,
ε(r) = ε∞ is used. Finally, since the electrostatic interaction
decays exponentially at large distance, we truncate this inter-
action for distances above five times the Debye length. The
simple electrostatics approach here is a first approximation,
and is not meant to capture details such as the dependence of
ion condensation on conformation,54 which will require ex-
plicit solvent molecules.

IV. IMPLEMENTATION AND PERFORMANCE
OF THE COARSE-GRAINED MODEL

In Sec. III we derived the interactions between the coarse-
grained sites. The total interaction energy is given by Eq. (2),
and the different contributions include summations over all
relevant interacting units. Specifically, Ehb includes a summa-
tion over all base-pairs, and Est includes a summation over
all pairs of neighboring base-pairs. Of the three terms that
comprise the Ebb contribution, Ebb_r includes a summation

over all pairs of neighboring backbone sites, Ebb_c includes
a summation over all pairs of connected backbone and base
sites, and Ebb_b includes a summation over all bases. Fi-
nally, Eel includes a summation over all pairs of backbone
sites.

Next, we relate the geometrical variables to the positions
of the coarse-grained sites. In the coarse-grained representa-
tion, the base site is identified with be the pyrimidine N1 atom
or the purine N9 atom, and the backbone site is identified with
the sugar C1′ atom. Then the distance and angle variables rhb,
φ

(1)
hb , φ

(2)
hb , rss, rCN, θ3′ , and θ5′ follow from the position of the

coarse-grained sites. We define the remaining geometrical
variables as follows. For each base-pair, we define the normal
vector of base i to be n(i) = rCC × r(i)

CN with i = 1, 2 corre-
sponding to the two bases, and with rCC and r(i)

CN defined in
Fig. 1(b). The dihedral angle θd of this base-pair is given by
cos θd = n̂(1) · n̂(2), with the hat denoting unit vectors. We de-
fine the average normal of this base-pair to be n = n(1) + n(2),
and let the tilt-angle θ tl between base-pair j and base-pair
j + 1 be given by cos θtl = n̂j · n̂j+1. As for the stacking
distance rst, we take the average distance of the four sites in
base-pair j + 1 to the plane of base-pair j. Specifically, we
compute the four vectors d1, d′

1, d2, and d′
2 shown in Fig. 4(b),

project them onto the two normal vectors as zi = di · n̂(i) and
z′
i = d′

i · n̂(i) for i = 1, 2, and take rst = (z1

+ z′
1 + z2 + z′

2)/4. Finally, the twist angle θ tw is defined as
the angle between rCC, j and rCC,j+1 − (rCC,j+1 · n̂(1)

j )n̂(1)
j ,

which is the projection of rCC, j + 1 onto the plane of
base-pair j.

We implement this model for calculations in the micro-
canonical ensemble (constant number of particles N, volume
V , and energy E) and the canonical ensemble (constant N,
V , and temperature T) with implicit solvent Brownian dy-
namics. We choose the mass of each site to be the total
mass of the group of atoms that it represents: 178 amu for
the backbone site, 134 amu for base A, 125 amu for T, 150
amu for G, and 110 amu for C. Multiple-time-step integra-
tors are used for time propagation: the RESPA algorithm55

is used for the NV E ensemble, and the multiple-time-step
stochastic integrator56 is used for Brownian dynamics. The
Coulomb interaction between different base-pairs is treated
as the slow-varying component of the Hamiltonian, integrated
with a time-step of 20 fs, while all the other forces are
categorized into the fast-varying component of the Hamil-
tonian, integrated with a time-step of 6.67 fs (i.e., three
divisions per large time-step). This choice of time-steps en-
sures high stability: when running in the NV E ensemble at
300 K, the total energy is conserved to within 5 × 10−4 eV
per base-pair for arbitrary sequences at several conditions
tested.

As a measure of the performance of this coarse-grained
model, a 20 fs step of the stochastic integrator for a DNA
molecule consisting of 250 base-pairs at 0.1 M salt concen-
tration takes 2.4 ms on a single Intel Xeon X5560 processor
(2.80 GHz). A 100-ns simulation of such a strand takes 3 h
20 min. This performance exceeds the speed of all-atom sim-
ulation methodologies by many orders of magnitude, and is
comparable to other coarse-grained models with similar com-
plexity. The computation time scales linearly with the number
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of base pairs, since the electrostatic interactions are damped.
This performance makes simulations of ds-DNA in the µm
length scale and µs time scale feasible.

V. MODEL VALIDATION

The different contributions in the model potentials have
been derived from calculations of isolated units. Here we test
the validity of the combined potential (additivity of the indi-
vidual contributions), and its performance in larger systems
(transferability of the potentials). Also, our a posteriori inclu-
sions of the ionic and temperature effects are crude, and their
consequences will also be assessed.

A. Equilibrium structure

First, we test the structure prediction of the model with
poly-AT DNA consisting of 250 base-pairs (bp) at temper-
ature 300 K and salt concentration 0.1 M. When initialized
with coordinates of the B-form DNA,57 the B-DNA struc-
ture is maintained. To test the robustness of our model po-
tential, we also carried out simulations starting with a highly
off-equilibrium structure—an elongated and uncoiled double
strand—and followed the evolution. Figure 10 shows that in
such case, the system is able to coil back to the B-DNA struc-
ture. Signatures of the B-DNA structure such as the major
groove, minor groove, and the 10 bps-per-turn period are well
reproduced. This demonstrates the model’s ability to predict
the stable double helix structure, without resorting to Go-like
potentials that are defined relative to a specific reference struc-
ture as in Ref. 14.

To be quantitative, we calculate the averages of many
structural properties after the system equilibrates. These
quantities are listed in Table V, with comparison to reference
values derived from recent crystallographic data of a natu-
rally occurring 16 bps oligomer.58 The average deviation of
our model from experiment is about 2%. Given that no exper-
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FIG. 10. Coiling of a 250-bp poly-AT strand in the coarse-grained model.
The system starts in a completely uncoiled state and evolves at temperature
300 K. Insets show the middle part of the strand at time 0 ns, 0.5 ns, and
2.0 ns. Backbone sites are in yellow, A’s in red, and T’s in green.

TABLE V. Average structural properties of a 250 base-pair poly-AT strand
at 300 K and salt concentration 0.1 M. The reference experimental values
are derived from the positions of the C1′ atoms of the sugars, the N1 atoms
of the pyrimidines, and the N9 atoms of the purines in the crystal structure
of Ref. 58.

Difference
Quantity Simulation Experiment58 (% )

H bond distance rhb (Å) 8.96 8.93 0.3
Stacking distance rst (Å) 3.68 3.54 3.9
Backbone distance rss (Å) 4.99 4.91 1.5
Sugar-base distance rCN (Å) 1.46 1.47 0.5
Flip-angle φhb 54.1◦ 55.6◦ 2.7
Twist-angle θ tw 31.4◦ 33.5◦ 6.2
Tilt-angle θ tl 7.81◦ 8.00◦ 2.4
Backbone angle θ3′ 96.5◦ 94.3◦ 2.3
Backbone angle θ5′ 62.3◦ 63.2◦ 1.5

imental data were used in the model construction, this close
agreement with experiment is remarkable.

B. Persistence length

Next, we check the model’s ability to predict mechanical
properties at long lengths by examining the persistence length
(lp), which gives an estimate of the bending rigidity of DNA.
The persistence length can be extracted from the decay of the
orientational correlation function

⟨r̂i · r̂j ⟩ = e−sij / lp , (23)

where r̂i is the unit tangent vector at base-pair i, and sij is the
arc length from base-pair i to base-pair j. The tangent vectors
and the arc length are evaluated along the axis of the double-
helix of DNA. As the DNA axis is not an explicit interaction
site in our coarse-grained model, we extrapolate its location
by estimating the direction of the local helical axis and av-
eraging the projection of the backbone sites onto the local
axial direction. We consider 250-bp DNA with poly-AT se-
quence, poly-GC sequence, and a segment of the enterobac-
teria phage-λ genome (with GC content 0.47). Simulations at
300 K and 0.15 M salt concentration give lp = 53 nm, 47 nm,
and 41 nm, respectively, for the poly-AT, poly-GC, and the
phage oligomer strand. These values are in close agreement
with the experimental value of lp ≈ 50 nm for double-stranded
DNA.59 The fittings used to obtain these values are shown in
the inset of Fig. 11.

We also test the validity of the implicit salt treatment
by considering the salt dependence of the persistence length.
This dependence has been shown experimentally59 to agree
well with the nonlinear Poisson-Boltzmann prediction for uni-
formly charged cylinders60

lp = l0 + 1
4κ2lB

, (24)

where l0 is the persistence length at infinite salt concentra-
tion, κ−1 is the Debye length given in Eq. (22), and lB is the
Bjerrum length. The second term is the electrostatic contri-
bution, and is inversely proportional to the salt concentration.
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FIG. 11. Salt dependence of the persistence length at 300 K. Each point rep-
resents an average over 6 independent simulations, with the error bar show-
ing standard deviation of lp estimated from the individual runs. Lines show
Eq. (24) with l0 = 47 nm, 42 nm, and 39 nm, respectively, for poly-AT, poly-
CG, and phage sequences. Inset shows the decay of the orientational correla-
tion for a set of simulations at 0.15 M salt, where symbols are data and lines
are exponential fits, Eq. (23).

Figure 11 shows that the salt dependence of lp predicted by
our model also agrees with Eq. (24).

C. Overstretching

To test the mechanical properties of the model under
more extreme conditions, we perform numerical stretching
experiments, using a 100-bp DNA from a segment of phage-
λ, at temperature 300 K in 0.1 M salt. One end of the DNA
is fixed to a surface with a harmonic potential, and a con-
stant pulling force is applied onto the backbone site at the
other end. It is known that at around 65 pN, the stretched
DNA undergoes a sudden extension of about 70% known
as superstretching.61, 62 Figure 12 shows the extension curve
from our model for pulling on either the 3′ end or the 5′ end.
Inset of Fig. 12 provides a typical image of the DNA before
and after the sudden stretching and unwinding occur. The sim-
ulations capture the superstretching transition, although the
critical force in our model is higher, and the amount of the
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FIG. 12. Average of the rise per base-pair and the twist angle when a 100-bp
phage-segment DNA is stretched. Inset shows snapshots before and after the
sudden extension, for pulling with 640 pN on the 5′ end.
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FIG. 13. A 50-bp poly-AT DNA in partially molten states: (a) unzipping
from one end, and (b) formation of a bubble. Insets show snapshots of the
molecule; the color schemes are the same as in Fig. 10.

sudden extension is less. The superstretching transition is a
very stringent test for our computational model, as it involves
strong departures from the equilibrium structure. Notwith-
standing the neglect of solvent interactions and the athermal
character, our coarse-grained potential still provides reason-
able results under such critical conditions. Simulations also
reveal that the superstretching is accompanied by unwinding
of the double helix, as shown in Fig. 12. Above the critical
force, our model shows that the DNA is twisted slightly in the
left-handed direction.

D. Bubble formation

Although our potentials are formulated for ds-DNA, in
some applications it is desirable to have a model that can ac-
count for broken hydrogen bonds. Here, we test the validity of
our model when the double strand in a 50-bp poly-AT DNA
is partially broken. The onset of melting can be observed in
our model, but the melting temperature is overestimated. At
temperature 550 K, the double-strand shows occasional un-
zipping; one instance is shown in Fig. 13(a). At 800 K, for-
mation of bubbles can be observed; one instance is shown in
Fig. 13(b). The overestimation of melting temperature may
arise from several reasons. First, our stacking potential is not
formulated for single strands or strands with broken hydrogen
bonds. Second, the presence of water molecules may lower
the energy of the broken-bond states, but this effect is not
taken into account. Third, the coarse-grained potentials here
are derived at zero temperature, which is stiffer than at finite
temperature. However, the appearance of these intermediate
molten states is still an indication that our model is stable be-
yond strictly ds-DNA structures.

VI. CONCLUSION

We have constructed the interaction potentials for a
coarse-grained model of double-stranded DNA. The model
potentials are derived from first-principles calculations for
the DNA bases and base-pairs. Contributions to the potential
include hydrogen bonding, base-stacking, backbone stretch-
ing, and interactions between bases and the backbone. An-
alytical functions are fitted to the computed energy, leading
to a potential for DNA that is able to handle coarse-grained
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configurations of random DNA sequences and can be used to
model related biophysical processes. Unavoidably, some sim-
plifying assumptions were used in the model formulation and
construction. In order to use a minimal number of empirical
terms, only the effect of ionic screening was added to the mi-
croscopically derived potential. At a later stage, such empiri-
cal term can be replaced by a more microscopic approach.63

A series of tests were performed, and they verified that
the coarse-grained potential can reproduce the stable B-DNA
structure, and that the predicted structure matches the known
crystallographic structure of DNA to a few % in key structural
parameters. The model produces persistence lengths in close
agreement with experimental data, and the response of the
persistence length to varying salt concentrations also agrees
with the prediction for a linked-cylinder model. These tests
suggest that the mechanical properties of the coarse-grained
model will show realistic trends when subject to the complex
electrokinetic environment in the cell or in artificial systems
such as the interior of an nanochannel during translocation
experiments.

The tests on overstretching and on bubble formation
show that the model may capture the qualitative features in
such states, but also reveal some limitations of the model. To
describe such states accurately, we may need a more realis-
tic account of the solvent molecules and of the temperature
dependence of the coarse-grained potentials. This will be the
subject of future work. Other possible and more straightfor-
ward extensions of the current model will be to formulate the
stacking interaction to work with ss-DNA, and to parametrize
interactions for mismatched base-pairs and for uracil (to ex-
tend the model to RNA). Also, the current model does not ac-
count for inter-strand interactions except for the electrostatic
repulsion, and so situations like long DNA strands under con-
finement may not be appropriate for this model.

The approach described in this work is attractive for de-
scribing ds-DNA using a minimal of empirically derived pa-
rameters and with a good compromise between accuracy and
computational efficiency. We suggest that this model could be
a useful tool for simulating the behavior of ds-DNA in a va-
riety of biologically relevant or device-related scenarios with
modest computational resources.
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