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Type-1 diabetes in the nonobese diabetic (NOD) mouse starts with
an insulitis stage, wherein a mixed population of leukocytes
invades the pancreas, followed by overt diabetes once enough
insulin-producing β-cells are destroyed by invading immunocytes.
Little is known of the dynamics of lymphocyte movement into
the pancreas during disease progression. We used the Kaede
transgenic mouse, whose photoconvertible fluorescent reporter
permits noninvasive labeling and subsequent tracking of immuno-
cytes, to investigate pancreatic infiltrate dynamics and the require-
ment for antigen specificity during progression of autoimmune
diabetes in the unmanipulated NOD mouse. Our results indicate
that the insulitic lesion is very open with constant cell influx and
active turnover, predominantly of B and T lymphocytes, but also
CD11b+c+ myeloid cells. Both naïve- and memory-phenotype lym-
phocytes trafficked to the insulitis, but Foxp3+ regulatory T cells
circulated less than their conventional CD4+ counterparts. Recep-
tor specificity for pancreatic antigens seemed irrelevant for this
homing, because similar kinetics were observed in polyclonal
and antigen-specific transgenic contexts. This “open” configura-
tion was also observed after reversal of overt diabetes by anti-
CD3 treatment. These results portray insulitis as a dynamic lesion
at all stages of disease, continuously fed by a mixed influx of
immunocytes, and thus susceptible to evolve over time in response
to immunologic or environmental influences.

Treg | cell tracer | reporter

Type-1 diabetes (T1D) is an organ-specific autoimmune dis-
ease initiated by a breakdown in T lymphocyte tolerance to

islet-cell antigens; it comprises two stages: an occult phase of
pancreatic inflammation, which reduces the number and func-
tion of insulin-producing β-cells and eventually provokes suffi-
cient damage to result in the overt phase of diabetes, when
insulin production is insufficient for proper glucose homeostasis.
The genetics of T1D in mice and humans point primarily to a
dysfunction of CD4+ T cells, because class II genes of the MHC,
and several other loci that modify T-cell activation and regula-
tion, are linked to T1D susceptibility (1).
In nonobese diabetic (NOD) mice and other animal models

(2), this initial inflammatory phase takes the form of insulitis,
wherein a mixed population of leukocytes invades the islets of
Langerhans. Insulitis starts around 3–4 wk of age and amplifies
progressively until the onset of clinically overt diabetes (pre-
dominantly between 14 and 25 wk of age); it involves a wide array of
cell types—T and B lymphocytes as well as myeloid cells—macro-
phages and dendritic cells (3), which can take on the organization of
typical tertiary lymphoid structures (4). Importantly, insulitis var-
iably affects different islets in a given animal, heavily infiltrated islets
coexisting with fully intact and functional ones, even in advanced
prediabetic mice.
Inflammation in islets of human patients has been harder to

evaluate, because access to material is obviously more difficult.
As cogently reviewed by In’t Veld (5), few individuals have ac-
tually been analyzed, often in conditions of uncertain diagnosis,
with missing genetic or biochemical data, and the histological
evaluation complicated by ketoacidosis and variable handling of

cadaveric or surgical samples. Insulitis seems more frequent in
individuals presenting with T1D at a young age and assessed
soon after onset (6, 7); further, it has been observed in two of
three high-risk prediabetic individuals analyzed (8). The pro-
portion of infiltrated islets and the extent of infiltration appear
generally lower in human patients than in NOD mice, and a
dominance of CD8+ over CD4+ T cells seems frequent (7, 9, 10),
with a variable frequency of B lymphocytes (10). These differ-
ences may reflect fluctuations over time, or merely the much
faster progression of diabetes in the NOD mouse (weeks rather
than years).
Two related questions concerning the progression of insulitis

arise. First, what are its population dynamics? Is insulitis isolated
from the remainder of the immune system and growing locally in
response to autoantigens presented there, or is it continuously
replenished, and thus possibly modified, by a regular influx of
freshly recruited cells? Second, are all of the lymphocytes in the
pancreatic infiltrate antigen-specific, or is there also a significant
bystander population? The latter point has been debated: using
double-retrogenic mice, in which specificity is controlled, Lennon
et al. (11) showed that only antigen-specific cells accumulate in
the insulitis after transfer into NOD.scid mice, and only T cells
specific for β-cell antigens localized to islets in the first hours
after transfer (12, 13) in other studies. However, antigen-specific
cells identified by tetramer staining are only modestly enriched
in the pancreas relative to irrelevant lymphoid organs, and there
is still ample participation by other cells (14, 15). Polyclonal
populations, unlikely to be antigen specific, accompanied cells
from specific clones injected into NOD mice (16). Calderon
et al. (17) showed that, in transgenic models, the initial entry
of antigen-specific cells modifies local conditions, allowing the
recruitment of nonspecific T cells. It should also be noted that
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chemokine expression resulting from inflammation has the po-
tential to attract T cells to the islets (17, 18).
To avoid the potential caveats of transfer systems, we set out

to investigate population dynamics of the pancreatic infiltrate
during disease progression in NOD mice, using a noninvasive
labeling and tracking approach. We used the Kaede/NOD trans-
genic (tg) mouse, which expresses ubiquitously the photoconvertible
fluorescent protein Kaede (19–22). We tracked cell movement
from a known point of “labeling”—namely, s.c. lymph nodes
(LNs), into the pancreas tissue itself, which allowed us to define
the kinetics of entry for lymphoid and myeloid cells, much of
which turned out to be independent of antigenic specificity.

Results
Dynamic Profile of the Pancreatic Infiltrate During Disease Progression.
Insulitis in the NOD mouse comprises a variety of lymphocytes
and myeloid cells, whose numbers generally increase over time
(23). To set the stage for our studies of immunocyte cell traf-
ficking, we revisited the NOD insulitic lesion to ascertain more
precisely the composition of the infiltrate over the course of
disease progression. Immunocyte profiles in the pancreas were
examined from 4 to 14 wk of age. Similar to previous reports
(23–25), a sizable population of leukocytes (CD45+) cells was
already present in the NOD pancreas at 4 wk of age, which ex-
panded markedly between 8 and 12–14 wk (Fig. 1A). These cells
did not correspond to normal resident cells in a healthy pan-
creas, because much lower numbers of CD45+ cells were ob-
served in the pancreata of insulitis-free NOD.Eα16 (26) and
C57BL/6 mice (Table S1). The increase was generally true of all
cell populations analyzed, lymphoid or myeloid. CD4+ T cells
and B cells were the major components, in roughly equal pro-
portion (Fig. 1 B and D). Also in accordance with previous
reports (23, 25, 27, 28), myeloid cells constituted the majority of
hematopoietic cells in the pancreas at 4 wk (Fig. 1 C and E), in

particular with a strong representation of CD11b+ F4/80+ mac-
rophages. However, by the time insulitis was well established
(12–14 wk), lymphocytes had taken over as the majority cell type in
the lesion (Fig. 1 D and E), although diverse types of mononuclear
phagocytes (dendritic cells and macrophages) remained present.
Given this increase in cell numbers, we determined the rate

of cell division via BrdU labeling experiments. Marked pro-
liferation was observed for T lymphocytes in the pancreas com-
pared with pancreatic lymph nodes (PLNs) and spleen (Fig. 1F).
CD8+ T cells proliferated most actively, contrasting somewhat
with their relatively low numbers. Such cycling rates, if extrapolated
over several weeks and assuming no cell death, could potentially
lead to a greater increase in cell numbers than what was observed:
e.g., from 10 to 14 wk, one would expect the CD8+ population to
quadruple in size when, instead, it merely doubled. This observa-
tion suggests a rapid turnover as well, either through cell exit or,
more likely, via cell death. In contrast, B cells cycled very little, no
more than their counterparts in lymphoid organs, consistent with
the perception of their role as secondary (albeit important) players
in the process.

Tracking Cells Migrating into the Pancreas. To analyze the flux of
cells into the insulitic lesion, we used a NOD backcross (>13
generations) of the Kaede tg mouse line, which allows noninvasive
labeling and tracking of immunocytes in vivo (19–22). In these
mice, all cell types express the green fluorescent form of the
Kaede protein, which can be irreversibly photoconverted into
a red fluorescent form by violet light (29). Cells converted to red
fluorescence in one location can then be tracked through
a mouse’s body at later times. Cervical lymph nodes (CLNs),
which have no anatomic or physiologic connection to the pancreas
or to diabetes, were the labeling site for all of our experiments. No
Kaede-red cells were detected anywhere before excitation (Fig.
2A, Top). Immediately after photoconversion, most cells in the
CLNs had red-shifted, but they had not in other locations (Fig. 2A,
Middle). By 24 h, however, distinct populations of red CD45+ cells
were present in lymphoid organs, such as the spleen and in the
pancreas (Fig. 2A, Bottom). The proportion of pancreatic Kaede-
red cells continued to increase over the next few days (Fig. 2B).
Thus, ∼0.5–1% of the CD45+ cells present in the pancreatic in-
filtrate at the day 3 time-point resided in the CLNs 3 d earlier.
Next, we established where these migrating cells were going.

Explanted pancreata were imaged 36 h after photoconversion in
the CLNs to visualize the recent immigrant Kaede-red cells in
situ. Regions containing intact β-cells were identified using reflected
light, as described previously (30), and regions of insulitic infiltrate
were delineated by their low reflectance, high density of nuclei, and
low Kaede-green fluorescence (which happens to be very bright in
exocrine pancreas; Fig. S1A). The majority of Kaede-red recent
immigrants was found in the insulitis region (Fig. 2C), although
some such cells were also detected inside the β-cell area itself. The
latter represented 12.6 ± 10.1% of the immigrants, a proportion
consistent with the frequency of T lymphocytes in the insulitis and
β-cell mass in NOD pancreata. No recent immigrants were detected
in islets devoid of insulitis or in the exocrine pancreas (Fig. S1B).
Note that we could not identify the actual type of cell present in
these images, because the Kaede-red color does not resist fixa-
tion for immunofluorescence. However, the estimated number
of immigrants detected by microscopy (up to ∼9,000 cells per
pancreas in 10-wk-old NOD mice) is consistent with the total
number of Kaede-red CD45+ cells observed by flow cytometry
(Fig. 2A and below).

Which Cells Migrate into the Pancreas? The leukocyte subsets mi-
grating into the pancreas were identified by flow cytometric
profiling (gating strategy described in Fig. S2). At 24 h after
photoconversion, all resident major lymphocyte subsets (CD4+

and CD8+ T cells, B cells) exhibited similar proportions of recent
immigrants (photoconverted cells; Fig. 3A). Over the following
days, these numbers increased slightly and stabilized. In contrast,
few or no myeloid cells traveled from the CLNs to the pancreas,

4 6 8 10 12 14
0

20

40

60

4 6 8 10 12 14
0

20

40

60

4 6 8 10 12 14
0

5

10

15

A B

F

C

D E
4 6 8 10 12 14 4 6 8 10 12 14

0

1

0
4 6 8 10 12 14

4 6 8 10 12 14 4 6 8 10 12 14
0

5

10

15
Pancreas PLNs

Age (weeks)

Spleen

Age (weeks)

%
 o

f B
rd

U
+  

ce
lls

%
 o

f B
rd

U
+  

ce
lls

B cells
CD8+
CD4+

CD45+

CD11b+c-F4/80+
CD11b+c-F4/80-

CD11b+c+
CD11b-c+

%
 o

f C
D

45
+  

ce
lls

Age (weeks)

%
 o

f C
D

45
+  

ce
lls

Age (weeks)

0
1

5

# 
C

D
45

+  
ce

lls
( x

10
6 )

Age (weeks) Age (weeks) Age (weeks)

# 
 c

el
ls

 (x
10

6 )

4 8

1

0
6

(x
10

5 )

1

# 
 c

el
ls

 (x
10

6 )

Fig. 1. Dynamic profile of the pancreatic infiltrate during disease pro-
gression. (A) Background level of total CD45+ cells in pancreas was measured
using flow cytometry. (B–E) The immune cell infiltrate in pancreata from
mice at the different indicated ages was enumerated and profiled by flow
cytometry. B, Inset shows 4- to 8-wk data on expanded scale. (F) Lymphocyte
proliferation during disease progression in NOD. BrdU was administered
(1.2 mg BrdU in 200 mL, two injections 10 h apart) to female NOD mice from
4 to 14 wk of age. At 22 h after the first injection of BrdU, BrdU in-
corporation into CD4+, CD8+ T cells, and CD45R+ B cells was measured by
flow cytometry for the pancreas, PLNs, and spleen.
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with the exception of CD11b+CD11c+ cells, most likely monocytes
(Fig. 3C); this was despite evident migration of other myeloid
cells between lymph nodes (Fig. 3D), indicating that the pancreas
is not an open house to all cell types.
The measured proportion of Kaede-red immigrants at a given

time-point reflects their rates of migration into the pancreas, but
also integrates the relative sizes of the pancreatic and circulating
pools, and the existing proportion of labeled cells in both.
Generating a true quantitative model of cell dynamics was hin-
dered by the fact that each mouse could be sampled only once
and that there was some variability in the rate of red conversion
in the irradiated CLN (ranging from 38% to 70% over our
experiments). For a numeric estimate of migration rates, we
computed a “migration ratio” (proportion of Kaede-labeled cells
in the pancreas over that in irrelevant LNs), based on the rea-
sonable assumptions that Kaede-red cells found in LNs and
spleen reflect the normal circulation of lymphocytes between
lymphoid organs (31), and that the cells entering the pancreas
originate from this pool (Fig. 3E). At 24 h after photoconversion,
a time when the bulk of labeled cells have already exited the
CLN, this ratio should adequately reflect limitations in traffic
into the pancreas. Indeed, the migration ratios of ∼0.5 (Fig. 3F)
for CD4+ and CD8+ T cells indicated that lymphocytes do cir-
culate extensively to the pancreas, albeit not quite as freely as
they do between lymphoid organs. (For B cells, the pancreas
migration ratio seemed even higher, close to that of spleen.) In
contrast and as expected, migration into PLNs showed the same
dynamics as into other LNs (Fig. S3).
We then asked whether effector or memory CD4+ T cells

trafficked into the inflamed pancreas preferentially over that of
naïve CD4+ T cells; this was not the case. Perhaps surprisingly,

the majority of recent immigrants had a naïve phenotype
(CD62+/hiCD44−/low; Fig. 3G); cells with effector/memory pheno-
types (CD62loCD44hi) were a minority, at a frequency intermediate
between spleen and irrelevant lymph nodes, and at lower fre-
quency than among resident cells. Once present, only a small
proportion of recent immigrants became activated, as evidenced
by CD69 expression (Fig. 3H).
FoxP3+CD4+ regulatory T cells (Tregs) play a major role in

the control of T1D progression; their proportion of the CD4+
T-cell compartment in the inflammatory infiltrate are roughly
similar to those observed in most lymphoid locations (5–15%)
(32). We asked how migration of Tregs to the pancreas com-
pared with that of FoxP3− conventional (Tconv) CD4+ T cells
at different disease stages. As previously reported (22), Tregs
exited more slowly than did Tconv cells from the labeled
CLN (Fig. 4A); accordingly, a greater proportion of pancreas-
infiltrating Tconv than Treg cells consisted of recent immigrants
(Fig. 4C). Even when the lower labeling of the circulating pool
was taken into account by calculating the migration ratio, Treg
cells entered the pancreas less effectively than did Tconv cells
(Fig. 4D), and the pancreatic Treg pool never equilibrated to reach
the proportions of Kaede-red cells of the circulation. Thus, Treg
cells have far less active migration dynamics than do Tconv cells.

Is Anti–β-Cell Antigen Specificity Necessary for Lymphocyte Entry into
the Insulitic Lesion? Specificity for pancreatic antigens is believed
to be a prerequisite for T cells to infiltrate the islets (11, 33).
However, our results point to a very substantial rate of T-cell
entry, predominantly of naïve, antigen-inexperienced cells.
Polyclonal CD4+ and CD8+ T cells and B cells previously in the
irrelevant CLNs entered the pancreas on a continuous basis, and
in proportions that were only twofold reduced from those
characteristic of cell trafficking between secondary lymphoid
organs. (Extrapolating from the proportion of labeled cells in the
spleen/LN circulation, we estimate that 0.0135% of the circu-
lating CD4+ T-cell pool entered the insulitic lesion on a daily
basis, and that 0.33% of the CD4+ T-cell content in the insulitis
entered per day.) Because it seems intuitively unlikely that half
of the T cells in the CLNs would be reactive against pancreatic
autoantigens, these numbers are difficult to reconcile with
a strict requirement for an anti–β-cell antigen specificity of
pancreas-infiltrating T cells. To directly address this point, we com-
pared pancreas migration ratios in standard NOD mice and in
BDC2.5 T-cell receptor (TCR) tg mice, in which most CD4+ T
cells express a TCR specific for an islet antigen presented by the
MHC class II (MHC II) molecule I-Ag7, resulting in florid insu-
litis. After crossing the Kaede and BDC2.5 tg lines, we compared
migration into the pancreas of cells photoconverted 72 h earlier
in the CLN; mice of 4–6 and 12–14 wk of age were analyzed, to
cover both early and advanced stages of insulitis. There was very
little difference in the pancreas migration profiles for BDC2.5 and
NOD mice, whether in the proportion of Kaede-red recent
immigrants (Fig. 5A) or in the calculated migration ratios (Fig.
5B). This similarity held for CD4+ T cells, and for CD8+ T and B
cells for which the MHC II-restricted BDC2.5 TCR would be
irrelevant. However, when expressed as total numbers of Kaede-
red recent immigrants, there was much greater entry into the
BDC2.5 than the NOD insulitis (Fig. 5C), the difference waning
somewhat in older mice. Insulitis starts at the same time (∼15–
18 d of age) in NOD and BDC2.5 mice, but progresses much
faster in the latter (34). Thus, the higher numbers but equal
proportion of recent immigrants in the BDC2.5 vs. NOD pan-
creas reflects the difference in total cell numbers already present
(Fig. 5D). Hence, on the 72-h time-scale probed here, migration
into the autoimmune pancreas correlated in a nonspecific manner
to the total insulitis size, rather than to a particular drive from
antigen-specific receptors.

Lymphocyte Traffic to the Anti-CD3 “Cured” Pancreas. Treatment
with anti-CD3 is a promising avenue of therapy for T1D. When
administered early after disease onset, it has been shown
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repeatedly to reverse diabetes in NOD mice and preserve re-
sidual β-cell function in T1D patients for 12–24 mo (35–38).
Although most diabetic NOD mice treated with anti-CD3 revert
to normoglycemia, the treatment does not permanently abolish the
autoimmune lesion in the pancreas; rather, a stable state of insu-
litis is established, with a demarcation between the inflammatory
infiltrate and β-cell mass (39, 40) (Fig. 6A). We asked whether
diabetes reversal with anti-CD3 affected population dynamics of
the infiltrate. Recently diabetic Kaede/NOD mice (less than 3 d
since confirmed hyperglycemia) were treated with anti-CD3 as
described (41). CLN photoconversion was performed on mice that
had reverted to normoglycemia for 30 d (a reliable indicator of
long-lasting reversion of diabetes), and migration into the pancreas
was assessed after 72 h. Migration into the insulitic lesion of anti–
CD3-cured mice proved comparable with that typical of 12-wk-old
prediabetic mice (Fig. 6 B and C) for all lymphocyte subsets ex-
amined. Thus, diabetes reversion by anti-CD3 does not turn the
autoimmune lesion into a “closed shop,” but rather one that
remains open to traffic and reseeding, which could explain why the
effects of anti-CD3 treatment last only for 1–2 y in humans (42).

Discussion
We have used the Kaede tg mouse system (19), coupled with
cytometric and microscopic detection, to investigate immunocyte
dynamics during the progression of autoimmune diabetes in the
NOD mouse. A key strength of this system is that it allows the
tracking of cells in an unmanipulated animal, avoiding the per-
turbations and artificially high cell numbers associated with
transfer systems (11, 33, 43–45), or the nonphysiologic nature of
surgical grafts (46, 47). Our results indicate that the insulitic
lesion is very open, with high cell influx and turnover, but with
evident specificity in the balance of entering cells. These results
extend the observations of Calderon et al. (17) in transgenic
systems, which showed that an initial onslaught by diabetogenic
transgenic T cells opened the door for further nonspecific influx.
Recent immigrants were almost exclusively lymphocytes (B,

CD4+ T, and CD8+ T cells), suggesting some level of discre-
tion in who can gain entry to the pancreas. Most myeloid cells,
even those that seemed to migrate between secondary lymphoid
organs, showed little immigration into the pancreas, except for
CD11b+c+ cells, presumably migrating monocytes. Moreover,

entry of Treg cells was disfavored relative to Tconv cells. Tregs
strongly impact T1D pathogenesis in a number of mouse models,
and there is a gradual decrease in the Treg:Tconv cell ratio in
inflamed islets (48). Tang et al. (48) previously suggested that the
decline in pancreatic Tregs reflected apoptosis; we now propose
that a reduced influx of Treg vs. Tconv cells may also be at play.
This openness is somewhat at odds with the notion that

autoreactive pancreas-infiltrating T cells require prior activation
in the draining lymph node before entry into the islet (43, 44);
this is clearly not the case here, because transit time from the
CLNs to the pancreas is far too short to allow for activation and,
indeed, such recent immigrants are predominantly naïve and
antigen inexperienced. One possible explanation rests in the
nature of the transfer models used in earlier experiments. In
these earlier studies, small numbers of labeled cells may have
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entered the islets but then continued to recirculate, effective col-
onization and amplification of LN-activated T cells only occurring
by secondary recognition of antigen presented in the islets a few
days later (13, 45).
It has been proposed that antigen specificity is a prerequisite

for T cells to infiltrate the islets throughout the pathogenesis of
T1D (11, 33). How then can one explain the polyclonal and
mainly naïve nature of the lymphocyte populations that we
detected migrating into the pancreas at the several stages of
disease examined? The lack of CD69 induction on most recent
immigrant also indicates that most do not respond actively to
local antigens. It would seem that, after β-cell antigen-specific
cells have penetrated the pancreas and started to establish an
insulitic lesion, the door is open to all. This event likely occurs
very early on, because we detected the polyclonal influx as early
as 4 wk of age in NOD mice. As for the circulation of lympho-
cytes between lymph nodes, this traffic may be driven by vascular
expression of peripheral and mucosal vascular addressins PNAd
and MAdCAM-1, which have been demonstrated in infiltrated
islets (49). This notion of an initial and specific “seeding event”
followed by less-specific amplification may explain the heteroge-
neous nature of the insulitis in NOD mice and humans, completely
unaffected islets coexisting with heavily infiltrated ones.
Whether all cells that enter stay there is another matter, al-

though the substantial number of photoconverted cells detected
in the pancreas after 1 wk indicates that this is not a transient
phenomenon. We found the recent immigrants to reside pre-
dominantly in the inflammatory infiltrate, with only a minor
proportion in the β-cell area. This localization contrasts with
prior studies reporting that transferred pancreas antigen-reactive

T cells primarily attach to, and extravasate from, the islet
microvasculature localized to islets (12, 13). The difference is
plausibly linked to the time frame (4 h vs. 24–72 h) and antigen
specificity (cognate vs. polyclonal): rapid antigen-driven adher-
ence and extravasation, in one case, more progressive and likely
chemokine driven in the other. It is unclear whether antigen-
specific T cells that enter the islet through the vasculature inside
the β-cell mass remain there, or whether they also end up in the
main inflammatory infiltrate outside the β-cell mass.
The “openness” we observed at all stages of progression and

even after reversal of T1D by anti-CD3 begs the question of
whether it matters; it implies that the composition and regulatory
balance of the infiltrate may be constantly altered, in response to
newly generated T cells or to environmental challenges that bias
the phenotypes of autoreactive T lymphocytes or of antigen-
presenting cells. Differentiation cues imparted to lymphocytes by
interaction with the microbiota in frontline tissues may thus be
ferried and affect pancreatic autoimmunity. Epitope spreading
may also be facilitated. In addition, one might speculate that this
constant rejuvenation of the autoimmune infiltrate may be an
element that contributes to the loss of therapeutic effect of anti-
CD3 beyond a year in patients (this length of follow-up is not
available in mice).
In summary, we have demonstrated that the insulitic lesion is

dynamic at all stages of disease, continuously fed by a mixed
influx of immunocytes, and thus susceptible to evolve over time
in response to immunologic or environmental influences.

Materials and Methods
Mice and Treatments. The Kaede tg mouse line (19) (Kaede.NOD) was a kind
gift from O. Kanagawa (RIKEN, Wako, Japan). BDC2.5/NOD TCR tg mice
carrying the Kaede reporter were generated by crossing BDC2.5 mice on the
NOD background with Kaede.NOD mice. Animals were bred and maintained
at Harvard Medical School in our specific-pathogen-free facility (protocol
02954) or from Jackson Laboratory. For anti-CD3 treatment, recent-onset
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diabetic mice (<2 d from diagnosis) were treated, along with insulin pellet
supplementation (41), and mice considered cured if normoglycemic beyond
30 d. For BrdU incorporation, 1.2 mg BrdU in 200 μL PBS was administered
i.p., two injections 10 h apart. CLN photoconversion was performed (3.5-min
transcutaneous illumination with a defocused 405-nm laser, peak power
<5 mW; sustained power 0.5–4.9 mW) (22).

Detection of Cells. For flow cytometry, the pancreas was harvested (PLNs
carefully removed), chopped into 1-mm fragments, and incubated in 1 mg/mL
Collagenase Type IV [Life Technologies/Gibco 17104-109], 10 U/mL DNaseI, 1%
FCS in DMEM for 18 min at 37 °C in a shaking water bath. This solution was
filtered through 40-μm nylon membrane and washed. For detection of BrdU
and Foxp3, a staining-buffer set [eBioscience; catalog no. 00-5523-00] was used
per manufacturer’s instructions. For joint detection of Kaede and Foxp3, cells
were fixed (2% paraformaldehyde, 20 min at room temperature) to partially
preserve the Kaede signal, before permeabilization for intracellular staining.

For confocal microscopy, images were collected using a custom-built
Olympus FV1000 confocal system (Olympus America) with a XLUMPLFLN 20×

water-immersion objective (N.A. 1.0; Olympus America). Islets in explanted
pancreata were imaged 36 h after photoconversion of CLNs. Signals were
excited using 405-nm, 473-nm, 559-nm, and 633-nm diode lasers. Emitted
fluorescence was separated using dichroic beam splitters SDM473, SDM560,
and SDM640 in combination with bandpass filters BA430-455, BA490-540,
and BA575-620. Confocal imaging settings were optimized for each fluo-
rophore to prevent photobleaching, phototoxicity, and cross-talk between
channels. Six pancreata per group were imaged.

Statistical Analyses. Statistical significance, as indicated by asterisks, was de-
termined by the Student’s t test (two-tailed, unpaired) or two-way ANOVA.
P < 0.05 was considered significant. **P < 0.01; ***P < 0.001.
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