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DYNAMICS OF THE TRANSITION FROM A THIN ACCRETION DISK TO AN
ADVECTION-DOMINATED ACCRETION FLOW
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ABSTRACT
We consider an optically thin advection-dominated accretion Ñow (ADAF) that is connected at a Ðnite

transition radius to an outer optically thick, geometrically thin disk. We include turbulent energy trans-
port and examine ADAF models that satisfy the following boundary conditions at the transition radius :
(1) the temperature of the gas is much lower than the virial temperature, (2) the rotation is super-
Keplerian, and (3) the net radial Ñux of energy is outward. We numerically solve the height-integrated
viscous hydrodynamic equations with these boundary conditions. We Ðnd that the Bernoulli parameter
is positive for a wide range of radius, indicating that outÑows may be possible from ADAFs. Turbulent
energy transport enhances the Bernoulli parameter. We compare our numerical global solutions with
two published analytical solutions. We Ðnd that the solution of Honma represents the transition region
well, while the self-similar solution of Narayan & Yi works better away from the transition. However,
neither analytical solution is able to represent the density or angular momentum proÐle in the inner
region of the ADAF, where the Ñow makes a sonic transition.
Subject headings : accretion, accretion disks È black hole physics È hydrodynamics È turbulence

1. INTRODUCTION

Three self-consistent and stable models of accretion Ñows
are known (see Chen et al. 1995, who discuss these three
models as well as a fourth unstable model by Shapiro,
Lightman, & Eardley 1976) : (1) a geometrically thin, opti-
cally thick cool accretion disk model (hereafter, standard
disk) (Shakura & Sunyaev 1973), (2) a geometrically thick,
optically thick advection-dominated accretion Ñow model
(optically thick ADAF, also known as a slim disk)
(Abramowicz et al. 1988), and (3) a geometrically thick, opti-
cally thin advection-dominated accretion Ñow model
(optically thin ADAF) (Ichimaru 1977 ; Rees et al. 1982 ;
Narayan & Yi 1994 [hereafter NY], 1995a, 1995b ; Abramo-
wicz et al. 1995).

In a standard disk, the dissipated thermal energy is radi-
ated efficiently and the disk is cool and geometrically thin.
In an ADAF, on the other hand, the thermal energy is
advected inward and the Ñow becomes very hot. In this
paper our primary interest is in the optically thin, gas-
pressureÈdominated branch of ADAFs, and we refer to
them simply as ADAFs hereafter, but our equations and
results are valid also for the radiation-pressureÈdominated
branch of ADAFs.

The ADAF model has been investigated extensively in
recent years in a series of studies initiated by Narayan & Yi
(NY, 1995a, 1995b) and Abramowicz et al. (1995). The
model has been used to explain the spectra of quiescent
black hole X-ray binaries (e.g., Narayan, McClintock, & Yi
1996 ; Narayan, Barret, & McClintock 1997 ; Hameury et al.
1997) ; spectral transitions of X-ray binaries (Narayan 1996 ;
Esin et al. 1998) ; the supermassive black hole source Sagit-
tarius A* at the center of our Galaxy (Narayan, Yi, &
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Mahadevan 1995 ; Manmoto, Mineshige, & Kusunose
1997 ; Mahadevan 1998 ; Narayan et al. 1998) ; other low-
luminosity nuclei of LINER galaxies, such as NGC 4258
(Lasota et al. 1996 ; Gammie, Narayan, & Blandford 1999) ;
and giant ellipticals such as M87, M60, and several others
(Fabian & Rees 1995 ; Reynolds et al. 1997 ; Mahadevan
1997 ; Di Matteo & Fabian 1997 ; Di Matteo et al. 1999).

There have been a number of arguments to suggest that
an accretion Ñow around a black hole may undergo a tran-
sition from a standard disk on the outside to an ADAF on
the inside. The transition radius between the two zonesRtrhas been estimated in some X-ray binaries by inferring the
location of the innermost radius of the standard disk, either
by Ðtting the soft component in the spectrum or from the
width of the Ha line wings. The transition radius has also
been estimated from studies of the hard component of black
hole X-ray binary (BHXB) spectra. Narayan et al. (1996)
and Narayan, Barret, & McClintock (1997a) showed that
the spectra of quiescent BHXBs are reproduced well by
an ADAF model with a large transition radius, Rtr Dwhere is the Schwarzschild radius. In103È104RS, RSanother study Manmoto et al. (1996) showed that the X-ray
Ñuctuations that are seen in BHXBs could be explained as
due to slowly growing instabilities in an ADAF. They used
the timescale of individual X-ray shots to estimate the tran-
sition radius, assuming that the disturbances responsible for
the X-ray shots are initiated near the transition between the
ADAF and the standard disk.

There have been very few studies of the actual physical
mechanism responsible for the transition from the outer
standard disk to the inner ADAF. Nor do we discuss this
topic here. We limit ourselves to a study of the requirements
that an ADAF model must satisfy in order to be able to
connect to an outer standard disk. Three such requirements
have been identiÐed in the literature.

First, we note that the physical state of the accreting gas
in an ADAF away from the boundaries is described well by
a self-similar solution derived by NY (see Narayan, Kato, &
Honma 1997b ; Chen, Abramowicz, & Lasota 1997).
According to this solution, the temperature of the gas is
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close to the virial temperature and the radial velocity is
comparable to a times the free-fall velocity, where a is the
usual viscosity parameter. These features are a direct result
of the domination of advective energy transport in the
energy equation, which stabilizes these Ñows against the
runaway thermal instability that usually a†ects optically
thin accretion Ñows (Kato et al. 1997 ; Wu 1997). A major
problem when constructing ADAF models with a transition
is that the temperature and the radial velocity in an ADAF
are orders of magnitude larger than those of a standard disk
at the same radius. Therefore, if an ADAF is to be con-
nected radially to a standard disk, the Ðrst requirement is
that thermodynamic quantities like the temperature and
dynamical quantities like the radial velocity must change by
orders of magnitude in the transition region. This feature is
in some sense realized in numerical global ADAF models in
the literature where thin disklike outer boundary conditions
are imposed (e.g., Narayan et al. 1997b ; Manmoto et al.
1997 ; Nakamura et al. 1997).

The second requirement concerns the rotation of the
Ñow. Abramowicz, Igumenshchev, & Lasota (1998) noted
that the accreting gas in an ADAF near the transition
radius must rotate at a super-Keplerian angular velocity.
This is because there is a pressure maximum in the Ñow
whenever a standard disk is connected to an ADAF across
a narrow transition layer. Narrow transitions are seen in
numerical models (e.g., Narayan et al. 1997b).

The last and most important requirement is that an
ADAF that is connected to a standard disk on the outside
must have an outward energy Ñux (Kato & Nakamura
1998). This is required for the following reason. In any
steady standard disk model, the total energy Ñux passing
through a cylindrical surface (whose axis is the rotation
axis) is positive and at radius R, where M is(3/2)(GMM0 /R)
the mass of the central object and is the mass accretionM0
rate to the disk. Hence, an ADAF that is connected to a
standard disk at must have a positive total energy ÑuxRtrlarger than Otherwise, the ADAF cannot(3/2)(GMM0 /Rtr).connect thermally to the outer standard disk, since energy
loss by radiation will inevitably occur at the transition
region. The self-similar solution does not satisfy this
requirement, since the total energy Ñux is zero (Kato &
Nakamura 1998). This does not mean that the self-similar
solution is irrelevant, since some external heating may
occur in real systems, for example, via a corona (Meyer &
Meyer-Hofmeister 1994). However, for the one-zone models
we construct in this paper, such external energy sources are
not possible, and therefore we must require the ADAF to
have a net outward energy Ñux at the[[(3/2)(GMM0 /Rtr)]outer boundary in order to match the thin disk.

We refer to the above three requirements as ““ connection
conditions.ÏÏ

Honma (1996) was the Ðrst to construct models that
satisfy the connection conditions. He assumed that when
there is an entropy gradient in the radial direction in an
ADAF, the turbulence in the Ñow would be a source of
viscosity and at the same time would also transport energy
(see also NY). Since an ADAF has entropy decreasing
outward, the turbulent energy transport will carry energy
outward, thereby enhancing the supply of energy to the
outer disk.

In this paper, we consider ADAF models that connect to
outer standard disks. We derive the general form of the
outer boundary condition in an ADAF and construct

global models that satisfy these boundary conditions. We
investigate the e†ect of turbulent energy transport, a key
feature of HonmaÏs transition model, and we examine the
di†erences between global ADAF models with energy
transport and those without.

Honma (1996) also derived an analytical ADAF model
that satisÐes the connection conditions. The importance of
this solution is, however, not widely appreciated and the
nature of the solution has not been investigated in any
detail. One of the goals of this paper is to explore the degree
to which HonmaÏs solution accurately represents real global
solutions obtained by solving the equations numerically. To
this end, we compare the numerical global solutions of the
equations with HonmaÏs solution as well as NYÏs self-
similar solution. One of our aims is to understand the di†er-
ences between HonmaÏs and NYÏs solutions. We also extend
HonmaÏs solution to include the e†ect of radiative cooling.

The paper is organized as follows. In ° 2 we formulate the
basic equations. In ° 3 we study global ADAF models that
satisfy the connection conditions and examine the Bernoulli
parameter of such global models. In ° 4 we explore the
nature of HonmaÏs analytical solution and clarify the
regime of validity of the solution. We also clarify its relation
to NYÏs self-similar solution. We conclude with a discussion
in ° 5.

2. BASIC EQUATIONS

We consider a steady axisymmetric ADAF (L/Lt \
L/L/\ 0). We deÐne the vertically averaged pressure of the
optically thin, gas-pressureÈdominated gas as p \ ocs2,where o is the vertically averaged density and is the iso-csthermal sound speed. (See Narayan & Yi 1995a for a dis-
cussion of the interpretation of ““ vertical averaging ÏÏ in the
context of quasi-spherical ADAFs.) Assuming hydrostatic
balance in the vertical direction, we write the pressure scale
height as where is the Keplerian angularH \ cs/)K, )Kvelocity. Employing a simple dimensional argument, we
write the surface density as &\ 2Ho and the coefficient of
(kinematic) shear viscosity as (Shakura &l\ acs2/)KSunyaev 1973), where a is the viscosity parameter.

With these deÐnitions, the continuity equation, and the
radial and azimuthal components of the momentum equa-
tion take the form

M0 \ [4nRHov , (1)

v
dv
dR

] 1
o

d
dR

(ocs2) \ R()2[ )K2) , (2)

v
d

dR
(R2)) \ 1

RHo
d

dR
Aaocs2R3H

)K

d)
dR
B

. (3)

In equation (1), is the mass accretion rate, which isM0
deÐned to be positive for inÑow, i.e., positive when the
radial velocity v is negative. In equations (2) and (3), ) is the
angular velocity of the gas.

The energy equation of the ADAF takes the form

Qadv~ \Qvis` [ Qrad~ ] Qturb` . (4)

This equation gives the balance of the heating rate and
cooling rate per unit surface area. The viscous heating rate,

is given byQvis` ,

Qvis` \ 2aocs2R2H
)K

Ad)
dR
B2

. (5)
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As in NY, we introduce a parameter f that describes the
importance of radiative cooling Qrad~ ,

Qvis` [ Qrad~ \ fQvis` . (6)

The left-hand side of equation (4) is the advective cooling :

Qadv~ \&vT
ds
dR

\ 3(1 ] v)oHv
dcs2
dR

[ 2cs2Hv
do
dR

, (7)

where T is the temperature, s is the entropy, and v is a
parameter that is related to the ratio of speciÐc heats c
(NY) : v\ (5/3 [ c)/(c[ 1). We have v\ 0 when c\ 5/3
and v\ 1 when c\ 4/3. The last term on the right-hand
side of equation (4) is the heating due to turbulent energy
transport. This term was originally considered in the
context of convective energy transport by NY, and later
played an important role in HonmaÏs (1996) model of the
transition. Following Honma, we write asQturb`

Qturb` \ [ 1
R

d
dR

(2RHFturb) , (8)

where is the vertically averaged energy Ñux due toFturbturbulence :

Fturb \ [oK
T

T
ds
dR

\ [3(1 ] v)
a
T

ocs2
)K

dcs2
dR

] 2a
T

cs4
)K

do
dR

.

(9)

We have introduced a di†usion constant, associatedK
T
,

with the turbulent energy transport and have written it as
with a dimensionless parameter This isK

T
\ a

T
cs2/)K a

T
.

done purely on dimensional grounds, in analogy with the
Shakura-Sunyaev model of viscosity. The parameter a

Tintroduced here is identical to the convective transport coef-
Ðcient in NY.ac

3. GLOBAL SOLUTIONS

We compute global ADAF solutions by numerically inte-
grating equations (1)È(4) with proper boundary conditions
that satisfy the connection conditions. Let be the tran-Rtrsition radius (i.e., the outer boundary of the ADAF), and let
us deÐne Since the temperature at the boundaryx \ R/Rtr.is much lower than the virial temperature, we set atcs2\ 0
x \ 1. The condition that the Ñow is super-Keplerian at
x \ 1 requires that the term must have a(1/o)d(ocs2)/dR
Ðnite positive value (see eq. [2]). These two conditions lead
to

cs2\ c02(1[ x)] O(1[ x)2 , (10)

o \ o0(1[ x)~n ] O(1[ x)~n`1 , (11)

where and are constants and n is positive. We see thatc0 o0the boundary at x \ 1 is a singular point where the density
diverges. The value of n is easily seen to be n \ 3/2 from the
requirement that a Ðnite amount of angular momentum
should be transported outward at x \ 1. To determine c02and we expand all physical quantities around x \ 1 aso0,power series in (1[ x), and equate terms of the same power
in the basic equations. This procedure is given in the

Appendix. In the case of for example, we Ðnda
T

\ 0,

cs2
vK2

\ 2f
3(v] 2)g [ f

(1[ x) ] O(1[ x)2 , (12)

)2
)K2

\ 3(v] 2)g
3(v] 2)g [ f

]
C
1 [

A
3 [ 2

g
B
(1[ x) ] O(1[ x)2

D
, (13)

v
vK

\ [ 2af 2
g[3(v] 2)g [ f ]

(1[ x) ] O(1 [ x)2 , (14)

where

g \ [
Ad ln )
d ln R

B
R/Rtr

~1
(15)

is a free parameter that is given uniquely once the global
solution is obtained and and)K(R) \ (GM/R3)1@2 vK \ r)Kare the Keplerian angular velocity and the Keplerian azi-
muthal velocity in the Newtonian potential. We see from
equation (13) that we have a super-Keplerian rotation at

for an ADAF with g [ 0 (which is usually the case)r \Rtrand f \ 1.
The vertically integrated total energy Ñux W through the

boundary is given by (see the Appendix) :

W \ GMM0
Rtr

3(v] 2)g [ f
2(v] 2)g [ f

, (16)

where M is the mass of the central black hole. The energy
Ñux W is positive and larger than when(3/2)(GMM0 /Rtr)

g [
f

2(v] 2)
, (17)

which holds as long as which is usually satisÐed forg [ 14,ADAFs. Thus the above transition zone solution gives
general outer boundary conditions that are consistent with
the connection conditions.

Because of the singularity at the boundary, we terminate
the numerical solutions at x \ 0.99 and apply the boundary
conditions (12)È (14) at that point. We also impose a no-
torque condition (d)/dR\ 0) and an adiabatic condition
(ds/dR\ 0) at the inner boundary at where isR\RS, RSthe Schwarzschild radius. We adjust the speciÐc angular
momentum swallowed by the black hole using a relax-lination scheme such that the solution satisÐes the standard
regularity conditions at the sonic point (e.g., Honma 1996 ;
Narayan et al. 1997b). The no torque condition has
no e†ect on the outer boundary. To simulate relativistic
e†ects near the central black hole, we use &Paczyn� ski
WiitaÏs (1980) pseudo-Newtonian potential and set
)K(R)/(GM/R3)1@2 \ R/(R[ RS).

3.1. Parameter Dependences of Global Solutions
Figure 1 shows the a-dependence of the numerical global

solutions. The results are similar to those obtained by
others, e.g., Narayan et al. (1997b) and Chen et al. (1997).
The sound speed is essentially independent of a, whilec

sthe speciÐc angular momentum l \ )R2 and the density
o decrease with increasing a. Near the outer boundary,
however, both and l are independent of a, while o iscssensitive to the value of a. This is due to the fact that and lcsin the transition zone solution (12)È(14) given in the pre-
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FIG. 1.ÈNumerical global solutions for v\ 0, and three values of a. L eft panel : Isothermal sound speed Center panel : Density o. Rightrtr \ 104RS, cs.panel : SpeciÐc angular momentum l. Solid lines correspond to a \ 0.1, dashed lines to a \ 1.0, and dotted lines to a \ 0.01. The long-dashed line in the right
panel represents the Keplerian angular momentum. All quantities shown here are independent of the mass of the central object and the mass accretion rate,
except for density. The density depends on the mass accretion rate as where and is the Eddington mass accretion rate (deÐned witho P m5 , m5 \M0 /M0 Edd M0 Eddan efficiency factor of 0.1). In this and subsequent Ðgures, the density corresponds to m5 \ 0.01.

vious section do not depend explicitly on a, while v does,
and this a†ects o through the continuity equation.

Figure 2 shows the v-dependence of the global solution
(solid curves). We consider two extreme values of v in this
paper : v\ 0, which corresponds to c\ 5/3, and v\ 4/3,
which corresponds to c\ 4/3. When v is changed from zero
to unity, keeping other physical parameters Ðxed, csdecreases and o increases. This is again obvious from the
transition solution (12)È(14). Figure 2 also shows that the
e†ect of turbulent energy transport on the global solution is
small. Interestingly, the solution corresponding to a

T
\ a,

v\ 1 asymptotically approaches that for v\ 0 neara
T

\ 0,
the outer boundary. This is consistent with the expectations
of HonmaÏs analytical solution as discussed in ° 4.

3.2. Bernoulli Parameter
Narayan & Yi (1994) showed that the Bernoulli param-

eter b (4Bernoulli in their self-similar solutionconstant/v
K
2 )

is given by

b \ 1
vK2
A1
2

v2] 1
2

)2R2[ t] c
c[ 1

cs2
B

\ [)2R2
2vK2

]
A c
c[ 1

[ 5
2
B cs2

vK2
B

3v[ v@
5 ] 2v@

, (18)

where t is the gravitational potential energy, v@\ v/f, and
the last relation is for the approximation of a > 1. It is seen

that b is zero for v\ 0 and is positive for v[ 0 and f[ 13.
In the absence of viscous and turbulent energy transport,

the Bernoulli constant, is a conserved quantity. Thus ifbvK2 ,
the accreting gas has a positive Bernoulli parameter at a
certain radius, and if some physical process allows the gas
to Ñow outward, both adiabatically and without viscous
stresses, then the gas will be able to reach inÐnity with
positive energy (Narayan & Yi 1994, 1995a). As Abramo-
wicz, Lasota, & Igmenshchev (1999) have pointed out (see
also Narayan & Yi 1994), however, the Bernoulli constant
must be negative at the event horizon when proper bound-
ary conditions are imposed. In addition, the Bernoulli con-
stant in a standard thin disk is always negative. Hence, in
ADAF models in which the gas makes a transition from a
thin disk on the outside and falls into a black hole on the
inside, the Bernoulli constant is negative at both boundaries.

Nakamura (1998) showed, using HonmaÏs analytical
solution, that the Bernoulli constant for v\ 0 is negative
except for the innermost region of ADAFs. As we will show
later, however, HonmaÏs solution is not a good approx-
imation to the inner regions of an ADAF. This motivates us
to consider the Bernoulli parameter in the numerical global
solutions. The positivity of the Bernoulli constant is due to
energy transport from the inner to outer regions of the Ñow.
Some energy transport occurs via viscosity, but we expect
that turbulence will enhance the outward energy transport
and make the Bernoulli parameter larger (even though the

FIG. 2.ÈNumerical global solutions for two values of v, 0 and 1, and two values of (solid lines) and (dashed lines). The modelsa
T
: a

T
\ 0 a

T
\ a

correspond to a \ 0.1 and L eft panel : Isothermal sound speed Center panel : Density o (for Right panel : SpeciÐc angularRtr\ 104RS. cs. m5 \ 0.01).
momentum l. The long-dashed line in the right panel represents the Keplerian angular momentum.
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inclusion of a turbulent does not modify the structure ofa
Tthe Ñow very much ; see Fig. 2). We investigate this question

numerically.
Figure 3 shows the Bernoulli parameter of global solu-

tions with various values of Also plotted are the con-Rtr.stant values calculated from NYÏs self-similar solution. We
notice that, even though the Bernoulli parameter is negative
at the outer boundary and zero at the horizon, it is positive
over a wide range of radius in the interior, especially when

is large. (Note that the Bernoulli parameter b is pro-Rtrportional to because it is normalized by In(R/RS [ 1) vK2 .
our calculations, the Bernoulli constant at the horizon isbvK2actually negative and even less than that at the outer
boundary, as demanded by the no torque condition at the
horizon ; see Abramowicz et al. 1999.) Even in the case of
v\ 0, where NYÏs self-similar solution gives b \ 0 and
HonmaÏs analytical solution gives b \ 0 everywhere except
for a localized innermost region (Nakamura 1998), the
numerical models give a positive b over a fairly wide range
of radius. In the case of v\ 1, and large (e.g.,a

T
\ 0, Rtrthe maximum value of b in the numerical solution104RS),approaches the analytical value given by NY.

A point worth emphasizing is that energy transport due
to turbulence enhances the value of b in the case of v\ 1
and large The case of vD 1 is really expected because ofRtr.the frozen-in turbulent magnetic Ðeld (Narayan & Yi
1995b). In such a case we can perhaps expect further a

T
\ a.

We also found that even when the viscosity is small
(a \ 0.01), results are qualitatively the same as in the case of
a \ 0.1, although the maximum value of b is D0.1 in the
case of v\ 1, which is di†erent from the results given in
Abramowicz et al. (1999).

We conclude that the outÑow might be expected in an
ADAF, as suggested by Blandford & Begelman (1998),
because a necessary condition for outÑows (b [ 0) is
satisÐed in the wide range of radius even when v is close to
zero and the viscosity is small. One should note, however,
that positivity of b by itself is not the sufficient condition
for outÑows ; there are additional two requirements, which
are not easy to arrange : (1) the streamlines of the inÑowing
gas are somehow directed outward (NY) and (2) the out-

Ñowing gas is able to escape inÐnity adiabatically and invis-
cidly keeping positivity of b. We should comment as to the
Ðrst requirement. It is unlikely that ADAFs can produce
outÑows of purely hydrodynamical origin, considering that
the several two-dimensional time-dependent numerical
models (e.g., Abramowicz et al. 1999) show that all matter
enters the black hole, yet b is positive, as is claimed by
Abramowicz et al. (1999). We further repeat the one of the
statements in Abramowicz et al. (1999) : the outÑow from an
ADAF might occur as a result of nonhydrodynamical
factors such as large-scale global magnetic Ðelds and radi-
ation, which cannot be modeled in the value of v. In any
case, one of necessary conditions for outÑow is cleared by
positivity of b in the wide region, but more considerations
are necessary to judge theoretically whether outÑows from
ADAFs are really expected or not.

4. ANALYTICAL SOLUTIONS

4.1. HonmaÏs Solution
Neglecting the inertial term vdv/dR in equation (2),

Honma (1996) found an analytical solution that satisÐes the
connection conditions. In terms of x as deÐned in this
paper, HonmaÏs solution takes the form

v\ [a25(1[ x)vK(R) , (19)

)\ J65 x1@2)K(R) , (20)

cs \ [25(1[ x)]1@2vK(R) . (21)

Near the outer boundary (x D 1), the temperature decreases
sharply and the rotation becomes super-Keplerian, as
required by the connection conditions.

It is easy to show that HonmaÏs solution satisÐes equa-
tions (1)È(3), provided the inertial term can be neglected.
The condition under which the solution satisÐes equation
(4) is found to be

A
1 [ a

T
a
B
v] 2(1[ f )x \ 0 . (22)

Thus the solution is valid if f \ 1 and either one of two
conditions is satisÐed : (1) v\ 0 (Kato & Nakamura 1998)

FIG. 3.ÈBernoulli parameter b as a function of radius. L eft panel : Models with v\ 0. Right panel : Models with v\ 1. Global solutions with Rtr\ 100RS,are shown. Solid lines correspond to models with and dotted lines to models with The dashed lines and theRtr\ 1000RS, Rtr \ 104RS a
T

\ 0 a
T

\ a.
long-dashed line represent the values of b predicted by NYÏs self-similar solution with and respectively.a

T
\ 0 a

T
\ a,
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or (2) (Honma 1996). Even when equation (22) is nota
T

\ a
satisÐed, the solution is still found to be a good approx-
imation to the Ñow around the transition zone (x D 1), as
we show in ° 4.3.

Because HonmaÏs solution neglects the inertial term, it is
invalid for small x, where v is no longer negligible compared
to cs.

4.2. T he Self-Similar Solution
In this subsection we give an extended form of NYÏs self-

similar solution, taking into account the e†ect of turbulent
energy transport. Assuming v@ to be constant and all the
physical variables with the dimensions of velocity to be
proportional to the Keplerian velocity vK(R)\ (GM/R)1@2,
we have the following solution :

v\ [
A
5 ] 2v@[ 4

3
a
T
a

v@
B g(a, v@)

3a
vK(R) , (23)

)\
G2v@[5]2v@[(4/3)(a

T
/a)v@][1[(2/3)(a

T
/a)]g(a, v@)

9a2
H1@2

] )K(R) , (24)

cs \
G2[5] 2v@[ (4/3)(a

T
/a)v@]

9
g(a, v@)

a2
H1@2

vK(R) , (25)

g(a, v@)4
G
1 ] 18a2

[5 ] 2v@[ (4/3)(a
T
/a)v@]2

H1@2[ 1 . (26)

This reduces to the original self-similar solution of Narayan
& Yi (1994) in the limit of a

T
\ 0.

Let us compare the self-similar solution to HonmaÏs solu-
tion. First, the self-similar solution has no outer boundary,
while HonmaÏs solution does. Second, the self-similar solu-
tion naturally reduces to a standard disk in the limit of very
efficient cooling, f] 0 and v@] O, while HonmaÏs solution
satisÐes the equations only for f\ 1 (fully advection-
dominated Ñow). The self-similar solution can connect to an
outer standard disk, as far as the temperature is concerned,
by moving f to 0 by hand as a function of radius, but the
rotation is always sub-Keplerian and the energy Ñux
outward is always zero, which contradicts the other two
connection conditions. Third, when v\ 0, the self-similar
solution gives a Bondi-type accretion Ñow with no rotation,

while HonmaÏs solution gives a rotating Ñow. Fourth, when
we include turbulent energy transport, the self-similar solu-
tion gives a nonrotating Ñow for whereasa

T
\ 3/2a,

HonmaÏs solution rotates for all values of (Note that wea
T
.

expect in general, so this di†erence is not of practicala
T

[ a
consequence.)

4.3. Comparison of Analytical and Global Solutions
In this subsection we compare the two analytical solu-

tions described above with the global solutions obtained
numerically in the previous section.

Consider Ðrst the case of v\ 0. In this case, HonmaÏs
solution satisÐes the equations for any value of so longa

T
,

as the inertial term in equation (2) may be neglected. More-
over, the solution is independent of the value of whicha

T
,

can be understood by considering the energy Ñux due to
turbulent transport (eq. [9]) :

4nRHFturb P a
T

A
2 ] v

x
B

. (27)

We see that, when v\ 0, is a constant indepen-4nRHFturbdent of radius. Therefore, even though the magnitude of the
energy Ñux does depend on nevertheless, the turbulenta

T
,

heating term is zero because the divergence of the ÑuxQturb`
vanishes. Of course, in the full global solutions with proper
boundary conditions, must be zero at the eventFturbhorizon (where the Ñow is adiabatic) and hence mustQturb`
be negative in the innermost region of the Ñow. This e†ect is
not reproduced by the analytical solution.

Figure 4 compares HonmaÏs analytical solution with the
global solution for v\ 0 and The outer boundary isa

T
\ 0.

set at Notice that is very nicely Ðtted byRtr\ 104RS. csHonmaÏs solution at all radii (left panel). However, the solu-
tion does not Ðt the proÐles of the density or the speciÐc
angular momentum in the inner region of the Ñow. The
discrepancy is a factor of D10 for the density and D100 for
the angular momentum. Surprisingly, the Ðt is poor even in
an intermediate region, where the inertialr D 100È1000RS,term is negligible. The solution does accurately describe the
structure of the outer boundary layer where the density
increases sharply and the rotation becomes super-
Keplerian.

Figure 5 shows the e†ect of moving the outer boundary
to The sound speed is still Ðtted well byr \ 100RS. csHonmaÏs analytical solution for a wide range of radius, but
the region where the solution gives a good Ðt to o and l

FIG. 4.ÈComparison of numerical global solutions with HonmaÏs analytical solution for v\ 0, a \ 0.1, L eft panel : Isothermala
T

\ 0, Rtr \ 104RS.sound speed Center panel : Density o (for Right panel : SpeciÐc angular momentum l. Solid lines represent the numerical solutions and dashedcs. m5 \ 0.01).
lines show HonmaÏs solution. The long-dashed line in the right panel represents the Keplerian angular momentum.
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FIG. 5.ÈSimilar to Fig. 4, but for Rtr \ 100RS

becomes narrower. As in the previous case, the region near
the transition radius is represented well.

Now, let us proceed to the case of v\ 1. Figure 6 com-
pares HonmaÏs analytical solution and NYÏs self-similar
solution with the numerical global solution for Wea

T
\ 0.

see that in the region near the outer boundary, HonmaÏs
solution once again accurately traces the global solution,
while NYÏs self-similar solution does not represent the
structure of this zone. In the intermediate zone, however,
NYÏs self-similar solution gives a better Ðt to the proÐles of

and l. In this sense, the two solutions are complementary.csNYÏs self-similar solution gives a good approximation in
the intermediate zone (as already noted by Narayan et al.
1997b), while HonmaÏs solution represents well the struc-
ture of the transition region.

Figure 7 shows a solution with v\ 1 and a smaller rtr\Now we see that both analytical solutions give poor100RS.Ðts to the global solutions. Only HonmaÏs solution barely
Ðts the outermost part of the Ñow correctly. Thus we con-
clude that when the transition radius is as small as Rtr\we have no analytical solution that can represent the100RS,inner parts of the Ñow, especially the density and angular
momentum. This is due to the fact that in both HonmaÏs
and NYÏs analytical solutions the transonic nature of the
Ñow near the black hole is not taken into account.

4.4. E†ect of Cooling
We extend HonmaÏs solution, which only treats fully

advection-dominated Ñows ( f \ 1), to the case of ADAFs
with partial cooling ( f \ 1). Introducing a new parameter a,

FIG. 6.ÈComparison of numerical global solutions with HonmaÏs and NYÏs analytical solutions for v\ 1, a \ 0.1, L eft panel :a
T

\ 0, Rtr\ 104RS.Isothermal sound speed Center panel : Density o (for Right panel : SpeciÐc angular momentum l. Solid lines correspond to the numericalcs. m5 \ 0.01).
solutions, dashed lines to HonmaÏs analytical solution and dotted lines to NYÏs analytical self-similar solution. The long-dashed line in the right panel
represents the Keplerian angular momentum.

FIG. 7.ÈSimilar to Fig. 6, but for Rtr \ 100RS
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which we show below to be related to the value of f, we
consider the following extended form of HonmaÏs solution :

v\ [a
(3[ a)

5
(1[ xa)vK(R) , (28)

)\
Sa ] 5

5
xa@2)K(R) , (29)

cs\ J25(1[ xa)1@2vK(R) . (30)

Substitution shows that equations (1)È(3) are automatically
satisÐed. The condition under which equation (4) is satisÐed
is found to be a generalization of equation (22) :

f\ 12a(3[ a)[ 24(a
T
/a)(1[ a)a

(a ] 5)(3[ a)2 , and v\ 0 . (31)

The Ðrst condition gives a relation between f and a.
In Figure 8 we show global solutions with f\ 0.5 without

turbulent energy transport a \ 0.565), and we(a
T

\ 0,
compare these with the analytical solution given above.
Once again, the analytical solution Ðts very well for all Rcsand Ðts o and l well in the outer regions. As before, the
analytical solutions for o and l deviate signiÐcantly from the
numerical results in the inner regions.

5. SUMMARY AND DISCUSSION

In this paper, we identiÐed three ““ connection
conditions ÏÏ which ADAF models should satisfy in order to
be able to connect to standard thin disks : (1) the tem-
perature and velocity of the gas should change by orders of
magnitude in the transition region between the ADAF and
the thin disk, (2) there should be super-Keplerian rotation
in the transition region, and (3) there should be an outward
energy Ñux. We derived a general form of the outer bound-
ary conditions that global ADAF models must satisfy in
order to be consistent with the three connection conditions.
With these boundary conditions, we calculated numerical
global ADAF models.

The interior regions of our global solutions show the
same dependences on the a viscosity parameter as those
described in the literature (e.g., Narayan et al. 1997b),
namely, we Ðnd lower angular momentum and lower
density of the gas for larger values of a (Fig. 1). At the outer
boundary, however, we Ðnd that all physical quantities
except v and o are independent of a. We also examined the

e†ect of turbulent energy transport on the global structure
of ADAFs and found little e†ect, especially in the case of
v\ 0 (Fig. 2). In a sense, the presence of the energy Ñux
due to turbulence is hidden in the Ñow (since the divergence
of the Ñux is close to zero), until it reaches the outer tran-
sition zone. A small deviation from 4nRHFturb\ constant
is, however, enough to produce a signiÐcant e†ect on the
Bernoulli parameter b of the Ñow (Fig. 3).

In all our global models we Ðnd the Bernoulli parameter
to be positive for a wide range of radii even though it is
negative at the outer boundary and zero at the horizon (Fig.
3). Even in the case of v\ 0, where analytical work suggests
that b should be either zero (NY) or negative except for a
narrow inner region in the case of a large a

T
(\a)

(Nakamura 1998), we Ðnd a positive value of b over a range
of radii ; however, the value of b is not very large. In the case
of v\ 1, b is signiÐcantly larger and approaches the value
derived by Narayan & Yi (1994) from their self-similar solu-
tion, when Turbulent energy transport enhances thea

T
\ 0.

value of b still further by pumping out energy from the
innermost region of the Ñow to the outside, although the
value is below that derived from the self-similar solution for

The e†ect is particularly noticeable when v\ 1 anda
T

\ a.
is large. We suggest that under these conditions ADAFsRtrmay have particularly powerful outÑows (Narayan & Yi

1994, 1995a ; Blandford & Begelman 1998).
In this paper we have followed NY and Honma (1996)

and assumed that the turbulent energy Ñux is proportional
to (the negative of) the entropy gradient. This is similar to
the prescription that is used to model convective heat trans-
port in stellar interiors. Sometimes in the literature, e.g.,
Gruzinov (1999), the turbulent energy Ñux is assumed to be
proportional to the temperature gradient (as for microscopic
thermal conduction). This is not easy to justify for turbulent
transport in a compressible medium since a simple mixing-
length theory of turbulent convection indicates that thermal
energy is transported down the entropy gradient.

One of the main motivations of this paper was to
compare numerical global ADAF solutions with two ana-
lytical solutions in the literature, namely those of Honma
(1996) and NY. The comparisons are shown in Figures 4È8.

HonmaÏs solution provides an excellent approximation
for the sound speed over the whole range of R but Ðts thecsdensity o and the speciÐc angular momentum l only near
the outer boundary. In contrast, NYÏs self-similar solution
is invalid near the outer boundary but gives a reasonable

FIG. 8.ÈComparison of the numerical global solution with an extension of HonmaÏs analytical solution described in the paper. The case shown
corresponds to v\ 0, a \ 0.1, f\ 0.5, a \ 0.565, L eft panel : Isothermal sound speed Center panel : Density o (for Righta

T
\ 0, Rtr\ 104RS. cs. m5 \ 0.01).

panel : SpeciÐc angular momentum l. Solid lines correspond to the numerical solution, and dashed lines to the analytical solution. The long-dashed line in the
right panel represents the Keplerian angular momentum.
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approximation for the global solution at intermediate radii,
especially when v\ 1. Thus, HonmaÏs solution and NYÏs
self-similar solution are complementary to each other ; the
former is good in the transition region near the outer
boundary and the latter is better away from the boundary.

Unfortunately, neither analytical solution is very good as
we approach the sonic radius near the black hole, and we
have not succeeded in deriving a third analytical approx-
imation to represent this region of the Ñow. The lack of a
reliable approximation for the inner regions of the Ñow is
particularly serious when is small, say InRtr RtrD 100RS.this case, neither of our two analytical forms Ðts the global
solution well except in the region very close to the outer
boundary, where HonmaÏs solution is barely a good
approximation.

As part of our analysis, we have extended HonmaÏs solu-
tion to include the e†ect of partial cooling ( f\ 1) in the case
of v\ 0. Once again, the extended solution accurately rep-
resents the physical quantities near the outer boundary. We
thus conclude that HonmaÏs solution represents well the
structure of the transition region of ADAFs for a variety of
conditions.

We would like to emphasize that HonmaÏs solution and
NYÏs self-similar solution are distinct in the sense that
HonmaÏs solution cannot be expressed as the limiting case
of the self-similar solution or vice versa. This is most easily
seen by considering the slopes of the angular momentum
proÐles in Figure 6. The self-similar solution has d ln )/
d ln R\ [3/2, while HonmaÏs solution has d ln )/
d ln R\ [1, and this does not change even if the transition
radius tends to inÐnity.

Given that there are two distinct analytical solutions,
which one does nature choose? The answer perhaps
depends on the outer boundary condition. If the mass to an
ADAF is supplied by a wind, as in high-mass X-ray binaries
or the Galactic center source Sagittarius A*, or from a
quasi-spherical Bondi-like inÑow, as in cooling Ñows in the
nuclei of elliptical galaxies, the gas may make a smooth
transition directly into something resembling the NY self-
similar solution. On the other hand, if the mass is supplied
from a standard disk, as in Roche-lobe overÑow fed X-ray
binaries or some LINER galaxies like NGC 4258, the tran-
sition is likely to be represented by HonmaÏs solution, at

least in the transition region. Even in this case, the self-
similar solution might be a better representation of the Ñow
inside the transition region.

Last, we should emphasize that although we have con-
structed ADAF models that satisfy the necessary
““ connection conditions,ÏÏ our models are still incomplete.
We do not determine the value of the transition radius, for
instance. For this we need to consider the detailed thermal
structure of the transition region, with a full treatment of
radiative cooling. When such a calculation is done self-
consistently, the connection between the ADAF solution we
have calculated and the outer disk will presumably occur
over a narrow transition region where the angular velocity
would decrease from the super-Keplerian rotation of the
ADAF to the Keplerian rotation of the outer disk. Conceiv-
ably, the speciÐc angular momentum may decrease with
increasing radius in this layer (Honma 1996), in which case
the transition region would violate the Rayleigh stability
criterion and might be unstable. (A careful discussion is,
however, necessary to judge whether the instability really
occurs, since in the region where the speciÐc angular
momentum decreases with increasing radius the e†ective
gravity is directed outward, and the convectively stable
density stratiÐcation would strongly resist the instability.)
Inside the super-Keplerian zone, there is a zone where the
density increases outward even though the rotation is sub-
Keplerian. In this region we may expect Rayleigh-TaylorÈ
like instabilities. We feel that the instability may have
interesting consequences. For instance, the instability could
be the source of the strong time variability seen in the hard
state of X-ray binaries (see Manmoto et al. 1997). It may
also provide the strong turbulent energy transport that is
needed in the transition layer in order to cause the cold gas
in the disk to evaporate into the ADAF (Honma 1996).
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APPENDIX A

SOLUTIONS NEAR THE BOUNDARY AND ENERGY FLUX THROUGH THE BOUNDARY

Let us introduce dimensionless variables g, byf 8, h8

f 8\ cs2
vK2

, (A1)

g \ [
Ad ln )
d ln R

B~1
, (A2)

h8 \ )2
)K2

. (A3)

We consider Ðrst the case when The equation of radial force balance, and the equations describing the conservation ofa
T

\ 0.
angular momentum and thermal energy then take the forms (Honma 1996)

a2f 8 2
2g2

A
1 [ 2

d ln f 8
d ln x

B
] 5

2
f 8] 1

2
x

df 8
dx

[ d ln g
d ln x

f 8[ 1 ] h8 \ 0 , (A4)
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2
g

\ 3 [ d ln h8
d ln x

, (A5)

[ 3
2

(v] 2)
df 8
dx

] 3
2

vf 8] d ln g
d ln x

\ h8
g

f . (A6)

Following the text, we expand around x \ 1 asf 8

f 8\ f0(1[ x) ] f1(1[ x)2] É É É . (A7)

Since g and have Ðnite values at x \ 1, we expand them ash8

g \ g0] g1(1[ x) ] É É É , (A8)

h8 \ h0] h1(1[ x) ] É É É . (A9)

Equating the zeroth- and Ðrst-order terms in (1 [ x) in equation (A4), respectively, we have

12 f0\ 1 [ h0 , (A10)

3f0] f1[ g1
g0

f0\ [h1 . (A11)

Similarly, the zeroth-order terms of equation (A5) give

2
g0

\ 3 [ h1
h0

, (A12)

and the zeroth- and Ðrst-order terms in equation (A6) give

[ 3
2

(v] 2) f0\ h0
g0

f , (A13)

[ 3
2

(v] 2)(2f1] f0) ]
3
2

vf0] f0
g1
g0

\ h0
g0

Ah1
h0

[ g1
g0

B
f . (A14)

The above Ðve equations are simultaneous algebraic equations for six coefficients and They can be( f0, f1, g0, g1, h0, h1).
solved with one free parameter, say Results are shown in the text, where is written simply as g. Coefficients of higherg0. g0order terms in (1 [ x) of g, and may be derived by expanding equations (A4)È(A6) to higher powers with respect to (1[ x).f 8, h8

In the case of the order of the di†erential equation that describes the energy equation increases. Corresponding toa
T

D 0,
this, when we carry out expansions of the basic equations with respect to (1 [ x), two free parameters, say and appear.g0 g1,
Except for this, the procedure is the same as above and is straightforward. The results are not given here, however, since the
expressions are somewhat lengthy. The two free parameters are, of course, determined uniquely when a global solution is
obtained.

The total energy Ñux, W , carried outward in the radial direction through a cylindrical surface at radius R is generally
written as

W \ M0
A1
2

v2] 1
2

)2R2[ t] c
c[ 1

cs2
B

] 4nRHFturb[ 4nR3aocs H2 d)
dR

) . (A15)

For simplicity, we consider again the case of Then, by using the dimensionless variables introduced above, we havea
T

\ 0.

W \ [ 1
2

M0 c2 1
x
Ca2

2
f 8 2
g2 [ 1 [ 1

2
h8 ] 3

4
(v] 2)

D
. (A16)

In the lowest order of expansion with respect to (1[ x), we have at x \ 1

W \ 12M0 c2(1] 12h0) , (A17)

which gives the expression given in the text. The next term in the expansion vanishes identically, as is to be expected by the
constancy of the Ñux.

In the case of the expression for the energy Ñux through the boundary is more complicated and is not given.a
T

D 0,
However, the Ñux is certainly directed outward, since the turbulent heat Ñux is always outward.
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