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ABSTRACT

Radiatively inefficient accretion flows onto black holes are unstable due to

both an outwardly decreasing entropy (“convection”) and an outwardly decreas-

ing rotation rate (the “magnetorotational instability”; MRI). Using a linear mag-

netohydrodynamic stability analysis, we show that long-wavelength modes with

λ/H ≫ β−1/2 are primarily destabilized by the entropy gradient and that such

“convective” modes transport angular momentum inwards (λ is the wavelength of

the mode, H is the scale height of the disk, and β is the ratio of the gas pressure to

the magnetic pressure). Moreover, the stability criteria for the convective modes

are the standard Høiland criteria of hydrodynamics. By contrast, shorter wave-

length modes with λ/H ∼ β−1/2 are primarily destabilized by magnetic tension
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and differential rotation. These “MRI” modes transport angular momentum out-

wards. The convection-dominated accretion flow (CDAF) model, which has been

proposed for radiatively inefficient accretion onto a black hole, posits that inward

angular momentum transport and outward energy transport by long-wavelength

convective fluctuations are crucial for determining the structure of the accretion

flow. Our analysis suggests that the CDAF model is applicable to a magnetohy-

drodynamic accretion flow provided the magnetic field saturates at a sufficiently

sub-equipartition value (β ≫ 1), so that long-wavelength convective fluctuations

with λ/H ≫ β−1/2 can fit inside the accretion disk. Numerical magnetohydro-

dynamic simulations are required to determine whether such a sub-equipartition

field is in fact obtained.

Subject Headings: accretion — accretion disks — black hole physics — convection

— instabilities —MHD — turbulence

1. Introduction

Models of radiatively inefficient accretion flows provide a useful framework for interpret-

ing observations of low-luminosity black hole X-ray binaries and active galactic nuclei (see,

e.g., Narayan, Mahadevan & Quataert 1998; Quataert 2001; Narayan 2002 for reviews). In

the past few years, there has been rapid theoretical progress in understanding the dynamics

of such flows. Much of this advance has been driven by numerical simulations. In particular,

a number of hydrodynamic simulations have been reported in which angular momentum

transport is put in “by hand” using an α prescription (e.g., two-dimensional simulations by

Igumenshchev, Chen, & Abramowicz 1996; Igumenshchev & Abramowicz 1999, 2000; Stone,

Pringle, & Begelman 1999; and three-dimensional simulations by Igumenshchev, Abramowicz

& Narayan 2000). Such simulations reveal a flow structure very different from advection-

dominated accretion flow models (ADAFs) that were proposed to describe the structure of

radiatively inefficient accretion flows (Ichimaru 1977; Narayan & Yi 1994; Abramowicz et

al. 1995). In an ADAF, the gas accretes rapidly, and the gravitational potential energy of

the accreting gas is stored as thermal energy and advected into the central black hole. By

contrast, in the hydrodynamic simulations, the rate of mass accretion is much smaller and

strong radial convection efficiently transports energy outwards. The simulations have been

interpreted in terms of a “convection-dominated accretion flow” model (CDAF; Narayan,

Igumenshchev & Abramowicz 2000; Quataert & Gruzinov 2000; Abramowicz et al. 2002).

In a CDAF, convection simultaneously transports energy outwards and angular momentum

inwards, strongly suppressing the accretion rate onto the central black hole.



– 3 –

The relevance of the hydrodynamic simulations, and the CDAF model derived from

them, is unclear. This is primarily because of the ad hoc treatment of angular momentum

transport. It is believed that angular momentum transport in accretion flows is primarily due

to MHD turbulence initiated by the magnetorotational instability (MRI; Balbus & Hawley

1991; BH91). Balbus & Hawley have argued that, because of the fundamental role played by

magnetic fields, hydrodynamic models typically cannot describe the structure of the accretion

flow (or differentially rotating systems more generally; e.g., Balbus & Hawley 1998; Balbus

2000; 2001). They have applied this criticism in detail to the CDAF model (Hawley, Balbus,

& Stone 2001; Balbus & Hawley 2002; hereafter BH02). In an independent argument, BH02

also suggest that CDAF models violate the second law of thermodynamics. We do not

consider this issue here, but intend to deal with it in a separate paper.

In this paper we discuss the physics of the CDAF model within the framework of MHD.

Apart from clarifying the theoretical underpinnings of the CDAF model, we believe that our

analysis also provides a useful illustration of the conditions under which a hydrodynamic

model is applicable to an intrinsically magnetohydrodynamic situation; this is important in

other astrophysical contexts, e.g., the excitation of density waves at Lindblad resonances in

a magnetized accretion flow, or diskoseismology models of QPOs.

The paper is organized as follows. In §2 we discuss the linear stability of a differentially

rotating and thermally stratified plasma in the presence of a weak vertical magnetic field.

We identify and explain the difference between “convective” modes and “MRI” modes and

show that the former transport angular momentum inwards while the latter usually transport

angular momentum outwards. Then, in §2.1 we generalize this result to an arbitrary field

orientation and arbitrary stratification. In §3 we discuss the implications of our results.

In particular, we use the linear analysis to speculate about the conditions under which the

saturated nonlinear turbulence in an accretion flow might give rise to a CDAF-like structure.

In §4 we summarize our results.

2. Convective Modes in a Magnetized Differentially Rotating Plasma

We consider the linear stability of a differentially rotating and thermally stratified

plasma in the presence of a weak magnetic field. We specialize to the case of a vertical

magnetic field, Bz ≡ B, and modes with purely vertical wavevectors, kz ≡ k. We also take

the rotation rate, pressure, and density to be constant on cylinders, i.e., Ω(R), P (R), and

ρ(R). We thus employ the same equations as those in BH02 (which are a simplification of

the more general analysis in BH91). Although the problem we analyze is identical to that

considered by BH02, we differ in the interpretation of the results. In particular, we identify
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a set of modes that have all the features of growing convective modes in hydrodynamics,

including inward transport of angular momentum.

The thermal stratification of the flow can be described by the Brunt-Väisälä frequency,

N2 = −N2

R =
3

5ρ

∂P

∂R

∂ lnPρ−5/3

∂R
. (1)

In the absence of rotation, the system is convectively unstable if N2 > 0. In a rotating

medium, but ignoring magnetic fields, convection is present only if N2 > κ2, where κ2 =

4Ω2 + dΩ2/d lnR is the epicyclic frequency.2 Note that N2 > κ2 requires a sound speed

comparable to the rotation speed.

For a weakly magnetized medium, BH91 derived the behavior of linear perturbations

including the effects of thermal stratification. For fluid displacements of the form ξ ∝
exp[ikz+ γt], and for the particular geometry considered here, the growth rate γ is given by

γ2 = −(kvA)
2 +

1

2

[

N2 − κ2 ±
√

(N2 − κ2)2 + 16Ω2(kvA)2
]

, (2)

where vA = B/
√
4πρ is the Alfvén speed. For the remainder of this section we focus on the

growing mode in equation (2); this has γ2 > 0 and corresponds to the positive sign of the

square root term. In the Appendix we present a more general analysis of both growing and

oscillatory modes that helps clarify some of the issues discussed in this section.

To understand the physics behind the dispersion relation in equation (2) consider the

equations for the radial and azimuthal displacements of fluid elements (BH91):

∂2ξR
∂t2

− 2Ω
∂ξφ
∂t

= −
(

dΩ2

d lnR
+ (kvA)

2

)

ξR +N2ξR, (3)

∂2ξφ
∂t2

+ 2Ω
∂ξR
∂t

= −(kvA)
2ξφ. (4)

Solving equation (4) for ξφ we can substitute into equation (3) to find

∂2ξR
∂t2

= aH + aM,s + aM,d, (5)

where the three acceleration terms are of the form

aH = (N2 − κ2)ξR, aM,s = −(kvA)
2ξR, aM,d =

[

4Ω2k2v2A
γ2 + k2v2A

]

ξR. (6)

2The requirements for convection in an unmagnetized rotating medium are the Høiland criteria (e.g.,

Tassoul 1978). These reduce to the condition N2 > κ2 for the case considered here. For simplicity, we will

refer to this condition as the Høiland criterion in this section. §2.1 treats the general case.
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Since ∂2ξR/∂
2t = γ2ξR it is straightforward to solve equation (5) and obtain the dispersion

relation in equation (2).

The first acceleration term in equation (5), aH , is a pure “hydrodynamic” or “Høiland”

term (hence the subscript H) which is present even in the absence of magnetic fields. This

term can be either stabilizing or destabilizing; it is stabilizing when N2 < κ2 (the medium

is convectively stable by the Høiland criteria) and destabilizing when N2 > κ2 (convectively

unstable). The second and third terms in equation (6) owe their existence to the magnetic

field (hence subscript M). One of them is always stabilizing (subscript s) and the other is

always destabilizing (subscript d).

Equations (3)–(6) have a very clean physical interpretation, as we explain in the rest of

this section. For the simple geometry considered here (vertical field and vertical wavevector),

gas and magnetic pressure forces are unimportant. If N2 = 0, the only forces in the problem

are magnetic tension and rotating frame dynamics (e.g. the Coriolis force). Equations (3)

and (4) then describe the behavior of fluid elements that are coupled by the tension of

magnetic field lines. As Balbus & Hawley (1992, 1998) have discussed, these equations are

identical to those describing fluid elements coupled by a spring of spring constant (kvA)
2. For

a stratified medium with N2 6= 0, the radial acceleration of a fluid element has an additional

component due to the radial buoyancy force. This is the N2ξR term in equations (3) and (5).

When N2 < κ2, this term does not have a large effect and introduces modest changes to the

values of numerical factors. However, when N2 > κ2, which corresponds to a convectively

unstable system by the Høiland criterion, the acceleration term aH becomes positive and

destabilizing. This introduces qualitatively new effects.

The angular momentum flux of a linear mode is given by RΩTRφ, where TRφ is the R−φ

component of the fluid stress tensor,

TRφ = ρ(δvRδvφ − δvARδvAφ), (7)

δv is the perturbed fluid velocity, and δvA ≡ δB/
√
4πρ. Using the eigenfunctions in BH91

we confirm BH02’s expression for the stress tensor, namely

TRφ

ρ|δv2R|
=

Ω

Dγ

[

k2v2A
γ2

(∣

∣

∣

∣

∣

d lnΩ

d lnR

∣

∣

∣

∣

∣

+ 2

)

− κ2

2Ω2

]

≡
(

Ω

γ

)

tRφ, (8)

where D = 1 + k2v2A/γ
2 and tRφ is a useful dimensionless stress whose sign gives the sign of

TRφ.

We are now in a position to elucidate the physics of the linear instability calculation.

Figure 1a shows a plot of the growth rate γ/Ω as a function of the dimensionless wavevector

kvA/Ω for 5 values of the Brunt-Väisälä frequency: N2/Ω2 = 0, 0.5, 1, 1.5, and 2. We have
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assumed a Keplerian rotation profile, for which κ2 = Ω2. Thus, the first two choices of N2

correspond to a stable entropy gradient by the Høiland criterion, the third is neutrally stable,

and the last two choices correspond to an unstable entropy gradient. Figure 1b shows the

dimensionless stress tRφ as a function of kvA/Ω for the same five values of N2. It is useful

to note that the self-similar ADAF model gives N2/Ω2 = 15(γad − 1)/4γad, where γad is the

adiabatic index of the gas (Narayan & Yi 1994).3 For example, if γad = 1.5, N2/Ω2 = 1.25.

For N2 = 0, the results reproduce the usual MRI. The growth rate is very small for

kvA ≪ Ω and peaks when kvA is ≈ Ω, with a peak value of γ = 3Ω/4; the angular momentum

flux is always outwards (TRφ > 0). The instability is clearly triggered by the magnetic field

via the destabilizing term aM,d, since the other two terms in equation (5) are both stabilizing

(negative). The MRI survives with qualitatively the same behavior even for non-zero N2, so

long as the Høiland criterion for convective stability (N2 < κ2) is satisfied.

Consider, however, a flow with N2 > κ2. Such a flow is unstable to convection according

to hydrodynamics, and is therefore the case of interest for CDAFs. Figure 1 shows that,

for N2 > κ2, modes with kvA ∼ Ω are not very different from their N2 = 0 counterparts.

The angular momentum flux is still outwards and the growth rate of the mode is comparable

(though somewhat larger). By contrast, long-wavelength modes are very different. As Figure

1 shows, long-wavelength modes are strongly unstable and they transport angular momentum

inwards. In fact, as can be seen by inspection, the kvA ≪ Ω limit of the dispersion relation

in equation (2) (with the + root) gives γ2 = N2 − κ2, and the corresponding stress tensor

is TRφ/(ρ|δvR|2) = −κ2/[2Ω(N2 − κ2)1/2] < 0. The long-wavelength modes are clearly

independent of the magnetic field and behave very differently from MRI modes.

The physics of the kvA ≪ Ω modes is as follows. In the pure MRI problem, namely

N2 = 0 (or more generally N2 < κ2), long-wavelength modes are only weakly unstable

because the magnetic tension forces that are central to the MRI are weak; the field lines are

hardly bent by a long-wavelength perturbation. By contrast, when N2 > κ2, the fluid has

two destabilizing forces, the buoyancy term (aH) due to an unstable entropy gradient and

the standard MRI term (aM,d). The buoyancy force that drives convection is independent of

the wavelength of the perturbation, whereas the MRI depends on k. For long wavelengths,

buoyancy is much more important and controls all the physics of the mode, both the growth

rate and the angular momentum transport. Moreover, we show in the Appendix that the

“convective” mode driven by buoyancy is the only unstable long-wavelength mode in MHD

for a Høiland-unstable medium (N2 > κ2). In particular, long-wavelength perturbations

for which magnetic tension dominates (referred to as − modes in the Appendix) are stable

3This expression is not valid if γad = 5/3 since then Ω2 = 0 in the analytical models.
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oscillatory waves rather than unstable modes (see eq. A3 and Fig. 3).

Figure 2 explicitly compares the relative importance of the two destabilizing terms, the

buoyancy term aH and the magnetic tension term aM,d. Let us identify a mode as an “MRI”

mode if aH <∼ aM,d and as a “convective” mode if aH > aM,d. With this natural identification,

we see that, for N2 < κ2, all unstable modes are MRI modes, regardless of the wavelength.

Even when N2 > κ2, short-wavelength modes with kvA >∼ Ω are still MRI modes. However,

unstable long-wavelength modes with kvA ≪ Ω are clearly convective modes. The growth

of these modes is due entirely to the unstable buoyancy force; correspondingly, the modes

transport angular momentum inwards (Fig. 1b), just as indicated by hydrodynamic studies

(e.g., Ryu & Goodman 1992). Indeed these modes are virtually indistinguishable from their

hydrodynamic counterparts. All of the properties of hydrodynamic convective instabilities

therefore carry over to a magnetohydrodynamic analysis.

2.1. The Hydrodynamic Limit

Magnetic tension should be weak for fluctuations with kvA ≪ Ω regardless of the details

of the magnetic field geometry and thermal stratification. In this subsection, we show this

explicitly by considering the long-wavelength limit of the most general axisymmetric MHD

dispersion relation.

Balbus (1995) considered the linear, adiabatic, and axisymmetric stability of a dif-

ferentially rotating weakly magnetized plasma in the presence of both vertical and radial

stratification. He showed that the dispersion relation is given by

ω̃4
k2

k2
z

− ω̃2

[

3

5ρ
(DP )(D ln[Pρ−5/3]) +

1

R3
D(R4Ω2)

]

− 4Ω2(k · vA)
2 = 0, (9)

where

D =

(

kR
kz

∂

∂z
− ∂

∂R

)

, (10)

and ω̃2 = −γ2 − (k · vA)
2 (for fluctuations ∝ exp[γt + ik · r]). Unlike in the previous

section, Ω, P , and ρ are now allowed to be functions of both z and R, the magnetic field

has an arbitrary direction (i.e., BR, Bφ, and Bz components), and the wavevector is given

by k = kRR̂+ kzẑ.

For k · vA = 0 (but k/kz, kR/kz, etc., finite), equation (9) reduces to

γ2
k2

k2
z

+

[

3

5ρ
(DP )(D ln[Pρ−5/3]) +

1

R3
D(R4Ω2)

]

= 0. (11)
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Equation (11) is independent of the magnetic field. Indeed, as noted by Balbus (1995),

it describes the linear, adiabatic, axisymmetric, hydrodynamic stability of a differentially

rotating and thermally stratified medium (e.g., Goldreich & Shubert 1967). As is readily

confirmed, equation (11) has unstable solutions if and only if the Høiland criteria are satisfied

(e.g., Tassoul 1978).

The hydrodynamic limit in equation (11) formally requires setting k · vA = 0 in the

MHD dispersion relation (eq. [9]). If k · vA 6= 0, the full dispersion relation (eq. [9]),

which has twice the number of modes (because it is fourth order in γ rather than second

order), must be used. However, if the medium is unstable by the Høiland criteria, and if

we focus on long-wavelength MHD instabilities with k · vA ≪ Ω, then the MHD system will

behave like its hydrodynamic counterpart; in particular, the only unstable mode is effec-

tively hydrodynamical and its growth rate is given by equation (11) with small corrections

∼ (k · vA/Ω)
2 ≪ 1. Note that equation (11) describes the unstable growing mode only when

the medium is Høiland unstable. If the medium is Høiland stable, the only possible insta-

bilities are intrinsically MHD in nature and equation (9) must be used even for k · vA ≪ Ω.

This point is explained in more detail in the Appendix.

The analysis in this section shows that all of the properties of axisymmetric hydrody-

namic instabilities carry over to MHD in the long-wavelength limit. In particular, the results

of the previous section are general, and are not an artifact of the simplifying assumptions

made there. Although our quantitative analysis is restricted to axisymmetry, we suspect

that long-wavelength non-axisymmetric modes will behave hydrodynamically as well (since

they also do not significantly bend the magnetic field lines).

3. Implications for CDAFs

To assess the implications of our linear analysis it is useful to consider wavelengths

relative to the scale height of the disk, H ≈ cs/Ω, where cs is the sound speed. The

maximally growing MRI mode has kH ∼ β1/2, where β ≈ c2s/v
2
A is the ratio of the thermal

energy to the magnetic energy in the disk. By contrast, the longer wavelength convective

modes have kH ≪ β1/2; more quantitatively, the linear analysis suggests that buoyancy

forces become important for kH <∼ 0.3β1/2 (Fig. 2). For these modes to be of interest they

must fit in the disk and so must have kH >∼ 1. This in turn requires β ≫ 1, i.e., that the

magnetic field must be sub-equipartition (β >∼ 10 may suffice).

Given the above analysis, we propose the following identification between the hydro-

dynamic CDAF model and the present MHD results. If the magnetic field saturates at a
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sub-equipartition value, the most unstable MRI mode operates on a scale ∼ β−1/2H ≪ H

and transports angular momentum outwards. Moreover, if the medium is Høiland unsta-

ble, only such short-wavelength fluctuations transport angular momentum outwards. Longer

wavelength convective fluctuations are dominated by scales ∼ H and transport angular mo-

mentum inwards (Fig. 1).

Which fluctuations are more important? Or, more precisely, which part of the power

spectrum of fluctuations is more important, those with kH ∼ 1 or those with kH ∼ β−1/2?

This cannot really be addressed analytically because we do not understand the saturation of

the linear instabilities (and it is clear that they are coupled; e.g., convection, by stirring the

fluid, can help to build up the magnetic field). Nonetheless, it is typically the case that the

energy in a turbulent plasma is dominated by the largest unstable scales in the medium. This

suggests that, if β ≫ 1 (perhaps β >∼ 10 is sufficient), the larger-scale convective fluctuations

will dominate the dynamics, as proposed in the hydrodynamic models. Moreover, the inward

angular momentum transport by convective modes depends on the magnitude of N2 − κ2

(Fig. 1b). Thus there is a natural way for the inward convective transport to self-adjust

to counteract outward transport by small scale MRI fluctuations. In the limit of efficient

convection and β ≫ 1 we would expect marginal stability to convection according to the

Høiland criteria, just as in the hydrodynamic models (Quataert & Gruzinov 2000).

It is important to stress several points:

(1) Although we believe that our linear stability analysis sheds important light on the

physics of radiatively inefficient accretion flows, it does not directly address the fully de-

veloped nonlinear turbulence that is of primary importance to the accretion flow structure.

This requires numerical simulations.

(2) The picture proposed here is very similar to the hydrodynamic models of CDAFs; the

primary change is that we have theoretical support from a magnetohydrodynamic analysis.

(3) Balbus (2001) has shown that magnetized dilute plasmas can be convectively unsta-

ble in the presence of an outwardly decreasing temperature, rather than just an outwardly

decreasing entropy. It would be interesting to incorporate this into future work.

(4) The extent to which one can usefully distinguish scales in the power spectrum that

are convective from those that are magnetorotational depends on β, and becomes more and

more useful if β ≫ 1. It would be straightforward if the convective and MRI modes occupied

distinct and well-separated regions of wavevector space. Then even the nonlinear physics of

the instabilities could be distinct. To cite an example from plasma physics, heat transport

in fusion devices is due to instabilities on both proton and electron Larmor radii scales and

one can often distinguish the physics of each mechanism separately even in the nonlinear
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regime (e.g., Dorland et al. 2000; Rogers, Dorland & Kotschenreuther 2000). As Figure 1

shows, such a separation in wavevector space is not present for our problem. On the other

hand, Figs. 1 and 2 do show quite clearly that the physics of the convective modes is very

different from that of the MRI modes.

(5) For a Høiland-unstable medium (N2 > κ2), there is a nice continuity between

the hydrodynamic limit and the strong field MHD limit. In wavevector space, the field-

affected modes (the MRI modes) are restricted to larger values of k where magnetic tension

is important. For very weak fields, these modes are at very large k, and most of the long-

wavelength modes that probably dominate the dynamics are convective. As the field strength

increases, however, the MRI modes expand downwards in k space and become more and

more important. Another way to look at this is as follows. When the fluid is unstable

according to the Høiland criterion, the switch that determines whether or not convection is

important is not the presence or absence of a magnetic field, but rather the magnitude of the

dimensionless parameter kvA/Ω ≈ kH/β1/2. When kvA/Ω is small, convection dominates

the physics, whereas when it is >∼ 1, the magnetic field dominates.

4. Conclusion

In this paper we have used linear stability theory to assess the conditions under which

a hydrodynamic analysis is appropriate for an intrinsically magnetohydrodynamic accre-

tion flow. We have shown that, when the medium is unstable by the Høiland criteria,

long-wavelength instabilities with kvA ≪ Ω are effectively hydrodynamical. Physically, this

is because magnetic tension is unimportant for sufficiently long-wavelength perturbations.

Formally, the dispersion relation for a magnetohydrodynamic plasma reduces in this limit to

that of hydrodynamics (§2). This shows that all of the properties of hydrodynamic instabil-

ities carry over to an MHD analysis in the long-wavelength limit.

For the particular case of radiatively inefficient accretion flows that are unstable to

both convection and the MRI, the relevant parameter that distinguishes convective behavior

from magnetorotational behavior is the quantity kvA/Ω ≈ H/(λβ1/2). Long-wavelength

modes for which λ/H ≫ β−1/2 are convective, while modes for which λ/H ∼ β−1/2 are

magnetorotational. The convective modes are primarily driven by buoyancy, not magnetic

tension (Fig. 2). Moreover, they transport angular momentum inwards rather than outwards

(Fig. 1b), just as indicated by hydrodynamic studies. For the long-wavelength modes to

be of interest the accretion flow must have β ≫ 1 so that the convective fluctuations fit

inside the disk. Under these conditions we believe that the hydrodynamic CDAF models

can accurately describe the structure of the accretion flow. The precise β that allows a
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hydrodynamical analysis is uncertain and can be determined only by magnetohydrodynamic

simulations (the linear analysis suggests that β >∼ 10 may suffice).

It is interesting to note that the saturation β of the MRI does not appear to be uni-

versal. Given the plausible dependence on β highlighted above, this may have important

implications for the structure of radiatively inefficient accretion flows. Three-dimensional

MHD simulations find that that if the field is initially toroidal a radiatively inefficient ac-

cretion flow develops into a CDAF-like state (Igumenshchev, Abramowicz & Narayan 2002),

while if the field has a vertical component the structure is very different (Hawley, Balbus &

Stone 2001; Hawley & Balbus 2002; see also Stone & Pringle’s 2001 2D simulations).

To conclude, it is important to emphasize that the primary conclusion of the analytic

arguments in this paper is not that CDAFs actually do describe the structure of radiatively

inefficient accretion flows, but rather that they could. In particular, our linear MHD analysis

supports all of the key CDAF assumptions so long as β ≫ 1.

RN, IVI, and EQ were supported in part by NSF grant AST-9820686, RFBR grant
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A. Appendix

In the main text we focused exclusively on unstable modes and therefore considered

only the positive sign of the root in equation (2). Here we generalize the discussion and

consider both unstable and stable modes. To this end, we rewrite equation (2) as follows

γ2 = −(kvA)
2 +

(N2 − κ2)

2

[

1±
√

1 + 16Ω2(kvA)2/(N2 − κ2)2
]

. (A1)

The + and − signs in equation (A1) map directly onto the + and − signs in equation

(2) when N2 − κ2 > 0, but the mapping is reversed when N2 − κ2 < 0. Equation (A1)

is, of course, completely equivalent to equation (2), but for this Appendix we find it more

convenient to work with the ± convention in equation (A1) because of its behavior when

N2 − κ2 changes sign. In what follows, we refer to the + sign in equation (A1) as the “+

mode” and the − sign as the “− mode.”

Let us focus on the long-wavelength limit kvA/Ω ≪ 1. The growth rates of the + and

− modes are then given by

γ2

+ ≈ (N2 − κ2) +

(

4Ω2

N2 − κ2
− 1

)

(kvA)
2, (A2)

γ2

−

≈ −
(

4Ω2

N2 − κ2
+ 1

)

(kvA)
2. (A3)

In the limit kvA/Ω ≪ 1, the growth rate of the + mode is the same as in hydrodynamics:

γ2
+ = N2−κ2. If N2 > κ2 (Høiland unstable), γ2

+ is positive and the mode is unstable, while

if N2 < κ2, γ2
+ is negative and the mode is oscillatory in nature. In either case, the mode is

completely insensitive to the magnetic field.

The − mode, on the other hand, has a growth rate that vanishes as kvA → 0, which is

a clear indication that this mode is strongly influenced by the magnetic field. Indeed, the

mode owes its very existence to the presence of the magnetic field. The − mode is associated

with the classic MRI of BH91.

An inspection of equations (A2) and (A3) reveals the following interesting result: as-

suming that |N2 − κ2| < 4Ω2 (which is almost always the case), only one of the two modes

can be unstable. When the medium is convectively stable (N2 < κ2), the + mode (which

we argued above is hydrodynamic in nature) is obviously stable. In this case, the − mode

is unstable and gives the long-wavelength limit of the MRI. However, when the medium is

convectively unstable (N2 > κ2), then it is the + mode that grows, while the − mode is
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stable. Thus, in the long wavelength limit, the MRI actually disappears if the medium is

unstable by the Høiland criterion. Fortunately, this is precisely when the medium is con-

vectively unstable so there are always unstable modes available, regardless of the sign of

N2 − κ2.

Figure (3) shows γ2 as a function of (kvA)
2 for the + and − modes for representative

values of N2/Ω2. We see that modes that are stable (γ2 < 0) in the limit kvA → 0 remain

stable for all values of k, while modes that are unstable at small values of kvA reach a

maximum growth rate for kvA ∼ Ω and then become stable with increasing kvA.
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Fig. 1.— (a) Dimensionless growth rate γ/Ω as a function of dimensionless wavevector kvA/Ω

in a Keplerian system (κ2 = Ω2), for five choices of the Brunt-Väisälä frequency: N2/Ω2 =

0 (solid line), 0.5 (dotted line), 1 (short-dashed line), 1.5 (long-dashed line), 2 (dot-dashed

line). The system is unstable by the Høiland criterion for N2/Ω2 = 1.5 and 2. For these

two cases, the growth rate remains finite in the long-wavelength limit kvA/Ω ≪ 1 and the

modes are indistinguishable from the corresponding unstable hydrodynamical modes. (b)

Dimensionless shear stress corresponding to the same modes as in (a). For N2/Ω2 = 1.5,

2, and kvA/Ω ≪ 1, the stress is negative, implying that these convective modes transfer

angular momentum inwards, just as in hydrodynamics.
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Fig. 2.— Variation of aH/aM,d versus dimensionless wavevector kvA/Ω for N2/Ω2 = 0

(solid line), 0.5 (dotted line), 1.5 (long-dashed line), 2 (dot-dashed line). The ratio aH/aM,d

measures the importance of the hydrodynamic buoyancy force relative to the leading desta-

bilizing force due to magnetic fields (see eqs. [5], [6]). For the two cases in which the system

is convectively unstable according to the Høiland criterion, viz., N2/Ω2 = 1.5, 2, the buoy-

ancy force clearly dominates at long wavelengths, confirming that these modes are primarily

convective, not magnetorotational.
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Fig. 3.— The dimensionless growth rate γ2/Ω2 versus dimensionless wavevector kvA/Ω for

N2/Ω2 = 0, 0.5, 1.5, 2. A mode with a positive value of γ2 is unstable, while one with a

negative value of γ2 is stable (oscillatory). The solid and dashed lines correspond to the +

and − modes, respectively, in equation (A1). Each curve is labeled by the value of N2/Ω2.


