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Abstract. Ice flow over a Snowball ocean was shown in recent years to3

be capable of very effectively homogenizing ice thickness globally. Previous4

studies all used local or one-dimensional global (latitude-only) models, for-5

sciences and school of engineering and

applied sciences, Cambridge, MA, USA.

2Department of Geophysical Sciences at

the University of Chicago, Chicago, IL,

USA.

3Department of Solar Energy and

Environmental Physics, BIDR, Ben-Gurion

University, Midreshet Ben-Gurion, Israel.

4The Fredy and Nadine Herrmann

Institute of Earth Sciences, The Hebrew

University of Jerusalem, Jerusalem, Israel.

5Department of Geosciences, Earth and

Environmental Systems Institute,

Pennsylvania State University, University

Park, PA, USA.

6Department of Earth and Ocean

Sciences, University of British Columbia,

Vancouver, British Columbia, Canada.

D R A F T March 12, 2012, 6:36pm D R A F T



TZIPERMAN ET AL.: CONTINENTS AND SNOWBALL ICE FLOW X - 3

mulated in a way that is difficult to extend to two-dimensional global con-6

figuration. This paper uses a two-dimensional global ice flow model to study7

the effects of continental constriction on ice flow and ice thickness in a Snowball-8

Earth scenario using reconstructed Neoproterozoic land-mass configuration.9

Numerical simulations and scaling arguments are used to show that various10

configurations of continents and marginal seas which are not represented by11

one dimensional models lead to large ice thickness variations, including nar-12

row areas between sub-continents and marginal seas whose entrance is con-13

stricted. This study ignores many known important factors such as thermo-14

dynamic, optical effects, dust and dust transport, and is therefore meant as15

a process study focusing on one specific effect, rather than a realistic sim-16

ulation of Neoproterozoic ice thickness. The model formulation developed17

here generalizes and extends previous results in several ways, including the18

introduction of corrections due to spherical coordinates and lateral geom-19

etry. This study is therefore a step toward coupling Snowball ice flow mod-20

els to general circulation ocean and atmospheric models and allowing a more21

quantitative simulation of Neoproterozoic Snowball ice thickness.22
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1. Introduction

Between 750 and 580 million years (Myr) ago, during the Neoproterozoic era, Earth23

experienced multiple ice ages, some of which deposited glaciogenic sediments in equatorial24

seas indicating possible global ice cover [Harland , 1964; Kirschvink , 1992; Hoffman et al.,25

1998]. Understanding these events is an interesting challenge to our knowledge of climate26

dynamics. Some of the related issues and controversies are described in a recent review27

by Pierrehumbert et al. [2011].28

The flow of ice over the ocean in a Snowball Earth scenario has received significant29

attention over the past few years. It was demonstrated by Goodman and Pierrehumbert30

[2003], that ice flow effectively homogenizes ice thickness in a Snowball Earth scenario.31

Ice thickness, in turn, plays a potentially important role in the question of the survival32

of photosynthetic life during a Snowball event [Hoffman and Schrag , 2002; Pollard and33

Kasting , 2005; McKay , 2000; Campbell et al., 2011], and an ice cover of more than tens34

of meters could be too thick for photosynthesis [McKay , 2000].35

Related work has so far dealt with the consequences of ice flow [Goodman and Pier-36

rehumbert , 2003], with the optical properties of ice [McKay , 2000; Warren et al., 2002],37

with the effect of different optical properties of frozen sea water vs. accumulated snow38

[Pollard and Kasting , 2005, 2006; Warren and Brandt , 2006; Goodman, 2006], with the39

role of dynamic vs. thermodynamic sea ice [Lewis et al., 2007], and with dust accumula-40

tion over the Snowball ice cover [Abbot and Pierrehumbert , 2010; Le Hir et al., 2010] and41

dust transport [Li and Pierrehumbert , 2011].42
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Warren et al. [2002] and Pollard and Kasting [2005] suggested that constricted marginal43

seas may lead to large ice thickness variations because the ice flow into the sea is limited44

by friction with the side walls of the leading passage, and may not be able to balance45

the ablation/ melting within the sea. In a recent work, especially relevant to the work46

presented here, Campbell et al. [2011] considered the invasion of an elongated rectangular-47

shaped marginal sea by ice flow, under the influence of friction by the side walls of the48

sea. They derived a formula for the invasion length based on an analytic solution of Nye49

[1965].50

All calculations of Snowball ice flow that have so far been carried out used either one-51

dimensional (in latitude) global models, or an idealized local rectangular marginal sea.52

Furthermore, the formulation of global one dimensional (latitude only) models was based53

on a formula for ice shelf deformation rate [Weertman, 1957], which, unfortunately, cannot54

be extended to two dimensions (longitude and latitude).55

This paper has two main objectives. The first objective is to study the ice flow on a56

sphere in the presence of continents, and the possibility of large ice thickness variations57

developing due to the existence of constricted seas. We show numerical solutions based58

on reconstructed continental configuration for the Neoproterozoic, as well as scaling re-59

lationships for ice thickness variations. We derive scaling relationships for both a global60

continent-free ocean, and for a constricted sea with a channel connecting it to the ocean.61

Our second objective is to formulate the ice flow problem on a sphere, including both62

horizontal dimensions. To do this, we introduce several novel aspects and introduce63

physical processes and mathematical terms so far neglected in the Snowball literature.64

Importantly, we derive the equations directly from the Stokes equations. This allows the65
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X - 6 TZIPERMAN ET AL.: CONTINENTS AND SNOWBALL ICE FLOW

formulation of a two-dimensional horizontal flow problem, which is not possible using the66

approach of pioneering studies of Snowball ice flow [Goodman and Pierrehumbert , 2003;67

Pollard and Kasting , 2005] because they started from the ice shelf strain rate formula of68

Weertman [1957]. In particular, we employ the ice shelf momentum budget of Morland69

[1987] [see also MacAyeal and Barcilon, 1988; MacAyeal , 1989, 1997], as well as spherical70

coordinates, and show that both of these factors lead to additional terms even in a one-71

dimensional formulation.72

Many factors are now known to play a role in setting ice thickness on a Snowball Earth,73

and some of them (ice optical properties, different ice sources, dust and dust transport)74

have been studied in the papers mentioned above. In this paper, we focus on the effects75

of the ice flow and its interaction with continental configuration, and ignore, for now,76

all other feedbacks. This has the advantage of allowing us to isolate and carefully study77

the related flow dynamics, but necessarily makes this study idealized and over-simplified.78

We feel this is a useful approach, yet emphasize that as a result we do not expect the79

numerical values of the ice thickness calculated here to be a reliable quantitative predictor80

of Snowball ice thickness. This work should therefore be viewed as a process study rather81

than an attempt at a realistic Snowball simulation. In particular, we assume that the82

ocean is entirely covered with thick ice [termed “sea glaciers” by Warren et al., 2002],83

and our results cannot be used to confirm or deny the possibility of ice free conditions or84

thin ice developing in the tropics as suggested in some previous works [e.g., Chandler and85

Sohl , 2000; Hyde et al., 2000; Pollard and Kasting , 2005; Liu and Peltier , 2010; Abbot86

et al., 2011b].87
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In the following sections we present an outline derivation of the model equations (section88

2). These equations are a simple extension to spherical coordinates of well-known ice shelf89

equations used for a long time in glaciology [Morland , 1987; MacAyeal , 1997]. We then90

show the model results (section 3), derive scaling laws for ice thickness in an axisymmetric91

global case without continents and in the case of a constricted sea (section 4), and conclude92

in section 5. The appendices present a detailed derivation of the model equations.93

2. The model: two-dimensional ice-shelf flow on a sphere

We provide an outline of the model derivation here, with full details given in appendix94

A. Let the coordinates (longitude, co-latitude, vertical) be denoted by (φ, θ, z) and the95

corresponding velocities be (u, v, w). The momentum equations are,96

0 = − 1

r sin θ
∂φp+ (∇ · τ ) · êφ (1)97

0 = −1

r
∂θp+ (∇ · τ ) · êθ98

0 = −∂zp− gρI + (∇ · τ ) · êz,99
100

where r is the Earth radius taken to be constant; p is the pressure; g gravitational ac-101

celeration; ρI the ice density; τ = {τij} is the stress tensor, and it is important to note102

that the divergence ∇· of a second order tensor in curvilinear coordinates contains some103

metric terms in addition to those appearing in the divergence of a vector (appendix B).104

Unit vectors in the directions of the three coordinates are denoted êφ, êθ and êz. We use105

Glen’s flow law [Glen, 1955] to relate the stress to the rate of strain ε̇ij,106

τij = A(T )−
1
3 ε̇

1
3
−1ε̇ij107

ε̇2 = ε̇mnε̇mn/2,108
109
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X - 8 TZIPERMAN ET AL.: CONTINENTS AND SNOWBALL ICE FLOW

where T is the ice temperature and A(T ) is the temperature dependence of ice viscosity,110

which we take to be that used by Goodman and Pierrehumbert [2003]. We assume the111

temperature varies linearly in depth from a prescribed surface temperature to the freezing112

temperature at the base of the ice, which we assume constant. We use two different113

prescribed surface temperature latitudinal profiles which we refer to as the “warm” and114

“cold” profiles. These surface temperatures are a smooth fit to those calculated by the115

NCAR Community Atmospheric Model assuming a surface albedo of 0.6 at high (105
116

ppm) and low (100 ppm) CO2 values [Abbot et al., 2011a]. The boundary conditions are117

that the dot product of stress with the normal vector vanishes at the top of the ice, and is118

equal to the hydrostatic pressure force normal to the bottom of the ice [MacAyeal , 1997],119

(τ − pI) · n̂s = 0, (2)120

(τ − pI) · n̂b = −n̂bpw.121
122

where n̂s and n̂b are normal vectors to the ice surface and bottom, and I is the unit123

tensor (matrix). Because the component of the stress parallel to the ice surface vanishes124

at the top and bottom (friction with the ocean and atmosphere is negligible), a very125

good approximation is to assume that the horizontal ice velocities are independent of126

depth [e.g., Weertman, 1957; MacAyeal and Barcilon, 1988]. Additionally, the vertical127

scale of the floating ice is much smaller than Earth’s radius r, and we therefore employ128

the “thin shell” approximation, in which r is assumed to be constant. The very large129

aspect ratio (thousands of km in the horizontal dimension, vs hundreds of meters in the130

vertical) implies that the vertical velocities may be assumed to be very small relative131

to the horizontal ones. These assumptions lead to the following approximation for the132
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symmetric rate of strain tensor in spherical coordinates (appendix A),133

ε̇ ≈


1

r sin θ
(∂φu+ v cos θ) . .

1
2r

(
1

sin θ
∂φv + sin θ∂θ(u/ sin θ)

)
1
r
∂θv .

0 0 ∂zw

 , (3)134

135

where entries marked by dots above the diagonal are equal to their symmetric counterparts136

below the diagonal. Note in particular that ε̇θz = ε̇φz ≈ 0 so that τθz ≈ 0, τφz ≈ 0 as well.137

Following Morland [1987] and MacAyeal [1997], we integrate the above momentum138

equations from top to bottom and use the boundary conditions (2) to find the final set of139

ice shelf equations in spherical coordinates (appendix A2),140

0 =
1

sin θ
∂φ

[
B(2

1

sin θ
(∂φu+ v cos θ) + ∂θv)

]
(4)141

+
1

sin θ
∂θ

[
B

1

2

(
∂φv + sin2 θ∂θ(u/ sin θ)

) ]
142

+cot θB
1

2

(
1

sin θ
∂φv + sin θ∂θ(u/ sin θ)

)
− 1

sin θ
gρI(1− µ)hhφ143

0 =
1

sin θ
∂φ

[
B

1

2

(
1

sin θ
∂φv + sin θ∂θ(u/ sin θ)

)]
(5)144

+

[
1

sin θ
∂θ (B sin θ∂θv) + ∂θ

(
B

1

sin θ
∂θ(v sin θ)

)]
+ ∂θ

(
B

1

sin θ
∂φu

)
145

−cot θB
1

sin θ
(∂φu+ v cos θ)− gρI(1− µ)hhθ146

B =
1

r
h〈A(T )−

1
3 〉ε̇

1
3
−1 (6)147

ε̇2 =
1

2

(
ε̇2φφ + ε̇2θθ + (ε̇φφ + ε̇θθ)

2 + 2ε̇2φθ
)

(7)148

ht +
1

r sin θ
∂φ(uh) +

1

r sin θ
∂θ(sin θvh) = κ∇2h+ S(φ, θ). (8)149

150

where µ = ρi/ρw, and 〈〉 denotes an average over the vertical dimension, where the151

temperature varies linearly in depth as explained above [Goodman and Pierrehumbert ,152

2003]. An improved and more consistent treatment of the vertical averaging procedure is153

described by Campbell et al. [2011]. The above thickness equation is a statement of mass154

conservation, and the diffusion term is included for numerical reasons to make sure the155
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X - 10 TZIPERMAN ET AL.: CONTINENTS AND SNOWBALL ICE FLOW

solution is smooth. While we use the diffusion term merely as a numerical aid, it may156

also crudely represent snowdrift at the surface, which would tend to smooth thickness157

variations (although snow fall rate should be extremely small in a Snowball scenario). We158

keep the diffusion coefficient as small as allowed by the numerics, and the diffusion term is159

accordingly negligible relative to thickness advection throughout the domain. The forcing160

S(φ, θ) represents the accumulated effect of surface and internal melting and sublimation,161

as well as basal freezing and melting of ice.162

The boundary conditions for the above equations are no normal flow into the north and163

south boundaries, and periodic boundary conditions in the east-west direction. In addition164

we prescribe no normal-flow and no slip conditions for the velocity field at continental165

boundaries, which is equivalent to assuming coastal boundaries are vertical. Zero normal166

derivatives of the thickness are prescribed for the advection-diffusion thickness equation167

at the north and south boundaries as well as at continental boundaries.168

It is useful to write explicitly the equations for the axisymmetric one-dimensional model169

which ignores continents, in which case there is no dependence on φ and the zonal velocity170

u is assumed to vanish,171

0 =

[
1

sin θ
∂θ (B sin θ∂θv) + ∂θ

(
B

1

sin θ
∂θ(v sin θ)

)
(9)172

−cot2 θBv

]
− gρI(1− µ)hhθ (10)173

B =
1

r
h〈A(T )−

1
3 〉ε̇

1
3
−1

174

ε̇2 = ε̇2φφ + ε̇2θθ + ε̇2zz (11)175

ε̇zz = −(ε̇φφ + ε̇θθ) (12)176

ht +
1

r sin θ
∂θ(sin θvh) = κ∇2h+ S(θ). (13)177

178
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This one-dimensional model is somewhat different from that used in previous studies [e.g.,179

Goodman and Pierrehumbert , 2003; Goodman, 2006; Pollard and Kasting , 2005, 2006].180

First, it more accurately accounts for the lateral geometry following the Morland [1987]181

and MacAyeal [1997] formulation, which leads to the second term in the above momentum182

equation. Second, it includes the spherical coordinate correction to the divergence of the183

stress tensor (third term in the momentum equation). The spherical coordinate correction184

term arises mathematically from the additional set of geometric correction terms in the185

expression of the divergence of a second order tensor relative to that of a vector (appendix186

B). Physically this term is due to the stress element τφφ appearing in the θ (meridional)187

direction momentum balance (see term including τφφ in equation (A10)). This stress188

element represents the unit force in the φ direction, acting on a unit surface perpendicular189

to this same direction. It is non zero even in the axisymmetric case because ε̇φφ does not190

vanish in this case as explained below. To see why a stress element representing a force in191

the φ direction appears in the momentum equation for the θ direction, consider a small192

volume element in spherical coordinates, (dφ, dθ, dr). Note that the faces of this element193

that are perpendicular to the φ direction have a slightly different northward slope at194

longitudes φ and at φ+ dφ. As a result, the net force in the φ direction due to the sum of195

τφφ acting on these faces has a component in the θ direction, leading to the above term.196

Finally, this equation includes the contribution of the non-vanishing ε̇φφ element in the197

effective viscosity, again due to the spherical coordinates used as explained after equation198

(3). Goodman and Pierrehumbert [2003], as well as Li and Pierrehumbert [2011] noted199

the existence of this effect, but argued that it was inconsequential in comparison with200

the much larger effect of temperature on ice rheology, and the much larger uncertainty201
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in ice rheology coefficients. Unlike in Cartesian coordinates, ε̇φφ does not vanish in the202

axisymmetric case where there is no dependence on φ and where u = 0. It is equal then to203

v cot θ/r, representing the fact that a fluid line element oriented in the east-west direction204

and advected by a uniform northward flow will shrink due to the convergence of the205

longitude lines. This modifies the effective viscosity in an important way not accounted206

for in previous models of Snowball ice flow.207

This fuller treatment of spherical coordinates precludes the explicit integration of the208

velocity equation and the derivation of a single equation for the thickness, as was possible209

using the simpler equations of previous studies. Nevertheless the fuller equations (9)-210

(13) are easily solved numerically using a combination of a tri-diagonal solver for the211

momentum equation [iterated to account for the nonlinear effective viscosity, MacAyeal ,212

1997] and time stepping of the thickness equation.213

Eliminating the spherical corrections and the more accurate treatment of the bottom214

and surface slopes and boundary conditions (equivalent to making a small-slope approxi-215

mation at these boundaries), our 1d equation reduces to a simpler one, in which only the216

first term is left in the square brackets in the momentum equation (9), in addition to the217

pressure gradient term. Neglecting also the contribution of ε̇φφ to the rate of strain, we get218

a simpler equation which may be integrated once in co-latitude to lead to the Goodman219

and Pierrehumbert [2003] equation. The constant of integration from this first integra-220

tion then plays a parallel role to that of the “body force” introduced by those authors221

to represent the pressure force due to the collision of ice from the north and south hemi-222

spheres, and to allow the velocity to vanish in the case of symmetric forcing with respect223

to the equator. Instead of postulating this force, we can use the constants of integration224
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TZIPERMAN ET AL.: CONTINENTS AND SNOWBALL ICE FLOW X - 13

to satisfy the boundary conditions of vanishing velocity at the north and south ends of225

the domain, and when the forcing S(θ) is symmetric in latitude, the equatorial velocity226

vanishes as expected. Using a constant of integration instead of a prescribed body force227

is also discussed in the supplementary material of Li and Pierrehumbert [2011].228

We solve the 2d and 1d model equations numerically using finite difference approxima-229

tion over a near-global domain from 80◦S to 80◦N, prescribing no-normal flow into the230

northern and southern boundaries. We use a resolution of 176×176 grid points in the 2d231

cases shown in the figures below, and of 89 grid points in the 1d case. The finite difference232

formulation is based on an A-grid (all variables defined at the same point) and center dif-233

ferencing. In the grid points adjacent to land masses, we estimate the pressure gradient234

terms and the effective viscosity using the one-sided finite difference approximation. The235

momentum equations are solved following standard procedure by iterating on the effective236

viscosity [MacAyeal , 1997].237

The prescribed time-independent, latitude-dependent, net melting/ freezing/ sublima-238

tion are from the Pollard and Kasting [2005] model for the case of bubbly ice (their Fig. 4c,239

dashed lines, smoothed before used here). We do not differentiate between surface and240

basal melting/ freezing, and therefore do not include feedbacks between basal melting/241

freezing and ice thickness via the balance between heat diffusion within the ice cover242

and geothermal heat flux [Goodman and Pierrehumbert , 2003]. The global integral of the243

specified source function vanishes, and the flow and source function can therefore only244

redistribute thickness across the domain. As expected in the absence of the thickness-245

dependent basal melting, the domain-averaged thickness is set by the initial conditions,246
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X - 14 TZIPERMAN ET AL.: CONTINENTS AND SNOWBALL ICE FLOW

and is therefore not uniquely determined by the model parameters. We initialize integra-247

tions with an average thickness of 1000 meters.248

Because our forcing corresponds to the bubbly (reflecting) ice case of Pollard and Kast-249

ing [2005], the thickness variations we calculate may be underestimating those that could250

be calculated by including additional effects involving the optical properties of the ice etc.251

Ignoring other feedbacks, such as dependence of basal melting/ freezing on ice thickness252

may also significantly affect our solution. Addressing these additional effects well would253

require a full ocean general circulation model that would calculate the ocean heat trans-254

ports and temperature field and, from that, the basal melting and freezing. This is left255

for a future study.256

The model code is written in Matlab and is available at www.seas.harvard.edu/climate/eli/Downloads.257

3. Numerical results

Table 1 lists the different model experiments we have performed. All shown results258

represent the steady state model solution, obtained by running the model for at least259

one hundred thousand years. The results of the 1d model, which ignores land masses,260

are shown in Fig. 1. Consistent with previous studies and with the scaling arguments261

given in section 4.2, this model predicts a very small thickness difference between the262

pole and the equator when optical/ dust effect are not included (comparable to Pollard263

and Kasting [2005] Fig. 4f, dash line representing bubbly ice; note the discussion in Li264

and Pierrehumbert [2011] regarding the larger difference found in Goodman and Pierre-265

humbert [2003]). The model results show an ice thickness difference of about 100 meters266

between the equator and pole for the cold case, and only 40 meters for the warm case.267

The warmer temperatures make the ice softer, as expected, and therefore lead to even268
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smaller thickness gradients. The small meridional ice thickness gradient in both cases269

demonstrates the effectiveness of the ice flow in effectively homogenizing ice thickness, as270

pointed out by Goodman and Pierrehumbert [2003]. Such a uniformly thick ice does not271

allow light penetration into the ocean, with implications to photosynthesis as discussed in272

the introduction. Our two-dimensional model produces identical results to the 1d model273

when no continent is included (experiment 5, Table 1, not shown).274

The results of the two-dimensional model for a continental configuration roughly follow-

ing a Neoproterozoic reconstruction for 630 Myr [Li et al., 2008] are shown in Fig. 2. The

land configuration was modified to eliminate features such as single grid point openings

in topography that may lead to numerical problems. The figure shows the flow, thickness

and log10 of the effective viscosity,

νeff = 〈A(T )−
1
3 〉ε̇

1
3
−1 (14)

for both a “warm” surface temperature corresponding to the high-CO2 near-melting case275

and for the cold, low-CO2 case.276

The thickness variations are clearly much larger than in the axisymmetric case. Because277

the constricted ocean area is small, the zonally averaged thickness and velocity fields may278

not be very different from those of the one dimensional model, but the local thickness279

differences are clearly much larger. This is especially evident in constricted areas such as280

between the main land mass and the two small continents to the east and west of it, and281

in particular between the global ocean and the marginal (constricted) sea in the middle282

of the major land mass. In this latter case the ice flow through the narrow passages needs283

to balance to total ice melting and evaporation within the constricted sea. Therefore284

the larger the area of the sea and the narrower are the straits, the faster is the ice flow285
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expected to be. These results are consistent with the general message of Campbell et al.286

[2011] [see also Warren et al., 2002] that when the flow is limited by the continental287

geometry, significant ice thickness differences develop. We note that in addition to these288

constricted ocean locations, Fig. 2 also shows significant thickness variations south of the289

main continent, especially in the “cold” case (upper right panel). The thickness variations290

in this specific location are likely affected by the artificial boundary at 80N placed there291

in order to avoid the coordinate singularity at the pole, yet these results demonstrate that292

thickness variations due to the interaction of geometry and flow occur in a wider range of293

situations than was possible to discuss in previous studies.294

The thickness variations are again larger for the colder temperature case, when the ice295

is stiffer and requires larger pressure (thickness) gradients to drive the flow needed to296

balance net sublimation/ melting within the constricted sea. The next section provides a297

scaling expression for this effect as well as for the global axisymmetric case. Note that the298

velocity field is not very different between the warm and cold runs (see maximum velocities299

indicated in Fig. 2) and this may be understood as follows. The specified source/ sink300

function S(φ, θ) needs to be balanced by ice transport convergence, ∇ · (uh). Given that301

the source function is constant in our runs, and if the thickness fields are not very different302

to zeroth order, this implies that the velocity field is, to a good approximation, set by303

the source function. Changes in the ice thickness between different runs would lead to304

changes in the velocity set by the source function. In turn, the thickness gradients that305

are required to drive this velocity field do depend on the ice viscosity and therefore on the306

temperature, as can be seen in Figs. 1 and 2. It is possible to use our model results to307

identify and analyze the weak dependence of the flow field on the temperature, because308
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the model does not include many other processes that could mask this result. This is an309

advantage of neglecting effects such as the dependence of the basal melting and freezing310

on the ice thickness and the effects of non-bubbly ice on the absorption of radiation.311

The temperature field implied by our model formulation is a three dimensional com-312

bination of the prescribed meridional surface temperature profile shown in the middle313

panels of Fig. 1, and the assumed linear vertical temperature profile from the prescribed314

surface temperature to the (assumed constant) melting temperature at the base of the315

ice. The ice flow field advects this temperature field and should lead, in principle, to a316

complex 3d temperature distribution. This advection effect is neglected here, as well as317

strain heating generated within the ice, and horizontal diffusion. We can estimate how318

important the advection might be in different areas of the ice flow. Neglecting this ad-319

vection is a sensible approximation only if the time scale of changes to the temperature320

due to vertical diffusion, which sets the linear vertical temperature profile, is shorter than321

that due to meridional advection. We therefore plot the following non-dimensional ratio,322

effectively a Peclet number, in Fig. 3,323

Pe =
v(r sin θ)−1∂(sin θT )/∂θ

κi∂2T/∂z2
≈ v(r sin θ)−1∂(sin θT )/∂θ

κi(Tsurface − Tfreezing)/h2
(15)324

325

where κi is the molecular heat diffusivity in ice, different from the (mostly numerical)326

horizontal diffusivity term appearing above in the mass conservation/ thickness equation.327

Fig. 3 shows that while temperature advection may be neglected in most areas (where the328

ratio is significantly smaller than one), it is not negligible in some key areas, in particular329

in narrow straights characterized by more rapid flow, where the ratio may be closer to, or330

even larger than, one. While these areas are quite isolated, it is clear that neglecting the331

effects of advection on the ice temperature is not justified there.332
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Comparing the 2d results based on a 176×176 grid to a solution on an 89×89 grid333

(experiments 7, 8 vs 9,10, Table 1, Figs not shown) shows that differences are not large.334

Ice thickness within the constricted sea is about 50 meters thinner in the coarser runs,335

indicating that numerical convergence of the solution as function of the model resolution336

has not been completely reached (as is often the case in global climate models). This is337

most likely due to insufficient resolution within the channels leading to the constricted338

sea. This problem, which often occurs in ocean models that cannot resolve critical narrow339

straights and sills (e.g., Straits of Gibraltar), may be resolved in future studies by either340

local grid refinement or by a parameterization of the channel flow, replacing the attempt341

to explicitly resolve the flow there. These solutions are beyond the scope of the present342

study.343

4. Scaling estimate of ice thickness variations

In this section we consider scaling estimate for thickness variations in two cases: a344

constricted sea fed by a long narrow channel, and a global, axisymmetric ocean.345

4.1. Constricted sea

Consider a sea of area A, linked to the ocean via a channel of length L and width W346

such that L�W . The ice thickness inside the sea, hs, may be assumed uniform as a result347

of efficient ice flow equilibration, and we denote the open ocean ice thickness outside of the348

channel ho. Denoting the ice velocity in the channel as V and the average sublimation/349

melt rate within the sea as b, the mass balance scaling for the ice cover of the sea is given350

by,351

V hoW ∼ Ab. (16)352
353
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Another relation may be obtained from the ice shelf momentum balance equations [Mor-354

land , 1987; MacAyeal , 1997]. Let y be the along-channel coordinate and assume that355

u = 0; let also n be the Glen’s flow law constant taken in our model equations above to356

be 3. The ice-shelf along-channel (v) momentum equation,357

0 = ∂x(B
1

2
(uy + vx)) + ∂y(B(ux + 2vy))− gρI(1− µ)hhy358

B ≡ h〈A(T )−
1
n 〉ε̇

1
n
−1

359

ε̇2 ≈ 1

2

(
u2
x + v2

y + (ux + vy)
2 +

1

2
(uy + vx)

2

)
,360

361

reduces to362

0 = ∂x(B
1

2
vx) + ∂y(B2vy)− gρI(1− µ)hhy363

B ≡ h〈A(T )−
1
n 〉ε̇

1
n
−1

364

ε̇2 ≈ 1

2

(
2v2

y +
1

2
v2
x

)
≈ 1

4
v2
x,365

366

where the assumed large channel aspect ratio, L/W � 1 leads to ε̇ ≈ vx/2 on the last line367

above. The second term in the y-momentum equation may be neglected if L�W because368

it scales with L−2 while the first terms scales with W−2. Assuming the velocity vanishes369

at the sides of the channel and is maximal at its center, we scale the cross-channel shear370

as vx∼V/(W/2), so that the momentum equation scales as,371

BV

2(W/2)2
∼ gρI(1− µ)ho(ho − hs)/L. (17)372

373

Scaling the effective viscosity as374

B ∼ ho〈A(T )−
1
n 〉
(

1

2

V

W/2

) 1
n
−1

, (18)375

376
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and substituting the velocity scale from the mass balance equation, we find an estimate377

for the thickness difference along the channel,378

ho − hs ∼
2L〈A(T )−

1
n 〉

WgρI(1− ρi/ρw)

(
Ab
h0W 2

) 1
n

. (19)379

380

This scaling is to be compared with the formula for an ice invasion length in rectangular-381

shaped (Red-Sea like) marginal sea used by Campbell et al. [2011] following Nye [1965].382

The advantage of their formulation is that it is based on an exact formula rather than383

crude scaling as done here. The scaling here, though, accounts for the case where the384

constricted sea is not rectangular but has a wider area fed by a narrow channel, as mo-385

tivated by the Neoproterozoic land mass reconstruction shown in Fig. 2. It is clear from386

this scaling estimate that a constricted sea located in the low-latitudes where there is net387

ice sublimation and melting, will lead to higher thickness variations (thinner ice in the388

constricted sea) if the channel is longer (large L), narrower (small W ), or if the sea itself389

has a larger area (A), larger melt rate (b) or if the ice temperature is colder (via the de-390

pendence on A(T ), note that A(T ) increases with temperature, and therefore 〈A(T )−
1
n 〉391

gets smaller; that is, warmer temperatures lead to softer ice and to smaller thickness392

differences).393

Substituting order-of-magnitude values for the parameters based on the “warm” solution394

for constricted sea in the Neoproterozoic land configuration (Fig. 2), A = (4000·103)2
395

(m2); b = 6·10−3/(365 · 24 · 3600) (m/s); L = 2500·103 (m); W = 1000·103 (m); ho = 1000396

(m); g = 9.8 (m/s2); ρi = 900 (kg/m3); ρw = 1024 (kg/m3); Tf = 273.16 (K); Ts = Tf−30397

(K); n = 3; where we chose the surface temperature to represent the location of the main398

channel leading to the constricted sea in the warm case shown in the upper left panel of399

Fig. 2, we find ho − hs∼108m. This estimate is of the same order, yet smaller than that400
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calculated by the numerical solution (compare to the “warm” solution on the left hand401

side of Fig. 2). Note that our assumption of L� W isn’t strictly satisfied. We calculated402

the thickness difference along the channel assuming a single channel but the above land403

configuration actually has two such channels, so that the comparison is somewhat vague.404

It is possible that a marginal grid resolution in the passages leading to the constricted sea405

biases the resolution, and the scaling itself cannot be expected to yield exact results, of406

course. But the scaling does make it clear that significantly larger thickness differences are407

to be expected in the case of a constricted marginal sea than when there are no marginal408

seas, e.g., because continents are ignored. Scaling for the case of no continents is presented409

in the following section.410

4.2. Global ocean, no continents

The 1d momentum and steady mass conservation equations (9) and (13) scale, corre-411

spondingly, as412

2
1

r
h〈A(T )−

1
3 〉
(v
r

) 1
n ∼ gρI(1− ρI/ρw)h∆h/r413

vh/r ∼ ∆S414
415

where the factor two on the left hand side of the momentum equation accounts for the416

first two terms in (9) and ∆S = Smax − Smin. Together, these lead to a scaling for the417

thickness difference between the equator and the pole, ∆h,418

∆h ∼ 2〈A(T )−
1
3 〉 (∆S/[h])

1
n

gρI(1− ρI/ρw)
(20)419

420

Substituting order of magnitude scales, ∆S = 12·10−3/yr(m/s); [h] = 1000(m); g =421

9.8(m/s2); ρi = 900(kg/m3); ρw = 1024(kg/m3); Tf = 273.16(K); Ts = Tf − 30(K);422

n = 3; we find ∆h ∼ 34m. This estimate is quite close to the numerical solution of the423
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“warm” 1d case in Fig. 1. Rather than specifying the thickness scale as we did above, one424

could calculate it by balancing the diffusive heat flux through the ice with the geothermal425

heat flux Fgeo, such that [h] = κ∆T/Fgeo. Overall, the scaling estimates of this and the426

previous sections predict a much weaker thickness difference if continents are neglected,427

consistent with the numerical solutions.428

5. Conclusions

Ice flow over a Snowball ocean was shown to be an important factor participating in429

the determination of ice thickness over the ocean [Goodman and Pierrehumbert , 2003],430

and has received significant attention in recent years [Warren et al., 2002; Pollard and431

Kasting , 2005; Goodman, 2006; Warren and Brandt , 2006; Pollard and Kasting , 2006;432

Campbell et al., 2011; Li and Pierrehumbert , 2011]. These studies all use local models or433

one-dimensional global (latitude-only) models, formulated in a way that was difficult to434

extend to two dimensions (both longitude and latitude). This paper attempts to make435

progress on two different fronts related to this ice flow problem. First, we study the436

effects of continental constriction on ice flow and ice thickness in an ice-covered ocean in437

a Snowball-Earth scenario using a global model with reconstructed Neoproterozoic land-438

mass configuration. Second, we provide a formulation of the ice flow problem in two439

dimensions on a sphere that should allow coupling such ice flow models to ocean and440

atmospheric general circulation models. This formulation is a very simple extension of441

the well known ice-shelf equations from glaciology [Morland , 1987; MacAyeal , 1997, e.g.,]442

to spherical coordinates.443

Campbell et al. [2011] used a formula derived by Nye [1965] to show that the invasion by444

ice into an idealized rectangular-shaped marginal sea (Red-Sea like) is limited by friction445
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with the side walls and that this may lead to significant ice thickness variations within446

such a sea in regions of net sublimation. Our numerical simulations show that, consistent447

with the original idea of Campbell et al. [2011], continental constriction indeed leads to448

ice thickness variations in additional cases. This includes relatively narrow areas between449

sub-continents, and marginal seas whose entrance is constricted by land mass geometry.450

In addition to numerical solutions, we present scaling estimates of the thickness variations451

in both the case of a global ocean with no continents and in the case of a marginal sea452

fed by a relatively narrow channel. The scaling estimates are compared to the numerical453

solutions and are found to somewhat underestimate them, but are of the right order of454

magnitude.455

We formulated the ice flow problem starting with the equations of motion (Stokes456

equation) rather than from the Weertman [1957] estimate for the deformation rate of457

ice shelves. This allowed us to extend the formulation to two dimensions, which is not458

possible starting from the Weertman deformation rate formula. In addition, we show that459

in a model that depends on latitude only, a careful formulation of the lateral geometry and460

boundary conditions following Morland [1987]; MacAyeal and Barcilon [1988]; MacAyeal461

[1989, 1997], as well as the effects of spherical coordinates, leads to additional terms462

in the model equations which were not included in previous studies. In particular, our463

formulation involves two integrations of the momentum equations in order to solve for464

the ice velocity. The constants of integration play a role parallel to that of the body force465

introduced by Goodman and Pierrehumbert [2003], allowing the meridional ice velocity466

to vanish at the equator in a model that’s symmetric about the equator. We emphasize467

that the main qualitative result of the works which pioneered the study of ice flow in468
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a Snowball ocean is still valid: ice flow effectively homogenizes ice thickness across the469

global ocean where the flow is not constricted by continents.470

While we were able to make significant progress in several ways, many related and im-471

portant issues remain open. Our model ignores the flow of land ice toward the constricted472

sea. We anticipate that an attempt to simulate ice flow in a global ocean into marginal473

seas whose opening is small will run into numerical resolution limits. Rather than in-474

creasing the global resolution, one would need to resort to either local grid refinement, or475

to a parameterization of the ice flow in narrow straights, as is routinely done in coarse476

resolution ocean models that cannot resolve critical narrow straights and sills (e.g., Straits477

of Gibraltar). The poles pose a problem to the numerics in standard spherical coordinates478

as they do in oceanic and atmospheric models, and one could resort to alternative grids479

where the poles are moved to over a land mass [e.g. Voigt et al., 2011], or where Earth’s480

surface is mapped into a cube as is done in current state-of-the-art ocean models [Adcroft481

et al., 2004].482

Having concentrated on ice flow alone, we ignored all thermodynamic, dust and optical483

effects that are known to be important processes in setting ice thickness in a Snowball484

scenario [Warren et al., 2002; Goodman and Pierrehumbert , 2003; McKay , 2000; Pollard485

and Kasting , 2005, 2006; Warren and Brandt , 2006; Goodman, 2006; Abbot and Pier-486

rehumbert , 2010; Li and Pierrehumbert , 2011; Pierrehumbert et al., 2011]. Instead, we487

prescribed the net source/ sink of ice due to accumulation, freezing, melting and subli-488

mation as time independent forcing fields based on the values calculated by Pollard and489

Kasting [2005]. While this allowed us to isolate the effects of ice flow, the ignored addi-490

tional factors can make the thickness variations significantly larger, possibly leading to491
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thin ice cover over constricted seas and low-latitudes, with implications for survival of life492

discussed by Campbell et al. [2011]. We cannot discuss such implications given that we493

neglected these important factors.494

It should be noted that the glaciological literature has dealt extensively with ice shelves,495

their dynamics, collapse, existence of rifting and fracturing during the flow through chan-496

nels [Doake et al., 1998; Doake and Vaughan, 1991; MacAyeal et al., 2003; Rott et al., 1996;497

Vieli et al., 2006; Weis et al., 1999; Van-Der-Veen, 1999, e.g.,]. The resulting lessons are498

of obvious relevance to the dynamics of ice flow over a Snowball ocean, as well as to the499

existence of refuges within ice shelf cracks.500

Given these many idealizations, we emphasize that this study is meant to be a process501

study focusing on one specific dynamical factor, not a realistic simulation of Neopro-502

terozoic ice thickness. We also assume ice thickness to be large everywhere, and the503

formulation here would need to be extended if thin ice cover or ice-free ocean develops,504

or for a study of transient Snowball initiation and an invasion of the ocean by thick ice.505

In spite of its obvious limitations, this study is a first step toward coupling Snowball506

ice flow models to general circulation ocean and atmospheric models. This, in turn, will507

allow an improved representation of the basal and surface melting, freezing sublimation508

and snow accumulation and should help making these models more accurate.509

D R A F T March 12, 2012, 6:36pm D R A F T



X - 26 TZIPERMAN ET AL.: CONTINENTS AND SNOWBALL ICE FLOW

Appendix A: Derivation of model equations

A1. Surface and bottom boundary conditions

The upper and lower boundary momentum conditions may be written [MacAyeal , 1997],510

σ · n̂s = 0, (A1)511

σ · n̂b = −n̂bpw,512
513

where ns and nb are the outward-pointing normal vectors at the surface and the bottom,514

respectively. The stress tensor element σij is the force in the i direction acting on a face515

perpendicular to the j direction, so that σijnj is the total force in the i direction on a516

unit area along the ice surface. This force vanishes at the surface and is equal to the517

hydrostatic water pressure pw at the bottom of the ice. Defining the deviatoric stress518

as τij = σij − δij 1
3
σkk = σij + pδij (where δij is the Kronecker delta, and the pressure is519

defined as p = −1
3
σkk), leads to the equivalent form of the boundary conditions520

(τ − pI) · n̂s = 0, (A2)521

(τ − pI) · n̂b = −n̂bpw.522
523

The normal vector to the surface elevation s(φ, θ) is given by the gradient of f(φ, θ, z) =524

z − s(φ, θ),525

n̂ =
∇f
‖∇f‖

=
(− 1

r sin θ
sφ,−1

r
sθ, 1)

‖(− 1
r sin θ

sφ,−1
r
sθ, 1)‖

. (A3)526

527
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The boundary conditions (2) and (A2) in spherical coordinates then take the form,528

(τφφ − p)
1

r sin θ
sφ + τφθ

1

r
sθ − τφz = 0 z = s (A4)529

τθφ
1

r sin θ
sφ + (τθθ − p)

1

r
sθ − τθz = 0 z = s530

τzφ
1

r sin θ
sφ + τzθ

1

r
sθ − (τzz − p) = 0 z = s531

(τφφ − p)
1

r sin θ
bφ + τφθ

1

r
bθ − τφz = − 1

r sin θ
bφgρwµh z = b532

τθφ
1

r sin θ
bφ + (τθθ − p)

1

r
bθ − τθz = −1

r
bθgρwµh z = b533

τzφ
1

r sin θ
bφ + τzθ

1

r
bθ − (τzz − p) = gρwµh z = b534

535

where µ = ρi/ρw as above.536

A2. Ice shelf-equations in spherical coordinates

This derivation follows Morland [1987] and MacAyeal [1997], except for the use of537

spherical coordinates here. (Alternatively, the same results can be derived by starting538

from the invariant formulation of Schoof [2006] and using expressions for the covariant539

derivatives in spherical coordinates). Let the coordinates (longitude, co-latitude, vertical)540

be denoted by (φ, θ, r) and the corresponding velocities be (u, v, w). Below, when we541

make the “thin shell” approximation, we switch to the coordinates (φ, θ, z) and treat r as542

a constant. The gradient, divergence of a vector and Laplacian are,543

∇ = (
1

r sin θ
∂φ,

1

r
∂θ, ∂r) (A5)544

∇ · v =
1

r sin θ
∂φu+

1

r sin θ
∂θ(sin θv) +

1

r2
∂r(r

2w)545

≈ 1

r sin θ
∂φu+

1

r sin θ
∂θ(sin θv) + ∂zw546

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
.547

≈ ∂zzf +
1

r2 sin θ
∂θ (sin θ∂θf) +

1

r2 sin2 θ
∂φφf.548

549
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where we have made the approximation of a thin shell of ice whose thickness is much550

smaller than Earth’s radius, replacing r-derivatives with derivatives with respect to a551

local vertical coordinate z and treating r as a constant equal to Earth’s radius. The552

(symmetric) rate of strain is (its elements above the diagonal are omitted),553

ε̇ =

 ε̇φφ ε̇φθ ε̇φr
ε̇θφ ε̇θθ ε̇θr
ε̇rφ ε̇rθ ε̇rr

 (A6)554

=


1

r sin θ
(∂φu+ w sin θ + v cos θ) . .

1
2r

(
1

sin θ
∂φv + sin θ∂θ(u/ sin θ)

)
1
r

(∂θv + w) .
1
2

(
1

r sin θ
∂φw + r∂r(u/r)

)
1
2

(
1
r
∂θw + r∂r(v/r)

)
∂rw

 .555

556

Simplifying the rate of strain tensor using the thin shell approximation (e.g., 1
r2
∂r(r

2w) ≈557

∂zw and neglecting wθ/r) as well as using the ice-shelf approximation of neglecting ε̇θz,558

ε̇φz, and assuming the horizontal velocities are z-independent and much larger than the559

vertical velocity,560

ε̇ ≈


1

r sin θ
(∂φu+ v cos θ) . .

1
2r

(
1

sin θ
∂φv + sin θ∂θ(u/ sin θ)

)
1
r
∂θv .

0 0 ∂zw

 . (A7)561

562

The momentum equations in vector form (1) are written explicitly in component form in563

spherical coordinates as,564

0 = − 1

r sin θ
∂φp+

1

r sin θ
∂φτφφ +

1

r sin θ
∂θ(sin θτθφ) +

1

r2
∂r(r

2τrφ) (A8)565

+
τrφ
r

+
cot θ

r
τθφ566

0 = −1

r
∂θp+

1

r sin θ
∂φτφθ +

1

r sin θ
∂θ(sin θτθθ) +

1

r2
∂r(r

2τrθ)567

+
τrθ
r
− cot θ

r
τφφ568

0 = −∂rp− gρI +
1

r sin θ
∂φ(τrφ) +

1

r sin θ
∂θ(sin θτrθ) +

1

r2
∂r(r

2τrr)569

−τθθ + τφφ
r

,570

571
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where the divergence of a second order tensor in curvilinear coordinates contains a set572

of metric corrections in addition to those appearing in the divergence of a vector (see573

an outline of the mathematical justification in appendix B, and a heuristic discussion574

within the paper after Eqns (9)-(13)). These are the last two terms in the two horizontal575

momentum equation and the last term in the vertical momentum equation. Using the576

thin shell approximation and the ice shelf approximation τθz ≈ 0, τφz ≈ 0,577

0 = − 1

r sin θ
∂φp+

1

r sin θ
∂φτφφ +

1

r sin θ
∂θ(sin θτθφ)+

cot θ

r
τθφ (A9)578

0 = −1

r
∂θp+

1

r sin θ
∂φτφθ +

1

r sin θ
∂θ(sin θτθθ)−

cot θ

r
τφφ (A10)579

0 = −∂zp− gρI + ∂zτzz−
τθθ + τφφ

r
. (A11)580

581

Next, integrate the two horizontal momentum equations from top to bottom and use the582

Leibniz rule, and integrate the vertical equation first from top to z and then from top to583

bottom (all such integrals
∫ s
b

are over depth, we drop the dz for brevity) to find,584

0 =
1

r sin θ
∂φ

∫ s

b

(τφφ − p) +
1

r sin θ
∂θ

∫ s

b

(sin θτθφ) (A12)585

− 1

r sin θ
sφ(τφφ − p)

∣∣∣
s

+
1

r sin θ
bφ(τφφ − p)

∣∣∣
b

586

− 1

r
sθτθφ(s) +

1

r
bθτθφ(b)+

cot θ

r

∫ s

b

τθφ587

0 = −1

r
∂θ

∫ s

b

p+
1

r sin θ
∂φ

∫ s

b

τφθ +
1

r sin θ
∂θ

∫ s

b

(sin θτθθ)588

+
1

r
sθp(s)−

1

r
bθp(b)589

− 1

r sin θ
sφτφθ(s) +

1

r sin θ
bφτφθ(b)590

− 1

r
sθτθθ(s) +

1

r
bθτθθ(b)−

cot θ

r

∫ s

b

τφφ591

0 =

∫ s

b

(
− (p(s)− p)− gρI(s− z) + τzz(s)− τzz(z)

)
592

−1

r

∫ s

b

∫ s

z

(τθθ + τφφ).593

594
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Using the top and bottom boundary conditions (A4) as well as that trace(τij) = 0,595

0 =
1

r sin θ
∂φ

∫ s

b

(τφφ − p) +
1

r sin θ
∂θ

∫ s

b

(sin θτθφ)− 1

r sin θ
bφgρwµh (A13)596

+
cot θ

r

∫ s

b

τθφ597

0 = −1

r
∂θ

∫ s

b

p+
1

r sin θ
∂φ

∫ s

b

τφθ +
1

r sin θ
∂θ

∫ s

b

(sin θτθθ)−
1

r
bθgρwµh598

−cot θ

r

∫ s

b

τφφ599

−
∫ s

b

p = −gρI
1

2
h2 +

∫ s

b

(
τφφ + τθθ

)
−1

r

∫ s

b

∫ s

z

(τθθ + τφφ)600

601

Neglecting the O(h/r) terms in the third equation and substituting the remaining terms602

in the first two using h = s− b and s = (1− µ)h,603

0 =
1

r sin θ
∂φ

∫ s

b

(2τφφ + τθθ) +
1

r sin θ
∂θ

∫ s

b

(sin θτθφ)+
cot θ

r

∫ s

b

τθφ −
1

r sin θ
gρI(1− µ)hhφ

(A14)

604

0 =
1

r sin θ
∂φ

∫ s

b

τφθ +
1

r sin θ
∂θ

∫ s

b

sin θτθθ +
1

r
∂θ

∫ s

b

(τθθ + τφφ)−cot θ

r

∫ s

b

τφφ −
1

r
gρI(1− µ)hhθ.605

606
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Using Glen’s flow law to express the stress components in terms of the strain rates and607

therefore velocity components,608

0 =
1

sin θ
∂φ

[
B(2

1

sin θ
(∂φu+ v cos θ) + ∂θv)

]
(A15)609

+
1

sin θ
∂θ

[
B

1

2

(
∂φv + sin2 θ∂θ(u/ sin θ)

) ]
610

+cot θB
1

2

(
1

sin θ
∂φv + sin θ∂θ(u/ sin θ)

)
− 1

sin θ
gρI(1− µ)hhφ611

0 =
1

sin θ
∂φ

[
B

1

2

(
1

sin θ
∂φv + sin θ∂θ(u/ sin θ)

)]
612

+

[
1

sin θ
∂θ (B sin θ∂θv) + ∂θ

(
B

1

sin θ
∂θ(v sin θ)

)]
+ ∂θ

(
B

1

sin θ
∂φu

)
613

−cot θ
1

sin θ
B (∂φu+ v cos θ)− gρI(1− µ)hhθ614

B =
1

r
h〈A(T )−

1
3 〉ε̇

1
3
−1

615

ε̇2 =
1

2

(
ε̇2φφ + ε̇2θθ + (ε̇φφ + ε̇θθ)

2 + 2ε̇2φθ
)

616

ht +
1

r sin θ
∂φ(uh) +

1

r sin θ
∂θ(sin θvh) = κ∇2h+ S(φ, θ).617

618

where 〈〉 denotes an average over the vertical dimension [see Goodman and Pierrehumbert ,619

2003]. These final equations appear in the text of the paper itself as equations (4)-(8).620

Appendix B: Divergence of a tensor

Write the divergence operator as621

∇· = êφ
1

r sin θ
∂φ + êθ

1

r
∂θ + êr∂r, (B1)622

623

and note that the unit vectors in spherical coordinates are not constants, such that, for624

example, ∂θêθ = −êr [Greenberg , 1998]. Applying the above divergence to a vector v,625

∇ · v = (êφ
1

r sin θ
∂φ + êθ

1

r
∂θ + êr∂r) · (êφu+ êθv + êrw) (B2)626

627

we find that the derivatives of the unit vectors introduce a set of correction terms due628

to the non-Cartesian coordinates. To derive the divergence of a tensor (which yields a629
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vector), write it as630

∇ · τ = (êφ
1

r sin θ
∂φ + êθ

1

r
∂θ + êr∂r) · (êφ⊗êφτφφ + êφ⊗êθτφθ + . . .) (B3)631

632

where êφ⊗êθ, for example, is a tensor whose only nonzero element is at the (φ, θ) =633

(1, 2) position. Using the expressions for the derivatives of unit vectors we find that the634

derivatives now include those of the tensor elements (e.g., τφθ), as well as the derivatives635

of both unit vectors multiplying each tensor element. We therefore expect two correction636

terms due to the derivatives of the unit vectors, rather than just one in the case of the637

divergence of a vector. This leads to the additional terms in the momentum equation638

discussed in the text.639
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Figure 1. Steady state results of the 1d model (equations 9-13). Left panels: “warm”

(experiment 3 in Table 1), right: “cold” case, experiment 4. Upper: ice thickness and meridional

velocity as function of latitude. Middle: specified surface temperature. Lower: terms in the

continuity equation (13); (“rhs” in the legend denotes the sum of the advection and diffusion

terms, which should exactly balance the source S in a steady state).
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Figure 2. Upper: steady state results of the 2d nonlinear model for ice thickness (in meters,

shown by color contours), and ice velocity field (arrows, m/year, only every fourth velocity

vector is drawn). Results are shown for a continental configuration motivated by a 630 Myr

reconstruction, based on experiments 9 (warm, left panels) and 10 (cold, right panels), see Table

1. Lower: log10 of the corresponding effective viscosity given by equation (14). Axes indicate

degrees longitude and latitude.
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Figure 3. A nondimensional Peclet-like ratio of the temperature time rate of change due to

horizontal advection vs due to vertical diffusion (eqn 15). Axes indicate degrees longitude and

latitude.
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Experiment model Tsurf land Fig
3 1d warm - 1
4 1d cold - 1
5 2d warm - -
7 2d warm 630Myr -
8 2d cold 630Myr -
9 2d X2 warm 630Myr 2
10 2d X2 cold 630Myr 2

Table 1. List of model experiments. X2 means resolution of 176 grid points, otherwise 89

points are used. “Warm” refers to the prescribed surface temperature seen in the middle left

panel of Fig. 1, while “cold” refers to that shown in the middle right panel.
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