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1. Introduction

Two-dimensional quantum field theory is very special. Many surprising and beauti-
ful results turn out to be true only in two dimensions, including for example the exact
solvability of certain models, the equivalence of fermionic and bosonic field theories, and
so on. One way of describing the root cause for all these miracles is to note that in two
dimensions the light cone is disconnected: it consists of a left moving and a right moving
branch, and massless particles stay on one branch or the other. !

This cleavage in turn comes from the fact that in two dimensions the scalar wave
operator factorizes into the product of left and right moving derivatives. In euclidean

space the analogous statement is
v?=4ta (1.1)

where 3 is the Cauchy-Riemann operator. Thus in a sense we can say that 2d fields are
special because for them complex analysis plays a key role.

In this paper we will see how complex analytic methods can extend our understanding
of 2d fields from surfaces with the topology of the plane (or sphere) to arbitrary compact
euclidean spacetimes. Specifically we will study Fermi-Bose equivalence, or “bosonization.”
We give a prescription for bosonizing the correlation functions of a first order fermionic
system with fields of any spin and any twisted spin structure. Our prescription generalizes
that of [2][3][4]; in particular certain global terms must be added to the scalar action for
nontrivial spacetimes. Most of these results were announced in [5] and build on [6]and [7].

Field theory on complicated surfaces, and in particular bosonization, has become an
important tool in the study of string theory. For example, bosonization has been used in
light-cone gauge to prove the equivalence of the Green-Schwarz and NSR superstring [8]9].
Bosonization also plays a key role in understanding the gauge- and super-symmetry of the
heterotic string [10] and in formulating the covariant fermion emission vertex [11){12]. The
methods we use however are quite general and we expect them to be of use in 2d feld
theory for problems other than bosonization. For instance we obtain some expressions for
functional determinants in terms of the natural functions associated to a Riemann surface.

The key step in understanding 2d fields on compact surfaces is the observation that

while the amplitudes are functionals on the large space of metric background fields, nev-

1 See, e.g. the physical discussion in §V.B of [1].
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ertheless most of this dependence is understood using the various known anomalies. The
only interesting dependence is on the “moduli space” M, of conformally-inequivalent sur-
faces with g handles. Similarly the dependence on flat background gauge fields boils down
to one on the “jacobian variety” J(X) of inequivalent bundles on a given surface ¥. The
spaces M, and J(Z) are both finite-dimensional. (Indeed both are trivial on the plane,
corresponding to the well-known fact that fermion dynamics on the plane is completely
given by the anomaly.) Furthermore each is naturally a complex space, a consequence of
the complex form of the wave operator (1.1). Thus as mentioned earlier, powerful complex-
analytic methods are available to study quantum amplitudes. This is why two dimensions

is so special.

The link between field-theoretic and algebraic-geometric methods is provided by the
theorems in [13][14][15] (see also [16] [17] [18]), which describe the determinant of a family of
Cauchy-Riemann operators in terms of the complex structure of M,. The case originally
studied by Quillen involves families of operators at one point of M,, parametrized by
background gauge potentials on the given surface. These results were later generalized by
Belavin and Knizhnik and by Bost and Jolicceur (using results of Bismut and Freed) to
include families of Cauchy-Riemann operators parametrized by M/, which are of interest
in string theory. The main conclusion is that the combinations of determinants appearing
in the integrand over M/ in the bosonic and fermionic strings factorize into sections of flat
holomorphic line bundles on M. This factorization is useful for example when we study

the infinities of string theory by allowing Riemann surfaces with nodes.

It has also been known for some time that Quillen’s work is closely related to Falting’s
work on Arakelov geometry [19][20]. It was suggested in [15] that a combination of Quillen’s
and Faltings’ ideas would be of use in string theory. We will use just such a combination

{o prove our results on bosonization.

As mentioned, we will generalize the bosonization prescription given in [2][3}[4] for
anticommuting fields of any spin on the sphere. When we try to generalize to arbitrary
compact surfaces, however, we face the problem that there is in general no euclidean “time”
to use in a canonical formalism. Fortunately there is one case, the torus, where operator
methods still work and yet the topology is interesting enough to show what happens in

higher loops. We will use the canonical formalism to get the correct prescription in a
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simple case, then use modular invariance and factorization to guess the correct general

prescription, in any number of loops. The prescription so obtained is unique.

To prove that our bosonization rules really do work, we will compute corresponding
quantities in the bosonic and fermionic languages. Setting these equal gives a set of iden-
tities which express the content of Fermi-Bose equivalence. Finally we prove the identities

using methods of algebraic geometry, thus establishing bosonization.

While the last steps get rather involved, we emphasize that the prescription itself is
not too complicated. The reader may wish to turn immediately to Section 4 to see the

statement of the bosonization rules.

Throughout this paper we will discuss only nonchiral theories. We restrict to this
case because, as is well known, chiral determinants are problematic in 24 gravity due to
anomalies. In the bosonic language this appears as a difficulty in defining chiral scalar
fields in a path integral. There has been some progress in chiral bosonization in [21] [22]

[23](24] and elsewhere, but a discussion is beyond the scope of this paper.

Also, in this paper we discuss bosonization physically in terms of path integrals and
mathematically in terms of isometries of determinant bundles. Historically, another ap-
proach to bosonization in spin 1/2 has proceeded via the isomorphism between spinor and
vertex operator representations of affine Lie algebras {25][26]. It would be extremely in-
teresting to unify and generalize these two approaches using a general operator formalism.

Recent progress on this problem has been made along these lines in [27] [24][28].

In sect. 2 we describe various aspects of the theory of Riemann surfaces which we will
need. In particular we discuss various ways to describe bundles, choices of homology basis,
holonomy, and Arakelov metrics. References [6][16][29]{17] may be useful background for
this section and for the whole paper. In Section 3 we arrive at the bosonization rules and
in particular show that the scalar action is independent of various choices made in defining
it. In Section 4 we give the complete set of rules, and work out the identities mentioned

above. Section 5 contains the proofs of these identities, and we conclude in Section 6.

We draw the reader’s attention to several preprints on related topics which we received

after this work was completed. These include [30](22][23]{31]-(34].
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2. Foundations

This is a long introductory section in which we introduce some machinery.? In par-
ticular we describe bundles over Riemann surfaces in three different ways: via transition
functions, via divisors, and via points in the jacobian mentioned earlier. We also briefly
review theta functions and Arakelov metrics. The reader may wish to skip this section

and refer to it as needed.

A. Surfaces

Let ¥ be a smooth compact connected surface. We will always assume X is oriented,
as for example in the heterotic string. We will soon need to give £ more structure, but
first we will briefly note some facts about its topology.

The homology of I is simple. H,(E;Z) has one generator since ¥ is connected, while
H,(X;Z) has one generator since ¥ is compact, connected, and oriented {35]. The first
homology group has 2g generators, where the genus g is an integer which completely
specifies T topologically. See Fig. 1. By triangulating © one can see that the Euler
number of ¥ is x = 2 — 2g; x is also the Chern number of the tangent to X. The oriented

intersection number of two 1-cycles is a signed integer, and

This pairing defines a quadratic form on H (Z).

We will want our amplitudes to depend only on intrinsic information. For example,
the partition function for spin-1/2 fermions depends on a surface and a choice of spin
bundle. In practice, however, we need coordinates to describe the intrinsic data, and this
requires that we make some noninvariant choices. We then have to verify later that our
answers are independent of the choices made. The most important such choice, which
we will use throughout this paper, is that of a basis of H,(X;Z). While there is no
preferred basis, we can restrict the choice somewhat by choosing only bases of the form

A ={ay,..., @y, by,...4,}, satisfying the invariant condition:

2 We thank V. Dellapietra for many discussions on the material in this section, and also
section 3.C.



Fig. 1: A Riemann surface of genus two, with a canonical homology

basis.

) @) (@8 =J  where J= (_01 (1)) (2.1)

Any basis A with property (2.1) will be called “canonical”. Any other canonical basis A

will then be related to A by an integer matrix preserving J:
A=A-A"Y, A JA=1T. (2.2)

The group of such A is the “symplectic modular group” Sp(2g,Z). Letting

A= (—Ac _]_38) | (2.3)

we gel

- D* Bt
A 1=(ct A‘)‘

We can also define a dual basis 4* of H!(Z;Z) by

A* ={a,...,a?,B%,...,89)

(A*, 4y =1

~

A* = AR .

1
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Fig. 2: a) Representatives of a basis intersecting at P,. b) The cut

surface 2.

Thus if we expand a cohomology class ¢ as ¢ = (n,m) (g), then with respect to a new

basis 1 is described by

(7, M) = (n,m)A"1 . (2.4)

We will usually append a subscript A to any object we construct which depends on a
choice of basis.

Again, the introduction of a basis 4 is a necessary evil needed to parametrize
various spaces. It explicitly breaks invariance under diffeomorphisms, since f,(a;) is
not in general homologous to a; if f is not connected to the identity. However, since
fo(a)- f.(a") = a-a', we do know that f,4 always differs from A by a transformation
in Sp(2g,Z). Thus if we are careful not to make any further noninvariant choices beyond
that of A, we see that invariance under Sp(2¢,Z) suffices to establish invariance under
the full group of disconnected coordinate transformations of T. The former condition is
also called “modular invariance.”

Given a homology basis, or “marking,”® for ¥, we can choose specific curves repre-
senting each homology class and all intersecting at one point P. See Fig. 2a. It is then
useful to introduce the “cut” surface £, with the topology of a disk {Fig. 2b). Since Z,
involves more choices than just A, we will have to verify that constructions made with its

help are unchanged as we vary the curves in their homology classes.

® This is different from the sense of the word used in [36].
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One useful calculation with I, is the following: let 6,7 be closed 1-forms on .
Then fn 0An = fEe 0rng = fEc d(pn) where § = dp on .. By Stokes’ theorem this
is the integral of (7 around the boundary of ¥,. Grouping the boundary segments in
pairs we get [37]

[oan= 3 felel) - wled) §n- 3 le(e?) — ot X
=Zf dw-f‘_n—(a*-*b) ,
forn=Zlf o fn-fed
- (1)

where we expanded 8, n in terms of (n,m) and (n',m’). This identity is clearly

or

(2.5)

independent of all choices made.

B. Riemann Surfaces, Sheaves, and Bundles

In order to define a Laplacian, say, we must have a metric. For many purposes,
however, the conformal class of a metric is all we need. For example, given a metric class
the Hodge theorem gives representative differential forms for the cohomology classes &, g
dual to A, namely the harmonic forms. Also as is well known a conformal class amounts
to a complez structure on X [16][29]. From now on L will denote a surface endowed with
such a structure, which is called a Riemann surface.

The complex coordinate patching functions of T are analytic on the overlaps U, NU;
of coordinate charts. One can also consider holomorphic line bundles over X, complex
bundles whose transition functions are always analytic. Such bundles are important be-
cause they have a well-defined notion of a holomorphic section. In fact there is a Cauchy-
Riemann & operator on the sections of any holomorphic line bundle ¢, which we call 9,;
a holomorphic section o satisfies 550 =0 (see sect. 5.C). Clearly, the derivatives of the
patching functions define such a bundle, the holomorphic tangent K -1 of E. Its dual
K is called the canonical bundle over X. We will always consider holomorphic bundles

unless otherwise noted.



Thus the bundles K™ correspond to tensors with n lower z indices where 2 is a
local complex coordinate of I. Sections of K™ ® K™ are called (n,m)-tensors. In order
to deal with spin we also define a holomorphic spin bundle* L as any bundle such that
L ® L = K; the corresponding tensors then have “half a z index.” Before describing
these in greater detail, however, we first recall the notion of a sheaf [39].

The language of sheaves is useful for many constructions in geometry. We will only
make essential use of it in the last section, however, and the reader may wish to skip the
following paragraphs. While we will work on a surface ¥ in this section, most of the
constructions have analogs in higher dimensions as well.

A sheaf ¥ of abelian groupson ¥ is an assignment of an abelian group 7 (U) to
every open set U C I. This is the only kind of sheaf we will consider in this paper. ¥(U)
is called the group of “sections of ¥ over U.” ¥ also assigns to pairs of nested sets
V C U a “restriction” map ruv : F(U) = F(V) in a way which makes sense on overlaps.
That is,

a) If WCV CU, then ruw =Tuy O Tyw.

b) ¥ o, O2,... are sections over U,, U,,..., respectively and each pair oy O
have the same restriction to U; N Uy, then each o; is the restriction of some
section p over U, UU, U....

c) If p isasectionof F over UUV which gives the identity when restricted to
both U and V, then p is the identity.

Here are some examples of sheaves which we will use.

a) 0. Over U C X, O(U) = {analytic functions on U }; the group law is addition.

b) M. Here M(U) = {meromorphic functions on U }. In between O and M we
have

¢c) O(P). ¥ P€ U then O(P}(U) = {functions analytic on U except for a
possible pole of first order at P}; otherwise O(P}(U) = O(U). Note that the
constant 1 is a canonical section of O(U) over any U.

d) O(—P). If P€ U then O(=P)(U) = {functions analytic and vanishing to at
least first order at P}. Note that O(—P)(Z) has only the zero section, since

* See [38], [29] for why this definition coincides with the usual definition of spin structure.



3 is compact.

¢) Given any holomorphic bundle ¢ on I, we can define analogously to (a)
£(U) =analytic sections of ¢ on U. We will not distinguish notationally between

a bundle and its sheaf of holomorphic sections.

f) Given a vector space V and apoint P€ X wecanlet F(U)=V,if PeU,
and otherwise the zero vector space. The restriction map is either the identity or
else the zero map. ¥ is called the “skyscraper sheaf” and is denoted by Vip.
In particular, given a bundle £ and a point, we will write £|p to denote both

the fiber at P and the corresponding sheaf with support at P.

g) Given any group such as Z, R, or C, we can define Z(U) = Z etc. for every
connected U. Every restriction is the identity. Sections of Z etc. can be thought

of as locally constant functions on U.

h) Finally, we can define sheaves where the group law is multiplication, not addition,
of functions. These include the constant sheaf C* = C — {0} and the sheaf O*

whose sections are the local analytic functions which never vanish.

Thus roughly speaking the notion of sheaf generalizes that of bundle to include cases where
the fiber dimension jumps (example f), as well as cases where only constant loczl sections

are allowed (example g).

In fact O(P) is the sheaf of analytic sections of a certain bundle £, which we construct
as follows. Let Uy, =X — {P} and U, a small disk neighborhood of P. Trivialize { so
that a section s is given by functions s; on U; with s, =2.s, on U;NU,, where 2
is a complex coordinate centered at P. Given a function f in O(P)(U) we get a section of
¢ on U NU,, which we then analytically continue to U N U, using the transition function.
Then clearly the functions in O(P)(U) all correspond to smooth analytic sections of £.
In particular, the canonical section 1 vanishes once at P. We will write O(P} to refer
either to the sheaf or the bundle, and 1,(p) for the canonical section. Similarly O(—P)
gives a bundle via s; = 271 -3,. It too has a canonical section 1,(_py which now blows

up at P.

A map between sheaves is a collection of homomorphisms f; : F(U) — G(U) com-

muting with restriction. Roughly speaking, a sequence of maps is called exact at P& X

9



if

o F(U) = GU) = -

is exact for all sufficiently small neighborhood U of P. (See {39] for the precise definition.)

An exact sequence of the form

0 S 78 g0 (2.6)

is called “short.” Recall that this implies that a has no kernel and g is onto, as well as

that image a = ker 8, again on small enough neighborhoods of each point of X. We will

use three simple exact sequences:

a)

0-~+27riZ‘i> 0 =5 O* =0 (2.7)

Here ¢ is inclusion: every constant function is in particular an analytic function.

Since e€?>*** =1 iff z is an integer, this sequence is exact.

0-E®O0(-P) & ¢ 5 ¢lp >0, (2.8)

where £ is any holomorphic bundle. Again ¢ includes the sections of ¢

vanishing at P into all sections. r restricts a section to its value at P, so the

sequence is exact.

0K < K®O(P) X4 Clp —0 (2.9)

where K is the cotangent bundle. ¢ includes the holomorphic sections into the
ones holomorphic except for a possible first-order pole at P. res is the residue

map: if f is analytic at P, res P({; dz) = f(P) is coordinate-invariant.

We can build a cohomology theory for any sheaf ¥ as follows [39](35][40).

We first define the groups of cochains with values in ¥. Given a cover of X by open

sets {U,

» a O-cochain ¢ € C°(¥) is given by associating a section o € F(U.) to every
[« ] o

U,. The full cochain group is freely generated by such o¢. A l-cochain ¢ & CHZ; 7) is

given by associating a section o, g € ¥(U,NUyg) for every nonempty intersection, and so

on. Next, introduce the coboundary operator

10



§:CP - crHl
p+1

80(UgsUpy-esUpps) = D (=1)*6(Ug, -- - Ugs -+ s Up 1) lvon.aly e
k=0

(I}k means that the k + l-entry is deleted.) It is easy to check that §2=0. If o is

a p-cochain satisfying 6o = 0, we say that o is a cocyle. If o, = 60,’,_1 for some
(p — 1)-cochain of,_,, then we say that o, isa coboundary. The p-th Cech cohomology

group associated to the covering {U,} is defined on the group of p-cocyles Z? modulo

p-coboundaries §CP~1L:

HP({U,}: 7) = 2P({U1: F)/6C7 T ({Ua}; F)

It is possible to define the cohomology groups H? (£; 7) as the “limit” of these groups as
the covering {U,} gets finer and finer [41]. For the constant sheaves of type (9) above
these groups are just the usual cohomology groups [41]. For the sheaf associated to a
bundle ¢ we have that H(X;£) is just the space of global holomorphic sections, or in
other words that

HO(Z;€) =kerd, . (2.10)

The other groups HP(LZ;£) are more complicated.
Given a short exact sequence of sheaves (2.6), there is associated 2 long exact sequence

of cohomology groups [41] :
0 — H°(Z; &) — HY(Z; 7) — H(S: §) —
— HY(B;€) » HY(Z;F) —» HY(Z:§) — -+ (2.11)
oo HP(S;€) — HP(Z; F) — HP(E;4) — -+~

Fal

Using that a and § in (2.6) commute with the coboundary operator &, it is easy to
understand how one moves horizontally in the sequence (2.11). The step from HP?(Z; §)
to HPt1(Z;€&) is more elaborate. Let ¢ be a p-cocyle in H P(¥; G). We can represent
o by a cocycle in CP({U,}; §) for some covering of I. By exactness of (2.6) at G, we
can find some pcocycle 7 in CP({U.}; ¥} such that S(r) = o, where {U.} is some
covering on X finer than {U,}. Since 6(c) =0, and B commutes with §, by exactness

of (2.6) at £ and 7 there exists a unique (p + 1)-cocycle u € CcPt1({UL}; E) such that
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o) = §(r). The coboundary operator & associates the class of it to the class of o. It
is well-defined and independent of the choices made [41].

As a first application of sheaves we note that the transition functions of a holomorphic
line bundle ¢ are analytic functions on patch overlaps, i.e., a chain® tap in cl(z; 0"}
Moreover, the cocyle condition says that (6¢t) apy = 0. Also redefining the local trivial-
izations of £ gives an equivalent set of transition functions tap = top - (6V) «g> 50 that

isomorphism classes of bundles are given by the group

Pic(Z) = H(Z; 0%) (2.12)

i~

Pic £ is called the Picard group. Multiplication of transition functions tap *tap gives

a new line bundle, the tensor product ¢ ® E, while inversion t;; gives the dual bundle

[

We can learn more about Pic & by using the long exact sequence associated to (2.7):

++-H°(Z;0) =5 HO(3;0%) S HY(S;2miZ) — HY(Z; 0) — H(Z;0%)

%8 H(S;Z) — H(S;0)---

Since the first exp : C — C* is onto, the next map must be zero. Also H2(%;0) is
always zero, since by the Dolbeault theorem [39] it is isomorphic to H§’2 () and there

are no (0,2)-forms: dz A dz = 0. Hence we get (dropping the normalization 23 )
1 1 . deg 2
0— H(Z;0)/H'(Z;Z) — Pic(z) =8 H (Z;2) —o0.

Since H?(Z;Z) = Z we thus find that Pic(X) is disconnected, with identity component

a Lie group we will call

J(Z) = H'(%;0)/HY(%;Z) .

Since H'(Z;0) is a complex vector space, J (X) is a complex space called the jacobian
of X.

5 Here and in the sequel we are somewhat imprecise in our notation: We mean that we
have chosen a covering {U;} for £ and used the transition functions to define a cochain in
C'({U;}; 0*). 1t turns out that different choices of covering lead to cohomologous top's
in the limit of fine coverings mentioned above.

12



The image degf of abundlein Z is called the degree of £. Clearly deg(¢,® &,) =
deg ¢, + deg &,, and indeed the degree is just the first Chern class of the U(1} bundle
associated to £. For example O(P) has degree 1, as can easily be seen by working
through the steps below (2.11). But the corresponding U (1) bundle is the monopole,
which has Chern number 1 as well. As another example the degree of the tangent bundle
is the Euler number X, or

deg K =2(1—9) ,

an even integer.
We can now return to the study of spin bundles. Suppose that K is described by
gop €H 1(x; 0*). We can construct a square root L of K by letting

hap = E/9apg o0 UsNUpg . (2.13)

Unfortunately, the cochain k so defined will not in general be closed since

— _ -1 —
(w2)aﬂq = (6}1)0:5'1 = hﬁq aqhaﬂ - haﬁhﬁﬁ‘h"la

can be £1 on U,NUzNU,. Hence an arbitrary choice of square roots in (2.13) will not
generally define any bundle L.
Given a bad choice of h, 5 € C 1(; 0*), however, we can try to turn it into a good
one by letting
Rys=heg-fop  where fE€ cl%;Z,) . (2.14)

This changes w, to wj = w, - (6f). Hence if w, defines a trivial class in H%*(X;Z,)
then we can find an appropriate f to shift it away and spin bundles will exist for K. But
if we regard deg K as aclassin H 2(x;Z), then working through the definitions shows
that

w, = exp(in - deg K) .

Since the degree of K is always even, w, is always trivial. Hence we can always arrange
for h to be closed: spin bundles always exist on any Riemann surface.

Now suppose that h € H!(E;0*) describes a spin bundle L. Once again we can try
modifying it by f as in (2.14), where now f must be closed. This will give a distinct new

spin bundle whenever f is not exactin H 1(£;2,). Thus the differences of spin bundles
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are given by H'(Z,Z,) = (Z,)? [35]. Unfortunately there is no canonical, or preferred,
spin structure on I, so we cannot directly parametrize all L by H!(Z,Z,). Instead we
will see that only after the introduction of a homology basis A will there emerge a special
L 4; we will then be able to describe other L relative to this one.
Since deg K = 2g — 2, we find deg L = ¢—1 for any L. We will use the term
“twisted spin bundle” to refer to any £ of degree g—1, not necessarily satisfying ¢2 = K,
Before leaving sheaf theory we will describe without proof one more important theo-

rem. This is Serre duality, which says that for any bundle £ we have
HY(Z6) 2 [H(S; K@ 7))t . (2.15)
As usual the inverse refers to the dual vector space. Also a simple argument shows that
HY(Z; £) ~ coker 3 . (2.16)

(Compare (2.10).) Again one uses the Dolbeault theorem to see that HY(Z;¢) =
H éo’l) (25 €). Since all (0,1)-forms are 8-closed, we have all §-valued (0,1)-forms modulo
the J-exact ones, which is just coker & ¢

Taking { to be trivial, (2.15) says H(%;0) = [H°(Z; K)]~*. The space HO(S; K)
of holomorphic 1-forms is always g-dimensional. One can see this by noting that if n e
HO(Z, K } then the real and imaginary parts of » are harmonic 1-forms, and so can be
expanded in the basis of 2¢ real harmonic 1-forms a*, 7 mentioned at the beginning
of this section. The space of complex linear combinations of a, # with no z piece then
has g dimensions. Holomorphic 1-forms are also called “abelian differentials.”

Thus the identity component of Pic(T) is J(X) = (H°(Z; K))~*/HY(Z;2), a torus
of g complex dimensions. Hence it is compact, as promised. We have seen how it

parametrizes degree-zero bundles, or differences of degree-d bundles for any d.

C. Divisors

In our discussion of sheaves we came across bundles we called O(P) and O(-P).
It will be useful to generalize these by introducing the notion of a divisor; divisors give a
second description of holomorphic line bundles.

A divisor is a formal linear combination of points of T with signed multiplicities:

D=3, n,P;. Tosucha D we associate the line bundle 0(D) = ®; O(P,)™. O(D)
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is perfectly regular at the points F;, but it comes equipped with a section 1 o) =
Q®; (1o(py)™ which has zeros (resp. poles) at those P; with n; >0 (resp. n; < 0).
We can add divisors in the obvious way, whereupon the map T: D+ O(D) becomes a
homomorphism. Under T the degree of O(D) equals Y n,, as we have noted.
Conversely, given any bundle ¢ we can find a divisor as follows. Every ¢ has many
meromorphic sections [42]. Choose any onesection s and let div(s) = Y n;P;—), m;Q,,
where {P,} are the zeros of s of order n; and {Q,} are poles of order m;. This
map inverts I, but it is ambiguous: letting & = f-s changes div(s) by the divisor of
any meromorphic function f € M(X). Thus we define the group of divisor classes as all

divisors modulo the divisors of meromorphic functions, to get

I : {divisor classes} — Pic(Z) . (2.17)

To show that I is an isomorphism we further remark that a nontrivial bundle is never
represented by the zero divisor. If it were then the meromorphic section s with no zeros
or poles would trivialize £.

Note that while two divisors D % D' may give rise to isomorphic bundles, still the
canonical sections 1, (py, 1o(pr) are totally different: they vanish and blow up at different
places and so cannot correspond to each other under the isomorphism O{D) = O(D').
Conversely, a given bundle has no canonical meromorphic section; only after a specific
divisor has been chosen in its class is such a section available.

From now on we will not distinguish notationally between divisor classes and bundles.
That is, we will sometimes drop I (and T) from formulas.

Since (2.17) is an isomorphism we can represent any bundle as any other one times
some O(D). We can use this fact to extend a simple result about the cotangent K
to arbitrary bundles. Note that H%(Z;0) = C since the only analytic functions are
the constants, while dimH°(Z;K) = g as mentioned earlier. Hence dimH °(z;0) -
dim H°(Z; K) = deg O +1—g since deg O = 0. Now consider the corresponding statement
for arbitrary ¢&:

dim HO(Z;¢) — dim HO(S; K@ €7 ) =deg £+1—¢ - (2.18)
To derive (2.18) from the preceding version express tas £= K® O(D) for some D. The

15



difference between the two equations can be shown to hold by repeated application of the
long exact sequence associated to (2.8). (2.18) together with (2.15) gives the classical
Riemann-Roch theorem,

In the remainder of this section we will make the isomorphism (2.17) explicit with the
help of a homology basis 4. That is, we will define a map J 4 from divisor classes to a
complex torus J,. While the constructions are not intrinsic, they are helpful for making
the connection to theta functions.

We can choose a basis of H? (Z; K), or abelian differentials, by requiring that

@y
It is then useful to define the “period matrix”
[ral” = f wh - (2.20)
b;

T4 is useful because it characterizes the surface ¥. Indeed Torelli’s theorem implies that
if two marked Riemann surfaces £and £’ of the same genus have the same period matrix
then they are isomorphic as Riemann surfaces, although the converse is certainly false
(r4 # 77 in general for the same surface & with two markings). Using (2.5), 7, is easily

seen to be symmetric with positive definite imaginary part [37][6][29]. Thus we can define
Yo=(rq—7)7" . (2.21)

Note that (}”J,{);-“J-1 = [@ Awl by (2.5), (2.19), and (2.20).
It is useful to know how things change when we change the marking 4. If A= Aa1

is a new basis as in (2.2), then the definitions give

f:)‘ﬁ":(&-j_’q . (CTA+D)_1 N (2.22)
7= (A4 + B)(Cr,+ D)™ | and (2.23)
YI: (CTA + D) . Yx . (CTA -+ .D)t . (2.24)

We will sometimes drop the subscript A when it is clear which homology basis is meant.

Given a marked surface T 4 Wwe can now build a complex g-torus:
Ja=CT,;
].-‘.4 =ZFEBTA-ZE .
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Changing homelogy bases as in (2.2), then we get a map from J; — J 7 which sends
Ze 79 to

F=2z-{Crg+ D). (2.25)

We can now define a map I, from divisor classes of degree zero to J,, commuting
with the canonical identifications (2.25). Note that a divisor D of degree zero is the

boundary d¢ of some l-cochain obtained by “connecting the dots.” Let
IY[D) = / wy mod I'y . (2.26)
c

Using (2.22), it is clear that (2.26) commutes with (2.25). Also, if we change o to o/,

then ¢ — o' is acycle and so I4[D] is unchanged modulo Ty, by (2.19) and (2.20).
Finally T 4 defines a map I, on divisor classes. That is I 4D} =0 if and only if

D = div f for some meromorphic function f. This is called Abel’s theorem. Thus I,

sets up an isomorphism between the abstract jacobian J(X) and its concrete version J,.

D. Curvature and Holonomy

There is one final characterization of holomorphic line bundles which we will use,
involving holonomy. It is also time to begin introducing metrics and hence geometry on
our bundles.

Let ¢ be a holomorphic line bundle with a smooth hermitian norm Il -1]]. We can
describe sections of ¢ relative to one local trivializing sections s as o = f-s, where f is
some function. “Trivializing” means that in some open set s is analytic and nonvanishing.

With respect to the frame s we can now write down a covariant derivative [43]:

Do = (9f)s
Do =(8f +©f)s ,
where

© = dlog|s||?

is the connection 1-form. The corresponding curvature is

R =380 =8dlog|s|® , (2.27)
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and it is independent of the trivializing section s chosen. If s instead vanishes or has
a pole somewhere, then (2.27) must be modified to remove the resulting delta-function
singularities.

The Chern-Weil construction represents the Chern number in terms of the integral of

R. In fact we can again see that this number equals the degree since

/ R=—-2mi deg ¢ . (2.28)
3

To prove (2.28), let ¢ = O(P), s = 1o(p), and integrate over ¥ minus a
small neighborhood U of P. Since R = d(dlog I1opyl?) away from P we get
— $55(8, log |11 oml?) - dz. But 1 o(p) Is vanishing linearly near p, so in any smooth
metric this equals — § % = —2mi. The reader may want to work out (2.28) explicitly on

the sphere with £ = K to recover deg K = —2.

We now consider a closed curve 4 : S1 — T. Given a vector v € E]q(o) we can

transport v around ~ while preserving the relation:
(Dv,4y =0

Then v(1) will again live in £ ly(0)> and we can let

v(1) = v(0)e?mH (%) (2.29)

define the holonomy of ¢, with its given metric, around 7. Supposing that « lies entirely

in one trivializing patch, it is easy to show that

1 .
H(v;€) =~ oy " L) mod Z . (2.30)

Further manipulation shows that e2™H is well-defined under change of trivialization and
H is real.

The holonomy changes in a simple way when we deform < into a nearby 4’ (Fig. 3).
Suppose & is the region of T lying between 4 and 7', with orientation given by (%, 1),

where n is the outward normal at ~. Then R = d® and Stoke’s theorem say that

G0 - H 8 =- o [ & (2.31)
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Fig. 3: Deforming a cut on L.

In particular if R =0, so that deg £ =0, then H depends only on the homology class
of ~. It therefore defines a real cohomology class, modulo an integral class, which we will
call H(¢) € HYZ;RY/H(Z;2).

Actually every degree-zero bundle admits a flat metric, which is unique up to a con-
stant. To see this we choose an arbitrary norm with curvature R, f R = 0, and modify the
norm by a nonvanishing function exp(h). Then h should satisfy 88h = —R, which can
be solved since the right side is orthogonal to the constant function. Thus H(§) depends
only on &.

The flat holonomy H(£) vanishes if and only if ¢ is trivial. For, if £ is flat we can
let s be a holomorphic, covariantly constant section throughout the cut Riemann surface
L, If H(¢) =0 then s does not jump across the cuts and ¢ is trivial, whereas if £
is trivial we can consider the flat metric as a real function satisfying d0h =0, or h =
constant: then ® =0 and H = 0. Furthermore every H € H(Z; R)/H(Z;Z) actually
arises as H(&) for some ¢ : € is just the bundle with constant transition functions
exp(—27i(H,q;)), exp(—27i{H,b;)) acrossthe cuts.

We thus have three intrinsic ways of describing degree-zero holomorphic line bundles:
as patching data (i.e. J(E)), as divisor classes, and as real 1-forms defined modulo
integers. In addition we have a description in terms of 2 homology basis (namely J,) and
maps I, I4, and H making all the viewpoints isornorphic. See Fig. 4, where we have for

convenience defined three more maps by requiring that everything commute.

Of the new maps in Fig. 4 it will be useful to know F, explicitly. This takes
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{divisor classes}

N
E A

H'(Z; R)/H(Z; Z)

Fig. 4: Three ways to describe flat line bundles on a Riemann surface.

holonomy data and translates it into a point in C? defined modulo Iy

Foi g —(I,TA)J(p) (2.32)

q
v=(a 5 (?)

To show that (2.32) is right one must find the holonomy of a flat bundle with a given
divisor D, then show that I,[D] agrees with (2. 32). This is done in Appendix A. Note

where

that after a change of marking ¢ is represented by (Sf) = (A™1)¢ (f;). Using the symplectic

property A*JA = J, one can show that (2.32) indeed commutes with the identification
Before closing this section we note that the complex torus J(Z) has a natural

hermitian norm. In terms of J # thisis
Bﬂ (z, Z’) - 212 * Y£ * Z' (2.33)

where Yy = (74, — 7)™, One can verify using (2.25), (2.24) that the B, define an

intrinsic norm B on J{Z). Note that one has

Im B(F(¢), F(4")) = L A = (n,m)J(”') . (2.34)

ml
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E. Theta Functions and Spinors
We will be brief in this subsection; see [37]{6][29]. The Riemann theta function is
defined by

d#(z|r) = Z exp(irn -7 n+27in - 2) (2.35)
cze
and satisfies
Hz+71-n+mlr)= e ¥FRTRTITInE Golr) | (2.36)

Thus if we insert a period matrix 7, of some marked Riemann surface L, 9(zlr)
defines a section of a holomorphic bundle over the torus J4. This bundle is not trivial
since ¢ sometimes vanishes but never blows up. The set © 4 C J, where it vanishes has
complex codimension one and so is the natural generalization of the notion of divisor to
¢ dimensions.

The component Pic,_, of the Picard group consisting of bundles of degree g —1
also has a divisor of special points, called simply ©, the “theta divisor.” These are the
twisted spin bundles £ for which 55 has a zero mode, that is, the ones which admit a
global holomorphic section. For example, if X is the torus then J (L) is itself a complex
torus of dimension one. Thus we expect © to consist of discrete points, and indeed it
is exactly one point: the trivial bundle is the only one of degree ¢ —1 = 0 admitting a
single-valued holomorphic section.

The Riemann vanishing theorem can be used to characterize the zeros of ¢#. It implies
[37][6][29] that for any homology basis A there is a preferred spin bundle L, with the
property that

©,={I4Ly,®L7"], as L runsthrough @} . (2.37)

(As mentioned, sometimes we will write a bundle for the corresponding divisor class.) That
is, for fixed r, ¥(z|r;) vanishes precisely on a set which is © shifted by the preferred
spin bundle L ﬂ.s

We can use {2.37) to parametrize all twisted spin bundles given a marking, as L =

L, ® Fy() where ¢ = (a,8)(%) is a real cohomology class and F, is as in Fig. 4.

6 If we choose a point P, on L then I4[L,® O((1 —g)Fp)] is a point in J4 called
the “vector of Riemann constants.”
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When we change the marking, however, we must be careful to account for the fact that
Lz % L,. Instead, if

L=L;@F;(¢)=L;® F{9) (2.38)
-@ns(§)  d=(@na(}) (2.39)

then (see (2.3)) ,.
T ) P

The inhomogeneous term 6 added to (2.4) represents the change from L 4 to Lz The
subscript d means the vector built from the diagonal elements of a matrix. The extra J
in the description of ¢ is a traditional notation for bundles. From now on (g) will refer
to ¢ asin (2.39), while (n,m) still refers to (n, m) (“)

Equation (2.40) can be derived from (2.37) and the fact that (b + Ty 9|f~) is a
nonzero factor times #(¢ +r 49|74) [44]. More specifically, one shows that [44]

0[2] (0lr3) = €-det (Cr, + D)V/2. #[5](0l74) , (2.41)

where € is a phase and the “theta function with characteristics” is & convenient modifi-
cation of (2.35), defined as

19[:] (2|r) = Z exp [im(n + 8)7(n + 0) + 27mi(n + 8)(z + 8))
reze (2.42)
= exp[ind - (10 + 2(z + ¢))]9(z + ¢ + T8jr) .
If ¢, 9 have half-integer entries, so that L in (2.38) is a spin bundle, then the phase €
in (2.41) is always an eighth root of unity.
Equation (2.42) is also a useful modification of (2.35) in that its transformation anal-
ogous to {2.36) is by a pure phase. Thus its absolute square is an ordinary continuous real

function on the torus J 4+ We will denote this function by

Na(2) = eT4 ™YV j9(z)r)2 (2.43)
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where y = Imz. N can be regarded as a metric on the bundle over J, defined by ¥,

or more precisely,
2

Ng= H%(e,)

a fact we use in Appendix A.

F. Arakelov Metrics
¥ we are given a metric on the cotangent bundle K, then we get at once metrics on

all powers of K, with the property that
RKA = A‘RK

For fractional A this is independent of the spin structure chosen, since all spin structures
differ by flat bundles. In this section we will describe a particularly useful metric first
described by Arakelov [20] and used extensively by Faltings [19]. While we will explicitly
show that our results remain true for every metric, the use of the Arakelov metric in the
intermediate stages will simplify our formulas somewhat in sect. 5.

Given an arbitrary metric || - || on K we can define metrics on the bundles O(P)

as follows. Define the (1,1)-form

1

-t 2.
# 4mi{l — g) Ex (2.44)
so that f u# = 1. Define next an electrostatic Green function log G on L by

8585 10g G(P,Q) = in(u(P) — 8(P)) (2.45)

where 8, is the delta function: [f-6q = F(Q) 6q(P) is a (1,1)-form at P. The p
is needed in (2.45) so that the right side integrates to zero. Then G equals [zp — Zg]
times a smooth function as P — @, and also G(P,Q) = G(Q, P)[20] . We will fix the

normalization of G by requiring
[ log G(P,Q) -u(P}=0 . (2.46)
We will need to know how G changes when we rescale the original metric on K. Suppose
7% = g%t . (2.47)
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Then # = p+ [27i(1 — ¢)]"'88¢ and we still have J#& = 1. Working through the
definitions one finds that (2.45) implies G (P,Q) is exp [2 gl—l a(P)} times a function of

Q only. Requiring symmetry and the normalization condition (2.46), we get

G(P,Q) = exp [ grareyys Sylo) + gy (o(P) + Q)] -6(rQ) , (2.48)

where the “Liouville action” is

s, = /B (80 A 8o + oR) (2.49)

and R is the original curvature.
Next, using G we can put a norm on any O(P) bundle. We declare that for the
unit section,

11op)(Q) = G(P,Q) . (2.50)

While the right-hand side vanishes at P, so does the section 10( P)>50 the norm defined
by (2.50) is nonsingular. We can generalize (2.50) to an arbitrary bundle O(D) by taking
O(p+4¢) = 0(p) ® O(g) to be an isometry.

We can now define another norm on the cotangent K. Near any point Q, declare

that the distance d'(P, Q) between Q and a nearby point P should approach G(P,Q)

as P — Q, or in other words that

I421/(@) = Jim Lé%@%’ . (2.51)

It is easy to show that (2.51) defines a norm at P which is independent of the choice of
coordinate z. Indeed (2.51) just states that the residue map

[K®O(P)]|lp=cC (2.52)
(see (2.9) ) should be an fsometry in the new norm on K. The new norm || - ||’ is perfectly
smooth on X. However, it will not in general be simply related to the metric | - || we

started with.

Arakelov’s norm is defined to be the one for which the above procedure reproduces
the original metric on K. That is, if we take u to be related to the Arakelov curvature
by (2.44), then we get metrics on the O(D) bundles such that (2.51) gives || - [ = | - |".

The Arakelov metric is unique, and its curvature is [20}
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1 .oii s o :
KArak = 7 DRY Wy s Yi=(rqa—74) . (2.53)

The corresponding curvature on the tensors of spin A is

Ry =4mi(1~ g)Mprax -

More generally, any bundle with metric curvature proportional to par.x 18 said to have
an “admissible metric.” Since we will be using (2.51) repeatedly, the choice of admissible
metrics will simplify many formulas. Specifically, (2.51) expresses the metric on K in
terms of the regulated coincident Green function of the bosonic theory.

We emphasize again that the choice of admissible metrics is for convenience only, and

that bosonization works in any metric.

3. The Bosonic Action

In this section we will arrive at an action functional for a scalar theory which is to
reproduce a general first-order fermionic system. We will begin by reviewing the situation
on the sphere. Next we proceed to higher genus, first in spin-1/2 and then for general
spin. Throughout, we will consider only free fermions, that is, fermions interacting with
background gauge and gravitational fields but without self-interactions such as mass or
quartic terms. This is the case of interest for the NSR superstring in flat spacetime.

We begin by reviewing existing results to fix notation. The prototypical fermionic

system one might wish to bosonize has action
S, = [ ¥ idv
T
In euclidean path integrals ¢ and ¥ are independent, and it has become traditional to

rename the fields, with ¥, —¢ t,+—b ¢, — b and ¢, — & Using complex notation

and rescaling fields we then have

' 5. Tas
Sy = Py L(b@c-l—b@c) (3.1)

where b and c¢ are sections of a spin bundle L, and b and ¢ are sections of L.

More generally we can let ¢ be a section of any holomorphic bundle £,and b a section
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of K ® {~1. In any case the integrand is a (1,1)-form and so can be integrated over &
without the use of any metric. That is, (3.1) is classically conformally invariant. It is also
invariant under the global chiral transformation b e'%h, ¢+ e~ %¢,

Similarly the prototypical scalar action for a single real field ¢ has the form

S, =j 22V - Vo d(vol)

B (3.2)

:[ 471 p A Bp
>

The unusual normalization is for later convenience. The second form makes it clear that
S, is also classically conformally invariant. It also has an invariance under shifts ¢ — o+
constant. |

The operator analysis of bosonization on 2d Minkowski spaces teaches us two im-
portant physical lessons. (See for example [1] [45] [46] [47] [25] [26].) First of all, the
correspondence should be between the fermionic bilinears and ezxponentials of o, properly
normal-ordered. Secondly, the bosonic field ® 1is properly to be regarded as a periodic,
or circle-valued, field. This fact is compatible with the first if the normalization of ¢ is
chosen such that its ambiguity does not affect its exponential. We can see the periodicity
of ¢ either in the periodic sine-Gordon potential of [1] or in the case where spacetime
is the Minkowski cylinder [46]. In either case the crucial physical basis of bosonization
is that fermions in (3.1) correspond to solitons, or states where ¢ is multiple-valued, in
(3.2). In particular, when spacetime has noncontractible loops the partition function of
the bosonic system gets important contributions from soliton sectors.

Since we will use a covariant path integral and analyze surfaces with many nomncon-
tractible loops, we will sometimes use the term “instanton” to describe any field con-
figuration ¢ with nontrivial winding numbers in some direction. Clearly we have one
independent winding number for every element of a homology basis (Fig. 1). Since these
winding numbers are unaffected by a shift of ¢ by a constant, they amount to specifying

the cohomology class of the real 1-form de.

A. The Sphere

On the sphere, the second observation above is immaterial, since there are no non-

contractible loops on X and hence no solitons, To make the first observation concrete in
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our present notation we will assume that we have

bb x e7¥

eC ox e—9% (33)

and find gq, starting with the case of spin-1/2. First note that (3.2) gives a two-point

function with singularity

1

_ a2
{p(2)e(w)) T6n2 log|z —w|* .
In proving this we have used the fact that
3pd8ploglzp — zc-‘,|2 =271 6g(P) (3.4)

where again 65(P), the delta function, is a (1,1)-form at P. (3.4) is easily shown by
integrating on a small disk and using Stokes’ theorem.

The classical stress tensor of (3.2) is
T = —8rx28pdp (3.5)
a (2,0)-tensor. Its quantum version looks the same but with normal ordering to remove

self-contractions. T is defined so that in operator products [3]

T(z)¢(w) ~ (z——&w—)i ¥ + less singular terms

where h is the spin of . One can check the normalization of (3.5) by showing that ¢

has spin one. Then

1 \?2 ¢ 1
+ge(w) y N
T(z)e (z—w) 1672 ( 2)+

Thus choosing ¢ = 471 gives b,c of spin one half.

It is now simple to show the equivalence of (3.1) and (3.2), still in spin 1 /2. First,

the zero-point functions agree up to an overall multiplicative constant:
Zy[g] = const. - Z;lg] . (3.6)

Each side of (3.6) is a functional of a metric chosen on X to regularize the theories. (3.6)

holds because both bosons and nonchiral fermions are free of gravitational anomalies, and
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both sides have the same anomalous variation under Weyl transformations (see sect. 5.A).
Since on the sphere every metric g is related to any reference go by coordinate and
Weyl transformations {16}, we see that (3.6) really does hold up to a constant. As for the
higher correlation functions, they follow from the fact that

1

(et e(Hetriv(w)y = expl16n? (p(2)p(w))] ~ [z —w]? (3.7)

~ {bb(2)ce(w))
Next we relax the condition of spin A = %, to fields b of spin A and ¢ of spin
1~ A. Clearly (3.6) cannot hold as it stands, since we have not told Z, about X. Some
modification of (3.2) is needed in order to specify what spin we wish to bosonize. The

correct choice is § = 5, + §,, where

S, = (1-23) f Ryo . (3.8)
The easiest way to check the normalization of (3.8) is to note that for A > 1, say, Z [
is actually zero due to the presence of zero modes of b and ¢. Using (2.18) with ¢ = 0
we see that b has 1 — 2X more zero modes than e. Hence we get nonzero answers only
if we consider correlation functions with 1 — 2) more insertions of & than of ¢. To
reproduce this behavior in the bosonic system note that the functional integral using (3.8)
also vanishes for the zero point function: integrating over the constant mode ©o of © gives

foz’r ezp((1 — 2X)p, [ Ry, which vanishes by (2.28). To get a nonzero answer we must
insert b and b fields, to get

k
/[dtp]e_(s‘+‘5’) H edmip(Pi) , (3_9)
=]

which with (3.8) is indeed zero unless k =1 — 2)\,

(3.8) modifies the stress tensor by adding —271(22 — 1)8%p to it [3]. Computing
the operator product one again finds ¢ = 4xi in (3.3). With the modified action (3.6)
continues to hold on the sphere for any spin, since (as we will check later) with S, both

sides again have the same Weyl transformation and this again suffices on the sphere.

B. The Torus

When we move up in complexity from the sphere to the torus we at once encounter
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two novel features. First, it is no longer true that every metric is related to every other
by coordinate and Weyl symmetries: a residual “moduli space” of inequivalent metrics
remains [16]. Secondly, in any given degree there is now a wide variety of inequivalent
bundles over ¥ in which b and ¢ could take values. Thus we not only need to tell the
bosons what spin they are to mimic; we must also tell them about a point in the jacobian
J(Z) describing the twists of b, c. Fortunately on the torus we still have a canonical

formalism, which we can use to address the problem.

On the torus every spin bundle has degree 2A(g —1) = 0, so we can take a flat metric,
Ry = 0. Then S, =0. A spin bundle L is a flat bundle whose square is trivial;, we
can parametrize the four possible choices by measuring the difference between L and one
particular spin bundle, the trivial one. If we take the torus defined by the unit square in

C, we then have

b(1) = &2 b(0)

b(§) = e~2"% b(0) (810

Here 8, ¢ give the holonomy of the flat bundle L as in (2.29) and (2.39). In this
introductory section we will restrict to untwisted spin bundles, i.e. 8, ¢ = 0 or % The
field ¢ then lives in the bundle K ® L1 = L. Also we will not consider # = ¢ = 0 since
with this choice Z; =0 due to the zero mode; that is, we consider only the three “even”

spin structures.

Certainly (3.6) cannot hold as it stands on the torus, since again one side depends on
8, ¢ while the other does not. Instead one expects that the bosonic theory with action
S, should give the sum over all spin structures of the corresponding fermionic theories.
Detailed calculation affirms this expectation [6] (see also sect. 4.C). To bosonize just one
spin structure one must add to S, a new term Sy depending on 6, ¢. We will find
S, by canonically quantizing and applying the physical lesson that fermions correspond

to solitons of the field .

Since moduli will not play an important role in this subsection we will again take the
torus to be the unit square in C, with identifications and (3.10). We will quantize with
euclidean time running up the imaginary axis. Then the partition functions Z (4, @) are

traces over the Ramond and Neveu-Schwarz Hilbert spaces, for § =0, % respectively. ¢
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on the other hand denotes the boundary conditions in time. We then have
Zf(é’ 3= Tryse ¥
ZJ(E’O) =Trygs(-)e"¥

Here F is the fermion number operator, Hence Z (3.1 + Z¢(3,0) is a trace over the
even (resp. odd) fermion-number space. It must therefore in the bosonic language receive
contributions only from states of even (resp. odd) soliton number.

Recall that the soliton number of a field conﬁguratlon ¢ is 2n, where the cohomology
class of dp is na+ mpB, so that a functional integral over » includes a sum over all
soliton sectors. Thus our modification to the action S, must have the effect of weighting
the various winding sectors in such a way as to cancel the odd-soliton contributions to
Z,(%,0) + Zy(3,4), and so on. A possible set of weighting factors is shown in Fig. 5. In
the left column we have shown the spin structures for the fermionic system. On the right
the boxes represent the contributions to the bosonic path integral from the winding sectors
1

with (n,m) = (1 .even, 1 .even ), (3 -even, 1 .0dd),.and so on. Each box on the right

thus represents a sum Zf;.‘m“l, t=1,...4 over an infinite subclass of field configurations.

The effects of S, are in the phases 0;;: we have Z,(£,0) =37 | 05 203 ete.
FERMIONS BOSONS
$:=0 e eqi0 o + 093 1/20 +o3 [0 /2 o, 1/2”2
8=0
¢ =1/2 - oy + 022 +0os +T24
8=0
$:0 o3 +732 + 033 +%3q
g=172
9',=|/2 - oa +04p + s +T4a
a=1/2

Fig. 5: Weighting the soliton sectors.

The conditions that Z,(1,0)+Z,(2 %»3) have no odd (resp. even) soliton contribution

tial
now imply that in these combinations zy partial and z; partial 1 ust cancel (resp. ZpT™*
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and Z75H), ie.
O33 = —J43 > O34 = —044
031 =0q1s  Ta2 =042

We can get further conditions by letting the torus degenerate with very long time.
Then only the ground state contributes to the fermionic partition function. With zeta-
function regularization the split ground state of the Ramond sector has nonzero energy,
so that Z f(0,¢) — 0. Take ¢ = % On the bosonic side, only the zero-soliton sectors
contribute, but they do so independently of the time winding 2m, in the limit. Thus the

two contributing partial sums Zf, T’tial and Zf, ;rtia! must cancel from  Z,(0, ), so that

O21 = —022-

We must also impose the condition of modular invariance on the o;. Requiring for
example that our prescription be unchanged when we exchange the roles of space and time
gives relations like 05, = 03;, 033 = 033, etc. Requiring that the torus with corners 0,
1, i+ 2, i + 1 give the same answers as the unit square gives 03, = 04y, Oz3 = Oyy, ©ic.
These conditions fix o,;, i # 1 up to an overall constant, which we take to be unity:”

0y = {_&: :;j : (3.11)

We can restate (3.11) in a way which makes its modular invariance obvious. Note
again that the four spin structures split into one “0dd” one (the trivial bundle) and three
“even” ones. The names indicate that the number of zero modes of 9, isodd (=1} or
even (= 0) in the respective cases [38]. Here 8y is the Cauchy-Riemann operator coupled
to the holomorphic bundle L [16]. Note also that the 1-form ¢ = dp corresponds to a
flat bundle F(3) as in Fig. 4. The prescription (3.11) simply says that we must add to
S, the topological term

S, = iro(L ® F(¥)) (3.12)

where o(L') is 0 or 1, depending on whether L' is even or odd. Note that L ® F(y)
really is a spin bundle, since ¢ isa half-integral class. Also note that the preferred spin

bundle L, for a marking 4 is always even (37].

7 We can use the same reasoning to fix the o,;. However, to fix the relative sign of
gy relative to the others we must interpolate between the spin structures, as we do in
the sequel.
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The proof that S, + S, is the correct bosonic action, as well as the generalization
to arbitrary twists #, ¢, will come after we generalize everything to genus ¢ > 1. We
emphasize, however that (3.2) and (3.12) are by now a very plausible prescription on the

torus, and that in higher genus essentially no new physics will be needed.
C. Higher Genus

When ¥ has more than one handle we can no longer take a flat metric, so we can
no longer ignore S, (3.8). Also, the trivial bundle no longer serves as a reference spin
bundle, since now g — 1 # 0. These two issues will give rise to interlocking subtleties
which conspire to make the full action modular-invariant.

The full action should be invariant under constant shifts of ¢ once we include in it

terms for field insertions, as on the sphere (eqn (3.9)). We will write these terms as

S, = —4mi Zgo(P,.)-Zp(Q,.) . (3.13)

Extending the argument of section 3.A to any genus, counting fermionic zero modes shows

that the numbers of insertions must satisfy
P—q=(2A-1){g~-1) . (3.14)
When (3.14) is satisfied, then the full action should depend only on the closed 1-form
Y =dp

and not on ¢ itself.

The only action term besides Sy which is not shift-invariant is S3. Thus we are
again tempted to take S, to be as in (3.8), since again (2.18) gives shift-invariance when
(3.14) holds. On a complicated surface like Fig. 1, however, (3.8) is problematic. Given

Y we can recover ¢ as a function on the cut surface L. by defining

or)= [y (3.15)

for any point P € X. Shift invariance says that it is immaterial which P we choose.

However, if we deform slightly the curves used to cut ¥ into L., we run into problems.

32



Fig. 6: Ambiguity of S, as we change the cut ¢, on X.

Since ¢ in general jumps as we cross the cuts, we get an ambiguity in S, proportional
to the integral of R over the shaded region of Fig. 6. Thus the action depends not only
on the choice of a homology basis, but also on a choice of specific curves representing that
basis.

We can repair the dependence on the curves by recalling (2.31). We need only to find
an appropriate bundle £ and to add its holonomy around each cut, times the corresponding

winding number of ¢, to S,. Specifically consider
S, L (1—23) / Ry +2mi[m*H(a; &) — n*H{b; 6)] . (3.16)

As always Ry is the curvature of the cotangent K and we have expanded the real
1-form ¢ =de as $ =n-a+m- . Then S, will be invariant when we displace the
cuts if & has spin 1 — 2X. A natural choice for § exists, namely £ ® E;l, where [,
is the line bundle where b takes its values and £, = K ® L; .

Unfortunately (3.16) is not well-defined, even modulo 2xi. The holonomy is defined
mod 1, but n’, m* are half-integers. Thus we would prefer to replace the holonomy of £
by twice the holonomy of some other bundle ¢’ of spin 1 /2 — A. Since there is now no

natural choice for ¢/, we will let
L=L"® L , (3.17)

where L, is any even spin structure. Having introduced L, we will later have to show

that the full action is independent of this choice.
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Our candidate for S, is thus

(3.18)

5, =2]R£<,o—41rf(ﬁ=”ﬁ)"]' (H(&‘; E))

H(b; L)

Eqn. (3.18) is invariant when we move the cuts in their homology classes, leaving fixed their
common point, P,. If we move P, itself, we can get a new system of cuts by choosing any
curve v from P, to P, and attaching it to each end of the existing cuts. Since the new
f]c differs from the old by a set of measure zero, the first term of S, is unchanged; since
each of the new curves traces and retraces 7, the other terms of (3.18) are also unchanged
(See eq. (2.30)). Also (3.18) combined with (3.13) is still shift-invariant, i.e., a functional
only of ¢ = dy, since clearly this is separately true of the new terms of (3.18).

The only possible nonintrinsic information used in (3.18) is therefore the choice of L,.
We will return shortly to this dependence. First, however, we want to point out another
important property of (3.18).

Often in instanton physics it is useful to divide the quantum field into a topologically
nontrivial piece satisfying the equations of motion, plus a fluctuation piece which is topo-
logically trivial. By requiring that the former piece stationarize the action we remove cross

terms in the total action; for a quadratic system this splits S, cleanly into two terms:

©=Opn +

(3.19)
S1lel = 81lenm] + 512

where 5699“, =0 and { is single-valued. For our case everything is especially simple,
since (3.19) is the Hodge decomposition, and so the harmonic ©nm has no continuous

collective coordinates. Indeed we have simply

b 50 (%)

Of course the linear term S, also splits similarly to (3.19).
In the remainder of this section we will focus on § [©nml, leaving S[@] for later.

We can now evaluate S,[p,,.] using any convenient metric. Let D = 24T, beany
divisor representing £ and o = 10( p) the corresponding unit section. Then away from

the poles and zeros of o the curvature of £ is (2.27). Let A; be small neighborhoods
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of the points T; and I =3, —lJ;A,;. Then integrating S, by parts one has for small
A

i

_ﬂzzf

Pumd108 o1 =2 [ Bpnm A DTog o1
Al bH

The boundary terms from the cuts of X, have cancelled the explicit holonomy terms of
(3.18). Integrating the second term again by parts gives zero, since ¥, is harmonic,
8¢, is single-valued, and the boundary terms near T; go to zero. Near a zero of o we

have dlog|o|> ~ 2~1dz, and so adding (3.13) we get
Sy + 84 = —4mi Zﬂ.wnm(T ) + Zsonm(P) Esonm(Q )]

= _4mi Zt/ ¢,,,,,+Z[ ¢m*¥f ¢nm]

(3.20)

The common starting point of these integrals does not matter since we have (3.14). Nor
do the paths matter: changing a contour by a homologically trivial circuit gives zero since
4 is closed, while changing it by a generator of H,(Z) only changes S,+ S, by a multiple
of 2mi. S, + S4 is also manifestly independent of any choice of homology basis. It does
however still depend on the chosen even spin bundle L, via the divisor class of D. It
also potentially depends on the divisor D itself, not just on its class.

To show that S,+ S, depends only on the class of D, i.e., on the bundle [, we will
cast it in terms of the Jacobi map I, and use Abel’s theorem. Note that any harmonic

¥ = (n,m) (g) can be expressed in terms of the abelian differentials W, as
i/) = (m - fﬂn)t . Yﬂ . (:5.4 4 c.c. (3.21)

(see (2.21)). To verify (3.21), integrate both sides around a,, b;. Inserting into (3.20) and
using {2.26) we get

S2 -+ 54 = —'41fl {(m - fAn)t . Yﬂ . IA[D + D‘-ns] -+ C-C.} ) (3.22)

where

tna Z Ps Z Qi (3'23)



is the divisor built from the field insertion points. Thus S, + .S, depends only on the

divisor class of D + Dj,,,. It is now straightforward to show that
S;+8y=47ri(n-¢+m-0) (3.24)

where I,[D+ D;,,] = —(¢+17,4-8). One can derive (3.24) directly or using (2.33), (2.34).
We still have not generalized the term S3 needed on the torus to distinguish the
various spin structures. However, the parity o(L) of a spin bundle makes invariant sense

in any genus. Thus we can generalize (3.12) to
S =tmo(L, @ F(y)) . (3.25)

{3.25) is really the only sensible generalization of (3.12). We can’t, for example, use £ in
place of L, since o(L) is only defined for untwisted spin-1/2 bundles [37]. For the case
considered in section 3.B, however, L, is a bundle of this type. Then we can recover
(3.12) from (3.25), (3.22) by taking g = 1, A =1/2, D,,, =0, and choosing L, = Ly so
that (3.22) is zero. (£, was called L in (3.12).)

We have now completely defined the bosonic action Sy =8;+8,+5;+8,. One can

readily show that this prescription is equivalent to the one given in [5].

D. Consistency and Uniqueness

We have arrived at a modular-invariant action in any genus which reduces to the
kinetic term plus (3.8) on the sphere or (3.12) on the torus. The only potential problem
with §, =8, + 8, +S;+ S, as a classical action is its dependence on an arbitrary even
spin bundle Ly. To see that this dependence is trivial, we express L, as Ly=1L, ®F(¢3)
where L, is the preferred spin bundle for some homology basis A. In this basis we expand

Yv=dp as ¢ = (n,m) (g) and ¢ = (f, ) (g) Then the parity equals [37]

o(Lo® F(¥)) =o(Ly ® F($ +¥)) = 4(n+A) - (m+h) (mod 2) 526
=0(Lg®F(y)) +4(n-th+m-A) (mod 2) '

since L, is itself even. At the same time, however, (3.24) changes. Using (2.32) the

change in (%) describing £ is —J (), so that the change in S, + 53 equals

47r£(——n-r’h+m-ﬁ)+41ri(n-rh+m-ﬁ) =0 (mod 27¢) .
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Thus the action S, is completely intrinsic.

How unique is the bosonic action? Any modification to S, must have only topological
terms, since S, is locally correct. It must also be intrinsically defined, i.e., modular
invariant. Also, to preserve clustering any new global terms in S rmust factorize as a
complicated Riemann surface pinches off into many tori. One can see from (3.24), (3.26)
that our candidate action already has this property. If we weight each winding sector by

an additional phase E(7,m), the requirement of factorization says that

g
E(#,m) = [ e(n',m) (3.27)
i=1 .
for some universal function e. The analysis needed to fix ¢ has been done in [48]; we will
now summarize the relevant case.

We can constrain €(rn,m) by requiring E to be invariant under the modular trans-

formation given by

1 0 00
0 1 00
A=11 1 10
1 -1 01

Using (3.27) in genus 2 this says that
e(n, + my —my,m;) €(ny — my + mg,my) = €(ny,m;) €(ng,m;)

Without loss of generality we can let €(0,0) = 1. Also, one-loop modular invariance
requires

e(dn + cm, bn + am) = e(n,m), ad—be=1
Taking (33) = (§7}) and (33) wefind
e(n,m — n) = e(n,m)
¢(n + m,m) = e(n,m)

80

e(ny — ma,my) €lny —my,my) = €(ny,m,) e(ng,mg) - (3.28)
Taking n, = m, = n, = 0 in (3.28) gives ¢(—m,,0) = 1. Thus
e(n,n) = €(n,0) = ¢(0,n) = €(0,0) =1 . (3.29)
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Taking n, = n, =0 in (3.28) gives
e(n,m) = e(—m,—n)"!
Setting n, =0,
e(n +n',m) = e(n,m) ¢(n',m)

and similarly ¢(n,m + m'). Thus ¢(r,m) = €(1,1)"™. But by (3.29), (1,1)*" =1 for

every n. Thus €(1,1) = 1, and the action is unique.

4. Bosonization Formulze

A. Recap

The bosonization of the first-order fermionic system thus proceeds as follows. If b,c
are fields of spin A,1 — A with action
1

bdc + baE) (3.1)
then we introduce a Bose theory with field ¢ well-defined up to half-integers and action®

S5, =8,+8;+ 85,

S; = 4mi / dp ANdp (3.2)
=
S, =2 / Rpp+4ani Z[m‘H(ai; L) —-n'H(b; L] , (3.18)
S =1ino(Ly @ F(dp)) . (3.25)’
Here L is the line bundle
L=L'0L, (3.17)

L, is the bundle of degree 2X\(g — 1) where b takes values, and Ly is any even spin
bundle. R, and H(-;L) are the curvature and holonomy of £, and n;,m, are the

winding numbers of the field configuration ¢ about the cycles a;,b,. F(dp) is the flat

Lk

® O. Alvarez has told us that the terms S, and S can also be understood in terms of
corrections to the heat kernel on the cut Riemann surface.
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line bundle with holonomy given by the one-form dgo, and o(L) is the parity of a spin
bundle L. S, is well-defined modulo 2t once we include appropriate insertions of fields.
The bosonization results we seek to establish say that these two systems have the same

correlation functions up to an overall multiplicative constant undelf the correspondence
b(P)b(P) x eimie(P) e(Q)E(Q) x etrie(@) (3.3)
We need p insertions of the first kind and g of the second kind, where
p—g=(22—-1){g—-1) . (3.14)

Sometimes we consider the insertions as a term S, in the action (eqn. (3.13)).

(3.3) is not yet completely specified. Here we have some latitude, since neither have we
yet specified the normal-ordering prescription to be used in evaluating bosonic correlators.
The simplest prescription to use is a coordinate-invariant one, in which all coincident Green

functions are replaced by
G, (P.Q) = Jim [G(P.Q)/d(P.Q) - (4.1)

d(P,Q) is the metric distance between two points of . G(P,Q) is the Green function
defined using the given metric in (2.44)-(2.46).

One reason why (4.1) is so nice is that for the Arakelov metric we have

logG,(P,P})=0 . (4.2)
(4.2) follows since the Arakelov metric || » [|arax is by definition the one for which the
metric || - ||’ defined by (2.51) again reproduces || - || ;- However we will see that (4.1)

is the correct prescription for any metric.
With (4.1) all bosonic correlations will be coordinate scalars. Since bb is not a scalar

but a2 (A, )-form, the precise statement of (3.3) is that e***¢(P) should correspond to®

_ A - _ 1-X
BRI = [F(P)] bPBE) . @I = [1F@)] e@e@ @3

or

AP -+ [P I(@I? -+ le(@IP) ; £ (etmieF) oo emmel@el), . (4.4)

9 We will later comment on alternatives to (4.1).
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In the succeeding subsections we write out both sides of (4.4) in some detail to get a set
of identities expressing the mathematical content of bosonization.

Note that (4.4) is a nonchiral amplitude. Once we have proven it we can modify
(4.1) to eliminate the metric factors in (4.4), then take the holomorphic square root in the
variables P, @; on both sides of the formula. In a sense this gives a bosonic formula for the
chiral amplitude on the left hand side. This is not however the same thing as presenting
a bosonic theory which, without any modifications, reproduces chiral amplitudes. We do
not know how to write a bosonic theory whose correlation functions have the appropriate

geometrical meaning to do this.
B. Fermion Correlations

We begin with the left side of (4.4). If there are no insertions (this can happen only
if the spin A = %), then the rules of functional Grassmann integration say that the
zero-point function is just the functional determinant of 5}5 ¢+ We will always use zeta-
function regulation for determinants, as it fits in best with the methods of sec. 5. If there
are only insertions of b then the p-point function is the antisymmetrized product of the
P zero modes of 9 £ For example, if the spin A and the genus ¢ are both greater than
1, then the degree of £_ is negative and so & £, has no zero modes. Then we can have

g = 0 insertions of ¢ and so, by (2.18), p = (2A - 1)(g — 1) insertions of b :

e '3t 3
(PSP,) BB JEE) = B8 1S ey (B ) oy ()

~

2

Here u,,:-- u, are the p zero modes of 5& and (-, -) is the inner product on sections
of L. = runs over permutations, and so the factor inside the absolute square lives in
AR (P L] p;). We will denote this factor by det u,(P;). Using the given norm on
L, we can now write the left side of (4.4) as

15t 5
. det a‘cbaﬂb

{BCPI* - N16(B,)1%) = et (u,,u,)
LA

lldet u,(P;)|? . (4.5)

I A=1then 3, still has no zero modes unless L) is untwisted, i.e. £, = K. In
this case [, is trivial and so has the constant zero mode Yo = 1. Itsnorm is (1,1) = Ay,

the area of T in the given metric, while the factor lvo(@)]]2 = 1. We thus get

I"T A
(BRI - U@ = g

- ldet WF(PYIZ . (46)
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Here we have used the fact that for spin one the u; are the abelian differentials w?
and (w',w’) =ifo'Aw =if, 0'f w —(a o b)=ilr;—7) (Y1), Also

det'dl 8y = det’3'd since the nonzero eigenvalues of these operators are the same.

il

For A < } we interchange the roles of band c.

Finally we can consider the case when more than the minimal number of inserted
fields is present. For this we need the fermionic Green function, which is in general more
complicated than the spin-1/2 version (see (3.7), [49]) due to the presence of zero modes.
Suppose again that 3 ¢, has no zero modes, s.e. H 9(£; £.) =0. Let P, be the projector
to the space orthogonal to the zero modes of 0 £, We can unambiguously invert J Le
restricted to this space; call the inverse G. Thus

‘? °0u =P (4.7)
dp,065=1
Mathematically § is the “parametrix” of ] £,» an inverse up to a finite-rank term. Its
existence is guaranteed by Hodge theory[39]. We can represent G by an integral kernel
G(P,Q). For fixed Q, §(-,Q) is a section of £, ® 0(Q) ® EJq. Its residue at @ = P is
therefore a pure number by (2.52}, namely 1/27i.

G is the basic bec contraction. With it we get
BRI - 1B (P [le(@u)I? -~ - Nle(@y)I*) f =
det'ét 5£ u'l(Pl) 1"’;:t—q(Pl) g(PlsQl) Q(Pan) 2
Ly~ Lo . . . .

~ det (u;,u;) " [det

ul(.Pp) Tt u’p—q‘(Pp) g(P;;.!Ql) e g(Pp-’Qq)
(48

The large matrix is square, and its determinant is a vector in

P q
[® £b|P.] @ ®£<:|Q,-
i=1 i=1

In essence what has happened is that we have manufactured ¢ additional zero modes of
8;,- These extra modes §(-,Q;) have poles, but this is permitted since unlike (4.5), the
left side of (4.8) is supposed to have poles.

Similarly one can generalize (4.6) to the analog of (4.8) when A = 1. For this we
must replace the unit operator in (4.7) by the projector P, to the complement of the zero

mode space of J%.
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C. Instanton Sums

We mentioned earlier that the bosonic amplitude splits into the product of a topolog-
ical part times a fluctuation part when we split ¢ as in (3.19). In this subsection we work
out the former piece.

Recall that in section 3.B we argued that an extra topological term in the action
was necessary to bosonize a single spin structure. Since the fermionic amplitudes for the
different spin structures differ by theta-function factors (e.g. [6]), we want the topological
part of the bosonic amplitude to be the absolute square of a theta function for one single
characteristic, not the sum over spin structures obtained when the topological terms are
omitted from the action [6]. The key result of this subsection is that indeed this is what
happens.

It will be convenient for explicit computations to choose a homology basis 4. We have
seen that the action is independent of the choice of 4. Since A will not change, we will
sometimes drop it from the notation.

First we substitute (3.21) into (3.2):
Si[@nm] =4mi(m —7n)t .Y - (m — 7n)

Next we will make a specific choice for the arbitrary even spin bundle in (3.17), namely
Ly, = L,, the preferred spin bundle for the homology basis A. We have already worked
out §; 4+ 84 for harmonic ¢, (eqn. (3.22)):

S, + 8, = 4mi [(m ~m)t.Y.z+ c.c.]
where (eqn. (3.17))
z=1L,® L} ® 0(-D,,,)] - (4.9)

Again D, is the divisor of insertion points (3.23) and we have written a bundle instead
of its divisor class. Parenthetically we note that the topological part of the action can be
simply expressed in terms of the natural hermitian form B in (2.33): for harmonic ¢ we

have

Sy + 83 + 84 = 27 [B(F(dyp), F(dp)) + B(F(dp),2) — B(z, F(dy))]
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We will not make explicit use of this form of the action.

Taking L, to be L, has the advantage of making 55 very simple. By (3.26)
Sa =47in-m

Note that e~ 5% depends only on the values of n and m modulo 1.

We wish to compute

Zinnt = Z e_s[¢nm]
denm EH! (E;%Z)

and in particular to show that it is the absolute square of a theta function.’® We know
however that ¢ is defined by a sum over integer, not half-integer, vectors. Accordingly we

will define the 227 partial sums

z,, = Z e~ (51482484 [n=k+u,m=L+4] (4.10)
k€29

where every entry of I/, [ equals 0 or % We omitted e~ 5 from (4.10) because as noted

it is'a function only of v, x. Thus

Zinst. = E e41n'y-,uzu,p . (4.11)
v, p€(Z3)7
Z, denotes the group with two elements: (32)/2.
In the remainder of this subsection we will prove the following formula for Z, :
_ o—3g/2 Y=L —dmiyY amie- + STvFE T (aln)
Zu,p =2 o/ (det 2tY) 3 .e7 WYY Z e g'}[-:u-:g] (—ZIT) 0[-—;1.-:51 (ZIT) ?
elge(ZQ)'

(4.12)
where 2z = z + iy defines y. It is not hard to generalize (4.12) to a form useful for
nonabelian bosonization and toroidal compactification.

Before proving (4.12), let us pause to see why it is just what we want. Substituting
in (4.11), we get

Z . = (prefactor) - E el pt(a—v)(f+u)y [g] (—z|1‘) 19[;] (z]r)

vyp,003

10 The derivation below extends easily from the case of a single fermion (the lattice of
integers) to many fermions (an arbitrary self-dual lattice).
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We have changed variables from €, ¢ to a=v + €, 8=—u+¢. Then
Zips = (prefactor) - Z 99 - eirif z efTivs Z e~ 4% v
a,p I 4

= (det 5Y) " 7e 1"V ¥|g(2)r)|2

1]

as desired. In terms of N in (2.43), this is!!

Zingr = (det iY)"2N(2) . (4.13)

Using (2.41) and (2.24) we see that Z,__, is independent of the chosen marking, as we
have already noted on general grounds.

We can also recover from (4.12) the answer one gets by omitting the topological terms
from the action. Setting z = 0 and dropping the weighting factor from (4.11), one indeed
finds that Z,,,, is then proportional to the sum of the squares of all the even theta
functions [6].

The general strategy for proving (4.12) is to diagonalize the action into a sum over
two integer veci'.ors a, b of a function of & times a function of 5. Roughly speaking we will
accomplish this diagonalization by “rotating E, f by 45°.” Then Z, , becomes essentially
the product of two factors, each of which turns out to be a theta function. The tricky part
of the procedure lies in the idea of “rotating” a square lattice; this is where €, ¢ will enter.

We start with the observation that
I S
JEZ ez

Regarding both sides as functions on S this is Jjust the Fourier transform of the delta-

function at the origin. Thus for a nice function I,

Z f(l-{*#) = Z e:Zn'j‘.u'/. da%t e—2sr1'j.tf(t) ;
cze jez?
the “Poisson resummation formula.” We will apply this to the sum over £ in (4.10).

Let 7=r1 +4r, z=z+iy,and §,+5,+ 5y = 2n(S’ + 8"), where

8'(m,n) = mry'm — 2nryr;'m + 2imr;ly

"1 Zinet is essentially the function called i?]|? in [19)].
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S§"'(n) =n(ry, + rlr.;lrl)n + 2in(z — 'rlfz'ly)

Then the Poisson formula applied to S’ gives
3 o8 (m=tium) _ Y gariin / dt =9
4 j

Q(t) = 2rt-ryt -t + 27 (if — 2nryry ' + 2iyry ')t
Performing the gaussian integral we get
Z,, L= Z e—S(n=k+y,m=¢+p)
k¢

=2E Y explin ((k+v—3i)r(k+v—3i) — (k+v+ 37k +v + 37)
kjezs

+4m’(%j-p+ %ij-y—(k+v) 1:)] ;
E = 27%/%(det 1,)% e~ 2TVTa Y
The “rotation” of the lattice mentioned above is accomplished as follows. We replace

the sum over k € Z7, }j € 3Z? by a sum over all ¢ € (Z,)? and ¢,b € Z7 such that

a + b has only even entries. The two lattices so defined are in 1-1 correspondence via
k=1i(a+d), ij=3b—a)+e

Also we can enforce the condition that a + b be even by performing an unrestricted sum

but including the Z, delta function:
6(a—b (mod2)) =277 z: e?rila—b)s
§€(Z3)?

Thus we have

Z,,=E- Z exp[in((a+v—¢r(a+v—€ —(b+v+e7F(b+v+e)
¢|::(ezzz)f

+2mi ((b— a+2¢)(u +iy) — (a + b+ 2v)z + (a — b)¢)]
=FE- Eexp[iw(a-{»u —€¢r(a+v—e)+2ni((e+v—¢€)(—2—pu+g)
~im(b+v+eTb+v+e) —2mib+v+e)(z— A+¢) + 4mie-¢]
Using the definition (2.42) we obtain (4.12). Note that we are permitted to change ¢ to

—e since 2¢ is an integer vector.
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D. Bosonic Correlations

With (4.12) in hand we can now turn to the fluctuation part @ of ©, and finally
compare the bosonic correlation functions to (4.8).

@ has no jumps across the cuts of T, and so its action is given by (3.2), (3.8), and

(3.13). Hence the right side of (4.4) is given by Z;_, times
Zfiges = /[d‘b'] exP[ - /2 (47i0% 7 33 + (1 — 20) Ry B)
+ 471 (Yipd(P;) — 2@55(0.;))] :
To do the gaussian integral change variables from & to
6=~ (mi)" [ 1ogG(P,P) - T log G(P, Q)]

and remove the zero mode from the integral over . Using (2.44)—-(2.46) and integrating

by parts several times we obtain

1
zZ _ det '51’5 T2 . f,j:l G(Pl" PJ) Hg,j=1 G(Qh QJ)
fluct — AE H G(P{, QJ)2 1

where Ay is the norm of the removed zero mode of 8!8 , i.e. the area of ¥ in the given

(4.14)

metric. The simple form of (4.14) comes from the special normalization (2.46) chosen for
the Green function. We have not used the Arakelov condition, however.

Of course as it stands (4.14) equals zero due to the coincident Green functions. We
will define the path integral using zeta-function regulation on the determinant and the
regulated coincident Green function {4.1). The freedom to make such a choice is the
path-integral version of the freedom to choose a normal-ordering convention.

At last we can write out (4.4) in full detail, using (4.8), (4.13), and (4.14). Dropping

an overall constant, the statement (4.4) of bosonization says that for spins A > 1,

det'é}bggb. t"’1(.'131) up—q.(Pl) g(PI‘sQI) oo g(Pl.qu) 2

t
det (u‘-, u,) de

u’l(.])p) e up——q‘(Pp) g(P;;’ Ql) . g(P;:r Qq)

1
_ ( det'atd )-2 L N(z) fi=1G(P:;, P;) Hg,jzl G(@;,Q;)

det (iY)1. Ay [[G(P;,Q;)?
(4.15)
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N is defined in (2.43), and z is defined in (4.9).

For £, = K we will give only the formula with no extra insertions, corresponding to
(4.6). This case is interesting in that the same determinantal factor appears on both sides
of (4.15), so that instead of relating two determinants we get a formula expressing one in
terms of special functions on the Riemann surface:

3/ . 9. G(P,P;)-GQ,
) = |ldet w*(P)[| 7 N(2) - hi= H(G(P‘-:)Q)z (@,Q)

15t 5
( det'9'o (4.16)

det (lY)_l - AE
This formula can in turn be substituted in (4.15) to get formula for all the determinants.

Finally, for spin A = % generically there are no zero modes at all and we can take
p = ¢ = 0. This gives

~ = det 310 Tz
15t _ . -1

the “spin- bosonization formula.” This has already been derived (¢f [6], {7]) and it forms
the basis for our proof in the next section of (4.15) and (4.16). At one loop this formula
is essentially the Jacobi triple product formula [25].

5. Mathematical proof of bosonization

We now present a mathematical proof of the bosonization formulz obtained in the
previous sections. We will prove (4.4) by proving its explicit restatements (4.15) and (4.16).
Actually, for technical reasons we prove these identities only up to an overall constant
depending on the genus, the spin, and the number of field insertions. This is adequate
for proving the equivalence of two given field theories. For string applications, where one
wants to relate different genera, factorization of amplitudes as a surface degenerates will
fix the relative normalizations. Presumably the constants obtained in this way agree with

the predictions of najve bosonization, but we will not enter into the analysis here.
A. Weyl invariance

As a first consistency check on (4.15) we now show that once it holds for any metric, it

then holds for any conformally-related metric. Thisisa simple application of the conformal
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anomaly formula {50] {51] [52], which says that if §2% = €27 g*% then the zeta-regulated
determinant behaves as
15t 5 ~ _ 15t 3
det'3, 0, — exp [6)\()\ 1_) + 13:,} ) det'd}, 3, . (5.1)
det (u;, u;) - det (v;,v;) 61 det (u;,u;) - det (v;,v;)

Here {u;}, {v;} are zero modes of 8, and 512, A is the spin of £, and S, is defined
in (2.49). We also have the result (2.48) on the rescaling of the Green function. (2.48)
must however be modified for coincident points because of the regulator (4.1), which is

not Weyl-invariant:

G,(P,P) = exp [mSL[o] + (i + l)a(P)] -G, (P, P)

The net number of Green functions in (4.14) is p*+¢? —2pg = (2A — 1)2(g — 1)2 by
(3.14). Collecting factors of S, and o(P;) we therefore see that

Ztjer = exp [—'121—,,,-31, +(2A-1)*g - l)zm(,;l_—lyfsr.]
- exp [m}_—ﬂ (2;)20(1’,-) +293°0(Q;) — 2¢3 " 0(P;) - 23 0(Q,))

+320(F;) + Y0(Q0) |+ Ziey

=exp [z(62% — 6A + 1)S.] - exp [2AY0(P) + (2~ 22)3°0(Q4)] - Zijucy
The Liouville part matches (5.1), while the remaining factor gives the correct rescaling
properties of (4.3).

Thus we can require our metric to be in any convenient conformal slice. Only now
will we use this freedom to choose the Arakelov metric, so that coincident Green functions
equal one (eqn. (4.2)).

Had we used an alternate normal-ordering prescription to (4.1}, we would have got-
ten coordinate-dependent factors and a different metric dependence at the P,, Q;. For
example, in [5] we used a modification of (4.1) to get expressions for b(P)b(P), not (4.3).

The two prescriptions are completely equivalent.
B. Outline of proof

The main ingredient in the proof is Quillen’s treatment of a holomorphic family of

Cauchy-Riemann operators on compact Riemann surfaces: the zeta-function regulated
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determinant det '5}35 is used to define a metric, the “Quillen metric” on the determinant
line bundle of £. The bosonization formula can be seen as asserting that some natural
isomorphisms of determinant line bundles are isometries when one uses the Quillen metrics.

We will establish these isometries from two basic results:

1. The spin-1/2 bosonization formula (4.17). Recall that in this formula £, is any
twisted spin bundle, i.e. any line bundle on I of degree g — 1. I is equipped
with an arbitrary metric. This metric in turn defines a metric on the preferred
spin bundle L, (the one which makes the isomorphism L} >~ K an isometry),
and hence a metric on £,. The LHS of (4.17) is computed using this metric. On
the RHS (Y)~! is the period matrix of ¥, Ay is the metric area of ¥, and
N is defined in (2.43).

We note that all of the bosonization formulz involve the same function (---)~% X,
which is essentially the spin-1/2 determinant [6][7]. Thus it seems that one could
prove all the results we need by referring each spin to the known case of spin 1/2.

This is accomplished by

2. The insertion theorem, given below in subsection D, which relates det '525 ¢ and
det'5£®O(P)6_e®o(P) for any line bundle £ and any point P on %. Itisin
this theorem that the Arakelov metric plays a simplifying role.

The insertion theorem is the mathematical counterpart of the insertions of #(P) or
¢(Q) in the functional determinants of section four. It is also closely related to the third
axiom defining metrics on direct image bundles in Faltings’ work on arithmetic geometry
[19]. In fact, this theorem allows one to prove that the norm used by Faltings differs from

the Quillen norm only by a multiplicative factor depending only on the surface X [52].

We will prove formulee slightly more general than the bosonization identities of section
four. Indeed, we consider not only the line bundles £, with degree a multiple of g — 1,
but arbitrary line bundles £ on I of degree d > g — 1. In general £ does not have an
Arakelov metric. Instead we will demand that the metric on £ be “admissible,” which
means that its curvature is proportional to the Arakelov curvature form g, ., in {2.53).
Thus the Arakelov metric itself is admissible. Admissible metrics always exist; they are

unique up to a constant since X is compact.
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To state our more general formula let us begin by supposing that
H'(Z;¢)=0 . (5.2)

Recall from (2.16) that this condition means that the adjoint 5% has no zero mode. This
statement is independent of the metrics chosen on L and £. It is satisfied if d > 2¢g — 2
orif d=2¢—2 but {# K,orif d=g—1 and £ does not belong to the theta divisor.
We will sketch later the necessary modification to the proof when (5.2) is not satisfied —
for example in the proof of (4.16).

We also have from (2.10) that dim H°(o; ¢) = dimkerd ¢ = k. Using the simplifying
condition (5.2) and the Riemann-Roch theorem (2.18) we then get that k =d+1—g. Let
%;,...,%; be a basis of H®(L;¢).

For any integer ¢ > 0, let p = ¢ + k. Suppose we are given p+ ¢ pairwise distinct
points on L, P,,... N S 4 NN y@q- From these points we can build a determinant

generalizing the one in (4.8):

v (P) -0 u(Py) G(P,Q,) - Q(Pan)
det : : : : . (5.3)

ul(Pp u’k(Pp) g(P;an) Tt g(PpaQq)
The parametrix § is again defined by (4.7), where now L[, is replaced by the arbitrary
line bundle £.!? Again the residue of § as P — @ is 1/2mi. Det (v;, P;,Q,) is an
element of [®F_, E|P..] ® [ }=1(f"1 ® K)|Qj].

We also suppose that I is equipped with the Arakelov metric, and that £ is equipped

with an admissible metric.

Det (ui, PJ’ Qﬂ)

The generalization of (4.15) which we will prove then says that with the above choices,

when (5.2) is satisfied we have

det'315
.. P. 2, 7 TETE
1
det '8t 2 -1 (5.4)
—A(g,d,q) (det (iY)_l'AE) 'N(E®O(_Dina)®L.ﬂ )

5 Hi(j G'(P,-, Pg)z Hi(j G(Q,‘, Qj)z
HG(P:'1 Q;’)z ’

12 Again when (5.2)is not satisfied we replace the unit operator in (4.7) by the projector
off the zero modes of 51,.
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where A(g,d,q) is a constant which depends only on g, d, and ¢, and

4 q
Dins zng'"ZQ;’ . (3.23)'
i=1 =1

Taking £ = £, gives {4.15). This follows because with the Arakelov norm coincident
Green functions vanish, while each noncoincident function in the numerator of (4.15),
(4.16) appears twice.

The proof of (5.4) will go roughly as follows. Thanks to the insertion theorem applied
p + ¢ times, we can relate det'ézée and det '52'56' where ¢ = £ ® 0(—D;,,)- Next,
as the degree of ¢ is d+¢—p=d— k =g — 1, we can relate det ’5]‘;"56' to det’dtd
by the spin-1/2 bosonization formula. The finite dimensional determinants occur in (5.4)
because the precise definitions of the determinant line bundle and of the Quillen metric on
it involve the finite dimensional spaces of zero modes of d operators and their adjoints,
so that we have to take care of them when we apply the insertion theorem. The bosonic
Green functions occur because this theorem makes essential use of the admissible metrics
on the O(P)’s defined by (2.50).

We can also derive formulz analogous to (5.4) when the condition (5.2) is not satisfied.
We will only consider the case £ = K, equipped with the Arakelov metric. Againlet ¢ >0
be an integer, let p=g—1+gq,andlet Py,...,P,Q,,...,Q, be pairwise distinct points
of . We can then build the determinant

wi(Py) - Wzg—z(Pﬂ §(P,@) - g(Pan)
Det (w;, P;, Q) = det : - : :

wl(Pp) Tt w2g-—2(Pp) g(Png]_) e Q(Pp!Qq)
0 e 0 1 e 1
(5.5)
It belongs to ®I_; 1 K|p..
Then we have the equality
det'dt 8
2, k%
"Det (wi’ PJ" Ql)” (1’ 1) - det (w‘_,wj)
1
det ’3T5 T2 (5 6)
"'B(g5 q) (det (1Y)_1 Rk AE) ’ N(O(_Dins) ® LJI)

9 [1;c;G(P: P)* Il G(Q:, Q)
[1G(P:,Q;)? ’

51



where Bf(g,q) is a constant depending only on g, g. When g =1 we then recover (4.16).
(See the comments surrounding (4.6).)

Strictly speaking in this paper we will prove (5.4) and (5.6) only for g > 2.1® To get
complete proofs when g < 2, one needs estimates on the growth of regularized determinants
and Green functions when I degenerates into a Riemann surface with one node, which
we will not discuss here.

Note that (5.4) and (5.6) are closely related to some classical identities in the theory

of abelian functions on Riemann surface [53], in particular the trisecant identity {23][22].

C. The local Riémann—Roch theorem

In this subsection we review some basic facts about determinant line bundles, Quillen
metrics, holomorphic families of & operators on compact Riemann surface, and the
Riemann-Roch theorem for families (¢f [13], [54], [17], [18]).

If D is an elliptic differential operator on a compact manifold, one defines the one

dimensional vector space
DET D = (A™** ker D)™! @ (A™** coker D) . (5.7)

Formally DETD is the dual of the “top exterior power” of the family index of D.

It is important for our purposes to consider not only one particular D but a
parametrized family of operators. We therefore need a notion of a family {T . of Rie-
mann surfaces, with a family of line bundles {£,} on them. We can glue together all
the Riemann surfaces into a large space X, and glue the £, into a single bundle E
over the total space X. In this paper we will actually consider holomorphic families of
Riemann surface and bundles. Thus we let 7 : X — S be a proper holomorphic sub-
mersion, the fibers of which are compact and of complex dimension one. We also take E
to be a holomorphic vector bundleon X and F = E® fx[ s> Where K, o is the line
bundle of vertical (1,0)-forms on X. For each s € § we then get an elliptic operator
9, : C®(8,;¢,) = C°(L,;§, ® K) on the Riemann surface £, = n~(s). J, is called
the Cauchy-Riemann operator “coupled to §¢,” and the family so defined is denoted by

dg. The determinant line bundle DET 5 has a canonical holomorphic structure [55][17].

12 See lemma 2 below.
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This construction was introduced first within the framework of algebraic geometry [56],
[55]; the construction for smooth families appears e.g. in [57], [54].

One can define a norm on the determinant line bundle as follows. Suppose we are
given a smooth family of riemannian metrics on the fibers X, (f.e. a smooth metric on
the vertical tangent bundle K}_c1|s)’ and a smooth hermitian metric on E. Then for any
s € S, 81 is defined, and ker 3, and coker 3, have natural L? metrics, which define a
metric ||-||;z on DETd,. Generally, because of the jumps of the dimension of kerd,, this

norm is not smooth on all of S. However, the “Quillen norm”
I-1% = det’d}d, - | -2, (5.8)

is always a smooth metric on DET 3y [13][54].

We can now state a local Riemann-Roch theorem for families of curves. Recall that
for any hermitian metric on a holomorphic vector bundle like E there is a unique unitary
connectiou on F compatible with its holomorphic structure. Using this connection and
the Chezn-Weil formule for characteristic classes, we can associate to a line bundle E and
its metric the Chern forms ¢,(E,||-||g), the Chern character form Ch(E,|-||g), and the
Todd form T4(E,| -] z) using the polynomials Ch(z) =e*, Td(z)=1+3iz+5z%+...
It is important to note that in the family setting these forms are constructed from the full
curvature of the bundle E over X, not just its vertical parts. If ¢ is any differential

form, we denote by ¢(*) its component of degree k.

Theorem. Let n : X — S be a holomorphic family of Riemann surfaces and E a
holomorphic vector bundle over X. Let ||-|| be any smooth hermitian metric on the
tangent bundle KJ‘(TS and ||-||z asmooth hermitian metric on E. Let | -||o be the

Quillen metric they define on DET 8g. Then one has the formula

(05295, -lo) =~ [ {Ch(EN- I ATalKe -0} 69)

Here [ x|s denotes integration of a form along the fibers T, of m. Note that (5.9)
makes no use of the admissibility condition; it works for any metrics.
The cohomological form of (5.9) is a direct consequence of the Atiyah-Singer index

theorem for families, or of the Riemann-Roch-Grothendieck theorem (which gives a more
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precise formula, true in the rational Chow group of S}. The formula (5.9) was proved by
Quillen [13] when X = X, x § and the metrics are fixed, and by Belavin and Knizhnik
[14] when E = K™. Bismut and Freed have proven an analogous statement for families of

Dirac operators [54], from which one can deduce the general formula [15][18].

D. The insertion theorem

Let ¥ be a compact connected Riemann surface of genus g > 0, equipped with
its Arakelov metric, and let ¢ be an arbitrary line bundle on ¥, equipped with an
admissible metric. For any point P of I, we get an admissible metric on ¢ ® O(—P)
by multiplying the given metric on £ by the canonical metric on O(—P), f.e. the metric
dual to the metric on O(P) given by (2.50). From these data, we obtain Quillen metrics
on the one-dimensional spaces DETJ, and DET 55@0(— P)-

On the other hand, the long exact sequence
0— H(Z;6® O(=P)) = HO(E;§) - €lp — HY(S;€® O(~P)) —» H'(;4) — 0

associated to (2.8) gives rise to a canonical isomorphism of one dimensional vector spaces,

by taking the top exterior power:

I:DET¢gp(_p) = (DETO;) @ £|p . (5.10)

We have used (2.16) to replace the cokernel in (5.7) by H?!.

Insertion theorem. The isomorphism (5.10) is an isometry when &p has the given
metric and the determinant spaces are given the Quillen metrics (up to a multiplicative

constant depending only on the genus of L and on the degree of £).
For g > 2, the theorem is a direct consequence of the following lemmas:

Lemma 1. Let 7 : X — S be a holomorphic family of compact connected Riemann
surfaces of genus ¢ > 0, E a holomorphic line bundleon X, and ¢ : S — X a
holomorphic section of w. Let L, =7"'(s) and £, = E|g,.

i) The family consisting of the Arakelov metrics on the Riemann surfaces ¥, defines

a smooth metric on the vertical tangent bundle K.v_c1|s-
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#i) The family of canonical metrics (2.50) on the line bundles O(—o(s)) over L,,
s € S, defines a smooth metric on O(—-0(S})) (note that O(—0(S))|g,

O(=a(s)) ).

#15) The family of isomorphisms

[

Ia : DET 55"30(_,(,)) = (DET ge,) ® Ea|a(a)
(cf (5.10)) defines an isomorphism of holomorphic line bundles on §
I:DET Oy = DETIg ®0*(E) , (5.11)

where E' = E ® O(—0o(S5)).

iv) Suppose that E is equipped with a smooth metric |- ||z whose restriction to
any X, is an admissible metric on §,, and that Ky g and O(—o(S)) are
equipped with the Arakelov metric and the canonical metric defined in (i) and
(¥1). Using these metrics, we obtain Quillen metrics ||-|g and ||-||; on the line
bundles DET 35 and DET 8y on S. Then we have the equality of differential

forms
¢1(DET dp: [ - ) =1 (DET Ok, || - llg) + a*cy (B, | - |lg) - (5.12)

Hence when S is compact and connected, the isomorphism I in (5.11) is an isometry
up to an overall constant. The next lemma says that for ¢ > 2 we can always take S to

be compact and connected.

Lemma 2. Let X,, £, be two compact connected Riemann surfaces with the same
genus ¢ > 2 and let &,, £, be holomorphic line bundles on them with the same degree
d. Suppose each §; is equipped with an admissible metric | -|; and a point P;. There
exists a compact and connected complex manifold S, a holomorphic family «#: X — § of
compact connected Riemann surfaces, and a holomorphic line bundle E on X equipped
with a smooth metric ||-||g which, restricted to any T, = n~1(s), is admissible, and two

points s; € 5, + =1,2 and two isomorphisms ¢;: E; — L, such that

(€ ll - 1) = i (B, - lg)
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Lemma 2 is an easy consequence of the hard fact that, for g > 2, for any two points
in the moduli space of smooth irreducible curves M, there exists a complete curve which
contains those two points [58].

The first two assertions of Lemma 1 are consequences of the definitions and of the
theory of families of elliptic operators. The third assertion is a consequence of the definition
of the holomorphic structure on the determinant line bundle. We will not enter here into
the details of the proof of these assertions. The fourth assertion is a consequence of the
local Riemann-Roch theorem of subsection C and the choice of Arakelov (resp. admissible)
metrics on K, {. We now give the proof of the equality {5.12).

Let D denote the hypersurface ¢(S), and let [D] be the current, or form-valued
distribution, associated to D. That is, for any form w of degree the real dimension of
D one has fx[D]w = wa.

Let Gp(z) = ||15(p)ll(z), where O(D) is equipped with the canonical metric. The
function G p is smoothon X — D, and it vanisheson D. If G is the Arakelov Green

function on X,, we have

Gp(z) = G(z,007(z)) . (5.13)

Furthermore, the following statements are easily proved:

a) The first Chern form of the line bundle O(—D) equipped with the canonical

metric satisfies the following equality:
)
&2(0(=D), | I) = ~ 508108 &p — D] . (5.14)

(See the remark after (2.27).) The RHS is the sum of two non-smooth currents.

b) For any smooth differential form w on X

[ Dl =o*w . (5.15)
X|s

¢) For any closed differential form w of type (1,1) on X, and for any distribution
¢ on X,

[ (60¢)w = 30 dw . (5.16)
X|s

X|s
The equality (5.12) now follows from the following computation of first Chern forms,

where we do not write explicitly the metrics on the various line bundles {they are the

56




metrics specified in the statement of Lemma 1):

3 5 (4)
¢;(DET dg) — ¢;(DETp) = — f}qs {[ChE — ChE’]TdK;(lls}

- /x . {in-cn(o(-p))chE TdK,}}S}m

= [, (00D [s8) - 24 + Jx(0(- D)
x|s

The first equality follows from the local Riemann-Roch theorem, the second from the
multiplicativity of the Chern character, and the last from the expressions for Ch and Td.

Using (5.14), we can rewrite the integral (5.15) as the sum of

1 - ~
Wy = _/x|s 580108 G - [cl(E) - 3o (Kxs) + %cl(O(—D))]

and
oy == [ D] [ea(B) - Je(Kxis) + Ees(O(-D)]
Xx|s
The identity (5.16) shows that w, = 89F, where

1 ~
f= T on: x|s log Gp - [CI(E) - %CI(KX[S) + %Cl(o(_D))]

The restriction of the quantity in brackets to any X, is a multiple of u Arak: thanks to
the admissibility hypothesis on the metrics on E, K x|s» and O(—D). Next the formula
(5.13) and the normalization condition (2.46) show that F = 0. Hence w, = 0. On the
other hand, the identity (5.15) shows that

wy = —0"¢;(E) + ¢4 (0" (Kxs ® O0(D)))

Recall that the Arakelov metric and the canonical metric are such that the residue map
(2.52) is an isometry. This implies that the line bundle with metric o*(K x|s ® 0(D)) is
canonically isomorphic to the trivial bundle on S, with the trivial metric. Hence its first
Chern form is zero, and w, = —c¢*c,(FE).

Finally we get
¢,(DET dg) — ¢,(DET 3g:) = w, +w, = —0*c,(E)

as was to be proved.
Having established (5.12) we now invoke Lemma 2 to say that metrics with the same

curvature on S must be equal up to a constant. This establishes the insertion theorem.
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E. Proof of (5.4)

Using the spin-1/2 bosonization formula (4.17) we see that the desired formula (5.4)

follows from the following equality:

|Det (u;, P; et '3 O IL<; G(Ps P;)* Ilig; G(Q:, Qy)*

2, %% _C(g,dq .det'8%,8,, .
Qt)" det(u‘,uj) (g ) HG( t'!Qj)z 3 3

(5.17)
when & = €® 0(-D,,,) is equipped with the product of the given admissible metric on
¢ and the canonical metric on 0{—D;,,). Again D,,, is the divisor of insertion points
(3.23). To prove (5.17) we use the insertion theorem.

Consider the following short exact sequence of sheaves (¢f (2.8)):
0—-¢®O0(-LP)—=¢—¢lyp 0 - (5.18)
Taking ¢ = €@ 0(D_ Q,) we get

0 ¢§®@0(=Dip,) » £@0(2Q) — (@ 0(X Q)] Iyp, — 0 (5.19)

Setting all the Q; = P; we get

%

0_’5"“’5®O(ZQ;‘)""’[E®O(ZQ¢)”ZQ.-“‘“’0 . (5-20)

From the cohomology long exact sequences associated to these short exact sequences we

deduce canonical isomorphisms of the one-dimensional vector spaces (cf (5.10)):

P r
I, : DET 8¢g0(-Diny) — DETIe0(3 ;) oA (@ (0(371-1@))I )
i=1

(5.21)
= DETd¢g0(3"q,) ® [@ $|p,.]
I, : DET8; ~ DET8ep0(5 g, ® A\ (@(O(Z =19 )|Q,)
(5.22)

q
= DET aE@O(Z Q) ® |:®(£ ® K—l)]Qi]
i=1
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In the second lines of (5.21), (5.22) we have used the unit section to trivialize O(3_ Q)
away from the @;. In the second line of (5.22) we have used the canonical isomorphism
(2.52).

From I, and I, one can build an isomorphism

® e|p..] ® [@(e* ® K)[Q,.]

1

I:DET8,——DET 56, ®

Then we have the general insertion formula, when the determinant bundles are equipped
with the Quillen metrics, ¢ with the given admissible metric, and K with the Arakelov

metric:
[Lic; G(Pis Py) [1ic; G(Q:: Q)
H G(Pi! QJ)

This formula is true for any £ and any collection {P,..., P,,..., Qq} of pairwise distinct

1 1(v})|| = D(g,d,p,q) - el (5.23)

points on X¥; the conditions (5.2) and p=g+d+1—g do not matter here.

The general insertion formula (5.23) follows from the insertion theorem by induction
on p, ¢. Hence it too relies on the Arakelov condition. We now give the details for the
case p=2, ¢ =0 to show how the bosonic Green function enters.

The isomorphism (5.21) in this case reads
I, : DET 8¢g0(_p,—p,)——DET 3, ® £|p, ® £|p, . (5.21)/
It is obtained by composition zind tensor product from the “insertion isomorphisms”

DET 8;g0(—p,) = DET 3, ® |p, (5.24a)

DET 3¢g0(~p,—P;) = DETd¢g0(-p,) ® (E® O(—Fy)) |p, (5.24b)

and from the canonical isomorphism

(E@C(-P))|p, E €lp,

(5.24¢)
v®1o_p)(P) — v

By the insertion theorem, (5.24¢) and (5.24b) are isometries up to constants. On the other
hand, (5.24c) multiplies the norms by |15 _p,}(P,)II™! = G(P;, P,). So the isomorphism
I multiplies the norms by (a constant times} G(P,, P,).

Proceeding in this way, and using (5.22) we obtain (5.23).
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Now we can complete the proof of (5.17). It is enough to prove this formula when
HO(S:£® 0(-Dy,)) =0 (5.25)

i.e. when ¢ = £® O(—D;,,) does not belong to the theta divisor. Indeed this condition
is satisfied for a generic choice of insertion points since H!(Z; ¢) = 0. Moreover, one can
see directly that when {5.25) is not satisfied, the two sides of (5.4) are both zero.

The condition (5.25) implies that DET d,, is canonically trivial. The Quillen norm

on this space is thus given by

oe)llh = detdLa,, . (5.26)
The condition (5.2) gives that
= ~1
DET 8, = (A*HO(Z; ¢)) : (5.27)
50 (uy; A---Auy)~! is a basis of DETd,. Its Quillen norm is
Huy Ao Au) G = det'8L5, - (det (u;,u,)) " . (5.28)

Finally we see that the formula (5.17) is a consequence of the generalized insertion formula

(5.23), of (5.26) and (5.28) and of the following lemma:

Lemma 3.
I ((u,1 Ao A uk)_l) = (27¢) 79 Det (u,-,Pj, Qe)_l
This lemma is a consequence of the following observations:
i) HY(Z;6® 0(3 Q;)) =0 because of (5.25). Thus

DET d¢g0(y g = (APH (3£ ® O(XY, 25)) N (5.29)

tt) The map

- -1 L
I [DET 66@@(20.-)] — Q¢
i=1

is the p-th exterior power of the restriction map
P
r:H° (560 0(X Q) ~» €@ 0(Z )l Ivs, = D élr
i=1
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I, is an isomorphism when the insertion points satisfy (5.25), and in that case
it is the isomorphism (5.21).
#1) The map I, : DET 3, —DET 5680(EQ-) ® [@1,(§' ® K)|y,] can be written,
thanks to the identifications (5.27) and (5.29):
L{wg Ao Aug) ™) =(ug Ao Aug A2mEG(L Qo A A 27r£9(-,Qq)vq)_1
® (v, <8>---<E§qu)”1
for any choice of nonzero v; € (£ ® K™1)l,..

The last assertion is a consequence of the fact that 2#¢g(-, Qj)vj is an element of
H®(Z;£® 0(3°Q,)), which has [6v;);; . € DL (6 ® K)o, asits image by the
residue map at the points @,,...,Q,. See the remark following (4.7).

This completes the proof of (5.17), hence in particular of (4.15) and so the bosonization
identity (4.4), when the condition (5.2) is satisfied.

When (5.2) is not satisfied, e.g. for ¢ = K, the proof of the bosonization formula

(5.6) follows the same lines as the proof of (5.17). The only real difference occurs in the

construction of the isomorphism I,:
I :DETéK—:—*DETf?K@O(EQj)
We need the identifications
DET 35 = (AYHO(E; K)) ™
DET5K®O(EQ:_) = (ATIHEY S K @ 03 Q,-)))-1

I ((wy A Awy) ™) =(2mi) 9wy Ae A wy A (G Q) — G Q)) A -+
AS(+ Q) - 6@

Note that the norm of the constant function 1 appears in the denominator of the LHS of
(5.6), not in the numerator as (5.7), (5.8) might seem to imply. This is because we have
represented a basis of cokerdy; by a basis of the dual space kerd using Serre duality
(2.15).
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Appendix A: Proof of (2.32)

We are to establish that Fig. 4 commutes when F, H, and I are defined as in (2.32),
(2.29), and (2.26) respectively. Consider the following complex function on the cut surface

¥

c

F(P) = 9(z + I4[P — Pylrg) [9(I4[P — Pollra)

By the Riemann vanishing theorem f has exactly ¢ zeros and poles for generic z. The

zeros are at P; where

2+ I3 0P, — Dy =0
and similarly the poles, with z replaced by 0. D, is a divisor representing the preferred
spin bundle L 4. Hence
I divf]=—z . (5.30)

As P goes around the cycle n-a+m:b, f jumps by e 2% Build a bundle
¢ with transition functions such that f defines a meromorphic section ¢ on all of Z.

Next put 2 norm on §: let

||a||2=exp{27ri(z—?:)-Yg- [/P w,{—[P w,{]} 77

where Y, = (74 — 74)~'. Note that |o]|> is the quotient of two of the N functions
defined in (2.43). We then get the connection

© = Jlog||o||* = 2mi(z — 2)Yw, + Blog f

Integrating along contours which avoid the poles and zeros of o, we find the holonomy

#16) = @ (_, p a2 )

—TAY’q(z - 2) +z
Applying (2.32) to H(£) we recover —z € J 4, which indeed agrees with (5.30).
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