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1. Introduction

One of the central issues in the recent progress in understanding non-perturbative

aspects of string theory has been the realization that singular conformal theories which

correspond to singular points in moduli of string compactifications in many cases signal the

existence of nearly massless solitons [1], [2], [3], [4]. Since these nearly massless modes are

left out of the low energy spectrum of elementary excitations of strings, integrating them

out will lead to a singular low energy description. As examples of this phenomenon one can

mention the enhanced gauge symmetry of type IIA once we compactify on singular limits

of K3 (or ALE spaces) where the gauge group is ADE depending on the singularity type

[2] and the Dynkin diagram is determined by the intersection form of vanishing 2-cycles.

Another example is provided by the compactifications of type IIB strings on singular

Calabi-Yau threefolds. If we have a conifold singularity, where a 3-cycle vanishes, one

expects a massless solitonic hypermultiplet (carrying Ramond-Ramond charge)[3]. It is

therefore important to understand the nature of the singularity of the conformal theory in

these classes of examples. This is the main aim of this paper. As a byproduct, the results

presented here have led to a dual perturbative string description of the massless solitons

in both of these classes [5], where the nearly massless soliton is realized as an elementary

state of the D-string.

The organization of this paper is as follows. We will first discuss the case of Calabi-

Yau 3-fold in the presence of conifold singularity. Then we consider ALE spaces with ADE

singularities and present a conformal theory description of them. Rather surprisingly we

find that they are equivalent to symmetric fivebrane solutions. We will establish this at

the level of conformal theories and give a geometric explanation of this phenomenon based

on ‘stringy cosmic strings’ [6]. Also some mysterious connections are found with the (1, n)

conformal theories coupled to gravity, following a similar connection between the c = 1 at

the self-dual radius and the conifold singularity of Calabi-Yau threefold [7]. In particular

just as the conifold singularity is topologically captured by the N = 2 topological theory,

one expects that the ADE singularities on ALE are captured by N = 4 topological theory

[8]. We find indications that this latter N = 4 topological system is related and possibly

equivalent to (1, n) conformal system coupled to the two-dimensional gravity.
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2. Conifold in Three Dimensions and Massless Soliton

We can gain information on the spectrum of the conformal field theory by computing

[9]

F1 =
1

2

∫

M1

d2τ

Imτ
tr′(−1)FL+FRFLFRq

HL q̄HR ,

where tr′ means a trace over the Hilbert space of the N = 2 superconformal non-linear

sigma-model on the Calabi-Yau threefold in the Ramond sector with zero-energy (chiral)

states eliminated, and FL and FR are left and right-moving fermion number operators. This

is a standard expression for one-loop partition function of a topological string on the Calabi-

Yau manifold, but it can also be interpreted as computing one-loop correction to R2 terms

in the low energy effective action of the type II superstring theory [10], [11]. In general,

F1 computed for a compact Calabi-Yau manifold is finite since the spectrum of the sigma-

model should be discrete with a finite mass gap and therefore tr′(−1)FL+FRFLFRq
HL q̄HR

becomes exponentially small as τ → ∞. In [9], F1 is computed in four different families

Calabi-Yau manifolds, each of which has a conifold singularity in the moduli space. In

the neighborhood of the conifold, local structure near the singularity of the Calabi-Yau

manifolds can be described in the universal form as the quadric [12]

y2
1 + y2

2 + y2
3 + y2

4 = µ, (y ∈ C4). (2.1)

As µ→ 0, the quadric develops a singularity with a collapsing 3-cycle. It turned out that

in all the four cases, F1 behaves as 1

F1 ∼ − 1

12
log |µ|2 (2.2)

as µ→ 0. This was further confirmed by computation of F1 in many other examples studied

in [13]. To be consistent with Strominger’s interpretation, this logarithmic divergence

should be due to the virtual nearly massless solitonic loop [14]. On the other hand, from

the point of view of conformal field theory, this divergence signals vanishing of mass gap

in the spectrum since contributions from massive excitations to F1 are finite. This implies

that the perturbative string theory acquires additional light particles in the neighborhood

of the conifold. These light particles are unstable in string perturbation theory.

1 At genus-one, the topological string actually computes ∂µF1 since we need to fix one-point

on a torus. More generally for Fg we would be interested in Fg|µ̄→0 which is the topological

expansion of Fg in the conifold limit.
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Hints that the topological theory of Calabi-Yau threefold are related to c = 1 strings

at self-dual radius first appeared in [15] where it was shown to be described by a ĉ = 3

twisted Kazama-Suzuki model [16] for a coset SL(2)/U(1) at level k = 3. In fact this

explained the observation in [17] that the topological theory of this model at genus-g gives

Euler characteristic of moduli space of Riemann surfaces which is the same as the partition

function of c = 1 string at the self-dual radius [18], [19]. The equivalent Landau-Ginzburg

description for it is given by a superpotential W = −µx−1 by “analytic continuation” from

the SU(2)/U(1) Kazama-Suzuki model where a superpotential is W = xk+2 for level k [20],

[21]. More evidence in favor of this description was found by studying the correlators of

this model in the Landau-Ginzburg framework and obtaining the c = 1 tachyon amplitudes

[22], [23].

Further evidence for the c = 1 – Calabi-Yau connection emerged from [10] where it

was noticed that as a function of µ the genus-g partition function of topological theory

near conifold limit scales as Fg ∼ µ2−2g, which is the same as one expects for c = 1 theory

coupled to gravity. This connection was explained in [7] by noting that the sigma-model

for (2.1) is related to the Landau-Ginzburg model with a superpotential

W (x, y) = −µx−1 + y2
1 + y2

2 + y2
3 + y2

4 .

The equation W = 0 in a weighted projective space WCP 4
−2,1,1,1,1 satisfies the Calabi-

Yau condition with the central charge ĉ = 3 [24]. Note that adding quadratic fields does

not change the conformal fixed point and is a standard technique for relating Calabi-Yau

compactifications with Landau-Ginzburg theories [25]. When x 6= 0, we can set x = 1

without any loss of generality and W = 0 in this patch is equivalent to the deformed

conifold (2.1). As far as µ 6= 0, the patch with x = 0 is associated with ∂W = ∞ and

would not arise in the geometric description of the theory (at least in a suitable regime

of field space – it would be interesting to check these from the viewpoint of linear sigma

models [26]). These results in particular explain the universal behavior of F1 near the

conifold singularity. Moreover for g > 1, using the result for c = 1 string partition function

we learn that Fg of the Calabi-Yau near the conifold limit is given by

Fg =
B2g

2g(2g − 2)
µ2−2g, (2.3)

where Bn is the Bernoulli number and B2g/2g(2g−2) is the Euler class of the moduli space

of genus-g Riemann surfaces. At g = 2, this expression is consistent with the conifold limit
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of the result in [10] where the g = 2 topological string amplitude is computed for the quintic

threefold. More recently it was shown that the behavior (2.3) is consistent to all order in

g with the corresponding correction to R2F 2g−2 in four dimensions where one considers

a virtual loop of a nearly massless soliton [27] thus generalizing the work in [14] to all

loops and providing a strong check for the conjecture of Strominger that a nearly massless

solitonic object ‘explains’ topological singularity of conformal theory in the conifold limit.

2.1. Geometrical Picture of the Conformal Theory

The conformal theory describing the conifold is thus the untwisted version of the

SL(2)/U(1) Kazama-Suzuki model with k = 3. The non-supersymmetric version of this is

the Euclidean black hole system in two dimensions [28]. The geometrical picture developed

there is as follows (see also [29]): The geometry is that of an infinitely long “cigar.”

For most of the geometry, if we are far enough from the tip of the cigar, we have a

cylindrical geometry parameterized by X running over a circle and φ along the length

of cigar. Moreover there is a linear dilaton in the φ direction with the string coupling

becoming weaker as we go along the cigar. The supersymmetric description has basically

the same bosonic piece, but in addition the standard fermionic partners. As for the physical

states of the c = 1 string at the self-dual radius, they come from the discrete representations

of SL(2) [15] and they can be viewed as bound states at zero energy near the tip of

the cigar [29]. On the other hand the waves propagating down the cigar correspond to

non-topological states, and are BRST trivial in the sense of the c = 1 string – However

those are precisely the ones which are responsible for the continuous spectrum of the

Calabi-Yau near the conifold. This interpretation is consistent with the considerations of

unitarity: We expect that the conformal theory of Calabi-Yau has a unitary spectrum.

The analysis of [30] concluded that for this level of k essentially none of the discrete

representations of the coset model is unitary (the exception being the one corresponding

to the cosmological constant operator which is also a real deformation of Calabi-Yau),

whereas all the continuous representations are unitary. In fact this meshes nicely with the

picture advocated in [31] if we think of the length of the tube as being related to −logµ

and connected to the rest of the Calabi-Yau conformal theory. The states of c = 1 string

which are bound to the tip of the cigar do not communicate with the rest of the Calabi-Yau

because the coupling is weaker by a factor of µ, and moreover they do not arise as physical

states of the Calabi-Yau compactification, consistent with unitarity requirements.
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The picture advocated in [31] was in connection with the explanation of the unrelia-

bility of string perturbation theory. In such a picture the coupling being infinitely strong

at the tip of the cigar in the limit µ→ 0 shows that the perturbation theory should break

down if µ < λ, where λ is the string coupling constant. In fact this already follows from

the computation of the topological amplitude above: Namely if we turn on a background

F and compute the correction to R2, as explained above, near the conifold the genus-g

correction goes as Fg ∼ µ2−2gλ2g−2 and thus if µ < λ each successive correction gets larger

and the perturbation sum becomes unreliable2.

The main puzzle is how does this fit with the geometry of the Calabi-Yau near the

conifold? To begin with we have a vanishing S3. Where did the cigar shaped object

appear? When did we turn on the dilaton? We will be able to shed some light on this

after our discussion on the singularities of the conformal theory near K3 degenerations.

3. ADE Singularities in K3 and Fivebrane Solution

Let us turn our attention to singularities in K3 surfaces. From the duality between

type II and heterotic string models in six dimensions, it is expected that the perturbative

type II string on K3×R6 will have singularities when the dual heterotic string on T 4×R6

approaches enhanced gauge symmetry points [2]. These special points for K3 are modeled

(and generalized) by the ALE spaces which have ADE-type singularities given by

An−1 : yn
1 + y2

2 + y2
3 = µ (n ≥ 2)

Dn

2
+1 : y

n

2

1 + y1y
2
2 + y2

3 = µ (n : even ≥ 6)

E6 : y4
1 + y3

2 + y2
3 = µ

E7 : y3
1y2 + y3

2 + y2
3 = µ

E8 : y5
1 + y3

2 + y2
3 = µ, (x ∈ C3)

(3.1)

with appropriately chosen values of the Kähler moduli [33]. As in the case of Calabi-Yau

threefolds, we can add one more variable x and consider corresponding Landau-Ginzburg

2 This story is very similar and possibly related to the issue of heterotic/type I duality recently

discussed in [32].
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models with superpotentials

An−1 : W = −µx−n + yn
1 + y2

2 + y2
3

Dn

2
+1 : W = −µx−n + y

n

2

1 + y1y
2
2 + y2

3

E6 : W = −µx−12 + y4
1 + y3

2 + y2
3

E7 : W = −µx−18 + y3
1y2 + y3

2 + y2
3

E8 : W = −µx−30 + y5
1 + y3

2 + y2
3 .

(3.2)

It is straightforward to verify that the equation W = 0 satisfies the Calabi-Yau condition

with ĉ = 2. Note also that, as is usual in Gepner models, to get a connection with Calabi-

Yau, we have to mod out by exp(2πiJ0) which imposes the charge integrality condition

and summing over the spectral flow [34]. For example for the An−1 series this results in

modding out by a Zn.

Let us analyse the Hilbert space structure of these models. The y-dependent parts of

(3.2) are nothing but the superpotentials of the N = 2 superconformal minimal models

associated to the ADE-type modular invariants [20], [21] with

ĉ = 1 − 2

n
(for An−1 and Dn

2
+1

n = 12, 18, 30 for E6, E7, E8).

On the other hand, the Laudau-Ginzburg model with a potential x−n is equivalent to the

Kazama-Suzuki model for the coset SL(2, R)n+2/U(1) at the critical point. Above we

presented evidence for this analytic continuation in the form of the superpotential W from

SU(2) to SL(2) when n = 1 and we are assuming this is generally valid. Therefore the

Landau-Ginzburg models given by the potentials (3.2) are products of the Kazama-Suzuki

model and the N = 2 minimal models modded out by an appropriate discrete group:

SL(2)
U(1) × SU(2)

U(1)

G
(3.3)

where G = Zn in the An−1 case. Before going to the detail of the conformal theory

construction and in particular the orbifoldizing of (3.3) by G, we would like to mention

what the outcome is. Let us first consider the An−1 series. The bosonic piece of SL(2)/U(1)

coset model can be viewed geometrically as a cigar shaped object [28] which is physically

the Euclidean two-dimensional black hole. This is a non-compact space, and except for

a finite region near the tip of the cigar it can be viewed as a semi-infinite cylinder. We

7



will coordinatize the length of it by φ and the circle coordinate we will denote by X̃

with radius R =
√

2n (which can be read off from the level of the affine Lie algebra).

Moreover, there is a linear dilaton for φ, i.e. it is a Feigin-Fuchs system (this is true if

we are far enough from the tip of the cigar). In addition we have, in this region, two

free fermionic partners of φ and X̃ . As for the supercoset SU(2)/U(1), it is more difficult

to describe geometrically, but basically they are the representation of the parafermionic

algebra together with a free boson (whose momentum is correlated with representations

of the parafermionic system). In modding out by G = Zn, the Zn acts trivially on the

fermionic pieces of SL(2)/U(1) coset model, but acts on the momentum (winding) states

around X̃ by n-th roots of unity. At the same time, it also acts on the free bosonic part

of the SU(2)/U(1) minimal model. The net effect of this modding is to recombine X̃

and the free boson in the minimal model into two bosons of radii
√

2(n− 2) and 1. The

momentum of the boson with radius
√

2(n− 2), which we denote by H, is still correlated

to the representations of the parafermion algebra. On the other hand, the boson at R = 1

is decoupled and can be converted into two free fermions. The parafermionic system

together with the H field forms a bosonic SU(2) system. Thus we finally end up after

orbifoldization by G with a bosonic system consisting of SU(2) at level k = n − 2 and

a Feigin Fuchs system φ with background charge. We have also 4 free fermions, three of

which make an N = 1 superconformal SU(2) model and the last one is a superpartner of

φ. The background charge of φ is tuned so that the total ĉ equals 2. This is the same

as the symmetric fivebrane conformal theory [35] with a charge associate to the B field

(H charge) equal to n. Note that our system is a capped version of [35], in the sense that

instead of the φ going off to infinity, where the coupling becomes infinitely strong, we end

up instead at the tip of the cigar. This is the region where the splitting of the SL(2)/U(1)

coset system to φ, X̃ fails.

Now we come to a more detailed description of the orbifoldization above using the

characters of conformal field theory, concentrating on how the orbifoldization by G leads

to the SU(2) characters. To perform the orbifoldization (3.3), we first note that the U(1)

current J of the N = 2 algebra in the Kazama-Suzuki model SL(2, R)n+2/U(1) takes the

form

J = ψψ̄ + i

√

2

n
∂X (3.4)

where ψ, ψ̄ are free fermions that are superpartners of the bosonic coset SL(2, R)/U(1)

and X is a free scalar living on S1 with radius R =
√

2/n (where X is dual to X̃ described
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above). This can be shown in the following way. In the Kazama-Suzuki model, the N = 2

superconformal algebra are realized as

G+ = ψJ+, G− = ψ̄J−

J = (1 +
2

n
)ψψ̄ − 2

n
J3

(3.5)

where J±, J3 are the generators of SL(2, R)n+2. To take the quotient by U(1), we introduce

an U(1) gauge field A = i∂X , BRST ghosts (B,C) of weights (1, 0) and a BRST current

JBRST = C(ψψ̄ − J3 − i

√

n

2
∂X).

The coefficient in front of X is determined by requiring the nilpotency of the BRST charge

QBRST . This also implies that X should live on S1 of radius R =
√

2/n. It follows that

the U(1) current J in (3.5) is equal to (3.4) up to a BRST trivial operator.

Now we are ready to perform the orbifoldization of the Landau-Ginzburg model, noting

that the generator of G acting on the SL(2)/U(1) piece can be identified with exp(2πiJ0)

and so in particular using (3.4) it acts only on the X piece of the coset. The relevant

partition function of the X system is given by

ϑm,n(τ)

η(τ)
, (3.6)

where

ϑm,n(τ) =
∑

s∈Z

qn(s+ m

2n
)2 .

For the SU(2)/U(1) system, which is the N = 2 minimal model, we use a character of

an irreducible representation of the N = 2 superconformal algebra, which is denoted by

ch
(n−2)
l,m′ (τ), where l and m′ are related to the conformal weight hl,m′ and the U(1) charge

of the highest weight state Qm′ as

hl,m′ =
l(l + 2) −m′2

4n
, Qm′ =

m′

n
.

The charge integrality condition, which is imposed by the orbifoldization by G, requires

that we choose m in (3.6) to be equal to m′ in ch
(n−2)
l,m′ so we only consider the combination

ϑm,n(τ)

η(τ)
· ch(n−2)

l,m (τ). (3.7)
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To sum over the spectral flow, we make use of the following expression for the N = 2

character [36]

ch
(n−2)
l,m (τ) =

n−2
∑

m′=−n−1

c
(n−2)
l,m′ (τ)ϑm′n−m(n−2),n(n−2)(τ/2),

where c
(n−2)
l,m′ (τ) is the string function (= parafermionic partition function × η(τ)) of the

affine SU(2) algebra. The string function can be obtained by expanding a character of

an irreducible representation of the affine SU(2) algebra at level (n− 2) with the highest

weight l, χ
(n−2)
l (τ), in terms of the theta-function as

χ
(n−2)
l (τ) =

∑

m

c
(n−2)
l,m (τ)ϑm,n−2(τ). (3.8)

The information on the U(1) charge is carried by the theta-function piece of this expression.

Thus the problem reduces to computing

∑

m

ϑm,n(τ)ϑm′n−m(n−2),n(n−2)(τ/2).

This can be done by using the multiplication formula of the theta-function. By using (3.8),

we can recombine the string function and the theta-function into the SU(2) character as

n−1−l
∑

m=−l

ϑm,n(τ)

η(τ)
· ch(n−2)

l,m (τ) =

=

∞
∏

r=1

(1 + qr−1/2)2 · χ(n−2)
l (τ)

(3.9)

Thus we have shown that the orbifoldization of the N = 2 minimal model combined with

one free scalar X coming from the Kazama-Suzuki model gives the SU(2)n−2 WZW for

the A-series (where the left and right characters are identical) plus two free fermions. It

is straight-forward to generalize this construction for the D- and E-series of ALE above,

with the modification that the resulting SU(2) partition function will be the D or E-type

modular invariant [37]. This is clear because the corresponding modular combinations for

the N = 2 minimal models follows that of the underlying SU(2). Note that, generally

speaking, the orbifoldization of the ĉ = 2 Landau-Ginzburg model introduces the affine

SU(2) symmetry of level 1, which is a part of the (small) N = 4 superconformal algebra

[38], [39], and which is different from the SU(2)n−2 symmetry manifesting itself in (3.9).

10



The remainder of the Kazama-Suzuki model, apart from the two fermions of the

SL(2)/U(1) model, is a free scalar φ with a background charge Qφ ∼ 1/
√
n. The easiest

way to see it is to use the Wakimoto construction of SL(2, R) which realizes J±, J3 in

terms of one scalar field φ and a pair of bosonic ghosts (β, γ) of weights (1, 0). Following

the analysis of [15], one finds that (β, γ) and (B,C) makes the Kugo-Ojima quartet and

decouple (in a suitable region of field space ‘away’ from the tip of the cigar). The remaining

φ has a background charge Qφ, and the screening operators of the Wakimoto construction

go over to the screening operators for φ.

To summarize, we have found that the orbifoldized Landau-Ginzburg model with the

superpotential given by (3.2) is equivalent to the SU(2)n−2 WZW model, four free fermions

and one scalar with the background charge Qφ. In particular, the resulting model has

SU(2)n−2 × SU(2)1 symmetry. Combined with the free scalar φ and the (small) N = 4

supercurrent, they generate the (large) N = 4 superconformal algebra [40].

In claiming a connection between ALE spaces and LG models one has to precisely

specify the Kähler moduli in order to get a singular conformal theory [33]. For example

consider the A1 singularity. If we consider it as an orbifold R4/Z2, the usual orbifold CFT

is not singular precisely because the periodic B field in the orbifold model is B = π and

not zero. If we adjust B, keeping the sphere collapsed, there are two values for which

the resulting theory has an extra Z2 symmetry: B = π, 0. The case B = 0 is the one

which gives the singular conformal theory. In fact, in our models, the Kähler moduli are

automatically tuned such that the B fields are zero. To see this let us consider the A1

case as an example. In general, the orbifoldized Laudau-Ginzburg models have discrete

symmetries so called quantum symmetries, which fix the value of the the Kähler moduli

[41]. For the case of A1 considered above we have to mod out by a Z2 so we will indeed get

a Z2 quantum symmetry in the orbifoldized model. So we are either at B = 0 or B = π.

Since the concrete description of our conformal theory given above shows that it is not

equivalent to standard R4/Z2 orbifold CFT, which has B = π we conclude that B = 0 in

the above construction.

As mentioned before for the case of the An−1 series, the orbifold Laudau-Ginzburg

model we just constructed is identical to the conformal field theory of the symmetric

fivebrane solution with the H charge n [42], [35], [43]. The target space geometry of the

fivebrane solution has an asymptotically flat region and there is a semi-infinite cylinder

(wormhole) attached to its center. The scalar field φ corresponds to the radial coordinate

along the cylinder, and the SU(2)n−2 WZW model describes the S3 part, which is the
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cross-section of the cylinder. The volume of the cross-section is proportional to the H

charge n [42]. Thus if this were a bosonic system, the level of the SU(2) algebra would be

equal to n. However we must also take into account four fermions which are superpartners

of φ and the SU(2) WZW model. Initially they are are not free but are coupled to the

generalized connections on the target space. However in the fivebrane solution, these

connections are parallelized by the anti-symmetric tensor field and we can transform the

fermions into free ones by chiral gauge rotations. This procedure causes the shift n→ n−2

through chiral anomalies.

Recently Witten has examined the phase structure of the linear sigma model for the

A1 type singularity and conjectured that it should be related to the fivebrane solution

based on the similarity between their global geometric structures [31]. Here we have

proven his conjecture by studying the Hilbert space structure of the model explicitly, and

we have determined the value of the H charge to be 2. We also extended it to all An−1,

with the result that the ALE singularity given by An−1 is equivalent to the conformal

theory describing the symmetric fivebrane with the charge n. There are two subtleties

to consider: The first one is that if we consider type IIA(B) on ALE it is equivalent to

type IIB(A) on the symmetric fivebrane. This exchange is easy to see, because in the LG

model above we could vary the complex structure of ALE, i.e. it is a B-model description

of the theory, whereas in the symmetric fivebrane, the description is in the A-model (i.e.

the sigma model origin for supercharges). This statement will become even more clear in

the next section which is related to resolving yet another puzzle: How come we got the H

field and the dilaton field turned on, while we thought we were talking about K3 target

space? A hyperkähler metric on K3 is uncorrected in worldsheet theory and gives rise to

a conformal theory. Where do we get the dilaton and H fields from? This is the topic of

the next section, where we use the stringy cosmic string description of K3 given in [6] to

show how the H and dilaton arises as well as rederiving the relation between the value of

charge of the symmetric fivebrane and the value of n in the An−1 type singularity.

4. Stringy Cosmic Strings, K3 and its Dual

Let us recall the construction of stringy cosmic string [6]. We start with compactifi-

cation on a two torus T 2. The moduli for this compactification is given by two complex

parameters (τ, ρ) where τ parameterizes the complex structure of T 2 and ρ parameterizes
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the complexified Kähler class of T 2. Note that both are defined up to an SL(2,Z) trans-

formation. Moreover there is an exchange symmetry τ ↔ ρ which is obtained by applying

R → 1/R to one of the circles. Viewed in eight-dimensional terms, the moduli τ and ρ

appear as complex scalar fields. We consider finding solutions to the low energy eight-

dimensional equations of motion, where fields depend only on 2 extra parameters (i.e. we

are interested in keeping a six-dimensional Poincare invariance). Let us denote the extra

two-dimensional space by z. A nice class of such solutions [6] can be obtained by taking

τ(z) to depend holomorphically on z, and to take ρ to be constant, independent of z. In

making sense of such a solution one has to recall that τ is defined only up to SL(2,Z) and

so we are allowed to have jumps in τ up to this transformation. Geometrically what this

means is that as we go around some cycles on the z-plane, if we follow the compactified

T 2, it comes back to itself, but with some monodromy. In other words if we follow a given

cycle of T 2 continuously it does not necessarily come back to itself. Geometrically this is

a perfectly nice condition. If around some point say z = 0 we have monodromies, it must

mean that the T 2 fiber above it is singular where a cycle vanishes, and the monodromy of

cycles around z = 0 can give additions of this vanishing cycles. Recall that a degenerating

T 2 can be viewed near its degeneration point by

xy = q

where x, y are coordinates on some patch, and q denotes the plumbing fixture modulus.

As q → 0 we get a torus with a vanishing cycle. Now let us replace q → z and think of the

degenerating family of elliptic curves over the z-plane given locally by xy = z. At z = 0

we have our degenerating torus. Note however, that the total space is not singular despite

the fact that the fiber is singular. The easiest way to see this is to consider x, y as the

coordinates. Clearly z is fixed uniquely in terms of x, y as z = xy and so the space looks

locally like C2. The points over which the fiber degenerates are the points where there is

a ‘cosmic string’ (if we were dealing with compactifications down to 4).

We can, however, develop a singularity if we get n > 1 singular fibers approach each

other. Let ai denote the z coordinate of n singular fibers with i = 1, ..., n. Suppose the

singularities are such that the point on T 2 where they degenerate are the same. Then a

local description of this singularity can be given as

xy =
∏

i

(z − ai)
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and if we take ai → 0 we would be discussing the An−1 singularity at x = y = z = 0.

In solving the eight-dimensional equations of motion, one realizes that since there is

energy density due to the variation of the scalar field τ there is curvature. In fact it was

shown in [6] that if we have n points where the fiber degenerates in the way we discussed

above the z-plane will have a conical asymptotic with conical angle given by 2π(1 − n
12 ).

In particular with n = 12 we get a cylindrical behavior and with n = 24 the z-plane

compactifies to a sphere and the total space is compact. This compact space is nothing

but K3!

The low energy equations of motion that were solved to give the stringy cosmic string

solution are inapplicable precisely where the fiber degenerates. However it was argued in

[6] that there exists a metric on the total space which leads to a hyperKähler metric on

the total space. This is also clear in the case where n = 24 as K3 admits a hyperKähler

metric and we can view K3 as an elliptic fibration over the sphere (i.e. K3 is an elliptic

surface).

It was also observed in [6] that we can exchange the role of τ ↔ ρ in the above

construction, and the T -duality of the problem implies that we must have still a solution

to the equations of motion. This of course means that type IIA in one case is equivalent to

type IIB on the dual. Once we apply the duality, the metric of T 2 is now varying as well

as the B field, because ρ = B
2π + i

√
G on T 2. Thus the analog of the singular fibers around

which we have the monodromy τ → τ + 1 now corresponds to a fixed τ with ρ → ρ + 1,

i.e., B → B + 2π. This in particular means that if we take a three cycle consisting of a

circle S1 around the point with degenerate fiber, times the fiber T 2 and integrate

1

2π

∫

T 2×S1

H =

∫

T 2×S1

dB

2π
=

1

2π
∆B

∣

∣

S1
= 1

we have one unit of H charge in that region. Note also that hidden in this discussion is

that there is now also a dilaton turned on. To see this note that the duality that exchanges

τ ↔ ρ also changes the dilaton so that ρ2/λ
2 = ρ2exp(−2φ) is invariant. Thus in the new

solution exp(2φ) = A
√
G for some constant A. Note that if we consider the case where

n cosmic strings come together, where we would get An−1 singularity, we will have in the

dual τ ↔ ρ description n units of H charge, with the dilaton turned. This is beginning

to look like the symmetric fivebrane solution of [35]. However to be more explicit we need

to go beyond the adiabatic approximation used in [6] where roughly speaking the metric

is split to a block diagonal form involving T 2 × S2. Given that the singularity takes place
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at a given point in four space, this adiabatic approximation, which treats all points on

T 2 symmetrically, misses even the symmetries of the leading singularity. Note that the

singularity occurs at a given point in four space, which is of the same geometry as the

symmetric fivebrane and given that it carries an H charge, it is natural to expect that the

leading singular piece of the two conformal theories be equivalent, as was demonstrated in

the previous section.

5. K3 and Calabi-Yau Threefold Singularities

In section three of this paper we discussed the singularity corresponding to ALE spaces

and in section two that of the conifold singularity. Is there a connection between them?

The answer is yes, as anticipated in the description of conifold singularity given in [44]

and used in [5]: We can consider compactifying down to six dimensions on T 2 × T 2 and

talk about the variation of each of the complex structures τ1 and τ2 of the two T 2 as a

function of an extra z-plane (this was also briefly considered in [6]). Now as a function of

the z-plane the τ1(z) and τ2(z) might be singular at different points. Let us denote the

coordinates of the degenerating first torus by ‘plumbing fixture’ coordinates x, y as before,

and those of the second one by u, v. Let us assume that the first torus degenerates at z = 0

and the second one at z = µ for µ close to zero. Then locally the description of the three

manifold looks as

xy = z uv = z − µ

which, by eliminating z is equivalent to

xy − uv = µ

which is the conifold singularity. We will now describe this in the conformal theory language

and show how the conifold conformal theory is related to that for the ALE space. Before

doing so, let us generalize the above singularity to the one corresponding to c = 1 at radius

n times the self-dual value. In that case the singularity can still be given a description as

above where n cosmic strings of the first torus come together on the z-plane, i.e. we have

xy = zn uv = z − µ (5.1)

which upon eliminating the z variable give the R = n/
√

2 singularity [45]

xy = (uv + µ)n
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Now it is clear how to write down the conformal theory corresponding to these singularities.

Consider the Landau-Ginzburg theory

W = ζ−n + zn + a2 + b2 + Λ(z − xy).

This is the same superpotential as the An−1 singularity except for the additional fields Λ,x

and y and the interaction Λ(z−xy). Upon integrating out Λ we would get the identification

of z = xy and the superpotential becomes

W = ζ−n + (xy)n + a2 + b2

Note that for n = 1 this is the same superconformal theory as we discussed in section

two, for the Calabi-Yau conifold and it is known. For other values of n, apart from the

above LG description, we do not have the full conformal theory description. Anyhow this

rederivation of the conifold conformal theory shows a parallel consistency between the two

classes of conformal theories we discussed and their geometric relation between the two

explained above. It also explains the appearance of two-dimensional Euclidean black hole

in the discussion of the conifold singularity.

This also raises the question of the conformal theory of ‘one cosmic string’, i.e. sym-

metric fivebrane with charge 1. This is the case where the level of the SU(2) theory is −1,

which presumably means that we have to interpret it as SL(2) at level 1. Thus we end up

with the product of two SL(2)/U(1)’s one at level 1 and the other at level 3. So it seems

that the geometry for one symmetric fivebrane has a different description from the n > 1

case. It would be worthwhile studying this further.

6. K3 Singularity and c < 1 Topological String

In section two, we have seen that topological string amplitudes on a Calabi-Yau man-

ifold near the conifold are computable by transforming them into the c = 1 string am-

plitudes. Here we will provide some evidence that topological string amplitudes on K3

near the ADE singularities are related to the c < 1 topological strings [46], [47], [48]

corresponding to the ADE (1, n) matter coupled to gravity.

The first evidence for this relation is that the y-part of the superpotential (3.2) is that

for the N = 2 minimal model, whose topological twisting gives the standard description of

the c < 1 topological string [46]. The relation between the c < 1 topological string and the

16



twisted minimal model is further clarified in [49] where it is pointed out that the system of

the Liouville field, the (1, n) matter and the BRST ghosts has the N = 2 superconformal

symmetry of ĉ = 1− 2/n with the same chiral ring structure as that of the twisted N = 2

minimal model of the An−1 type. However there is another choice of twist (by using the

matter current instead of the Liouville) which leads to an N = 2 algebra with ĉ = 1+2/n.

This observation, in the case of n = 1, led to the description of the c = 1 string at the

self-dual radius in terms of the Landau-Ginzburg model with W = x−1 [15]. Therefore

the c < 1 string may also be related to the model with W = x−n, in the case of the An−1

series. Curiously the superpotential (3.2) for the ADE singularity is combining these two

descriptions of the c < 1 string.

The relation between the W = x−n potential and the c < 1 string can be stated more

explicitly. Let us first examine the case of n = 2 by using the description in term of the

Kazama-Suzuki model SL(2, R)4/U(1). In this case, the U(1) current of the N = 2 algebra

(3.4) takes the form

J = 2ψψ̄ − J3

and the BRST current is

JBRST = C(ψψ̄ − J3 − i∂X).

In this case, the scalar X lives on S1 with R = 1. We can then rewrite the U(1) current

J as

J = 3ψψ̄ − 2J3 − i∂X − {QBRST , B}.

After the topological twisting by J , (ψ̄, ψ) become of weights (2,−1) and we may identify

them as the BRST ghosts for diffeomorphism. SinceX is at radiusR = 1, we can fermionize

it to (b, c) which become of weights (1, 0) after the twisting. As in the case of the c = 1

string, (β, γ) of the Wakimoto construction of SL(2, R)4 decouple together with (B,C),

and we are left with the scalar field φ with c = 27. We can then combine (b, c) and φ to

make bosonic ghosts (β̃, γ̃) of weights (2,−1). The resulting system of (ψ̄, ψ) and (β̃, γ̃) is

nothing but the pure topological gravity [50], [51], [52].

For general n, the U(1) current (3.4) of the Kazama-Suzuki model can be written as

J = 3∂ψ̄ − 2J3 − i

√

2

n
(n− 1)∂X − 2(1 − 1

n
){QBRST , B}.
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Therefore the topological twist by J again transforms (ψ, ψ̄) into the BRST ghosts of

weights (2,−1). The central charge for the scalar φ becomes

cφ = 1 + 6
(n+ 1)2

n
,

and the scalar X has

cX = 1 − 6
(n− 1)2

n
.

In other words the topological theory we are dealing is equivalent to the (1, n) matter

coupled to the two-dimensional gravity.

Thus we are led to conjecture that the topological string theory on the ADE singu-

larities (3.1) is related to the c < 1 topological string [46], [47], [48]. In the case of n > 2,

however, there is a subtlety since we need to perform the orbifoldization of the Landau-

Ginzburg model as in section two and therefore the SL(2, R)n+2/U(1) Kazama-Suzuki

model and the N = 2 minimal model are not completely decoupled. To clarify this point,

let us work on the Landau-Ginzburg model directly.

For the ĉ = 2 model, the most natural class of string amplitudes are N = 2 string

amplitudes [53], which can be expressed as N = 4 topological string amplitudes [8]. Let

us consider the An−1 singularity described by the superpotential

W = −µx−n + yn.

This potential can be deformed by adding chiral primary fields. In order to preserve the

N = 4 symmetry, we only allow chiral primary fields of charge 1 given by

φi = xi−n−1yi−1 (i = 1, 2, ..., n− 1). (6.1)

In particular, φi=1 changes the value of µ. At genus-0, N = 4 topological amplitudes are

defined for four or higher points [8] as

A0
i1···im

=

∫

d2z4 · · ·d2zn〈φi1(0)φi2(1)φi3(∞)×

× J−

L J
−

Rφi4(z4)G
−

LG
−

Rφi5(z5) · · ·G−

LG
−

Rφin
(zn)〉,

(6.2)

where J− is one of the SU(2) current of level 1 which belongs to the (small) N = 4 algebra.

It turns out that the selection rule for this amplitude is consistent with that of the

(1, n + 1) matter coupled to the two-dimensional gravity. The (1, n + 1) matter can be

realized as a twisted N = 2 minimal model [46] with the superpotential

W (y) = yn+1.
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This superpotential can be deformed by adding chiral primary fields given by

φ′i = yi (i = 0, 1, ..., n− 1)

If we consider four or higher points at genus-0, a topological string amplitude involving

φ′i=0 vanishes since G− annihilates it. Therefore only φ′i with (i = 1, ..., n) are relevant

in the comparison. By using the U(1) charge conservation and the parafermion selection

rule, it is straightforward to show that the selection rule for the (1, n + 1) topological

string amplitude [46], [47], [48] satisfies the selection rule for the N = 4 string amplitude

(6.2) provided we identify φ′i with φi (i = 1, 2, ..., n− 1). It is not yet clear why the shift

n→ n+ 1 of the level takes place, and this merits further investigation.
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