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Abstract

We study the dynamics of a large class of N = 1 quiver theories, geometrically realized

by type IIB D-brane probes wrapping cycles of local Calabi-Yau threefolds. These include

N = 2 (affine) A-D-E quiver theories deformed by superpotential terms, as well as chiral

N = 1 quiver theories obtained in the presence of vanishing 4-cycles inside a Calabi-Yau.

We consider the various possible geometric transitions of the 3-fold and show that they

correspond to Seiberg-like dualities (represented by Weyl reflections in the A-D-E case

or ‘mutations’ of bundles in the case of vanishing 4-cycles) or large N dualities involving

gaugino condensates (generalized conifold transitions). Also duality cascades are naturally

realized in these classes of theories, and are related to the affine Weyl group symmetry in

the A-D-E case.
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1. Introduction

A deeper understanding of string theory on background geometries with some vanish-

ing cycles has played a key role in various aspects of string dualities. An early example

of this was in the context of the physical interpretation of the conifold [1] singularity and

its possible transitions [2]. Geometric transitions have also played an important role in

deriving field theoretic dualities from string theory. In particular by considering spacetime

filling D-branes wrapped around cycles of Calabi-Yau 3-folds, Seiberg’s duality was derived

in this way in the context of type IIB [3] and type IIA [4] string theories.

Geometric transitions have also played a key role in large N dualities. The AdS/CFT

correspondence [5] can be viewed as an example of such a transition [6], where before

the transition (small ‘t Hooft parameter) there are D-branes wrapped around cycles, and

after the geometric transition (large ‘t Hooft parameter) these cycles which supported the

D-branes have disappeared, and have been replaced with flux through a dual cycle. The

large N duality of Chern-Simons with topological strings [6] is an example of this kind.

The geometric transition duality was embedded in type IIA superstring [7], with D6 branes

wrapping an S3 on one side of the transition and fluxes through a dual S2 on the other side;

this leads to a large N duality for N = 1 Yang-Mills theory in 4 dimensions. This duality

was lifted up to M-theory [8,9] where it was interpreted as a purely geometric transition.

Since, as argued in [9] and further elaborated in [10,11] the transition in quantum geometry

is smooth in the M-theory lift, this leads to a derivation of the geometric transition duality.

The type IIB mirror of these large N dualities has also been studied [12,13] (see also

[14]). One aim of this paper is to generalize these constructions and show that the Seiberg-

like dualities and large N dualities/gaugino condensation can be viewed in a unified way

as geometric transitions in the same setup. We consider a wide variety of 4d, N = 1

supersymmetric gauge theories, which can be constructed via branes which partially wrap

cycles of a (non-compact) Calabi-Yau 3-fold X . In type IIB, one can consider general

combinations of D3, D5, D7 branes, wrapped over various cycles and filling the 4 dimen-

sional spacetime. This generically leads to a theory with gauge group
∏

i U(Ni) with some

matter in the bifundamental representations, and some superpotential terms (depending

on the complex structure of X). Changing the Kahler parameters of the underlying CY

3-fold translates to changing the coupling constants of the gauge theory (and sometimes

also to FI terms).

We find, as in [3,4] that changing the Kahler parameters of X (or, in the type IIA

mirror with wrapped D6 branes, changing the complex parameters) changes the description
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of the gauge theory. As we pass through transitions in the 3-fold geometry, corresponding

to blowing up different Kahler classes, we find dual gauge theory descriptions of the same

underlying theory. These are transitions where some 2- or 4-cycles shrink and other 2- or

4-cycles grow. On the other hand, for a class of these theories which eventually confine,

with gaugino condensates, we find transitions of the type where the 2-cycle or 4-cycle has

shrunk, disappeared, and instead a number of finite size S3’s have emerged, with fluxes

through them. The description in terms of the blown up S3’s is better at large N (in the

IR), where the size of the S3’s, which corresponds to the gaugino condensation, is large.

By using the holographic picture, and following the geometric transitions, we can

smoothly follow the field theory dualities and dynamics along the renormalization group

flow. In the UV, which corresponds to far distance to the geometry, we have a description

which is best given in terms of finite size 2-cycles and 4-cycles. This is the weak coupling

limit. The renormalization group flow to the IR corresponds in the geometry to going

towards the tip of the cone (or more precisely towards the “tips” of the cone). In doing so,

the description changes: some 2-cycles or 4-cycles shrink, and others emerge, corresponding

to Seiberg-like dualities in the field theory. Eventually the gauge theory flows to e.g. a

RG fixed point, a free-magnetic phase, or confinement with gaugino condensation. This

is seen by following the geometry towards the tips of the cone. E.g. deep in the IR, or in

the very large N limit, the description might be best in terms of the blown up S3’s; this

is where the gauge theory confines and gaugino condensation has taken place.

In this way we have a unified geometric picture, where both kinds of dualities can

be seen in the same RG trajectory, depending on where in the geometry we are. This

unification sharpens the picture of Seiberg duality given in [3,4] (a similar comment applies

to the brane construction of [15]): Rather than just seeing that two gauge theories are

connected by changing the moduli of the theory, which by itself is not a complete derivation

of duality1 ) we can use the geometry to follow the RG trajectory, and see which description

is best, at which scale, as we flow to the IR.

We consider two classes of local 3-folds in type IIB. One type (i) involves certain

Calabi-Yau threefolds which only has compact 2-cycles and no compact 4-cycles. The

1 For example, by similar changes of the moduli one can relate N = 2 U(Nc), with Nf flavors,

to N = 2 U(Nf −Nc) with Nf flavors. But here this duality misses part of the story. The original

U(Nc) theory does indeed contain the free-magnetic U(Nf −Nc) theory in its spectrum, but this

description is only good on part of the Higgs branch, and it also must be augmented with an extra

U(1)2Nc−Nf where this Higgs branch part intersects the Coulomb branch [16].
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other type (ii) involves Calabi-Yau’s which have compact 2- and 4-cycles. For type (i) we

consider X to have the geometry of an A-D-E 2-fold geometry fibered over a plane, with

some blown up 2-cycles S2
i ’s in one to one correspondence with the simple roots of A-D-E.

We can wrap D5 branes over these 2-cycles, which fill the directions transverse to X . In

addition, one could also include N0 additional D3 branes transverse to X . The 3-folds

X which we consider can thus be labelled (up to deformations) as X(k,G) with G the

A-D-E group and k an integer which labels the data about how the holomorphic 2-cycles

of the A-D-E are fibered over the plane [17].2 For N0 = 0, the gauge groups obtained via

wrapping various numbers Ni D5 branes over the various S2
i of X(k,G) are quiver gauge

theories with gauge group
∏r

i=1 U(Ni), with the quiver diagram the G Dynkin diagram

and r =rank(G), and the matter in hypermultiplets dictated by the links of the Dynkin

diagram. The theory arises from the corresponding N = 2 quiver theory, broken to N = 1

by the additional superpotentials for the adjoint superfields φi in the N = 2 U(Ni) vector

multiplet

Wi =
gi

k + 1
Trφk+1

i + lower order. (1.1)

The precise form of the superpotential is dictated by the fibration data. Adding N0

D3 branes, the quiver gauge theory becomes
∏r

i=0 U(N̂i), based on the affine Ĝ Dynkin

diagram, with

N̂i = N0di +Ni, (1.2)

for i 6= 0 with di the Dynkin indices. We also set N̂0 = N0.

The inequivalent blowups for N = 1 A-D-E quiver theories are given by the action of

the Weyl group. As we will discuss, a Weyl reflection on a node is related to a Seiberg-like

duality on the corresponding gauge group. A similar statement applies to the affine case.

The duality cascade of [12], for example, corresponds to the affine Â1 case of X(k = 1, G =

Â1). This will be generalized here to the arbitrary affine case. The generalized duality

cascade is related to the affine Weyl group, which is the semi-direct product of the Weyl

group and translation by the root lattice; the translation is responsible for the cascading

reduction of the D3 branes as we flow to the IR.

For the type (ii) case, with compact 4-cycles in addition to the two-cycles, we consider

local threefolds which have a toric realizations, as in the examples studied in [18]. We can

2 More generally we can consider one k for each simple root of A-D-E, but this can also be

obtained, by deformations, from the case we consider.
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then consider wrapping general classes of D3,D5 and D7 branes. In this case, it is more

convenient to use the mirror IIA picture of the manifold and branes, as it does not suffer

from quantum corrections. Using the appropriate mirror symmetry in the context of

branes [19], we write down the corresponding quiver theory, as well as the corresponding

Seiberg-like dualities. The dualities involve changes of the classical parameters in the

type IIA mirror. We specialize to the Calabi-Yau threefolds involving delPezzo and their

transitions. Certain aspects of this case have been noted recently in [20,21].

The organization of this paper is as follows: In section 2 we give an overview of the

N = 1 A-D-E quiver theories and the results we will find for them in this paper. In section

3 we give the description of classical aspects of the A-D-E quiver gauge theories under

consideration. In section 4 we discuss some aspects of the quantum dynamics of the gauge

couplings and their running. In section 5 we discuss gaugino condensation in the non-

affine A-D-E N = 1 quiver theories. In section 6 we consider the geometric engineering of

these theories and their large N dual, involving the leading quantum corrections and the

geometric realization of gaugino condensates. In section 7 we discuss Seiberg-like dualities

for the A-D-E quiver theories anticipated from geometry. In section 8 we discuss the

gauge theoretic interpretation of these dualities. In section 9 we consider the gauge theory

dynamics of the A2 quiver in more detail, as a typical situation where the Seiberg-like

duality is relevant. In section 10 we discuss dynamical aspects of the affine quiver theory

and its relation to the non-affine case. We also note the connection of RG cascades in this

class of theories with affine Weyl reflection. In section 11 we discuss examples of N = 1

superconformal A-D-E quiver theories. In section 12 we setup the geometric engineering of

the type (ii) local threefolds, as well as dualities predicted by geometry. In section 13 we

specialize to a class of examples and illustrate how the gaugino condensation takes place

in these chiral theories and what geometric transition they correspond to.

2. Basic structure of the type (i) N = 1 quiver theories and their large N duals

The class of type (i) theories which we consider are fibrations of a A-D-E twofold

geometry over a plane. The corresponding field theory is that of an N = 2 A-D-E or

affine Â-D̂-Ê quiver theory, deformed to N = 1 by superpotential terms Wi(φi), with φi

the adjoint field in the N = 2 U(Ni) vector multiplet. The choice of Wi’s are encoded in

the fibration data. For simplicity we consider the case where all the superpotentials are

polynomials of degree k + 1.
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The case X(k = 1, G = A1), for example, corresponds to the small resolution of the

conifold, in which the S2 is blown up. Wrapping N D5 branes on the S2 leads to N = 1

U(N) pure Yang-Mills. It was argued in [7] that for large N , or in the IR, the theory is

better described by the geometric conifold transition: X → X̃, where X̃ is the deformed

conifold, with its blown up S3 having RR flux. The generalization toX(k, A1) for arbitrary

k was discussed in [13]: the worldvolume theory is N = 2 U(N) gauge theory, broken to

N = 1 by a superpotential as in (1.1). Geometrically this means that instead of having

holomorphic S2’s over the whole plane (corresponding to vev of Φ) they only appear at

k points. Let us label these S2’s by S2
p where p = 1, ..., k. One can distribute the N D5

branes by wrapping them on any of the S2
p ’s, leading to a Higgsing U(N) →

∏k
p=1 U(Mp).

The geometric transition duality of [13] involves X(k, A1) → X̃(k, A1) in which every S2
p

is blown down and replaced with a blown up S3
p having RR flux. The geometric transition

duality yields a new field theory duality, in which the original U(N) theory is dual to a

N = 2 U(1)k theory, which is broken to N = 1 by a particular superpotential (which can

be regarded as electric and magnetic FI terms). This duality was shown to be a powerful

tool for obtaining exact results about these supersymmetric field theories [13].

The case of N0 D3 branes transverse to X(k = 1, G), without wrapped D5s, was

discussed in [22]. The gauge group is as in (1.2), with all Ni = 0, and these theories

flow to N = 1 superconformal field theories. These superconformal field theories have

a holographic dual description in terms of IIB string theory on AdS5 ×M5(1, G) which

was discussed in [22], generalizing the work [23] ccorresponding to G = A1. We can now

add wrapped D5s (sometimes referred to as adding fractional D3 branes), which breaks the

conformal invariance. As will be discussed, this theory undergoes a RG cascade generalizing

that of [12], which is the case coming from X(k = 1, G = A1).

The geometry of the general X(k,G) and the classical gauge theories associated with

arbitrary wrapped D5s, and arbitrary transverse D3s, was obtained in [17]. It was shown

there that the basic aspects of the geometry and geometric transition duality matches with

what one expects for the field theory in terms of gaugino condensates. One major aim of

the present work is to analyze the dynamics of these gauge theories in detail, and verify

that the geometry properly predicts the correct gauge theory dynamics. We will see that

the associated field theory dualities are geometrically realized via two different possible

geometric dual operations:

(A) : S2
i →

∑

j

AijS
2
j

(B) : S2
p → S3

p .

(2.1)
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The operation (B) is the geometric transition duality, which occurs when a U(N) gauge

theory confines, with gaugino condensation. The size of the S3
p is related to the gaugino

condensate [7,13].

The operations (A) on the other hand, correspond to Seiberg-type dualities [24] which,

from essentially the same viewpoint, was discussed in [3,4] (see also the related work

[25,26]). As we will discuss, these are related to the G Weyl group for N0 = 0 or, for

general N0, to the Ĝ affine Weyl group. Each Seiberg-like duality corresponds to a Weyl

reflection about a simple root, with the reflections about each of the simple roots generating

the full Weyl group. In particular, all of the Aij in (2.1) are given by Weyl reflections about

each simple root ~ei0 as

~ei → ~ei
′ = ~ei − (~ei · ~ei0)~ei0 ≡

∑

j

Aij~ej (2.2)

(including the affine root ~e0 and its Weyl translation in the Ĝ case). The rank of the gauge

group is determined by D-brane charge conservation (as in [3,4]):

∑
Ni~ei =

∑
N ′

i~ei
′

which implies that

N ′
i = (A−T )ijNj

The Weyl symmetry (A) acts on the U(Ni) coupling constants and on the superpo-

tentials as

g−2
i →

∑

j

Aijg
−2
j , Wi(φi) →

∑

j

AijWj(φi). (2.3)

The action of (2.3) on g−2
i follows from the fact that this is identified with the quantum

volume of S2
i . When S2

i shrinks the 1/g2i → 0 (i.e. the theory is strongly coupled) and if we

continue it past that it become negative. However we know that another S2 has emerged

whose volume is −1/g2i which now is positive. This is the dual gauge theory. From this

point of view the duality can be viewed as an attempt to make the 1/g2i ’s positive. In the

field theory, dimensional transmutation can occur, with the running gi written in terms of

dynamical scales Λi; the action of (2.3) on g−2
i then becomes a statement about matching

the dynamical scales Λi of the dual theories. The duality is inherited from that duality

of the corresponding N = 2 theory with Wi = 0, which in the field theory setup was

noted in [16](see also [27]), corresponding to U(Nc) theory with Nf flavors getting related
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to U(Nf − Nc) with Nf flavors. Breaking to N = 1 by W ∼ Trφ2 was considered in

[16] and the case of more general W ∼ Trφk+1 was considered e.g. in [15] via NS brane

constructions.

The two transitions (A) and (B) combine in a beautiful way in the geometric dual

description. Geometrically, if we start far from the tip of the cone, the geometry has

a description in terms of S2
i ’s, which change in size as we come closer to the tip of the

cone (which is the geometric realization of moving towards the IR). Sometimes an S2

shrinks and a dual S2 grows, an (A) type transition, which is interpreted as Seiberg-

like duality. Sometimes an S2 shrinks and an S3 grows, a (B) type transition, and this

corresponds to the occurrence of confinement and gaugino condensation. The nice thing

about this picture is that not only can we “derive” Seiberg-like dualities by connecting

branes wrapping cycles of Calabi-Yau, as in [3,4], but in fact we are able to see how they

occur in a dynamical sense, i.e. following the RG trajectory and seeing that they become

equivalent. This picture works equally well for G as well as for the affine Ĝ type quiver

theories. The application of duality is particularly striking in the affine case, as one may

have to undergo infinitely many applications of duality as we go from the UV to the IR.

In particular the RG cascade of [12] corresponds to the Â1 Weyl group. Upon flowing to

the IR, one undergoes a series of (A) type transitions until eventually the theory confines

and undergoes the (B) type transition.

Consider the G = A-D-E quiver theories. Using the action (2.3) of the Weyl group on

the coupling constants, one can represent the coupling constants as a r =rank(G) vector

~x such that
1

g2i (~x)
= ~ei · ~x > 0. (2.4)

The space of ~x satisfying this condition is a G Weyl chamber, a fundamental domain for

the action of the Weyl group on R
r/W where W is the Weyl group. The Weyl chamber

is a conical wedge, which has r codimension one boundaries, given by g−2
i = 0 for any

i = 1 . . . r. The RG flow corresponds to moving ~x inside the fundamental domain along a

straight line, until it hits a boundary where one of the 1/g2i = 0. After this, if the ranks

of the dual theories are all positive, there is a reflection off the boundary, with incident

angle equal to the reflection angle; this corresponds to a Seiberg-like duality. If the rank

of the dual theory is not positive, there is no reflection and this is indicative of the (B)

type transition in (2.1), corresponding to confinement and gaugino condensation.
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The above picture also applies to the affine quiver theories, with the couplings for the

non-affine nodes still labeled by ~x exactly as in (2.4), for i = 1 . . . r. The only new feature

is the existence of the extra affine node, i = 0, whose gauge coupling is given by

g−2
0 (~x) =

1

gs
−

r∑

i=1

di~ei · ~x. (2.5)

The di in (2.5) are the Dynkin indices, and the extending simple root is ~e0 = −
∑r

i=1 di~ei,

which can be written as
∑r

i=0 di~ei = 0 with d0 ≡ 1. There is now the further restriction on

the space of allowed ~x that the RHS of (2.5) is also non-negative. This gives an additional

codimension one boundary, cutting the Weyl chamber wedge to a finite sized box; this

space of allowed x is the Ĝ Coxeter box. It can be viewed as the fundamental domain of

the affine Weyl group action on R
r

Ŵ
where Ŵ is the affine Weyl group. Equivalently it

can be viewed as the fundamental domain of the Cartan torus by the Weyl group action,

T r/W , noting that Ŵ =W × T where T is the translation group of the root lattice. Note

that a linear combination
∑r

i=0 dig
−2
i (x) = 1/gs is actually independent of ~x. This is the

gauge coupling of a diagonal U(N0). Including the theta angles the complex version of

this statement is also true: the complex gauge coupling

τD ≡
r∑

i=0

diτi = τIIB , (2.6)

with τIIB the IIB string coupling.

A special case of the above discussion for the N = 1 affine Ĝ quiver theories is the

case Ni = 0 wrapped D5s, with N0 6= 0 transverse D3s. This case leads to a N =

1 superconformal field theory with a r + 1 complex dimensional moduli space of gauge

couplings τi, which are the complexification of the couplings in (2.4) and (2.5). The

Weyl reflection dualities maps the theory back to itself, except for changing the coupling

constants. This is part of the S-duality group of these theories. The remaining S-duality

is the usual SL(2,Z) action on the diagonal gauge coupling (2.6). So a fundamental

domain of the moduli space of the N = 1 superconformal field theories is given by (the

complexification of )(2.4) and (2.5), with ~x in the Ĝ Coxeter box, along with the SL(2,Z)

fundamental domain for τD.

This same picture holds for the special case where the deformingWi(φi) vanish, leading

to N = 2 rather than N = 1 superconformal field theories. The Coxeter box structure

for the moduli space was found in the related case of D5 branes at a C
2/ΓG singularity
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[28,29] in [30]. The moduli space for the N = 2 superconformal Ĝ theories, settingWi = 0,

was studied in [31] for the Â-case and generalized to all the Â-D̂-Ê quiver cases in [18],

where the moduli space of couplings was shown to be identified with moduli of flat A-D-E

connections on T 2. The Coxeter box can be identified with the moduli space of flat A-D-E

connection on S1 and the description of the moduli space along the lines discussed here

was noted in [32]. Again, for both the N = 2 and the N = 1 superconformal theories with

Wi(φi) 6= 0, the S-duality group corresponds to SL(2,Z) action on (2.6), along with the

Weyl reflections on the τi, as in (2.3).

3. The classical quiver gauge theories

3.1. 4d N = 1 A-D-E quiver theories

The class of N = 1 quiver gauge theories we consider is a deformation of N = 2

quiver gauge theories with gauge group
∏

i U(Ni), with i running over the nodes of the

quiver diagram, and bi-fundamental hypermultiplets for the linked nodes i and j; these

hypermultiplets can be written as N = 1 chiral superfields Qij in the (Ni, N j) and Qji in

the (N i, Nj) of U(Ni)×U(Nj). The quiver diagrams of interest here are the G = A,D,E,

or affine Ĝ = Â, D̂, Ê, Dynkin diagrams; these are the most general asymptotically free,

or conformal respectively, N = 2 quiver gauge theories [18]. We consider deformations

of these theories to N = 1 supersymmetric theories by adding a superpotential for the

adjoint fields, Wi(φi), so the full tree-level superpotential is

W =
∑

i

[Tr
∑

j

sijQijQjiφi − TrWi(φi)] (3.1)

where sij = −sji is the intersection matrix of nodes i and j, which is zero if the nodes are

not linked and ±1 if they are linked (nothing depends on the choice for the sij signs). The

first term in (3.1) is that of the original undeformed N = 2 theory.

In the non-affine case, there is no restriction on Wi(φi). In the affine case, however,

the geometric engineering of these quiver theories [17] leads to one restriction on the

superpotentials:
r∑

i=0

diWi(x) = 0

The equations of motion following from (3.1) are

∑

j

sijQijQji = ∂iWi(φi), φiQij = Qijφj , (3.2)

9



for every Qij . The vacua are the solutions of these equations, modulo complexified gauge

transformations. We now review the vacuum structure, which was derived in [17]. For

the case where the quiver diagram is a non-affine G = A,D,E Dynkin diagram, there

are various vacua which are given in terms of the positive roots ~ρK ⊂ ∆+ of G; here

K = 1, . . . , R+, with 2R+ + r = |G|, and the positive roots can be expanded in terms of

the simple roots ~ei as

~ρK =

r∑

i=1

ni
K~ei, (3.3)

for appropriate ni
K ≥ 0. This corresponds to the fact that the associated geometry has

2-cycles S2
K corresponding to the positive roots ~ρK .

For each ~ρK there are a number of irreducible branches of the supersymmetric theory,

given by the roots x the equation

W ′
K(x) ≡

∑

i

ni
KW

′
i (x) = 0. (3.4)

For simplicity we take allW ’s to be polynomials of the same degree k+1 (the more general

case can also be constructed geometrically [17]). Then, for each positive root ~ρK , the above

equation has k roots, which we label as x = a(p,K), with p = 1, ..., k and K = 1 . . .R+.

There is a susy vacuum for every choice of M(p,K) ≥ 0 such that

Ni =

R+∑

K=1

k∑

p=1

M(p,K)n
i
K . (3.5)

In these vacua φi has n
i
KM(p,K) eigenvalues given by the root a(p,K) and the gauge group

is Higgsed as
r∏

i=1

U(Ni) →

R+∏

K=1

k∏

p=1

U(M(p,K)). (3.6)

For the case of affine quiver diagrams, the vacua are similarly labeled by the positive

affine roots [17]. We will consider the cases where there are no pure 3-brane branches (this

is the analogue of the Coulomb branch of the N = 4). In this case the Higgs branches are

also labeled by the positive roots of affine A-D-E, which are described as follows: Recall

that the highest root of G is ψ =
∑r

j=1 djej , with ej the simple roots; the extending

affine root e0 is e0 ≡ −ψ, so
∑r

i=0 diei = 0, with d0 ≡ 1. The extended Cartan matrix is

Cij = ei · ej for all i, j = 0, . . . , r. For affine Lie algebras one replaces ei → êi = (ei, 0) for

i = 1, . . . , r and e0 → ê0 = (−ψ, 1). Note that
∑r

i=0 diêi = δ, with δ = (0, 1) which we

10



identify as the D3 brane charge direction (called the ‘imaginary direction’ for the affine

algebra). The positive roots of the affine algebra are given by

~̂ρ
K̂

: (∆, n+), (∆+, 0)

where n+ is a positive integer and ∆ denotes all roots. Each such vector can be written

as positive combination of positive affine roots:

~̂ρ
K̂

=

r∑

i=0

ni

K̂
êi

For each such root, consider its projection to the root lattice which is either a positive root

or its negative, given by ±
∑r

i=1 n
i
Kei as K = 1, ..., R+. For each such branch we consider

solutions to

W ′(~̂ρ
K̂
) = ±

∑

i

W ′
i (x)n

i
K = 0

which is exactly the equation we considered in the non-affine case (the possible minus sign

does not affect the solutions to the above equation). There are k solutions for each branch,

which we label with (p, K̂). Choose non-negative integers M
(p,K̂)

which label how many

of each irreducible branch we choose. These should satisfy

∑

K̂

M
(p,K̂)

ni

K̂
= N̂i

In this branch the gauge group is Higgsed to

r∏

i=0

U(N̂i) →
∏

K̂

k∏

p=1

U(M
(p,K̂)

). (3.7)

4. Aspects of the quantum dynamics: gauge couplings and their running

In this section we discuss some aspects of the quantum dynamics of the gauge couplings

and their running as a function of scale. We will first consider the underlying N = 2

quiver theory and then we will discuss aspects of the N = 1 deformed theory by adding

superpotential terms.
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4.1. N = 2 quiver theories

First let us ignore the superpotentials Wi(φi) so we have an N = 2 quiver theory.

This is also a good approximation for the dynamics of the N = 1 quiver theory for energy

scales large enough compared to the superpotential deformations (i.e. for scales µ large

compared to the adjoint mass W ′′
i (µ)).

The N = 2 exact beta function for the coupling τi ≡
θi
2π

+ 4πig−2
i of U(Ni) is

βi ≡ −2πiβ(τi) =
∑

j

CijNj , (4.1)

with Cij = 2δij − |sij| = ~ei · ~ej the Cartan matrix of the A-D-E diagram, or the extended

Cartan matrix of the affine Â-D̂-Ê diagram. The sign of βi in (4.1) is chosen so that the

theory is asymptotically free if (4.1) gives βi > 0. Note that this can be conveniently

summarized by a vector ~β whose projection on ~ei gives βi

βi = ~ei · ~β with ~β = ~N ≡
∑

i

Ni~ei. (4.2)

In the affine Ĝ case we include the affine node i = 0 in (4.2). In the affine case, since
∑r

i=0 di~ei = 0, the Ĝ affine quiver theory with N̂i = N0di has ~β = 0; it’s an N = 2

superconformal field theory for any N0. This corresponds to N0 D3 branes and no wrapped

D5 branes. There are r + 1 complex moduli, given by the U(N̂i) gauge couplings τi for

i = 0, . . . , r. More generally, for any N̂i, the beta functions (4.1) are invariant under the

shift

N̂i → N̂i +N0di, (4.3)

for any N0. Also, for any N̂i, the beta function for the coupling

τD ≡
r∑

i=0

diτi (4.4)

of a diagonally embedded U(N) vanishes, as
∑

i βidi = 0.

In the construction of the affine Ĝ quiver theories [28] via D3 branes at G type ALE

singularities, τD is the IIB string coupling, while the other τi are given by the orbifold

blowing up modes coming from the twisted sector NS or RR fields, as in [32]. Thus τD

must have the SL(2,Z) S-duality of IIB string theory. The other independent τi also exhibit

S-dualities, which correspond to GWeyl reflections. As already mentioned, this shows that

the r+1 complex dimensional moduli space of the Ĝ quiver N = 2 superconformal theories

consists of the SL(2,Z) fundamental domain for τD, along with the complexification of

the Ĝ Coxeter box for the remaining linear combinations of the couplings τi of each U(N̂i)

gauge group factor.
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4.2. The N = 1 quiver theories

Now consider the N = 1 A-D-E quiver theories, with superpotential as in (3.1), with

Wi(φi) as in (1.1): Wi ∼ Trφk+1
i +lower order. For k = 1 the φi are massive and can be

integrated out; for k > 1 the φi should be kept (unless one adds the generic lower order

terms in (1.1), in which case φi is again massive and can be integrated out at low energies).

Note that, for k > 1, the deformations of the superpotential appear to be irrelevant (k = 2

is marginally irrelevant), and thus divergent in the UV limit. In the UV one needs a cutoff

to define the theory, but the IR aspects we will discuss are universal and independent of

the cutoff. The deforming operators are actually “dangerously irrelevant,” much as in [33],

in that they get large anomalous dimensions and they control the IR dynamics.

The N = 2 → N = 1 superpotential deformation Wi(φi) does not change the (1-loop

exact) holomorphic beta functions, so they are the same as in (4.1):

βi =
∑

j

CijNj = ~ei · ~N, which gives e2πiτi(µ) =

(
Λi

µ

)βi

. (4.5)

The quantity appearing in (4.5) is e−Si
inst , with Si

inst the action for a U(Ni) instanton.

The gauge coupling running (4.5) and scales Λi apply above the mass scale ∆ ∼W ′′ where

φi gets a mass (this occurs for k = 1 or, for higher k, if W ′
i (x) has no coinciding roots).

Below the mass scale ∆, the φi can be integrated out and the holomorphic beta functions

are instead

βlow
i ≡ −2πiβ(τi) = Ni +

∑

j

CijNj . (4.6)

Matching the running coupling gi at the scale ∆ gives that the low-energy theory has

dynamical scale Λlow
i given by (Λlow

i )β
low
i = ∆NiΛβi

i . The more general matching relations,

associated with the different Higgsing branches, will be discussed in detail the following

section.

We refer to the above 1-loop beta functions as the “holomorphic beta functions” since,

as usual, they exactly give the running of the coefficient of the U(Ni) gauge kinetic term,

when the superpotentials are written in terms of the holomorphic (bare) quantities. Also

of interest are the “physical beta functions,” which are the ones of relevance for analyzing

RG flows and determining the existence of RG fixed points. The physical beta functions

can be written in terms of the anomalous dimensions [34], which for our theories yields

βphys
i ≡ −2πiβphys(τi) = 3Ni −Ni(1− γ(φi))−

∑

j 6=i

|~ei · ~ej |Nj(1− γ(Qij))

= (1 + 1
2
γ(φi))

∑

j

CijNj +
1
2

∑

j 6=i

|~ei · ~ej |Njβ(λij),
(4.7)
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where λij is the coefficient of QjiΦiQij in the superpotential (note that this can be scaled

to one, by rescaling Q’s). Here γ(φi) is the anomalous dimension of φi and we define

β(λij) ≡ γ(φi) + 2γ(Qij), (4.8)

which is (proportional to) the beta function for the λij . The expression (4.7) is essentially

the NSVZ beta function, though without the denominator factor of [34]; this is because we

are using the holomorphic gauge kinetic terms, ∼
∫
d2θτWαW

α, and the canonical matter

kinetic terms.

The beta function (4.7) applies above the possible scale ∆ where φi could be integrated

out. Below such a scale, the exact beta function is

βi = 3Ni −
∑

j 6=i

|~ei · ~ej |Nj(1− γ(Qij))

=
3

2

∑

j

CijNj +
∑

j 6=i

|~ei · ~ej |γ̂(Qij),
(4.9)

where we define γ̂(Qij) = γ(Qij) +
1
2 . Integrating out φi induces a quartic superpotential

for the Qij , which would be marginal if γ(Qij) = −1
2 , corresponding to γ̂(Qij) = 0.

Indeed, in this case the beta functions (4.9) all vanish for the affine Ĝ quiver theories with

Ni = N0di.

5. Gaugino condensation in the non-affine N = 1 quiver theories

Let us now consider the dynamics of the N = 1 quiver theory taking into account the

fact that at scales lower than the relevant scales for the superpotentials Wi the theory gets

higgsed to various branches. For simplicity let us assume that all theWi’s become relevant

at the scale ∆. Thus for scales µ >> ∆ we effectively have an N = 2 quiver theory with the

running of the coupling constants we have noted. Let us assume that at the scale ∆ all these

couplings are still small, i.e. 1/g2i (∆) >> 1, so that the classical analysis of the branches is

reliable. For scales below ∆ the superpotential becomes relevant and the theory is Higgsed

(for generic Wi to a product of pure N = 1 theories
∏k

p=1

∏R+

K=1 U(M(p,K)) with some

additional massive fields. The SU(M(p,K)) factor in (3.6) gets a mass gap, with gaugino

condensation and confinement.
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The naive low-energy superpotential associated with the
∏
SU(Mp,K) gaugino con-

densations can be written as

Wg.c. =
k∑

p=1

R+∑

K=1

S(p,K)


log


Λ

3M(p,K)

(p,K)

S
M(p,K)

(p,K)


+M(p,K)


 , (5.1)

where the Λ(p,K) are the scales of the low energy U(M(p,K)) gauge groups as found via

naive threshold matching, which we will discuss in what follows. S(p,K) is the SU(M(p,K))

glueball field S(p,K) ∼ TrSU(M(p,K))WαW
α, whose expectation value is the SU(M(p,K))

gaugino condensate. The S(p,K) in (5.1) are massive and can be integrated out.

In general, the naive gaugino condensation superpotential is only a leading approxima-

tion to a more non-trivial exact result. This is seen, among other examples, in the analysis

of [13], where the geometric transition duality emerged as a powerful tool to obtain the

exact superpotential. Though Wg.c. is not exact, it does exactly give the non-trivial mon-

odromies of the superpotential. Moreover it should be a good approximation in the case

where the N = 2 gauge couplings are weak at the scale ∆ where the Higgsing takes place.

The coupling constant of the U(M(p,K)) theory at the scale ∆ where Higgsing takes place

satisfies

g−2
(p,K)(∆) =

∑

i

ni
Kg

−2
i (∆).

We still need to match the running gauge couplings g(p,K) across the thresholds of various

massive matter fields in order to relate the low energy scales Λ(p,K) to the high energy

scales Λi of the original quiver theory. This is what we will now do.

As discussed earlier, the possible eigenvalues of the adjoints φi are the solutions apK ,

with p = 1 . . . k and K = 1 . . .R+, of (3.4). E.g. for the case k = 1, with Wi =
1
2miTrφ

2
i ,

we have

aK =

∑
i n

i
Kmiai∑

i n
i
Kmi

. (5.2)

In general, φi can haveM(p,K)n
i
K eigenvalues equal to a(p,K), with Ni =

∑
(p,K) n

i
KM(p,K),

φi → ⊕(p,K)a(p,K)(1M(p,K)
)n

i
K , (5.3)

which breaks

U(Ni) →
k∏

p=1

R+∏

K=1

U(M(p,K))
ni
K

i . (5.4)
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Under this breaking the Qij decompose as

Qij → ⊕(p,K) ⊕(q,L) (M(p,K),M (q,L))
ni
Knj

L , (5.5)

with the bifundamental in (5.5) of mass a(p,K) − a(q,L).

There is additional Higgsing, besides that of (5.3), due to non-zero expectation values

of components of the Qij ; this Higgsing breaks

∏

i

U(M(p,K))
ni
K

i → U(M(p,K)) (5.6)

which is a diagonally embedded subgroup. The Qij expectation values can be seen by

plugging into the equations of motion (3.2),

∑

j

sijQijQji =W ′
i (φi), (5.7)

which we should evaluate for the above eigenvalues a(p,K) of φi. In the end, the unbroken

gauge group is

r∏

i=1

U(Ni) →
k∏

p=1

R+∏

K=1

U(M(p,K)), with Ni =

k∑

p=1

R+∑

K=1

ni
KM(p,K). (5.8)

The naive superpotential (5.1) arises from gaugino condensation in the unbroken gauge

group factors of (5.8).

The original high energy U(Ni) theory, with its adjoint included, has beta functions

as in (4.2): βi = ~ei · ~N , with ~N ≡
∑

iNi~ei. Using (5.8) we can also express these in terms

of the ranks M(p,K) of the low-energy gauge group:

βi = ~ei · ~N = ~ei · ~M where ~M ≡
k∑

p=1

R+∑

K=1

M(p,K)~ρK . (5.9)

Thus we can write the U(Ni) instanton factors, in terms of the dynamical scales Λi of the

original high energy theory, as in (4.5):

Λ

∑
j
CijNj

i = Λ
~N·~ei
i = Λ

~M ·~ei
i . (5.10)
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We determine the scales Λ(p,K) of the low energy U(M(p,K)) theory in (5.8)by naive

threshold matching relations at the scales of all massive U(M(p,K)) matter and W-boson

fields. The result we thus obtain is

Λ
3M(p,K)

(p,K) = [W ′′
K(a(p,K))]

M(p,K)

∏

(q,L)6=(p,K)

(a(p,K) − a(q,L))
−~ρK ·~ρLM(q,L)

r∏

i=1

(
Λ

~M ·~ei
i

)ni
K

,

(5.11)

where we define W ′′
K(a(p,K)) ≡

∑r
i=1 n

i
KW

′′
i (a(p,K)). Note that the RHS of (5.11) properly

has mass dimension M(p,K)(1 + ~ρK · ~ρK) = 3M(p,K) (since all positive roots of the simply

laced ADE satisfy ~ρK · ~ρK =
∑r

i,j=1 n
i
Kn

j
KCij = 2).

To see how (5.11) is obtained, write the exponent of (a(p,K) − a(q,L)) in (5.11) as

M(q,L)

∑r
i,j=1 n

i
Kn

i
LCij ; the terms involving Cii = 2 are associated with W boson thresh-

old matching, whereas the Cij = −1 terms are associated with threshold matching for

matter fields coming from components of Qij . The products of Λ
~M·ei
i , with exponent ni

K ,

appearing Λi in (5.11) results from the fact that U(M(p,K)) arises as the diagonal subgroup,

as in (5.6), so the U(M(p,K)) gauge coupling is

g−2
K =

∑

i

ni
Kg

−2
i (5.12)

at the scale of the Higgsing (5.6), and using (4.5).

We can now plug (5.11) into (5.1) to get the final expression

Wg.c =
∑

(p,K)

S(p,K)


M(p,K) +M(p,K) log


m(p,K)

∏
i Λ

ni
Knj

K
Cij

i

S(p,K)






+
∑

(p,K)

∑

(q,L)6=(p,K)

r∑

i,j=1

S(p,K)M(q,L)n
i
Ln

j
KCij log

(
Λi

a(p,K) − a(q,L)

)
.

(5.13)

We stress again that this is only an approximation, valid in the regime where the

gauge couplings are weak at the scale determined by the superpotentials. Nevertheless,

the non-trivial monodromies of (5.13) are expected to be exact, as the additional quantum

corrections are single valued.

6. Geometric Construction

In this section we will study the geometric realization of the N = 1 A-D-E quiver

theories, and connect with the field theoretic analysis of these theories presented in the
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previous sections. The geometric description allows the formulation of large N duals via

transitions of the form S2 → S3, which we interpret as the field theory developing gaugino

condensates. The dynamics of the gauge theory can be mapped to geometric language in

a beautiful way. In particular, we show that the running of the gauge couplings is imposed

upon us by the log divergences in the periods of the holomorphic three form on non-compact

3-cycles. The superpotential obtained in (5.13), from naive integrating in, is shown to be

the leading order approximation in a weak coupling expansion of the exact superpotential

given in terms of geometric periods. This leading order approximation can be obtained

from the geometry via a monodromy analysis in the form of the Picard-Lefschetz formula.

6.1. Review of Geometric Engineering of N = 1 A-D-E Quiver theories

The geometric engineering of N = 1 A-D-E quiver theories is done in two steps. The

first is to consider Type IIB on an ALE space with a blown up A-D-E singularity. Wrapping

D5-branes around different non-trivial 2-cycles will give rise to N = 2 gauge theories on

the world volume. Likewise, adding D3-branes transverse to the ALE space will give

N = 2 affine A-D-E quiver theories on their worldvolumes. The second step is to realize

that these ALE spaces can also be made nonsingular by adding relevant deformations.

These deformations can then vary over the complex plane transverse to the ALE space,

D3 and D5 branes. This fibration induces a superpotential in the theories, breaking the

supersymmetry down to N = 1.

A-D-E singularities in dimension 2

Blown down singular ALE spaces can be viewed as hypersufaces f(x, y, z) = 0 of C3:

G = Ar : f = x2 + y2 + zr+1

G = Dr : f = x2 + y2z + zr−1

G = E6 : f = x2 + y3 + z4

G = E7 : f = x2 + y3 + yz3

G = E8 : f = x2 + y3 + z5

These spaces can be made smooth by adding relevant deformations of the form,

r∑

i=1

Pci(G)(t1, . . . , tr)RC2(G)−ci(G)(y, z),
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where the subscripts are the degrees of the polynomials under the scaling where ti’s have

degree one and f(x, y, z) has degree C2(G), the dual Coxeter number of G (ci(G) are the

degrees of the Casimirs of G). Notice that there are r =rank(G) deformation parameters

ti’s. For generic ti’s, there are r independent classes of non-vanishing S2’s and their

intersection can be chosen to correspond to the G Dynkin diagram. The holomorphic

volumes of the S2
i ’s are denoted by,

αi =

∫

S2
i

dydz

x
for i = 1, . . . , r

The αi are in 1-1 correspondence with the simple roots of G, and are linearly related to

the ti.

The deformed ALE space is simple to write in the A and D cases, namely,

Ar : x2 + y2 +

r+1∏

i=1

(z + ti)

r+1∑

i=1

ti = 0 (6.1)

Dr : x2 + y2z +

∏r
i=1(z + t2i )−

∏r
i=1 t

2
i

z
+ 2

r∏

i=1

tiy (6.2)

and the holomorphic volumes are given by,

Ar : αi = ti − ti+1 i = 1, . . . , r (6.3)

Dr : αi = ti − ti+1 i = 1, . . . , r − 1 and αr = tr−1 + tr (6.4)

The corresponding equations for E6, E7 and E8 deformations in terms of t’s (which are

chosen to be linearly related to α’s) are more complicated and we refer the reader to [35].

Fibration

We want to obtain a Calabi-Yau 3-fold by fibering the ALE space described above

over a complex plane whose coordinate we denote by t. This fibration is implemented

by allowing the ti’s to be polynomials in t. Therefore, the holomorphic volumes αi will

also be functions of t. Wrapping Ni D5 branes around the S2
i fiber, but with world

volume transverse to the t-plane, will induce a classical superpotential in the gauge theory

satisfying,

W ′
i (t) = αi(t)

where t corresponds to 〈Φi〉, the expectation value of the adjoint of the U(Ni).
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Notice that without the superpotentials, i.e., with a trivial fibration, the normal bundle

over each S2 is O(−2) ⊕ O(0). However, with the introduction of superpotentials, the

geometry will have points where a given cycle can have zero holomorphic volume. These

points, which are singular in the geometry, can be blown up, giving rise to S2’s with normal

bundle O(−1) ⊕ O(−1). If the degree of W ′
i (t) is k, there will be k points in the t-plane

for each positive root ~ρK of G where the holomorphic volume vanishes:

α(~ρK) =
r∑

i=1

ni
Kαi(t) =

r∑

i=1

ni
KW

′
i (t) = 0. (6.5)

These are the supersymmetric vacua corresponding to the Higgsing (3.6) where we wrap

Mp,K D5 branes around the cycle at the p-th solution of (6.5). Let us rewrite (3.6),

∏

i

U(Ni) →

R+∏

K=1

k∏

p=1

U(M(p,K)).

Clearly, the charge conservation condition is (3.5),

Ni =

R+∑

K=1

k∑

p=1

M(p,K)n
i
K .

6.2. Large N duality

In the IR limit of the gauge theory we are left with pure N = 1 SYM with gauge

group
∏R+

K=1

∏k
p=1 U(M(p,K)). This theory is expected to have gaugino condensation in

each factor of the gauge group, as discussed in section 5. As in [12,36,7,13], the proposal is

that the geometry realizes this process by geometric transitions of the form S2
(p,K) → S3

(p,K).

It is important to notice that all these are conifold-like transitions since the S2
(p,K)’s being

blown down have normal bundle O(−1)⊕O(−1).

The number of singular points after blowing down all S2
(p,K)’s is kR+, where k is

the degree of W ′
i (t)’s. The large N dual is therefore achieved by deforming the complex

structure of the singular Calabi-Yau 3-fold,

x2 + F (y, z, t1(t), . . . , tr(t)) = 0 (6.6)

by normalizable deformations (including the log normalizable). These normalizable de-

formations correspond to dynamical fields, as opposed to fixed parameters [37]. The

dynamical fields which they correspond to are precisely the SU(M(p,K)) glueball fields
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S(p,K) ∼ TrSU(M(p,K))WαW
α. In [17], it was shown that the total number of these nor-

malizable deformations is exactly kR+, the expected number of S3’s. This matches the

natural idea that the kR+ gaugino condensates are independent, dynamical, and control

the sizes of the S3, parameterizing the deformation of the geometry.

The normalizable deformations can be easily found by noting that (6.6) has the form

f(x, y, z) + atkC2(G) + . . . = 0. (6.7)

Charges can be assigned to x, y, z, and t such that the above equation has charge 1. In

particular, t will always have charge 1/kC2(G). Thinking about (6.7) as the superpotential

of a Landau-Ginzburg theory, the central charge is given by,

ĉ = (1− 2Q(x)) + (1− 2Q(y)) + (1− 2Q(z)) + (1− 2Q(t)) =
2

kC2(G)
(k(C2(G)− 1)− 1) .

(6.8)

The normalizable deformations are those monomials tβyδzγ with charge Q(tβyδzγ) < ĉ
2 ;

we also include the log normalizable deformations, with charge Q(tβyδzγ) = ĉ
2
[37].

Periods and Superpotential

The geometry after the deformation is smooth and contains kR+ non-trivial S3’s.

These 3-cycles form a natural basis for A(p,K) cycles in the Calabi-Yau geometry and we

define kR+ non compact cycles B(p,K) dual to the A(p,K)’s producing a symplectic pairing.

An important role in the sequel is played by the periods of the holomorphic three form Ω

over A(p,K)’s and B(p,K)’s. We denote the periods,

∫

A(p,K)

Ω ≡ S(p,K)

∫ Λ0

B(p,K)

Ω ≡ Π(p,K) =
∂F

∂S(p,K)
, (6.9)

where Λ0 is a cutoff needed to regulate the divergent B(p,K) integrals. The kR+ periods

S(p,K) are determined by (6.9) in terms of the coefficients of the kR+ normalizable defor-

mations. One can then invert these relations, to write the coefficients of the normalizable

deformations in terms of the S(p,K).

After the transition the D branes have disappeared and have been replaced by fluxes

on the S3’s of a suitable 3-form H. This leads to a superpotential [38,39],

W =

∫
H ∧ Ω =

k∑

p=1

R+∑

K=1

(∫

A(p,K)

H

∫

B(p,K)

Ω−

∫

B(p,K)

H

∫

A(p,K)

Ω

)
. (6.10)
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This thus gives for the full effective superpotential

−
1

2πi
W =

k∑

p=1

R+∑

K=1

(
M(p,K)Π(p,K) +

αK

2πi
S(p,K)

)
(6.11)

where αK ’s are related to the bare coupling constants of the original U(Ni)’s with i =

1, . . . , r of the quiver theory. The precise correspondence will be given below when we

show that the logarithmic dependence on Λ0 of Π’s can be absorbed in the α’s, rendering

the superpotential finite (up to irrelevant constant terms) as we send the cut off Λ0 to

infinity.

6.3. Dynamics of the theory

It was shown in [13] for the G = A1 quiver theory case that (6.11) is the exact effective

superpotential of the X(k, A1) theory, and that the superpotential obtained from naive

integrating in is the leading order approximation of (6.11) in a weak coupling expansion.

Here will see that the same is true for the general class of A-D-E quiver theories we have

geometrically engineered in this section.

Renormalization of gauge couplings

The superpotential (6.11) contains the periods of Ω over non-compact cycles. These

periods are divergent and need a cut off Λ0 to be well defined. These are long distance (IR)

divergences and therefore we expect them to be related to short distance (UV) divergences

in the field theory. This was the case for X(k, A1) [13], where the renormalization of the

gauge coupling constant in field theory was forced upon us in the geometric set up by the

IR divergence. This is also true for the general A-D-E cases as we now proceed to show.

The periods of Ω can be computed using the fact that the Calabi-Yau under consider-

ation is an ALE fibration over a complex plane. The three cycles in this geometry project

to lines in the t-plane where, over each point, there is an S2. Compact S3 cycles are those

for which the projection is a line segment and the holomorphic volume of the S2 vanishes

at each end. Non-compact cycles on the other hand are semi- infinite lines in the limit

when Λ0 is infinite. The periods can be computed as integrals of the holomorphic volume

of a given S2 over the path in the t-plane, i.e.,

∫ Λ0

B(p,K)

Ω =

∫

C(p,K)

α̃(~ρK)dt,
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where Ci is an appropriate contour and α̃(~ρK) is the volume (6.5) after the deformations

are introduced, so we should have α̃(~ρK) → α(~ρK) when the deformations are turned off.

Let us expand α̃ in a Laurent expansion in t,

α̃(~ρK) =
∞∑

m=−∞

σmt
m

The charge of the LHS can be seen to be kQ(t) by setting all deformations to zero. This

implies that

Q(σm) = (k −m)Q(t) =
k −m

kC2(G)
.

Our aim is to find the possible dependence of σm on the deformation parameters.

Recall that deformation parameters dβδγ are the coefficients of the allowed monomials

tβyδzγ . In the following we will suppress the subscripts since only the charge will be

important. The charge of deformation parameters is therefore,

Q(d) = 1−Q(monomial) ≥ 1−
ĉ

2
=

k + 1

kC2(G)

where equality holds for the log normalizable deformations.

Finally, imposing the condition that α̃i(t) → αi(t) upon turning off the deformations,

d→ 0, implies that

σm = 0 for m > k

k∑

m=0

σm = α(~ρK)

σ−1 =
r∑

i=1

gid
log
i where dlogi are log normalizable,

gi are classical superpotential parameters and σm for m ≤ −2 depend on normalizable as

well as log normalizable deformations.

The conclusion is then that the Λ0 dependence of the non-compact periods is

Π(p,K) =

∫ Λ0

α̃(~ρK)dt =
r∑

i=1

ni
KWi(Λ0) + σ−1Log(Λ0) +O(

1

Λ0
) + . . . .

The first term on the RHS is an irrelevant constant, which is independent of the defor-

mation parameters. So the only dangerous divergence is the log one, with coefficient σ−1.

The only parameters in the superpotential (6.11) which can be renormalized to absorb
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these log divergences are the αK ’s. It is non-trivial for this to be possible, as the αK ’s

are the coefficients of very special functions of S(p,K)’s; so we need to show that the σ−1’s

conspire to give this same S(p,K) dependence.

Let us choose the orientation of all the contours for computing the compact periods

to be counter-clockwise and for the non-compact dual periods to go from Λ0 on the lower

sheet to Λ0 on the upper sheet crossing the branch cuts defined to be between the two

points that split when the deformation is tuned on. The notion of upper sheet and lower

sheet refers to the fact that for each S3 we have a double point on the t plane and the

fibered geometry has naturally related to a double covering.

Now we only have to remember that at each point on the t-plane we have a fiber

with a basis of two cycles intersecting according to the Cartan matrix of the corresponding

A-D-E root system. Let us pick one of the non-compact periods Π(p,K) and keep track of

how it changes as we change Λ0 → eiθΛ0 with θ ∈ {0, 2π}.

Using the Picard-Lefschetz formula [40], the cycle corresponding to the positive root

~ρK will change as the contour crosses the vanishing cycles 3 according to their intersection.

This can be made very precise by denoting ~ρL the class of the compact cycle ~ρK is crossing.

The change in the period is then,

∆Π(p,K) = (~ρK · ~ρL)S(m,L)

where m = 1, . . . , k refers to the particular solution of
∑r

i=1 n
i
LW

′
i (t) = 0 which corre-

sponds to the cycle which we are crossing. Now we can write the total change in the

non-compact period as Λ0 goes around as

∆Π(p,K) =
∑

L∈∆+

(~ρK · ~ρL)
k∑

m=1

S(m,L).

This implies that Π(p,K) has a logarithmic dependence on Λ0 as expected:

Π(p,K) =
1

2πi


 ∑

L∈∆+

(~ρK · ~ρL)
k∑

m=1

S(m,L)


Log(Λ0) + . . . (6.12)

where . . . are the cut-off single valued pieces.

3 Vanishing cycles in Picard-Lefschetz formula refer to cycles that can shrink by changing the

complex structure. In our case by setting to zero the deformations.
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Recall that the second term in (6.11) was obtained by the identification S(p,K) ↔

Tr(W 2
α)(p,K), the SU(M(p,K)) glueball field. Therefore, αK is also identified with the bare

coupling of the corresponding gauge factor 8π2(
g
YM(K)
0

)2 . This implies that only r of all αK ’s

are linearly independent. Let us choose as basis αi with i ∈ ∆0, the set of simple roots.

The other αK ’s corresponding to positive roots ~ρK =
∑r

i=1 n
i
K~ei are given by,

αK =

r∑

i=1

ni
Kαi. (6.13)

Clearly, each αi has to have a logarithmic dependence on Λ0. In order to have a dimen-

sionally sensible expression we need to include new parameters Λi, which will be identified

with the dynamically generated scales of the high energy
∏
U(Ni) theory. Let us assume

the simplest ansatz for the basis,

αi = −
8π2

(
g
YM(i)
0

)2 = βiLog

(
Λi

Λ0

)
with i = 1, . . . , r (6.14)

where βi are yet to be determined. This is the same phenomenon as dimensional trans-

mutation in field theoretic language.

Let us collect the possibly log-divergent pieces of the superpotential (6.11), using the

result from (6.12):

−Wdivg =
∑

L∈∆+

k∑

m=1

S(m,L)




k∑

p=1

∑

K∈∆+

M(p,K)(~ρK · ~ρL)Log(Λ0) + αL


 .

The αL appearing in the above must cancel these divergences term by term in L, requiring

that

αL = −
k∑

p=1

∑

K∈∆+

M(p,K)(~ρK · ~ρL)Log(Λ0) + . . .

where . . . denote cut-off independent pieces. Specializing to L = i ∈ ∆0 and using (6.14)

we get that

βi =
∑

K∈∆+

(
k∑

p=1

M(p,K)

)
(~ρK · ~ei) =

r∑

j=1

Cij

∑

K∈∆+

(
k∑

p=1

M(p,K)

)
ni
K =

r∑

j=1

CijNj . (6.15)

The geometry has thus reproduced the 1-loop holomorphic beta functions (4.5).
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It is simple to see that with (6.15) and (6.13) the superpotential does not have loga-

rithmic divergences. As a by-product we have learned that the superpotential also depends

on r scales Λi in the following form,

W = −
∑

L∈∆+

α̂L

(
k∑

p=1

S(p,L)

)
+ . . . (6.16)

where

α̂L =
r∑

i=1

ni
LβiLog(Λi) with ~ρL =

r∑

i=1

ni
L~ei

Leading order superpotential

The exact effective superpotential (6.11) can be studied in the weak coupling limit.

This means that the dynamically generated scales Λi with i = 1, . . . , r are small compared

to the scales set by the superpotentials Wi(t)’s. In geometrical terms this means that

the compact S3’s are small compared to their separation in the t-plane. In order to be

more precise let us introduce some notation. For zero deformation parameters we get kR+

singular points located at the solutions of

W ′
K(t) ≡

r∑

i=1

ni
KW

′
i (t) ≡ gK

k∏

p=1

(t− a(p,K)) = 0

for K ∈ ∆+, the set of positive roots.

After the deformation each singular point t = a(p,K) splits into two giving rise to

S3
(p,K). Let us denote the new two points by a+(p,K) and a−(p,K). Now the periods can be

written more explicitly as follows,

S(p,K) =
1

2πi

∫ a+
(p,K)

a−

(p,K)

α̃(~ρK)dt and Π(p,K) =
1

2πi

∫ Λ0

a+
(p,K)

α̃(~ρK)dt

The weak coupling regime can therefore be defined by the following conditions

| a+(p,K) − a−(p,K) |≪| a(m,L) − a(p,K) | for all (p,K) 6= (m,L).

Following [13], using monodromy arguments one can compute the Log(S(p,K)) and

Log(a(p,K) − a(m,L)) dependence of Π(p,K) and therefore of the superpotential (6.11).
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Consider first the geometry close to a(p,K), this geometry can be thought of as that of

a single conifold in the limit we are considering, therefore, the S(p,K) period should look

like [13],

S(p,K) =
1

2πi
W ′′

K(a(p,K))

∫ a+
(p,K)

a−

(p,K)

√
(t− a(p,K))2 − µeffdt

Using Picard-Lefschetz formula for µeff → e2πiµeff , we get that the corresponding dual

period changes as ∆Π(p,K) = S(p,K), therefore one can conclude that,

Πp,K =
1

2πi
S(p,K)Log

S(p,K)

W ′′
K(a(p,K))

+ . . .

Finally, let us consider how Π(p,K) changes when we move one a(q,L) around a(p,K), again

using P-L formula gives that,

∆Π(p,K) = ( ~ρK · ~ρL)S(q,L)

Notice that the coefficient in front of Sq,L does not depend on m or p, this is because the

intersection formula only sees the classes and for a given K all p have the same class.

Now we can collect all these partial results to write,

2πiΠ(p,K) = S(p,K)Log ln
S(p,K)

W ′′
K(a(p,K))

+
∑

L∈∆+

k∑

m=1

( ~ρK · ~ρL)S(q,L)Log(a(p,K) − a(q,L)) + . . .

(6.17)

in this formula the sum over L and m runs over all (q, L) 6= (p,K).

The leading order superpotential can then be obtained by combining (6.11), (6.17),

and (6.16) to get,

W =
∑

K

k∑

p=1

M(p,K)


S(p,K)Log

W ′′
K(a(p,K))

S(p,K)
+
∑

L

k∑

m=1

(

r∑

i,j=1

Cijn
i
Kn

j
L)S(q,L)Log

1

(a(p,K) − a(q,L))




+
∑

K

(

k∑

p=1

M(p,K))

r∑

i,j=1

(Cijn
j
KLogΛi)

∑

L

ni
L

k∑

m=1

S(q,L) + . . .

In order to compare with the gauge theory answer from naive integrating in, let us

write W collecting all terms with SK together,

W =
∑

(p,K)

S(p,K)


M(p,K) ln


W

′′
K(a(p,K))

∏
i Λ

ni
Knj

K
Cij

i

S(q,K)






+
∑

(p,K)

∑

(q,L)6=(p,K)

r∑

i,j=1

M(p,K)S(q,L)n
i
Ln

j
KCij ln

(
Λi

a(p,K) − a(q,L)

)
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We thus find perfect agreement with the gauge theory answer (5.13). Notice that (5.13)

contains linear terms in S(p,K). These and possibly an infinite power expansion in S(p,K)’s

can not be derived using monodromy arguments. A more detailed analysis of the ge-

ometry result shows that the superpotential indeed generally contains an infinite power

expansion of terms which are missed by the naive integrating in analysis, as was computed

for X(k, A1) in [13].

Finally, one has to check that the weak coupling approximation is self-consistent. For

this it is necessary to identify the expansion parameters that enter in the infinite power

series mentioned before. Let us assume that all the relevant scales set by the classical

superpotentials are of the same order equal to ∆. This means that (a(p,K) − a(q,L)) ∼

W ′′
J ∼ ∆ for all K,L, J ∈ ∆+. Moreover, let us assume that all the scales of the individual

U(Ni) factors are of the same order Λi ∼ Λ ≪ ∆ for i = 1, . . . , r. Let us show that the

natural dimensionless expansion parameter for the computation of periods is Λ
∆ .

The leading order superpotential (5.1) implies that 〈S(p,K)〉
M(p,K) = Λ

3M(p,K)

(p,K) . Then,

using (5.11) with W ′′
K ∼ (a(p,K) − a(q,L)) ∼ ∆, and taking all Λi ∼ Λ, we find for the

expectation value of the gaugino fields, or in geometric language, the sizes of the S3 cycles:

(
〈SK〉

∆3

)MK

=

(
Λ

∆

)∑
J
MJ~ρJ ·~ρK

This implies that the power expansion in Λ/∆, and hence the superpotential (5.13), are

valid approximations when
∑

J MJ~ρJ · ~ρK > 0. Since

∑

J

MJ~ρJ · ~ρK =

r∑

j=1

nj
K

(
r∑

i=1

NiCij

)
=

r∑

j=1

ni
Kβi

with ni
K ≥ 0, and ni

j = δij for K = j a simple root, the necessary condition is thus that all

U(Ni)’s have to be asymptotically free.

This analysis shows that in cases when no weak coupling expansion is possible in

terms of the parameters of a given theory two possibilities can occur. The first is that the

exact superpotential (6.11) might still be computable in a power expansion in terms of the

parameters of a different (dual) theory and the second is that no simple gauge theoretic

interpretation exists even though the geometric description still yields exact results.
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7. Duality Predictions From Geometric Construction of the A-D-E Quiver

Theories

Consider the geometric engineering of the quiver theory. Consider blowing down the

cycles (i.e. where the inverse couplings 1/g2i = 0). If we are just given this geometry

together with some data about which classes the branes wrap (or how much flux is coming

out of each vanishing S3) we cannot uniquely determine the quiver theory corresponding

to it. The reason for this is that in order to decipher the gauge theory we have to identify

certain parameters in the geometry with a choice of simple roots of the A-D-E, and this is

unique only up to the choice of a Weyl group action. This implies that with this data we

cannot quite give a unique description of the quiver theory, however we can give descriptions

in seemingly different looking gauge theories which have to be equivalent because they are

describing the same underlying string theory. Our constructions apply equally well to A-

D-E as well as the affine case. This is how geometry predicts gauge theory dualities, in one

to one correspondence with elements of the Weyl group. As is well known the Weyl group

is generated by Weyl reflections about simple roots, and this we identify as Seiberg-like

dualities in the corresponding quiver theory.

In the original geometric engineering we have blown up S2’s and which S2’s we blowup

picks a particular ‘preferred’ description for which gauge couplings 1/g2i > 0. Of course

they can be viewed as analytic continuation of the other dual descriptions where some

of the gauge couplings squared are negative. This phenomenon, taking into account the

dimensional transmutation, becomes part of the data of matching of scales between the

dual theories.

Let us consider a given theory with branes Ni wrapping the corresponding dual cycles,

undergoing a transition to Higgs branch with branch number degeneraciesM(p,K) where K

labels the positive roots and p an integer between 1, ..., k. Now consider a different choice

of positive roots given by Weyl reflection about ~ei0 . This affects the roots by

~e′j = ~ej − (~ej · ~ei0)~ei0 . (7.1)

The conservation of brane charge determines the rank of the gauge groups after transitions,

as in [3,4] and we find ∑
Ni~ei =

∑
N ′

i~e
′
i. (7.2)

It follows from this that N ′
j = Nj for j 6= i0, and

N ′
i0

= Nf −Ni0
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where Nf =
∑

i6=i0
(−~ei · ~ei0)Ni denotes the number of flavors of the U(Ni0) theory. The

Weyl group also acts on the couplings, which correspond to Kahler volumes of the e′i, as

1

g′2i
=

1

g2i
−
~ei · ~ei0
g2i0

. (7.3)

Similarly it acts on the superpotentials by the integral of the holomorphic 3-form over the

relevant cycle which is

Wi →Wi − (~ei · ~ei0)Wi0 (7.4)

In the IR, i.e. at scales below the scale of the superpotential we also have to choose which

branches we are in. This makes sense assuming that the coupling of the gauge theory is

weak at the scale of the superpotential, so that the classical analysis is reliable. In this

case we have branches labeled by the positive roots ~ρK . Under the Weyl reflection the

positive roots get permuted except for ~ρK = ~ei0 which goes to minus itself (it is also easy

to see, using (7.4) that the choices within a given branch get mapped in a canonical way).

Thus Mp,K = M ′
p,wei0

(K), for K 6= ei0 where wei0
denotes the Weyl reflection by ei0 , and

M ′
p,K = −Mp,K for K = ei0 . Note that this latter action on the branches would yield

negative multiplicities unless Mp,ei0
= 0. So only for this case we can formally use the

dual. We will elaborate on the geometric meaning of this later. However, we emphasize

that even if Mp,ei0
6= 0 in a formal sense the dual theory makes sense. What we mean by

this is that when we set up the dual geometry and write the corresponding superpotential,

replacing the flux coming from the branch corresponding to ~ei0 with a negative number

does make sense, and would yield an identical description of the geometry. Thus at the

level of setting up the dual geometry description we simply have an ambiguity of reading

off the gauge theory. Thus the geometry predicts gauge theoretic dualities which we will

verify in the next section.

8. Dualizing a gauge group factor

Consider a particular U(Ni0) gauge group factor in our general N = 1 quiver labelled

by k and G or Ĝ. We write the superpotential for the fields charged under U(Ni0) as

W =
s

k + 1
Trφk+1 +TrφQQ+TrmQQ, (8.1)

where Q is a Nf ×Nc matrix, with QQ in the adjoint of U(Nc) singlet under U(Nf ) and

M = QQ a U(Nc) singlet and in the adjoint of U(Nf ). The Nf =
∑

i6=i0
(−~ei · ~ei0)Ni
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fundamentals arise from the bi-fundamentals connecting to the neighboring nodes of the

quiver diagram, and the mass m in (8.1) is a matrix in the flavor space, which is actually

given by the expectation values of the adjoints of the neighboring nodes’ gauge groups.

We treat the neighboring nodes as weakly gauged flavor symmetries.

As we briefly review, the above theory can be dualized to a U(Nf − Ni0) gauge

theory for all k. This is naturally related to the U(Nf − Ni0) which arises in the N = 2

theory (setting s = 0 in (8.1)) at the base where the “baryon branch” intersects the

Coulomb branch [16]. Before discussing the details of the duality, we note a few of the

most important features.

As seen in the geometry, the duality corresponds to a G Weyl reflection, or Ĝ Weyl

reflection in the affine case. The duality does not act on the Ni of the other nodes, which

correspond to unchanged flavor symmetries, and takes Ni0 ≡ Nc to Nf −Nc, i.e.

Ni
′ = Ni for i 6= i0, Ni0

′ = Ni0 −
∑

j

~ei0 · ~ejNj . (8.2)

As discussed in the previous section, we can write this as

~N ≡
r∑

i=1

Ni~ei =
r∑

i=1

Ni
′~ei

′, (8.3)

with

~ei
′ = ~ei − (~ei0 · ~ei)~ei0 , (8.4)

which is precisely the action of a Weyl reflection about the simple root ~ei0 . Such trans-

formations for all the nodes generate the entire Weyl group (or affine Weyl group for the

case of the affine quiver diagrams).

To see how (7.3) occurs in the field theory duality, consider the holomorphic beta

functions of the N = 1 quiver diagram theories (above the scale ∆ where the adjoints get

masses); these coincide with (4.1), and can be written as in (4.2). The beta functions of

the theory after the duality transformation are

βi
′ = ~ei ·

∑

j

~ejNj
′ = ~ei

′ ·
∑

j

~ej
′Nj

′ = ~ei
′
∑

j

~ejNj = βi − (~ei0 · ~ei)βi0 , (8.5)

where we used (8.4), ~ei
′ · ~ej ′ = ~ei · ~ej = Cij , and (8.3). So the holomorphic functions

transform precisely as under the Weyl transformation (8.4). We can formally integrate

these beta functions to get the similar transformation of the couplings g
(−2)
i , as in (7.3).

31



A similar transformation as (8.5) would hold for the exact physical beta functions (4.7) if

all γ(φi) are equal and β(λij) = 0; likewise for (4.9) if γ̂(Qij) = 0.

Consider matching the running gauge couplings, given by (4.5), before and after the

duality transformation on some particular U(Ni0); the matching occurs at the scale µ = Λi0

where U(Ni0) gets strong:

e2πiτj(µ) =

(
Λj

µ

)βj

=

(
Λ′
j

µ

)β′

j

at µ = Λi0 . (8.6)

Using (8.5) the matching relation obtained from (8.6) is

Λ′
i
β′

i = Λβi

i Λ
−(~ei·~ei0)βi0
i0

, (8.7)

i.e. (aside from the case Â1 where C01 = −2)

Λ
βi0
i0

Λ′
i0

β′

i0 = 1, Λ′
j
β′

j = Λ
βi0

|si0j |
i0

Λ
βj

j j 6= i0. (8.8)

The first relation (8.8), which gives Λi0 = Λi′0
, is similar to the duality relation [41]

for N = 1 SQCD without the adjoint φ

Λ
3Nc−Nf

SQCD Λ̃
3Ñc−Nf

SQCD ∼ µNf , (8.9)

where µ is the scale appearing in the dual superpotential as Wmag = µ−1Mqq. Indeed, for

k = 1 the adjoint φi0 has mass m = s from (8.1) and can be integrated out from both the

electric and magnetic theories, giving Λ
3Nc−Nf

SQCD = mNcΛ
βi0
i0

and Λ̃
3Ñc−Nf

SQCD = mÑcΛ′
i0

β′

i0 ,

and then (8.8) agrees with (8.9) for µ = m.

Integrating the beta function equations, in order to have all g−2
i ≥ 0, we should have

ΛNAF > µ > ΛAF , (8.10)

where µ is the energy scale and ΛNAF is the dynamical scale Λi of those i which are

not asymptotically free, βi < 0, and ΛAF is that of those i which are. In particular, the

ΛNAF > ΛAF . As we lower the scale µ, eventually we get to Λi0 of the asymptotically

free U(Ni0), which we dualize as above. According to (8.5), U(N ′
i0
) is not asymptotically

free and U(Ni) is more asymptotically free than it was before if nodes i and i0 are linked.

The relation (8.7) ensures that the new scales satisfy (8.10), e.g. if U(Nj) is NAF we have

Λj > Λi0 and then we get Λ′
j > Λi0 if U(N ′

j) is NAF or Λ′
j < Λi0 if U(N ′

j) is AF.
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A final relation, which will occupy the rest of this section is the transformation (7.4)

of the superpotential:

Wi(φi) →Wi(φi)− (~ei · ~ei0)Wi0(φi). (8.11)

To show that this is indeed the case, we need to show that the dual of our theory (8.1) for

the U(Ni0) charged fields is U(Nf −Ni0) with the superpotential

W̃ = −
s

k + 1
Trφ̃k+1 +

s

k + 1
Trmk+1 +Trφ̃qq +Trmqq. (8.12)

Here φ̃ is the U(Nf −Ni0) adjoint of the dual theory and q and q are the Nf dual matter

fields. The opposite sign of the first term in (8.12), as compared with (8.1), corresponds

to the result of (8.11) for i = i0: Wi0 → −Wi0 . The transformation in (8.11) for the nodes

i 6= i0 corresponds to the second term in (8.12). This is because the mass m in (8.1) are

actually the adjoints φi of the nodes linked to i0, so the second term in (8.12) will properly

lead to (8.11) for the nodes i 6= i0 with ~ei · ~ei0 = −1.

We will first outline how the predicted superpotential (8.12) indeed arises for the case

of k = 1; after that we’ll discuss k > 1.

8.1. k = 1 case

Consider first the case k = 1, where φi is massive, with mass s, and can be integrated

out for scales µ < s. The relevant duality for the low-energy theory is then that of [24].

When s is large, the low energy theory is N = 1 SQCD with Nf flavors and the additional

tree-level superpotential

Welec = −
1

2s
Tr(QQ)2 + TrmQQ, (8.13)

obtained by integrating out φ from (8.1) via its equation of motion. For s large it’s a good

description to simply add this extra superpotential to the usual SQCD dynamics.

For Nf > Nc, we can dualize the SQCD theory [24] to U(Nf−Nc), with superpotential

Wmag =
1

µ
Mqq −

1

2s
TrM2 + TrmM. (8.14)

M is massive and can be integrated out by its equation of motion, M = s(µ−1qq +m),

leading to

Wmag =
s

2
Tr(m+

1

µ
qq)2 =

s

2µ2
Tr(qq)2 +

s

µ
Tr(mqq) + 1

2sTrm
2. (8.15)
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Taking µ = s, this superpotential is precisely what we would obtain from (8.12) upon

integrating out the massive adjoint φ̃. In particular, corresponding to the Weyl reflection,

the sign of the quartic term in (8.15) is opposite to that of (8.13), and we have the additional

term Wi(m) in (8.15).

As an aside, we briefly review the vacuum structure of the U(Nc) theory with su-

perpotential (8.1), for k = 1, thinking of the linked nodes as a U(Nf ) flavor symmetry.

The relevant detailed analysis has been presented in [42,43]. A semi-classical analysis of

the vacua, for general quark masses m leads to

(
Nf

r

)
vacua where the gauge group is

Higgsed as U(Nc) → U(Nc − r) for r = 0, . . . ,min(Nc, Nf ); each unbroken SU(Nc− r) has

no massless flavors and thus has Nc − r susy vacua via gaugino condensation.

Consider the quantum theory in the limit of large s, where we simply add (8.13) to

the usual U(Ni0) dynamics. For example, for Nf < Nc the theory is described by the

mesons M with superpotential

W = −
1

2s
TrM2 + TrmM + (Nc −Nf )

(
sNcΛ2Nc−Nf

detM

)1/(Nc−Nf )

. (8.16)

This superpotential has 1
2(2Nc − Nf )

(
Nf

r

)
vacua where 〈M〉 expectation values break

U(Nf ) → U(Nf−r)×U(r), even in them→ 0 limit, for every r = 0, . . . , Nf . These give all

the vacua for Nf < Nc [42]. For Nf > Nc we can analyze the vacua using the U(Nf −Nc)

dual. The result (see [42]) are vacua of two types. One type is visible semi-classically in

the dual theory, with U(Nf − Nc) Higgsed to U(Nf − Nc − r) and U(Nf ) is unbroken

in the m → 0 limit. The other comes from strong coupling dynamics in the dual theory:

when rank(M) = Nf , the dual quarks are all massive and a dynamical superpotential is

generated in the dual, e.g. via gaugino condensation; as usual, this superpotential is the

continuation of (8.16) to Nf > Nc. These vacua again have U(Nf ) → U(Nf − r) × U(r)

for r = 0, . . . , Nf .

One can also analyze the problem in the limit where the adjoint mass s ≪ Λ, with

Λ the scale of the theory with φ included. The theory can then be usefully analyzed in

terms of the curve of the N = 2 SQCD theory, breaking to N = 1 by the small adjoint

mass s. This analysis again shows two sorts of vacua [16,42]. One set, existing for all

Nf , are vacua with the entire gauge group confined, and the flavor symmetry broken as

U(Nf ) → U(Nf − r)× U(r) for all r ≤ [Nf/2] via monopole condensation. The other set

exists for Nf > Nc and have unbroken U(Nf ); they are visible semi-classically in the dual

U(Nf −Nc) theory of [16].
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8.2. k > 1

Now consider (8.1) with k > 1. As discussed in [44] for k = 2 and more generally in

[45], these theories, without the term mQQ in (8.1), are dual to a U(Nf −Ni) theory with

superpotential

W = −
s

k + 1
Trφ̃k+1

i +Trφ̃qq, (8.17)

(Comparing with [45], we have normalized q and q so that the coefficient of the Yukawa

term in (8.17) is the same as in the electric theory.) As discussed in [45], this duality can

be obtained from that of [46,47,33] by deforming by the QφiQ term in (8.1). The dual

theory is of the same form as the original theory, and does not contain the gauge singlet

mesons found in the original N = 1 dualities of [24,46,47,33]; all of the mesons usually

required in the dual are massive for 0 6= si <∞ [45].

Following the TrmQQ in (8.1) through the duality is a little more involved. As was

discussed in [44] for the case k = 2, one finds various vacua. Our interest is in showing

that one of these vacua has U(Nf −Nc) gauge group, with the terms involving m in the

superpotential, as in (8.12).

As in [45], we obtain the duality by flowing from that of [46,47,33], which relates the

theory (8.13) to a magnetic U(kNf −Nc) theory with superpotential

W = −
s

k + 1
TrY k+1 +

s

µ2

k∑

j=1

Mj q̃Y
k−jq + λM2 +mM1. (8.18)

The TrφQQ perturbation in (8.18), with coefficient λ which we’ll take to equal 1Nf
, leads

to a Higgsing of the magnetic theory to U(Nf − Nc) [45]. We now consider the effect of

the added m perturbation in (8.18). The F -term conditions required for a vacuum of the

theory (8.18) are
si
µ2
q̃Y pq = −mδp,k−1 − λδp,k−2,

Y k = µ−2
k−1∑

j=1

(k − j)Mjqq̃Y
k−j−1,

k∑

j=1

Mj q̃Y
k−j = 0.

(8.19)

The vacuum solution of [45] for m = 0 Higgses U(kNf −Nc) to U(Nf −Nc). This solution

can now be modified to account for m 6= 0. For simplicity, we just discuss the case k = 2.

Considering first the first flavor, the vacuum of [45] has qα1 = bδα,1 and q̃1α = bδα1, with
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b2 = −λ1µ
2/s, satisfying (8.19) for p = 0. We can satisfy (8.19) for p = 1 by taking

Y 1
1 = −m1/λ1. In order to satisfy the other equations in (8.19) we also need (M1)

1
1

and (M2)
1
1 to be non-zero; these non-zero values will not contribute to the low-energy

superpotential, since the linearity of (8.18) in the Mj ensures that the coefficients of the

Mj have zero expectation value.

We now expand (8.18) around this vacuum, where U(2Nf−Nc) is Higgsed to U(2Nf−

Nc − 1). Though the q1 and q̃1 flavor is eaten, we get back a flavor from Fα ∼ Y α
1 and

Fα ∼ Y 1
α . Expanding out the − s

3
TrY 3 term of the U(2Nf −Nc) theory gives

−
s

3
TrY 3 → −

s

3

(
(−
m1

λ1
)3 + TrŶ 3

)
+ λ1TrFŶ F +m1FF, (8.20)

where Ŷ is the part of Y in the unHiggsed U(2Nf − Nc − 1) adjoint, and F has been

normalized so that the Yukawa coupling in (8.20) ccoefficient is λ1. Continuing this process

for all flavors, and taking the λ = 1Nf
, we eventually get a U(Nf − Nc) theory with

superpotential precisely as in (8.12), just as we wanted to verify.

We can also see the above U(Nf−Nc) dual in the limit where we treat the coefficient s

of the N = 2 → N = 1 superpotential term in (8.1) as being small, via an analysis similar

to that of [16]. In the undeformed N = 2 theory, at the root of the baryon branch, there is

a free-magnetic U(Nf−Nc)×U(1)2Nc−Nf theory. Deforming by the termWi =
s

k+1Trφ
k+1

leads to various vacua, the one of interest for us being that where the U(Nf −Nc) remains

unbroken and the U(1)2Nc−Nf is Higgsed entirely by monopoles, which condense due to

the Wi =
s

k+1Trφ
k+1 deformation. Carrying out this analysis along the lines of [16], it can

be seen how all the terms in the expected superpotential (8.12) can indeed arise.

9. A2 example

In this section we study the A2 quiver theory with k = 1 as an example of how the

dualities enter the description of the theory both in the field theory analysis and in the

geometric analysis. We first present the field theory analysis and then discuss how it is

realized geometrically. The other A-D-E cases work in a similar fashion.
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9.1. QFT analysis of A2 with k = 1

Consider the A2 quiver theory U(N1)× U(N2) for k = 1, i.e.

Wi(φi) = mi(
1
2Trφ

2
i − aiTrφi) (9.1)

for i = 1, 2. As in (5.8), vacua have

U(N1)× U(N2) → U(M1)× U(M2)× U(M3), (9.2)

with N1 =M1 +M3 and N2 =M2 +M3 and U(M3) is diagonally embedded in U(N1) ×

U(N2). In these vacua φ1 = diag(a11M1
, a31M3

) and φ2 = diag(a21M2
, a31M3

) with a3 =

(m1a1 +m2a2)/(m1 +m2) (using (5.2)). Using (5.11) the low energy scales are

Λ3M1

M1
= mM1

1 (a1 − a3)
−M3(a1 − a2)

M2Λ2M1−M2+M3

N1
,

Λ3M2

M2
= mM2

2 (a2 − a3)
−M3(a2 − a1)

M1Λ2M2−M1+M3

N2
,

Λ3M3

M3
= mM3

3 (a3 − a1)
−M1(a3 − a2)

−M2ΛM3−M2+2M1

N1
ΛM3−M1+2M2

N2
.

(9.3)

The description of this theory in terms of the Higgs branches presented above, which

uses a classical analysis, make most sense when the couplings of the gauge theories are

weak at the scale relevant for the superpotential. Let us call this scale ∆ (simplifying the

description by assuming that there is only one physical scale associated with the Wi. So

the analysis above is valid if ΛNi
<< ∆. We then expect to get a gaugino condensation for

the three remaining gauge groups U(Mi) with scales given by ΛMi
<< ∆. The running of

the coupling of various groups is depicted in Fig. 1. For scales µ > ∆ we have the N = 2

running of the U(N1) × U(N2) and for scales µ < ∆ we have to take into account the

superpotential and the Higgsing to the three U(Mi) branches. Note that the couplings of

the U(Mi) groups at the scale ∆ are given by 1
g2
1
, 1
g2
2
, 1
g2
1
+ 1

g2
2
which explains the values of

the three coupling constant at µ = ∆ shown in Fig. 1.
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g 2
___1

ΛN2 ΛM2 ΛN1 ΛM1

M 1

M 2

M 3

1N

N 2

ΛM3
µ∆

Figure 1:Running of gauge couplings for ΛN1 ∼ ΛN2 ≪ ∆. Notice that 1
g2
3
(∆)

= 1
g2
1
(∆)

+ 1
g2
2
(∆)

.

The energy axis is plotted in logarithmic scale.

g 2
___1

N 2

ΛM2ΛN2

ΛM1

ΛN1

ΛM3

M 3

M 2

1N

M 1

µ
∆

Figure 2:Running of gauge couplings for ΛN1 ∼ ∆, ΛN2 ≪ ∆. Notice that since 1
g2
1
(∆)

→ 0 one

gets 1
g2
3
(∆)

= 1
g2
2
(∆)

.

When is it appropriate to dualize, say, U(N1) → U(N2 − N1) as in the previous

section? Suppose e.g. that N2 > N1. We start changing the scales of the theories such
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that ΛN1
becomes bigger, with ΛN2

held fixed. As we change ΛN1
we reach a point where

ΛN1
∼ ∆. In this case we have the coupling constants given by Fig. 2.

Now we ask what happens if we move ΛN1
to a region where ΛN1

>> ∆? The

coupling 1/g21 of the U(N1) group then formally goes to zero and becomes negative. It

is then natural to use Seiberg duality to obtain a description in terms of a more weakly

coupled theory with positive 1/g̃21 . Note that now we are in a situation where ΛN1
≫ ΛN2

so that, for energy scales ∆ < µ ≤ Λ1, the U(N1) dynamics are important (with “negative

1/g21”) and the U(N2) can effectively be treated as a spectator flavor symmetry, which is

weakly gauged. Thus we replace U(N1)×U(N2) with its dual gauge group U(Ñ1)×U(Ñ2)

where Ñ1 = N2 −N1 and Ñ2 = N2, with W1 → −W1 and W2 → W1 +W2 and 1

g̃2
1

= − 1
g2
1

and 1

g̃2
2

= 1
g2
2
+ 1

g2
1
. However this cannot be a good description ifM1 6= 0; in this case (as an

approximate relation) we have ΛM1
∼ ΛN1

so the good description of the theory for scales

µ < ΛN1
should include the gaugino condensation (and various corrections associated with

W ) in an N = 1 factor. Thus, for M1 6= 0, once we go to scales µ < ∆ we will encounter

strong coupling quantum corrections (involving gaugino condensation etc.) and thus we do

not have a weak coupling classical description. We now consider the branch whereM1 = 0.

Then ΛM1
= 0 and there is no gaugino condensate associated with that branch. Thus we

will have the running of the couplings depicted in the figure below:

ΛM3

N 2

1N

g 2
___1

M 3

M 2

M 2 M 3

M 3

1N

1NN 2M 2

N 1

N 2

1NN 2

N 2

N 1

N 2

ΛN1ΛM2ΛN2
µ∆

Figure 3:Running of gauge couplings. Notice that at µ = ΛN1 a Seiberg duality is necessary to

keep 1
g2
1
(µ)

> 0 for µ < ΛN1 .
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Note that in this case after we hit the scale µ = ∆ we will Higgs the theory to

U(M̃2) × U(M̃3) (with M̃3 = Ñ1 = N2 − N1 and M̃2 = Ñ2 − Ñ1 = N1, after which

the theory undergoes gaugino condensate in each factor. Note however in terms of the

original assignments of branches what we had calledM2,M3 have switched roles: M̃2 =M3

and M̃3 = M2. This is exactly the action of the Weyl group generated by e1 on the

corresponding roots. Note that this is consistent with the field theory analysis for scales as

well. According to (8.8), after the duality Λ
Ñ1

= ΛN1
and Λ2N2−Ñ1

Ñ2

= Λ2N2−N1

N2
Λ2N1−N2

N1
.

We see from (9.3) that for M̃1 = M1 = 0 the duality maps Λ
M̃2

= ΛM3
and Λ

M̃3
= ΛM2

.

TheM1 = M̃1 = 0 branch corresponds, in terms of the discussion at the end of sect. 8.1, to

the vacua which are semi-classically visible in the dual U(Nf −Nc) theory, with unbroken

U(Nf ).

9.2. Geometry

Let us describe the same case from the geometry side. We will first present qualita-

tively how the geometry analysis works. However we will be able to do more, namely we

will provide also a basis for an exact quantitative analysis of the vacuum structure of the

theory.

Geometrically over the t plane we have three double points where the three S3’s will

emerge with sizes given by ΛMi
, separated by distance of the order of ∆. In the limit

ΛMi
<< ∆ we have three small S3’s. Now we analyze the theory with respect to scales:

For very high energies µ >> ∆ , this translates to probing the geometry at t ∼ µ >> 0

(using the holographic picture) which basically means that the sizes of S3’s and the scale

ofW is negligible and we have the N = 2 description. This means far away from the “tips”

of the cone we have a description of the geometry in terms of the S2’s with normal bundle

which is essentially O(−2) ⊕O(0) with varying B-field which gives the variation of 1/g2i .

This in turn can be captured by ∆(1/g2(t)) =
∫ Λ0

t
H which gives the expected running. As

we approach the scales t = µ ∼ ∆ this description breaks down and we can distinguish the

three distinct points which correspond to blow downs of the three S2’s corresponding to

three branches. Now we see the corresponding S2’s and their running in accordance with

N = 1 running of the couplings. As we approach each double point we begin to see that

each double point has led to an S3 which is identified with the gaugino condensation in

the gauge theory. This is assuming all the Mi 6= 0. If any of the Mi = 0 the corresponding

S3 does not emerge and has vanishing size as there is no flux to support the S3 (which is

dual to the statement that there is no gaugino condensate if there is no gauge group!)
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If we now consider increasing the scale of ΛN1
, if none of the Mi are zero, this makes

the size of S3 corresponding to M1 to become larger. Now suppose ΛN1
> ∆. In this

case when we consider the description of the B field as we come towards the tip of the

cone we see that the corresponding S2 → 0. However this happens at a scale where the

S3 corresponding to branch one is large. Thus as we approach closer to the tip of the

geometry we do not have any gauge theoretic description, as the gaugino condensation in

the first factor would have already taken place. However, suppose M1 = 0. In this case the

size of the S3 corresponding to the first branch remains vanishing as we change ΛN1
even

after we pass to ΛN1
> ∆. In this case when we describe the geometry as we approach the

tips of the cone as we get to the scale t ∼ ΛN1
we have the S2 → S2 transition giving us

a dual geometry. This is still a good description because the S3’s are much smaller and

we can ignore them, even as we approach t ∼ ∆. As we go towards the tips of the cone

we find two S3’s with finite size, which is the scale the gaugino condensates take place. In

terms of the new branches, the role of the two S3’s have switched in accordance with the

Weyl reflection.

This was a qualitative description of how the geometry sees the gauge theory descrip-

tion given above. However the geometry also yields precise quantitative information which

we now discuss. Before turning to the X(1, A2) example let us start by illustrating the

deformation procedure of section 6 corresponding to the large N dual for X(k, Ar) and

then we set r = 2 and k = 1.

Recall the equation for the Ar ALE space fibered over the t-plane given by (6.1),

where the fibration data and tree level superpotentials are related explicitly by (6.3),

W ′
i (t) = ti(t)− ti+1(t) for i = 1, . . . , r with

r+1∑

i=1

ti(t) = 0

The charges of x, y, z and t are

Q(x) =
1

2
Q(y) =

1

2
Q(z) =

1

r + 1
Q(t) =

1

k(r + 1)

giving for the central charge (in agreement with (6.8) for C2(Ar) = r + 1)

ĉ = (1− 2Q(x)) + (1− 2Q(y)) + (1− 2Q(z)) + (1− 2Q(t)) = 2
(rk − 1)

k(r + 1)
.

The (log) normalizable deformations are easily computed, by looking for monomials

with charges (equal to) less than ĉ
2
, to be,

Pk−1(t)z
r−1 + P2k−1(t)z

r−2 + . . .+ P(r−1)k−1(t)z + Prk−1(t)
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where Pj(t) are polynomials of degree j in t. The number of deformation parameters is

then given by k
∑r

j=1 j = k r(r+1)
2

. This is the same as kR+ as expected. Moreover, the

log normalizable ones correspond to the leading coefficient of each Pj and there are exactly

r of them.

Let us now specialize to X(1, A2). The deformed geometry corresponds to,

x2 + y2 + (z + t1(t))(z + t2(t))(z + t3(t)) + az + bt+ c = 0 (9.4)

where az and bt are log normalizable deformations and c is normalizable. From the tree

level superpotentials (9.1), the fibration data is given as,

t1(t) =
1

3
(2W ′

1(t)+W
′
2(t)) t2(t) =

1

3
(−W ′

1(t)+W
′
2(t)) t3(t) = −

1

3
(W ′

1(t)+2W ′
2(t))

For zero deformation parameters, i.e., a = b = c = 0 there are three singular points in the

geometry, given by the location of double roots of the discriminant of the cubic equation

in z for x = y = 0. The discriminant is given by,

∆ = (t1(t)− t2(t))
2(t2(t)− t3(t))

2(t3(t)− t1(t))
2

The solutions of ∆ = 0 are then given by solving,

t1(t)−t2(t) =W ′
1(t) = 0 t2(t)−t3(t) =W ′

2(t) = 0 and t1(t)−t3(t) =W ′
1(t)+W

′
2(t) = 0

This makes explicit the 1-1 correspondence of S3’s with the positive roots of A2: after

tuning on a, b and c, the geometry is smooth, since each double root of ∆ splits into two,

giving rise to an S3 of non-zero volume. Let us write ∆ as,

∆ = (t− a+1 )(t− a−1 )(t− a+2 )(t− a−2 )(t− a+3 )(t− a−3 )

If we write (9.4) as,

x2 + y2 + (z − z1(t))(z − z2(t))(z − z3(t)) = 0

then the compact periods of the holomorphic three form Ω are given by,

SK =
1

2πi

∫ a−

K

a−

K

(zI(t)− zJ (t))dt for (K, I, J) cyclic permutations of (1, 2, 3)
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and non-compact periods by,

ΠK =
1

2πi

∫ Λ0

a+
K

(zI(t)− zJ (t))dt

with (K, I, J) as before.

The superpotential (6.11) is in this case,

1

2πi
Weff =M1Π1 +M2Π2 +M3Π3 +

α1

2πi
S1 +

α2

2πi
S2 +

α3

2πi
S3

with α3 = α1 + α2,

α1 =
1

g21(Λ0)
= (2N1 −N2)Log

(
ΛN1

Λ0

)
and α2 =

1

g22(Λ0)
= (2N2 −N1)Log

(
ΛN2

Λ0

)

Let us describe the two interesting cases given in Figure 1 and Figure 3. The first

corresponds to the case where ΛN1
and ΛN2

are much smaller than m1, m2, a1−a2, a2−a3

and a1 − a3.

As discussed for general X(k,G) in section 6, if the two theories are asymptotically

free, i.e, 2N2 − N1 > 0 and 2N1 − N2 > 0, then the exact superpotential admits an

expansion of the form,

Weff =

3∑

K=1

MK

(
SKLog

(
Λ3
K

SK

)
+

∞∑

n,m,p=1

hKnmpS
n
1 S

m
2 S

p
3

)

where hKnmp only depends on the classical superpotential parameters, but not on the par-

ticular Higgsing, and ΛK ’s are the scales from the threshold matching conditions. This

also yields the running of the coupling constants as depicted in the figure 1.

The second interesting case is when ΛN1
is taken to be larger than the scales set by the

superpotentials keeping ΛN2
fixed as before. For M1 > 0, this limit implies that S1 grows

indefinitely and no weak coupling description is available anymore. However, for M1 = 0,

as we will now argue there is a vanishing S3 corresponding to that branch. At a leading

order this is obvious, because the gaugino condensate analysis suggests S1 ∼ e−1/g2M1

which as M1 → 0+ gives S1 → 0. However, in order to argue that this also continues to

be the case even when ΛN1
gets bigger we need to show that in an analytic expansion S is

still zero.
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The weak coupling approximation leads to an expression for S1 in terms of a power

expansion with no order zero term in,

T =

(
ΛN1

∆

) 2N1−N2
M1

In the limitM1 → 0+, T → 0 since
ΛN1

∆
< 1 and 2N1−N2 > 0. Thus we have S1 = 0 in an

analytic neighborhood, which by analytic continuation implies its vanishing for all values

of ΛN1
. In this situation the weak coupling description for the S2, S3 will still be valid.

Here as we increase ΛN1
we encounter the situation shown in Fig. 3 where the couplings

run until we get to a situation where we have to describe it in terms of a dual description.

Here since the S2, S3 are small and S1 is vanishing we can still continue pretending to be

in the phase where the S2’s are blown up with a dual description. This is just the same

geometry, of course, but interpreted differently.

In order to see explicitly this description notice that the same geometry with the same

units of fluxes can be interpreted in a different way by the following simple identification,

z1(t) = z̃2(t) z2(t) = z̃1(t) z3(t) = z̃3(t)

In terms of the new identification we are led to write the superpotential corresponding to

this geometry and fluxes as follows,

1

2πi
Weff =M3Π̃2 +M2Π̃3 −

α1

2πi
S̃1 +

α3

2πi
S̃2 +

α2

2πi
S̃3

with the following identification:

M̃1 = 0 M̃2 =M3 M̃3 =M2 α̃1 = −α1 α̃2 = α3 α̃3 = α2

This dual description arises as the IR of an U(Ñ1) × U(Ñ2) N = 2 gauge theory with

superpotentials,

W̃ ′
1(t) = −W ′

1(t) W̃ ′
2(t) = W ′

1(t) +W ′
2(t)

where,

Ñ1 = M̃1 + M̃3 = N2 −N1 Ñ2 = M̃2 + M̃3 = N2

As discussed in section 6, the original weak gauge theory description is invalid because

U(N1) is asymptotically free and ΛN1
> ∆. On the other hand, the dual theory also has

Λ̃
Ñ1

= ΛN1
> ∆, however, U(Ñ1) is now IR free, and the proof of validity of the weak

coupling description is valid.

As we approach scales given by S2, S3 the weak coupling gauge theory description

ceases to make sense and we have the geometry involving the two blown up S3’s.
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10. Affine A-D-E quivers, RG cascades and affine Weyl reflections

Up to now, as far as the quantum analysis, we have mainly concentrated on the non-

affine case. In this section we will discuss aspects of affine quiver theories. We will also

indicate the relation between affine case and the non-affine case. In fact we will motivate

the discussion of the affine case from this viewpoint.

Consider a non-affine case we have studied. Suppose we are in a situation where

the ranks Ni are such that all the N = 2 quiver gauge groups are asymptotically free.

Let us discuss the theory at scales µ >> ∆ where ∆ denotes the scales relevant for the

superpotentials. In this situation the couplings get weaker and weaker as we go backwards

towards the UV. However, it is crucial to remember that these field theories were obtained

from a decoupling limit of some string theory and even though 1
gs

has been taken to be

much larger than any of the inverse square gauge couplings, eventually those will become

comparable to 1
gs

in the UV. This implies that stringy modes are not negligible and the

field theory description in terms of the non-affine quiver theory is inadequate. However we

can view this as a special case of the affine quiver theory, and we know that a weighted sum

of the inverse coupling constants squared is 1/gs. This means that at some point we can get

a situation where 1/g20 < 0, i.e. the node associated with the affine extension would have

a negative coupling. Formally we may not be bothered by this because there is no brane

wrapping it before. However, if we wish that the string coupling be weaker than all the

other couplings we will have to do an inverse duality of the form corresponding to the case

Nf = Nc, corresponding to a Weyl reflection on the affine node. Continuing this towards

the UV we will end up, as we will discuss below with the inverse RG cascade. Of course

the infrared physics does not get modified from the non-affine case and so our discussion

of the superpotential etc. for the non-affine case would still be valid. Note however that

there are other affine cases which do not end up as a UV completion of non-affine case.

In particular, the projection of branches for the positive affine roots to non-affine roots,

leads to both positive and negative roots. This implies that in the affine case we will end

up with the superpotential where Mi are the net number of branches for a given positive

root, which thus can be a positive or negative integer. This is the only new ingredient in

the context of affine case as far as the superpotential analysis is concerned.

In the remainder of this section we will explain how the RG cascade arises in the affine

case and its relation to affine Weyl group.
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10.1. RG cascade and affine quivers

Consider the general N = 1 affine quiver theory, with Wi =
si

k+1Trφ
k+1
i , and gauge

group
∏r

i=0 U(N̂i), with N̂i = N0di +Ni, for general Ni with N̂0 = N0. In the AdS/CFT

correspondence, the Ni 6= 0 correspond to introducing wrapped branes. If all Ni = 0, the

theory could be scale invariant. For some Ni 6= 0, some of the groups are asymptotically

free and others are IR free. The gauge couplings of the asymptotically free groups increase

in the IR until, eventually, it becomes appropriate to dualize the group. This leads to a

RG cascade, via the various affine Weyl reflections, which generalizes the case Â1, with

k = 1, found in [12].

The cascading effectively reduces N0. But nothing holomorphic depends on N0. For

example, the holomorphic beta functions (4.5) for N̂i = N0di + Ni are independent of

N0 since di is a null vector of Cij . Also, though the theory is not conformal when the

Ni 6= 0, the holomorphic beta function for the diagonally embedded U(N0)D, whose gauge

coupling (4.4) is given by the string coupling, always vanishes

βD ≡
r∑

i=0

diβi = 0. (10.1)

One might wonder whether or not similar statements apply for the physical beta functions,

e.g. the physical beta functions (4.7) will be independent of N0 as long as all γ(φi) are

equal. Likewise the physical beta functions will satisfy (10.1) if β(λij) = 0 and all γ(φi)

are equal. These statements should indeed be true in the limit where N0 is large compared

to the Ni, i.e. away from the IR limit where N0 has cascaded away. But in the far IR this

description is no longer even useful, as the theory breaks up into the vacuum branches,

with gaugino condensation, discussed in the earlier sections. We’ll discuss the RG flow as

the theory cascades, above the scale where it eventually confines.

As already discussed, we parameterize the gauge couplings as

g−2
i (~x) =

1

gs
δi,0 + ~ei · ~x, (10.2)

with ~x in the Ĝ Coxeter box, defined by the condition that all g−2
i (~x) ≥ 0. The vanishing

of the beta function (10.1) corresponds to the fact that (10.2) gives

g−2
D ≡

r∑

i=0

dig
−2
i (~x) =

1

gs
, (10.3)
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independent of ~x. In the AdS/CFT correspondence, for large N0, we can also see this

equality (10.3), and the statement (10.1) corresponds to the fact that, even with the

wrapped branes, the solution has constant dilaton.

Now we write the beta functions for the couplings (10.2) as βi = −8π2ġ−2
i , with

˙≡ −d/d(lnµ). Using (10.2), we get

βi = −8π2~ei · ~̇x and thus − 8π2~̇x = ~N (10.4)

where ˙ represents the flow towards IR, and we have used (4.2). Think of ~x as the position

of a particle living in the Coxeter box; according to (10.2), this position gives the gauge

couplings. The particle is moving with a velocity ~̇x, which corresponds to the beta functions

as in (10.4).

In fact, we can make a more complete mechanical analogy. The walls of the Coxeter

box are in one-to-one correspondence with the simple roots ~ei, since ~ei is the normal

vector to the wall where g−2
i (~x) = 0. Label the wall associated with ei by i. Consider

attaching the particle to the i-wall of the Coxeter box by Ni strings of equal tension. For

a fixed position of the particle in the Coxeter box the lowest energy state for any such

configuration arises when the strings are perpendicular to the walls. The U(Ni) coupling

constant g−2
i (~x) is identified with the length of the corresponding string (i.e. the distance

of the particle to the i-th wall). See Fig. 4B. It is an easy exercise to see that if Ni = N0di

there is no net force on the particle due to the strings. This is the case when the beta

function vanishes and ~̇x = 0. If Ni 6= N0di there would be a net force. Noting that the

direction of the Ni string is in the −~ei direction (as that is a vector perpendicular to the

corresponding wall and in the correct orientation) we see that the net force is given by

(choosing the tension to be 1/8π2)

~F = −
1

8π2
Ni~ei = −

1

8π2
~N

Now, using (10.4) we see that

~̇x = ~F

and this captures the RG flow; this is not quite the Newton’s equation, as the force is giving

the velocity. The similarity of this to brane constructions of gauge theory is striking. In

fact at least in one case (which we discuss in section 12) it is identical to one.
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Figure 4:A) Construction of the Coxeter Box for Â2. ~e1 and ~e2 are the simple roots of A2. B)

Particle living in the Coxeter box attached to the walls where 1
g2
i

= 0 by Ni strings.

If there are wrapped branes and the theory is not conformal, the particle moves in the

direction of ~F until eventually it hits one of the walls of the Coxeter box, which is defined

where one of the g−2
i0

given by (10.4) vanishes. At this wall the gauge group U(N̂i0) gets

strong and should be dualized. As discussed earlier, this duality corresponds to a Weyl

reflection. It is precisely a Weyl reflection about the corresponding wall of the Coxeter

box.

In other words, the particle bounces off the wall, with angle of incidence equal to angle

of reflection. This can be seen from the beta function transformation (8.5), which gives

~ei · ~̇x
′ = ~ei · ~̇x− (~ei · ~ei0)(~̇x · ~ei0),

with ~̇x ′ the particle’s velocity after bouncing off the wall of the Coxeter box. We thus

obtain

~̇x ′ = ~̇x− ~ei0(~̇x · ~ei0), (10.5)

which is precisely a Weyl reflection of the velocity ~̇x, reversing the component normal to

the wall and preserving the component parallel. So the particle bounces off the walls with

angle of incidence equal to angle of reflection.

Of course, which wall the particle hits depends on both its velocity and its initial

position. The initial position of the particle is given by the scales Λi of the U(N̂i) groups,
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as these are the integration constants in integrating the beta function equations. Suppose

that we integrate the 1-loop beta functions as

g−2
i (µ) =

βi
8π2

ln

(
µ

Λi

)
(10.6)

where the g−1
s δi,0 term in (10.2) can be thought of as scaled into Λ0. In order to have all

g−2
i ≥ 0, the scales should satisfy the condition (8.10) which, as discussed in sect. 8, is

properly preserved upon dualizing.

If we flow to the IR, decreasing µ, the first group i0 to be dualized is that whose scale

Λi0 which µ hits first. After the duality transformation, the scales are modified as in (8.8).

The condition which led to (8.8) is precisely equivalent to the condition that the particle’s

position ~x is continuous across the bounce, even though the velocity is reflected. The

picture of the bouncing particle captures the details of the RG flow in a simple fashion.

For Â1, the Coxeter box is the interval 0 ≤ x ≤ g−1
s and the cascade of [12] (which

was the k = 1 case, but the present picture applies for all k), corresponds to the particle

bouncing back and forth in this interval. For the Â2 case the Coxeter box is the inside of

an equilateral triangle (see Fig. 4A) and for the Â3 case it’s the inside of a tetrahedron.

For generic velocity, the particle will bounce off of each of the r + 1 walls in succession.

In all cases, the cascading reduces the number N0 of units of F5 flux. As discussed

before (8.3), after bouncing off of the wall where g−2
i0

= 0, the N̂i change according to

(8.2); note that N̂ ′
i0
= N̂i0 −

∑
j Ci0jN̂j = N0di0 −

∑
j Ci0jNj . The number of units of N0

charge is also reduced in correspondence with the root lattice translations T in the affine

Weyl group Ŵ ∼= W × T . More precisely suppose we start in the UV with a quiver theory

with U(Ni) as i = 1, ..., r+1. As we go towards the IR we undergo Weyl reflections to stay

in the Coxeter box. However suppose we continued the line not worrying about staying in

the Coxter box (i.e. use the variables of the original gauge theory even passed the negative

coupling squared). After a while we can bring the particle back to the fundamental domain

given by the Coxeter box by a translation vector ~R in the root lattice. This would be of

course in the direction of − ~N and so let us write it as ~R = −a ~N with a > 0. The change

in the 3-brane charge is given by

∆N0 =
∑

i

Ni~ei · ~R = −a ~N · ~N

This follows, just as in the case [12][48] from the fact that

∆N0 = 8π2

∫
HNS ∧HR
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and using the fact that HR is characterized by the vector
∑

iNi~ei and
∫
HNS which is the

vector ∆ 1
g2
i

is given by the vector ~R. Note that in this way it is clear the ∆N0 < 0 as we

proceed towards IR. Thus cascade phenomenon is directly related to the translation part

of the affine Weyl group. Also note that the above formula for the change of the threebrane

charge is also valid continuously as we continuously change a because a = log(µ1/µ2) as

we change the scale from µ1 to µ2 < µ1.

11. Affine N = 1 theories: the conformal case

Consider the theory of 3-branes in the presence of a point-like singularity of the

Calabi-Yau. One expects to get a conformal theory. For example considering N0 3-branes

at the conifold singularity [23] it was argued that one gets a conformal theory, with a

natural AdS dual description. In general this is expected from the geometry if the singular

limit admits a smooth deformation with no 2-cycles left. In this case there are no allowed

instantons and so there are no quantum corrections to the geometry. Thus also in the limit

that the deformation disappears one expects to have no quantum deformations for the

singular classical geometry. Typically for probes in the presence of singularities protected

by quantum corrections one expects to obtain conformal theories.

Let us now consider a class of examples which yield singular 3-folds, where singularity

is at a point. Of course all the geometries we considered admit deformations which have

no 2-cycles, and so the singular limit is expected to be a good description also quantum

mechanically. Consider taking all

Wi(φi) =
si

k + 1
Trφk+1

i (11.1)

homogeneous. Then it is possible to see using our geometric description that we have a

local description of Calabi-Yau which has an isolated singularity at the origin given by a

quasi-homogeneous hypersurface in C4. Thus we expect in all such cases that the 3-brane

probe to yield N = 1 conformal theories. Note that not all 3-fold point-like singularities

with 3-brane probes yield N = 1 superconformal gauge theories. For example as discussed

in [17] the threebranes in the presence of x2 + y2 + z2 +wl = 0 even though it is expected

to be conformal, has no conventional gauge theoretic description for l odd (for l = 2k it

corresponds to affine A1 theory with superpotential Φk+1).
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We now provide evidence for the existence of the conformal fixed point for this class

of quiver theories from the gauge theory analysis. The exact beta function for the si is

β(si) = −3 + (k + 1)∆(φi) ≡ −3 + (k + 1)(1 + 1
2γ(φi)). (11.2)

The superpotential respects a classical U(1)R symmetry under which

R(φ) =
2

k + 1
R(Qij) =

k

k + 1
(11.3)

and the gauginos have charge +1. Generally this U(1)R symmetry is anomalous, which

is the case if any U(Ni) instanton ’t Hooft vertex has non-zero U(1)R charge. The total

U(1)R charge of the U(Ni) instanton ’t Hooft vertex is

R(Λ~ei· ~N
i ) =

2

k + 1
(~ei · ~N), (11.4)

with ~N =
∑r

i=0 ~eiNi. These are only all zero if the diagram is the affine Ĝ diagram and

Ni = N0di, with N0 arbitrary. More generally, though some of the (11.4) are non-zero, the

’t Hooft vertices could be invariant under a discrete subgroup of this U(1)R, corresponding

to an anomaly free discrete R-symmetry.

The Ĝ affine quiver theories with Ni = N0di thus satisfy the necessary conditions for

a N = 1 superconformal field theory: there is an anomaly free U(1)R symmetry, which is

needed for the superconformal current multiplet. Indeed, in the Ĝ affine quiver theory with

Ni = N0di, giving φ and Qij dimensions via the superconformal chiral primary relation

∆ = 3R/2 with the conserved anomaly free R-charges (11.4),

∆(φi) =
3

k + 1
, ∆(Qij) =

3k

2(k + 1)
, (11.5)

implies that all exact beta functions vanish. The exact beta functions which vanish are

(4.7) for the gauge couplings, (4.8) for the superpotential couplings λij , and (11.2) for the

couplings si in Wi(φi) =
si

k+1Trφ
k+1
i .

The conditions (11.5) are necessary and sufficient for having an N = 1 superconformal

theory. For the moment we will assume that, for general k in (11.1), the equations (11.5)

have solutions for some values of the couplings, s∗i , g
∗
i , and λ

∗
ij , and discuss the resulting

N = 1 superconformal theories.

Note that, as in [49], the conditions (11.5) for a superconformal theory are fewer in

number than the number of adjustable coupling constants gi, si, and λij . This is because
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the β(gi) given by (4.7) are proportional to the β(λij) for the affine quiver theories with

Ni = N0di, for any N0. Since the β(gi) vanishing equations are redundant, for all i = 0 . . . r

running over all nodes of the affine quiver diagram, there are r+1 fewer conditions on the

fixed point couplings than there are unknowns. Thus, if there is any solution s∗i , g
∗
i , and

λ∗ij , there will be a r + 1 dimensional moduli space of such solutions, with r + 1 exactly

marginal operators. Including the theta angles, this is a r+1 complex dimensional moduli

space, with r + 1 complex moduli.

Thus, for all k, the superconformal field theories are expected to have a r+1 complex

dimensional moduli space of couplings, similar to the r + 1 dimensional moduli space of

couplings of the N = 2 affine quiver theories. The modulus corresponding to the diagonal

U(N) is related to the IIB string coupling, with its SL(2, Z) S-duality group. The others

are expected to have an S-duality group given by the G Weyl group.

Assuming that these fixed points exist, we can determine their a and c central charges,

as in [50], in terms of the ’t Hooft anomalies of the U(1)R symmetry in the supercurrent

multiplet:

a− c =
1

16
TrU(1)R, 5a− 3c =

9

16
TrU(1)3R. (11.6)

The ’t Hooft anomalies TrU(1)R and TrU(1)3R get contributions only from the massless

chiral fermions. Consider first the N = 2 Ĝ affine quiver theories with Ni = N0di. The

appropriate U(1)R symmetry to use in (11.6) is that under which R(φ) = R(Q) = 2/3,

and (11.6) then gives

aN=2 = cN=2 = afree =
9N2|ΓG|

32

(
1 + (−

1

3
)3 + 2(−

1

3
)3
)

=
N2

0 |ΓG|

4
, (11.7)

where the terms are from the gauginos, and fermionic components of φ and Qij respectively

and we used
∑

i d
2
i = 1

2

∑
ij |sij |didj = |ΓG|. The central charge is independent of the

moduli τi, which is why it had to agree with the free field values, as in (11.7).

Now consider the N = 1 theories with deforming superpotential as in (11.1), for

general k. The appropriate U(1)R symmetry assignments are as in (11.3) and then (11.6)

gives for the central charges

aN=1(k) = cN=1(k) =
9N2|ΓG|

32

(
1 + (

2

k + 1
− 1)3 + 2(

k

k + 1
− 1)3

)

=
27k2N2

0 |ΓG|

16(k + 1)3
.

(11.8)
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This expression has a maximum value at k = 2, where aN=1(k = 2) = aN=2 = afree,

coinciding with (11.8). For all other k 6= 2, we have aN=1(k) < afree. According to

the conjectured a theorem, a decreases along RG flows to the IR. Since aN=1 ≤ aN=2,

the conjectured a theorem is compatible with a RG flow from the N = 2 superconformal

fixed points in the UV to our claimed N = 1 RG fixed points in the IR. The fact that

aN=1 < afree for k 6= 2 gives evidence that these theories indeed flow to an interacting

RG fixed point rather than a free field theory.

Note that aN=1(k = 2) = afree, so the existence of a N = 1 RG fixed point for k = 2

could potentially violate a strong form of the a theorem, where a must decrease along flows

unless the theories are related by an exactly marginal operator. The N = 1 theory with

k = 2 looks like a deformation of the N = 2 theory by the operators ∼ Trφ3i , which are

not exactly marginal (they’re marginally irrelevant near the N = 2 line of fixed points).

It could be, though, that the N = 1 theories exist, but just can’t be obtained by starting

from the N = 2 fixed points. Or it could be that the strong form of the a theorem does

not hold here (even in 2d, it’s known that a non-compact target space can invalidate the

c-theorem [51] ).

The AdS/CFT correspondence supports the existence of the N = 1 superconformal

theories for general k in (11.1) and general Ĝ quiver diagram with Ni = N0di. The

AdS/CFT correspondence for the k = 1 theories was discussed in [22], and this can be

generalized for all k. Write the metric near the singularity ofX6(k, Ĝ) as ds
2
6 = dr2+r2ds25,

with ds25 the metric of the base M5(k, Ĝ), with M5 a 5d Einstein manifold. The AdS/CFT

correspondence here would be between IIB string theory on M
k,Ĝ

and our general (k, Ĝ)

superconformal theories.

We can also check the above field theory exact results (11.8) for a and c with our

associated geometry by using the AdS/CFT relation of [52]: regarding the 3-fold X asso-

ciated with the N = 1 affine quiver theories with Wi ∼ Trφk+1
i as a cone over base M5,

the prediction is that

aN=1 = cN=1 =
π3N2

0

4Vol(M5)
(11.9)

normalized so that the N = 4 case is M5 = S5 of unit radius.

Though the Calabi-Yau metric is not known, the relevant volume appearing in (11.9)

can still be found. The case k = 1 was recently analyzed in [53], and the discussion there

can be immediately generalized to our general k case. Consider a general Calabi-Yau n-

fold X with a conical singularity which can be written as F (z0, . . . zn) = 0, up to resolving
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terms, with F (λw0z0, . . . , λ
wnzn) = λdF (z0, . . . zn) homogeneous. Then the 2n − 1 real

dimensional base B of the cone has volume [53]

Vol(B) =
2d

(n− 1)!
∏
wi

(
π(
∑
wi − d)

n

)n

. (11.10)

We can apply this formula to our deformed geometry, where n = 3, with z0 → t and

zi → Xi . So d = kC2(G) and the weights are

ΓG w0 w1 w2 w3 d
Ar 1 1

2(r + 1)k 1
2(r + 1)k k (r + 1)k

Dr 1 (r − 1)k (r − 2)k 2k 2(r − 1)k
E6 1 6k 4k 3k 12k
E7 1 9k 6k 4k 18k
E8 1 15k 10k 6k 30k

(11.11)

with w1 = 1
2
C2(G)k and d = kC2(G). Plugging these into (11.10), note that in all cases

∑
wi − d = k + 1 and

∏
i wi = k3C2(G)|ΓG|/4, so we get

Vol(M5) =
4π3(k + 1)3

27k2|ΓG|
. (11.12)

Using (11.12) in (11.9) gives a result which agrees perfectly with the field theory result

(11.8) for all G and k.

Though we have given some arguments supporting the existence of the general N = 1

RG fixed points discussed above, we should also mention the possibility that there might

be no solution of the conditions (11.3) needed for a superconformal theory when k ≥ 2.

One can see a possible problem for k = 2 by considering the perturbative expressions for

the anomalous dimensions4. Considering a single U(Nc) factor in the quiver theory, which

has Nf = 2Nc, the exact beta functions are (up to positive proportionality factors)

β(s) ∼ γ(φ), −β(g) ∼ β(λ) ∼ γ(φ) + 2γ(Q). (11.13)

Thus a RG fixed point requires γ(Φ) = γ(Q) = 0. For s = 0 there is an IR attractive

fixed line of arbitrary λ = g, which is the N = 2 superconformal fixed line. Deforming

by small s one finds γ(Q) ∼ λ2 − g2 and γ(φ) ∼ λ2 − g2 + cs2 with c a positive constant,

suggesting that there is no solution of γ(Q) = γ(φ) = 0 for s 6= 0. The signs of the beta

functions are such that s and λ are driven to smaller values, whereas g is driven to larger

4 We thank I. Klebanov and J. Polchinski for pointing this out to us, and for related discussions.
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values. Eventually the theory could perhaps hit a RG fixed point outside the region of

validity for the above approximations for γ(Q) and γ(Φ). The N = 1 fixed points could

also exist outside the basin of attraction of the deformed N = 2 theories. Also, we should

anticipate the need to include the dynamics of the coupled gauge group factors in order

to see the possible N = 1 RG fixed points – turning off the dynamics of the neighboring

gauge groups can lead to a free theory.

One can also consider this issue by using the duality of [44,45] between N = 1 super-

symmetric SU(Nc) gauge theory, with Nf fundamentals and adjoint φ and superpotential

Welec =
s

k + 1
Trφk+1 + λQφQ, (11.14)

and the SU(Nf −Nc) magnetic dual, with similar superpotential. For Nf = 2Nc, rather

than flowing to a non-trivial fixed point, both the electric and magnetic theories could be

IR free (which is possible here since both have the same spectrum). But the non-trivial

duality map suggests that, especially upon gauging the flavor symmetries, there could in

fact be a non-trivial fixed point for general k.

12. Quiver Theories from Local CY 3-folds

So far we have discussed type IIB probe theories involving 3-brane and 5-branes wrap-

ping cycles in a local 3-fold which has compact 2-cycles, but no compact 4-cycles. Fur-

thermore we have talked about transitions in geometry which is interpreted as the large

N dual of the corresponding gauge theory. On the other hand CY 3-folds are known also

to have transitions where some 4-cycles and 2-cycles shrink to zero size and where there is

a transition involving emergence of non-vanishing 3-cycles. A notable example along this

line is the del Pezzo transitions, where a del Pezzo surface (complex dimension two) shrinks

inside a threefold and some three cycles emerge on the other side. More generally, the 4-

cycles can have several components, and each of the components can shrink. It is natural

to ask what the corresponding quiver gauge theories are in such cases where 4-cycles shrink

with wrapped D3,D5 and D7 branes, and what is the large N dual interpretation of the

corresponding geometric transition involving the emergence of 3-cycles.

There are two well known classes of this type. One is obtained by considering C3/Γ

where Γ is a subgroup of SU(3), and the other is when we consider the local threefold to be

realized torically. These two sets have overlap when Γ is abelian. One could also consider

more general examples which are neither toric, nor orbifolds. Our construction of quiver
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theories applies to all these cases. However we will mostly specialize to the case of local

threefolds which can be realized torically. The advantage of restricting to the toric case

is that the mirror symmetry action is simpler to study (though it can also be carried out

in the other cases). These correspond to geometries that are realized in the linear sigma

model approach [54] by considering the Higgs branch of a G = U(1)k gauge system with

k + 3 matter fields xi with charges Qj
i , with j = 1, ..., k satisfying

∑

i

Qj
i = 0

One also has (complexified) FI terms given by tj = rj + 2πiθj. The geometry is given by

considering

M = {
∑

i

Qj
i |xi|

2 = rj}//G

which is a local Calabi-Yau 3-fold.

Before we consider branes in such geometries we have to find a good description of

these backgrounds. The description just given is adequate when rj >> 0. But our regime

of interest is not in large sizes for the 2- and 4-cycles, but rather when the sizes vanish.

In this limit quantum corrections, due to worldsheet instantons will be quite important.

To bypass having to compute these corrections, we will consider the mirror type IIA

description, which already has the IIB quantum corrections summed up into a classical

description. Following [55] we introduce dual periodic variables Yi satisfying ReYi = |xi|2.

Define yi = e−Yi , so that yi are single valued complex numbers. Then the dual theory is

given by a LG theory with superpotential
∑

i yi with the constraints

∏

i

y
Qj

i

i = e−tj

Note that using these relations we can get rid of all the yi’s except for three. Let us call

them y1, y2, y3. By the homogeneity condition we can write

∑
yi = y3f(y1/y3, y2/y3, t

j)

As has been shown in [19] this is equivalent to (see also the earlier work [56] ) considering

the 3-fold given by (redefining y1/y3 → y1 and y2/y3 → y2)

uv = f(y1, y2, t
j)
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where u, v ∈ C and y1, y2 ∈ C∗. In order to study Lagrangian D6 branes (wrapping

3-cycles and filling the spacetime), which is the mirror of D3,D5 and D7 branes, it is

convenient to define

W = f(y1, y2, t
j)

The 3-fold geometry is thus given by

W = f(y1, y2, t
j) uv =W

The advantage of writing it in this way is that, as shown in [19], one can split the study of

the Lagrangian branes as a fibered geometry involving 2-cycles in the y1, y2 space, times the

circle in the u, v plane. The space of compact 2-cycles over W = f(y1, y2) with boundary

over a point W =W0 is the subject of singularity theory [40] and is in 1-1 correspondence

with the critical points of W , i.e. with solutions to

∂y1
W = ∂y2

W = 0

Let us label the critical points by pα with α = 1, ..., r, and define Wα = W (pα). The

geometry of these cycles with boundary over W = W0 can be viewed as a disk where the

boundary of the disk is identified with a circle over W =W0 and vanishing at the critical

points, along a path over the W plane connectingWα toW0. Let us call the corresponding

cycle ∆α. To obtain 3-cycles we take the product of this disc with the circle corresponding

to circle action on the uv plane. However this does not yield a closed 3-cycle. To remedy

this we note that if we take W = W0 then for a generic point on the path over the W -

plane we have an S1 × S1 fiber, which as we approach Wα one S1 shrinks and as we

approach W = 0 the other S1 shrinks. This is therefore an S3. Let us continue calling

the corresponding class of S3 by ∆α. We thus have r distinct classes of three cycles. This

construction was already made in this context in [19]. See figure 5.
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Figure 5:Identification of 3-cycles with S3 topology for each path connecting one of the critical

points of W with W = 0.

In order to map these cycles to the D3,D5 and D7 brane charges we need to know

how the r classes ∆α map to the allowed charges in the IIB description. The basic idea

of how to determine this was shown in [19] for the case of toric del Pezzos (P 2 blown up

with up to three points, and P 1 × P 1). Namely, each ∆α, in the large volume limit, can

be identified as the mirror of a brane configuration on the compact 4-cycles in the CY

geometry. In fact, for the case of del Pezzos, these theories have been recently studied

in [57] using the ideas in [19], and our discussion here for the construction of the quiver

theory is similar to it. The case studied in [19] was mainly for the Fano case, but the same

ideas apply to compact cycles inside CY 3-folds.

Let us denote the corresponding brane with Vα which can also be viewed as a bundle

(or more precisely a sheaf) on the type IIB side supported on the compact cycles of the CY.

Using ideas from mirror symmetry the Chern character for Vα leads to the brane charges

for ∆α. The class of D3 brane is generally simple to determine: Note that, as in [58] this

should map to a T 3 in the mirror which consists of the phases of u, y1, y2. Note that a

representative of this class can be chosen to have large |y1|, |y2| and so its intersection with

all the ∆α which are at finite values of yi is zero. Let

[T 3] =

r∑

α=1

dα∆α
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Thus N0 D3 branes get mapped to N0dα D6 branes wrapped over ∆α as α = 1, ..., r. We

will choose dα ≥ 0, if necessary by reversing the orientation of the corresponding ∆α. Thus

the theory of N0 D3 branes gives rise to a gauge theory with gauge group

∏

α

U(N0dα)

This is an N = 1 supersymmetric gauge theory. There is also chiral matter which is in

one to one correspondence with the intersection of the cycles. In particular there are

nαβ = ∆α ◦∆β

net chiral fields transforming in the bifundamental of U(N0dα)×U(N0dβ) (where here we

are including the extra circle coming from uv = const in the definition of ∆α). There is

another interpretation of these intersection numbers, in terms of the associated N = 2 LG

theory in 2d, defined by the superpotential W (y1, y2), namely

nαβ = Trαβ(−1)FF

where the right hand side is the index defined in [59] for the associated LG theory which

counts the net number of BPS kinks between the vacua α and β. Note that the intersection

number is topological and the actual number of matter fields may be more, but there

is nothing preventing non-chiral pairs to pair up by mass deformations and we assume

to be in this generic situation. Note that nαβ = −nβα and the sign of nαβ correlates

with the chirality of the matter. In terms of the type IIB description the classes ∆α

get mapped to bundles Vα (or sheaves). These should correspond to rigid bundles5 (as

the topology of the mirror is S3 and has no b1 which counts the deformation parameter

of the brane [58]). These rigid bundles are sometimes referred to as spherical bundles.

More precisely, a spherical bundle (or sheaf) F on a Calabi-Yau threefold is one that

satisfies Exti(F ,F) = (C, 0, 0,C) for i = (0, 1, 2, 3), corresponding to the cohomology of

S3, where Exti is the analog of Hi in the sheaf theoretic context. An example is OP1

where the Calabi-Yau is O(−1)⊕O(−1). Another class of examples is any line bundle on

a component of a shrinking 4-cycle in a Calabi-Yau, as we will check below.

5 These sheaves are not bundles on the Calabi-Yau, but rather are bundles on the local 4-cycles.

We will refer to them as bundles for ease of discussion.
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If Vα and Vβ are bundles on the same component of a shrinking 4-cycle S, then the

intersection numbers nαβ are given in this type IIB setup, as will be discussed below, by

nαβ = χ(Vα, Vβ)− χ(Vβ , Vα) (12.1)

where χ(Vα, Vβ) denotes the Euler class of the ∂ complex mapping sections of Vα → Vβ ,

where here we are ignoring the embedding of the 4-cycle inside the Calabi-Yau. This

relation has also been noted in [60,57]. This is the IIB dual of the intersection number of

the cycles. By Riemann-Roch, this simplifies to

nαβ = c1(S) · (c1(Vβ)− c1(Vα)),

where S denotes the union of complex surfaces inside the CY which can shrink and on

which the bundles Vα, Vβ are supported. Generically there is a choice of bundles, called an

exceptional collection, for which for each pair α, β at most either χ(Vα, Vβ) or χ(Vβ , Vα)

is non-zero, and moreover all the Hi are zero except for H0(V ∗
α ⊗ Vβ), corresponding to

holomorphic sections of maps from Vα → Vβ This implies that for each pair of branes α, β

we choose an ordering so that nαβ ≥ 0. Then the nαβ matter fields Qi
αβ , with i = 1, ..., nαβ

matter fields are in 1-1 correspondence with nαβ holomorphic maps

f i
αβ : Vα → Vβ .

Let’s now specialize this discussion to our local case. The actual cohomologies whose

index yields the intersection numbers nαβ needs to be worked out. In this calculation we

need to clearly distinguish between bundles on complex surfaces and sheaves on the Calabi-

Yau, so we introduce temporary notation in the next two paragraphs for clarification. If

Vα is a line bundle on a component of the shrinking 4-cycle, we now denote by Ṽα the

corresponding sheaf on the local Calabi-Yau. It will be helpful first to recall the result of

a computation in [61], which says that

Exti(Ṽα, Ṽα) = Exti(Vα, Vα)⊕ Ext3−i(Vα, Vα)
∗.

Since Vα is a line bundle, we get Exti(Vα, Vα) = Hi(O) which is C for i = 0 and is 0

otherwise. This shows that Ṽα is spherical, as claimed.

A straightforward extension of this calculation based on Lemma 3.16 of [61] shows

that

Exti(Ṽα, Ṽβ) = Hi(V ∗
α ⊗ Vβ)⊕H3−i(V ∗

β ⊗ Vα)
∗.
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This immediately implies (12.1) if we use nαβ = χ(Ṽα, Ṽβ) =
∑3

i=0(−1)idimExti(Ṽα, Ṽβ).

But we can see more. A collection of bundles {Vα} defines an exceptional collection if for

any pair of distinct bundles Vα, Vβ, then only one of V ∗
α ⊗ Vβ or V ∗

β ⊗ Vα has cohomology,

and that one has cohomology in only one degree.

Note that this theory is anomaly free, because the net number of chiral matter for the

gauge group U(N0dα) is given by

∑

β

N0dβnαβ = N0

∑

β

dβ(∆α ◦∆β) = N0(∆α ◦ [T 3]) = 0.

In addition the theory will have some superpotential involving the chiral matter fields.6

Consider a term in the superpotential, which by gauge invariance is of the form

W = ai1...ikTrQ
i1
α1α2

...Qil
αlαl+1

...Qik
αkα1

with il = 1, ..., nαlαl+1
with k + 1 ≡ 1. It is natural to try to relate ai1...ik to properties

of the ring structure of the corresponding holomorphic maps in the type IIB description.

Note that this is natural because there is a natural product structure on the holomorphic

maps between bundles, namely the composition of maps. Consider

f i1
α1α2

...f ik
αkα1

which will be a holomorphic map from Vα1
to itself and by assumption the only non-trivial

class here isH0 which is the identity map. So this composition will be a multiple of identity

and so we have

f i1
α1α2

...f ik
αkα1

= ai1...ik1α1

which we propose as defining the couplings of the superpotential. For k = 3 this is obvious

as this can be viewed as the overlap of the corresponding wavefunctions, and this is exact

in the type IIB side. We believe this result also holds for arbitrary k, and we have verified

6 These are in 1-1 correspondence with the potential ‘1/4 BPS instantons’ in an N = 2 2d

LG theory with superpotential W (y1, y2) (for a study of these see [62] ). To see this note that

disk instanton configurations can be organized in terms of a cyclic ordering of vacua at infinity as

we go along a big circle, α1, ..., αk and a choice of a 1/2 BPS kink between any such pair, which

is given by a chiral field Qi
αlαl+1

, where i can be a number from 1 to nαlαl+1 (assuming it is

positive). Thus each such instanton configuration is in one to one correspondence with an allowed

superpotential term.
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this in a number of examples. In some of the examples we consider we find that the Ext

group appears at degree 1. In such a case, the same formula applies where we use the

Ext1 to deform the relevant bundles and compute the product of sections for the deformed

bundles. This will be discussed in the context of P1 ×P1 below.

In addition the above theories have FI terms. As we change the tj , not only do we

change the coupling constants, as the volume of 3-cycles change, but we also generate FI

terms, as is well known [63]. Note that even though there are r gauge groups, the number

of tj’s is given by the number of 2-cycles in the original type IIB geometry, which is less

than r by the number of 4-cycles n4 plus zero cycle (which equals 1). Taking into account

the possible variation of the string coupling constant τ which is the coupling constant that

the D3 brane sees, we see that the coupling constants and the FI terms of the r gauge

groups satisfy n4 constraints.

So far we have only discussed the quiver theory for pure D3 branes. We can also

have more general brane configurations involving D5 and D7 branes, which leads to a

more general quiver theory where everything is as for the D3 branes, except that the

rank of the gauge groups are now arbitrary (instead of being a multiple of dα). This is

exactly as in the A-D-E quiver theories we studied before. However there is one difference

between this case and the N = 1 A-D-E quiver theories studied earlier: Whereas the

previous theories were non-chiral and anomaly free, the present theories are chiral and in

some cases are not anomaly free. This can be easily understood from the type IIB string

theory setup as well. Consider for example a D3 branes, which corresponds to a point in

the transverse 6-dimensional space. If the 6-cycle were compact then the theory would

have problem supporting the D3 brane as the flux would have nowhere to go. Namely

we consider the 6-cycle and we delete where the 3-brane is located then the topological

fact that the S5 surrounding the 3-brane is topologically trivial in the compact 6-cycle

implies that it cannot support any 5-form flux. However the same argument applies also

to 5-branes and 7-branes, which wrap 2 and 4 dimensional cycles in the transverse space.

Namely if there is a compact dual cycle for any of them then we can use that cycle to

undue any S3 or S1 surrounding the corresponding brane. Thus the only allowed total

brane charges consistent with flux conservation are in 1-1 correspondence with cycles in

H∗ which intersect no compact cycle. In particular all the 4-cycles are ruled out, because

they intersect the 2-cycles inside them. Of the 2-cycles we can choose classes which do not

intersect the 4-cycles (i.e. are not electric-magnetic duals). In particular there are n2 −n4
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such choices where n2 denotes the number of inequivalent 2-cycles and n4 the number of

4-cycles.

One has to be careful that here we are discussing the total charge of the branes. There

is no problem with having D3,D5 and D7 branes wrap arbitrary cycles as long as the total

class does not intersect the compact cycles.

We can also understand this result from the condition of having an anomaly free quiver

theory. Suppose we wrap Nα branes over the ∆α cycle. Then the condition for having no

anomalies is that ∑

β

Nβnαβ = 0

for each α, which means that the vector N is in the null subspace of the matrix n. Recall

that the matrix nαβ is, by a change of basis, an anti-symmetrized intersection form of the

0-,2- and 4-cycles. Thus indeed this is exactly the condition that the cycle represented by

N has no intersection with any other compact cycle, as was anticipated. Thus in general

there are

r′ = 1 + n2 − n4 = r − 2n4

inequivalent integers controlling the rank of the r gauge groups where r = 1 + n2 + n4.

Note that the ideas presented above for construction of the quiver theory could also

have been carried out for the case of the general 4-cycle shrinking inside the CY 3-folds, and

not just the toric case. This can be done directly in the type IIB setup, without appealing

to mirror symmetry. Namely we would have to choose a collection of exceptional spherical

bundles, as many as necessary to get all the allowed brane charges, namely r. Of course

there would be 2n4 constraint for the multiplicities of these bundles. Then the quiver

diagram can be constructed by computing the Ext group between pairs of such bundles,

and Yukawa couplings can be computed as discussed above, by the composition of the

holomorphic maps between bundles. However the reason we have discussed the type IIA

mirror in the toric case is that, just as in [4], the relevant worldsheet quantum corrections

become classical and leads to a simple understanding of Seiberg-like dualities.

12.1. Two Examples: P2 and P1 ×P1

Let us consider two simple examples to illustrate these ideas: P2 and P1 ×P1 inside

a CY 3-fold. These cases were studied in detail in [19], and here we use the discussion

above to write down the corresponding quiver theory.
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Consider first the P2 case. Then the threefold is given by

uv =W W = y1 + y2 +
e−t

y1y2
+ 1

This arises from a linear sigma model with a single U(1) gauge group with 4 fields with

charges (−3, 1, 1, 1). Here t denotes the complexified Kahler class of P2. The three critical

points of W (y1, y2) are given by yi = ωe−t/3 where ω is a third root of unity, which yields

the critical values in the W plane on three points on a tiny circle of radius |e−t/3| near

W = 1. See Figure 6. The three ∆’s are depicted in Figure 6 and connect each of these

three critical values to W = 0. As discussed in [19] these are in 1-1 correspondence in the

type IIB setup with branes wrapping P2 and representing bundles O(−1),O(0),O(1). If

we label these α’s by 1, 2, 3 respectively, we have

n12 = n23 = 3 n13 = 6

∆2

∆3

∆1

1

W

O

Figure 6:Projection of 3-cycles on the W plane for the mirror of a three-fold with a P2.

Note that these are in one to one correspondence with the holomorphic maps from

bundles, namely

Ai : (12) O(−1) → O(0) ↔ H0(O(1)) = 3

Bi : (23) O(0) → O(1) ↔ H0(O(1)) = 3

Cij : (13) O(−1) → O(1) ↔ H0(O(2)) = 6

where i, j take values 1, 2, 3 and Cij is a symmetric tensor. There are no other maps or

cohomologies between any pairs of these bundles. Note that the sections Ai and Bj can

be identified with degree one homogeneous function of (z1, z2, z3) so we can choose a basis

where

Ai ↔ zi Bj ↔ zj
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Cij ↔ zizj

The class corresponding to pure D3 brane charge is given, as follows from [19], by

[O(−1)]− 2[O(0)] + [O(1)] = [∆1]− 2[2∆2] + [∆3]

which means that to get positive dα we need to reorient

∆2 → ∆′
2 = −∆2,

in which case we obtain d1 = 1, d2 = 2, d3 = 1, and moreover

n21 = n32 = 3 n13 = 6

Note that the signs of n12, n23 have changed due to a change in sign in the orientation

of ∆2. We can now write the corresponding superpotential using the identification with

sections of the bundle and the corresponding multiplication, which gives

W =
3∑

i,j=1

AiBjCij

Note that in this case r′ = r−2 = 1 so there is only one inequivalent choice for rank, which

simply corresponds to putting N0 D3 branes, giving the gauge group U(N0) × U(N0) ×

U(2N0). This reflects the statement that for P 2 the P 1 cycle in P 2 intersects P 2 and no

D5 or D7 branes are allowed. It can also be readily checked that the matrix nαβ has only

one null eigenvector.

Ν 02

Ν 0

Ν 0

3

21

Figure 7:Quiver diagram corresponding to the field theory realized on the world volume of D3

branes.
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For the P1 ×P1 we get the mirror description

uv =W W = y1 +
e−t1

y1
+ y2 +

e−t2

y2
+ 1

where t1, t2 denote the complexified volumes of the two P1’s. The linear sigma model

corresponding to this has two U(1) charges and 5 fields with charges (1, 1, 0, 0,−2) and

(0, 0, 1, 1,−2). The P1’s are realized by the fields 1,2 and fields 3,4. Note that the difference

of these two U(1)’s shows that in this geometry there is a P1 with area t1 − t2 in the class

being the difference of the two P1’s whose normal bundle is O(−1) +O(−1) → P1 since

this yields the charges (1, 1,−1,−1, 0). We will use this fact later.

W

∆2

∆1

∆4

∆3

1

O

Figure 8:Projection of 3-cycles on the W plane for the mirror of a three-fold with a P1 ×P1.

There are four critical points of W and thus there are four ∆’s as shown in Fig. 8. As

follows from [19] the ∆’s are in one to one correspondence with O(−1)1⊗O(−1)2,O(0)1⊗

O(−1)2,O(0)1 ⊗O(0)2,O(−1)1 ⊗O(0)2, which gives

n12 = n23 = 2 n14 = n43 = 2 n13 = 4

moreover they are in 1-1 correspondence with monomials

n12, n43 : zi1 n23, n14 : zi2 n13 : zi1z
j
2

where i, j are 1, 2 and the subscript of z denotes the choice of the P1, and there are no

other maps or cohomologies. The class corresponding to pure D3 brane is given by

[∆1]− [∆2] + [∆3]− [∆4]
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which means that if we wish to get positive dα we switch the orientation of [∆2] →

−[∆2], [∆4] → −[∆4]. Note that this yields

n21 = n32 = 2 n41 = n34 = 2 n13 = 4

The superpotential can be easily deduced from the multiplication of sections and we obtain

W =
2∑

i,j=1

AiBjDij + A′
iB

′
iDji

where Dij corresponds to the 4 diagonal chiral fields (no symmetry condition on the indices

imposed) and Ai, Bj are matter fields on the edges 32, 21 and A′
i, B

′
j are the matter fields

on the edges 34, 41.

Ν 0 Ν 0

Ν 0

Ν 1

Ν 1Ν 0

2

4 1

3

Figure 9:Quiver diagram for the field theory corresponding to P1 ×P1.

In this case we expect to have the possibility of adding one more brane charge because

r′ = r− 2 = 4− 2 = 2. This corresponds to the fivebrane wrapping the 2-cycle class given

by the difference of the two P1, as that will not have any intersection with the 4-cycle

given by P1 × P1. This class is given by the class represented by [∆4] − [∆2]. Suppose

we put N1 branes in that class, and N0 3-brane. In this case the gauge theory will be

U(N0) × U(N0 + N1) × U(N0) × U(N0 − N1) (ordered according to node number). One

can check that this is the only anomaly free choice of ranks allowed in this example, as

expected.
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12.2. Geometric Transitions and Seiberg-like Dualities for Chiral N = 1 Quiver Theories

In the type IIB setup the dualities arise by flops in Kahler cones, as first studied in [3].

However in cases we are considering the type IIA mirror is more convenient as the quan-

tum worldsheet corrections are absent, as noted above. In this context the dualities in field

theories arise by considering varying the parameters of the bulk and using conservation of

brane charge to deduce a dual description as in [4], which we follow here: We consider a

quiver theory arising from the toric theories discussed above which in the mirror type IIA

description is given by Nα D6 branes wrapping ∆α and filling the spacetime. This leads to

the gauge group
∏

α U(Nα) with ∆α ◦∆β = nαβ chiral fields transforming in (Nα, Nβ) or

(Nα, Nβ) depending on the sign of nαβ. The theory would also have some superpotential

and some FI terms. The coupling constant g2 of the U(Nα) group is inversely proportional

to the volume of the ∆α cycle. The dualities typically arise when the coupling goes to

infinity, which occurs when the cycle ∆α goes to zero size, and then it becomes negative,

which means that another cycle has emerged and we wish to find the new gauge descrip-

tion which would be a dual quiver theory. Now there are many inequivalent topological

configurations the theory may emerge in: There are in fact r − 2 possibilities depending

on which wedge, in the W plane, the new ∆′
α cycle emerges, as shown in Fig. 10.

γ∆
1

β∆ 1
β∆ 2

γ∆
2∆α

W

γ∆
1

γ∆
2

β∆ 1
β∆ 2

∆α

W

β∆ 1

γ∆
1 γ∆

2

β∆ 2

∆α

β∆ 1

β∆ 2

γ∆
2

γ∆
1

∆α

A B

C D

Figure 10:(A) Trajectory of the critical point ofW corresponding to cycle∆α. The point actually

crosses the origin, but a small detour is taken in order to compute the changes in the charges.

(B) Close-up of the first crossing. The class of ∆β1 changes and brane creation takes place. (C)
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Close-up of the second crossing, ∆β2 changes and brane creation takes place again. (D) Final

configuration.

The brane charge conservation gives the rank of the dual theory. In fact, as shown in

[19] in this case we create new branes. Strictly speaking the case studied in [19] did not

have the extra circle coming from uv =W , in the D-brane worldvolume, but this does not

affect the arguments of [19].

The easiest way to find the brane charge is to avoid passing through the singular

point, by going around it. As will be evident from the result, the resulting brane charge

conservation yields the same result independent of which way we go around the W = 0

point. The transition line of the quiver divides the W plane and thus the set of gauge

groups to two parts. Let us denote the ones on one side by βi and the other by γj . As we

move the ∆α passing through the ∆β ’s, it creates new ∆α branes given by

−Nβi
nβiα

Also after passing through the singularity it is natural to reorient the brane (for preserving

the same supercharge this is necessary). Thus the total number of ∆α branes are given by

N ′
α =

∑

i

Nβi
nβiα −Nα

Note that the rank of the other gauge groups do not change. However, the quiver diagram

changes because the intersection of cycles has changed. This can be found using Picard

Lefschetz theory and one finds the following: The intersections of the cycles with α has

not changed except for the overall sign having to do with the reorientation of the α cycle.

This means that the arrows ending or beginning on α will have the same degeneracy but

opposite orientation. The intersection between the cycles among ∆βi
or ∆γj

do not change,

but the intersections between the pairs from these groups changes according to

(∆βi
◦∆γj

)′ = n′
βiγj

= nβiγj
± nβiαnαγj

.

This is the same as how the soliton numbers change in the corresponding 2d LG theory

[64], and the sign choice is correlated with the orientation of the cycles [64]. For our present

case, we can write a simple expression which gives this sign choice, and which applies for

any cycles σ and ρ, whether they’re βi’s or γj’s:

n′
σρ = nσρ +

1

2
(nσα|nαρ|+ |nσα|nαρ). (12.2)
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This expression is properly antisymmetric and captures all of the changes of the cycle

intersections described above. In the original type IIB description where these cycles

are mapped to a collection of exceptional bundles we get a new collection of exceptional

bundles under the above operation. This is well known mathematically and is known as the

mutation of exceptional bundle (for a review of this phenomenon in the physics literature

see [65,19] ).

Let us consider a special case of the above transmutation which turns out to have a

simple gauge theoretic interpretation. Let all the arrows from βi to α be incoming and

all the ones from α to γj be outgoing. In this case the change in the quiver diagram,

corresponding to a different number of holomorphic maps between the mutated bundles as

well as the change in the ring structure can be described as follows: Let Al
βiα

denote the

sections from Vβi
→ Vα with l = 1, ..., nβiα. Let Bk

αγj
denote the sections from Vα → Vγj

with k = 1, ..., nαγj
and Cp

γjβi
denote the sections of Vγj

→ Vβi
with p = 1, ..., nγjβi

.

Consider the ring for the sections which can be captured by the superpotential

W = alkpA
l
βiα

Bk
αγj

Cp
γjβi

+ ...

where ... all the other elements given by the ring structure. In the new quiver theory the

A’s and B’s have disappeared and in the above superpotential they only appear in AlBk

combinations and will be replaced by a single new object M lk (the “meson field”) in the

W . Moreover instead of A’s and B’s we have new sections A′l
αβi

, B′k
γjα

with the same de-

generancy but dual gauge quantum numbers and which appear in the above superpotential

as W → W +B′kA′lM lk. This is of course nothing but the Seiberg duality on the factor

represented by the node α. Note that W now has a quadratic piece given by

alkpM
lk
βiγj

Cp
γjβi

which can be integrated out to lead to a net nβiαnαγj
− nγjβi

chiral fields in the bifunda-

mental representation of (βiγj), in agreement with (12.2). The description of W and the

objects given above encode the holomorphic maps between transmuted bundles as well as

the ring structure between them. Moreover in the field theory setup what we have done is

Seiberg duality, as was proposed in the context of N = 1 chiral quiver theories in [21]. Here

we see that Seiberg duality is simply a special case of what happens when a cycle shrinks

and another evolves which is realized as mutation of bundles on the type IIB side, and the

brane creation and the Picard Lefschetz monodromy in the type IIA side. For a special
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class of theories (branes in the del Pezzo background) and when Nf = 2Nc for the node

to be dualized, the connection between variation of Kahler moduli and Seiberg duality

was noted in [20][21]. Also for the same special cases the connection to Picard-Lefschetz

monodromy was pointed out in [21]. 7

Here we have found a more general possibility of quiver duality corresponding to the

brane movements where not all the branes corresponding to incoming and outgoing fields

are on the same side on the W plane. This is not necessarily a field theory duality as

the dynamics may or may not relate these theories to undergo mutation in an arbitrary

way. It would be interesting to see which of these classes of quiver dualities are realized in

field theory. Of course, this could in principle also be settled by going to the large N dual

holographic description as we have seen in the context of A-D-E quiver theories in this

paper. It would be interesting to see if one can also understand the case of quiver mutation

when not all the ∆α’s and ∆β ’s correspond to chiral and anti-chiral matter respectively,

from the field theory viewpoint. One idea along this line is that effectively one has given

mass to some of the flavors and then one does a Seiberg-like duality on less flavors and

then after duality one takes the mass to zero. This idea is worth further study.

12.3. Examples of Seiberg Dualities as Mutations: P2,P1 ×P1

Let us see how this works in the context of the examples we discussed before. Consider

the P2 case. Suppose we change t so that t → 0 and then becomes negative. Note that

the orbifold limit where the theory is equivalent to C3/Z3 corresponds to t→ −∞.

Ν 0

Ν 0Ν 0

1 2

3

7 An important ingredient here, compared to those studied in [21] is the brane creation effect

discussed in [19]. Taking this effect into account eliminates the claimed discrepancies between

Seiberg duality and Picard-Lefschetz monodromy.
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Figure 11a:Quiver diagram after a mutation in the P2 example.

Since ∆2 has shrunk and emerged on the other side where it would have been with

negative coupling, then we will end up dualizing the node 2, see Fig. 11b. According to

our discussion above we obtain a mutated bundle in the type IIB configuration with quiver

diagram given in Fig. 11a. Following Seiberg duality, which is equivalent to the quiver

theory of the mutation, and replacing AiBj →Mij and introducing the dual matter fields

A′
i, B

′
j we obtain

W =
3∑

i,j=1

AiBjCij →W =MijCij +MijB
′
jA

′
i

Noting that Cij is symmetric and Mij has no particular symmetry property, we see that

the symmetric part of Mij pairs up with Cij and becomes massive, and we are left with

the antisymmetric part of Mij . Let us define C
′
k = ǫijkMij . Then the superpotential is

W = ǫijkC
′
kB

′
jA

′
i (12.3)

which is the superpotential expected at the orbifold point, obtained using the methods of

[66] in [67].

∆1

∆3

∆2

∆1

∆3

∆2

C

∆1

∆3∆2

D

∆1

∆2

∆3

A

W

O

B

Figure 11b:Mutation in the P2 example. Notice that the projection of the ∆2 cycle actually

becomes zero, but a small detour has been taken in order to compute the new charges.

72



Let’s now obtain the quiver of Figure 11a and the superpotential of (12.3) by geometry.

Mutating O(1) to the left of O, we get the rank 2 kernel of the multiplication map

O ⊗ Hom(O,O(1)) → O(1),

which is identified with the bundle Ω1(1), whose cohomologies are well known. The result-

ing bundles are O(−1), Ω1(1), O.

The intersection numbers are now nij = ±3. The maps are

Hom(O(−1),O) = H0(O(1)) = C3

Hom(O(−1), Ω1(1)) = H0(Ω1(2)) = C3

Hom(Ω1(1),O) = H0(T (−1)) = C3.

Note that Ω1(2) is the kernel of the multiplication map

O(1)⊗H0(O(1)) → O(2),

so its sections are identified with the set of triples {ℓ1, ℓ2, ℓ3} of linear forms such that

x1ℓ1+x2ℓ2+x3ℓ3 = 0, where xi are the homogeneous coordinates on P2. The combination

x1ℓ1 + x2ℓ2 + x3ℓ3 corresponds to the symmetric part of Mij = AiBj, so the kernel is

naturally identified with the antisymmetric part as expected. In other words, we have

basis of sections identified with the triples

{(0, x3,−x2), (−x3, 0, x1), (x2,−x1, 0)}

which are obtained antisymmetrically. The identification of (ℓ1, ℓ2, ℓ3) with a section of

Ω1(2) is by

(ℓ1, ℓ2, ℓ3) 7→ ℓ1dx1 + ℓ2dx2 + ℓ3dx3.

The identification of the A′
i with sections of T (−1) is via

(A′
1, A

′
2, A

′
3) 7→ A′

1

∂

∂x1

+A′
2

∂

∂x2

+A′
3

∂

∂x3

.

So the composition of the maps O(−1) → Ω1(1) → O is given by

(A′
1

∂

∂x1

+ A′
2

∂

∂x2

+ A′
3

∂

∂x3

) · (ℓ1dx1 + ℓ2dx2 + ℓ3dx3) = A′
1ℓ1 + A′

2ℓ2 +A′
3ℓ3
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under the identification of maps O(−1) → O with sections of O(1). Direct calculation

shows that A′
iC

′
k = ǫijkxj . Identifying B′

j with the dual of xj completes the calculation

of the superpotential. Note that the result we have found for what the brane charges are

and the bundles they correspond to in the orbifold limit is consistent with the result [68]

where it was shown that the wrapped branes for the orbifold point just discussed can be

identified with the exceptional collection O(−1), Ω(1), O(0), where Ω is the cotangent

bundle of P2.

To this exceptional collection we can apply mutations, generating an infinite number of

exceptional collections. In field theory, this corresponds to successively performing Seiberg

duality at different nodes of the quiver gauge theory. By this procedure, we generate an

infinite number of gauge theories that are Seiberg dual to each other. To interpret this

infinite number of exceptional collections geometrically, we have to consider the Teichmüller

space of this noncompact Calabi-Yau, rather than just its moduli space [69]. The stringy

moduli space of C3/Z3 is given by a sphere with three punctures, the large volume limit, a

conifold point and the orbifold point. Since the conifold point has a monodromy of infinite

order, the Teichmüller space would be an infinite cover of the moduli space. In particular,

there are infinite copies of the orbifold point. At each copy of the orbifold point we have a

different set of wrapped branes, which are just the different exceptional collections, related

by mutations.

It is possible to show that the number of chiral fields of the quiver theory, xi, satisfy a

Diophantine equation [64] (which was studied there in the context of solitons of P2 sigma

model):

x21 + x22 + x23 = x1x2x3

Moreover the rank of the corresponding gauge groups Ni on each of the three nodes of the

quiver are given by

Ni = N
xi
3

where Ni denotes the node facing the side with xi flavors. Furthermore, we would like to

argue that the phenomenon of duality cascade is present also in this case. This is easiest

to see if we start with the quiver theory of figure 11a, with gauge group U(N)3. If we

apply Seiberg duality to one of the nodes, we obtain the quiver theory of figure 7, with

gauge group U(N) × U(N) × U(2N). For each node of the original theory, we obtain a

different copy of this theory. We can now perform Seiberg duality at each node of the new

theories, and iterate the process. The structure that appears is presented in figure 12
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(1,5,13)

(1,1,1)

(1,1,2)

(1,2,5)

(2,5,29)

(1,2,1) (2,1,1)

Figure 12:Structure of the cascade for the P2 case. Each node in the figure represents a gauge

theory. The ranks Ni for some of them are displayed (which can be rescaled by an overall factor

of N). The arrows give the direction of the flow.

To prove that there is a duality cascade, we proceed as follows. Let’s denote by N1,2,3

the ranks of the three groups. First, it is easy to see that the number of flavors of the U(N1)

gauge theory is given by N2x3 = Nx2x3/3. The condition that U(N1) be asymptotically

free is that 3N1 > Nx2x3/3 which is equivalent, using N1 = Nx1/3 to x1 > x2x3/3. It is

not too difficult to show that for the largest rank, say N1, this condition is satisfied. From

this it follows that the group with largest rank is AF, whereas the other two are not. This

implies that given any of these theories, as we flow to the IR, the coupling of the group

with largest Ni goes to infinity, and a Seiberg duality for that group is called for. After the

duality, the situation repeats, the new group with largest N ′
i is now the only AF theory,

and repeatedly applying the same argument we see that as we flow to the IR, we encounter

a cascade of dualities where the ranks of the gauge groups strictly decrease, until we reach

the IR endpoint of the flow, the U(N)3 theory. However, we should note that this duality

cascade is different from the other ones we have talked about, in the sense that the number

of 3-branes is the same throughout. Moreover, as we will discuss in the next section there

is no geometric transition corresponding to blowing up 3-cycles in this case.
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For another example consider P1 × P1 discussed before. Let us consider the limit

t1, t2 → −∞ with t1 − t2 = t being finite. This can also be viewed as the orbifold of

O(−1)⊕O(−1) → P1 by the Z2 acting on the fiber and fixing the P1. Then the W plane

geometry is given in Fig. 13 below, corresponding to ∆2 passing through zero. Doing

Seiberg duality/mutation we obtain the quiver diagram given in Fig. 14. To obtain the

superpotential we introduce the meson field Mij = AiBj and the dual matter fields Ãi, B̃j

with the superpotential

W =
∑

ij

MijDij +A′
iB

′
jDji +MijB̃jÃi.

W

∆2

∆1

∆4

∆3

1

O

∆1

∆2

∆3

∆4

∆1
∆4

∆3∆2

(A)

(B) (C)

Figure 13:Mutation in the P1 ×P1 example.
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Figure 14:Quiver diagram for the P1 ×P1 case after the mutation.

Integrating out Mij and Dij we obtain

W = −A′
iB

′
jB̃iÃj (12.4)

which agrees with the results of [70] (which can be seen by redefining A′
i = ǫikFk and

B′
j = ǫjrGr). Note that here the theory has N0 three branes and N1 5-branes wrapping

the P1/Z2. The superpotential for the 3-brane and 5-branes for P1 is the Â1 theory and

the above theory is its Z2 orbifold which is how [70] obtained W . This duality was already

noted in [71] in the case with N1 = 0, as the explanation of the two inequivalent quiver

theories. Here we see in which regime of parameters each is naturally defined.

We can also see from the viewpoint of transmuted bundles how the quiver diagram

and the Yukawa couplings arise. Performing the mutation, we replace O(0, 0) with the

kernel of O(0,−1) ⊗ Hom(O(0,−1) → O(0, 0)). Since the Hom is two dimensional,

the kernel is a line bundle. Since its Chern class is immediately calculated as (0,−2),

we see that the mutated bundle is O(0,−2). The collection of bundles is given by

O(−1,−1), O(0,−1), O(0,−2), O(−1, 0). The nonzero Hom’s and Ext’s are

Hom(O(−1,−1),O(0,−1)) = H0(O(0, 1)) = C2

Hom(O(0,−1),O(0,−2)) = H0(O(0, 1)) = C2

Ext1(O(−1, 0),O(0,−2)) = H0(O(1))⊗H1(O(−2)) = C2

Hom(O(−1,−1),O(−1, 0)) = H0(O(0, 1)) = C2.

We reverse the signs of the bundles O(0,−2) and O(−1, 0) (note that c1(O(−1,−1)) +

c1(O(0,−1)) − c1(O(0,−2)) − c1(O(−1, 0)) = 0). We check that the directions of the

arrows also agree with those in Figure 14. Note that there was an extra arrow reversal for

due to the Ext1 (i.e. the bundle Hom(O(−1, 0),O(0,−2)) has negative index). One can

also obtain a duality cascade in this case as will be discussed in the next section.

Now we compute the Yukawa couplings. Classes t ∈ Ext1(O(−1, 0),O(0,−2)) describe

extensions Vt of O(−1, 0) by O(0,−2) fitting into an exact sequence

0 → O(0,−2) → Vt → O(−1, 0) → 0 (12.5)

where the extension class t is the obstruction to (12.5) defining Vt as a direct sum. We

compute Yukawa couplings between Vt and the remaining two bundles O(−1,−1) and
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O(0,−1), then differentiate with respect to the components of t to obtain the Yukawa

couplings. As expected, the results will agree with the superpotential we found in (12.4).

We do the calculation by using a Cech cohomology representation. If (x1, x2) and

(y1, y2) are coordinates on the respective P1 factors, for i = 1, 2 let Ui be the open set on

which yi 6= 0. Then we represent classes in Ext1(O(−1, 0),O(0,−2)) ≃ H1(O(1,−2)) on

U1 ∩ U2 by the cocycle

ρt =
t1x1 + t2x2

y1y2
, (12.6)

where t = (t1, t2) is the Ext class. We define Vt on each of the Ui as the direct sum

O(−1, 0)⊕O(0,−2). To define Vt globally, sections must be glued via the matrix

(
1 0
ρt 1

)
(12.7)

We now compute the Hom’s between O(0,−1), Vt, O(−1,−1). We first have

Hom(O(−1,−1),O(0,−1)) = H0(O(1, 0)),

spanned by x1 and x2.

We also have Hom(O(0,−1), Vt) = H0(Vt ⊗ O(0, 1)). This can be computed from

the transition matrix (12.7), if the local sections are viewed as sections of the bundles

O(−1, 0) ⊗ O(0, 1) = O(−1, 1) and O(0,−2) ⊗ O(0, 1) = O(0,−1). A basis for the holo-

morphic sections (expressed in the U1 representation) may be taken to be

V1 =

(
−(t1x1 + t2x2)/y1

y2

)
, V2 =

(
0
y1

)
(12.8)

Note that ρtVi is holomorphic in the U2 variables so we do have global sections.

Finally, we have Hom(Vt,O(−1,−1)) = H0(V ∗
t ⊗ O(−1,−1)). By dualizing (12.5)

and tensoring with O(−1,−1), we get

0 → O(0,−1) → (V ∗
t ⊗O(−1,−1)) → O(−1, 1) → 0.

This is almost the same as (12.5); we just have to tensor (12.5) by O(0, 1) and change the

extension class from t to −t when we dualize. A basis for sections is then given by

W1 =

(
(t1x1 + t2x2)/y1

y2

)
,W2 =

(
0
y1

)
(12.9)
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Using (12.8) and (12.9), we compute the products of the Homs as

V1W2 = −t1x1 − t2x2, V2W1 = t1x1 + t2x2, V1W1 = V2W2 = 0.

Now introducing variables X1, X2 for the sections x1, x2 of Hom(O(−1,−1),O(0,−1)), we

get

V1XiW2 = −ti, V2XiW1 = ti, ViXjWi = 0.

Introducing Ti for the Exts, we get be differentiation

V1XiW2Tj = −δij , V2XiW1Tj = δij , ViXjWiTk = 0.

This agrees with what we found earlier (12.4) by the identification A′
i = ǫijVj , B

′
j =

Xj ,B̃i =Wi,Ãj = Tj .

13. Large N Dualities Involving Vanishing 4-Cycles

It is well known that there are transitions in CY 3-folds where a 4-cycle shrinks and

some three cycles grow. It was suggested in [7] that transitions of this kind may also realize

some large N duality in the context of wrapped branes. Here we will show that this is

indeed the case. Start with the A1 theory, i.e. with N1 D5 branes wrapping P1. This

gives the pure N = 1 theory with G = U(N1). It is dual to the conifold with N1 units

of H flux through S3. Now mod out both sides by Z2 acting on the fiber direction of

O(−1) ⊕ O(−1) → P1. Note that this corresponds to an A1 singularity over P1 which if

we blow up, gives P1 ×P1. When they both shrink, it is an example of a shrunk 4-cycle.

By following this through the transition this acts as S3/Z2 with no fixed points (the S3

can be viewed as a sphere bundle over P1 which leads to this action). Thus we already

have a concrete realization of these types of transitions. Note that on the quiver side the

gauge theory this corresponds to is simply U(N1) × U(N1) with no matter fields (this is

the special case of the quiver theory we studied with N0 = 0), shown in Figure 14. Just

as before N1 controls the size of the S3 and the gaugino condensate field is related to the

modulus field of S3. Note also that there are now two domain walls wrapping the S3/Z2

as discussed in [72,73], which is consistent with the fact that we have two inequivalent

domain walls, one for each gauge factor.

There is also the duality cascade, just as we discussed in the context of the Â1:

Namely as the coupling gets weaker, as we go back in the UV (by taking t to be a pure
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imaginary B field and varying it) the geometry of the critical points on the W plane

change as shown in Fig. 15 and the gauge factor undergoes Seiberg dualities/mutations

of the type we discussed and we end up in the UV with U(kN0)
2 × U((k + 1)N0)

2 after k

cascades backward. Note that in this case the picture we had presented in section 10 for

the mechanical analogy of the particle in the Coxeter box comes to life: The projection

of the branes on the W-plane are like the strings attached to the point inside the Coxeter

box, which are related to the coupling of the gauge theories.

∆ 1

∆ 2

∆ 3

∆ 4

W

∆ 1

∆ 3

∆ 2

W

C

∆ 4

∆ 1

∆ 3

∆ 4

∆ 2

W

BA

Figure 15:Realization of duality cascade in the context of P1 × P1 in the orbifold limit. The

graph above corresponds to t pure imaginary. The movement of the particle in the Coxeter Box,

becomes physical in this context, and is identified with a semi-circle of either of the two circles

above.

13.1. Examples of Other 4-cycle/3-cycle transitions as large N dualities

The above example confirms the validity of the general idea. Here we will show other

examples of this in the context of quiver theories associated with del Pezzos. We will first
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restrict ourselves to toric del Pezzos which are given, in addition to the P1 × P1 already

studied, by P2 and its blowups with up to 3 points. Let us denote by Bk the P 2 blown up

at k points. It is known that there are no transitions with k = 0, 1, and that for B2 there is

a transition controlled by one parameter and for B3 there are two inequivalent transitions

one involving 1 parameter and the other involving 2 parameters (these moduli spaces meet

similar to how the z-axis meets the xy plane). These results have been obtained in [74](see

also [75] for generalities on smoothing other del Pezzo contractions). We will now see how

to realize these transitions in the quiver theories arising from del Pezzos.

The corresponding quiver theories have already been constructed in [76,71] or they

can be constructed with the methods discussed here (which are similar to those discussed

in [57]). As already discussed we expect that Bk will have a quiver theory with r = k + 3

nodes with k + 1 inequivalent integers labeling the number of 3-brane and k classes of

5-branes. Note that the classes of 5-brane charges is what affect the H flux and thus can

possibly control the moduli on 3-cycles on the other side. So for Bk we may expect k

deformations. Indeed it is known [75] that there are k infinitesimal deformations for Bk

with k = 1, 2, 3. But, as noted above some are obstructed.

The basic idea from physics is that the unobstructed ones should correspond to gaugino

condensates in some pureN = 1 Yang-Mills theory, as was seen in all the cases encountered.

Thus we look for possibilities of having such gauge theories in the corresponding quiver

theory. We have already encountered exactly this structure in the context of P1 × P1,

where in the general class of the quiver theory we could write one which has only pure

N = 1 Yang-Mills. We got U(N1)
2 with no matter, and the single factor N1 controls the

size of the S3. We now look for this in the other cases. For P2 this is not possible as

already anticipated. So we move on to the other Bk with k = 1, 2, 3.

B1 and transition

The quiver theory for this case is given in [77] and shown in Fig. 16 below. We can

identify the nodes with the sheaves given by

1 : O(H)

2 : O

3 : O(H − e)

4 : O(e)

81



where H corresponds to the hyperplane class in P2 and e is the class corresponding to the

blow up. Also we have to reorient the nodes 3 and 4. The arrow from 4 to 3 corresponds to

an Ext as in the P1 ×P1 example. It is easy to see that if we want U(N) factors with no

matter fields, compatible with allowed 5-brane charge labeled by N1 this is not possible.

Note that the allowed ranks are given by

U1(N0)× U2(N0 −N1)× U3(N0 +N1)× U4(N0 − 2N1)

and to get a disconnected figure we need three of the nodes be zero without the fourth

being zero and this is impossible. Thus this agrees with the geometric anticipation that

there are no deformations in this case. Note also that the class given by the above N0 and

N1 give

N0H + (N0 +N1)(e−H)− (N0 − 2N1)(e) = N1(3e−H)

which is consistent with the fact that c1 · (3e − H) = (3H − e) · (3e − H) = 0 (using

H2 = −e2 = 1, H · e = 0).

1 2

34

Figure 16:Quiver diagram for the field theory in the B1 case.

B2 and transition

The quiver for this case is given in [77]. There are some inequivalent choices (related

by dualities). We have chosen one in Fig 17. To obtain pure N = 1 Yang-Mills would

require setting at least three ranks to zero, which is the number of degrees of freedom we

have for the ranks. It turns out that this is possible. In particular set N2 = N5 = N and

N1 = N3 = N4 = 0. Thus we expect a one parameter moduli of deformation and this is
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indeed the case. The geometry of the deformed space admits one compact 3-cycle and is

given as follows.

1

5 2

34

Figure 17:Quiver diagram for the field theory in the B2 case.

Here and later we will use a general model for the blown-down geometry of Bk: for

k ≤ 6 there is an (anticanonical) embedding of Bk into P9−k. Thinking of P9−k as the

projectivization of C10−k, the embedded Bk is the projectivization of its associated cone,

which is a three dimensional variety in C10−k, singular at the vertex of the cone. This is a

local model for the geometry, the del Pezzo being contracted to obtain the singular vertex.

The idea used in constructing the deformation is to find a bigger cone C such that

the above local model can be constructed from C by imposing the vanishing of certain

linear equations vanishing at the vertex. The deformation is obtained by simply deforming

these linear equations away from the vertex. We now illustrate with k = 2, where the local

model is a cone in C8.

We start by noticing that B2 can be described as the blowup of P1×P1 at one point,

and that P1 ×P1 is a degree 2 hypersurface in P3. It follows that B2 is a hypersurface in

the blowup of P3 at a point, which we may as well take to be (1, 0, 0, 0). The hypersurface

has degree 2 in the variables of P3 and contains (1, 0, 0, 0). Such a quadratic polynomial

is a linear combination
∑
aimi of the 9 monomials

x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4.

Said differently, these 9 monomials define the coordinates of a mapping φ from the blowup

ofP3 toP8, and B2 is a hyperplane section of the image of φ. In the coordinates (y1, . . . , y9)

of P8, the image of φ is defined by quadratic equations such as y1y5 = y2y4, y1y6 =

y3y4, . . .. If these equations are viewed as equations in C9, the result is a 4 dimensional
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variety in C9 which is the cone over the image of φ. Taking the hyperplane section
∑
aiyi = 0 containing the vertex, we get the local model inside the hyperplane which is

identified with C8 = C10−k and we have recovered the general construction concretely.

The vertex of the cone is identified with the singular point after contracting B2. The

transition is completed by smoothing this singularity. The deformation is given by

∑

i

aiyi = t,

where t is a deformation parameter. For t = 0, this is the blown-down geometry; for

general t, this is a smooth threefold. The size of t is determined, using the minimization

of the superpotential, as discussed before. It will change depending on the single integer

N controlling the rank of the disconnected gauge groups.

B3 and transition

This is the case which was studied in [20,77]. In particular four inequivalent models

related to each other by Seiberg duality were studied there. In the notation of [20] consider

these theories, shown in Fig. 18 below.

4

2 5

1 3

6

4

2

5
6

31

1

5
6

2 3

4

4 5
6

2

1 3

I II

III IV

Figure 18:Quiver diagrams of the four different field theory realizations in the B3 case. These

are related by Seiberg duality.
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The conditions for anomaly cancellation can be written for these models. As expected

there are four independent integers which satisfy anomaly free condition as expected. We

can write the two conditions, for example, as

Model I : N5 = N1 +N2 −N3, N6 = N3 +N4 −N1.

Model II : N5 = 2N2 +N4 −N1 −N3, N6 = N1 +N3 −N2

Model III : N5 = 2(N1 +N3 −N2)−N4, N6 = N1 +N3 −N2

Model IV : N5 =
2

3
(N1 +N2 +N3)−N4, N6 =

1

3
(N1 +N2 +N3).

These theories can be represented by sheaves as discussed before. For example model

III corresponds to

1 : O(e3)

2 : O(e1)

3 : O(e2)

4 : O(H − e1)

5 : O(H − e2)

6 : O(H)

where ei denotes the class of the three blowups and H is the hyperplane class. Also we

have to reverse the orientation of 2,4 and 5.

For the case studied in [20,57] where the Ni are all equal, it was shown that one can

go through dualizing node 1 of model I to get model II, then dualizing node 5 to get model

III and then dualizing node 2 to get model IV. Of course these dualities all immediately

generalize to the case where the Ni are not equal with suitable superpotentials, as discussed

in full generality before.

As an example, consider model III. Dualizing node 1 takes one back to model III,

with a change conjugation and relabeling of nodes 2 ↔ 3. The resulting theory has

N ′
1 = N4 + N5 − N1, N

′
2 = N3, N

′
3 = N2 and N4 . . .N6 unchanged. In all of the models,

one could also dualize the nodes having more than two arrows in and two out, and this

would generate duals with quivers not appearing in fig. 18.

For general Ni’s, we’ll have an analog of the cascading flow to the IR. For some of

the possible endpoints of these flows we could get e.g. model I with only the disconnected

nodes N4 = N6 non-zero (or only N1 = N3 non-zero, or only N2 = N5 non-zero). For
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this end point we have a product of pure Yang-Mills, leading to gaugino condensation,

controlled by one integer. Another example of an endpoint is model III with only the

disconnected nodes N1, N2, N3 non-zero with N2 = N1 + N3, which has a two parameter

choice. This corresponds to the class given by

N1(e3)−N2(e1) +N3(e2) = N1(e3 − e1) +N3(e2 − e1)

which is orthogonal to c1 = 3H − e1 − e2 − e3. Thus in this case we would expect to

have a transition involving two independent blown up 3-cycles, controlled by two complex

parameters. Thus from the quiver analysis we are led to expect transitions involving either

one or 2 dimensional moduli space. This is indeed the case!

We can embed B3 in C10−k = C7 as before. But this can be realized as a hyperplane

section of a 4 dimensional variety in C8 as well as the intersection of two hyperplanes with

a 5 dimensional variety in C9. The deformations are obtained by simply deforming the

hyperplanes to avoid the vertex. There are as many deformation parameters as there are

hyperplanes.

One-dimensional component: Embed P1 × P1 × P1 in P7 using the 8 multilinear

polynomials on P1 × P1 × P1. A general hyperplane section is identified with B3 in P6.

Then take the cone over the 3 dimensional image to get a 4 dimensional singular variety in

C8. A hyperplane section through the vertex is identified with the blown-down geometry

in C7 = C10−k. The deformation is f(x1, ..., x8) = t, where f is a fixed homogeneous

linear polynomial.

Two-dimensional component: Embed P2×P2 in P8 using the 9 bilinear polynomials.

Intersecting with 2 hyperplanes yields B3. Take the cone to get a singular 5 dimensional

variety in C9. Now the deformation is given by taking 2 linear polynomials:

g(x1, ..., x9) = t1 h(x1, ..., x9) = t2,

a deformation in C7.

Of course in all these cases we can put the fluxes on the dual geometry to find the

exact sizes for the blown up S3’s, as is by now rather familiar. This yields exact results

for such N = 1 quiver theories, for which no other method is known. Also we can cascade

backwards as in the P1 ×P1 example already discussed, where as we go up in the cascade

the number of 3-branes continues to increase. This class of examples illustrates that not

only can these chiral theories undergo gaugino condensate, but that they can also be viewed

as arising from an infinite tower of cascades.
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13.2. The general del Pezzo case and affine Ek symmetry

Now let us analyze the more general case of P 2 blown up at k points with k =

4, ..., 8. Even though these are not toric, one can construct their quiver diagram and the

superpotential terms from the study of the associated exceptional collection, as we have

discussed (the quiver diagrams for these classes has been proposed in [57]) . Our comments

also apply to the cases with k < 4 (with suitable definitions for Ek). The transitions in

this case have also been considered [75] and the result is that there are C2−1 deformations

where C2 is the dual coxeter number of Ek groups with E4 = A4, E5 = D5. In particular

the Ek Weyl group is quite relevant for such geometries as we will explain below.

Let x denote an H2 class of Bk and let c1 denote a class in H2 dual to the chern class

of Bk. We know that the total allowed charge we have is given by an element x such that

x · c1 = 0

This yields a k dimensional integral space, which gives all the allowed 5-brane charges.

This space, which is k-dimensional, turns out to be given by the root lattice of Ek.

Let us denote the blow up classes by ei and the hyperplane class by H. These have a

Lorentzian self-intersection

H ·H = 1 H · ei = 0 ei · ej = −δij

and c1 = 3H−
∑

i ei. A basis for the simple roots of Ek can be chosen to be H−e1−e2−e3

and ei−ei+1 as i = 1, ..., k− 1. One can see that these span the root lattice of Ek with the

canonical inner product (up to an overall sign). More is in fact true. The automorphism

of del Pezzo cohomology is given by the Weyl group of Ek. In particular for any such root

x the action on another class is given by

y → y + (y · x)x

That is very much in the spirit of what we studied in the context of A-D-E spaces.

There is also a natural set of spherical bundles, which are related to the weight lattice

of the Ek. Namely, consider the classes x such that

x · c1 = p (13.1)

for some fixed p. Note that the difference of any such x’s is on the root lattice. Moreover

x · (root lattice) ∈ Z which implies that x is in the weight lattice of Ek. For p = 1 the
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corresponding x are given by the weights of the fundamental representation of the Ek

(except for E8 which gives the 240 roots). Note that all the line bundles corresponding

to O(x) correspond to spherical bundles, and so the corresponding brane would yield an

N = 1 Yang-Mills theory with no adjoint fields. If we consider branes corresponding to

such sheaves, the Weyl reflection by the root vectors acts on the underlying quiver theory,

as that is related to the automorphism of the del Pezzo, very much like how it arose in the

A-D-E quiver theory. Also adding the 3-branes to the story should promote the Ek to the

affine version.

Suppose we now want to study generally what are the allowed phases for these theories

yielding pure N = 1 gauge theory leading to gaugino condensates. We would have to

find the allowed branches of these theories and look for spherical bundles with no matter

between them. Note that if R is a root, then the bundle O(R) has no cohomology. Since

−R is also a root, then the dual bundle O(−R) = O(R)∗ has no cohomology either. So

given a collection of bundles Vα such that each V ∗
α ⊗ Vβ is a root for all α 6= β, then the

corresponding nodes in the quiver are totally disconnected.

We now ask: what is the cardinality of the maximal set of bundles such that each

pair differs by a root in the above sense? Or more generally, differs by something with

only 1 cohomology? It is not difficult to see that there are at most k+1 such choices. For

example, in the B4 case we have C2 = 5 bundles which we write symmetrically as

H − e1, H − e2, H − e3, H − e4, 2H − e1 − e2 − e3 − e4.

This somewhat cumbersome form reflects our method for obtaining these bundles: by

finding geometric curve classes x satisfying (13.1) with p = 2. The difference are all of

the form ei − ej or ±(H − ei − ej − ek), all of which are roots. So in this case, we have

5=C2 disjoint bundles. The number drops to 4 after requiring orthogonality to c1, which

is the expected number of deformations of B4 namely C2 − 1 = 4. This also works in the

B3, B2 and P1 ×P1 cases that we already discussed. For example in the B3 case we have

E3 = A1+A2 and the two branches that we found correspond to weights which differ either

by the root of A1 (the one dimensional branch) or two roots of A2 (the two dimensional

branch). The P1×P1 case corresponds to E1 = A1 and that is the case where the relevant

class corresponds to the difference of the two P1’s as we have discussed. Note that in this

case the affine E1 = A1 action is indeed realized as was discussed before. In particular the

A1 Weyl reflection is generated by the class given by the difference of the two P1’s.
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However we encounter the puzzle for higher k’s that there are less pureN = 1 branches

that we have identified, than predicted from the deformations. In particular C2 − 1 > k

for Ek with k > 4. Note that these would be the cases where on the A-D-E quiver theories

we would also have the non-abelian branches. It would be interesting to understand how

these extra branches would appear in the cases of these del Pezzos. One would naturally

expect them to correspond to higher rank bundles.
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