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We consider N = 1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with

two-index tensor matter and added tree-level superpotential, for general breaking patterns

of the gauge group. By considering the string theory realization and geometric transitions,

we clarify when glueball superfields should be included and extremized, or rather set to

zero; this issue arises for unbroken group factors of low rank. The string theory results,

which are equivalent to those of the matrix model, refer to a particular UV completion

of the gauge theory, which could differ from conventional gauge theory results by residual

instanton effects. Often, however, these effects exhibit miraculous cancellations, and the

string theory or matrix model results end up agreeing with standard gauge theory. In par-

ticular, these string theory considerations explain and remove some apparent discrepancies

between gauge theories and matrix models in the literature.
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1. Introduction

Large N topological string duality [1] embedded in superstrings [2,3] has led to a new

perspective on N = 1 supersymmetric gauge theories: that the exact effective superpoten-

tial can be efficiently computed by including glueball fields. For example, in a theory with

gauge group G, with tree-level superpotential leading to a breaking pattern

G(N) →
K∏

i=1

Gi(Ni), (1.1)

the dynamics is efficiently encoded in a superpotential Weff(S1, . . . SK ; gj,Λ) (gj are the

parameters in Wtree and Λ is the dynamical scale). Further, string theory implies [3]

Weff(Si; gj,Λ) =

K∑

i=1

(
hi

∂F(Si)

∂Si
− 2πiτiSi

)
, (1.2)

with hi and τi the fluxes through Ai and Bi three-cycles in the geometry, as will be

reviewed in sect. 3. The prepotential F(Si) in (1.2) is computable in terms of geometric

period integrals, which yields [3]

∂F(Si)

∂Si
= Si

(
log

(
Λ3
i

Si

)
+ 1

)
+

∂

∂Si

∑

i1,...,iK≥0

ci1...iKSi1
1 · · ·Sik

K , (1.3)

with coefficients ci1...iK depending on the gj (but not on the gauge theory scale Λ). In [4] it

was shown how planar diagrams of an associated matrix model can also be used to compute

(1.2) and (1.3). Based on the stringy examples, this was generalized in [5] to a more general

principle to gain non-perturbative information about the strong coupling dynamics of gauge

theories, by extremizing the perturbatively computed glueball superpotential.

There are two aspects to the above statements: first that the glueball fields Si are

the ‘right’ variables to describe the IR physics, and second that perturbative gauge theory

techniques suffice to compute the glueball superpotential. The latter statement has now

been proven in two different approaches for low powers of the glueball fields Si in (1.3)

[6,7]. For powers of the glueball fields Si larger than the dual Coxeter number of the

group, an ambiguity sets in for the glueball computation of the coefficients ci1...iK in both

of these approaches. The matrix model provides a natural prescription for how to resolve

this ambiguity, essentially by continuing from large Ni. It was argued in [8,9] that the

string geometry / matrix model result (since the string geometry and matrix model results

are identical, we refer to them synonymously) has the following meaning: it computes the

F -terms for different supersymmetric gauge theories, which can be expressed in terms of

G(N + k|k) supergroups. The Weff(Si) is independent of k, and the above ambiguity can
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be eliminated by taking k, and hence the dual Coxeter number, arbitrarily large. The

G(N) theory of interest is obtained from the G(N+k|k) theory by Higgsing; but there can

be residual instanton contributions to Weff [9], which can lead to apparent discrepancies

between the matrix model and gauge theory results. We will somewhat clarify here when

such residual instanton effects do, or do not, lead to discrepancies with standard gauge

theory results.

There is another, more non-trivial assumption in [5]: the statement that the glueball

fields Si are the ‘right’ variables in the IR. This assumption was motivated from the string

dualities [1-3], where geometric transition provide the explanation of why the glueball fields

are the natural IR variables: heuristically, 〈Si〉 corresponds to confinement. However, this

is not quite correct: it also applies to abelian theories, as had been noted in [3]. So the deep

explanation of why we should choose certain dynamical S variables remains mysterious.

In this paper, we will uncover the precise prescription for the correct choice of IR

variables. This will be done from the string theory perspective, by arguing in which cases

there is a geometric transition in string theory. For the general breaking pattern (1.1), our

prescription for treating the glueball field Si, corresponding to the factor Gi in (1.1), is as

follows: If h(Gi) > 0 we include Si and extremize Weff (Si) with respect to it. On the other

hand, if h(Gi) ≤ 0 we do not include or extremize Si, instead we just set Si → 0. Here we

define the generalized dual-Coxeter numbers1

h(U(N)) = N,

h(Sp(N)) = N + 1,

h(SO(N)) = N − 2,

(1.4)

which are generalized in that (1.4) applies for all N ≥ 0. In particular h(U(1)) =

h(Sp(0)) = 1, so when some Gi factor in (1.1) is U(1) or Sp(0), our prescription is

to include the corresponding Si and extremize with respect to it. On the other hand,

h(U(0)) = 0 and h(SO(2)) = 0, so when some Gi factor in (1.1) is U(0) or SO(2), our

prescription is to just set the corresponding Si = 0 from the outset. (Note that U(1) and

SO(2) are treated differently here.)

This investigation was motivated by trying to understand the discrepancies found in

[10] for Sp(N) theory with antisymmetric tensor matter, where the superpotentials from

the matrix model and gauge theory were found to differ at order h in perturbation theory

and beyond. The analysis considered the trivial breaking pattern Sp(N) → Sp(N) and a

single glueball was introduced corresponding to the single unbroken gauge group factor.

In [9], various gauge theories including this example were studied, and an explanation

for the discrepancies was proposed in terms of the conjecture, mentioned above, that

1 Our convention is such that Sp(N) ⊂ SU(2N), and hence Sp(1) ∼= SU(2).
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the string theory / matrix model actually computes the superpotential of the large k

G(N + k|k) supergroup theories, rather than the ordinary G(N) theory. In this context,

the trivial breaking pattern considered in [10] should be understood as Sp(N) → Sp(N)×
Sp(0), which is completed to Sp(N + k|k) → Sp(N + k1|k1) × Sp(k2|k2). In particular,

Sp(0) factors, while trivial in standard gauge theory, are non-trivial in the string theory

geometry / matrix model context: there can be a residual instanton contribution to the

superpotential when one Higgses Sp(k2|k2) down to Sp(0|0) = Sp(0), as explicitly seen

in [9] for the case of breaking Sp(0) → Sp(0) with quadratic Wtree
2. Related aspects of

“Sp(0)” being non-trivial in the string / matrix model context were subsequently discussed

in [11,12,13].

However, it turns out that one also needs to modify the matrix model side of the

computation to take into account the Sp(0) factors. This was found by Cachazo [11], who

showed that the loop equations determining T (z) ≡ Tr( 1
z−Φ

) and R(z) ≡ − 1
32π2Tr(

WαWα

z−Φ
)

for the Sp(N) theory with antisymmetric tensor matter [14,15] could be related to those

of a U(2N + 2K) gauge theory with adjoint matter, with Sp(N) → Sp(N) × Sp(0)K−1

mapped to U(2N+2K) → U(2N+2)×U(2)K−1. It was thus shown in [11] that vanishing

period of T (z)dz through a given cut, corresponding to an Sp(0) factor, does not imply

that the cut closes up on shell (aspects of the periods in this theory were also discussed

in [16]). This fits with our above prescription that the Sp(0) glueballs should be included

and extremized in the string theory / matrix model picture, as would be done for U(2),

rather than set to zero, as was originally done in [10]. We stress that we are not yet even

discussing whether or not the string theory / matrix model result agrees with standard

gauge theory. Irrespective of any comparison with standard gauge theory, the prescription

to obtain the actual string theory / matrix model result is as described above (1.4). Having

obtained that result, we can now discuss comparisons with standard gauge theory results.

As seen in [11], by solving the U(2N + 2K) loop equations for the present case, this

corrected matrix model result now agrees perfectly with standard gauge theory! This will

be discussed further here, with all glueball fields Si included.

This agreement, between the matrix model result and standard gauge theory, is in

a sense surprising for this particular theory, in light of the Sp(k|k) description of [9] for

the unbroken Sp(0) factors, with the resulting residual instanton contributions to the

2 It was suggested in the original version of [9] that such Sp(0) residual instanton contributions

could also play a role for the case of cubic and higher order Wtree (where they had not yet

been fully computed) and could explain the apparent matrix model vs. standard gauge theory

discrepancies found in [10]. As we will discuss, we now know that this last speculation was not

correct. The corrected proposal of [9] is still that the matrix model computes the superpotential of

the G(N + k|k) theory, but where the matrix model side of the computation should be corrected,

as we discuss in this paper, to include glueball fields for the Sp(0) factors.
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superpotential. As we will explain later in this paper, the agreement here between matrix

models and standard gauge theory is thanks to a remarkable cancellation of the residual

instanton effect terms, which could have spoiled the agreement. The cancellation occurs

upon summing over the i in (1.2) from i = 1 . . .K.

There are similar remarkable cancellations of the “residual instanton contributions”

to the superpotential in many other examples, which we will also discuss. In fact, in all

cases that we know of, the only cases where the residual instantons do not cancel is when

the gauge theory clearly has some ambiguity, requiring a choice of how to define the theory

in the UV; string theory / matrix model gives a particular such choice. Examples of such

cases is when the LHS of (1.1) is itself U(1) or Sp(0) super Yang-Mills, as discussed in

[9]. Other examples where the residual instanton contributions do not cancel, is when

the superpotential is of high enough order such that not all operators appearing in it are

independent, e.g. terms like TrΦn, for a U(N) adjoint Φ, when n > N . In standard gauge

theory, there are then potential ambiguities involved in reducing such composite opera-

tors to the independent operators, since classical operator identities can receive quantum

corrections. The residual instanton contributions, which do not cancel generally in these

cases, imply specific quantum relations for these operators, corresponding to the specific

UV completion. See [17,18] for related issues.

The organization of this paper is as follows: In section 2 we summarize the gauge

theories under consideration. In section 3 we review the type IIB string theory construction

of these gauge theories. We also discuss maps of the exact superpotentials of Sp and SO

theories to those of U theories, generalizing observations of [19,20,21,11,13]. In section 4 we

explain, from the string theory perspective in which cases we have a geometric transition.

In section 5 we consider examples, where the glueball fields Si of all group factors are

correctly accounted for on the matrix model side. The results thereby obtained via matrix

models are found to agree with those of standard gauge theory. In many of these examples,

this agreement relies on a remarkable interplay of different residual instanton contributions,

which sometimes fully cancel. Residual instantons are discussed further in sect. 6, with

examples illustrating cases where they do, or do not, cancel. In appendix A, a proof of a

general relation between the S2 and RP 2 contributions to the matrix model free energy is

given, and also the matrix model computation of superpotential is presented. In appendix

B the gauge theory computation of the superpotential is discussed.

2. The gauge theory examples

The specific examples of N = 1 supersymmetric gauge theories which we consider,
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with breaking patterns as in (1.1), are as follows:

U(N) with adjoint Φ U(N) →∏K
i=1 U(Ni),

SO(N) with adjoint Φ : SO(N) → SO(N0)×
∏K

i=1 U(Ni),

Sp(N) with adjoint Φ : Sp(N) → Sp(N0)×
∏K

i=1 U(Ni),

SO(N) with symmetric S : SO(N) →∏K
i=1 SO(Ni),

Sp(N) with antisymmetric A : Sp(N) →∏K
i=1 Sp(Ni),

U(N) with Φ + S + S̃ : U(N) → SO(N0)×
∏K

i=1 U(Ni),

U(N) with Φ + A+ Ã : U(N) → Sp(N0)×
∏K

i=1 U(Ni).
(2.1)

For U(N) with adjoint Φ, the tree-level superpotential is taken to be

Wtree = Tr[W (Φ)], W (x) =

K+1∑

j=1

gj
j
xj , (2.2)

with K potential wells. In the classical vacua, with breaking pattern as in (2.1), Φ has Ni

eigenvalues equal to the root ai of

W ′(x) =

K+1∑

j=1

gjx
j−1 ≡ gK+1

K∏

i=1

(x− ai), (2.3)

with
∑K

i=1 Ni = N . For SO(N) with symmetric tensor or Sp(N) with antisymmetric

tensor we take

Wtree =
1
2TrW (S), or Wtree =

1
2TrW (A), (2.4)

respectively, where W (x) is as in (2.2), the factor of 1
2 is for convenience, because the

eigenvalues of S or A appear in pairs, and the indices are contracted with δab for SO(N) or

Ja
b for Sp(N). For SO(N) and Sp(N) with adjoint matter, the tree-level superpotential is

Wtree =
1
2Tr[W (Φ)], W (x) =

K+1∑

j=1

g2j
2j

x2j , (2.5)

since all Casimirs of the adjoint Φ are even, and the 1
2 is again for convenience because

the eigenvalues appear in pairs. Φ’s eigenvalues sit at the zeros of

W ′(x) =

K+1∑

j=1

g2jx
2j−1 ≡ g2K+2x

K∏

i=1

(x2 − a2i ). (2.6)

The breaking pattern in (2.1) has N0 eigenvalues of Φ equal to zero, and Ni pairs at ±ai,

so N = N0 +
∑K

i=1 2Ni for SO(N) → SO(N0)×
∏K

i=1 U(Ni), and N = N0 +
∑K

i=1 Ni for

Sp(N) → Sp(N0)×
∏K

i=1 U(Ni) (with the convention Sp(1) ∼= SU(2)).
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The next to last example in (2.1) is the N = 2 U(N) theory with a matter hypermul-

tiplet in the two-index symmetric tensor representation, breaking N = 2 to N = 1 by a

superpotential as in (2.2):

W =
K+1∑

j=1

gj
j
TrΦj +

√
2TrS̃ΦS. (2.7)

In addition to the possibility of Φ’s eigenvalues sitting in any of the K critical points W ′(x)

analogous to (2.3), there is a vacuum where N0 eigenvalues sits at φ = 0, with 〈SS̃〉 6= 0,

breaking U(N0) → SO(N0). The last example in (2.1) is the similar theory where the

N = 2 hypermultiplet is instead in the antisymmetric tensor representation A, rather than

the symmetric tensor S. These last two classes of examples were considered in [22,23,24].

In all of these theories, the low energy superpotential is of the general form

Wlow(gj,Λ) = Wcl(gj) +Wgc(Λi) +WH(gj,Λ). (2.8)

Wcl(gj) is the classical contribution (evaluating Wtree in the appropriate minima). Wgc(Λi)

is the gaugino condensation contribution in the unbroken gauge groups of (1.1),

Wgc(Λj) =

K∑

i=1

hie
2πini/hiΛ3

i , (2.9)

where hi = C2(Gi) is the dual Coxeter number of the group Gi in (1.1), with the phase

factors associated with the Z2hi
→ Z2 chiral symmetry breaking of the low-energy Gi

gaugino condensation. The scales Λi are related to Λ by threshold matching for the fields

which got a mass from Wtree and the breaking (1.1); some examples, with breaking patterns

as in (2.1), are as follows. For U(N) with adjoint Φ:

Λ3Ni
i = Λ2NW ′′(ai)

Ni

∏

j 6=i

m
−2Nj

Wij
= gNi

K+1Λ
2N
∏

j 6=i

(aj − ai)
Ni−2Nj . (2.10)

For SO(N) with adjoint, breaking SO(N) → SO(N0)×
∏K

i=1 U(Ni),

Λ
3(N0−2)
0 = gN0−2

2K+2Λ
2(N−2)

K∏

i=1

a
2(N0−2)−4Ni

i

Λ3Ni
i = 2−NigNi

2K+2Λ
2(N−2)a

−2(N0−2)
i

K∏

j 6=i

(a2i − a2j)
Ni−2Nj .

(2.11)

For Sp(N) with adjoint

Λ
3(N0+1)
0 = gN0+1

2K+2Λ
2(N+1)

K∏

i=1

a
2(N0+1)−2Ni

i

Λ3Ni
i = 2−NigNi

2K+2Λ
4(N+1)a

−4(N0+1)
i

K∏

j 6=i

(a2i − a2j )
Ni−2Nj ;

(2.12)
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the U(Ni) has index of embedding 2, which is why the U(Ni) one-instanton factor is related

to the Sp(N) two-instanton factor in (2.12). For SO(N) with symmetric tensor,

Λ
3(Ni−2)
i = gNi+2

K+1 Λ
2N−8

K∏

j 6=i=1

(ai − aj)
Ni+2−2Nj . (2.13)

For Sp(N) with antisymmetric A:

Λ
3(Ni+1)
i = gNi−1

K+1 Λ2N+4
K∏

j 6=i

(ai − aj)
Ni−1−2Nj . (2.14)

Finally, the term WH(gj,Λ) in (2.8) are additional non-perturbative contributions,

which can be regarded as coming from the massive, broken parts of the gauge group.

In the description with the glueballs Si integrated in, as in (1.2), the gaugino conden-

sation contribution comes from the first term in (1.3):

Wgc(Si,Λ) =

K∑

i=1

hiSi

(
log

(
Λ3
i

Si

)
+ 1

)
, (2.15)

and WH(gi,Λ) comes from the last terms in (1.3), upon integrating out the Si. When the

minima ai of the superpotential are widely separated, the contributionsWH from these last

terms are subleading as compared with Wgc. As in (1.2), the full glueball superpotential

(1.2) can be computed via the string theory geometric transition, in terms of certain period

integrals [2,3], as will be reviewed in the next section, or via the matrix models. In that

context, the term Wgc(Si,Λi) comes from the integration measure (as is also natural in

field theory, since it incorporates the U(1)R anomaly) and WH(Si, gj) can be computed

perturbatively [4,5]. The perturbative computation of WH(Si, gj) can also be understood

directly in the gauge theory [6], up to ambiguities in terms Sn with n > h = C2(G).

The string theory/ matrix model constructions yield a specific way of resolving these

ambiguities, which correspond to a particular UV completion of the gauge theory [8,9].

As discussed in the introduction, our present interest will be in analyzing this circle

of ideas when some of the gauge group factors in (1.1) are of low rank, or would naively

appear to be trivial, e.g. U(1), U(0), SO(2), SO(0), and Sp(0).

3. Geometric transition of U(N) and SO/Sp(N) theories

In this section we briefly review the type IIB geometric engineering of relevant U(N)

and SO/Sp(N) theories, and their geometric transition.
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3.1. U(N) with adjoint and Wtree = Tr
∑K+1

j=1
gi
j Φ

j

The Calabi–Yau geometry relevant to this theory [3] is the non-compact A1 fibration

W ′(x)2 + y2 + u2 + v2 = 0. (3.1)

This fibration has K conifold singularities at the critical points of W (x), i.e. at W ′(x) =

0. Near each of the singularities, the geometry (3.1) is the same as the usual conifold

x′2 + y2 + u2 + v2 = 0, which is topologically a cone with base S2 × S3.

The singularities can be resolved by blowing up a 2-sphere S2 = P1 at each singularity.

We can realize the U(N) gauge theory with adjoint matter and superpotential (2.2) in type

IIB superstring theory compactified on this resolved geometry, with N D5-branes partially

wrapping the K P1’s. The gauge theory degrees of freedom correspond to the open strings

living on these D5-branes. The classical supersymmetric vacuum is obtained by distribut-

ing the Ni D5-branes over the i-th 2-sphere P1
i with i = 1, · · · , K. The corresponding

breaking pattern of the gauge group is as in (2.1): U(N) →∏K
i=1 U(Ni).

At low energy, the gauge theory confines (when Ni > 1), each U(Ni) factor developing

nonzero vev of the glueball superfield Si. In string theory this is described by the geometric

transition [1,2,3] in which the resolved conifold geometry with P1’s wrapped by D5-branes

is replaced by a deformed conifold geometry

W ′(x)2 + fK−1(x) + y2 + u2 + v2 = 0, (3.2)

where fK−1(x) is a polynomial of degree K − 1 in x and parametrizes the deformation.

After the geometric transition, each 2-sphere P1
i wrapped by Ni D5-branes is replaced by

a 3-sphere Ai with 3-form RR flux through it:

∮

Ai

H = Ni, (3.3)

where H = HRR + τHNS and τ = C(0) + ie−Φ is the complexified coupling constant of

type IIB theory. We define the periods of the Calabi–Yau geometry (3.2) by

Si ≡
1

2πi

∮

Ai

Ω, Πi ≡
∫ Λb

Bi

Ω, (3.4)

where Ω is the holomorphic 3-form, Bi is the noncompact 3-cycle dual to the 3-cycle Ai,

and Λb is a cutoff needed to regulate the divergent Bi integrals. The IR cutoff Λb is to be

identified with the UV cutoff of the 4d gauge theory. The set of variables Si measure the

size of the blown up 3-spheres, and can be used to parametrize the deformation in place

of the K coefficients of the polynomial fK−1(x).
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The dual theory after the geometric transition is described by a 4d, N = 1 U(1)K

gauge theory, with K U(1) vector superfields Vi and K chiral superfields Si. If not for the

fluxes, this theory would be N = 2 supersymmetric U(1)K , with (Vi, Si) the N = 2 vector

super-multiplets, Si being the Coulomb branch moduli. This low-energy U(1)K theory has

a non-trivial prepotential F(Si) and the dual periods Πi in (3.4) can be written as

Πi(S) =
∂F
∂Si

. (3.5)

Without the fluxes, this prepotential can be understood as coming from integrating out

D3 branes which wrap the Ai cycles, and are charged under the low-energy U(1)’s [25].

The effect of the added fluxes is to break N = 2 supersymmetry to N = 1 by the

added superpotential [26,27]

Wflux =

∫
H ∧ Ω =

∑

i

(∮

Ai

H

∫ Λb

Bi

Ω−
∫ Λb

Bi

H

∮

Ai

Ω

)
. (3.6)

In the present U(N) case, (3.3) and (3.4) gives

Wflux =
K∑

i=1

(NiΠi − 2πiαSi), (3.7)

where ∮ Λb

Bi

H = α (3.8)

is the 3-form NS flux through the 3-cycle Bi and identified with the bare coupling constant

of the gauge theory by

2πiα =
8π2

g2b
= V. (3.9)

where V is the complexified volume of the P1’s. The N = 1 U(1)K vector multiplets Vi

remain massless, but the Si now have a superpotential, which fixes them to sit at discrete

vacuum expectation values, where they are massive. The fields Si are identified with the

glueballs on the gauge theory side.

The superpotential Wflux(Si) is the full, exact, effective superpotential in (1.2). As

can be verified by explicit calculations [2,3], the leading contribution to (3.7) is always of

the form

Wflux ∼
K∑

i=1

[NiSi(1− ln(Si/Λ
3
i ))− 2πiαSi], (3.10)

where Λi is related to the scale Λb via precisely the relation (2.10). This leading term

(3.10) is the gaugino condensation part of the superpotential, as in (1.3).
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3.2. SO and Sp theories

The string theory construction of SO/Sp(N) theories can be obtained from the above

U(N) construction, by orientifolding the geometry before and after the geometric transition

by a certain Z2 action. The geometric construction of SO/Sp(N) theory with adjoint was

discussed in [28,29,20,30], and in that case the invariance of the geometry (3.2) under

the Z2 action requires that the polynomial W (x) be even. The geometric construction of

SO/Sp(N) theory with symmetric/antisymmetric tensor was studied in [31,32,13].

In the classical vacuum of the “parent” U(2N) theory, the gauge group is broken into

a product of U(Ni) groups. When a U(Ni) factor is identified with another U(Ni) by the

Z2 orientifold action, they lead to a single U(Ni) factor. When a U(Ni) factor is mapped

to itself by the Z2 orientifold action, it becomes an SO(Ni) or Sp(
1
2Ni), depending on the

charge of the orientifold hyperplane. As a result, the classical vacuum of the “daughter”

SO/Sp(N) theory has gauge group broken as in (2.1), depending on whether the theory

is SO or Sp with adjoint, or SO with symmetric tensor, or Sp with antisymmetric tensor:

SO/Sp(N) →
∏

i

Gi(Ni), Gi = U, SO, or Sp. (3.11)

The 3-form RR fluxes from orientifold hyperplanes makes an additional contribution

to the superpotential (3.6), and the flux superpotential can be written as

Wflux =
∑

i

[N̂iΠi(Si)− 2πiηiαSi], (3.12)

where

N̂i =

{
Ni Gi = U(Ni),
1
2
Ni ∓ 1 Gi = SO(Ni)/Sp(

1
2
Ni),

ηi =

{
1 Gi = U ,
1/2 Gi = SO/Sp.

(3.13)

N̂i is the net 3-form RR flux through the Ai cycle. For U(Ni) and Sp(Ni), N̂i in (3.13)

is the dual Coxeter number (1.4), while for SO(Ni) it is half3 the dual Coxeter number

(1.4). The 1/2 in (3.13) is because the integration over the Ai cycles should be halved due

to the Z2 identification.

3.3. Relations between SO/Sp theories and U(N) theories

The result (3.12), with (3.13), gives the exact superpotential of the SO/Sp theories

in terms of the same periods Si and Π(Si) as an auxiliary U theory. This was first noted

3 So we get h replaced with h/2 for SO groups in (2.9). While one could absorb the overall

factor of 2 into the definition of Λ, the number of vacua should be h whereas here we apparently

get h/2 for SO groups. This is because the we don’t see spinors or the Z2 part of the center which

acts on them; it’s analogous to U(2N) being restricted to vacua with confinement index 2.
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in [11] at the level of the Konishi anomaly equation as a map between the resolvents of

Sp theory with antisymmetric matter and U theory with adjoint matter. In [13], it was

generalized to the map between the resolvents of SO/Sp theories with two-index tensor

matter and U theory with adjoint matter, and string theory interpretation was discussed.

In this subsection we will derive this map from the string theory perspective using the flux

superpotential (3.12). Furthermore, we will clarify the relation of the superpotential and

the scale of the SO/Sp theories to those of the U theory. The map between resolvents can

be derived from these results. For Sp(N) theory with an antisymmetric tensor, the scale

relation was obtained in a different way in [11].

As a first example, consider SO(N) with an adjoint, with the breaking pattern as in

(2.1). The geometric transition result (3.12) and (3.13) implies that the exact superpoten-

tial is the same as for the U(N − 2) theory with adjoint, with breaking pattern map

SO(N) → SO(N0)×
K∏

i=1

U(Ni) ⇐⇒ U(N − 2) → U(N0 − 2)×
K∏

i=1

U(Ni)
2. (3.14)

The map between the superpotential is

W
SO(N)
exact = 1

2W
U(N−2)
exact . (3.15)

The SO(N) scale matching relation (2.11) is compatible with the map (3.14), since (2.10)

for the theory (3.14) reproduces (2.11).

Likewise, Sp(N) with adjoint has the same exact superpotential as for the U(2N +2)

theory with adjoint, with

Sp(N) → Sp(N0)×
K∏

i=1

U(Ni) ⇐⇒ U(2N + 2) → U(2N0 + 2)×
K∏

i=1

U(Ni)
2,

W
Sp(N)
exact = 1

2W
U(2N+2)
exact .

(3.16)

The Sp(N) scale matching relations (2.12) follow from the U(N) matching relations (2.10)

with the replacement (3.16), with the understanding that the U(2N + 2) and U(2N0 + 2)

one-instanton factors correspond to the Sp(N) and Sp(N0) two-instanton factors; this is

related to the index of the imbedding mentioned after (2.12), and is accounted for by

dividing the U(2N + 2) superpotential by two, as above.

Next consider Sp(N) with antisymmetric tensor A and breaking pattern as in (2.1).

The geometric transition result (3.12) and (3.13) implies that the exact superpotential is

the same as for the U(2N + 2K) theory with adjoint and breaking pattern

Sp(N) →
K∏

i=1

Sp(Ni) ⇐⇒ U(2N + 2K) →
K∏

i=1

U(2Ni + 2). (3.17)
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In the present case, comparing the matching relations (2.14) for Sp(N) with symmetric

tensor with the matching relations (2.10) for U(2N + 2K) with adjoint, for the mapping

as in (3.17) requires that the scales of the original Sp(N) on the LHS of (3.17) and the

U(2N + 2K) on the RHS of (3.17) be related as

Λ
2(N+K)
U(2N+2K) = g−2

K+1Λ
2N+4
Sp(N). (3.18)

Then the Λi of the unbroken groups on both sides of (3.17) coincide, with the understanding

that the U(2Ni+2) one-instanton factors correspond to the Sp(Ni) two-instanton factors,

as above. The map between the superpotential is

W
Sp(N)
exact = 1

2
[W

U(2N+2K)
exact −∆Wcl], ∆Wcl = 2

K∑

i=1

W (ai),

i.e. writing Wexact = Wcl +Wquant, W
Sp(N)
quant = 1

2W
U(2N+2K)
quant .

(3.19)

Note that, in order for the superpotentials on the two sides of (3.17) to fully coincide,

one must compensate the classical mismatch ∆Wcl, since each well is occupied by two

additional eigenvalues in the theory on the RHS of (3.17). In the string theory geometric

transition realization, this constant shift, which is independent of N , Λ, and the glueball

fields Si, is most naturally interpreted as an additive shift of the superpotential on the Sp

side, which can be regarded as coming from the orientifold planes both before and after

the transitions. The classical shift of ∆Wcl leads to slightly different operator expectation

values (as computed via Weff(gp,Λ) as the generating function) between the Sp and U

theory, as was seen in the example of [11]. Also, writing the map as in (3.17), we want the

vacuum with confinement index 2 [11]. We could equivalently replace the RHS of (3.17)

with U(N + K) → ∏K
i=1 U(Ni + 1), in which case we would not have to divide by 2 in

(3.19).

Likewise, SO(N) with symmetric tensor S has exact superpotential related to that of

a U(N − 2K) theory with adjoint as

SO(N) →
K∏

i=1

SO(Ni) ⇐⇒ U(N − 2K) →
K∏

i=1

U(Ni − 2),

W
SO(N)
exact = 1

2 [W
U(N−2K)
exact +∆Wcl], ∆Wcl = 2

K∑

i=1

W (ai).

(3.20)

Comparing the matching relations (2.13) for SO(N) with symmetric tensor with those of

(2.10) for U(N − 2K) with adjoint requires that the scales of the original SO(N) on the

LHS of (3.20) and those of the U(N − 2K) theory on the RHS be related as

Λ
2(N−2K)
U(N−2K) = g4K+1Λ

2N−8
SO(N). (3.21)
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Then the Λi of the unbroken groups on both sides of (3.20) coincide. Again, in order for

the superpotentials on the two sides of (3.20) to fully coincide, one must correct for the

classical mismatch ∆Wcl coming from the fact that the U(N − 2K) theory has two fewer

eigenvalues in each well.

In appendix A we will discuss these relations from the matrix model viewpoint. In

this context, the relation relevant for (3.14) and (3.16) was conjectured in [19,20] based

on explicit diagrammatic calculations, and it was proven for the case of unbroken gauge

group N0 = N in [21]. This will be generalized in Appendix A to all breaking patterns.

Likewise, the matrix model relation relevant for (3.17) and (3.20) will be proven in the

appendix; this is a generalization of the connection found in [11] for the theories in (3.17)

and (3.20).

4. String theory prescription for low rank

The discussion of the previous section applies for all Ni ≥ 0. We now discuss under

which circumstances one expects a transition in string theory, where S3
i ’s grows, and

therefore an effective glueball field Si should be included in the superpotential. Whether

or not there is a geometric transition in string theory is a local question, so each S3
i can

be studied independently. Near any S3
i the local physics is just a conifold singularity, so

we only need to consider the case of a conifold singularity.

4.1. Physics near a conifold singularity

As we saw, U(N), SO/Sp(N) gauge theory can be realized in type IIB theory as

the open string theory living on the D5-branes partially wrapped on the exceptional P1

of a resolved conifold geometry. There is a P1 associated to each critical point of the

polynomial W (x). By the geometric transition duality [2,3], this gauge theory is dual to

the closed string theory in the deformed conifold geometry where the P1’s have been blown

down and S3’s are blown up instead.

Let us focus on one P1 with N ≥ 0 D5-branes wrapping it. This corresponds to

focusing on one critical point on the gauge theory side. We allow N = 0, which corresponds

to an unoccupied critical point. In the neighborhood, the geometry after the geometric

transition is approximately a deformed conifold x2 + y2 + z2 + w2 = µ with a blown up

S3. The low energy degrees of freedom in the four-dimensional theory are the N = 1 U(1)

photon vector superfield V and the N = 1 chiral superfield S. The bosonic component of

S is proportional to µ and measures the size of the S3.

First, consider the case without fluxes. Then the closed string theory has N = 2 and

there is one N = 2 U(1) vector multiplet (V, S). It is known that as the size of the S3 goes

to zero there appears an extra massless degree of freedom [25], which corresponds to the
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D3-brane wrapping the S3. The mass of the wrapped BPS D3-brane is proportional to the

area, S, of the S3, so the mass becomes zero as the S3 shrinks to zero, i.e. as S → 0. This

extra degree of freedom is described as an N = 2 hypermultiplet charged under the U(1)

(of V ). Let us write this hypermultiplet in N = 1 language as (Q, Q̃), where Q and Q̃

are both N = 1 chiral superfields with opposite U(1) charges. The N = 2 supersymmetry

requires the superpotential

WQ =
√
2QQ̃S, (4.1)

which indeed incorporates the above situation that the Q, Q̃ become massless as S → 0.

The D-flatness is

|Q|2 − |Q̃|2 = 0, (4.2)

and the F -flatness is

QS = Q̃S = QQ̃ = 0. (4.3)

The only solution to these is

Q = Q̃ = 0, S : any, (4.4)

which just means that S ∼ µ is a modulus.

Now let us come back to the case with the fluxes. As reviewed in the last section,

the fluxes give rise to a superpotential (3.6) which breaks N = 2 to N = 1 [26,27]. As in

(3.12), the local flux superpotential contribution is

Wflux(S) ≃ N̂S[1− ln(S/Λ3)]− 2πiηαS, (4.5)

where we just keep the leading order term in (3.12), as in (3.10), with

N̂ =

{
N U(N),
N/2∓ 1 SO(N)/Sp( 12N),

η =

{
1 U(N),
1/2 SO(N)/Sp( 12N).

(4.6)

The scale Λ is written in terms of the bare coupling Λb and the coupling constants in the

problem, as before, and 2πiα is related to the bare gauge coupling by (3.9).

In the following, we discuss the cases with N̂ = 0, N̂ > 0 and N̂ < 0 in order.

• N̂=0 case

In this case, the total superpotential is simply the sum of (4.1) and (4.5):

W =
√
2QQ̃S − 2πiηαS. (4.7)

The only solution to the equation of motion is

|Q|2 = |Q̃|2, QQ̃ =
2πiηα√

2
, S = 0. (4.8)
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This is consistent with the fact that α is proportional to the volume of the P1, and the

D3-brane condensation 〈QQ̃〉 corresponds to the size of the P1. Furthermore, since

〈S〉 = 0, the superpotential vanishes: W = 0. Therefore, for N̂ = 0, i.e. for U(0) and

SO(2), geometric transition does not take place and we should set the corresponding

glueball field S → 0 from the beginning.

• N̂>0 case

In this case, there is a net RR flux through the A-cycle:
∮
A
H = N̂ . This means

that the D3-brane hypermultiplet (Q, Q̃) is infinitely massive, because the RR flux

will induce N̂ units of fundamental charge on the D3-brane. Since the D3-brane is

wrapping a compact space S3, the fundamental charge on it should be canceled by N̂

fundamental strings attached to it. Those fundamental strings extend to infinity and

thus cost infinite energy4. Therefore, we can forget about Q, Q̃ in this case, and the

full superpotential is given just by the flux contribution (4.5). The equation of motion

gives

SN̂ ≃ Λ3N̂e−2πiηα, (4.9)

which corresponds to the confining vacua of the gauge theory. Note that this case

includes U(1) and Sp(0); these theories have a dual confining description. This may

sound a little paradoxical, but is related to the fact that the string theory computes

not for the standard G(N) gauge theory but the associated G(N + k|k) higher rank

gauge theory, which is confining and differs from standard U(1) and Sp(0) due to

residual instanton effects [9].

• N̂<0 case

In this case, the same argument as the N̂ > 0 case tells us that we should not include

the D3-brane fields Q, Q̃. Hence the superpotential is just the flux part (4.5), which

again leads to

SN̂ ≃ Λ3N̂e−2πiηα. (4.10)

However, now (4.10) is physically unacceptable, since S diverges in the weak coupling

limit where the bare volume of P1 becomes V = 2πiα → ∞ (gb → 0) – i.e. taking

P1 large would lead to S3 also being large, which does not make sense geometrically.

The resolution is that S cannot be a good variable: the S3 does not actually blow up,

and S should be set to zero, S → 0, also for this case. Though S is set to zero, the

non-zero flux can lead to a non-zero superpotential contribution Wflux = N̂Π(S → 0).

Note that the above result concerning the sign of N̂ does not mean the gauge theory

prefers D5-branes to anti-D5-branes; it just means that one should choose the sign of the

4 This phenomenon is the same as that observed in the context of AdS/CFT [33,34,35].
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NS flux (i.e. the sign of 2πiα) appropriately. If one wraps the P1 with anti-D5-branes, one

should flip the sign of the NS flux in order to have a blown up S3 (which can be viewed

as a generalization of Seiberg duality to Nf = 0).

4.2. General prescription

Although we focused on the physics around just one P1 in the above, the result is

applicable to general cases where we have multipleP1 wrapped with D5-branes, because the

geometry near each P1 is identical to the conifold geometry considered above. Therefore,

if we replace N̂ with N̂i, all of the above conclusions carry over.

Once we have understood the physics, we can forget about the D3-brane hypermulti-

plet (Q, Q̃) and state the result as a general prescription for how string theory treats U(0),

SO(0), SO(2), and Sp(0), U(1) groups in the geometric dual description:

• U(0), SO(0), SO(2):

There are no glueball variables associated to these gauge groups, so we should take

the corresponding S → 0.

• All other groups, including Sp(0), and U(1):

We should consider and extremize the corresponding glueball field S.

This prescription should also be applied when using the matrix model [4,36,5] to

compute the glueball superpotentials.

5. Examples

Let us scan over all of the examples of (2.1), considering the vacuum where the gauge

group is unbroken, and ask when glueball fields Si for the apparently trivial groups in

(2.1) should be set to zero, or included and extremized. For the first three cases in (2.1),

U(N), SO(N), and Sp(N) with adjoint, the breaking (2.1) is G → G× U(0)K−1, and the

glueball fields Si for the U(0) factors are to be set to zero. This justifies the analysis of

these theories in the unbroken vacua in [37,21]. The next case is SO(N) with a symmetric

tensor S, where the vacuum with unbroken gauge group is to be understood as SO(N) →
SO(N)× SO(0)K−1, and again the glueball fields Si for the SO(0) factors are set to zero.

This eliminates the Veneziano-Yankielowicz part of the superpotential for SO(0), but the

−1 unit of flux associated with each SO(0) does contribute to flux terms N̂iΠi = −Πi in

(3.12), even though this does not contain SO(0) glueballs any more.

The next case is Sp(N) with an antisymmetric tensor, where the vacuum with unbro-

ken gauge group is to be understood as Sp(N) → Sp(N) × Sp(0)K−1. Unlike the above

cases, here we must keep and extremize the Si for the Sp(0) factors, as will be further

discussed shortly.
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For the next to last example in (2.1), U(N) with Φ+S+S̃, the vacuum with unbroken

gauge group is to be understood as U(N) → SO(0)× U(N)× U(0)K−1, and the glueball

fields Si for SO(0) and U(0) are to be set to zero. Finally, for the last example in (2.1),

U(N) with Φ + A + Ã, the vacuum with unbroken gauge group is to be understood as

U(N) → Sp(0) × U(N) × U(0)K−1. Though the string engineering of these examples

differs somewhat from those discussed in sect. 4 (it was obtained in [30]), the general

prescription of sect. 4 is expected to carry over in general: the glueball field S0 for the

Sp(0) factor should be included and extremized, rather than set to zero. On the other

hand, the Si for the U(0) factors are set to zero. These latter two theories in (2.1) were

considered in [24] and it was noted there that for the case with antisymmetric one expands

on the matrix model side around a different vacuum than would be naively expected; this

indeed corresponds to keeping and extremizing the glueball field S0 for the Sp(0) factor,

as we have discussed.

We now illustrate some other breaking patterns in the examples of (2.1), from the

matrix model perspective, for the case of K = 2. We also compare with standard gauge

theory results and generally find agreement, even in cases where there was room for dis-

agreement because of the possibility of residual instanton effects along the lines of [9].

As will be discussed in more detail in the following section, the agreement is thanks to a

remarkable interplay of different residual instanton contributions.

5.1. SO/Sp(N) theory with adjoint

Consider N = 2 SO(2N)/Sp(N) theory broken toN = 1 by a tree level superpotential

for the adjoint chiral superfield Φ:

Wtree =
1
2
Tr[W (Φ)], W (x) =

m

2
x2 +

g

4
x4. (5.1)

In the SO case, we can skew-diagonalize Φ as

Φ ∼ diag[λ1, · · · , λN ]⊗ iσ2. (5.2)

The superpotential (5.1) has critical points at λ = 0 and λ = ±
√

m/g. The classical

supersymmetric vacuum of the theory is given by distributing 2N0 of the 2N “eigenvalues”

λi at the critical point λ = 0 and N1 “eigenvalue” pairs at λ = ±
√

m/g, with N0+N1 = N .

In this vacuum, the gauge group breaks as SO(2N) → SO(2N0) × U(N1) or Sp(N) →
Sp(N0)× U(N1).

In the matrix model prescription, the effective superpotential in these vacua is calcu-

lated by matrix model as

WDV(S0, N0;S1, N1) = (N0 ∓ 1)S0[1− ln(S0/Λ
3
0)] +N1S1[1− ln(S1/Λ

3
1)] +Wpert,

Wpert = 2N0
∂FS2

∂S0
+N1

∂FS2

∂S1
+ 4FRP 2 .

(5.3)
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where FS2 and FRP 2 are the S2 and RP 2 contributions, respectively, to the free energy of

the associated SO/Sp(N) matrix model, as defined in Appendix A. The scales Λ0, Λ1 in

(5.3) are the energy scales of the low energy SO(2N0)/Sp(N0), U(N1) theories with the

Φ field integrated out, respectively. They are related to the high energy scale Λ by the

matching conditions as in (2.11) and (2.12), which yields

(Λ0)
3(N0∓1) = mN0−N1∓1gN1Λ2(N∓1),

(Λ1)
3N1 = 2−N1m−2N0±2g2N0+N1∓2Λ4(N∓1).

(5.4)

The matrix model free energy is computed in Appendix A, and the result is

Wpert =(N0 ∓ 1)

[(
3

2
S2
0 − 8S0S1 + 2S2

1

)
α+

(
−9

2
S3
0 + 42S2

0S1 − 36S0S
2
1 + 4S3

1

)
α2

+

(
45

2
S4
0 − 932

3
S3
0S1 + 523S2

0S
2
1 − 608

3
S0S

3
1 +

40

3
S4
1

)
α3

]

+N1

[(
−2S2

0 + 2S0S1

)
α+

(
7S3

0 − 18S2
0S1 + 6S0S

2
1

)
α2

+

(
−233

6
S4
0 +

524

3
S3
0S1 − 152S2

0S
2
1 +

80

3
S0S

3
1

)
α3

]
+O(α4),

(5.5)

where α ≡ g/m2. The result (5.5) agrees with the one obtained in [38], where the glueball

superpotential was calculated by evaluating the periods (3.6). The full result, (5.3) and

(5.4), has the expected general form (3.12):

Weff = (N0 ∓ 1)Π0(S0, S1) +N1Π1(S0, S1)− 2πiα( 12S0 + S1). (5.6)

The general prescription in section 3 reads in the present case as follows:

• SO(2N)/Sp(N)→SO(2N)/Sp(N)×U(0) (unbroken SO/Sp):

Set N1 = 0, S1 = 0. Then the superpotential is

Weff (S0, N0) = (N0 ∓ 1)S0[1− ln(S0/Λ
3
0)] + 2 (N0 ∓ 1)

∂FS2

∂S0

∣∣∣∣
S1=0

. (5.7)

This superpotential coincides with that of U(2N∓2) with adjoint and breaking pattern

U(2N ± 2) → U(2N ∓ 2) × U(0) × U(0), as expected from the map (3.14) or (3.16).

As shown in [21] for SO(2N), this matrix model result agrees with that of standard

gauge theory, via using the corresponding Seiberg-Witten curve.

• SO(2N)→SO(0)×U(N):

Set N0 = 0 and take S0 → 0, which eliminates the Veneziano–Yankielowicz part for

the SO(0). Then the superpotential is

Weff(S1) = NS1[1− ln(S1/Λ
3
1)] + 4 FRP 2 |S0=0 .

= −Π0(S0, S1)|S0=0 +NΠ1(S0, S1)|S0=0 − 2πiαS1.
(5.8)
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Note that
∂FS2

∂S1

∣∣∣
S0=0

= 0 because FS2 does not contain terms with S1 only (all terms

are of the form Sn
0 S

m
1 with n > 0). And though the Veneziano-Yankielowicz part of the

superpotential for SO(0) is eliminated via S0 → 0, the −1 units of flux associated with

SO(0) does make a contribution in (5.8), with the non-zero terms in −Π0(S0, S1)|S0=0

in the second line of (5.8) coming from the term 4FRP 2 |S0=0.

• SO(2N)→SO(2)×U(N−1):

Set N0 = 1, S0 = 0 and remove the Veneziano–Yankielowicz part for the SO(2). Then

the superpotential is

WDV(S1) = (N − 1)S1[1− ln(S1/Λ
3
1)], (5.9)

where we used
∂FS2

∂S1

∣∣∣
S0=0

= 0 again. Integrating out S1 gives

Wlow = (N − 1)Λ3
1 = 1

2(N − 1)gΛ4 (5.10)

• Sp(N)→Sp(0)×U(N):

Set N0 = 0 in the equation and keep both S0 and S1. Then the superpotential is

WDV(S0, N0, S1, N1) = S0[1− ln(S0/Λ
3
0)] +NS1[1− ln(S1/Λ

3
1)] +Wpert,

Wpert = N1
∂FS2

∂S1
+ 4FRP 2 = N1

∂FS2

∂S1
+ 2

∂FS2

∂S0
.

(5.11)

For various breaking patterns, we integrated out the glueball superfield(s) from the

glueball superpotential (5.7)–(5.11), and calculated the low energy superpotential Wlow

as a function of coupling constants m, g, and the scale Λ. Having obtained the actual

matrix model results, we can compare to the superpotential as computed via standard

gauge theory methods, such as via factorizing of the Seiberg–Witten curve. This method

is reviewed in Appendix B, and the results are found to agree with the matrix model results

completely. The resulting Wlow is shown in Table 1.

The SO(2N+1) theory with adjoint in the SO(2N+1) → U(1)N vacuum was studied

diagrammatically in [39].

5.2. Sp(N) theory with antisymmetric tensor

Consider Sp(N) theory with an antisymmetric tensor chiral superfield A = −AT .

Take cubic tree level superpotential

Wtree =
1
2
Tr[W (Φ)], W (x) =

m

2
x2 +

g

3
x3, (5.12)
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breaking pattern W

0

low

SO(4)! SO(4)� U(0) m�

2

+

3

2

g�

4

SO(4)! SO(2)� U(1)

1

2

g�

4

SO(4)! SO(0)� U(2) m�

2

�

1

2

g�

4

SO(6)! SO(6)� U(0) 2m�

2

+ 3g�

4

SO(6)! SO(4)� U(1) g�

4

SO(6)! SO(2)� U(2) g�

4

SO(6)! SO(0)� U(3)

3

2

(m

2

g�

8

)

1=3

�

1

2

(g

5

�

16

=m

2

)

1=3

� g

3

�

8

=6m

2

+ � � �

SO(8)! SO(8)� U(0) 3m�

2

+

9

2

g�

4
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1=2

�

3
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2

�

6

=m� (g

7

=m

5

)

1=2

�

9

+ � � �
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2

�

6

=m� 4g

5

�
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=m

4

+ 32g

8

�
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7
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3

2
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4
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�

3
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2

�

6
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1

4
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7
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5

)
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�

9
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2
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4
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4
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2
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9

2
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4
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1=2

�

3

+ g

2

�

6

=m� (g

7

=m

5

)

1=2

�

9

+ � � �

Sp(4)! Sp(0)� U(2) 2g

2

�

6

=m� 4g

5

�

12

=m

4

+ 32g

8

�

18

=m

7

+ � � �

Table 1: The low energy superpotential calculated from the factorization of the
Seiberg-Witten curve and from matrix model. In the above, the classical contribu-
tion has been subtracted: Wlow = −N1m

2/4g +W ′

low.

where Φ = AJ , and J is the invariant antisymmetric tensor J = 1N ⊗ iσ2. We do not

require A to be traceless, i.e. Tr[Φ] = Tr[AJ ] 6= 0. By a complexified Sp(N) gauge rotation,

Φ can be diagonalized as [40]

Φ ∼= diag[λ1, · · · , λN ]⊗ 12, λi ∈ C. (5.13)

The superpotential (5.12) has critical points at λ = 0,−m/g. The classical supersymmetric

vacuum of the theory is given by distributing N1 and N2 “eigenvalues” λi at the critical

point λ = 0 and λ = −m/g, respectively, with N1+N2 = N , breaking Sp(N) → Sp(N1)×
Sp(N2).

The glueball superpotential is calculated from the associated Sp(N) matrix model as

WDV(S1, N1;S2, N2) =(N1 + 1)S1[1− ln(S1/Λ
3
1)]

+ (N2 + 1)S2[1− ln(S2/Λ
3
2)] +Wpert,

Wpert = 2N1
∂FS2

∂S1
+ 2N2

∂FS2

∂S2
+ 4FRP 2 .

(5.14)
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The scales Λ1, Λ2 in (5.3) respectively are the energy scales of the low energy Sp(N1),

Sp(N2) theories with the Φ field integrated out. They are related to the high energy scale

Λ by the matching conditions as in (2.14), which yields

(Λ1)
3(N1+1) = mN1−2N2−1g2N2Λ2N+4,

(Λ2)
3(N2+1) = (−1)N2−1m−2N1+N2−1g2N1Λ2N+4.

(5.15)

The matrix model free energy is computed in Appendix A, and the result is

Wpert =2(N1 + 1)

[(
−S2

1 + 5S1S2 −
5

2
S2
2

)
α+

(
−16

3
S3
1 +

91

2
S2
1S2 − 59S1S

2
2 +

91

6
S3
2

)
α2

+

(
−140

3
S4
1 +

1742

3
S3
1S2 − 1318S2

1S
2
2 +

2636

3
S1S

3
2 − 871

6
S4
2

)
α3

]

+ 2(N2 + 1)

[
S1 ↔ S2, α → −α

]
,

(5.16)

where α ≡ g2/m3. This is as expected from the map (3.17) and [11].

In particular, let us concentrate on the unbroken case, N2 = 0. Unlike [10,15], we do

not set S2 = 0, but rather keep S2 non-zero and extremize with respect to it, according to

our general prescription, to obtain the actual matrix model result. After integrating out

S1 and S2 from (5.16), we obtain the superpotential as a power series in Λ1 and Λ2 as

Wlow = (N + 1)Λ3
1 +Λ3

2 + (higher order terms in Λ1,2). (5.17)

The matching relation (5.15) gives

Λ3
2 = −(Λ3

1)
N+1αN , (5.18)

so the terms containing Λ2 in (5.17) starts to contribute to the superpotential at order

(Λ3
1)

N+1, i.e. like Sp(N) instantons. If we use the relation (5.18) and write out all the

terms in (5.17), we obtain

N = 0 : Wlow = O(α4),

N = 1 : Wlow = 2Λ3
1 +O(α4),

N = 2 : Wlow = 3Λ3
1 − Λ6

1α− 2Λ9
1α

2 − 187

27
Λ12
1 α3 +O(α4),

N = 3 : Wlow = 4Λ3
1 − 3Λ6

1α− 47

6
Λ9
1α

2 − 75

2
Λ12
1 α3 +O(α4),

N = 4 : Wlow = 5Λ3
1 − 5Λ6

1α− 13Λ9
1α

2 − 65Λ12
1 α3 +O(α4).

(5.19)

Thus properly accounting for S2, it turns out that these matrix model results agree per-

fectly, up to the order presented, with the standard gauge theory results (Eq. (4.13) of
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[10]). (The discrepancies found in [10] set in at order Λ
3(N+1)
1 , and are cancelled e.g.

by (5.18).) In (5.19), for N = 0, 1, there were rather remarkable cancellations between

the instanton contributions from Sp(N1) and Sp(N2). This will be further discussed and

generalized in the next section.

The matrix model prediction for the superpotential of the SO(2N) theory with sym-

metric tensor can similarly be obtained by simply changing the Ni +1 in (5.16) to Ni − 1.

It should be possible to compute the superpotential from gauge theory using the duality

for this theory [41]. The result is expected to be compatible with the map (3.20) to the

superpotential computed for the U(N − 2K) theory with adjoint.

6. Residual Instantons: String theory (matrix model) versus gauge theory

A remarkable aspect of the string theory (matrix model) computation of the effective

superpotential is that (1.3) can be obtained purely in terms of the dynamics of the low-

energy
∏K

i=1 G(Ni) theory on the RHS of (1.1). The only information needed about the

high-energy G(N) gauge theory is the perturbative contribution of the G(N)/
∏

i Gi(Ni)

ghosts to the glueball superpotential (1.3), as discussed in [42], along with the matching

relations connecting the scales Λi of the low-energyGi(Ni) factors to the scale Λ of the high-

energy G(N) theory. This is very different from the conventional description of standard

gauge theory, where there can be non-perturbative contributions to Wlow which are not

readily seen in terms of the low-energy theory on the RHS of (1.1). An example of such

an effect is instantons in the broken part of the group when π3(G(N)/
∏

i Gi(Ni)) 6= 0 (see

e.g. [43]). Nevertheless, the string theory/ matrix model does properly reproduce such

effects, via a low-energy description.

A gauge theory interpretation for the string theory/ matrix model results was given in

[8,9]: the string theory / matrix model results actually refer to a particularly natural UV

completion of the original G(N) theory, where it is embedded in the supergroup G(N+k|k)
with k large. This latter theory has a Higgs branch, where k can be reduced successively,

eventually Higgsing the theory down to the original G(N) theory. More generally, the

theory with breaking pattern (1.1) is replaced with

G(N + k|k) →
K∏

i=1

Gi(Ni + ki|ki), (6.1)

which has a Higgs branch flat direction connecting it to (1.1). Consideration of the par-

ticular matter content of the G(N + k|k) theories along the Higgs branch, which often has

extended supersymmetry, suggests that no dynamically generated superpotential ever lifts

this Higgs branch moduli space, i.e. that the superpotentials of these particular theories

are always independent of the location of the theory on this Higgs branch [9]. Moving along
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the Higgs branch has the effect of reducing k, and this expected independence of the super-

potential of the position on the Higgs branch fits with the fact that the G(N +k|k) matrix

model results are k independent, because all k dependence cancels in the supertraces.

Because of the expected independence of the superpotential on the Higgs branch, and

because we Higgs back to the original G(N) theory, in most cases, this “F-completion”

of the original G(N) theory into the G(N + k|k) theory is of no consequence. There are,

however, a few rare exceptions, where the superpotential of the Higgsed G(N + k|k) the-
ory differs from that of the standard G(N) theory. This difference comes from residual

instantons in G(N + k|k)/G(N), which need not decouple even if G(N + k|k) is Higgsed

to G(N) far in the UV. As verified in [9], these residual instanton contributions precisely

account for the few differences between the string theory (matrix model) results and stan-

dard gauge theory, for example the glueball superpotentials, with coefficient h = 1, for

U(1) and Sp(0), e.g. with an adjoint and quadratic superpotential.

In many cases, however, these residual instanton contributions sum up to yield pre-

cisely the result expected from standard gauge theory, including superpotential contribu-

tions which in standard gauge theory would not have had a known low-energy description.

In particular, residual instanton contributions which could have lead to potential discrep-

ancies with standard gauge theory often completely cancel. The cancellation occurs once

one sums over the different terms i in (1.2), upon using the precise matching relation

between the low-energy scales Λi, and the original high-energy scale Λ.

As an example, consider U(K) with adjoint matter and breaking pattern U(K) →
U(1)K . For K = 1 the string theory (matrix model) description includes a residual instan-

ton effect, yielding Wlow = Λ3
L rather than the standard gauge theory answer Wsgt = 0 [9].

But for all K > 1 the string theory/ matrix model result is Wlow = 0, in agreement with

the standard gauge theory expectation for U(K) → U(1)K . The result Wlow = 0 looks

like a remarkable cancellation because the glueball superpotential Weff(S1, . . . SK) is quite

non-trivial. Nevertheless, upon solving for the 〈Si〉 and plugging back in, the exact result

for Wlow = Weff (〈Si〉) is zero, as was proven in [44].

To illustrate this cancellation, consider the leading order gaugino condensation contri-

bution to Weff(Si) in the string theory (matrix model) constructions, where the unbroken

U(1) factors in U(K) → U(1)K contribute as in (2.15), with hi = 1, unlike in standard

gauge theory:

Wgc(Si) =
k∑

i=1

Si

(
log(

Λ3
i

Si
) + 1

)
, (6.2)

with Λ3
i = gK+1Λ

2N
∏

j 6=i(aj − ai)
−1 by using (2.10) with all Ni = 1. Though this is a
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non-trivial superpotential, it vanishes upon integrating out the Si:

Wgc(〈Si〉) =
K∑

i=1

Λ3
i = gK+1Λ

2N
K∑

i=1

∏

j 6=i

(aj − ai)
−1 = g2k+1Λ

2N

∮
dx

2πi

1

W ′(x)
= 0. (6.3)

The contour in (6.3) encloses all the zeros of W ′(x), and we get zero for all K > 1 by

pulling the contour off to infinity. We see here why K = 1 is different: we then get a

residue at infinity, leading to the low energy superpotential WU(1) = Λ3
L, as in (2.9), with

hU(1) = 1 as in (1.4).

To give another example of such a cancellation of residual instanton effects, consider

the string theory (matrix model) result for Sp(N) with an antisymmetric tensor A, with

Wtree having K critical points, for the case N = 0. For the case of K = 1, the superpo-

tential is just a mass term for A and the low-energy superpotential is the Sp(0) gaugino

condensation superpotential, with h(Sp(0)) = 1: W = Λ3, unlike standard gauge theory.

Again, this can be understood as a residual instanton effect in the F-completion of Sp(N)

to Sp(N + k|k), which is present precisely for the case N = 0 [9]. For a higher order

superpotential, K > 1, we would write the breaking pattern as Sp(0) → Sp(0)K . For all

K > 1, the residual instanton effects all cancel, precisely as in the U(K) → U(1)K exam-

ple discussed above; in fact, the two theories have the same effective superpotential Weff

(aside from the classical difference), as discussed in [11] and sect. 3.3. Thus, for example,

(6.3) can also be interpreted as the leading gaugino condensation contributions from the

Sp(0)K factors, and where we now use the matching relation (2.14) to relate the Λ3
i to

gK+1Λ
2K
∏

j 6=i(aj − ai)
−1. Again, there is complete cancellation in Weff here, except for

the case K = 1.

More generally, for Sp(N) with antisymmetric, breaking as Sp(N) → ∏K
i=1 Sp(Ni),

the results obtained via the string theory / matrix model glueball potentialWeff(S1, . . . SK),

upon integrating out the Si, appears to always agree with standard gauge theory results

for the superpotential [40], as seen in the examples of [11] and (5.19). This agreement

comes about via a remarkable interplay between the different terms i in (3.12). If we

treated the scales Λi of the Sp(Ni) factors as if they were initially independent, each term

N̂iΠ(〈Si〉)−2πiηi〈Si〉 in (3.12) would be a complicated function of Λi, which does not have

a known, conventional, interpretation in terms of standard gauge theory for the low-energy

Sp(Ni) factor. But upon adding the different i terms and using the matching relations

relating Λi to Λ, e.g. (2.14), one nevertheless obtains the standard gauge theory results,

thanks to an intricate interplay between the different terms i.

By the map of (3.17) [11], the agreement between string theory / matrix models and

standard gauge theory for Sp(N) with antisymmetric can be phrased as such an agreement

for U(N +K) with adjoint and breaking pattern U(N +K) →∏K
i=1 U(Ni + 1).

24



As another example, consider U(N) with adjoint Φ and superpotential having K =

N − 1, in the vacuum where U(N) → U(2) × U(1)N−2. Factorizing the Seiberg-Witten

curve yields for the exact superpotential [46]

Wexact = Wcl(g)± 2gNΛN . (6.4)

The map of [11] and sect. 3.3 relates this to Sp(1) → Sp(1)× Sp(0)N−2, where the exact

gauge theory result agrees with (6.4), up to the classical shift, upon using the relation

(3.18). A priori, one might expect the string theory / matrix model result to disagree

with (6.4), due to residual instanton contributions from the U(1)N−2 or the Sp(0)N−2

in U(N) → U(2) × U(1)N−2 and Sp(1) → Sp(1) × Sp(0)N−2 respectively. But the string

theory / matrix model result nevertheless agrees with (6.4), thanks to the interplay between

the different terms. Consider, in particular, the case U(3) → U(2) × U(1). The fact that

(6.4) will only hold if remarkable cancellations occur upon integrating out S1 and S2 from

the non-trivial W (S1, S2), was discussed in [3], where the cancellations were verified to

indeed occur, up to order α3. This is checked to one higher order in (5.19), since it is

related to Sp(1) → Sp(1) × Sp(0) by the map of [11] and sect. 3.3. The leading order

cancellation, say in terms of U(3) → U(2)× U(1), is between U(1) gaugino condensation,

Λ3
2, and a higher order term coming from integrating out S1 from Wpert(Si).

The residual instanton contributions associated with the UV completion (6.1), as

opposed to the standard gauge theory results for (1.1) do not always cancel, however.

The cases where we find non-cancellations are when the degree of the superpotential is

sufficiently large, so that it contains terms which are not independent moduli. As an

example, consider U(1) with Wtree as in (2.2) having K minima, breaking U(1) → U(1)×
U(0)K−1. The gaugino condensation contribution to the superpotential, according to the

string theory (matrix model) construction, is given by (2.15) with h1 = 1 and all other

hi = 0 and their Si set to zero. Upon integrating out S1, we thus obtain the superpotential

Wgc = Λ3
1 = Λ2W ′′(a1) = gK+1Λ

2
∏

j 6=1

(aj − a1), (6.5)

where we used the matching relation (2.10) with N1 = 1 and all other Nj = 0.

The full low-energy effective superpotential Wlow(gi,Λ) can be regarded as the gener-

ating function for the operator expectation values:

〈uj〉 =
∂Wlow(gi,Λ)

∂gj
ui ≡

1

j
TrΦj . (6.6)

In the U(1) theory, we have classical relations uj = 1
ju

j
1. But the quantum contribution

(6.5) (along with additional, higher order contributions) imply quantum deformation of
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these classical relations, due to the residual instanton effects in the U(1 + k|k) → U(1 +

k1|k1) × U(k2|k2) . . . U(kK |kK) F-completion. For the simplest such example, consider

U(1) with Wtree =
1
2mΦ2 + λΦ. The low-energy superpotential is

Wlow = − λ2

2m
+mΛ2, (6.7)

with the first term the classical contribution and the second the residual instanton. Using

(6.6) we then get

〈u1〉 = − λ

m
, , 〈u2〉 =

λ2

2m2
+Λ2 i.e. 〈u2〉 = 1

2
〈u2

1〉+ Λ2, (6.8)

which can be regarded as an instanton correction to the composite operator u2.

As another such example, consider U(2) with an adjoint and Wtree having K minima,

in the vacuum where the gauge group is broken as U(2) → U(1)× U(1)× U(0)K−2. The

gaugino condensation contribution to Wlow is

Wgc = Λ3
1 + Λ3

2 = gK+1Λ
4

(∏K
j=3(aj − a1)−

∏K
j=3(aj − a2)

a2 − a1

)
. (6.9)

For example, for U(2) with Wtree having K = 3 critical points, we break U(2) → U(1) ×
U(1)× U(0) and (6.9) leads to

Wgc = g4Λ
4. (6.10)

Computing expectation values as in (6.6) this leads to

〈u4〉 = 〈u4〉cl +Λ4, (6.11)

which can be interpreted as an instanton contribution to the composite operator u4 = TrΦ4

in U(2) gauge theory. More generally, for U(N) gauge theory, the independent basis of

operators uj = 1
j
TrΦj are only those with j ≤ N , those with j > N can be expressed as

products of these basis operators via classical relations. But these relations can be affected

by instantons. In particular, for U(N) with an adjoint, the instanton factor is Λ2N , so

operators uj with j ≥ 2N can be affected. The above residual instanton contributions

of the U(N + k|k) UV completion can be interpreted as implying specific such instanton

corrections to the higher Casimirs uj .

A similar situation arises in the N = 1∗ U(N) theory, where the effective super-

potential of the matrix model and conventional gauge theory differ by a contribution

N2m3E2(Nτ) [17]; this was interpreted in [17] as differing operator definitions of TrΦ2

between gauge theory and the matrix model at the level of instantons. Related issues for

multi-trace operators were seen in [18].
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7. Conclusions

To compute the correct string theory / matrix model results, we should include or not

include the glueball fields Si according to the prescription of this paper. Upon doing so, in

all examples that we know of, the string theory / matrix model results agree with the results

of standard gauge theory, at least in those cases where the relevant gauge theory does not

suffer from UV ambiguities. In the case where such ambiguities are present, for example in

defining composite operators appearing in Wtree, the string theory / matrix model results

correspond to a particular UV definition of the theory. The agreement with standard gauge

theory results is often due to a remarkable interplay between the different low-energy terms,

found upon integrating out the glueball fields Si, and connecting their scales Λi via the

appropriate matching relation to the scale Λ of the original theory. In some cases, this

interplay leads to complete cancellations of the residual instanton contributions to Wlow

coming from the G(N + k|k) completion [8,9]. Perhaps there is some additional structure

governing the glueball superpotentials, which would make these remarkable cancellations

more manifest.
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Appendix A. Matrix model calculation of superpotential

In this appendix, after giving a proof for a general relation that relates S2 and RP 2

contributions to the SO/Sp matrix model free energy, we compute explicitly the free

energy of the matrix models associated with SO/Sp gauge theory with adjoint and Sp

gauge theory with antisymmetric tensor. These matrix model results are used in section 5

to evaluate the glueball superpotential of the corresponding gauge theories.
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A.1. Proof for relation between FS2 and FRP 2

Here we prove a general relation between the S2 and RP 2 contributions to the

SO(2N)/Sp(N) matrix model free energy:

FRP 2 =





∓1

2

∂FS2

∂S0
SO(2N)/Sp(N) with adjoint,

∓1

2

K∑

i=1

∂FS2

∂Si
SO(2N)/Sp(N) with symmetric/antisymmetric tensor.

(A.1)

The first equation was conjectured in [19,20] based on explicit diagrammatic calculations,

and proven in [21] for the case of unbroken vacua. Here we will give a general matrix model

proof for arbitrary breaking pattern. These relations are equivalent to the maps (3.14),

(3.16), (3.17), and (3.20), which we obtained in sect. 3.3 immediately from the string

theory geometric transition construction, accounting for the orientifold contributions to

the fluxes.

Consider U(N) and SO(2N)/Sp(N) matrix models which correspond to U(N) and

SO(2N)/Sp(N) gauge theories with a two-index tensor matter field. The partition function

is

Z = e
− 1

g2 F(Si) =

∫
dΦ e−

1
g
Wtree(Φ). (A.2)

We denote matrix model quantities by boldface letters, following the notation of [15]. Φ is

anN×N (for U(N) theory) or 2N×2N (for SO(2N)/Sp(N) theory) matrix corresponding

to the Φ field in gauge theory, and the “action” Wtree is defined in (2.2), (2.4) and (2.5).

The matrix integral (A.2) is evaluated perturbatively around the general broken vacua of

(2.1), with Ni replaced by Ni. We take the double scaling limit Ni → ∞, g → 0 with

gNi ≡ Si (for U(Ni) factors) or 2gNi ≡ Si (for SO(2Ni)/Sp(Ni) factors) kept finite.

The dependence of the free energy F(Si) on Ni are eliminated in favor of Si, and F(Si) is

expanded in the ’t Hooft expansion as

F(Si) =
∑

M

g2−χ(M)FM(Si) = FS2 + gFRP 2 + · · · (A.3)

where the sum is over all compact topologies M of the matrix model diagrams written in

the ’t Hooft double-line notation, and χ(M) is the Euler number of M.

The matrix model resolvent is defined as follows:

R(z) ≡ g

〈
Tr

[
1

z −Φ

]〉
= RS2(z) + gRRP 2(z) + · · · . (A.4)
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For U(N) theory with adjoint, the expansion parameter is g2 instead of g, and in particular,

RRP 2(z) ≡ 0. The resolvent and the free energy are related as

RM(z) =
S

z
δχ(M),2 +

1

z2
∂FM

∂g1
+

2

z3
∂FM

∂g2
+

3

z4
∂FM

∂g3
+ · · · , (A.5)

where S =
∑K

i=1 Si. The resolvents can be determined uniquely by solving the matrix

model loop equations (the loop equations for the relevant matrix models are summarized

in [15]), under the condition

∮

Ai

dz

2πi
RS2(z) = Si,

∮

Ai

dz

2πi
RRP 2(z) = 0. (A.6)

Ai is the contour around the i-th critical point of W (z). In general, R(z) develops a

cut around each critical point in the large Ni limit, and Ai is taken to encircle the i-th

cut. Note that the expression (A.5) should be understood as a Laurent expansion around

z = ∞, and converges only if |z| is larger than r such that all the singularities (cuts) of

the resolvent are inside the circle C : |z| = r.

On the other hand, gauge theory resolvents R(z), T (z) (see e.g. [7]) are determined

uniquely by solving the Konishi anomaly equations (the Konishi anomaly equations for

the relevant gauge theories are summarized in [15]), under the condition

∮

Ai

dz

2πi
R(z) = Si,

∮

Ai

dz

2πi
T (z) =

{
Ni U(Ni)
2Ni SO(2Ni)/Sp(Ni)

. (A.7)

As was shown in [15], the matrix model resolvents RS2(z), RRP 2(z) are related to the

gauge theory resolvents R(z), T (z) as

R(z) = RS2(z), T (z) =
∑

U(Ni)

Ni
∂

∂Si
RS2(z) +

∑

SO(2Ni)

/Sp(Ni)

2Ni
∂

∂Si
RS2(z) + 4RRP 2(z)

(A.8)

with Si and Si identified
5.

First, consider SO(2N)/Sp(N) theory with adjoint. The general breaking pattern is

SO(2N) → SO(2N0)×U(N1)×· · ·×U(NK) or Sp(N) → Sp(N0)×U(N1)×· · ·×U(NK)

5 The relation (A.8) is an obvious generalization of the formula in [15], which was for unbroken

vacua, to an arbitrary breaking pattern. The gauge theory resolvents R(z), T (z) given in (A.8)

clearly satisfy the condition (A.7) provided that the matrix model resolvents RS2(z), RRP 2(z)

satisfy the condition (A.6).
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(Eq. (2.1)), where N = N0 +
∑K

i=1 Ni. Note that the eigenvalues are distributed in a

symmetric manner under z ↔ −z, and hence (A.7) is

∮

A0

dz

2πi
R(z) = S0,

∮

Ai

dz

2πi
R(z) =

∮

A
−i

dz

2πi
R(z) = Si,

∮

A0

dz

2πi
T (z) = 2N0,

∮

Ai

dz

2πi
T (z) =

∮

A
−i

dz

2πi
T (z) = Ni,

(A.9)

where i = 1, . . . , K. The contours Ai and A−i encircle counterclockwise the cuts around

z = ai and z = −ai, respectively. The relation (A.8) holds as it is, with the summation

understood as over SO(2N0)/Sp(N0) and U(Ni), i = 1, . . . , K.

It was shown in [13] that the resolvents of this SO(2N)/Sp(N) theory are related to

the resolvents R̃(z) and T̃ (z) of U(Ñ≡2N ∓ 2) theory with adjoint as follows:

R(z) = R̃(z), T (z) = T̃ (z) ± 2

z
. (A.10)

The tree level superpotential of the U(Ñ) theory is related to the one for the SO(2N)/Sp(N)

theory as WU (z) = WSO/Sp(z) (see (2.2) and (2.5)), and the breaking pattern is

U(Ñ) → U(N−K)× · · · × U(N−1) × U(2N0 ∓ 2)× U(N1)× · · · × U(NK) with N−i = Ni,

1 ≤ i ≤ K. Note that since there is no z ↔ −z symmetry in the U(Ñ) theory, the U(N−i)

factors that are “images” for SO(2N)/Sp(N) are “real” for U(Ñ). In addition, the glue-

ball S̃ of the U(Ñ) theory is related to the glueball S of the SO(2N)/Sp(N) theory as

S̃0 = S0, S̃i = S̃−i = Si, 1 ≤ i ≤ K. Therefore, e.g. the first equation in (A.10) is more

precisely

R(z, Sj) = R̃(z, S̃j)
∣∣
S̃0=S0, S̃i=S̃

−i=Si
. (A.11)

Differentiating (A.11) with respect to Sj , we obtain

∂R

∂S0
=

∂R̃

∂S̃0

∣∣∣∣ S̃0=S0,

S̃i=S̃
−i=Si

,
∂R

∂Sj
=

(
∂R̃

∂S̃j

+
∂R̃

∂S̃−j

)∣∣∣∣ S̃0=S0,

S̃i=S̃
−i=Si

, (A.12)

where 1 ≤ j ≤ K.

Now, using (A.8), let us translate the relation (A.10) among gauge theory resolvents

into a relation among matrix model resolvents:

RS2 = R̃S2 ,

2N0
∂RS2

∂S0
+

K∑

i=1

Ni
∂RS2

∂Si
+ 4RRP 2 = (2N0 ∓ 2)

∂R̃S2

∂S0
+

K∑

i=1

Ni

(
∂R̃S2

∂S̃i

+
∂R̃S2

∂S̃−i

)
± 2

z
.

(A.13)
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Here R̃S2 is the matrix model resolvent associated with the U(Ñ) theory. Using (A.12)

and the relations RS2 = R, R̃S2 = R̃ (Eq. (A.8)), we obtain

RRP 2(z) = ∓1

2

∂

∂S0
RS2(z) ± 1

2z
. (A.14)

By expanding the resolvents around z = ∞ using (A.5) and comparing the coefficients, we

obtain a relation between matrix model free energies:

j
∂FRP 2

∂gj
= ±1

2

∂

∂S0

(
Sδj0 + j

∂FS2

∂gj

)
∓ 1

2
δj0. (A.15)

where j = 0, 2, · · · , 2(K + 1). The j = 0 case is trivially satisfied since S = S0 + 2
∑K

i=1 Si

here, while the j = 2, 4, . . . , 2(K + 1) cases lead to the first equation of (A.1), which we

wanted to prove.

Next, consider SO(2N)/Sp(N) theory with symmetric/antisymmetric tensor. The

breaking pattern is SO(2N) → ∏K
i=1 SO(2Ni) or Sp(N) → ∏K

i=1 Sp(Ni) (Eq. (2.1)),

where N =
∑K

i=1 Ni. It was shown in [11] that the resolvents of this SO/Sp theory is

related to the resolvents R̃(z) and T̃ (z) of U(Ñ≡2N ∓2K) theory with adjoint as follows:

R(z) = R̃(z), T (z) = T̃ (z)± d

dz
ln[W ′(z)2 + fK−1(z)]. (A.16)

The tree level superpotential of the U(Ñ) theory is related to the one for the SO(2N)/Sp(N)

theory as WU (z) = WSO/Sp(z) (see (2.2) and (2.4)), and the breaking pattern is

U(Ñ) →∏K
i=1 U(2Ni ∓ 2). The glueball Si of the U(Ñ) theory is taken to be the same as

the glueball of the SO(2N)/Sp(N) theory. In (A.16), fK−1(z) is a polynomial of degree

K − 1. Using (A.8), we can translate the relation (A.16) among gauge theory resolvents

into a relation among matrix model resolvents:

RRP 2(z) = ∓1

2

K∑

i=1

∂

∂Si
RS2(z) ± 1

4

d

dz
ln[W ′(z)2 + fK−1(z)]. (A.17)

In order to extract the relation between matrix model free energies, let us multiply (A.17)

by zj (0 ≤ j ≤ K + 1) and integrate over z along the contour C, introduced under (A.6),

which encloses all the cuts around the critical points of W (z). Taking

W ′(z)2 + fK−1(z) = g2K+1

K∏

i=1

(z − a+i )(z − a−i ), (A.18)
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the branching points of the cuts are at z = a±i . The second term on the right hand side in

(A.17) does not contribute to the contour integral unless j = 0:

∓1

4

∮

C

dz

2πi

K∑

i=1

zj
(

1

z − a+i
+

1

z − a−i

)

= ±1

4

∮

C

dw

2πi

K∑

i=1

1

wj+1

(
1

1− a+i w
+

1

1− a−i w

)
= ∓K

2
δj0,

(A.19)

where w = 1/z, because all the poles w = 1/a±i are outside of the contour C (on the

w-plane). On the contour C, we can use the Laurent expansion (A.5) to evaluate the

contribution from the other terms, and the final result is

j
∂FRP 2

∂gj
= ±1

2

K∑

i=1

∂

∂Si

(
Sδj0 + j

∂FS2

∂gj

)
∓ K

2
δj0. (A.20)

The j = 0 case is trivially satisfied, while the 1 ≤ j ≤ K + 1 cases lead to the second

equation of (A.1), which we wanted to prove.

A.2. Computation of matrix model free energy: SO(2N)/Sp(N) theory with adjoint

Let us consider SO(2N) matrix model which corresponds to SO(2N) gauge theory

with adjoint. The tree level superpotential is taken to be quartic (5.1). The matrix variable

Φ in (A.2) is a real antisymmetric matrix and can be skew-diagonalized as

Φ ∼= diag[λ1, · · · , λN]⊗ iσ2. (A.21)

By changing the integration variables from Φ to λi, we obtain

Z ∼
∫ N∏

i=1

dλi

N∏

i<j

(λ2
i − λ2

j )
2 e−

1
g

∑
N

i=1
(−m

2 λ2
i+

g
4λ

4
i ), (A.22)

where
∏N

i<j(λ
2
i − λ2

j)
2 is the Jacobian for this change of variables [47,20]. The polynomial

−m
2 λ

2 + g
4λ

4 has critical points at λ = 0,±
√

m/g, around which we would like to do

perturbative expansion. For this purpose, we separate λ’s into two groups as

λi =

{
λ
(0)
i0

i0 = 1, . . . ,N0,√
m/g + λ

(1)
i1

i1 = 1, . . . ,N1,
(A.23)

with N0 +N1 = N, corresponding to the classical supersymmetric vacuum with breaking

pattern SO(2N) → SO(2N0) × U(N1). We would like to evaluate the matrix integral
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(A.22) perturbatively around λ(0,1) = 0. If we expand the matrix model free energy in the

coupling constant g as

F = gf1(N0,N1) + g2f2(N0,N1) + · · · , (A.24)

the loop expansion tells us that fn(N0,N1) is a polynomial of degree n + 2. Therefore,

by performing the matrix integral by computer for small values of N0 and N1, one can

determine the polynomial fn. If we rewrite N0,1 in favor of S0 = 2gN0 and S1 = gN1,

the expansion (A.24) arranges itself into the ’t Hooft expansion (A.3), from which one can

read off FS2 , FRP 2 , etc.

Following the procedure sketched above, we computed the matrix model free energy

as

FS2 =

(
1

4
S3
0 − 2S2

0S1 + S0S
2
1

)
α+

(
− 9

16
S4
0 + 7S3

0S1 − 9S2
0S

2
1 + 2S0S

3
1

)
α2

+

(
9

4
S5
0 − 233

6
S4
0S1 +

262

3
S3
0S

2
1 − 152

3
S2
0S

3
1 +

20

3
S0S

4
1

)
α3 +O(α4),

(A.25)

where we defined α ≡ g/m2. We also checked explicitly that the relation (A.1) holds.

Substituting (A.25) into the DV relation (5.3), we obtain the superpotential (5.5).

The Sp(N) result is obtained similarly, with the result as in (A.1).

A.3. Computation of matrix model free energy: Sp(N) theory with antisymmetric tensor

Consider the Sp(N) matrix model which corresponds to Sp(N) gauge theory with

an antisymmetric tensor. The superpotential is taken to be quartic (5.12). The matrix

variable Φ satisfies Φ = AJ , AT = −A. The “action” Wtree is given in (5.12). By a

complexified Sp(N) gauge rotation, the matrix Φ can be brought to the form [40]

Φ ∼= diag[λ1, . . . , λN]⊗ 12, λi ∈ C. (A.26)

By changing the integration variables from Φ to λi, we obtain

Z ∼
∫ N∏

i=1

dλi

N∏

i<j

(λi − λj)
4 e−

1
g

∑
N

i=1
(m

2 λ2
i+

g
3λ

3
i ). (A.27)

where
∏

N

i<j(λi−λj)
4 comes from the Jacobian for this change of variables. The polynomial

m
2
λ2+ g

3
λ3 has two critical points z = 0,−m

g
, around which we would like to do perturbative

expansion. For this purpose, we separate λ’s into two groups as

λi =

{
λ
(1)
i0

i1 = 1, . . . ,N1,

−m/g + λ
(2)
i1

i2 = 1, . . . ,N2,
(A.28)
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with N1 + N2 = N. This corresponds to the classical supersymmetric vacuum with

breaking pattern Sp(N) → Sp(N1)× Sp(N2).

The matrix integral can be performed just the same way as for the SO/Sp(N) theory

with adjoint, as described in the last subsection. After substitution S1,2 = 2gN1,2, we

obtain

FS2 =

(
−S3

1

3
+

S3
2

3
+

5

2
S2
1S2 −

5

2
S1S

2
2

)
α

+

(
−4

3
S4
1 +

91

6
S3
1S2 −

59

2
S2
1S

2
2 +

91

6
S1S

3
2 − 4

3
S4
2

)
α2

+

(
−28

3
S5
1 +

871

6
S4
1S2 −

1318

3
S3
1S

2
2 +

1318

3
S2
1S

3
2 − 871

6
S1S

4
2 +

28

3
S5
2

)
α3 +O(α4),

(A.29)

where α ≡ g2/m3. We also checked explicitly that the relation (A.1) holds. Substituting

(A.29) into (5.14), we obtain the glueball superpotential (5.16).

Appendix B. Gauge theory calculation of superpotential

In this appendix, we compute the exact superpotential of the N = 1 SO(2N)/Sp(N)

theory with adjoint in various vacua by considering factorization of the N = 2 curve.

This factorization method was developed in [3] for U(N), and generalized in [48] to the

case with unoccupied critical points (in other words, the n < K case below). Inclusion

of fundamentals was considered in [49]. The generalization to SO/Sp gauge group, which

discuss below, was given in [29,38,50,51,52,12].

First consider N = 2 SO(2N) theory broken to N = 1 by the following polynomial

tree level superpotential for the adjoint chiral superfield Φ:

Wtree =
1
2Tr[W (Φ)],

W (x) =

K+1∑

j=1

g2j
2j

x2j , W ′(x) = g2K+2 x

K∏

i=1

(x2 − a2i ).
(B.1)

The classical supersymmetric vacua are obtained by putting 2N0 eigenvalues of Φ at x = 0

and Ni pairs of eigenvalues at x = ±ai, where i = 1, · · · , K and N0+
∑K

i=1 Ni = N . In this

vacuum the gauge group breaks as SO(2N) → SO(2N0)×
∏K

i=1 U(Ni). We allow some of

Ni to vanish, i.e. we allow “unoccupied” critical points. Let the number of nonzero Ni≥1

be n. Then, the N = 2 curve governing this SO(2N) theory factorizes as [29,38,50]:

y2 = P 2
2N (x)− 4x4Λ4N−4 =

{
[xH2N−2n−2(x)]

2F2(2n+1)(x) N0 > 0,
H2N−2n(x)

2F4n(x) N0 = 0.
(B.2)
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Here P , H and F are polynomials in x of the subscripted degree, which are invariant under

x → −x, i.e. they are actually polynomials in x2. This factorization is required to have the

appropriate number of independent, massless, monopoles and dyons, which must condense

to eliminate some of the low-energy photons. The polynomial F is related to the tree level

superpotential as

{
F2(2n+1)(x) =

1
g2
2K+2

W ′
2K+1(x)

2 + f2K(x) n = K,

F2(2n+1)(x)Q2K−2n(x)
2 = 1

g2
2K+2

W ′
2K+1(x)

2 + f2K(x) n < K
(B.3)

with some polynomial Q2K−2n(x), f2K(x) of the subscripted degrees, and W ′
2K+1(x) is as

in (2.6). Equation (B.3) is for N0 > 0, and for N0 = 0 one must use the second equation

with Q2K−2n replaced by Q2K−2n+2.

For N0 > 0 we can write the solution of (B.2) in terms of that of the corresponding

U(2N − 2) breaking pattern, via:

P
SO(2N)
2N (x) = x2P

U(2N−2)
2N−2 (x). (B.4)

The low energy superpotential is given by

Wlow = 1
2

K+1∑

j=1

g2j〈u2j〉, (B.5)

where the 〈u2j〉 are constrained to satisfy (B.2). Implementing this leads to the result that

[51]: 〈
Tr

1

x− Φ

〉
=

d

dx
ln

[
P2N (x) +

√
P2N (x)2 − 4x4Λ4N−4

]
. (B.6)

Plugging back into (B.5) gives Wlow. Note that the superpotential takes this simple form

(B.5) only after one integrates out the monopoles and dyons, whose equation of motion

led to the factorization constraint (B.2) [53,54,21].

The Sp(N) theory can be solved similarly. The N = 2 curve factorizes in the vacuum

with breaking pattern Sp(N) → Sp(N0)×
∏K

i=1 U(Ni) as [29,38,50]

y2 = B2N+2(x)
2 − 4Λ4N+4 = x2H2N−2n(x)

2F2(2n+1)(x),

B2N+2(x) ≡ x2P2N (x) + 2Λ2N+2.
(B.7)

The polynomial F2(2n+1)(x) is related to W ′(x) by (B.3). The mapping of the Sp(N)

theory to a U(2N + 2) theory, as in (3.16), can be written as a solution of (B.7) in terms

of solutions of the corresponding U(2N + 2) factorization problem:

B2n+2(x) ≡ x2P
Sp(N)
2N (x) + 2Λ2N+2 = P

U(2N+2)
2N+2 (x). (B.8)
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The Λ2N+2 shift in (B.8) is an Sp(N) residual instanton effect, associated with the index

of the embedding of the U(Ni) factors in Sp(N) [55,43]

Again, the superpotential is given as in (B.5), subject to the constraint that 〈uj〉
satisfy (B.7). Implementing this, the 〈uj〉 can be obtained from B2N+2(x) by [51]

〈
Tr

1

x− Φ

〉
=

d

dx
ln

[
B2N+2(x) +

√
B2N+2(x)2 − 4Λ4N+4

]
. (B.9)

We now consider the exact Weff for a few SO/Sp(N) cases, to illustrate and clarify

the general features6. We take quartic tree level superpotential

Wtree =
1
2TrW (Φ), W (x) =

m

2
x2 +

g

4
x4, (B.10)

which corresponds to K = 1.

B.1. SO(2N) unbroken

By the map (3.14), this maps to U(2N − 2) unbroken, for which PU(2N−2)(x) =

2Λ2N−2T2N−2(x/2Λ), with TN (x = 1
2 (t + t−1)) = 1

2 (t
N + t−N ) a Chebyshev polynomial

[56]. Thus, using (B.4), PSO(2N)(x) = 2Λ2N−2x2T2N−2(x/2Λ), as found in [21]. This then

leads to [21]

〈u2p〉 ≡
1

2p
〈TrΦ2p〉 = 2N − 2

2p

(
2p
p

)
Λ2p. (B.11)

In particular,

〈u2〉 = (2N − 2)Λ2, 〈u4〉 = 3(N − 1)Λ4, (B.12)

and the low-energy superpotential is Wlow = 1
2
(m〈u2〉+ g〈u4〉):

Wlow = (N − 1)

(
mΛ2 +

3

2
gΛ4

)
. (B.13)

B.2. SO(2N) → SO(2)× U(N − 1)

By the map (3.14), this maps to U(2N−2) → U(0)×U(N−1)×U(N−1). Using (3.14),

the multiplication map of [3] for the U(2N − 2) theory leads to a similar multiplication

map for the SO(2N) theory, which was discussed in [51]. Using this, we can construct

the solution to the factorization problem for general N in terms of that of say N = 2, i.e.

SO(4) → SO(2)× U(1). In this case, equation (B.2) is

y2 = P 2
4 − 4x4Λ4 = x2F6. (B.14)

6 More SO/Sp examples can be found in [51].
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The solution to this factorization problem is

P4 = x2(x2 − a2), F6 = x2[(x2 − a2)2 − 4Λ2], (B.15)

from which we can see the breaking pattern SO(4) → SO(2)× U(1). Using (B.6) gives

u2 = a2, u4 =
a4

2
+ Λ4. (B.16)

Further, the condition (B.3)

F6 =
1

g2
W ′

3
2 + f2 (B.17)

leads to

a2 = −m

g
, f2 = −4Λ2x2. (B.18)

The solution for general SO(2N) → SO(2)× U(N − 1), the multiplication map gives the

solution to the factorization problem as P2N (x) = 2x2Λ2N−2TN−1((x
2 − a2)/2Λ2), with

TN−1 the Chebyshev polynomial defined above. The effect is to rescale u2, u4, and hence

Wlow by an overall factor of N − 1:

Wlow = (N − 1)

(
−m2

4g
+

1

2
gΛ4

)
. (B.19)

This agrees with the result (5.10).

B.3. SO(4) → U(2)

More generally, we could consider the breaking pattern SO(2N) → U(N). The map

of (3.14) is less useful here, when N0 = 0, since it suggests mapping to U(2N − 2) →
U(−2) × U(N)× U(N) and the U(−2) needs to be interpreted. In general, this breaking

pattern leads to a complicated Wlow(Λ). We will here illustrate the case SO(4) → U(2),

corresponding to N = 2, N0 = 0, n = 1, K = 1. Equation (B.2) is

y2 = P 2
4 − 4x4Λ4 = H2

2F4. (B.20)

The solution to this factorization problem is

P4 = (x2 − a2)2 + 2Λ2x2, H2 = x2 − a2, F4 = (x2 − a2)2 + 4Λ2x2. (B.21)

In the classical Λ → 0 limit, this shows P4 → (x2 − a2)2, implying the breaking pattern

SO(4) → U(2). (B.6) gives

u2 = 2(a2 − Λ2), u4 = (a4 − 2Λ2)2 − Λ4. (B.22)
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Further, the condition (B.3)

F4x
2 =

1

g2
W ′

3
2 + f2 (B.23)

leads to

a2 = −m

g
+ 2Λ2, f2 = 4Λ2x2

(
−m

g
+ Λ2

)
. (B.24)

Therefore the exact superpotential is

Wlow = −m2

2g
+mΛ2 +

1

2
gΛ4. (B.25)

B.4. Sp(2) → U(2), Sp(1)× U(1)

This corresponds to N = 2, n = 1, K = 1. Equations (B.7) and (B.3) are

y2 = B2
6 − 4Λ12 = x2H2

2F6, F6 =
1

g2
W ′

3
2 + f2. (B.26)

This factorization problem is solved by [51]:

P4 = (x2 − a2)2 +
4Λ6

a4
(x2 − 2a2),

m

g
= −a2 +

4Λ6

a4
(B.27)

From (B.9), we obtain

u2 = 2a2 − 4Λ6

a4
, u4 = a4 +

8Λ12

a8
. (B.28)

This solution continuously connects two classically different vacua with breaking pattern

Sp(2) → U(2) and Sp(2) → Sp(1) × U(1). Correspondingly there are two ways to take

the classical limit: i) Λ → 0 with a fixed, and ii) Λ, a → 0 with w = 2Λ3/a2 fixed. In

these limits, P4(x) goes to i) (x2 − a2)2 and ii) x2(x2 + w2), showing the aforementioned

breaking pattern.

In the Sp(2) → U(2) case, we solve the second equation of (B.27) with the condition

a2 → −m/g as Λ → 0. The solution is

a2 = −m

g
+

4g2Λ6

m2
+

32g5Λ12

m5
+

448g8Λ18

m8
+ · · · . (B.29)

From (B.28) and (B.5), one obtains the exact superpotential:

Wlow = −m2

2g
− 2g2Λ6

m
− 4g5Λ12

m4
− 32g8Λ18

m7
+ · · · . (B.30)

In the Sp(2) → Sp(1) × U(1) case, we solve the second equation of (B.27) with the

condition w2 → m/g as Λ → 0. It is

w =
m1/2

g1/2
+

gΛ3

m
− 3g5/2Λ6

2m5/2
+

4g4Λ9

m4
+ · · · . (B.31)

From (B.28) and (B.5), one obtains the exact superpotential:

Wlow = −m2

4g
+ 2m1/2g1/2Λ3 +

g2Λ6

m
− g7/2Λ9

m5/2
+ · · · . (B.32)
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