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Abstract
Background & Aims—The insulin-like growth factor 2 (IGF2) gene is normally imprinted.
Constitutive loss of imprinting (LOI) of IGF2 has been associated with increased risks of colon
cancer and adenoma, indicating its role in carcinogenesis. The conventional LOI assay relies on a
germline polymorphism to distinguish between 2 allelic expression patterns but results in many
uninformative cases. IGF2 LOI correlates with hypomethylation at the differentially methylated
region (DMR)-0. An assay for methylation of the DMR0 could overcome the limitations of the
conventional IGF2 LOI assay.

Methods—We measured methylation at the IGF2 DMR0 using a bisulfite-pyrosequencing assay
with 1178 paraffin-embedded colorectal cancer tissue samples from 2 prospective cohort studies.
A Cox proportional hazard model was used to calculate mortality hazard ratio (HR); calculations
were adjusted for microsatellite instability, the CpG island methylator phenotype, LINE-1
methylation, and KRAS, BRAF, and PIK3CA mutations.
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Results—Methylation at the IGF2 DMR0 was successfully measured in 1105 (94%) of 1178
samples. Colorectal tumors had significantly less methylation at the DMR0 compared to matched,
normal colonic mucosa (P<0.0001; N=51). Among 1033 patients eligible for survival analysis,
hypomethylation of the IGF2 DMR0 was significantly associated with higher overall mortality
(log-rank P=0.0006; univariate HR=1.41, 95% confidence interval [CI]: 1.16–1.71, P=0.0006;
multivariate HR=1.33, 95% CI: 1.08–1.63, P=0.0066).

Conclusions—A bisulfite-pyrosequencing assay to measure methylation of the IGF2 DMR0 is
robust and applicable to paraffin-embedded tissue. IGF2 DMR0 hypomethylation in colorectal
tumor samples is associated with shorter survival time, so it might be developed as a prognostic
biomarker.

Keywords
epigenetics; clinical outcome; therapeutic target; imprinting control region

INTRODUCTION
Insulin-like growth factor 2 (IGF2) has mitogenic and antiapoptotic functions.1 IGF2 is
located within a cluster of imprinted genes on chromosome 11p15, and is expressed
predominantly from the paternal allele.2 Loss of imprinting (LOI) and biallelic expression of
IGF2 are common epigenetic aberrations in various human cancers,2 and increase mitogenic
gene expression and facilitate progression of intestinal tumors in experimental systems.3–5

Furthermore, constitutive IGF2 LOI detected in blood cells or normal colonic mucosa has
been associated with personal and family history of colorectal neoplasia.6, 7

Imprinting and expression of IGF2 are controlled by CpG-rich regions known as
differentially methylated regions (DMRs).8–10 Specifically, hypomethylation at IGF2
DMR0 has been correlated with IGF2 LOI in colorectal cancer,10, 11 and suggested as a
surrogate biomarker for IGF2 LOI.12–15 Because conventional IGF2 LOI assays utilize a
single nucleotide polymorphism (SNP) around DMR and compare IGF2 expression from
one allele with that from the other allele,10, 11, 15–19 a substantial fraction of cases are
uninformative due to SNP homozygosity. In addition, since the SNP may influence
methylation status and/or regulatory function of DMR,20–22 exclusion of cases with SNP
homozygosity should be avoided. In clinical settings, we require an assay that does not rely
on a SNP, in order to circumvent exclusion of many cases with SNP homozygosity. Thus, it
is of particular interest to evaluate clinical usefulness of IGF2 DMR0 methylation assay
which may be readily applicable to paraffin-embedded tissue.

Epigenomic aberrations are important mechanisms in human carcinogenesis.23 The CpG
island methylator phenotype (CIMP), characterized by widespread promoter CpG island
methylation, is associated positively with microsatellite instability (MSI) and inversely with
LINE-1 hypomethylation (i.e., global DNA hypomethylation) in colorectal cancer.24–26 A
molecular classification of colorectal cancer based on MSI and CIMP status is increasingly
important, because MSI and CIMP status reflect genome-wide and epigenome-wide
aberrations, and influence many locus-specific alterations.27 Although IGF2 LOI in
colorectal cancer has been associated with MSI,19, 28 its relationship with CIMP or LINE-1
hypomethylation remains uncertain.

In this study using a database of over 1000 colorectal cancers in two prospective cohort
studies, we demonstrated the robustness and usefulness of IGF2 DMR0 methylation assay
on paraffin-embedded clinical tissue specimens, and examined prognostic significance and
molecular correlates of IGF2 DMR0 hypomethylation. Our data suggest its potential role as
a prognostic biomarker.
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MATERIALS AND METHODS
Study group

We utilized the databases of two independent, prospective cohort studies; the Nurses’ Health
Study (N=121,701 women followed since 1976), and the Health Professionals Follow-up
Study (N=51,529 men followed since 1986).29 Every 2 years, participants have been sent
follow-up questionnaires to update information on potential risk factors and to identify
newly diagnosed cancers in themselves and their first degree relatives. We collected
paraffin-embedded tissue blocks from hospitals where patients with incident colorectal
cancers underwent surgical resections. We excluded preoperatively treated cases. We
initially quantified IGF2 DMR0 methylation in 1178 cancer specimens in the cohorts, and
obtained valid results in 1105 (94%) of cases. Thus, based on availability of adequate tissue
and follow-up data, a total of 1105 colorectal cancers (diagnosed up to 2004) were included
(Table 1). Patients were observed until death or June 30, 2009, whichever came first.
Among our cohort studies, there was no significant difference in demographic features
between cases with tissue available and those without available tissue.29 Tissue sections
from all cases were reviewed by a pathologist (S.O.) unaware of other data. The tumor grade
was categorized as low vs. high (≥50% vs. <50% gland formation). This current analysis
represents a new analysis of IGF2 DMR0 methylation on the existing colorectal cancer
database that has been previously characterized for CIMP, MSI, LINE-1 methylation and
clinical outcome.30, 31 We have not examined IGF2 DMR0 methylation in any of our
previous studies. Written informed consent was obtained from all study subjects. Tissue
collection and analyses were approved by the Harvard School of Public Health and Brigham
and Women’s Hospital Institutional Review Boards.

Sequencing of KRAS, BRAF and PIK3CA, and Microsatellite instability (MSI) analysis
Genomic DNA was extracted from tumor and PCR and Pyrosequencing targeted for KRAS
(codons 12 and 13),32BRAF (codon 600) 33 and PIK3CA (exons 9 and 20) 34 were
performed as previously described. MSI analysis was performed, using BAT25, BAT26,
BAT40, D2S123, D5S346, D17S250, D18S55, D18S56, D18S67 and D18S487.35 MSI-high
was defined as the presence of instability in ≥30% of the markers, and MSI-low/
microsatellite stability (MSS) as 0–29% unstable markers.

Methylation analyses for CpG islands and LINE-1
Bisulfite DNA treatment and real-time PCR (MethyLight) were validated and performed.36

We quantified DNA methylation in 8 CIMP-specific promoters [CACNA1G, CDKN2A
(p16), CRABP1, IGF2 (promoter CpG island, not DMR), MLH1, NEUROG1, RUNX3 and
SOCS1].25, 37, 38 CIMP-high was defined as the presence of ≥6/8 methylated promoters,
and CIMP-low/0 as 0/8–5/8 methylated promoters, according to the previously established
criteria.38 In order to accurately quantify relatively high methylation levels in LINE-1
repetitive elements, we utilized Pyrosequencing as previously described.26, 39

Pyrosequencing to Measure IGF2 DMR0Methylation
We designed a Pyrosequencing assay (Figure 1) for IGF2 DMR0 region (GenBank
nucleotides 631–859, accession No. Y13633), which has been previously reported to be
hypomethylated in colorectal cancers with LOI at IGF2.10 The linearity of the bisulfite-
pyrosequencing assay for IGF2 DMR0 methylation has been demonstrated.15 Each PCR
mix contained 0.6 mM of the forward primer (5′-
AGGGGGTTTATTTTTTTAGGAAGTA-3′), 0.6 mM of the biotinylated reverse primer (5′-
AACAAAAACCACTAAACACACAACTCTA-3′), 200 μM each of dNTPs, 3.0 mM
MgCl2, 1xPCR buffer (Qiagen, Valencia, CA), 0.75 U of HotStar Taq polymerase (Qiagen),
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and 3 μl of bisulfited template DNA in a total volume of 30 μl. PCR conditions were as
follows: initial denaturing at 95°C for 15 minutes; 50 cycles of 95°C for 30 seconds, 60°C
for 30 seconds, and 72°C for 20 seconds; and final extension at 72°C for 5 minutes. The
PCR products (each 10 μl) were sequenced using the PyroMark kit, Pyrosequencing PSQ96
HS System (Qiagen) and the sequencing primer (5′-
GGGTTTATTTTTTTAGGAAGTAT-3′). The nucleotide dispensation order was
CAGTATCAGTCAGTTATGTC. The amount of C relative to the sum of the amounts of C
and T at each CpG site was calculated. Using the first and second CpG sites in IGF2 DMR0,
we calculated the average of the percentage numbers, which was used as the IGF2 DMR0
methylation level (0–100 scale). To assess precision of the assay, we repeated it five times
on our control specimens. The standard deviation (SD) of the five repeated measurements
ranged from 2.0–3.0. We initially quantified IGF2 DMR0 methylation in 1178 paraffin-
embedded colorectal cancers, and obtained valid results in 1105 (94%) of cases.

Statistical methods
For all statistical analyses, we used SAS program (Version 9.1, SAS Institute, Cary, NC).
All p values were two-sided. When we performed multiple hypothesis testing, a p value for
significance was adjusted by Bonferroni correction to p=0.0036 (=0.05/14; with 14
covariates) or p=0.017 [=0.05/3; with three different cutoffs (Q1 vs. Q2-4; Q1-2 vs. Q3-4;
Q1-3 vs. Q4) in survival analysis on a binary DMR0 methylation variable]. For categorical
data, the chi-square test was performed. To compare means, we performed the t-test
assuming unequal variances or ANOVA (analysis of variance) for variables with more than
2 categories. Pearson’s correlation coefficient was used to assess the correlation of IGF2
DMR0 methylation level and LINE-1 methylation level. To assess which clinical and
molecular variables could predict IGF2 DMR0 methylation level, a multivariate linear
regression model was constructed, initially including sex, age at diagnosis (continuous),
body mass index (BMI, <30 vs. ≥30 kg/m2), family history of colorectal cancer (present vs.
absent), year of diagnosis (continuous), tumor location (rectum vs. colon), CIMP (high vs.
low/0), MSI (high vs. low/MSS), LINE-1 methylation (continuous), BRAF, KRAS, and
PIK3CA. A backward stepwise elimination with a threshold of p=0.20 was used to select
variables in the final model. In the initial model, for any given case with missing
information in any of the categorical variables [tumor location (1.4%), CIMP (1.3%), MSI
(3.4%), BRAF (2.4%), KRAS (2.1%), and PIK3CA (13%)], we included such a case in a
majority category of that variable, to avoid overfitting. After the selection was done, we
assigned separate missing indicator variables to cases with missing information in any of the
categorical covariates in the final model, in order to obtain accurate effect estimates. We
confirmed that excluding cases with missing information in any of the covariates did not
substantially alter results (data not shown). After the final linear regression model was
constructed, a distribution of residuals (observed minus predicted IGF2 DMR0 methylation
levels) was visually inspected and confirmed that the assumptions of residuals’ normality
and equal variance across predicted IGF2 DMR0 methylation level were generally satisfied
(data not shown). We assessed whether there was any influential case, by Cook’s D
statistics, a summary measure of influence, and found that there was no influential case (all
Cook’s D value <0.032).

For survival analysis, 1033 patients were available. Kaplan-Meier method was used to
assess survival time distribution, and log-rank test was used. For analyses of colorectal
cancer-specific mortality, deaths as a result of causes other than colorectal cancer were
censored. To assess independent effect of IGF2 DMR0 methylation level on mortality,
tumor stage (I, IIA, IIB, IIIA, IIIB, IIIC, IV, unknown) was used as a stratifying (matching)
variable in Cox models using the “strata” option in the SAS “proc phreg” command to avoid
residual confounding and overfitting. We constructed a multivariate, stage-stratified Cox
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proportional hazards model to compute a hazard ratio (HR) according to IGF2 DMR0
methylation status, initially containing sex, age at diagnosis, year of diagnosis, BMI, family
history of colorectal cancer, tumor location, tumor grade, CIMP, MSI, LINE-1 methylation,
BRAF, KRAS, and PIK3CA. A backward stepwise elimination with a threshold of p=0.20
was used to select variables in the final model. The proportionality of hazard assumption
was satisfied by evaluating time-dependent variables, which were the cross-product of the
IGF2 variable and survival time (p>0.24). An interaction was assessed by including the
cross product of IGF2 variable and another variable of interest (without data-missing cases)
in a multivariate Cox model, and the Wald test was performed.

RESULTS
IGF2 DMR0 methylation in colorectal cancer and matched normal mucosa

We developed bisulfite-PCR-Pyrosequencing assay to measure DNA methylation at the
IGF2 differentially methylated region (DMR)-0, which has been reported to be
hypomethylated in colorectal cancers with IGF2 LOI.10, 11 Figure 1A shows representative
pyrograms in IGF2 DMR0 methylation assay. We examined IGF2 DMR0 methylation
levels in 51 colorectal cancer tissues and matched normal colonic mucosa (Figure 1B).
Cancer tissues exhibited significantly lower levels of IGF2 DMR0 methylation [median
29.7; mean 31.9; standard deviation (SD) 9.1 (all in 0–100 scale)] than matched normal
mucosa (median 51.4; mean 50.6; SD 5.9) (P<0.0001 by the paired t-test) (Figure 1B).
These data were consistent with the previous study on colorectal cancer using a
Pyrosequencing assay (N=42; median for tumor tissue, 28.6; median for normal mucosa,
45.3),15 supporting the quantitative ability of the Pyrosequencing assays.

IGF2 DMR0 methylation level and clinical, pathologic, and molecular variables
We applied IGF2 DMR0 methylation assay to 1178 paraffin-embedded colorectal cancers in
the two prospective cohort studies, and successfully obtained valid results in 1105 cases
(94%). Distribution of IGF2 DMR0 methylation level in the 1105 cancers (Figure 2) was as
follows: mean, 31.4; median, 30.6; SD, 10.1; range, 6.4–72.3; interquartile range, 23.9–37.5
(all in 0–100 scale). IGF2 DMR0 methylation level significantly correlated with tumor
LINE-1 methylation level (r=0.29, p<0.0001) (Figure 2B). IGF2 DMR0 hypomethylation
was associated with male sex (p=0.0011), low tumor grade (p<0.0001), MSI-low/MSS
(p<0.0001), CIMP-low/0 (p<0.0001), wild-type BRAF (p<0.0001), and KRAS mutation
(p=0.0002) (Table 1).

Multivariate linear regression analysis for tumoral IGF2 DMR0 methylation level
We assessed which variables were independently associated with IGF2 DMR0 methylation
levels by multivariate linear regression analysis (Table 2). The adjusted β coefficient
represented an increase in IGF2 DMR0 methylation level by a given variable, assuming that
all other variables remained constant. The most significant predictor was LINE-1
hypomethylation [for 30% decrease; adjusted β coefficient −7.97; 95% confidence interval
(CI), −9.86 to −6.08; p<0.0001]. Any of the associations with p>0.0036 could be a chance
event given multiple hypothesis testing (based on Bonferroni-corrected significance level at
p=0.0036).

IGF2 DMR0 hypomethylation and patient survival
During adequate follow-up of 1033 patients eligible for survival analysis, there were a total
of 494 deaths, including 292 deaths which were confirmed to be attributable to colorectal
cancer. The median follow-up time for censored patients was 11.4 years. In univariate Cox
regression analysis, compared to first quartile (Q1) cases, fourth quartile (Q4) cases
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experienced a significantly higher overall mortality [hazard ratio (HR) 1.45; 95% CI, 1.13–
1.85], while second and third quartile (Q2 and Q3) cases experienced a similar colorectal
cancer-specific mortality to Q1 cases (HR 1.06 for Q2 and HR 1.02 for Q3) (Table 3).
Similar results were observed in multivariate analysis for overall mortality, and in univariate
and multivariate analyses for colorectal cancer-specific mortality (Table 3). Thus, we made
a dichotomous DMR0 methylation variable, defining Q4 as “hypomethylated group” and
combining Q1, Q2 and Q3 into “hypermethylated group”.

In Kaplan-Meier analysis, IGF2 DMR0 hypomethylators (i.e., Q4 cases) experienced
significantly shorter colorectal cancer-specific survival (log rank p=0.0011) and overall
survival (log rank p=0.0006) (Figure 3). In univariate Cox regression analysis, compared to
IGF2 DMR0 hypermethylated cases, IGF2 DMR0 hypomethylators experienced a
significantly higher overall mortality (HR 1.41; 95% CI, 1.16–1.71; p=0.0006] (Table 3). In
the multivariate Cox model adjusting for clinical, pathologic and molecular features, IGF2
DMR0 hypomethylation was associated with a significantly higher overall mortality
(multivariate HR 1.33; 95% CI, 1.08–1.63; p=0.0066). Similar results were observed in
analysis for colorectal cancer-specific mortality (Table 3). The slight attenuation in the
effect of DMR0 hypomethylation in the multivariate analysis (compared to univariate
analysis) was principally the result of adjusting for LINE-1 methylation; when we simply
adjusted for LINE-1 methylation, adjusted HR for DMR0 hypomethylation was 1.36 (95%
CI, 1.11–1.67) for overall mortality, and 1.37 (95% CI, 1.06–1.77) for colorectal cancer-
specific mortality.

Interaction between IGF2 DMR0 hypomethylation and other variables in survival analyses
We examined whether the influence of IGF2 DMR0 hypomethylation on overall survival
was modified by any of the clinical, pathologic and molecular variables. We did not observe
a significant interaction between IGF2 DMR0 hypomethylation and any of the covariates
(all Pinteraction >0.09). Notably, the effect of IGF2 DMR0 hypomethylation did not
significantly differ between the two independent cohort studies [Pinteraction=0.79; the
Nurses’ Health Study (for women; multivariate stage-matched HR 1.37; 95% CI, 1.05–1.79)
and the Health Professionals Follow-up Study (for men; multivariate stage-matched HR
1.25; 95% CI, 0.95–1.64)]. In addition, there was no significant interaction between IGF2
DMR0 methylation and LINE-1 methylation (Pinteraction=0.36).

DISCUSSION
We conducted this study to evaluate clinical applicability of IGF2 DMR0 methylation assay
to paraffin-embedded tissue and prognostic significance of IGF2 DMR0 hypomethylation in
colorectal cancers. Previous studies have shown that IGF2 DMR0 hypomethylation
correlates with IGF2 LOI in colorectal caner.10, 11 Considering that constitutive IGF2 LOI
may be a biomarker for colon cancer and adenoma risks,12–15 it is of particular interest to
examine clinical significance of IGF2 LOI or DMR0 hypomethylation in colorectal cancer.
We have found that IGF2 DMR0 hypomethylation is independently associated with high
mortality, suggesting its prognostic role in colorectal cancer.

We utilized a quantitative DNA methylation assay (bisulfite-Pyrosequencing assay) to
examine IGF2 DMR0 hypomethylation, which can be a surrogate biomarker for IGF2 LOI.
10, 11 Conventional IGF2 LOI assays compare gene expression from one parental allele with
that from the other allele by utilizing a single nucleotide polymorphism (SNP).10, 11, 15–19

However, there is a substantial fraction of uninformative cases with homozygous SNP. In
addition, a SNP-LOI assay use a SNP located within or near DMR, and SNP variants may
influence methylation status or regulatory function of DMR. Thus, exclusion of cases with
homozygous SNP should be avoided. In studies using conventional IGF2 LOI assays,10, 11,

Baba et al. Page 6

Gastroenterology. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



15–19 the frequency of IGF2 LOI in colorectal cancer greatly varies (ranging from 27% to
68%). This variability might be caused by methodological heterogeneity, selection bias due
to SNP used, and/or small sample sizes (all N<100 for informative cases). Recently, in order
to overcome these limitations, bisulfite-sequencing assays have been developed to detect
DNA hypomethylation at IGF2 DMR0.15, 40 In our current study, we could quantitatively
evaluate IGF2 DMR0 methylation in a large number of colorectal cancers (N=1105) using
genomic DNA extracted from paraffin-embedded tissues. IGF2 DMR0 methylation assay is
more amenable to high-throughput analysis and can be used as a robust biomarker in clinical
settings.

Examining molecular features or clinical outcome is important in colon cancer research.41–
48 Although experimental evidence supports a crucial role of IGF2 LOI in colon tumor
initiation and development,3–5 whether IGF2 LOI influences cancer progression to a more
advanced stage has remained uncertain. Only one study reported that tumoral IGF2 LOI was
unrelated with patient prognosis; however, that study was limited by low statistical power
(N=44).16 Our current study (N=1033 for survival analysis) has shown that tumor IGF2
DMR0 hypomethylation, a surrogate marker for IGF2 LOI, is associated with poor
prognosis. IGF2 LOI has been reported to increase the expression of proliferation-related
genes including CDC6, MCM5, MCM3, CHAF1A, LIG1, and CCNE1.4 Activation of any of
these genes may contribute to not only “initiation” but also “progression” of colorectal
tumor. Nonetheless, further studies are necessary to validate our findings as well as to
elucidate mechanisms of IGF2 DMR0 hypomethylation affecting tumor behavior. Our data
certainly support a potential role of IGF2 DMR0 hypomethylation as a prognostic biomarker
for colorectal cancer. In contrast to irreversible genetic alterations, epigenetic changes such
as IGF2 LOI may serve as potentially reversible molecular targets for cancer therapy as well
as chemoprevention.2, 49–51 In this respect, our findings may have clinical relevance.

Clinical, pathologic, or molecular features of colorectal cancers with IGF2 LOI or DMR0
hypomethylation have not been well characterized. IGF2 LOI or DMR0 hypomethylation in
colorectal cancer has been associated with proximal tumor location and high tumor grade,
and inversely with PIK3CA mutation.16, 17 Some studies showed positive associations
between tumoral MSI status and IGF2 LOI in colorectal cancer 19, 28 or adjacent normal
mucosa,28 whereas such relations were not observed in other studies.11, 16, 17 However,
none of these previous studies 11, 16, 17, 19, 28 has examined other important epigenetic or
epigenomic features such as CIMP status and LINE-1 hypomethylation. Our multivariate
analysis on 1105 cancers has revealed that tumor IGF2 DMR0 hypomethylation is
independently associated with LINE-1 hypomethylation, but not significantly with MSI,
CIMP, tumor location, high tumor grade, or PIK3CA mutation. Our findings provide
evidence for a potential causal link between global DNA hypomethylation and locus-
specific IGF2 DMR0 hypomethylation. Nonetheless, further studies are needed to elucidate
the exact mechanisms for the relationship between global DNA hypomethylation and IGF2
DMR0 hypomethylation. In addition, considering that one-carbon reactions are essential for
both DNA methylation and synthesis,52 dietary intake of one-carbon nutrients (folic acid
and related B vitamins) might influence IGF2 DMR0 methylation level in colorectal cancer.
Excess alcohol consumption increases colorectal cancer risk, likely through its anti-folate
effect.53 We currently plan further epidemiological analysis to examine IGF2 DMR0
methylation level in relation to dietary folate, B vitamins and alcohol.

There are limitations in this study. For example, data on cancer treatment were limited.
Nonetheless, it is unlikely that chemotherapy use substantially differed according to tumor
IGF2 DMR0 methylation status, since such data were unavailable for treatment decision
making. In addition, our multivariate stage-stratified survival analysis adjusted for disease
stage as finely as possible (I, IIA, IIB, IIIA, IIIB, IIIC, IV, unknown) on which treatment
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decision making was mostly based. As another limitation, beyond cause of mortality, data
on cancer recurrence were unavailable. Nonetheless, colorectal cancer-specific survival
might be a reasonable surrogate of colorectal cancer-specific outcome.

There are advantages in utilizing the database of the two prospective cohort studies, the
Nurses’ Health Study (for women) and the Health Professionals Follow-up Study (for men),
to examine prognostic significance of tumor IGF2 DMR0 hypomethylation. Importantly, the
effect of IGF2 DMR0 hypomethylation on patient outcome did not significantly differ
between the two cohort studies. Anthropometric measurements, family history, cancer
staging, and other clinical, pathologic, and tumor molecular data were prospectively
collected, blinded to patient outcome. Cohort participants who developed colorectal cancer
were treated at hospitals throughout the U.S. (in 48 States except for North Dakota and
Alaska), and thus more representative colorectal cancers in the U.S. population than patients
in one to a few academic hospitals or clinical trials. There were no demographic difference
between cases with available tumor tissue and those without available tissue.29 In addition,
our rich tumor database enabled us to rapidly assess pathologic and tumor molecular
correlates, and to conduct survival analysis while simultaneously controlling for
confounding by a number of tumor molecular alterations. Finally, our intriguing findings
need to be confirmed by independent cohort studies in the future.

In summary, IGF2 DMR0 methylation assay is a robust and precise test which is readily
applicable to a large number of paraffin-embedded tissue specimens for clinical use. In
addition, IGF2 DMR0 hypomethylation in colorectal caner is associated with poor
prognosis, suggesting its potential role as a prognostic biomarker. Finally, IGF2 DMR0
hypomethylation is independently associated with LINE-1 hypomethylation, supporting the
hypothesis that global DNA hypomethylation may causally link to IGF2 DMR0
hypomethylation.
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Figure 1. IGF2 DMR0 methylation levels in colorectal cancer and normal mucosa
A. Representative pyrograms in IGF2 DMR0 methylation assay. The top panel shows a
tumor with high methylation level (47.5%) and the bottom panel shows a tumor with low
methylation level (13.3%). The % numbers (in blue shade) are proportions of C and T at
each CpG site after bisulfite conversion, and the proportion of C indicates the methylation
level at each CpG site. The second and third CpG sites follow stretches of Ts leading to
apparently high T peaks relative to C peaks.
B. IGF2 DMR0 methylation levels in 51 colorectal cancers and matched normal mucosa.
Cancer tissues showed significantly lower level of methylation (mean 31.9; median 29.7)
than matched normal mucosa (mean 50.6; median 51.4) (p<0.0001 by the paired t-test).
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Figure 2. IGF2 DMR0 methylation levels in colorectal cancer
A. Distribution of IGF2 DMR0 methylation levels in 1105 colorectal cancers.
B. Significant correlation between IGF2 DMR0 methylation level and LINE-1 methylation
level in colorectal cancer (r=0.29, p<0.0001),

Baba et al. Page 13

Gastroenterology. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Kaplan-Meier curves for colorectal cancer-specific survival (top panels) and overall survival
(bottom panels) according to quartiles (Q1-4) of IGF2 DMR0 methylation level in colorectal
cancer. On the right panels, Q4 represents the “hypomethylated group” and Q1, Q2 and Q3
represent the “hypermethylated group”.

Baba et al. Page 14

Gastroenterology. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Baba et al. Page 15

Ta
bl

e 
1

IG
F2

 D
M

R
0 

hy
po

m
et

hy
la

tio
n 

in
 c

ol
or

ec
ta

l c
an

ce
rs

, a
nd

 c
lin

ic
al

 a
nd

 tu
m

or
 fe

at
ur

es

C
lin

ic
al

, p
at

ho
lo

gi
c 

or
 m

ol
ec

ul
ar

 fe
at

ur
e

T
ot

al
 N

IG
F2

 D
M

R
0 

m
et

hy
la

tio
n 

(q
ua

rt
ile

)
P 

va
lu

e

Q
1 

(≥
37

.5
)

Q
2 

(3
0.

6–
37

.4
)

Q
3 

(2
3.

9–
30

.5
)

Q
4 

(<
23

.9
)

A
ll 

ca
se

s
11

05
27

7
27

4
28

1
27

3

M
ea

n 
ag

e 
± 

SD
67

.6
 ±

 8
.6

67
.1

 ±
 8

.3
67

.0
 ±

 8
.3

67
.7

 ±
 8

.9
68

.7
 ±

 8
.5

0.
09

0

Se
x

0.
00

11

 
M

al
e 

(H
PF

S 
co

ho
rt)

47
3 

(4
3%

)
97

 (3
5%

)
10

7 
(3

9%
)

13
8 

(4
9%

)
13

1 
(4

8%
)

 
Fe

m
al

e 
(N

H
S 

co
ho

rt)
63

2 
(5

7%
)

18
0 

(6
5%

)
16

7 
(6

1%
)

14
3 

(5
1%

)
14

2 
(5

2%
)

B
od

y 
m

as
s i

nd
ex

 (B
M

I, 
kg

/m
2 )

0.
05

0

 
<3

0
90

7 
(8

2%
)

23
4 

(8
4%

)
21

6 
(7

9%
)

22
2 

(7
9%

)
23

5 
(8

6%
)

 
≥

30
19

8 
(1

8%
)

43
 (1

6%
)

58
 (2

1%
)

59
 (2

1%
)

38
 (1

4%
)

Fa
m

ily
 h

is
to

ry
 o

f c
ol

or
ec

ta
l c

an
ce

r i
n 

an
y 

fir
st

 d
eg

re
e 

re
la

tiv
e

0.
00

45

 
(−

)
85

3 
(7

7%
)

22
2 

(8
0%

)
22

7 
(8

3%
)

20
0 

(7
1%

)
20

4 
(7

4%
)

 
(+

)
25

2 
(2

3%
)

55
 (2

0%
)

47
 (1

7%
)

81
 (2

9%
)

69
 (2

5%
)

Y
ea

r o
f d

ia
gn

os
is

0.
86

 
Pr

io
r t

o 
19

95
39

1 
(3

5%
)

10
3 

(3
7%

)
96

 (3
5%

)
10

0 
(3

6%
)

92
 (3

4%
)

 
19

95
 to

 2
00

4
71

4 
(6

5%
)

17
4 

(6
3%

)
17

8 
(6

5%
)

18
1 

(6
4%

)
18

1 
(6

6%
)

Tu
m

or
 lo

ca
tio

n
0.

11

 
R

ec
tu

m
25

8 
(2

4%
)

70
 (2

6%
)

65
 (2

4%
)

56
 (2

0%
)

67
 (2

5%
)

 
D

is
ta

l c
ol

on
 (s

pl
en

ic
 fl

ex
ur

e 
to

 si
gm

oi
d)

33
7 

(3
1%

)
72

 (2
6%

)
75

 (2
7%

)
96

 (3
5%

)
94

 (3
5%

)

 
Pr

ox
im

al
 c

ol
on

 (c
ec

um
 to

 tr
an

sv
er

se
)

49
4 

(4
5%

)
13

1 
(4

8%
)

13
1 

(4
8%

)
12

6 
(4

5%
)

10
6 

(4
0%

)

St
ag

e
0.

 1
9

 
I

25
8 

(2
3%

)
67

 (2
4%

)
50

 (1
8%

)
76

 (2
7%

)
65

 (2
4%

)

 
II

31
4 

(2
8%

)
81

 (2
9%

)
81

 (3
0%

)
82

 (2
9%

)
70

 (2
6%

)

 
II

I
28

6 
(2

6%
)

79
 (2

9%
)

74
 (2

7%
)

67
 (2

4%
)

66
 (2

4%
)

 
IV

15
0 

(1
4%

)
32

 (1
2%

)
46

 (1
7%

)
32

(1
1%

)
40

 (1
5%

)

 
U

nk
no

w
n

97
 (8

.8
%

)
18

 (6
.5

%
)

23
 (8

.4
%

)
24

 (8
.5

%
)

32
 (1

1%
)

Tu
m

or
 g

ra
de

<0
.0

00
1

 
Lo

w
92

8 
(9

0%
)

20
7 

(8
2%

)
23

2 
(9

0%
)

24
9 

(9
4%

)
24

0 
(9

4%
)

 
H

ig
h

10
2 

(9
.9

%
)

44
 (1

8%
)

27
 (1

0%
)

16
 (6

.0
%

)
15

 (5
.9

%
)

Gastroenterology. Author manuscript; available in PMC 2011 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Baba et al. Page 16

C
lin

ic
al

, p
at

ho
lo

gi
c 

or
 m

ol
ec

ul
ar

 fe
at

ur
e

T
ot

al
 N

IG
F2

 D
M

R
0 

m
et

hy
la

tio
n 

(q
ua

rt
ile

)
P 

va
lu

e

Q
1 

(≥
37

.5
)

Q
2 

(3
0.

6–
37

.4
)

Q
3 

(2
3.

9–
30

.5
)

Q
4 

(<
23

.9
)

M
ol

ec
ul

ar
 fe

at
ur

e
To

ta
l N

IG
F2

 D
M

R
0 

m
et

hy
la

tio
n 

(q
ua

rti
le

)
P 

va
lu

e

Q
1 

(≥
37

.5
)

Q
2 

(3
0.

6–
37

.4
)

Q
3 

(2
3.

9–
30

.5
)

Q
4 

(<
23

.9
)

M
SI

 st
at

us
<0

.0
00

1

 
M

SI
-lo

w
/M

SS
90

6 
(8

5%
)

20
8 

(7
8%

)
21

5 
(8

2%
)

23
9 

(8
8%

)
24

4 
(9

2%
)

 
M

SI
-h

ig
h

16
1 

(1
5%

)
59

 (2
2%

)
48

 (1
8%

)
34

 (1
2%

)
20

 (7
.6

%
)

C
IM

P 
st

at
us

<0
.0

00
1

 
C

IM
P-

lo
w

/0
91

7 
(8

4%
)

19
9 

(7
3%

)
22

5 
(8

3%
)

24
5 

(8
8%

)
24

8 
(9

2%
)

 
C

IM
P-

hi
gh

17
4 

(1
6%

)
73

 (2
7%

)
46

 (1
7%

)
32

 (1
2%

)
23

 (8
.5

%
)

BR
AF

 m
ut

at
io

n
<0

.0
00

1

 
(−

)
92

8 
(8

6%
)

20
3 

(7
5%

)
23

2 
(8

7%
)

24
5 

(8
9%

)
24

8 
(9

2%
)

 
(+

)
15

0 
(1

4%
)

66
 (2

5%
)

34
 (1

3%
)

29
 (1

1%
)

21
 (7

.8
%

)

K
RA

S 
m

ut
at

io
n

0.
00

02

 
(−

)
68

2 
(6

3%
)

19
8 

(7
3%

)
16

3 
(6

1%
)

17
2 

(6
3%

)
14

9 
(5

5%
)

 
(+

)
40

0 
(3

7%
)

73
 (2

7%
)

10
4 

(3
9%

)
10

2 
(3

7%
)

12
1 

(4
5%

)

PI
K

3C
A 

m
ut

at
io

n
0.

03
8

 
(−

)
80

3 
(8

4%
)

20
1 

(8
3%

)
20

8 
(8

7%
)

18
8 

(7
9%

)
20

6 
(8

7%
)

 
(+

)
15

5 
(1

6%
)

42
 (1

7%
)

32
 (1

3%
)

51
 (2

1%
)

30
 (1

3%
)

M
ea

n 
LI

N
E-

1 
m

et
hy

la
tio

n 
le

ve
l ±

 S
D

62
.3

 ±
 9

.4
66

.0
 ±

 9
.9

64
.1

 ±
 8

.3
60

.5
 ±

 8
.4

58
.4

 ±
 9

.1
<0

.0
00

1

(%
) i

nd
ic

at
es

 th
e 

pr
op

or
tio

n 
of

 c
as

es
 w

ith
 a

 sp
ec

ifi
c 

cl
in

ic
al

, p
at

ho
lo

gi
c 

or
 m

ol
ec

ul
ar

 fe
at

ur
e 

am
on

g 
ea

ch
 q

ua
rti

le
 g

ro
up

 (Q
1,

 Q
2,

 Q
3 

or
 Q

4)
.

C
IM

P,
 C

pG
 is

la
nd

 m
et

hy
la

to
r p

he
no

ty
pe

; D
M

R
, d

iff
er

en
tia

lly
 m

et
hy

la
te

d 
re

gi
on

; H
PF

S,
 H

ea
lth

 P
ro

fe
ss

io
na

ls
 F

ol
lo

w
-u

p 
St

ud
y;

 M
SI

, m
ic

ro
sa

te
lli

te
 in

st
ab

ili
ty

; M
SS

, m
ic

ro
sa

te
lli

te
 st

ab
le

; N
H

S,
 N

ur
se

s’
H

ea
lth

 S
tu

dy
; S

D
, s

ta
nd

ar
d 

de
vi

at
io

n.

Gastroenterology. Author manuscript; available in PMC 2011 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Baba et al. Page 17

Ta
bl

e 
2

M
ul

tiv
ar

ia
te

 li
ne

ar
 re

gr
es

si
on

 a
na

ly
si

s t
o 

pr
ed

ic
t I

G
F2

 D
M

R
0 

m
et

hy
la

tio
n 

le
ve

l i
n 

co
lo

re
ct

al
 c

an
ce

r

V
ar

ia
bl

es
 in

 th
e 

fin
al

 m
od

el
 fo

r 
IG

F2
 D

M
R

0 
m

et
hy

la
tio

n 
(a

s a
n 

ou
tc

om
e 

va
ri

ab
le

)
A

dj
us

te
d 
β 

co
ef

fic
ie

nt
 (a

dj
us

te
d 

ch
an

ge
 in

 IG
F2

 D
M

R
0 

m
et

hy
la

tio
n

le
ve

l)
95

%
 c

on
fid

en
ce

 li
m

its
P 

va
lu

e

LI
N

E-
1 

hy
po

m
et

hy
la

tio
n 

(f
or

 3
0%

 d
ec

re
as

e)
−
7.

97
−
9.

86
, 
−
6.

08
<0

.0
00

1

K
RA

S 
m

ut
at

io
n

−
1.

71
−
2.

94
, 
−
0.

47
0.

00
70

Fa
m

ily
 h

is
to

ry
 o

f c
ol

or
ec

ta
l c

an
ce

r (
pr

es
en

t v
s. 

ab
se

nt
)

−
1.

78
−
3.

13
, 
−
0.

43
0.

00
99

A
ge

 a
t d

ia
gn

os
is

 (f
or

 1
0-

ye
ar

 in
cr

ea
se

)
−
0.

84
−
1.

51
, 
−
0.

17
0.

01
5

C
IM

P-
hi

gh
 (v

s. 
C

IM
P-

lo
w

/0
)

2.
20

0.
17

, 4
.2

3
0.

03
4

BR
AF

 m
ut

at
io

n
2.

29
0.

15
, 4

.4
4

0.
03

6

R
ec

tu
m

 (v
s. 

co
lo

n)
1.

16
−
0.

21
, 
2.

54
0.

10

Th
e 

m
ul

tiv
ar

ia
te

 li
ne

ar
 re

gr
es

si
on

 m
od

el
 in

iti
al

ly
 in

cl
ud

ed
 a

ge
, s

ex
, f

am
ily

 h
is

to
ry

 o
f c

ol
or

ec
ta

l c
an

ce
r, 

ye
ar

 o
f d

ia
gn

os
is

, b
od

y 
m

as
s i

nd
ex

, t
um

or
 lo

ca
tio

n,
 L

IN
E-

1 
m

et
hy

la
tio

n,
 M

SI
, C

pG
 is

la
nd

 m
et

hy
la

to
r

ph
en

ot
yp

e 
(C

IM
P)

, K
RA

S,
 P

IK
3C

A,
 a

nd
 B

RA
F.

 A
 b

ac
kw

ar
d 

st
ep

w
is

e 
el

im
in

at
io

n 
w

ith
 a

 th
re

sh
ol

d 
of

 p
=0

.2
0 

w
as

 u
se

d 
to

 se
le

ct
 v

ar
ia

bl
es

 in
 th

e 
fin

al
 m

od
el

. T
he

 a
dj

us
te

d 
β 

co
ef

fic
ie

nt
 re

pr
es

en
ts

 a
 c

ha
ng

e
(in

cr
ea

se
 o

r d
ec

re
as

e)
 in

 IG
F2

 D
M

R
0 

m
et

hy
la

tio
n 

le
ve

l b
y 

a 
gi

ve
n 

va
ria

bl
e,

 a
ss

um
in

g 
th

at
 a

ll 
ot

he
r v

ar
ia

bl
es

 re
m

ai
n 

co
ns

ta
nt

. C
IM

P,
 C

pG
 is

la
nd

 m
et

hy
la

to
r p

he
no

ty
pe

; D
M

R
, d

iff
er

en
tia

lly
 m

et
hy

la
te

d
re

gi
on

.

Gastroenterology. Author manuscript; available in PMC 2011 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Baba et al. Page 18

Ta
bl

e 
3

IG
F2

 D
M

R
0 

m
et

hy
la

tio
n 

st
at

us
 in

 c
ol

or
ec

ta
l c

an
ce

r a
nd

 p
at

ie
nt

 m
or

ta
lit

y

IG
F2

 D
M

R
0

m
et

hy
la

tio
n

le
ve

l (
qu

ar
til

e)

T
ot

al
 N

C
ol

or
ec

ta
l c

an
ce

r-
sp

ec
ifi

c 
m

or
ta

lit
y

O
ve

ra
ll 

m
or

ta
lit

y

D
ea

th
s/

pe
rs

on
- y

ea
rs

U
ni

va
ri

at
e 

H
R

(9
5%

 C
I)

St
ag

e-
 m

at
ch

ed
H

R
 (9

5%
 C

I)

M
ul

tiv
ar

ia
te

st
ag

e-
 m

at
ch

ed
H

R
 (9

5%
 C

I)
D

ea
th

s/
pe

rs
on

- y
ea

rs
U

ni
va

ri
at

e 
H

R
(9

5%
 C

I)
St

ag
e-

 m
at

ch
ed

H
R

 (9
5%

 C
I)

M
ul

tiv
ar

ia
te

st
ag

e-
 m

at
ch

ed
H

R
 (9

5%
 C

I)

Q
1 

(≥
37

.5
)

25
4

61
/2

19
9

1 
(r

ef
er

en
t)

1 
(r

ef
er

en
t)

1 
(r

ef
er

en
t)

11
3/

21
99

1 
(r

ef
er

en
t)

1 
(r

ef
er

en
t)

1 
(r

ef
er

en
t)

Q
2 

(3
0.

6–
37

.4
)

26
0

75
/2

16
9

1.
24

 (0
.8

8–
1.

74
)

0.
97

 (0
.6

9–
1.

37
)

1.
01

 (0
.7

1–
1.

44
)

11
9/

21
69

1.
06

 (0
.8

2–
1.

38
)

0.
92

 (0
.7

1–
1.

19
)

0.
91

 (0
.6

9–
1.

18
)

Q
3 

(2
3.

9–
30

.5
)

26
4

65
/2

29
4

1.
02

 (0
.7

2–
1.

44
)

0.
92

 (0
.6

4–
1.

31
)

0.
97

 (0
.6

6–
1.

42
)

12
0/

22
94

1.
02

 (0
.7

8–
1.

31
)

0.
95

 (0
.7

3–
1.

24
)

0.
97

 (0
.7

4–
1.

27
)

Q
4 

(<
23

.9
)

25
5

91
/1

84
6

1.
64

 (1
.1

8–
2.

27
)

1.
42

 (1
.0

2–
1.

98
)

1.
33

 (0
.9

3–
1.

91
)

14
2/

18
46

1.
45

 (1
.1

3–
1.

85
)

1.
30

 (1
.0

1–
1.

67
)

1.
26

 (0
.9

7–
1.

64
)

P 
fo

r t
re

nd
0.

01
2

0.
04

1
0.

09
0

0.
00

79
0.

03
5

0.
04

4

Q
1-

3 
(≥

23
.9

)
77

8
20

1/
66

61
1 

(r
ef

er
en

t)
1 

(r
ef

er
en

t)
1 

(r
ef

er
en

t)
35

2/
66

61
1 

(r
ef

er
en

t)
1 

(r
ef

er
en

t)
1 

(r
ef

er
en

t)

Q
4 

(<
23

.9
)

25
5

91
/1

84
6

1.
51

 (1
.1

8–
1.

94
)

1.
48

 (1
.1

5–
1.

90
)

1.
34

 (1
.0

3–
1.

75
)

14
2/

18
46

1.
41

 (1
.1

6–
1.

71
)

1.
36

 (1
.1

2–
1.

66
)

1.
33

 (1
.0

8–
1.

63
)

P 
va

lu
e

0.
00

12
0.

00
24

0.
02

8
0.

00
06

0.
00

22
0.

00
66

Th
e 

m
ul

tiv
ar

ia
te

, s
ta

ge
-m

at
ch

ed
 C

ox
 re

gr
es

si
on

 m
od

el
 in

iti
al

ly
 in

cl
ud

ed
 a

ge
, y

ea
r o

f d
ia

gn
os

is
, s

ex
, f

am
ily

 h
is

to
ry

 o
f c

ol
or

ec
ta

l c
an

ce
r, 

bo
dy

 m
as

s i
nd

ex
, t

um
or

 lo
ca

tio
n,

 st
ag

e,
 g

ra
de

, m
ic

ro
sa

te
lli

te
in

st
ab

ili
ty

, t
he

 C
pG

 is
la

nd
 m

et
hy

la
to

r p
he

no
ty

pe
, L

IN
E-

1 
m

et
hy

la
tio

n,
 K

RA
S,

 P
IK

3C
A,

 a
nd

 B
RA

F.
 A

 b
ac

kw
ar

d 
st

ep
w

is
e 

el
im

in
at

io
n 

w
ith

 a
 th

re
sh

ol
d 

of
 p

=0
.2

0 
w

as
 u

se
d 

to
 se

le
ct

 v
ar

ia
bl

es
 in

 th
e 

fin
al

m
od

el
. C

I, 
co

nf
id

en
ce

 in
te

rv
al

; D
M

R
, d

iff
er

en
tia

lly
 m

et
hy

la
te

d 
re

gi
on

; H
R

, h
az

ar
d 

ra
tio

.

Gastroenterology. Author manuscript; available in PMC 2011 December 1.


