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A number of epidemiologic studies have described what appear to be paradoxical associations, 

where an incongruous relationship is observed between a certain well-established risk factor for 

disease incidence and favorable clinical outcome among patients with that disease. For example, 

the “obesity paradox” represents the association between obesity and better survival among 

patients with a certain disease such as coronary heart disease. Paradoxical observations cause 

vexing clinical and public health problems as they raise questions on causal relationships and 

hinder the development of effective interventions. Compelling evidence indicates that pathogenic 

processes encompass molecular alterations within cells and the microenvironment, influenced by 

various exogenous and endogenous exposures, and that interpersonal heterogeneity in molecular 

pathology and pathophysiology exists among patients with any given disease. In this article, we 

introduce methods of the emerging integrative interdisciplinary field of molecular pathological 

epidemiology (MPE), which is founded on the unique disease principle and disease continuum 

theory. We analyze and decipher apparent paradoxical findings, utilizing the MPE approach and 

available literature data on tumor somatic genetic and epigenetic characteristics. Through our 

analyses in colorectal cancer, renal cell carcinoma, and glioblastoma (malignant brain tumor), we 

can readily explain paradoxical associations between disease risk factors and better prognosis 

among disease patients. The MPE paradigm and approach can be applied to not only neoplasms 

but also various non-neoplastic diseases where there exists indisputable ubiquitous heterogeneity 

of pathogenesis and molecular pathology. The MPE paradigm including consideration of disease 

heterogeneity plays an essential role in advancements of precision medicine and public health.
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INTRODUCTION

An apparently paradoxical association, which is occasionally observed in epidemiologic 

research, refers to the relationship of a well-known risk factor (e.g., obesity) for developing 

a certain disease (e.g., coronary heart disease) with lower mortality among patients with that 

disease. Intuitively, we tend to consider that a disease risk factor is likely associated with 

worse clinical outcomes among patients with that disease, because the risk factor is 

considered to facilitate the pathogenic process that has led to the disease. In the notorious 

“obesity paradox” which has been described in various diseases [1–5], obese patients with a 

given disease in average experience better clinical outcomes than normal-weight patients, 

despite the fact that obesity is a well-established risk factor for that disease. Possible 

explanations to the paradox have been proposed, including selection bias, index event bias, 

collider bias, unmeasured confounding, measurement error, and reverse causation [5–11]. 

However, possible biological mechanisms which may provide an additional plausible 

explanation have not been well discussed.

The purpose of this article is to demonstrate that, by means of considering molecular 

heterogeneity of disease based on pathogenic mechanisms, we can readily decipher some of 

apparent paradoxical findings. Collapsing two or more heterogeneous disease subtypes into 

one disease entity would produce a similar problem as unmeasured confounding in the 
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structure of the association between a risk factor and mortality [12]. This phenomenon (bias 

due to unmeasured molecular subtypes of disease) has been termed “molecular 

confounding” though it does not satisfy all of the criteria of typical confounding in an 

epidemiologic sense [13]. We use examples of studies on colorectal, kidney, and brain 

cancers, to demonstrate that the inherent nature of inter-personal molecular heterogeneity 

within a disease can underlie paradoxical observations. These examples attest to the 

importance of taking disease heterogeneity and pathogenesis into consideration in not only 

research but also clinical and public health practice [14]. This trend has also been 

highlighted by the precision medicine initiative of the U.S.A. National Institute of Health 

[15].

MOLECULAR PATHOLOGICAL EPIDEMIOLOGY (MPE): ANALYSIS 

METHOD

Accumulating evidence indicates that many traditional disease designations (e.g., lung, 

breast, or colorectal cancer, heart failure, type 2 diabetes mellitus, hypertension, kidney 

stones, major depression, stroke, or multiple sclerosis) are umbrella terms for a group of 

heterogeneous disease processes which share certain common features, such as clinical 

manifestations and some pathologic characteristics [16]. However, it is increasingly evident 

that, in each individual, disease processes represent unique sets of molecular changes in cells 

and microenvironment, and these processes differ from person to person [17]. Furthermore, 

a disease process is influenced by endogenous and exogenous exposures (e.g., germline 

genetics, diet, microorganisms, medications, and inhalants) and molecular interactions in the 

microenvironment [17]. Endogenous and exogenous exposures certainly vary from person to 

person [17]. Therefore, while there are some similarities between people with a particular 

disease, each individual has a unique disease process which is different from any other 

individuals (i.e., the unique disease principle) [17]. The fundamental tenet of MPE is that 

inherent pathogenic heterogeneity is taken into account when we examine the association 

between a risk factor and disease incidence. Here, we introduce the emerging field of 

molecular pathological epidemiology (MPE), and discuss the importance of considering 

pathogenesis and inherent heterogeneity of disease.

By identifying groups of patients who share similar molecular pathologic signatures, 

molecular classification of disease plays a key role in integrating the unique disease 

principle into epidemiologic research [17]. MPE has recently emerged to facilitate this 

integration of molecular pathology into epidemiology [18]. MPE is defined as epidemiology 

of molecular pathology and heterogeneity of disease. MPE research emphasizes the 

importance of considering disease heterogeneity and the complexity of pathogenic 

mechanisms by examining hypothetic links between exposures and molecular signatures of 

the disease [19]. The MPE approach can not only uncover associations between exposures 

and specific molecular subtypes of disease but also refine risk estimates specific for disease 

subtypes, thereby providing insight into pathogenic mechanisms and contributing to causal 

inference [17–21]. The MPE approach and concept have been widely accepted and utilized 

[22–47]. MPE has been a major theme of international symposia [14, 48, 49] and recently-

established international meeting series [50].
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It is relevant to briefly review molecular pathology of colorectal cancer, because paradoxical 

findings exist in colorectal cancer and ample data from both conventional epidemiology and 

MPE research actually give us clues to the paradoxes. Colorectal cancer is a heterogeneous 

group of neoplasms which arise as a result of accumulation of a differing set of molecular 

alterations [51–53]. In the initiation and progression of colorectal neoplasia, aberrant cellular 

genetic and epigenetic changes occur along with stromal microenvironmental changes [51, 

54]. Some pathogenic molecular alterations in colorectal cancer including microsatellite 

instability (MSI), and somatic mutations in KRAS and BRAF are now routinely tested for 

clinical use [55]. With these well-established molecular pathology tests, colorectal cancer 

represents a disease area where MPE research has been quite active. Emerging evidence 

indicates that specific exposures influence the initiation and progression of different 

molecular subtypes of colorectal tumor [20]. For example, MPE research has shown that 

cigarette smoking has been associated with an increased risk for colorectal cancer subtype 

characterized by high-level CpG island methylator phenotype (CIMP-high) [56–58]. In 

addition, MPE research has suggested that colonoscopy screening may be less effective in 

reducing risks of CIMP-high and MSI-high subtypes, compared to non-CIMP-high and non-

MSI-high subtypes [59]. These data suggest that optimal colonoscopy screening may vary 

among individuals with different lifestyle and genetic risk profiles. Hence, MPE research 

can contribute to the development of more personalized prevention strategies. In essence, 

“colorectal cancer” is a single disease entity in the conventional research paradigm, but 

consists of a complex group of conditions when we look deeply into molecular pathological 

signatures. A better understanding of disease heterogeneity is a prerequisite for accurate 

assessment of the associations between risk factors and pathologic processes.

In the following section, we analyze and decipher apparent paradoxical findings, utilizing 

the MPE approach and available literature data.

ANALYSES OF PARADOXES

Lynch syndrome, MSI-high colorectal cancer, and longer survival

Lynch syndrome is the most common form of hereditary colorectal cancer, and is caused by 

a germline mutation in one of DNA mismatch repair genes [60, 61]. Previous studies have 

reported that carriage of Lynch syndrome mutations is associated with markedly higher risk 

of colorectal cancer; but among all colorectal cancer patients, Lynch syndrome patients in 

average survive longer than other colorectal cancer patients [60, 61]. Studies have shown 

that Lynch syndrome mutation carriers have a higher risk of the MSI-high subtype of 

colorectal cancer (but not that of non-MSI subtype), and among colorectal cancer patients, 

the MSI-high subtype is associated with longer survival (Fig. 1a) [55]. Therefore, the 

seemingly paradoxical association between colorectal cancer patients carrying Lynch 

syndrome mutations and superior survival can be readily explained by the association 

between the specific cancer subtype (MSI-high) caused by Lynch syndrome and better 

prognosis.
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SMAD7 variant, low-stage colorectal cancer, and longer survival

Genome-wide association studies indicate that the rs4939827 single nucleotide 

polymorphism (SNP) in SMAD7 (18q21) is a well-validated susceptibility variant for 

colorectal cancer [62]. The major G allele of the rs4939827 polymorphism has been 

associated with higher incidence of colorectal cancer; but among colorectal cancer patients, 

the presence of this major allele is associated with better survival [63, 64]. A recent study 

has demonstrated that the major G allele of rs4939827 is associated with a high risk of low-

stage (indolent and less invasive) colorectal cancer subtype [64]; these findings can explain 

the apparently paradoxical association of the risk variant with better survival among 

colorectal cancer patients (Fig. 1b).

Obesity, FASN non-upregulated renal cell carcinoma, and longer survival

Renal cell carcinoma (RCC, a specific pathologic type of kidney cancer) is another example 

where recent MPE data are available to help elucidate paradoxical findings, which fit the 

"obesity paradox". Obesity has been associated with risk of RCC, but also counter-

intuitively with better survival among RCC patients [65]. A study by Hakimi et al. [66] has 

provided a helpful clue to this paradox; obesity is associated with low-stage RCC and low-

grade RCC (less aggressive forms of RCC). Moreover, obesity is associated with a specific 

molecular subtype of RCC with no upregulation of FASN (the official symbol for fatty acid 

synthase) [66]. The FASN protein is a key enzyme in fatty acid metabolism [67]. Compared 

to RCCs with FASN upregulation, RCCs without FASN upregulation are associated with 

longer survival [66]. Thus, obesity is associated with low-stage, low-grade, and FASN non-

upregulated subtypes of RCC; all of which are features associated with longer survival in 

RCC patients (Fig. 1c).

MGMT promoter variant, loss of MGMT expression, and longer survival in glioblastoma

The paradoxical observation in the association between a MGMT promoter variant, a risk 

factor for glioblastoma, and longer patient survival was explained by MPE studies. MGMT 

is DNA repair enzyme, and functions as a tumor suppressor. In some cancers, MGMT 

expression is lost, through DNA hypermethylation at its promoter CpG island. Loss of 

MGMT expression is causally linked to mismatch repair deficiency and carcinogenesis [68]. 

The minor T allele of the rs16906252 SNP in the MGMT promoter is associated with longer 

patient survival in glioblastoma (a common pathologic type of brain cancer) [69]. This is 

paradoxical, because the minor T allele of this SNP has been causally linked to 

carcinogenesis, through MGMT promoter methylation and loss of expression [70, 71]. 

However, this paradox can be easily explained, as studies have shown that MGMT promoter 

CpG island methylation and loss of MGMT expression are associated with longer survival in 

glioblastoma [68, 69]. Essentially, the minor T allele of the SNP is a cause of the indolent 

tumor molecular subtype with MGMT promoter CpG island methylation and loss of MGMT 

expression in glioblastoma. Thus, the apparent paradoxical association can be explained by 

disease heterogeneity in glioblastoma (Fig. 1d).
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DISCUSSION

The above analyses illustrate how inherent heterogeneity of disease can readily explain 

paradoxical findings, utilizing the molecular pathological epidemiology (MPE) approach 

and available literature data. Under the MPE paradigm, a risk factor for a disease likely 

facilitates specific pathogenic processes, thereby influencing occurrence of a specific disease 

subtype, which is often associated with clinical outcome among patients with the disease 

(consisting of the specific subtype and other subtypes). Without considering heterogeneous 

disease subtypes, the associations depicted in Fig. 1 can appear as paradoxes. In another 

setting, if a disease risk factor is linked with occurrence of an aggressive disease subtype, 

the risk factor is most likely associated with both disease occurrence and adverse prognosis 

among disease patients; hence, there is no paradox.

MPE research has been mostly applied to neoplastic diseases where tumor molecular tests 

have been widely available in research as well as clinical practice [16, 72]. In contrast, for 

most non-neoplastic diseases, disease molecular pathology data remain scanty, and the 

emerging MPE paradigm has not yet been widely applied. However, accumulating evidence 

indicates that, in many non-neoplastic diseases (including obesity, metabolic diseases, 

cardiovascular diseases, respiratory diseases, infectious diseases, immunity-related diseases, 

neurological diseases, psychiatric diseases, etc.), there exists inherent heterogeneity of 

pathogenesis [16]. Therefore, the relevance of the MPE paradigm in non-neoplastic diseases 

has been increasingly recognized [16, 73–75]. Hence, we speculate that, perhaps together 

with the other recognized causes of paradoxes, disease heterogeneity can contribute to some 

of reported paradoxical findings in not only neoplastic diseases but also non-neoplastic 

diseases. For example, recently, Lajous et al. [6] have suggested that type 2 diabetes mellitus 

may consist of different subtypes, and that the paradoxical finding on better survival among 

diabetic patients could result from the heterogeneity of the disease. As we do not generally 

consider subtypes of type 2 diabetes mellitus in practice, analysis limited to cases with type 

2 diabetes mellitus (as one entity) will be conditioned on a collider, and then introduces 

selection bias [6]. Heart failure is another example of a complex disorder that results from 

diverse biological processes. Patients with heart failure comprise a heterogeneous group, and 

pathologic processes of heart failure are influenced by many factors, including hypertension, 

structural disorders of the pericardium, myocardium, endocardium or heart valves, vascular 

abnormalities, diabetes mellitus, other metabolic abnormalities, cigarette smoking, alcohol 

consumption, and kidney disease [76].

With the advent of molecular pathology tests and precision medicine [15, 77–79], molecular 

classification systems can be used to subgroup patients with similar pathogenic 

characteristics, to better predict disease evolution and response to intervention. As 

biomedical and public health sciences advance, modern epidemiology and clinical medicine 

should more explicitly take into account disease pathogenesis and inherent heterogeneity of 

disease [80–82]. The MPE concept and research can substantially contribute to the 

acceleration of precision medicine. We emphasize that a full assimilation of the MPE 

concept requires a change in mindsets of clinicians and researchers. Furthermore, the MPE 

concept has been expanding for recent years. The MPE field has recently been integrated 

with pharmacoepidemiology (to form pharmaco-MPE) [16], and with immunology (to form 
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immuno-MPE) [83]. In order to keep up epidemiology to advancement of biomedicine, we 

must address various challenges, which include difficulty in characterizing the complex 

nature of many multifactorial diseases, paucity of data on their molecular subtyping, and 

paucity of interdisciplinary experts who can conduct MPE-type research on complex 

diseases. Interdisciplinary education which fully integrates pathology and epidemiology has 

been proposed to transform epidemiology into modern integrative population health science 

[80, 81, 84]. We stress the importance of considering heterogeneity in disease pathogenesis 

and mechanisms in not only enhancing causal inference but also advancing medicine and 

public health.
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Fig. 1. 
The apparent paradoxical associations in colorectal cancer, renal cell carcinoma, and 

glioblastoma (malignant brain tumor), utilizing molecular pathological epidemiology (MPE) 

approach and literature data. a. Lynch syndrome is associated with incidence of colorectal 

cancer with high levels of microsatellite instability (MSI-high), and MSI-high cancer is 

associated with better prognosis among patients with colorectal cancer. Hence, the carrier 

status of Lynch syndrome mutation is associated with higher colorectal cancer risk, but with 

better prognosis among colorectal cancer patients. b. The major G allele of the rs4939827 

SMAD7 polymorphism is associated with colorectal cancer with earlier stage, and earlier 

cancer stage is associated with better prognosis among patients with colorectal cancer. The 

major G allele of the rs4939827 SMAD7 polymorphism is associated with higher colorectal 

cancer risk, but with better prognosis among colorectal cancer patients. c. Obesity is 

associated with a subtype of renal cell carcinoma (RCC) characterized by low-stage, low-

grade, and FASN non-upregulation, and all of these features are associated with better 

prognosis among RCC patients. Hence, obesity is associated with higher RCC risk, but with 

better prognosis among RCC patients. d. The minor T allele of the rs16906252 

polymorphism in the MGMT promoter region is associated with loss of MGMT expression in 

glioblastoma, and loss of MGMT expression is associated with better prognosis among 
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patients with glioblastoma. Hence, the minor T allele of rs16906252 polymorphism 

contributes to pathogenesis of glioblastoma, but is associated with better prognosis among 

glioblastoma patients.

MSI, microsatellite instability.
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