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Abstract
Objective—O6-methylguanine-DNA methyltransferase (MG MT) is a DNA repair enzyme.
MGMT promoter hypermethylation and epigenetic silencing often occur as early events in
carcinogenesis. However, prognostic significance of MGMT alterations in colorectal cancer
remains uncertain.

Methods—Utilizing a database of 855 colon and rectal cancers in two prospective cohort studies
(the Nurses’ Health Study and the Health Professionals Follow-up Study), we detected MGMT
promoter hypermethylation in 325 tumors (38%) by MethyLight and loss of MGMT expression in
37% (247/672) of tumors by immunohistochemistry. We assessed the CpG island methylator
phenotype (CIMP) using eight methylation markers [CACNA1G, CDKN2A (p16), CRABP1,
IGF2, MLH1, NEUROG1, RUNX3, and SOCS1], and LINE-1 (L1) hypomethylation, TP53 (p53),
and microsatellite instability (MSI).

Results—MGMT hypermethylation was not associated with colorectal cancer–specific mortality
in univariate or multivariate Cox regression analysis [adjusted hazard ratio (HR) = 1.03; 95%
confidence interval (CI), 0.79–1.36] that adjusted for clinical and tumor features, including CIMP,
MSI, and BRAF mutation. Similarly, MGMT loss was not associated with patient survival.
MGMT loss was associated with G>A mutations in KRAS (p = 0.019) and PIK3CA (p = 0.0031).

Conclusions—Despite a well-established role of MGMT aberrations in carcinogenesis, neither
MGMT promoter methylation nor MGMT loss serves as a prognostic biomarker in colorectal
cancer.

Keywords
Colon cancer; MGMT; Hypermethylation; Epigenetics; Clinical outcome

Introduction
The O6-methylguanine-DNA methyltransferase (MGMT) gene encodes DNA repair protein
and is frequently inactivated in colorectal cancer [1, 2]. Polymorphisms in MGMT have
been associated with colorectal cancer risk [3, 4], and MGMT promoter methylation in
normal colonic mucosa might be a predisposing factor for cancer as a field effect and an
early event in colorectal carcinogenesis [5, 6]. MGMT promoter methylation and loss of
expression have been associated with G>A mutations in a variety of genes such as KRAS,
PIK3CA, TP53, and APC [7–11]. Jass [12] proposed the molecular classification based on
CIMP, MSI, BRAF, KRAS, and MGMT promoter methylation, indicating that MGMT
methylation is one of the key molecular alterations in colorectal cancer. In addition, MGMT
has potential as a therapeutic target in human cancer [13, 14]. Collectively, it is of interest to
examine a prognostic role of MGMT alteration as a tumor biomarker. In brain tumors and
B-cell lymphoma, MGMT methylation or loss of MGMT has been associated with poor
prognosis [15–17]. However, prognostic significance of MGMT alteration in colorectal
cancer remains inconclusive due to limited statistical power of all previous studies (Table 1;
all n < 200) [18–22].

In this study using the database of a large number (n = 855) of stage I–IV colorectal cancers,
we examined the prognostic effect of MGMT promoter methylation and loss of expression.
Since we concurrently assessed other molecular variables including LINE-1
hypomethylation, MSI, CIMP, and mutation in KRAS, BRAF, and PIK3CA, we could
evaluate the prognostic effect of MGMT alteration after controlling for those potential
confounders.
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Materials and methods
Study population

We utilized the database of two prospective cohort studies, the Nurses’ Health Study (n =
121,701 women followed since 1976) [23] and the Health Professionals Follow-up Study (n
= 51,529 men followed since 1986) [23]. Participants have been sent biennial questionnaires
to update information on potential risk factors and to identify newly diagnosed cancers in
themselves and their first-degree relatives. We collected paraffin-embedded tumor tissue
blocks of incident colorectal cancers from hospitals where participants with colorectal
cancer underwent tumor resection. Hematoxylin and eosin (H&E)–stained tissue sections
from all colorectal cancer cases were confirmed by a pathologist (S.O.) unaware of other
data. The tumor grade was categorized as low versus high (>50 vs. ≤50% gland formation).
Positive family history of colorectal cancer was defined as the presence of colorectal cancer
in any first-degree relative. We excluded cases that were preoperatively treated. Based on
the availability of adequate follow-up and tumor tissue data, 855 stage I–IV colorectal
cancer cases diagnosed up to 2002 were included. Patients were observed until death or June
2009, whichever came first. This study was approved by the Human Subjects Committees at
Harvard School of Public Health and Brigham and Women’s Hospital.

Pyrosequencing of KRAS, BRAF, and PIK3CA, and microsatellite instability (MSI) analysis
Genomic DNA was extracted from paraffin-embedded tissue. PCR and pyrosequencing
targeted for KRAS (codons 12 and 13) [24], BRAF (codon 600) [25], and PIK3CA (exons 9
and 20) [11] were performed. Microsatellite instability (MSI) analysis was performed using
10 micro-satellite markers (D2S123, D5S346, D17S250, BAT25, BAT26, BAT40, D18S55,
D18S56, D18S67, and D18S487) [26]. MSI-high was defined as the presence of instability
in ≥30% of the markers and MSI-low/microsatellite stable (MSS) as instability in 0–29% of
markers [26].

Methylation analyses for CpG islands and LINE-1
Sodium bisulfite treatment and subsequent real-time PCR were performed to quantify
promoter methylation in MGMT and eight other CpG islands (CACNA1G, CDKN2A,
CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1) [27, 28]; the latter eight
markers have been shown to be specific for CIMP [29]. CIMP-high was defined as the
presence of ≥6/8 methylated markers, CIMP-low as the presence of 1/8–5/8 methylated
markers, and CIMP-0 as the absence (0/8) of methylated markers [30]. We defined and
validated the cut point for MGMT promoter methylation positivity (percentage of
methylated reference, or PMR> 4) as previously described [31]. LINE-1 methylation levels
were quantified by PCR-pyrosequencing [32, 33].

Immunohistochemical analysis
Immunohistochemical methods for MGMT and TP53 (p53) were previously described [26],
and expression patterns were interpreted by a pathologist (S.O.) unaware of other data. In
agreement studies, a random selection of more than 100 cases for each marker was
interpreted by a second pathologist unaware of other data (MGMT by K.S.; TP53 by K.N.).
The concordance between the two observers (both p < 0.0001) was 0.86 for MGMT (κ =
0.70) and 0.87 for TP53 (κ = 0.75), indicating substantial agreement. The concordance
between MGMT methylation and loss of MGMT was 81% (κ = 0.59).

Statistical analysis
We used SAS program (Version 9.1, SAS Institute, Cary, NC) for all statistical analysis. All
p values were two-sided, and significance level was set at p = 0.05. The chi-square test (or
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Fisher’s exact test) was performed for categorical variables. For survival analysis, the
Kaplan–Meier method and log-rank test were used. For analyses of colorectal cancer–
specific mortality, deaths as a result of causes other than colorectal cancer were censored.
To control for confounding, we used multivariate stage-matched (stratified) Cox
proportional hazard models to compute hazard ratio (HR) of death according to MGMT
status. To avoid residual confounding and overfitting, disease stage (I, IIA, IIB, IIIA, IIIB,
IIIC, IV, unknown) was used as a stratifying variable, utilizing the “strata” option in the
SAS “proc phreg” command. The multivariate model initially included age at diagnosis
(continuous), sex, year of diagnosis (continuous), BMI (<30 vs. ≥30 kg/m2), family history
of colorectal cancer (present vs. absent), tumor location (proximal colon vs. distal colon vs.
rectum), tumor grade (low vs. high), MSI (high vs. low/MSS), CIMP (high vs. low vs.
CIMP-0), LINE-1 methylation (continuous), and BRAF. A backward elimination with a
threshold of p = 0.20 was used to select variables in the final model. For cases with missing
information in any of the categorical variables [tumor location (0.9%), tumor grade (0.5%),
MSI (3.0%), BRAF (4.8%)], we included those cases in a majority category of a given
covariate to avoid overfitting. We confirmed that excluding cases with missing information
in any of the covariates did not substantially alter results (data not shown). An interaction
was assessed by including the cross product of the MGMT methylation (or MGMT loss)
variable and another variable of interest (without data-missing cases) in a multivariate
model, and the Wald test was performed. A p value for statistical significance was adjusted
for multiple hypothesis testing to p = 0.0029 (=0.05/17) by Bonferroni correction.

In addition, we constructed multivariate logistic regression analysis model to assess the
independent effect of MGMT loss on G>A mutations in KRAS or PIK3CA (as a binary
outcome variable). The model initially included age at diagnosis (continuous), sex, year of
diagnosis (continuous), BMI (<30 vs. ≥30 kg/m2), family history of colorectal cancer
(present vs. absent), tumor location (proximal vs. distal), MSI (high vs. low/MSS), CIMP
(high vs. low/0), LINE-1 methylation (continuous), and MGMT loss, and a backward
elimination with a threshold of p = 0.20 was done to select variables in the final model.

Results
MGMT methylation and loss of MGMT in colorectal cancer

MGMT promoter methylation was detected in 325 (38%) of 885 tumors, and loss of MGMT
was detected in 247 (37%) of 672 tumors. There was a significant association between
MGMT promoter methylation and CIMP status (p < 0.0001). Loss of MGMT was
significantly associated with PIK3CA mutation (p = 0.0031) and inversely associated with
TP53 expression (p = 0.0004; Table 2).

MGMT methylation/loss and G>A mutations in KRAS and PIK3CA
Because functional loss of MGMT may contribute to G>A mutations [7–11], we examined
the relations between MGMT methylation (or loss) and G>A mutations in KRAS and
PIK3CA (Table 2). MGMT loss was significantly associated with G>A mutations in KRAS
(p = 0.019) and PIK3CA (p = 0.0031) (by a priori hypothesis testing), while MGMT
methylation was not. In multivariate logistic regression analysis to assess independent effect
of MGMT loss on G>A mutations, MGMT loss remained significantly associated with G>A
mutations in KRAS (adjusted OR, 1.58; 95% CI, 1.07–2.34; p = 0.021) and PIK3CA
(adjusted OR, 2.55; 95% CI, 1.40–4.68; p = 0.0024).

MGMT methylation, loss of MGMT, and survival of patients with colorectal cancer
Among the 855 patients, there were 415 deaths including 234 colorectal cancer–specific
deaths. The median follow-up time for censored patients was 13.0 years. For either
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colorectal cancer–specific or overall mortality, MGMT methylation was not significantly
associated with patient outcome in log-rank test, or univariate or multivariate stage–matched
Cox regression analysis (Table 3, Fig. 1). Likewise, loss of MGMT was not significantly
associated with colorectal cancer–specific or overall mortality in univariate or multivariate
stage–matched analysis (Table 3, Fig. 1).

We analyzed the prognostic effect of MGMT methylation or loss of MGMT in colon cancer
and rectal cancer separately, since clinical management for patients with colon cancer differ
from that for patients with rectal cancer. MGMT methylation (or MGMT loss) was not
significantly associated with colorectal cancer–specific or overall mortality in either patients
with colon cancer or rectal cancer (Table 3).

There was no significant modifying effect on the prognostic influence of MGMT
methylation (or MGMT loss) by Table 2 Clinical and molecular characteristics in colorectal
cancer with MGMT promoter methylation/loss of MGMT any of the other variables
including sex, age, year of diagnosis, BMI, family history of colorectal cancer, tumor
location, stage, tumor grade, CIMP, MSI, BRAF, KRAS, PIK3CA, LINE-1 methylation,
and TP53 (all Pinteraction > 0.02).

Discussion
We conducted this study to examine whether MGMT promoter methylation or loss of
expression in colorectal cancer has any prognostic role. This question has remained
inconclusive due to limited statistical power of all previous studies on this topic [18–22].
Given the crucial roles of MGMT aberrations in colorectal carcinogenesis or a potential use
of MGMT as a therapeutic target in human cancer, the assessment of MGMT alteration (i.e.,
MGMT promoter methylation or loss of MGMT) and clinical outcome using a large number
of cancers is needed. Utilizing the database of 855 clinically and molecularly annotated
colorectal cancers in the two large prospective cohort studies, we found that MGMT
alteration was not associated with patient prognosis in colorectal cancer. In addition, we
assessed the prognostic effect of MGMT promoter methylation (or MGMT loss), controlling
for other molecular features, including CIMP, MSI, and BRAF mutation, all of which have
been documented to be critical in colorectal carcinogenesis.

Studying molecular variants and somatic changes is important in cancer research [34–42].
Recent studies have shown that MGMT promoter polymorphism (rs16906252) is associated
with MGMT methylation in colorectal cancer [43], in normal colorectal mucosa [44], and in
peripheral blood cells from normal individuals [45]. Epigenetic silencing of MGMT by
promoter methylation in normal colonic mucosa may be a predisposing factor for cancer as a
field effect and an early event in colorectal carcinogenesis [5, 6]. In addition, MGMT
methylation might be a valuable biomarker in plasma for early detection of colorectal cancer
[46].

Studies on colorectal cancer have shown that MGMT methylation is associated with MGMT
loss [5, 6, 47]. In agreement with these studies [5, 6, 47], our current study showed a good
concordance (81%, κ = 0.59, p < 0.0001) between MGMT methylation and MGMT loss.
MGMT methylation and loss of MGMT were not perfectly correlated perhaps due to a few
reasons. First, loss of MGMT expression may be caused not only by promoter methylation
but also by other mechanisms such as a gene deletion or mutation. Second, in rare cases,
promoter methylation may be present in only one MGMT allele, and the MGMT protein
may be expressed from the second allele. Third, there may be other molecules (such as
miRNA) that may downregulate MGMT.
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MGMT promoter methylation or loss of expression in colorectal cancer has been associated
with G>A mutations in KRAS [7, 9, 10, 44, 48], TP53 [8, 9], and PIK3CA [11]. Our current
study is the first one to perform multivariate analysis and show that MGMT loss is
associated with G>A mutations in KRAS and PIK3CA, independent of potential
confounders. Thus, our current study supports the concept that loss of MGMT contributes to
G>A mutations of KRAS and PIK3CA.

Previous studies [18–22] have shown no prognostic significance of MGMT methylation (or
loss of MGMT) in colorectal cancers (Table 1). These previous studies [18–22] on
prognostic significance of MGMT methylation (or MGMT loss) are limited by low
statistical power (n < 200). In contrast to the prior studies [18–22], our study examined both
MGMT promoter methylation and loss of MGMT expression in a much larger cohort of
colorectal cancers. In the current study, MGMT methylation was found in 38% of colorectal
cancer. Previous studies [18–22] have shown a large variation in the frequency of MGMT
promoter methylation (21–61%; Table 1). This variation might be caused by differences in
study samples and/or methylation detection methods (MSP vs. quantitative MethyLight vs.
Pyrosequencing) and might also be in part due to a chance variation in the small studies.

With regard to the predictive role of MGMT aberrations, Braun et al. [34] examined a
predictive role of loss of MGMT expression (among other markers) in 1,125 patients with
metastatic colorectal cancer who underwent different chemotherapy treatment arms
(fluorouracil vs. fluorouracil/irinotecan vs. fluorouracil/oxaliplatin) and found no predictive
role of MGMT aberrations.

There are limitations in this study. For example, data on cancer treatment were limited.
Nonetheless, it is unlikely that chemotherapy use substantially differed according to MGMT
status in tumor, since such data were unavailable for treatment decision making. In addition,
our multivariate survival analysis adjusted for disease stage as finely as I, IIA, IIB, IIIA,
IIIB, IIIC, IV on which treatment decision making was mostly based. As another limitation,
beyond cause of mortality, data on cancer recurrences were unavailable in these cohort
studies. Nonetheless, colorectal cancer–specific survival might be a reasonable surrogate of
colorectal cancer–specific outcome.

There are advantages in utilizing the database of the two prospective cohort studies, the
Nurses’ Health Study and the Health Professionals Follow-up Study, to examine prognostic
significance of tumor biomarkers. Anthropometric measurements, family history, cancer
staging, and other clinical, pathologic, and tumoral molecular data were prospectively
collected, blinded to patient outcome. Cohort participants who developed cancer were
treated at hospitals throughout the United States and thus more representative colorectal
cancers in the US population than patients in one to a few academic hospitals. There were no
demographic difference between cases with tumor tissue analyzed and those without tumor
tissue analyzed [23]. Finally, our rich tumor database enabled us to simultaneously assess
pathologic and tumoral molecular correlates and control for confounding by a number of
tumoral molecular alterations.

In conclusion, our findings suggest that MGMT promoter methylation or loss of expression
is not a prognostic biomarker in colorectal cancer, despite its well-established role in
carcinogenesis.
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Fig. 1.
Kaplan–Meier curves for colorectal cancer–specific survival (upper panel) and overall
survival (lower panel), according to MGMT promoter methylation (a, b) or loss of MGMT
(c, d) in colorectal cancer
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