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ABSTRACT

We examine the stability of self-similar solutions for an accelerating relativistic blast wave that is generated
by a point explosion in an external medium with a steep radial density profile of a power-law index greater
than 4.134. These accelerating solutions apply, for example, to the breakout of a gamma-ray burst outflow
from the boundary of a massive star, as assumed in the popular collapsar model. We show that short
wavelength perturbations may grow, but only by a modest factord10.

Subject headings: gamma rays: bursts — shock waves

1. INTRODUCTION

The self-similar solutions of relativistic blast waves are of
much interest because of their recent applications to the
study of gamma-ray bursts (GRBs). A sudden release of a
large amount of energy within a small volume results in a
strong explosion that drives a relativistic shock into the sur-
rounding medium. At late times the blast wave approaches
a self-similar phase, whereby its speed and the distribution
of the pressure, density, and velocity of the gas behind the
shock front do not depend on the length and timescales of
the initial explosion, but only on the explosion energy and
the properties of the unshocked external medium. The self-
similar solutions describing this phase were first studied by
Blandford & McKee (1976, hereafter BMK). We list their
central results, which are relevant to this paper, in x 2.1.
Note that in the BMK solution the total energy released in
the explosion E is the only relevant parameter.

The BMK solution is only valid for k < 4, where k is the
power-law index of the radial density profile of the external
medium, i.e., �1 / r�k. When k � 4, the similarity variable
defined by BMK is no longer appropriate. Even in the range
3 � k < 4, the validity of the BMK solution is not justified,
because the mass contained behind the shock front diverges
if the density profile of the shocked fluid is described by the
BMK solution.

The self-similar solutions for steep density profiles with a
power-law index k � 4 were derived recently by Best & Sari
(2000).2 The derivation of these solutions is similar to that
in the nonrelativistic regime. The self-similar solutions to a
nonrelativistic blast wave were discovered independently by
Sedov (1946), Von Neumann (1947), and Taylor (1950).
The so-called Sedov–Von Neumann–Taylor blast wave sol-
utions exist only for k < 5, but Waxman & Shvarts (1993)
showed that in the range 3 � k < 5 these solutions fail to
describe the asymptotic flow because the energy diverges;

instead they found second-type self-similar solutions for
3 < k < 5 as well as for k � 5. The new class of nonrelativis-
tic, self-similar solutions describes the flow in a limited spa-
tial region DðtÞ � r � RðtÞ, where R(t) is the shock radius
and D(t) coincides with a C+ characteristic so that the flow
inside the region r < DðtÞ does not affect the flow in the
outer self-similar region. The self-similar solution has to
cross the sonic line into the region where the C+ characteris-
tic cannot catch up with the shock front. The solution
describes a shock accelerating with a temporal dependence
whose power-law index is uniquely determined by requiring
that the self-similar solution cross the sonic line at a singular
point. Note that in these second-type self-similar solutions
the total energy released in the explosion E is not the deter-
mining parameter.3 Although the energy in the self-similar
part of the flow approaches a constant as time diverges, the
fraction of the explosion energy E carried by the self-similar
component depends on the details of the initial conditions.
Thus, contrary to the BMK case, dimensional arguments
cannot be used to determine the power-law index of the tem-
poral dependence. Instead, the singular point determines
the temporal power-law index. In the ultrarelativistic
regime, the second-type self-similar solutions for k � 4 can
similarly be obtained by requiring that they cross the sonic
line at a singular point. Best & Sari (2000) found that these
self-similar solutions exist for k > 5� 3=4ð Þ1=2 and describe
accelerating shock waves. However, the properties of the
flow in the self-similar region, such as the energy and mass
contained in the region, were not discussed.

In this paper, we rederive the self-similar solutions of
ultrarelativistic blast waves for k > 4 using a different self-
similar variable and discuss the properties of the flow in the
self-similar regime. Our main goal is to study the stability of
these self-similar solutions. The stability of the Waxman-
Shvarts self-similar solutions in the nonrelativistic regime
was studied by Sari, Waxman, & Shvarts (2000). They
found that shocks accelerating at a rate larger than a critical

1 Guggenheim Fellow. Currently on sabbatical leave at the Institute for
Advanced Study, Princeton, NJ 08540.

2 The more extreme case of an exponential density profile has been
discussed by Perna &Vietri (2002).

3 For a comprehensive discussion on the second type of self-similar
motion, see Zeldovich &Raizer (2002).
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value and corresponding to solutions that diverge in finite
time are unstable for small and intermediate wavenumbers.
Shocks that accelerate at a rate smaller than the critical rate
are stable for most wavenumbers. The acceleration rate can
be quantified by the measure � ¼ R€RR= _RR2, where the dots
denote time derivatives and R(t) is the radius of the shock
front. This measure provides the fractional change of the
velocity over a characteristic timescale for evolution R= _RR.
Solutions that diverge in finite time have � > 1, while others
have � < 1. Thus, when shocks accelerate sufficiently fast
they become unstable.

In the following sections we study the stability of the self-
similar solutions of ultrarelativistic blast waves for steep
density profiles with a power-law index k > 4. The self-
similar solutions are described in x 2. We list the BMK
solutions for k < 4 in x 2.1 and derive the self-similar
solutions for k > 4 in x 2.2. In x 3, we discuss the properties
of the self-similar flow and calculate the energy and mass
contained in the self-similar regime. In xx 4 and 5, we study
the stability of the self-similar solutions. Finally, we
summarize our main results in x 6.

2. SELF-SIMILAR SOLUTIONS

2.1. BMKSolutions for k < 4

For pedagogical reasons, we first briefly outline the deri-
vation of the self-similar solutions of relativistic blast waves
for k < 4 by BMK. For a complete derivation, the reader is
referred to the original paper (BMK).

Assuming an ultrarelativistic equation of state, p ¼ 1
3 e,

where p and e are the pressure and energy density, respec-
tively, measured in the fluid frame, the equations describing
a relativistic, spherically symmetric, perfect fluid can be
written as

d

dt
ðp�4Þ ¼ �2

@p

@t
; ð1Þ

d

dt
lnðp3�4Þ ¼ � 4

r2
@

@r
ðr2�Þ ; ð2Þ

@n0

@t
þ 1

r2
@

@r
ðr2n0�Þ ¼ 0 ; ð3Þ

where n0 is the density as measured in the laboratory frame,
� and � are the Lorentz factor and velocity of the fluid,
respectively, and

d

dt
� @

@t
þ �

@

@r
ð4Þ

is the convective derivative. Throughout this paper we set
the speed of light c to unity. Assuming that the blast wave is
ultrarelativistic so that the Lorentz factor of the shock front
C and the shocked fluid � are much larger than unity, we
only search for solutions accurate to the lowest order in ��2

and C�2.
The effective thickness of the blast wave is approximately

R/C2, where R is the radius of the shock front. Thus, an
appropriate choice of similarity variable is

� ¼ 1� r

R

� �
�2 � 0 : ð5Þ

Next we assume that the external medium has a scale-free,
power-law density profile �1 / r�k. Ignoring radiative

losses, the total energy contained in the shocked fluid
remains constant, and so the Lorentz factor of the shock
front evolves adiabatically as a power law:

�2 / t�m ; m > �1 : ð6Þ

Keeping only terms up to the order O(C�2t), the shock
radius is then given by

R ¼ t 1� 1

2ðmþ 1Þ�2

� �
: ð7Þ

Amore convenient similarity variable can be defined as

� ¼ 1þ 2ðmþ 1Þ� ¼ ½1þ 2ðmþ 1Þ�2�
�
1� r

t

�
: ð8Þ

In terms of �, the pressure, velocity, and density in the
shocked fluid can be written as, respectively,

p ¼ 2
3w1�

2f ð�Þ ; ð9Þ

�2 ¼ 1
2�

2gð�Þ ; ð10Þ

n0 ¼ 2n1�
2hð�Þ ; ð11Þ

where � � 1 and w1 and n1 are the enthalpy and number
density, respectively, of the unshocked external medium.
We assume that the unshocked external medium is cold, so
that w1 equals the energy density �1. The jump conditions
for a strong ultrarelativistic shock are satisfied by the
boundary conditions

f ð1Þ ¼ gð1Þ ¼ hð1Þ ¼ 1 : ð12Þ

For an adiabatic impulsive blast wave, equations (1)–(3)
admit a simple analytical solution, first derived by BMK,

f ¼ ��ð17�4kÞ=ð12�3kÞ ; ð13Þ

g ¼ ��1 ; ð14Þ

h ¼ ��ð7�2kÞ=ð4�kÞ ; ð15Þ

for

m ¼ 3� k > �1 : ð16Þ

2.2. Self-similar Solutions for k > 4

In searching for self-similar solutions for k > 4, we
assume that the Lorentz factor of the shock front still obeys
a power law, �2 / t�m, with m < �1. Therefore, these self-
similar solutions describe accelerating shock waves. When
m < �1, the similarity variable � defined in equation (8)
(and used by Best & Sari 2000) could be negative. For con-
venience we will use �, defined in equation (5), instead as our
similarity variable. If at an initial time t0, the shock radius is
R0 and the Lorentz factor of the shock front is C0, then at a
later time t toO(C�2t) the shock radius is given by

R ¼ R0 þ t 1� 1

2ðmþ 1Þ�2

� �
� t0 1� 1

2ðmþ 1Þ�2
0

� �
: ð17Þ

We can rewrite this equation as

R ¼ t 1� 1

2ðmþ 1Þ�2

� �
þ a ; ð18Þ
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where a is a constant dictated by the initial conditions. This
equation for R with m < �1 differs from equation (7) by a
constant a. However, we can choose the initial time t0 such
that a is equal to zero. This is appropriate for two reasons.
First, the self-similar solutions are valid at much later times
t4t0; thus, the effect of the special choice of t0 can be
ignored. Second, what matters in the derivation of the self-
similar solutions is the derivative of R instead of R itself.
When a ¼ 0, the similarity variable becomes

� ¼
�
1� r

R

�
�2 ¼ �2 � r

t
�2 þ 1

2ðmþ 1Þ

� �
: ð19Þ

Note that we have ignored higher order terms in C�2 in the
above expression.

Similarly to equations (9)–(11), we write the pressure,
velocity, and density in the shocked fluid as, respectively,

p ¼ 2
3w1�

2f ð�Þ ; ð20Þ

�2 ¼ 1
2�

2gð�Þ ; ð21Þ

n0 ¼ 2n1�
2hð�Þ ; ð22Þ

where � � 0 and the boundary conditions,

f ð0Þ ¼ gð0Þ ¼ hð0Þ ¼ 1 ; ð23Þ

correspond to the jump conditions for a strong ultra-
relativistic shock.

We can now treat C2 and � as two new independent
variables in place of r and t and get

t
@

@t
¼ �m�2 @

@�2
þ �2 � 1

2

m

mþ 1
� ðmþ 1Þ�

� �
@

@�
; ð24Þ

t
@

@r
¼ � �2 þ 1

2ðmþ 1Þ

� �
@

@�
; ð25Þ

t
d

dt
¼ �m�2 @

@�2
� 1

2
þ ðmþ 1Þ� � 1

g

� �
@

@�
: ð26Þ

In deriving the above equations, we have assumed that the
blast wave is ultrarelativistic so that �41 and �41. Thus,
we only keep terms of the lowest contribution order in C�2

and ��2.
Substituting equations (24)–(26) into equations (1)–(3),

we obtain the following differential equations for f, g, and h:

2ð3mþ kÞgþ ½gþ 2ðmþ 1Þg� þ 2� 1
f

df

d�

þ 2½gþ 2ðmþ 1Þg� � 2� 1
g

dg

d�
¼ 0 ; ð27Þ

2ð5mþ 3k � 8Þgþ 3½gþ 2ðmþ 1Þg� � 2� 1
f

df

d�

þ 2½gþ 2ðmþ 1Þg� þ 2� 1
g

dg

d�
¼ 0 ; ð28Þ

2ðmþ k � 2Þgþ ½gþ 2ðmþ 1Þg� � 2� 1
h

dh

d�
þ 2

1

g

dg

d�
¼ 0 :

ð29Þ

Using a new variable,

y ¼ ½1þ 2ðmþ 1Þ��g ; ð30Þ

we rewrite equations (27)–(29) as follows:

1

g

1

f

df

d�

� �
¼ 2½4ð2mþ k � 2Þ � ðmþ k � 4Þy�

y2 � 8yþ 4
; ð31Þ

1

g

1

g

dg

d�

� �
¼ 2½ð7mþ 3k � 4Þ � ðmþ 2Þy�

y2 � 8yþ 4
; ð32Þ

1

g

1

h

dh

d�

� �
¼ � 2½ðy2 � 8yþ 4Þðy� 2Þ��1

� ½ðmþ k � 2Þy2 � ð10mþ 8k � 12Þy
þ ð18mþ 10k � 16Þ� : ð33Þ

One solution to the above equations is obtained for y ¼ 1
andm ¼ 3� k and corresponds to the BMK solution. From
the definition of y, y ¼ ½1þ 2ðmþ 1Þ��g, and the require-
ment that g be positive, it follows that this solution is only
valid form > �1, i.e., k < 4.

In our search for possible solutions with k > 4, we start
by analyzing equations (31)–(33). The right-hand sides of
these equations diverge to infinity if y2 � 8yþ 4 ¼ 0. This
corresponds to two singular points, y1 ¼ 4� 2

ffiffiffi
3

p
¼ 0:536

and y2 ¼ 4þ 2
ffiffiffi
3

p
¼ 7:464. In addition, equation (33) has

another singular point at y3 ¼ 2. The solution to equation
(31) can bypass the singular points y1 and y2 if the numera-
tor on the right-hand side of the equation vanishes at y1 or
y2. This gives

m1;2 ¼
8� 4k þ ðk � 4Þy1;2

8� y1;2
: ð34Þ

It is easy to prove that when m ¼ m1, equations (32) and
(33) will also bypass the singular point y1 (the numerator in
the right-hand side of each equation is equal to zero at y1).
The same is true for m ¼ m2 and the singular point y2. We
will show below that when m ¼ m1 and k is bigger than a
critical value kc, we have y � 1; thus, equations (31)–(33)
are able to bypass the singular point y1 and never reach y2
and y3. The critical value kc can be calculated by setting m1

equal to 3� k, the m-value corresponding to a BMK
solution. For y1 ¼ 4� 2

ffiffiffi
3

p
, we get

m1 ¼ 12
ffiffiffi
3

p
� 20þ ð3� 2

ffiffiffi
3

p
Þk : ð35Þ

Thus,m1 ¼ 3� k gives us

kc ¼ 5�
ffiffiffi
3

p

2
¼ 4:134 : ð36Þ

The value of m1 corresponding to kc is m1c ¼
�2þ

ffiffiffi
3

p
=2 ¼ �1:134. Thus, when k > kc, we have

m1 < m1c.
We now prove that when m ¼ m1 and k > kc, we always

have y � 1. Using equation (32) and the definition of y in
equation (30), we obtain

dy

d�
¼ 2ðmþ 1Þgð�Þ þ y

gð�Þ
dg

d�

¼ � 2gð�Þ½y2 þ ðm� 3k þ 12Þy� 4ðmþ 1Þ�
y2 � 8yþ 4

: ð37Þ

Whenm ¼ m1, the above equation can be rewritten as

dy

d�
¼ � 2gðy� bÞ

y� y2
; ð38Þ
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where

b ¼ 4� 10
ffiffiffi
3

p
þ 2

ffiffiffi
3

p
k ¼ 1þ 2

ffiffiffi
3

p
ðk � kcÞ : ð39Þ

When k > kc, we have b > 1. We also have g > 0 and
y2 ¼ 4þ 2

ffiffiffi
3

p
> 1, and so the right-hand side of equation

(38) is negative when y � 1. Since the boundary condition is
yð� ¼ 0Þ ¼ 1, y(�) must be a monotonically decreasing func-
tion of � with yð�Þ � 1. The asymptotic behavior of y(�) can
be derived as follows. When � is large, y is negative and |y| is
large so that equation (38) can be approximated as

dy

d�
’ �2g ’ � 1

m1 þ 1

y

�
; ð40Þ

where we have used the approximation y ’ 2ðm1 þ 1Þ�g for
large �. Equation (40) yields

�y / ��1=ðm1þ1Þ : ð41Þ

Note that when k > kc, we have m1 < m1c < �1. Thus, the
exponent in the above power law is always positive.

It can be proved that when k � kc, equations (31)–(33)
cannot bypass all the singular points with either m1 or m2,
and so the BMK solution is the only possible solution.
When k > kc, the equations cannot bypass all the singular
points with m2. But this by itself is not sufficient for justify-
ing that m1 is the only viable choice. What if the solutions
cut off at some radius before reaching any singular points?
We know that in order not to run into divergences of the
energy or mass of the system, the solutions must be
truncated at some radius r+ (or �+ in terms of the similarity
variable), which should coincide with a C+ characteristic
line.4 The C+ characteristic guarantees that the flow in the
inner region r < rþ will not influence the flow in the self-
similar region rþ � r � R. ThisC+ characteristic should not
overtake the shock front in finite time; otherwise the self-
similar region will eventually disappear. This argument has
been applied in the nonrelativistic case (Waxman & Shvarts
1993). We will prove below that in order to get to the regime
where the C+ characteristics cannot catch the shock front,
the solutions have to pass the singular point y1, making m1

the only viable choice.
First, let us derive the equation for a C+ characteristic.

We use v to denote the fluid velocity in the laboratory frame.
The sound speed in the fluid frame is u0s ¼ 1=

ffiffiffi
3

p
. Thus, the

sound speed in the laboratory frame us is given by

us ¼
u0s þ v

1þ vu0s
¼ 1�

ffiffiffi
3

p
� 1ffiffiffi

3
p

þ 1

1

2�2
¼ 1�

ffiffiffi
3

p
� 1ffiffiffi

3
p

þ 1

1

�2gð�Þ ;

ð42Þ

where we only keep the first-order term in ��2. Thus, a C+

characteristic is described by

drþ
dt

¼ 1�
ffiffiffi
3

p
� 1ffiffiffi

3
p

þ 1

1

�2gð�þÞ
: ð43Þ

We can rewrite this equation in terms of the similarity
variable �+. Using the definition of � in equation (5), and the
relations dR=dt ¼ 1� 1=ð2�2Þ and d�2=dt ¼ �m�2=t, we

obtain

dr

dt
¼ 1� 1

2�2
� ðmþ 1Þ

�2
� � t

�2

d�

dt
; ð44Þ

where we only keep the first-order term in C�2. Substituting
equation (44) into equation (43), we get

t
d�þ
dt

¼
ffiffiffi
3

p
� 1ffiffiffi

3
p

þ 1

1

gð�þÞ
� ðmþ 1Þ�þ � 1

2
; ð45Þ

which describes the evolution of a C+ characteristic. We can
further rewrite this equation as

t
d�þ
dt

¼ � 1

2gð�þÞ
ðyþ � y1Þ ; ð46Þ

where

yþ ¼ ½1þ 2ðmþ 1Þ�þ�gð�þÞ : ð47Þ

Equation (46) implies that when yþ > y1, the right-hand
side of the equation is negative, and so �+ will decrease with
time and the C+ characteristic will approach the shock
front. Only when yþ < y1 will �+ increase with time, and the
C+ characteristic will not overtake the shock front. Also
notice that the self-similar solution has the boundary condi-
tion yð� ¼ 0Þ ¼ 1 > y1. We thus proved that in order to get
to the regime where C+ characteristics cannot overtake the
shock front, the self-similar solution must pass through the
singular point y1, and thereforem1 is the only viable choice.

We can now attempt to obtain the self-similar solutions
for equations (31)–(33). For m ¼ m1, these equations
become

1

g

1

f

df

d�

� �
¼ � 2ðm1 þ k � 4Þ

y� y2
; ð48Þ

1

g

1

g

dg

d�

� �
¼ � 2ðm1 þ 2Þ

y� y2
; ð49Þ

1

g

1

h

dh

d�

� �
¼ � 2ðm1 þ k � 2Þðy� dÞ

ðy� y2Þðy� 2Þ ; ð50Þ

where

d ¼ 4þ
ffiffiffi
3

p
þ 3þ 2

ffiffiffi
3

p

k þ
ffiffiffi
3

p
� 4

: ð51Þ

Treating y as the independent variable instead of � and
making use of equation (38), equations (48)–(50) can be
rewritten as

1

f

df

dy
¼ m1 þ k � 4

y� b
; ð52Þ

1

g

dg

dy
¼ m1 þ 2

y� b
; ð53Þ

1

h

dh

dy
¼ ðm1 þ k � 2Þðy� dÞ

ðy� 2Þðy� bÞ : ð54Þ

The boundary conditions are f ðy ¼ 1Þ ¼ gðy ¼ 1Þ ¼
hðy ¼ 1Þ ¼ 1. Equations (52) and (53) have the solutions

f ¼ b� y

b� 1

� �m1þk�4

; ð55Þ4 For a discussion on the nature of C+ and C� characteristics in one-
dimensional relativistic hydrodynamics, see Johnson&McKee (1971).
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g ¼ b� y

b� 1

� �m1þ2

: ð56Þ

A special case is obtained at k ¼ 6 (m1 ¼ �2), for which
f ðyÞ ¼ gðyÞ ¼ 1. When b 6¼ 2 [k 6¼ ð15�

ffiffiffi
3

p
Þ=3], equation

(54) has the solution

h ¼ 1

2� y

� �d�2
b� y

b� 1

� �d�b
" #ðm1þk�2Þ=ð2�bÞ

: ð57Þ

When b ¼ 2 [k ¼ ð15�
ffiffiffi
3

p
Þ=3], equation (54) has the

solution

h ¼ð2� yÞm1þk�2

� exp ðm1 þ k � 2Þðd � 2Þ 1

2� y
� 1

� �� �
: ð58Þ

In general, the functions f(�), g(�), and h(�) do not admit
simple analytical forms. Their values can be derived numeri-
cally from equations (55)–(58). For example, g(�) satisfies
the implicit algebraic equation

gð�Þ ¼ b� ½1þ 2ðm1 þ 1Þ��gð�Þ
b� 1

� 	m1þ2

: ð59Þ

But generally, we can derive the analytical forms for the
asymptotic behaviors of f(�), g(�), and h(�) in the limit of
large �. In this limit, y is negative and |y| is large, and so
equation (56) yields

g ’
�

�y

b� 1

�m1þ2

’ �2ðm1 þ 1Þ�g
b� 1

� �m1þ2

: ð60Þ

We can solve g(�) from the above equation and get

gð�Þ ’ �g�
�ðm1þ2Þ=ðm1þ1Þ ; ð61Þ

where

�g ¼
�2ðm1 þ 1Þ

b� 1

� ��ðm1þ2Þ=ðm1þ1Þ
: ð62Þ

Using equation (61), we obtain the asymptotic form of y(�)
for large �:

yð�Þ ’ ��y�
�1=ðm1þ1Þ ; ð63Þ

where

�y ¼
�2ðm1 þ 1Þ
ðb� 1Þm1þ2

" #�1=ðm1þ1Þ

: ð64Þ

Using equation (63), we can derive the asymptotic form of
f(�) for large � from equation (55) and get

f ð�Þ ’ �f �
�ðm1þk�4Þ=ðm1þ1Þ ; ð65Þ

where

�f ¼
�2ðm1 þ 1Þ

b� 1

� ��ðm1þk�4Þ=ðm1þ1Þ
: ð66Þ

Similarly, the asymptotic form of h(�) for large � can be

derived from equations (57) and (58).We obtain

hð�Þ ’ �h�
�ðm1þk�2Þ=ðm1þ1Þ ; ð67Þ

where

�h ¼
�2ðm1 þ 1Þ

ðb� 1Þ1�ðm1þ1Þðd�2Þ=ð2�bÞ

" #�ðm1þk�2Þ=ðm1þ1Þ

ð68Þ

if b 6¼ 2 and

�h ¼
�2ðm1 þ 1Þ
ðb� 1Þm1þ2

" #�ðm1þk�2Þ=ðm1þ1Þ

� exp½�ðm1 þ k � 2Þðd � 2Þ� ð69Þ

if b ¼ 2.
Equation (46), which describes the evolution of the C+

characteristic, can also be rewritten using the variable y.
Using equation (38), we obtain

t
dyþ
dt

¼ ðyþ � y1Þðyþ � bÞ
yþ � y2

: ð70Þ

We have proved earlier that when k > kc, one finds b > 1
and y � 1. Thus, the sign of the right-hand side of the above
equation is decided by the term ðyþ � y1Þ. If aC+ character-
istic emerges from the region y < y1, i.e., yþðt ¼ t0Þ < y1,
we know that y+(t) will decrease with time or, equivalently,
�+(t) will increase with time and the C+ characteristic will
not catch up with the shock front.

Equations (48)–(50) can also be solved numerically for
different values of k. We plot the results for k ¼ 5:5
(m1 ¼ �1:77) and k ¼ 6:5 (m1 ¼ �2:23) in Figure 1. When
kc < k < 6, the function f(�) decreases with increasing �,
while the function g(�) increases with increasing �. This
implies that when moving inward, away from the shock
front, the pressure decreases while the Lorentz factor
increases. For k > 6, the situation is reversed. For all
k > kc, the function h(�) increases with �, implying that the
density always increases when moving inward, away from
the shock front.

3. PROPERTIES OF THE FLOW IN THE
SELF-SIMILAR REGION

We now examine the properties of the flow in the self-
similar region bounded by � ¼ 0 and � ¼ �þðtÞ, where �+(t)
coincides with a C+ characteristic that emerges from the
region y < y1. The evolution of the C+ characteristic is
described by equation (70) with the initial condition
�þðt ¼ t0Þ ¼ �0 and, correspondingly, yþðt ¼ t0Þ ¼ y0 < y1.
By solving equation (70), we get the following equation for
y+(t):

y1 � yþ
y1 � y0

� �ðy2�y1Þ=ðb�y1Þ b� yþ
b� y0

� �ðb�y2Þ=ðb�y1Þ
¼ t

t0
: ð71Þ

We can now derive the asymptotic behavior of the C+

characteristic at t ! 1. In this limit |y+(t)| is large, and
equation (71) yields

yþðtÞ ’ ��0t ; ð72Þ
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where

�0 ¼ ðy1 � y0Þðy2�y1Þ=ðb�y1Þðb� y0Þðb�y2Þ=ðb�y1Þ=t0 : ð73Þ

Substituting equation (63) into equation (72), we get

�þðtÞ ’ �þt
�ðm1þ1Þ ; ð74Þ

where

�þ ¼
�
�0

�y

��ðm1þ1Þ
: ð75Þ

The initial condition for the C+ characteristic, namely, the
value of the C+ characteristic with which �+(t) coincides,
contains the information about the initial explosion.

The shock front is accelerating with a power-law tempo-
ral dependence of its Lorentz factor, �2 / t�m1 . How does
the C+ characteristic propagate? Define �+ as the Lorentz
factor of the C+ characteristic. From equations (42), (61),
and (74), we find that when t ! 1,

�2þ ¼ ð
ffiffiffi
3

p
þ 2Þ�2ð�þÞ ¼ ð

ffiffiffi
3

p
þ 2Þ12�

2gð�þÞ / t2 : ð76Þ

We see that irrespective of the value of k, theC+ characteris-
tic always accelerates as �2þ / t2. We can also calculate the
thickness of the self-similar region. Using equations (5) and

(74), we obtain, when t ! 1,

R� rþ ¼ R�þ
�2

�! const : ð77Þ

Note that when�2 < m1 < m1c, theC+ characteristic accel-
erates faster than the shock front, but because the Lorentz
factors of both surfaces are accelerating as power laws of
time, the C+ characteristic can never catch up with the
shock front. Instead, the distance between the two surfaces
approaches a constant value at late times.

We can now examine the energy and mass contained in
the self-similar region. The energy contained in the spherical
shell between � ¼ 0 and � ¼ �þðtÞ is given by

E ¼
Z R

rþ

16�p�2r2dr ¼ 16�

3
w1�

2R3

Z �þ

0

f ð�Þgð�Þd� : ð78Þ

Using equations (65) and (61), we can calculate the above
integral for large values of �+. This gives

E ’ 16�

3
� m1 þ 1

m1 þ k � 3

� �
�f�gw1�

2R3�
�ðm1þk�3Þ=ðm1þ1Þ
þ :

ð79Þ

In deriving the above result we have used the fact that when
k > kc, we have m1 þ k � 3 > 0 and m1 þ 1 < 0, so that the
exponent of �+ in the above equation, �ðm1 þ k � 3Þ=
ðm1 þ 1Þ, is positive. When t ! 1, �+ is given by equation
(74). In addition �2 / t�m1 and w1 ¼ �1 / R�k. Thus, when
t ! 1,

E�! const : ð80Þ

The total number of particles contained between � ¼ 0
and � ¼ �þðtÞ is given by

N ¼
Z R

rþ

n04�r2dr ¼ 8�n1R
3

Z �þ

0

hð�Þd� : ð81Þ

Using equations (67) and (74), we obtain that for t ! 1

N ’ 8� �m1 þ 1

k � 3

� �
�hn1R

3�
�ðk�3Þ=ðm1þ1Þ
þ �! const : ð82Þ

We have thus proved that both the energy and mass con-
tained between the C+ characteristic and the shock front
will approach constant values as t ! 1. The situation is
similar to the nonrelativistic case (Waxman & Shvarts
1993). However, the mechanisms that cause the acceleration
of the shock front are qualitatively different for the non-
relativistic and relativistic cases. In the nonrelativistic case,
the kinetic energy contained in the self-similar region
approaches a constant, while the thermal energy approaches
zero as the radius of the shock front goes to infinity
(Waxman & Shvarts 1993). The acceleration of the shock
front is not due to the conversion of thermal energy to
kinetic energy. Rather, there is a continuous transfer of
energy to new material shocked by the shock wave. The rate
of this energy transfer is decreasing (to zero) with time, but
the rate at which mass is overtaken by the shock decreases
even faster. Thus, the shock accelerates. It is not that all the
shell (i.e., the self-similar region) accelerates. Rather, a
smaller and smaller fraction of the shell’s mass is shocked to
higher and higher velocity. The mass-averaged velocity of
the shell approaches a constant. In the relativistic case, the

Fig. 1.—Distributions of the self-similar functions f(�), g(�), and h(�).
The left-hand column corresponds to k ¼ 5:5 and m1 ¼ �1:77, while the
right-hand column corresponds to k ¼ 6:5 andm1 ¼ �2:23.
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acceleration is not concentrated only in a small fraction of
the total mass of the shell. We can calculate the mass
averaged Lorentz factor ��� as follows:

��� ¼ 1

N

Z R

rþ

�n04�r2dr

¼ 1

N

8ffiffiffi
2

p �n1R
3�

Z �þ

0

hð�Þg1=2ð�Þd� ; ð83Þ

where N is given by equation (81). Using equations (61),
(67), (74), and (82), we obtain that for t ! 1

��� ’
ffiffiffi
2

p k � 3

m1 þ 2k � 4

� �
�
1=2
g ��

�ðm1þ2Þ=½2ðm1þ1Þ�
þ / t : ð84Þ

Therefore, the whole self-similar region is accelerating.5 The
total energy contained in the self-similar region will still
approach a constant because the pressure in the self-similar
region decreases with time as p / t�k�m1 f ð�Þ (see eq. [20]).
The acceleration of the shell is caused by the conversion of
thermal energy to kinetic energy. The situation is similar to
the accelerated expansion of a cloud of gas in vacuum.
Indeed, from equation (77) we know that the thickness
of the shell approaches a constant as t ! 1, and since
the radius of the shock front increases as t, the volume
contained in the shell increases as t2.

As pointed out by Johnson & McKee (1971), postshock
acceleration (the acceleration of the fluid after it is shocked)
is important for a relativistic fluid. In a planar geometry,
they estimated the final Lorentz factor of the shocked fluid
to be �f ’ ð�s=

ffiffiffi
2

p
Þ1þ

ffiffi
3

p
, where �s is the Lorentz factor of the

shock front when the fluid is initially shocked. The impor-
tance of postshock acceleration was also demonstrated for
transrelativistic blast waves in both planar and spherical
geometries by Tan, Matzner, &McKee (2001) using numer-
ical simulations. They also derived approximate analytic
expressions to describe transrelativistic blast waves. To see
whether the self-similar solutions for steep power-law
density profiles (k > kc) are consistent with the argument
that postshock acceleration is important, we follow the
evolution of a fluid element that is shocked at time t ¼ t0
by the ultrarelativistic spherical shock whose Lorentz factor
is Cs at that time. The evolution of the fluid element follows

dr�
dt

’ 1� 1

2�2�
¼ 1� 1

�2gð��Þ
; ð85Þ

where we use the asterisk subscript to denote values
associated with the fluid element. Combining the above
equation with equation (44), we obtain

t
d��
dt

¼ 2� y�
2gð��Þ

; ð86Þ

where

y� ¼ ½1þ 2ðm1 þ 1Þ���gð��Þ : ð87Þ

Using equation (38), we can rewrite equation (86) as

t
dy�
dt

¼ ðy� � 2Þðy� � bÞ
y� � y2

: ð88Þ

With the boundary condition y�ðt ¼ t0Þ ¼ 1, the above
equation has the solution

ð2� y�Þðy2�2Þ=ðb�2Þ b� y�
b� 1

� �ðb�y2Þ=ðb�2Þ
¼ t

t0
: ð89Þ

The asymptotic behavior of the fluid element at large t can
be derived by setting |y*(t)| to be large, and thus equation
(89) yields

y�ðtÞ ’ ��1t ; ð90Þ

where

�1 ¼ ðb� 1Þðb�y2Þ=ðb�2Þ=t0 : ð91Þ

Substituting equation (63) into equation (90), we get

��ðtÞ ’ ��t�ðm1þ1Þ ; ð92Þ

where

�� ¼ �1

�y

� ��ðm1þ1Þ
: ð93Þ

The Lorentz factor of the fluid element is described by

�2� ¼ 1
2�

2gð��Þ ; ð94Þ

where C is the Lorentz factor of the shock front at time t and
is related to Cs by

�2

�2
s
¼ t

t0

� ��m1

: ð95Þ

Using equations (61), (92), and (95), we can rewrite
equation (94) as

�2� ¼ �2
s

2
tm1

0 �g�
�ðm1þ2Þ=ðm1þ1Þ
� t2 / t2 : ð96Þ

Therefore, the fluid element is accelerating with �� / t. The
acceleration of the fluid element is caused by the conversion
of its internal energy to kinetic energy. When the available
internal energy is exhausted, the acceleration stops. The
time of this final stage can be estimated by setting the
internal energy density of the fluid element equal to its rest
energy density:

e� ¼ n�mp ; ð97Þ

where n� ¼ n0�=�� and e� ¼ 3p� are the number density
and energy density of the fluid element measured in the fluid
frame, respectively. Using equations (20)–(22), we can
rewrite equation (97) as

�ffiffiffi
2

p g1=2ð��Þf ð��Þ ¼ hð��Þ : ð98Þ

For large t, we can substitute equations (61), (65), and (67)
into the above equation and also use equations (92) and (95)
to obtain

tf ¼
�sffiffiffi
2

p t
m1=2
0 �

1=2
g �f�

�1
h �

�ðm1�2Þ=½2ðm1þ1Þ�
� ; ð99Þ

where tf is the final time when the fluid element stops accel-
erating. The final Lorentz factor of the fluid element can be

5 Note that when �2 < m1 < m1c, the mass-averaged Lorentz factor ���
increases with time faster than the shock Lorentz factor C. However,
although the fluid behind the shock front accelerates faster than the shock
front, it can never catch up with the shock front. This follows the same
reasoning that explained the acceleration of the C+ characteristic; see the
arguments below eq. (77).
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calculated by plugging the above equation into equation
(96). We get

�f ¼
�2
s

2
�2 ; ð100Þ

where

�2 ¼ �g�f�
�1
h ��m1

y ðb� 1Þm1ðb�y2Þ=ðb�2Þ

¼ ½2
ffiffiffi
3

p
ðk � kcÞ�ð2

ffiffi
3

p
=3�1Þðk�6Þ=½k�ð5�

ffiffi
3

p
=3Þ� : ð101Þ

Here �2 is an increasing function of k. As k increases from
kc to 6, �2 increases from 0 to 1. For k > kc, �2 increases
very slowly as k increases. For example, when k ¼ 20,
�2 ¼ 1:74. From equation (100) we see that the final Lorentz
factor of the fluid element is of the order of ð�s=

ffiffiffi
2

p
Þ2 (except

for the limiting case in which k is very close to kc). We have
therefore shown that postshock acceleration is also very
important for the self-similar solutions in a steep power-law
density profile. However, because of the spherical geometry
in this case, the postshock acceleration is not as strong as
that in the planar geometry case, where the final Lorentz
factor �f reaches�ð�s=

ffiffiffi
2

p
Þ1þ

ffiffi
3

p
(Johnson &McKee 1971).6

4. APPROXIMATE (ANALYTIC) STABILITY ANALYSIS

In order to analyze the stability of the self-similar solutions
obtained in x 2.2, we first follow an analytic approach. The
perturbations of greatest interest are those that grow fast
compared to the acceleration of the unperturbed Lorentz
factor of the shock front C0. For these perturbations, we may
assume that C0 is nearly a constant during the growth of the
perturbation and thus simplify the equations by separating
variables. As explained later, these assumptions limit the gen-
erality of our results, and so in x 5 we relax the above approxi-
mation and use numerical simulations to exactly solve the
evolution of the perturbations. The numerical simulations
demonstrate that the results obtained based on this simplified
analytic approach are qualitatively valid.

4.1. Derivation of Linear Perturbation Equations

For the analytic approach to the stability analysis of the
self-similar solutions, we use linear perturbation analysis
similar to that used in the nonrelativistic case (Sari et al.
2000). We start from the equations of motion for an ideal
relativistic fluid:

@

@t
ðn0Þ þ

D

x ðn0vÞ ¼ 0 ; ð102Þ

�2ðeþ pÞ @v

@t
þ ðv x

D

Þv
� �

þ

D

pþ v
@p

@t

� �
¼ 0 ; ð103Þ

@

@t

�4=3p

n04=3

� �
þ ðv x

D

Þ �4=3p

n04=3

� �
¼ 0 ; ð104Þ

where v and � are the fluid velocity and Lorentz factor,
respectively, in the perturbed solution measured in the labo-
ratory frame, e and p are the energy density and pressure,
respectively, in the perturbed solution measured in the fluid
frame, and n0 is the fluid density in the perturbed solution
measured in the laboratory frame. We use the Eulerian

perturbation approach; i.e., the perturbed quantities are
defined as the difference between the perturbed solution and
the unperturbed one in the same spatial point. Therefore,
we define the perturbed hydrodynamic quantities as

�pðr; 	; 
; tÞ ¼ pðr; 	; 
; tÞ � p0ðr; tÞ ; ð105Þ

�vðr; 	; 
; tÞ ¼ vðr; 	; 
; tÞ � v0ðr; tÞ̂rr ¼ �vrr̂rþ �vT ; ð106Þ

�n0ðr; 	; 
; tÞ ¼ n0ðr; 	; 
; tÞ � n00ðr; tÞ ; ð107Þ

where the quantities with subscript ‘‘ 0 ’’ are the unperturbed
values. Substituting the above quantities into equations
(102)–(104), we obtain the following linear perturbation
equations:

@

@t
�n0 þ 1

r2
@

@r

�
r2
�

1

2�40
1þ 1

2�20

� �
n0o��

2

þ 1� 1

2�20

� �
�n0
�	

þ n00

D

T x �vT ¼ 0 ; ð108Þ

2

�40
1þ 1

2�20

� �
@�20
@t

þ
@�20
@r

� �
ð�20�pþ p0��

2Þ

þ 4�20p0

�
@

@t

1

2�40
1þ 1

2�20

� �
��2

� �

þ 1� 1

2�20

� �
@

@r

1

2�40
1þ 1

2�20

� �
��2

� �

þ 1

4�80
1þ 1

�20

� �
@�20
@r

� �
��2

þ @

@r
�pþ 1� 1

2�20

� �
@

@t
�p

þ 1

2�40
1þ 1

2�20

� �
@p0
@t

� �
��2 ¼ 0 ; ð109Þ

4p0�
2
0

�
@

@t
�vT þ 1� 1

2�20

� �
@

@r
�vT

þ 1� 1

2�20

� �
1

r
�vT

�
þ

D

T�pþ
@p0
@t

� �
�vT ¼ 0 ;

ð110Þ

@

@t

�
4=3
0 p0

n
04=3
0

2

3

��2

�20
þ �p

p0
� 4

3

�n0

n00

� �" #

þ 1� 1

2�20

� �
@

@r

�
4=3
0 p0

n
04=3
0

2

3

��2

�20
þ �p

p0
� 4

3

�n0

n00

� �" #

þ 1

2�40
1þ 1

2�20

� �
@

@r

�
4=3
0 p0

n
04=3
0

 !
��2 ¼ 0 ; ð111Þ

where we have used the relations

@v0
@t

¼ 1

2�40
1þ 1

2�20

� �
@�20
@t

; ð112Þ

@v0
@r

¼ 1

2�40
1þ 1

2�20

� �
@�20
@r

; ð113Þ

�vr ¼
1

2�40
1þ 1

2�20

� �
��2 ; ð114Þ6 For a discussion of the difference between planar and spherical

geometries on postshock acceleration, see Tan et al. (2001).
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and the operator

D

T � ð	̂	=rÞð@=@	Þ þ ð
̂
=rÞð@=@
Þ acts as
follows on a scalar� and a vector f:

D

T� ¼ 1

r

@�

@	
	̂	þ 1

r sin 	

@�

@


̂
 ; ð115Þ

D

T x f ¼ 1

r sin 	

@

@	
ðsin 	f	Þ þ

1

r sin 	

@f

@


: ð116Þ

Since the unperturbed quantities satisfy equations (20)–
(22), we write

p0 ¼ 2
3 �1�

2
0 f ð�Þ ; ð117Þ

�20 ¼ 1
2�

2
0gð�Þ ; ð118Þ

n00 ¼ 2n1�
2
0hð�Þ ; ð119Þ

where C0 is the unperturbed Lorentz factor of the shock
front and � is the similarity variable, defined as

� ¼ 1� r

R0

� �
�2
0 ; ð120Þ

where R0 is the unperturbed radius of the shock front. We
further define the perturbation variables as

��2ðr; 	; 
; tÞ ¼ 1
2�

2
0�gð�ÞYlmð	; 
ÞX ðtÞ ; ð121Þ

�vTðr; 	; 
; tÞ ¼ � 1

�2
0

�vT ð�Þ~

DD

TYlmð	; 
ÞXðtÞ ; ð122Þ

�pðr; 	; 
; tÞ ¼ 2
3 �1�

2
0�f ð�ÞYlmð	; 
ÞXðtÞ ; ð123Þ

�n0ðr; 	; 
; tÞ ¼ 2n1�
2
0�hð�ÞYlmð	; 
ÞX ðtÞ ; ð124Þ

where the operator ~DD

T � 	̂	ð@=@	Þ þ 
̂
ð1= sin 	Þð@=@
Þ.
Note that the variables � and t are separated in above
definitions of the perturbations, and so we consider only
‘‘ global ’’ perturbations (Sari et al. 2000; Cox 1980). The
function X(t) measures the amplitude of the perturbation
relative to the unperturbed values.

Substituting equations (117)–(119) and (121)–(124) into
equations (108)–(111), we obtain

qþ 2� k �m1 þ
2ðm1 þ 2Þ
ðy� y2Þ

� �
�h

h
� ðy� 2Þ

2

1

g

1

h

d�h

d�

� �

þ �4ðm1 þ 2Þ
ðy� y2Þ

þ 2ðm1 þ k � 2Þðy� dÞ
ðy� y2Þðy� 2Þ

� �
�g

g

� 1

g

1

g

d�g

d�

� �
þ lðl þ 1Þ

�2
0

�vT ¼ 0 ; ð125Þ

�k � 3m1 þ qþ 2ðm1 þ 2Þðy� 2Þ
ðy� y2Þ

� �
�f

f

� ðyþ 2Þ
2

1

g

1

f

d�f

d�

� �

þ 2q� 2ðm1 þ 2Þðy� 4Þ
ðy� y2Þ

� 2ðm1 þ k � 4Þ
ðy� y2Þ

� �
�g

g

� ðy� 2Þ 1

g

1

g

d�g

d�

� �
¼ 0 ; ð126Þ

2ðm1 þ qþ 1Þ � 2ðm1 þ k � 4Þ
ðy� y2Þ

� �
g�vT

� ðy� 2Þ d�vT
d�

� �f

f
¼ 0 ; ð127Þ�

2

3
q� 2

3

ðm1 þ 2Þðy� 4Þ
ðy� y2Þ

þ 2ðm1 þ k � 4Þ
ðy� y2Þ

� 8

3

ðm1 þ k � 2Þðy� dÞ
ðy� y2Þðy� 2Þ

�
�g

g
� ðy� 2Þ

3

1

g

1

g

d�g

d�

� �

þ q� ðm1 þ k � 4Þðy� 2Þ
ðy� y2Þ

� �
�f

f
� ðy� 2Þ

2

1

g

1

f

d�f

d�

� �

� 4

3
q� ðm1 þ k � 2Þðy� dÞ

ðy� y2Þ

� �
�h

h

þ 2

3
ðy� 2Þ 1

g

1

h

d�h

d�

� �
¼ 0 ; ð128Þ

where we have used equations (48)–(50) and the following
relations:

d�2
0

dt
¼ �m1

�2
0

t
; ð129Þ

@�

@r
¼ � 1

t
�2
0 þ

1

2ðm1 þ 1Þ

� �
; ð130Þ

@�

@t
¼ 1

t
�2
0 �

m1

2ðm1 þ 1Þ � �ðm1 þ 1Þ
� �

; ð131Þ

d�1
dt

¼ �k
�1
t

1� m1

2ðm1 þ 1Þ�2
0

� �
; ð132Þ

dn1
dt

¼ �k
n1
t

1� m1

2ðm1 þ 1Þ�2
0

� �
; ð133Þ

r ¼ t 1� 1

2ðm1 þ 1Þ�2
0

� �

�2
0

� �
: ð134Þ

Note that in deriving equations (125)–(128) we have
assumed that there is no perturbation in the external
medium. Moreover, in order to separate variables, X(t) has
to be a power law in time, X ðtÞ / tq, where q defines the
temporal evolution of the perturbation amplitude. If the
real part of q (Re½q�) is positive, then the perturbation
grows, while if the real part of q is negative, then the
perturbation decays.

In equation (125), the term lðl þ 1Þ=�2
0 is associated with

causality, namely, the fact that a perturbation can only
propagate at a speed dc=�0 in the transverse direction and
hence expand across a maximum opening angle of �1=�0.
Since C0 is a function of time, it is not possible to achieve a
complete separation of variables for this equation, in con-
trast with the nonrelativistic case. However, for any con-
stant value of C0, we can still calculate the power-law index
for the growth of the perturbation, q. These results are
meaningful if we find Re½q� > jm1j, so that perturbations
grow on a timescale shorter than the timescale for changes
in C0. Therefore, the assumptions of variable separation
and fixed C0 limit the generality of the results. However,
even if we find Re½q� < jm1j, we should still be able to gain
an insight into some qualitative properties of the
perturbation amplitude evolution.

Also note that for a perturbation with a fixed wave-
number l, there is a qualitative change when �0 ’ l, due to
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causality, and hence self-similarity breaks. This is reflected
in the term lðl þ 1Þ=�2

0 in equation (125).
Equations (125)–(128) are a complete set of first-order

differential equations for �f, �g, �h, and �vT . After some
algebraic manipulations, one may write the equations for
the first-order terms d�f/d�, d�g/d�, d�h/d�, and d�vT=d�
in the following matrix form:

ðy2 � 8yþ 4Þ d

d�

�f

�g

�h

�vT

0
BBB@

1
CCCA

¼ A q; k; lðl þ 1Þ=�2
0; �


 � �f

�g

�h

�vT

0
BBB@

1
CCCA ; ð135Þ

where A is a 4� 4 matrix. Note that
ðy2 � 8yþ 4Þ ¼ ðy� y1Þðy� y2Þ. Thus, the solutions for
the perturbation variables must pass the same singular point
(or the sonic line), y1 ¼ 4� 2

ffiffiffi
3

p
, as the unperturbed varia-

bles. Therefore, the value of q can be found by requiring that
the solutions pass through the singular point y1. This is very
similar to the nonrelativistic case (Sari et al. 2000).

In order to numerically integrate the differential equa-
tions (135) and derive q, we need to specify the boundary
conditions at the shock front when the shock is perturbed.
Since the relativistic jump conditions across the shock front
must be satisfied, we have

p ¼ 2
3�

2�1 ; ð136Þ

n0 ¼ 2�2n1 ; ð137Þ

�2 ¼ 1
2�

2 ; ð138Þ

where C is the Lorentz factor of the perturbed shock front.
By linearizing these boundary conditions with respect to the
perturbed quantities, we find

�pþ @p0
@r

� �
�R ¼ 4

3
�4
0�1

d

dt
�R� 2k

3
�2
0�1

�R

R0
; ð139Þ

�n0 þ @n00
@r

� �
�R ¼ 4�4

0n1
d

dt
�R� 2k�2

0n1
�R

R0
; ð140Þ

��2 þ @�20
@r

� �
�R ¼ �4

0

d

dt
�R ; ð141Þ

where �R is the deviation of the perturbed shock radius
R from the unperturbed shock radius R0. In deriving
equations (139)–(141), we used the relations �1 / R�k and

��2 ¼ 2�4
0

d

dt
�R ; ð142Þ

where �C2 is the deviation of the square of the perturbed
shock Lorentz factor C2 from the square of the unperturbed
shock Lorentz factor �2

0.
We now define

�Rð	; 
; tÞ ¼ �
1

�2
0

R0Ylmð	; 
ÞX ðtÞ ; ð143Þ

where � is a scale factor that can have an arbitrary value;

for convenience we set � ¼ 1. Substituting equations
(143), (117)–(119), (121), (123), and (124) into equations
(139)–(141), we find

�f ¼ df

d�
þ 2ðmþ qþ 1Þ ; ð144Þ

�h ¼ dh

d�
þ 2ðmþ qþ 1Þ ; ð145Þ

�g ¼ dg

d�
þ 2ðmþ qþ 1Þ : ð146Þ

Another boundary condition results from the require-
ment that the tangential velocities must be continuous
across the shock front, yielding

�vT ¼ � 1

R0

~DD

T�R : ð147Þ

Substituting equations (122) and (143) into this equation,
we get

�vT ¼ 1 : ð148Þ

Note that here �vT ¼ 1 does not mean that the tangential
velocity is equal to the speed of light, but rather that it is
normalized by the definition of �vT in equation (122) with
the scaling factor of 1=�2

0. Equations (144)–(146) and (148)
are the four boundary conditions necessary to solve the
perturbation equations.

4.2. Numerical Results

Based on the derivations presented in the previous sub-
section, we may now examine the stability of different
modes for different values of k. As a particular example, we
consider the case of k ¼ 5:5. We derive q for different values
of the mode wavenumber l by integrating the differential
equation (135) from the shock front to its interior and
requiring that the solutions pass through the singular point.
The results are shown in Figure 2. The top panel shows the
real component of q (Re½q�) as a function of lðl þ 1Þ½ �1=2=�0,
where C0 is treated as a scaling factor. As mentioned before,
Re½q� determines the growth rate of the perturbation. In the
bottom panel, we plot the imaginary component of q
(Im½q�), which provides the oscillation frequency of the
perturbation. Figure 2 separates the behavior of q into
three different regimes:

1. In the regime of small l/C0 (0 < l=�0 < 0:87), q is a
real number and Re½q� is positive, implying that the pertur-
bation grows monotonically in time. The value of Re½q�
increases as l increases. Note that q vanishes in the limit of
l ! 0. This result can be derived analytically by com-
paring two unperturbed spherical solutions with different
parameters.
2. In the regime of intermediate l/C0 (0:87 < l=�0 < 17),

q is a complex number and Re½q� is positive, implying that
the perturbation grows while oscillating. As l increases, the
real part Re½q� decreases, while the imaginary part Im½q�
increases. Note that the transition between the real and
imaginary solutions for q occurs at l=�0 � 0:87. This result
follows from causality. When the wavelength of the pertur-
bation (�1/l) is smaller than 1/C0, the maximum angular
separation of two regions that can interact with each other,
the perturbation can oscillate.
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3. Finally, in the regime of large l/C0 (l=�0 > 17), q is a
complex number and Re½q� is negative, implying that the
perturbation decays while oscillating. The value of Re½q�
decreases (so the absolute value of Re½q� increases) as l
increases, while the value of Im½q� increases as l increases.

The actual evolution of a perturbation is shaped by the
fact that C0 increases with time as �2

0 / t�m1 . If initially the
wavenumber of the perturbation is sufficiently large so that
it is in the regime of large l/C0, the perturbation will start to
decay while oscillating. As time progresses, l/C0 decreases,
and so both j Re½q� j and Im½q� decrease, the perturbation
decays with slower speed, and oscillates on longer time-
scales. As soon as the perturbation enters the regime of
intermediate l/C0, it starts to grow slowly over time and
oscillate on even longer timescales. The growth rate slowly
increases over time, but is always limited by the rather small
upper bound, Re½q�d0:38. Eventually, the perturbation
enters the regime of small l/C0 and grows slowly without
oscillating. As t increases, the growth rate approaches zero,
and so the perturbation saturates. Therefore, perturbations
with large wavenumbers (short wavelengths) grow when
1dl=�0d10 only by a modest factor. In the case of inter-
mediate wavenumbers, the perturbation goes through the
two regimes of intermediate and small l/C0. Therefore, it
grows slowly with some initial oscillations, but soon after-
ward it stops oscillating and saturates. Perturbations with
small wavenumbers stay in the regime of small l/C0.
The perturbation grows slowly without oscillating at the
beginning but soon saturates.

The above results remain qualitatively the same for all
values of k > 4:134.

5. NUMERICAL SIMULATIONS

In our approximate stability analysis of x 4, we were con-
sidering perturbations that grow fast compared to changes
in C0 (i.e., Re½q� > jm1j), and so we were able to separate
variables based on the assumption of a constant C0. We
derived some qualitative results for the evolution of the
perturbations, which are also suitable for the case of
Re½q� < jm1j. In this section, we relax the above approxima-
tions and verify those qualitative results by a direct integra-
tion of the partial different equations that determine the
evolution of the perturbation variables, without assuming
separability of the solutions with respect to � and t.

Instead of equations (121)–(124), we redefined the
perturbation variables as

��2ðr; 	; 
; tÞ ¼ 1
2�

2
0�gð�; tÞYlmð	; 
Þ ; ð149Þ

�vT ðr; 	; 
; tÞ ¼ � 1

�2
0

�vT ð�; tÞ~

DD

TYlmð	; 
Þ ; ð150Þ

�pðr; 	; 
; tÞ ¼ 2
3 �1�

2
0�f ð�; tÞYlmð	; 
Þ ; ð151Þ

�n0ðr; 	; 
; tÞ ¼ 2n1�
2
0�hð�; tÞYlmð	; 
Þ : ð152Þ

Equations (125)–(128) were then replaced by four partial
differential equations (PDEs) for the perturbation variables
�f(�, t), �g(�, t), �h, (�, t), and �vT ð�; tÞ. We then solved for
the evolution of these perturbation variables by numerically
integrating the PDEs with appropriate initial values. In our
numerical simulations, the outer boundary (� ¼ 0) is the
shock front where the shock jump conditions are assumed
to be satisfied. We can still define �R as in equation (143).
Then at the outer boundary the perturbation variables
satisfy

�f ð0; tÞ ¼ df

d�
XðtÞ þ 2ðm1 þ 1ÞX ðtÞ þ 2t

dXðtÞ
dt

; ð153Þ

�hð0; tÞ ¼ dh

d�
XðtÞ þ 2ðm1 þ 1ÞXðtÞ þ 2t

dXðtÞ
dt

; ð154Þ

�gð0; tÞ ¼ dg

d�
XðtÞ þ 2ðm1 þ 1ÞXðtÞ þ 2t

dXðtÞ
dt

; ð155Þ

�vT ð0; tÞ ¼ X ðtÞ : ð156Þ

The inner boundary is chosen to be sufficiently large so as to
cover the entire similarity region that is bounded by a inner
C+ characteristic. This way, the values of the perturbation
variables at the inner boundary cannot affect the shock
front.

The numerical simulations gave us the same behavior for
the perturbations as the previously mentioned analytical
results for the growth rate q. In Figure 3, we show the evolu-
tion of X(t) in a numerical simulation with k ¼ 5:5 and
l=�0 ¼ 75. We plot X(t) in the range t 2 ½1; 10� in the top
panel and t 2 ½1; 100� in the bottom panel. Note that X(t)
describes the relative displacement of the perturbed shock
radius from the unperturbed value, and we set its initial
value to be X ðt ¼ 1Þ ¼ 1:0. From Figure 3 we see that X
oscillates over time over increasingly longer timescales and
stops oscillating at late times. Its amplitude first decreases,

Fig. 2.—Perturbation growth rate, q, as a function of lðl þ 1Þ½ �1=2=�0.
The top and bottom panels showRe½q� and Im½q�, respectively.
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then slowly increases, and finally saturates. Overall, it grows
by a factor of �10. These results are consistent with the
previous discussion of the three regimes for the evolution of
the perturbations.

6. CONCLUSIONS

We have derived the self-similar solutions for an ultra-
relativistic blast wave in an external medium with a density
profile �1 / r�k and k > 4. The solutions exist for k larger

than a critical value kc ¼ 4:134. They describe the flow in
the self-similar region bounded by the shock front and a C+

characteristic. The shock front accelerates with Lorentz fac-
tor �2 / t�m1 and m1 < �1:134, while the C+ characteristic
accelerates with Lorentz factor �2 / t2. The energy and
mass contained inside the self-similar region approach
constant values as time diverges.

We have found that at large wavenumbers the perturba-
tions first decay, then grow slowly over time, and eventually
saturate. The initial decay and the intermediate growth are
accompanied by temporal oscillations. These small wave-
length perturbations grow when 1dl=�0d10, with an over-
all factor of �10. At intermediate wavenumbers, the
perturbations first grow slowly and then saturate. The initial
growth is also accompanied by temporal oscillations. At
small wavenumbers the perturbations grow monotonically
in time but soon saturate. Our results also apply to expand-
ing relativistic jets as long as the opening angle of the jet is
larger than the inverse of its Lorentz factor.

In the collapsar model of GRBs, a collimated relativistic
outflow is generated by the collapse of the core of a massive
star. The outflow approaches the stellar envelope at a
modest semirelativistic speed but is expected to accelerate
significantly across the sharp density gradient at the surface
of the star (Tan et al. 2001; Zhang, Woosley, &MacFadyen
2003 and references therein). Our results indicate that in the
breakout phase, perturbations are close to being stable in
spherical symmetry. It is still possible, however, that the
lateral expansion of the jet at breakout would be accompa-
nied by instabilities. These instabilities may produce varia-
tions in the Lorentz factor of the jet needed in the internal
shock model. They may also be responsible for the complex
light curves observed in most GRBs. Current numerical
simulations (Zhang et al. 2003 and references therein) lack
adequate resolution at the stellar surface to follow the shock
breakout and confirm the instabilities. We leave a detailed
study of the instabilities associated with the lateral
expansion of the jet for future work.
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