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ABSTRACT

Following the completion of cosmic reionization, the mean-free-path of ionizing photons was set by
a population of Ly-limit absorbers. As the mean-free-path steadily grew, the intensity of the ionizing
background also grew, thus lowering the residual neutral fraction of hydrogen in ionization equilibrium
throughout the diffuse intergalactic medium (IGM). Lyα photons provide a sensitive probe for tracing
the distribution of this residual hydrogen at the end of reionization. Here we calculate the cosmic
variance among different lines-of-sight in the distribution of the mean Lyα optical depths. We find
fractional variations in the effective post-reionization optical depth that are of order unity on a scale
of ∼ 100 co-moving Mpc, in agreement with observations towards high-redshift quasars. Significant
contributions to these variations are provided by the cosmic variance in the density contrast on the scale
of the mean-free-path for ionizing photons, and by fluctuations in the ionizing background induced by
delayed or enhanced structure formation. Cosmic variance results in a highly asymmetric distribution
of transmission through the IGM, with fractional fluctuations in Lyα transmission that are larger than
in Lyβ transmission.

Subject headings: cosmology: theory - galaxies: formation

1. introduction

It is thought that the appearance of the first galaxies
and quasars reionized the cosmic hydrogen in the inter-
galactic medium (IGM) that was left neutral following
the recombination era at z ∼ 103. The process started
with the emergence of ionized regions around galaxies and
then groups of galaxies. These H II regions eventually
overlapped, leaving the IGM highly ionized in low-density
regions surrounding pockets of residual neutral hydrogen
in high density regions. The process of reionization was
inhomogeneous (Furlanetto et al. 2004), and the overlap
should have occurred at different times in different regions
(Wyithe & Loeb 2004b). However the identification of
a Gunn-Peterson trough in the spectra of the most dis-
tant quasars at redshifts of z ∼ 6.3–6.4 (Fan et al. 2004)
hints that the reionization of cosmic hydrogen was com-
pleted near z ∼ 6, about a billion years after the big bang
(White et al. 2003; Wyithe & Loeb 2004a; Mesinger &
Haiman 2004).
Prior to the overlap epoch, the mean-free-path of ioniz-

ing photons was limited by the size of individual H II re-
gions. Following overlap, regions of IGM were exposed to
ionizing radiation from additional sources. This increase in
the ionizing intensity ionized hydrogen in denser regions,
and resulted in an increased mean-free-path which in turn
led to an even higher ionizing intensity. As the ionizing
intensity in the post-overlap IGM rose, the optical depth
to Lyα absorption decreased (e.g. Fan et al. 2002). Obser-
vations of the absorption spectra of high redshift quasars
(Fan et al. 2004) and potentially gamma-ray burst after-
glows (Barkana & Loeb 2004; Chen et al. 2005) provide
clues to the evolution of the ionizing radiation field and of
the evolution of the ionizing photon mean-free-path.
The post-overlap evolution in the IGM is expected to

be inhomogeneous. Indeed values of optical depth to
Lyα absorption measured along different lines of sight at
5 . z . 6 show fluctuations that are of order unity (Becker
et al. 2001; White et al. 2003; Djorgovski 2004). The
Lyα optical depth therefore varies from place to place at
any slice of cosmic time. In addition to small scale vari-
ations in Lyα optical depth generated by structures like
filaments and mini-halos (the so-called Lyα forest), there
would be large scale inhomogeneities in the evolution of
the ionization state of the IGM. Fluctuations in the trans-
mission averaged on a large scale are sensitive to both
small scale structure along the line of sight (Lidz et al.
2005), and to cosmic variance on larger scales. Here we
concentrate on the contribution from cosmic variance in
the smoothed density field. However the presence of high-
column density absorbers and small scale structure in the
density field will add additional fluctuations to those de-
scribed in this paper. Variations in the average transmis-
sion would be present on the scale of the mean-free-path
for ionizing photons (∼ 10–100 co-moving Mpc). Indeed
cosmic variance on scales of 10s of Mpc can be significant
and has not described by contemporary numerical simula-
tions of the reionization process (Barkana & Loeb 2004).
To model cosmic variance properly with numerical simula-
tions requires resolving low-mass galaxies as well as solv-
ing the radiative transfer equations inside a very large box
(hundreds of co-moving Mpc) with a high dynamic range
of scales. Progress is now being made toward this goal
(Kohler, Gnedin, Miralda-Escudé & Shaver 2005; Kohler,
Gnedin & Hamilton 2005; Iliev et al. 2005).
In this paper we examine the variations in the opti-

cal depth averaged over a redshift bin of sufficient size to
smooth out the small-scale inhomogeneities of the Lyα for-
est. Our model for the variation in optical depth includes
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several contributions: (i) variations in the density-contrast
on the scale of the mean-free-path for ionizing photons, (ii)
variations in the ionizing background on the same scale
due to enhanced or delayed structure-formation, (iii) vari-
ations in the ionizing background due to finite light travel
time across the clustering length of ionizing sources, (iv)
variations in the ionizing background due to Poisson fluc-
tuations in the number of ionizing sources, and (v) evo-
lution of the density of Ly-limit absorbers. Throughout
the paper we adopt the set of cosmological parameters de-
termined by the Wilkinson Microwave Anisotropy Probe
(WMAP, Spergel et al. 2003), namely mass density pa-
rameters of Ωm = 0.27 in matter, Ωb = 0.044 in baryons,
ΩΛ = 0.73 in a cosmological constant, and a Hubble con-
stant of H0 = 71 km s−1Mpc−1.

2. fluctuations in ionizing intensity and lyα
optical depth

The background intensity of ionizing radiation Jν is pro-
portional to the co-moving luminosity density due to ion-
izing sources (nsrc), the density contrast (∆), the bias of
sources in an overdense region (Bsrc), the co-moving mean-
free-path for ionizing photons (Rmfp), and a factor (FQ)
describing the fractional contribution of quasars to the ion-
izing back-ground relative to stars

Jν ∝ nsrc(1 + z)3∆Bsrc
Rmfp

1 + z
(1 + FQ). (1)

Note that we assume a universal spectrum for the contri-
bution to Jν arising from a fixed redshift because we are
averaging over a large number of sources. However the
contribution to the ionizing background at a fixed point
in the IGM from redshifted photons will result in a value
for Jν that depends on the shape of this universal spec-
trum, as well as the mean-free-path. On the other hand
this dependence on contribution from redshifted photons
is the same in all regions of size Rmfp. Therefore since in
this paper our interest lies in relative fluctuations of the
ionizing back-ground among random regions of fixed size
centered at the same redshift, we assume the exact shape
of the spectrum to be unimportant for our calculation.
The mean-free-path (Rmfp) is in turn related to the ef-

fective co-moving density of Ly-limit absorbers (∆×nabs)
as well as their bias (Babs)

Rmfp

(1 + z)
∝

[

nabs(1 + z)3∆×Babs

]

−1
. (2)

We can also relate the average co-moving density of sources
to the collapsed fraction of baryons (Fcol) in dark-matter
halos above some minimum mass (that reflects the thresh-
old for cooling and fragmentation of the gas into stars
or accreting black holes). We assume that ionizing pho-
tons were generated by starbursts, and therefore expect
that the luminosity density of ionizing photons was pro-
portional to the star-formation rate. We further assume
that the starbursts formed primarily out of newly collaps-
ing IGM. As a result the star-formation rate is assumed to
be proportional to the derivative of the collapsed fraction
nsrc ∝ (dFcol/dt), so that

Jν ∝ (dFcol/dt)

nabs

Bsrc

Babs
(1 + FQ). (3)

If both sources and absorbers reside in halos of the same
mass, then Babs = Bsrc. This may be the case once the gas

in mini-halos below the cooling and fragmentation thresh-
old, has been photo-evaporated. However at high redshifts
just after the overlap of H II regions, the mini-halos might
provide a significant contribution to the population of Ly-
limit absorbers (Barkana & Loeb 2002; Iliev, Shapiro, &
Raga 2005). In this case Bsrc > Babs. These bias factors
are expected to evolve with time; Bsrc may have a slow
redshift dependence through a changing minimum mass
for galaxy formation while Babs may have a value that
changes with redshift if the typical absorber mass changes
with time (for example if mini-halos are being evaporated)
and so Babs could be a function of the evolving Jν .
Suppose that nabs is some general function of Fcol and

Jν . Ly-limit systems are expected to shrink in physical
cross-section as their lower-density envelopes are ionized
by a growing ionizing background. The effective density
of absorbers should therefore be a function of Jν in addi-
tion to Fcol. Moreover since Fcol and (dFcol/dt) are both
monotonic there is a unique one-to-one correspondence be-
tween the values of Fcol and (dFcol/dt) as a function of
time. Equation (3) is therefore an implicit equation for Jν
as a function of Fcol. The above considerations lead to two
interesting conclusions. First, we find that Jν should be in-
dependent of density contrast at a fixed value of collapsed
fraction; and second, the average ionizing background Jν
within a region of radius equal toRmfp should be a function
only of the value for Fcol. With these points in mind we can
estimate the scatter in the redshift at which a threshold
value of Jν is reached, and from it find the corresponding
scatter in the value of Jν at fixed redshift.

2.1. Fluctuations due to cosmic variance

Large-scale inhomogeneity in the cosmic density field
leads to structure-formation that is enhanced in over-dense
regions and delayed in under-dense regions. The resulting
cosmic variance in the redshift at which a critical value of
Fcol is reached within regions of size R may be calculated
as

〈δz2cv〉
1

2 =
σR

δc
(1 + z), (4)

where σR is the r.m.s. amplitude of the linear density
field smoothed over spheres of radius R, and δc is a crit-
ical overdensity for collapse (∝ (1 + z) at high redshift;
Barkana & Loeb 2004; Bond et al. 1991). Since the ion-
izing background within a given region depends on the

value of the collapsed fraction, we can relate 〈δz2cv〉
1

2 to
the cosmic variance in redshift where a critical value of
Jν is obtained. The value of Jν is independent of ∆. We
therefore use the mean-free-path averaged over all over-
densities as the appropriate length scale over which the
cosmic variance is calculated, i.e. R = Rmfp/2.
The left panel of Figure 1 shows the scatter in the red-

shift at which a critical value of Jν is obtained due to cos-
mic variance, 〈δz2cv〉 (solid lines). We would like to convert
this scatter in redshift to a scatter in the optical-depth to
Lyα absorption at a given redshift. At a fixed redshift z,
the local value of Lyα optical depth (τl) scales as

τl ∝ ρ2HIJ
−1
ν , (5)

where ρHI is the density of neutral hydrogen (Barkana &
Loeb 2004). The effective optical depth (τ) is measured
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Fig. 1.— Left panel: Contribution to scatter in redshift from cosmic variance 〈δz2cv〉
1

2 (solid line) and finite light travel time 〈δz2caus〉
1

2

(dotted line) as a function of the mean-free-path for ionizing photons in co-moving Mpc at a redshift of 5.5. Right panel: The value of
d lnnabs/dz − d ln (dFcol/dt)/dz as a function of redshift. The dashed, solid and dotted lines correspond to γ = 2, 3, and 4 respectively. In
calculating Fcol we have assumed a minimum virial temperature for galaxies of 2× 105K.

over a path-length through the IGM, and may be com-
puted from τ = − logF where F = 〈e−τl〉 is the trans-
mission averaged over the path-length. While the ionizing
background will be sensitive to cosmic variance in density
contrast calculated in 3-dimensional volumes (∆) on the
scale Rmfp, the absorption spectra of quasars probe only
lines-of-sight through these volumes. The effective optical
depth averaged over a length scale Rmfp therefore depends
on the square of the density averaged along the line-of-
sight (Lidz, Oh & Furlanetto 2005). Here we neglect den-
sity fluctuations on small scales and approximate the av-
erage of the density contrast squared using the smoothed
density contrast (∆z) calculated in a thin cylinder at red-
shift z. This procedure underestimates the fluctuations
in transmission (Lidz et al. 2005). Note that although τ
varies with z due to the growth factor of density perturba-
tions, we focus here on the scatter in τ at a fixed z. The
fractional change in the value of the optical depth relative
to the average, given a density contrast (∆z), and a delay
(δz) in the redshift where the critical collapse fraction is
reached is

δτ ≡ τ − τav
τav

= ∆2
z

Jν(zav)

Jν(zav) +
dJν

dz δz
− 1

= ∆2
z

(

1 +
d ln Jν
dz

δz

)

−1

− 1 (6)

where τav is the average value of optical depth at zav.
But Jν ∝ (dFcol/dt)n

−1
abs(Bsrc/Babs)(1 +FQ) [equation 3].

Within this expression we can only compute the evo-
lution of collapsed fraction, and therefore assume an
evolution specified by a parameter γ and of the form
nabs(Babs/Bsrc)(1 + FQ) ∝ (1 + z)γ for the remaining
quantities. Since we are considering a fractional change
in redshift that is much smaller than unity a power-law
approximation is an appropriate choice. With this addi-
tion we get

δτ = ∆2
z

(

1 +

(

d ln(dFcol/dt)

dz
− γ

(1 + z)

)

δz

)

−1

−1. (7)

We note that equation (7) is a first order expression
for δτ . This choice may be justified by the fact that

[

d ln(dFcol/dt)
dz − γ

(1+z)

]

has an evolution which is nearly lin-

ear with redshift (see figure 1).
At this point we specify the value of γ. One can ob-

serve the average number of Ly-limit systems per unit
co-moving length along the line-of-sight (RLL). Given
the observed distribution of column densities for Ly-limit
systems, this distance can be related to the mean free
path for Ly-limit photons Rmfp = RLL/

√
π (Miralda-

Escude 2003). Storrie-Lombardi et al. (1994) measured
the abundance of Ly-limit systems per unit redshift at
z = 4, dNLL/dz ∼ 3.3, leading to a co-moving spacing
of RLL = [(1 + z)c(dt/dz)/3.3] for Ly-limit systems along
the line-of-sight. The resulting mean-free-path for Ly-limit
photons is Rmfp ∼ 120 co-moving Mpc at z = 4. This
value provides an upper limit on the mean-free-path for
Ly-limit photons at higher redshifts when the cosmic gas
is denser and less ionized. The evolution of the number
of Ly-limit systems per redshift is dNLL/dz ∝ (1 + z)β

with β ∼ 1.5 (Storrie-Lombardi et al. 1994). The evolu-
tion in the number of lines per unit co-moving length x is
therefore

dNLL

dx
∝ (1 + z)−1 dNLL

dz

(

cdt

dz

)

−1

∝ (1 + z)β+
3

2 , (8)

where c is the speed of light and we have neglected the in-
fluence of the cosmological constant at high redshift. The
density of absorbers is proportional to dNLL/dx, hence we

find nabs ∝ (1+z)β+
3

2 , and thus γ = β+ 3
2 . The value of β

is measured at z = 4. However mini-halos may be impor-
tant at high redshift so that an extrapolation of absorption
properties from low to high redshift is not justified. We
therefore consider a range of values for β which allow for
a range of evolutionary properties of the absorbers as well
as their bias, and of the contribution of quasars to the
ionizing background. In the right panel of Figure 1 we
plot the values of the difference between d lnnabs/dz and
d ln(dFcol/dt)/dz as a function of redshift for β = 0.5, 1.5
and 2.5 (γ = 2, 3 and 4).
In a region of density contrast ∆, we can compute the

typical delay due to cosmic variance 〈δz2cv〉
1

2 (see equa-
tion 4). However to estimate the typical fluctuations in the
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effective optical depth we must also compute the variance
in overdensity among lines of sight through the density
field of length Rmfp. We calculate the power-spectrum of
fluctuations in cylinders of length L and radius R to sec-
ond order in the wave number k (Kaiser & Peacock 1991;
Baugh 1996)

P1d(k) =
1

(2π)2
2π

L

∫

∞

k

dyyPb(y)e
−(y2

−k2)R2/4, (9)

where Pb(k) is the linear baryonic power-spectrum, which
may be approximated as Pb(k) = P (k)(1 + k2R2

f )
−2 in

terms of the cold dark matter power-spectrum P (k) and
the filtering scale Rf for the associated reionization history
(Gnedin & Hui 1998). The variance in ∆z on a scale R
with wavenumber kR follows from

σR,z =
1

2π

∫ kR

0

dkP1d(k). (10)

The radius of the cylinder R is set by the size of the quasar
emission region, which is much smaller than the filtering
scale. Our results are therefore insensitive to the precise
choice of R. To estimate typical fluctuations in the opti-
cal depth from cosmic variance we assume ∆z and ∆ to
be approximately uncorrelated and combine the 1-sigma

fluctuation in delay, (〈δz2cv〉
1

2 ), with the 1-sigma fluctua-
tion in density contrast, (∆z = 1± σR,zD, where D is the
growth factor). The typical positive (+) and negative (-)
fluctuations in optical depth due to cosmic variance may
therefore be estimated as

〈δ2τ,cv〉
1

2 = (1± σR,zD)
2

×
(

1±
(

d ln(dFcol/dt)

dz
− γ

(1 + z)

)

〈δz2cv〉
1

2

)

−1

− 1. (11)

Figure 2 shows the typical positive (+) fluctuation

〈δ2τ,cv〉
1

2 , which is monotonic in Rmfp.

2.2. Fluctuations due to the finite light travel time

Following the appearance of sources with luminosity
density ∆×nsrc, the ionizing intensity will grow to its full
value Jν over a timescale Rmfp/[c(1 + z)]. The time when
a critical Jν is achieved is affected by this light propaga-
tion delay (with ionizing sources emitting their radiation
at a retarded time). However, there may also be a scatter
in the time where the critical Jν is achieved from place
to place within the region of co-moving size Rmfp. This
scatter will depend on the distribution of sources. For
example, if the sources were clustered on a scale similar
to the mean-free-path, then within a region there will be

a scatter of Rmfp [(1 + z)cdt/dz]
−1

in redshift where the
critical Jν is achieved. However if the clustering is on a
much smaller scale then the scatter will be smaller.
We can estimate this scatter by considering the clus-

tering length of sources, R0 (which is ∼ 4 co-moving
Mpc for dark-matter halos with a virial temperature of
Tvir ∼ 2×105K at z ∼ 5.5). The photons must travel a dis-
tance Rmfp(1+ z)−1 before the critical Jν is reached. The
scatter in arrival times for photons coming from sources
clustered on a scale R0 at a distance Rmfp may be esti-
mated as the crossing time of the smaller clustering length
(R0/c) divided by the square-root of the number (Ncluster)
of clustered regions at a distance Rmfp (where the last fac-
tor corresponds to Poisson fluctuations in the distances

of the clustered regions). Hence the variance in redshift
where the critical Jν is reached due to the light propaga-
tion delay will therefore be

〈δz2caus〉
1

2 =
R0√

Ncluster(1 + z)

(

cdt

dz

)

−1

, (12)

where Ncluster is estimated as

Ncluster ∼
4π(Rmfp/2)

2R0

4π/3R3
0

=
3

4

(

Rmfp

R0

)2

. (13)

The corresponding redshift variance due to the light prop-
agation delay 〈δz2caus〉

1

2 is shown on the left panel of Fig-
ure 1. At a fixed density contrast, the finite light travel
time will introduce a scatter in the value of δτ of

〈δ2τ,caus〉
1

2 =
(

1 +

(

d ln(dFcol/dt)

dz
− γ

(1 + z)

)

〈δz2caus〉
1

2

)

−1

− 1. (14)

We find that the fluctuations in optical depth due to this
effect are much smaller than those due to cosmic variance
(see Figure 2).

2.3. Fluctuations due to the finite number of ionizing
sources

The Press-Schechter formalism predicts a probability
distribution (and hence a scatter) for the number of halos
within a region of a given matter overdensity. In this paper
we use the derivative of the collapsed fraction of baryons
(up to a proportionality constant) as a proxy for the star
formation rate. This quantity depends on the overdensity
∆. As a result there is a scatter in the redshift where
a given collapsed fraction is reached among representa-
tive regions of the universe, or equivalently there is scatter
among the collapsed fractions within different regions at
fixed time. In this paper we are concerned with regions of
overdensity ∆ and finite size Rmfp. Therefore, in addition
to the fluctuations in the density and ionizing radiation
introduced by this cosmic variance (and by the light prop-
agation delay), we expect a spatial variation of the ioniz-
ing intensity due to fluctuations in the number of sources
within the finite region. We assume that these fluctuations
may be represented by Poisson noise in the number of ion-
izing sources within a region of size Rmfp. We estimate the
number of galaxies using the Press-Schechter (1974) mass
function dnPS/dM (with the modification of Sheth & Tor-
men 1999) and evaluate the number per logarithm of mass
at the minimum mass for galaxy formation (Mmin). The
number of ionizing sources at a particular epoch is given
by

Nsrc =
tlt
tH

dnPS

d lnM

∣

∣

∣

∣

Mmin

4π

3

(

Rmfp

2

)3

, (15)

where tlt is the source lifetime and tH is the Hubble time
at redshift z. In estimating the fluctuations due to varia-
tions in the source numbers we consider two limiting cases.
First, we adopt tlt/tH ∼ 0.01 corresponding to starburst
lifetimes of ∼ 107 years at z ∼ 5.5 (the lifetimes of massive
stars) and a minimum mass corresponding to the Jeans
mass in a photo-ionized IGM (halo virial temperature of
∼ 2× 105K). This case corresponds to the smallest source
numbers and hence the largest level of Poisson fluctuations
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Fig. 2.— Contributions to fluctuations in δτ . The thick lines show the fluctuations in optical depth induced through cosmic variance,
〈δ2τ,cv〉

1/2. The dashed, solid and dotted lines correspond to γ = 2, 3, and 4 respectively, and for calculation of Fcol we have assumed a

minimum virial temperature for galaxies of 2 × 105K. The values of 〈δ2τ,Poisson
〉1/2 are shown by the light lines; the solid and dashed lines

correspond to tlt/tH = 0.01 and tlt/tH = 0.1, combined with minimum virial temperatures for galaxies of 2 × 105K and 104K respectively.

We also show the values of 〈δ2τ,caus〉
1/2 (dark lines with dashed, solid and dotted curves corresponding to γ = 2, 3, and 4 respectively).

〈δ2τ,caus〉
1/2 is much smaller than 〈δ2τ,Poisson〉

1/2 and 〈δ2τ,cv〉
1/2. In each case we have evaluated the fluctuations at z = 5.5.

in Jν . Second we consider tlt/tH ∼ 0.1 corresponding to
starburst lifetimes of ∼ 108 years (of order the orbital
time for a circular orbit in a star-forming disk that oc-
cupies ∼ 10% of the virial radius of its host halo). This
lifetime is combined with a minimum halo mass having
a virial temperature of ∼ 104K, corresponding to cooling
threshold of atomic hydrogen (so that the filtering scale is
assumed not to have had time to respond to the re-heated
IGM). This case corresponds to the largest source numbers
and hence to the smallest fluctuations in Jν . The Poisson
noise in the number of galaxies is ∆Nsrc =

√
Nsrc, so that

the fluctuations in the optical depth induced by Poisson
fluctuations in the number of sources is

〈δ2τ,Poisson〉
1

2 ∼

√

(

∂ ln τ

dNsrc
∆Nsrc

)2

=

√

(

−∂ ln Jν
dNsrc

∆Nsrc

)2

=

√

(

−∂ lnNsrc

dNsrc
∆Nsrc

)2

=
1√
Nsrc

, (16)

where we have used the relation Jν ∝ Nsrc, and evaluated
the fluctuation range of τ corresponding to the 1-sigma
level of fluctuations in the number counts of sources. The
resulting curves are plotted as a function of Rmfp in Fig-
ure 2.

2.4. Fluctuations in the optical depth

The contributions to the redshift variance introduced by
causality, by cosmic variance and by source count fluctu-
ations are independent of each other. The positive (+)
and negative (-) ranges of allowed δτ may therefore be
estimated by adding these contributions in quadrature,

〈δ2τ 〉
1

2 = ±
√

〈δ2τ,cv〉+ 〈δ2τ,caus〉+ 〈δ2τ,Poisson〉. (17)

3. results and discussion

The upper and lower limits that bracket the typical
range of δτ at z = 5.5 are plotted in Figure 3. The dashed,
solid and dotted lines correspond to γ = 2, 3 and 4 re-
spectively. The left and right panels show the cases of
tlt/tH = 0.01 and 0.1, combined with minimum galaxy
masses corresponding to virial temperatures of 2 × 105K
and 104K respectively. Figure 3 shows that cosmic vari-
ance introduces fluctuations in τ that are of order unity
over a range of length scales. As the mean free path in-
creases the fluctuations become smaller in line with the
smaller cosmic variance on large scales. The fluctuations
in Jν introduced by fluctuations in the number of sources
provides a small contribution. This is in contrast to the
situation for double reionization of helium at lower red-
shifts where the ionizing sources (quasars) reside in rarer
more massive systems (Bolton et al. 2005).
The finding that cosmic variance should result in signif-

icant fluctuations in τ is qualitatively insensitive to varia-
tions in the value of γ (which parameterizes unknowns re-
garding the absorber properties) over a wide range. This
insensitivity arises partly because the collapsed fraction
evolves much more rapidly than a power-law with redshift
(because the minimum galaxy mass lies on the exponen-
tial tail of the Gaussian density distribution), and partly
because the fluctuations are dominated by the ∆2

z term in
the evaluation of τ .
We may take the upper limit for Rmfp after reionization

to be 120 co-moving Mpc, which is the value measured at
z ∼ 4 (Miralda-Escude et al. 2003), while the lower limit is
set by the size of bubbles at the end of the overlap epoch
(∼ 70 co-moving Mpc at z ∼ 6 and larger if reionization
completed earlier; Wyithe & Loeb 2004b). The shaded
region in Figure 3 delineates the range for different values
of Rmfp assuming γ = 3. We find our main conclusion,
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Fig. 3.— The upper and lower values of the 1-sigma range for fluctuations in δτ . The dashed, solid and dotted lines correspond to γ = 2, 3
and 4 respectively. The grey portion corresponds to the range spanned by different values of Rmfp given γ = 3. The grey region is bounded
from the left by the boundary at 70 co-moving Mpc corresponding to the bubble size at the end of then reionization, and from the right by
the ionizing photon mean-free-path at z ∼ 4. We show cases with z = 5.5, and take populations of ionizing sources having tlt/tH = 0.01 (left)
and 0.1 (right), combined with minimum galaxy masses corresponding to virial temperatures of ∼ 2 × 105K and ∼ 104K respectively. The
values of δτ at z ∼ 5.6 measured along the lines-of-sight to five high-redshift quasars (White et al. 2003) are over-plotted. The horizontal
error-bars on these observations indicate the possible range of Rmfp.

that cosmic variance introduces large fluctuations in the
transmission of the IGM at z ∼ 5.5, holds over this full
allowed range of Ly-limit mean-free-paths. The reioniza-
tion redshift itself is also inhomogeneous, as evidenced by
the transmission of flux in the Lyα troughs of some but
not all of the z > 6 quasars (White et al. 2003; Oh &
Furlanetto 2004). Our model becomes applicable at the
redshift where most lines of sight probe the post-overlap
IGM. Finally, we note that our results do not depend on
the reionization redshift having occurred near z ∼ 6 but
apply to earlier reionization epochs as well.

3.1. Scatter in the transmitted intensity

The fluctuation in the relative intensity (I ∝ e−τ ) trans-
mitted through the IGM (δI = (I − Iav)/Iav) is related to
the fluctuation in τ through

δI =
I − Iav
Iav

=
e−(τav+τavδτ ) − e−τav

e−τav

= e−τavδτ − 1. (18)

Note that in regions where the optical depth is reduced
(δτ < 0) the exponential is positive and the value of δI
can become very large. For values of optical depth larger
than unity the exponential acts as a non-linear amplifier
of any inhomogeneities in the IGM which skews the distri-
bution of transmitted intensity. Cosmic variance therefore
leads to a highly asymmetric distribution of transmitted
flux, even if the distribution of δτ is a symmetric Gaussian.
For large values of τ ∼ 3–5 immediately following reion-
ization, the variations in the transmission span an order of
magnitude. At later times when the optical depth becomes
small, equation (18) becomes

δI ∼ −τavδτ . (19)

Thus at small values of optical depth the distribution of
transmitted intensity becomes symmetric.

3.2. Comparison with observations

The results presented in Figure 3 may be compared with
existing observations of high redshift quasars. Becker et
al. (2001) and White et al. (2003) calculated the effective
Lyα optical depth in bins of width ∆z = 0.2 along the
lines of sight to five high redshift quasars. The resulting
values of δτ for these five lines of sight in the redshift bin
5.5 ≤ z ≤ 5.7 are plotted over the grey region in Fig-
ure 3 for comparison. At z ∼ 5.6 White et al. (2003) find
τav ∼ 2.5 and fractional fluctuations in optical depth with
values up to (τ − τav)/τav ∼ 0.25. Since there are only 5
lines of sight we would expect this observed range to be
roughly equivalent to the 1-sigma fluctuations plotted in

figure 3, for which we find 〈δ2τ 〉
1

2 ∼ 0.1− 0.4 depending on
the value of the mean-free-path and the nature of the ioniz-
ing sources. Inspection of Figure 3 therefore suggests that
the model is in good agreement with with current data.
Djorgovski (2004) has also presented the fluctuations in
optical depth along five lines of sight within Gaussian red-
shift windows of variance σz = 0.05. This smaller redshift
window yields fractional fluctuations in optical depth with
values up to (τ − τav)/τav ∼ 0.5. At z ∼ 5.5, the redshift
bin widths of ∆z = 0.1−0.2 correspond to co-moving line-
of-sight distances R∆z = (1+ z)cdt/dz∆z ∼ 50− 100Mpc.
Thus the observations sample the IGM over a length-scale
comparable to Rmfp, and so are fortuitously matched to
our calculation. Of course at redshifts where Rmfp <

50−100Mpc, our estimate of 〈δ2τ 〉
1

2 may be compared with
observation by averaging the predicted fluctuations over a
number ∼ [(50− 100Mpc)/Rmfp] of regions.

3.3. Relative absorption of Lyα and Lyβ photons

The relative level of absorption for Lyα and Lyβ (or
Lyγ etc) photons is dictated by the ratio of the product
of oscillator strengths and resonance wavelengths for the
two transitions. Assuming a homogeneous IGM this re-
sults in a Lyα optical depth that is 6.25 times the Lyβ
optical depth (Songaila 2004). However the ratio is de-
creased in an inhomogeneous IGM because on small scales
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transmission is dominated by low-density regions, while
the transition with the lower cross-section for absorption
is able to sample a larger range of densities. Oh & Furlan-
etto (2004) find that values of 2-2.5 are more realistic for
the ratio of Lyα to Lyβ optical depth.
The constant of proportionality relating τ and Jν will

therefore be dependent on the oscillator strength and res-
onance frequencies. This constant cancels in calculation of
δτ , and so the range of fractional variation in optical depth
will be the same for absorption in Lyα and Lyβ. On the
other hand the range of optical depth values is given by
τav〈δ2τ 〉

1

2 . As a result, the absolute range of optical depths
observed for Lyα absorption will be larger than the range
observed for Lyβ absorption by a factor of ∼ 2 − 6. Sim-
ilarly, while the relative fluctuations in the optical depth
are the same for all transitions, we find that the relative
fluctuations in observed intensity δI will be much larger
for Lyα than Lyβ photons due to the non-linearity of the
exponential relation between optical depth and transmis-
sion. In particular, if the Lyα optical depth is smaller than
unity, then δI ∼ −τavδτ and the relative fluctuations in in-
tensity may be calculated directly from the ratios of the
optical depths among the different transitions. In cases
where the Lyα optical depth is larger than unity, the vari-
ation in δI among the different transitions is larger due to
the presence of the exponential in equation (18).

4. summary

In this paper we have calculated the magnitude of the
large scale fluctuations in the optical depth to absorption
of Ly-series photons that are introduced through variance
in the cosmic density field. We find that cosmic variance
introduces fractional fluctuations in the optical depth that
are of order unity for mean-free paths of ionizing pho-

tons Rmfp . 150 co-moving Mpc. This finding explains
the variation seen in the Lyα optical depth along different
lines of sight through the IGM at z < 6 (Becker et al. 2001;
White et al. 2003).
Our model was not constructed to predict the value of

optical depth or to associate a value of the optical depth
with the mean-free-path. Rather, it predicts the trend
that the relative fluctuations in optical depth will drop as
the ionizing photon mean-free-path grows. The mean-free-
path increases with cosmic time, and so the range of opti-
cal depth will therefore decrease towards low redshift. In
addition, while our model predicts a distribution of optical
depths that is roughly symmetric about the average, the
exponential dependence of transmission on optical depth
implies a distribution of transmission that will be highly
asymmetric. This asymmetry will become smaller as the
average value of optical depth declines at late times. Fi-
nally, our model predicts that the absolute fluctuations in
the Lyα optical depth should be greater than in the Lyβ
optical depth. This translates to relative fluctuations in
the transmission through the IGM that are much larger
for Lyα than for Lyβ.
As larger numbers of high redshift quasars are discov-

ered through surveys like the Sloan Digital Sky Survey, the
statistics of absorption averaged over large scales will be
measured along many lines of sight. The results of this
paper suggest that the effects of cosmic variance on the
post-reionization epoch will be directly observed in these
studies.
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