
Observable signatures of extreme mass-ratio 
inspiral black hole binaries embedded in thin 
accretion disks

Citation
Kocsis, Bence, Nicolás Yunes, and Abraham Loeb. 2011. “Observable Signatures of Extreme 
Mass-Ratio Inspiral Black Hole Binaries Embedded in Thin Accretion Disks.” Physical Review D 
84 (2). https://doi.org/10.1103/physrevd.84.024032.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41412228

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:41412228
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Observable%20signatures%20of%20extreme%20mass-ratio%20inspiral%20black%20hole%20binaries%20embedded%20in%20thin%20accretion%20disks&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=4b556ad15536db6654c13ac592a7d48b&department
https://dash.harvard.edu/pages/accessibility


Observable signatures of extreme mass-ratio inspiral
black hole binaries embedded in thin accretion disks

Bence Kocsis,1 Nicolás Yunes,2,1 and Abraham Loeb1

1Harvard-Smithsonian Center for Astrophysics, Institute for Theory & Computation,
60 Garden Street, Cambridge, Massachusetts 02138, USA

2Department of Physics and MIT Kavli Institute, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

(Received 12 April 2011; published 19 July 2011)

We examine the electromagnetic and gravitational wave (GW) signatures of stellar-mass compact

objects (COs) spiraling into a supermassive black hole (extreme mass-ratio inspirals), embedded in a thin,

radiation-pressure dominated, accretion disk. At large separations, the tidal effect of the secondary CO

clears a gap. We derive the conditions necessary for gap opening in a radiation-pressure dominated disk

and show that the gap refills during the late GW-driven phase of the inspiral, leading to a sudden

electromagnetic brightening of the source. The accretion disk leaves an imprint on the GW through its

angular momentum exchange with the binary, the mass increase of the binary members due to accretion,

and its gravity. We compute the disk-modified GWs both in an analytical Newtonian approximation and in

a numerical effective-one-body approach. We find that disk-induced migration provides the dominant

perturbation to the inspiral, with weaker effects from the mass accretion onto the CO and hydrodynamic

drag. Depending on whether a gap is present, the perturbation of the GW phase is between 10 and

1000 rad per year, detectable with the future Laser Interferometer Space Antenna at high significance. The

perturbation is significant for disk models with an effective viscosity proportional to gas pressure but

much less so if proportional to the total pressure. The Fourier transform of the disk-modified GW in the

stationary phase approximation is sensitive to disk parameters with a frequency trend different from post-

Newtonian vacuum corrections. Our results suggest that observations of extreme mass-ratio inspirals may

place new sensitive constraints on the physics of accretion disks.

DOI: 10.1103/PhysRevD.84.024032 PACS numbers: 04.30.Tv, 04.30.!w, 95.30.Sf, 98.62.Mw

I. INTRODUCTION

The full exploitation of gravitational wave (GW) signals
will hinge on controlling all systematics associated with
their astrophysical sources. One can classify such system-
atics into three major groups: instrumental, theoretical, and
astrophysical. Instrumental systematics are associated with
possible issues related to the detector. For example, the
future Laser Interferometer Space Antenna (LISA) [1–4]
might suffer from instrumental glitches [5]. Such glitches,
and other potential instrumental issues, might lead to a
foreground of noise artifacts that might have to be either
removed, or dealt with via data-analysis techniques.

Theoretical systematics are due to incomplete model-
ing of waveform templates [6]. The extraction of GWs
from noisy data requires the construction of these opti-
mized filters, which represent our best guess model for
the GWs generated by the source. Since approximation
schemes (either analytical or numerical) are employed to
solve Einstein’s equations of General Relativity (GR) for
the source, the templates used for data analysis are not
exact solutions and can introduce errors in parameter
estimation [6].

Astrophysical systematics arise from modifications to
the waveforms caused by the environment. For example,
when modeling GWs from black hole (BH) or neutron star

(NS) binary coalescences, one usually assumes the binary
is isolated from external perturbers and ambient electro-
magnetic (EM) or matter fields. However, the unresolved
GW foreground of Galactic and extragalactic white dwarfs
(WDs), and possibly extreme mass-ratio inspirals, introdu-
ces additional astrophysical noise for LISA sources (see
Ref. [7] and references therein). Furthermore, an additional
nearby supermassive BH (SMBH) in the vicinity of a
merging binary can lead to detectable Doppler shifts in
the GW signal [8].
Astrophysical systematics are expected to be negligible

for the final stages of the inspiral and merger of two
SMBHs because the SMBH’s inertia greatly exceeds that
of the environment. However, this is not the case for
extreme mass-ratio inspirals (EMRIs), where a small com-
pact object (CO) spirals into a SMBH [9]. In this case, the
GW inspiral rate and signal amplitude are decreased by a
factor of the mass ratio, making these systems more sensi-
tive to astrophysical perturbations as well as theoretical
uncertainties. EMRIs produce millions of GW cycles in the
LISA frequency band with signal-to-noise ratios (SNRs)
around 20 with a GW phasing accuracy better than 1 rad
and logarithmic mass measurement accuracy of
10!3–10!5 for a typical source at 1 Gpc observed for a
year [10].
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In this paper we consider the most important effects that
a radiatively-efficient, thin accretion disk might have on an
EMRI that is embedded in it:

(i) SMBH mass increase due to accretion;
(ii) CO mass increase due to accretion;
(iii) modification of the gravitational potential due to

the disk’s self-gravity (e.g. changing the angular
velocity of the orbit as a function of radius, and
inducing additional apsidal and nodal precession);

(iv) modification in the energy and angular momentum
dissipation rate (e.g. hydrodynamic drag from
winds, torques from spiral arms, and resonant in-
teractions analogous to planetary migrations).

We examine the conditions necessary for the tidal gravity
of the CO to open a gap in radiation-pressure supported
accretion disks and its implications on the EM and GW
signals. In particular, we study whether LISA will have
sufficient sensitivity to resolve the presence and structure
of the accretion disk.

A. Relevance of accretion disks to EMRIs

EMRIs are expected to form in dense galactic nuclei of
stars, WDs, NSs, and BHs in orbit around a central SMBH.
These dense nuclei are sometimes called galactic cusps
(see e.g. [9]) because of their sharply peaked density
profile at zero radius. Some of these galactic nuclei are
coincidentally active, meaning that gas is currently accret-
ing onto the central SMBH and produces bright EM radia-
tion. Accretion-disk effects on EMRIs are most prominent
in active galactic nuclei (AGN) where gas is actively
feeding the central SMBH.

Plausible arguments have been put forth both against
and in favor of the common existence of EMRIs in AGN
disks. EMRIs can only be detected at relatively low red-
shift (z & 0:5) [11], but only a small fraction of galaxies
within z < 2 are active and host a massive gaseous disk.
AGN activity may be triggered by the inflow of gas during
major galaxy mergers [12]. However, the SMBHs in the
centers of merging galaxies form a binary, which may
deplete the central cusp of stars [13], thereby reducing
the probability of EMRI events. On the other hand, AGN
activity may be fueled by the tidal disruption of stars in
dense central cusps, which have large EMRI rates [14].
Stars may be captured or may form in accretion disks by
fragmentation and/or coagulation of density enhancements
[15–17]. The remnants of these stars would be pushed
inwards by the disk and could provide a reservoir of
EMRI events in AGNs.

Astrophysical evidence already exists for tightly bound
BH binaries with accretion disks. OJ287 is believed to be
an SMBH-SMBH binary, with masses of 108M" and
#1010M", respectively, orbiting in an inclined accretion
disk of mass#102M" [18]. For this system, optical flashes
are observed periodically and interpreted as crossings of

the accretion disk by the smaller object. For EMRIs with
stellar mass COs, similar EM flares will be much harder to
detect.
Estimates on the expected EMRI rates are very uncer-

tain, around a few tens to a few hundreds per year [11].
LISA is expected to be sensitive to EMRIs up to redshifts
close to unity [7], although most events should be at
redshift much smaller than unity. A few percent among
these might be in AGN environments, where accretion-disk
effects are non-negligible. These sources, if observed, may
become the most interesting EMRI sources for studying
astrophysics with LISA.
We examine whether an EMRI, if present in the accre-

tion disk, is capable of regulating the accretion of the
SMBH. If the secondary is sufficiently massive, its tidal
gravity would expel gas from the inner regions, greatly
reducing the amount of gas that would fall into the SMBH
and thus decreasing the disk’s EM luminosity. However, as
the inspiral proceeds, and the relative importance of tidal
field changes compared to the local radiation pressure in
the disk, the disk might refill, reigniting bright AGN ac-
tivity [19–21].
The presence of an accretion disk around EMRIs also

leads to interesting possibilities for future GW detections.
A detection of the imprint of an accretion disk on the GW
signal could inform us about accretion-disk physics. But by
the same token, the presence of the disk complicates the
modeling of the GW signal, as the rather uncertain
accretion-disk physics introduces additional theoretical
errors and potentially makes tests of GR with EMRIs
more difficult.
If GWs could inform us about accretion-disk physics,

they could then provide candidates for EM counterpart
searches. Indeed, accretion disks are very sensitive to the
accretion rate parameter. A LISA measurement of the
accretion rate would imply a plausible range of AGN
luminosity. Then, by looking at the LISA source location
box (approximately 1$ angular, 10!3 distance measure-
ment accuracy [10]), EM instruments could search for
AGNs with the predicted luminosity and redshift [22].
Since bright AGNs are relatively sparsely distributed in
the universe relative to the LISA error volume, a search
could cut down the number of galaxy candidates to just
one [23]. Alternatively, the EM counterpart could be
identified in case it is strongly modulated in time by
the EMRI.
The identification of an EM counterpart would allow the

use of EMRIs as standard sirens: measuring the distance
using the EM redshift and the GW luminosity, which
would allow to independently test cosmological models
[24–26]. Peculiar velocities and weak lensing are expected
to be the main limitation for studying cosmology with
LISA, implying that a large number of low redshift
sources, such as the EMRIs considered here, are necessary
for tightening existing cosmological constraints [23].
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B. Previous explorations

Accretion disks are common astrophysical systems
that have been studied in depth, but only recently has
there been some effort to discuss their effect on GW
sources. To our knowledge, the first study of accretion-
disk effects on GWs was by Giampieri [27]. He consid-
ered an equal-mass binary, where each component is
gaining mass due to accretion, in turn leading to a
modified radial inspiral rate. He then argued that a
measurement of the so-called GW braking index, kGW ¼
fGW €fGW= _f2GW, where fGW is the GW frequency, could
lead to information on the rate of accretion. However, if
limited by the Eddington rate,1 the accretion time scale
is #108 times larger than the observation time and
the effects on GWs are insignificant (see Sec. IVA
below).

Almost simultaneously with Giampieri, Chakrabarti
[28,29] and then Giampieri, Gerardi and Molteni [30]
considered an EMRI embedded in an accretion disk, where
the CO accretes in the Bondi-Hoyle-Lyttleton (BHL) ap-
proximation2 [31–35]. Assuming the gas velocity is differ-
ent from the CO’s velocity due to pressure gradient effects,
they found that the CO experiences a headwind (accelerat-
ing the coalescence) or a tailwind (delaying the coales-
cence), depending on whether the disk is rotating at sub-
Keplerian or super-Keplerian velocities. For very high
accretion rates, the flow is trans-sonic and super-
Keplerian, and the tailwind could supersede the angular
momentum loss via GWemission, leading to a stalled orbit
or even an out-spiral.

Later on, Narayan [36] examined the effect of
radiatively-inefficient accretion flows on EMRIs. In qui-
escent nuclei, the accretion rate is often much lower than
the limiting Eddington value and the accretion flow is
dominated by advection of the thermal energy. Accretion
disks of this type are commonly referred to as being
‘‘radiatively inefficient,’’ since the thermal energy of the
gas is advected inwards rather than radiated away as in
thin accretion disks. Narayan estimated the importance
of hydrodynamic drag by computing the ratio of the time
scale on which the EMRI loses angular momentum due
to hydrodynamic torques and GW emission. For all
reasonable sets of advection dominated accretion flow
parameters, he found that the GW phase is changed by
order 10!2 rads, well below the measurement accuracy
of LISA.

Shortly after, Šubr and Karas [37,38] investigated the
evolution of the eccentricity and inclination of a CO when

crossing a thin radiatively-efficient Shakura-Sunyaev
!-disk3 [39]. Assuming that the disk is not perturbed by
the CO significantly, they found that the orbit circularizes
and aligns with the plane of the disk in its outskirts. In a
follow-up work [38], they extended their study to the inner
parts of the Shakura-Sunyaev disks, where the radiation
pressure significantly modifies the density profile, and
examined hydrodynamic drag during disk crossing and
angular momentum exchange with spiral density waves
analogous to Type-I and II planetary migration. They
have provided formulas for the relative time scale of the
effects and concluded that GW emission drives the evolu-
tion interior to #100 GM=c2.
Another important study in this field was presented by

Levin [17]. Motivated by simulations of Gammie [40],
Levin constructed models of thin self-gravitating,
radiatively-efficient disks, including optically thick (i.e.
photons scatter several times before escaping the disk)
and thin regimes. He rederived order-of-magnitude esti-
mates of the nonrelativistic hydrodynamic drag and plane-
tary migration timescales, similar to that of Karas and Šubr
[38], and also included the effect of azimuthal winds.
Based on these estimates, Levin argued that, although
GW emission drives the evolution inside #100 GM=c2,
such disk effects may be important for LISA EMRIs.
More recently, Barausse and Rezzolla [41] examined the

effects of relativistic hydrodynamic drag on EMRIs em-
bedded in a thick torus with constant specific angular
momentum. They found that the hydrodynamic drag drives
the EMRI toward alignment overcoming the GW radiation
reaction, which by itself would drive the orbital plane
toward antialignment with the MBHs spin [42]. However,
stationary magnetized thick massive tori with constant
specific angular momentum are unstable to global non-
axisymmetric modes that grow on a dynamical time scale
[43–45]; angular momentum transport (i.e. magneto-
rotational instability and turbulence) and cooling lead to
a flattened quasi-Keplerian disk [46–48].
The EM emission of accretion disks around subparsec

scale BH binaries have been considered by many authors.
However, previous explorations focused on comparable-
mass binaries. In this case, the gravitational effects would
clear a gap around the binary, significantly reducing accre-
tion. As long as the binary separation is large enough that
the gas can follow the GW inspiral rate of the binary, tidal
stresses would act to increase the EM luminosity of the
disk [49]. Eventually, however, the gas is left behind at
radii exceeding 100 GM=c2 for equal-mass systems and
the gap freezes relative to the rapid GW-induced inspiral.
Consequently, bright EM emission would be expected only
several years after the merger, when the gas has had time to
diffuse inwards and accrete onto the remnant SMBH

1The Eddington limit is defined as the mass accretion rate at
which the inward gravitational force is balanced by the
radiation-pressure force produced by the in-falling matter in
spherical symmetry; see Sec. IVA for details.

2BHL accretion results when the accreting object is com-
pletely embedded in a gaseous medium and accretes isotropi-
cally; see Sec. IVB for further details.

3See Sec. III for further details on Shakura-Sunyaev !-disk
models.
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[19,20]. However, periodic inflow across the gap may
generate EM variability prior to merger [50–53] or the
secondary can shepherd any gas remaining interior to its
orbit into the SMBH after gap freeze-out [54]. The con-
ditions for gap opening have not been examined in
radiation-pressure dominated accretion disks, which is
most relevant at separations smaller than #1000 GM=c2.
Here, we investigate whether this can lead to gap refilling
prior to merger, which could have important consequences
for EM signatures of EMRIs.

None of the previous studies examined in detail whether
LISA has the sufficient accuracy to resolve the imprint of
accretion-disk effects on EMRI GWs and whether any of
the accretion-disk parameters may be recovered; this is the
main topic of this paper and a companion paper [55]
(hereafter Paper I). In Paper I, we examined the detectabil-
ity of the angular momentum exchange of EMRIs with an
ambient accretion disk using a large class of torque models
parameterized by two free parameters. In particular, we
pointed out that planetary migration models are examples
that generate a very significant GW phase shift for LISA.

In this paper, we begin by reviewing the astrophysical
models of the most important accretion-disk effects on
EMRIs in AGNs, many of which were not included in
Paper I. We focus on standard radiatively-efficient thin
disks, where the viscosity is proportional to the total pres-
sure (Shakura-Sunyaev!-disks [39]) or proportional to gas
pressure only (which we refer to as "-disks) [56]. These
disks constitute the standard model of luminous AGN
accretion disks (see Refs. [34,57] and Sec. III below).
For both of these models, we include a more detailed
analysis of the effects considered previously (SMBH
mass accretion, CO mass accretion, hydrodynamic drag,
torques from spiral density waves and resonant interac-
tions), investigating the detailed circumstances under
which such effects are possible or suppressed and derive
the effects of axisymmetric disk self-gravity on GWs,
which was not considered before. We provide a detailed
study of the consequences on the GW observable, using a
few GW data-analysis tools.

The analysis presented here is by no means exhaustive.
For simplicity, we restrict attention to EMRIs on nonin-
clined, quasicircular orbits embedded in thin Shakura-
Sunyaev disks. This restriction does not allow us to model
binaries in which eccentricity is excited in the presence of
an accretion disk [51,52,58–60]. Other effects that we do
not discuss here include the following: GWs generated by
accretion flows through the excitation of BH quasinormal
modes [61–66]; GWenergy flux dissipation by an ambient
viscous disk, driving transverse and longitudinal density
waves [67] that could heat the disk significantly and result
in an observable infrared flare [68]; EM radiation gener-
ated by GWs in a strongly magnetized plasma, boosting the
frequency of photons [69,70], driving magnetosonic waves
[71], focusing of EM radiation [72], generating photons in

a static magnetic field [73,74] and photons back-converting
to GWs in a magnetized plasma [75–77]. We do not con-
sider general relativistic (GR) effects for the disk model
[78,79], the resonant disk-satellite interactions [80–82], or
dynamical friction [41] (although we do include GR effects
in the inspiral rate and the waveform, see Sec. IX). We also
do not consider the direct scattering of GWs by the gravity
of the gas nor the GW radiation of spiral arms in the disk.
Clearly, these effects are interesting and should be studied
in more detail, but they go beyond the scope of this paper.

C. Executive summary of results

This subsection of the introduction is an executive sum-
mary of our main results, intended for nonspecialists or for
readers who might not be interested in all the related
technical details of the paper, considering its length.
We derive the necessary conditions for the tidal effect of

the CO to open a gap in radiation-pressure dominated !
and "-disks. We find that EMRIs can open gaps at large
radii in both ! and "-disks. Depending on the EMRI
masses and accretion-disk parameters, the gap typically
closes during the inspiral due to strong radiation-pressure
gradients. Gap refilling occurs at orbital separations out-
side (inside) the LISA frequency band at orbital radii (in
geometric units, see Sec. I D) r * 300 (24M&) for ! (")
disks, under typical EMRI parameters [SMBH and CO
masses of ðM&; m?Þ ¼ ð105; 10ÞM"]. Complete gap refill-
ing occurs within 9 months in "-disks for these EMRI
masses, well before the inspiral terminates in coalescence.
This implies that bright AGN activity is coincident with
LISA EMRIs in both cases.
We calculate the perturbations of the GWwaveforms for

quasicircular, noninclined EMRI orbits, due to the effects
of mass accretion onto the SMBH and the CO, the hydro-
dynamic drag caused by an azimuthal and radial wind, and
the axisymmetric and nonaxisymmetric gravitational ef-
fects of the disk. Some of these effects lead to a strong
imprint on the GW phase, while others do not.
We find that the gravitational torque from spiral density

waves in the accretion disk (also known as migration
torque in planetary dynamics) provides the most significant
deviation from vacuum EMRI dynamics. Migration leads
to the strongest GW imprints when the CO clears a gap,
leading to gas accumulation near the outer edge of the gap,
like in a hydroelectric dam. The CO’s mass accretion also
leaves a significant imprint on the GW signal, if described
by spherical BHL accretion [17]. However, we find that the
CO accretion rate is significantly reduced by many pro-
cesses, predominantly by limited gas supply and radiation
pressure. Accounting for these limitations, the GW signa-
ture due to the CO’s mass accretion is typically much
smaller than that of migration. If tidal torques from the
CO open a gap, the mass accretion onto the CO may be
greatly reduced. All other effects are typically less
significant.
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We calculate the effect of all of the above mentioned
processes on the GW observables, namely, the waveform
amplitude and phase, both with a leading-order Newtonian
waveform model as well as with a relativistic effective-
one-body (EOB) model [83–85]. Figure 1 summarizes the
imprint of such processes on the Newtonian phase for the
dominant GWmode as a function of the final orbital radius
for a one-year observation. Different curve colors corre-
spond to the phase difference between vacuum GW phases
and those that include various disk effects, while solid and
dotted lines correspond to ! and "-disks, respectively. We
provide simple asymptotic analytical formulas describing
the phase shift perturbation for arbitrary accretion disk,
EMRI, and observation time parameters in Eqs. (114) and
(115) in Sec. VIII. Figure 1 shows that the GW phase is
modified significantly for EMRIs relevant to LISA [those
with masses ðM&; m?Þ ¼ ð105; 10Þ and final orbital radii
rf & 50M&] at 1 Gpc and an observing time of 1 yr. The
upper and lower thick magenta lines represent a rough
measure of LISA sensitivity to the phase shift for a source
at 1 Gpc and 10 Mpc, respectively.

The various curves in Fig. 1 exhibit interesting features
at different radii, which correspond to different astrophys-
ical mechanisms that come into play. Most notably, the big
decrease for the blue migration curves at r & 24M& corre-
spond to a transition from Type-II to Type-I migration as
the gap refills for "-disks. Coincidentally, roughly interior
to that radius, BHL accretion and hydrodynamic drag from
azimuthal winds are activated. The wiggles and the cutoff
in the BHL accretion induced phase shift (black curves)
correspond to a variety of effects. For !-disks (solid black
curve), the gas density and sound speed determine the BHL
accretion rate at small separations. At larger radii, the

Bondi accretion radius becomes larger than the disk thick-
ness, reducing the accretion rate. Even farther out, differ-
ential rotation of the disk reduces the BHL rate and the
decrease in the average background radial gas velocity
makes the amount of gas supply an important limitation.
In the innermost region of the disk, photon diffusion is
slow and the radiation is trapped within the BHL flow
leading to super-Eddington accretion rates. However, at
r * 35M& this is no longer true for an !-disk and the flow
becomes Eddington limited, greatly reducing BHL accre-
tion effects.
Relativistic waveform models yield similar results to

those presented in Fig. 1. After aligning the waveforms
in time and phase (equivalent to a maximization of the
SNR over the corresponding extrinsic parameters in white
noise), we find changes in the GW phase after a typical 1 yr
inspiral of up to Oð104Þ rad when modeling migration in
"-disks. Migration effects for !-disks are much smaller,
since these disks are less dense. As the gap is typically
expected to close for EMRIs in the most sensitive LISA
frequency band (r & 25M&), Type-I migration is the most
relevant process. Supply-limited, BHL accretion and wind
effect lead to a dephasing of Oð1Þ rads. Other effects are
less significant: Oð10!3Þ rads for SMBH mass accretion
and Oð10!4Þ rads for axisymmetric self-gravity effects.
We then proceed with a more careful data-analysis study

on the distinguishability of accretion-disk effects by com-
puting a data-analysis measure for two representative sys-
tems at 1 Gpc with component masses ð10; 105ÞM" and
ð10; 106ÞM", respectively. We calculate the SNR in the
waveform difference between signals accounting for
accretion-disk perturbations and those that do not, margin-
alizing over an overall time and phase shift. We find that,
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FIG. 1 (color online). The GW phase shift as a function of final radius in units of M& induced by different accretion-disk effects
relative to vacuum waveforms (see Sec. I D for the conventions used here). Solid (dotted) curves correspond to !-("-) disks, with
different colors indicating different disk effects: black corresponds to Bondi-Hoyle-Lyttleton (BHL) accretion, green to azimuthal
wind, and blue to migration. The thin, solid magenta line is the total accumulated GW phase in vacuum. The thick, solid (dashed)
magenta line corresponds to a measure of the accuracy to which LISA can measure the GW phase for a source at 1 Gpc (10 Mpc).
Observe that certain disk effects, like migration, can leave huge imprints on the GW observable, inside the LISA accuracy bucket.
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for these systems, #ð$hÞ> 10 after just 4 months of evo-
lution for "-disk migration, while it takes one full year of
integration to reach the same SNR for BHL accretion and
wind effects. All other accretion-disk effects are less
significant.

Finally, we examine possible degeneracies between
accretion-disk effects and vacuum EMRI parameters. We
analytically derive the Fourier transform of the waveforms
in the stationary phase approximation. We find that the
disk-induced perturbation to the frequency-domain GW
phase depends on the GW frequency to a high negative
power relative to the Newtonian term, multiplied by a
function of the initial binary masses, the !-disk parameter
and the SMBH accretion rate _m&. In contrast, the phase of
the Fourier transform of vacuum waveforms is a positive
power of frequency relative to the Newtonian term, when
including post-Newtonian (PN) corrections. The difference
in the frequency scaling arises because the accretion-disk
effects grow with orbital separation (lower frequency), as
opposed to PN corrections which grow with decreasing
separation (higher frequency). This suggests that
accretion-disk effects are not strongly correlated with gen-
eral relativistic vacuum terms in the frequency-domain
GW phase. Whether this statement holds in a realistic
data-analysis implementation requires a much more de-
tailed analysis of the likelihood surface that is beyond the
scope of this paper.

Our results suggest that if aGWsignal is detected froman
EMRI in an accretion disk, then matched filtering with
accretion-disk templates could allow for the measurement
of certain disk parameters to an interesting fractional
accuracy (early estimates suggest 10% accuracy for certain
parameters [86]). The precise magnitude of the latter re-
quires the detailed mapping of the likelihood surface with
relativistic EMRI signals, full Fourier transforms, and im-
proved disk modeling (including relativistic effects and
magnetic fields), which is beyond the scope of this paper.

We caution, however, that the models considered here
might not provide a fully realistic description of the angu-
lar momentum exchange between the binary and the ac-
cretion disk, leading to systematic theoretical uncertainties
in interpreting GW measurements. Since EM observations
of the disk luminosity are also sensitive to _m&, the combi-
nation of contemporaneous EM and GW observations
might hold the key for constraining the accretion-disk
physics most reliably.

D. Organization and conventions

This paper is aimed at both the General Relativity and
Astrophysics communities. We present a significant
amount of background material to make the paper self-
contained for both communities. Section II reviews the
basics of EMRIs as relevant to GW physics and a rough
measure of the accuracy to which the waveforms need to be
computed for LISA parameter estimation. Section III

presents the basic elements of the thin accretion-disk mod-
els that are considered in this paper and derives the neces-
sary conditions for tidal effects to open a gap in the disk
around the secondary. Section IV studies the effect of
binary mass increase due to gas accretion on the GW
signal. Section V focuses on the effect of hydrodynamic
drag on the GW signal, induced by the gas velocity relative
to the CO (i.e. wind). Section VI discusses the effects of the
axisymmetric gravity of the disk. Section VII concentrates
on gravitational angular momentum exchange with the
disk (i.e. migration) and its effects on the GW signal.
Section VIII compares and contrasts the effect of the
different accretion-disk effects on the GW phase.
Section IX describes the theoretical framework through
which we compute effective-one-body waveforms in the
presence of an accretion-disk. Section X performs a simple
data-analysis study to infer the detectability of accretion-
disk effects. Finally, Section XI concludes and suggests
future work.
Throughout the paper, we employ the following con-

ventions. We use geometric units with G ¼ c ¼ 1 unless
otherwise noted. This implies that masses are in units of
length or time, where the mapping is simply M" ¼
1:476 km ¼ 4:92 %s. The EMRI is assumed to be com-
posed of a SMBH with mass M& and a CO with mass m?.
The SMBH is assumed to be spinning with spin angular
momentum S& ¼ a&M&, aligned with the orbital one. We
do not model here the spin of the CO. We measure quan-
tities relative to their typical magnitudes and denote Ab ¼
A=ð10bM"Þ. For example, M&5 ¼ M&=ð105M"Þ and
m?1 ¼ m?=ð10M"Þ. The radial orbital separation is always
scaled in terms of the SMBH’s mass, such that "r ) r=M&.
The natural scale for the start and end of observation in the
most sensitive part of the LISA band is 20M& and 10M&, so
we use "r20 ¼ r=ð20M&Þ and "r10, accordingly. We use r0 to
denote distance from the CO to a field point.

II. REVIEW OF EMRI GWS

We start by reviewing some basic facts about EMRI
dynamics, focusing only on leading-order effects. Sec. IX
provides a more detailed analysis that includes higher-
order relativistic effects.

A. Basics of EMRI dynamics

Since the CO orbits very close to the SMBH, GR effects
cause the largest perturbations of Newtonian orbits. In this
section we consider eccentric EMRI dynamics, although in
most of what follows we restrict our attention to quasicir-
cular EMRIs. In the absence of spin, the binary’s energy is

E

m?
¼ 1

2
M2

&#
2 "r2 ! 1

"r
¼ ! 1

2"r
; (1)

the Keplerian orbital frequency is

# ¼ M!1
& "r!3=2; (2)
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where "r ) r=M& is the semimajor axis of the orbit in units
of M&. Apsidal or pericenter precession for an orbit with
eccentricity e is

#GR;ap ¼ 3M!1
& ð1! e2Þ!1 "r!5=2; (3)

while Lense-Thirring precession of the node of an inclined
orbit around a spinning SMBH is

#LT ¼ 2a&M
!1
& "r!3ð1! e2Þ!3=2: (4)

The CO inspiral produces GWs that remove binding
energy and specific angular momentum from the system
at the rate

_EGW ¼ ! 32

5

m2
?

M2
&

g1ðeÞ
"r5

¼ !6:4* 10!13 m
2
?1

M2
&5

g1ðeÞ
"r510

; (5)

_‘ GW ¼ ! 32

5

m?

M&

g2ðeÞ
"r7=2

¼ !2* 10!7 m?1

M&5

g2ðeÞ
"r7=210

; (6)

to leading order in m? + M&, where "r10 ¼ "r=10, and
where

g1ðeÞ ¼
1þ 73

24 e
2 þ 37

96 e
4

ð1! e2Þ7=2
; g2ðeÞ ¼

1þ 7
8 e

2

ð1! e2Þ2 : (7)

We have here introduced the notation Ab ¼ A=ð10bM"Þ for
any quantity A, such that M&5 ¼ M&=ð105M"Þ and m?1 ¼
m?=ð10M"Þ.

Such loss of energy and angular momentum leads to the
decrease of the semimajor axis and eccentricity at a rate

_rGW¼!64

5

m?

M&
g1ðeÞ "r!3¼!1:3*10!6m?1

M&5
g1ðeÞ "r!3

10

j _eGWj¼
304

15

m?

M2
&
g3ðeÞ "r!4¼2*10!12M!1

"
m?1

M2
&5
g3ðeÞ "r!4

10 ;

(8)

where we have defined

g3ðeÞ ¼
eð1þ 121

304 e
2Þ

ð1! e2Þ5=2
: (9)

Equivalently, we can parameterize the orbit in terms of the
change in the orbital frequency

_# GW ¼ 96

5

m?

M3
&
g1ðeÞ "r!11=2: (10)

For quasicircular orbits, several formula simplify. For
example, one can easily see that _EGW ¼ # _LGW. Similarly,
the inward inspiral velocity v?r is simply given by Eq. (8)
with g1ðeÞ ! 1. The orbital evolution of the semimajor
axis, Eq. (8), can be integrated [87,88] for quasicircular
orbits,

"r 0 ¼ "rf

!
1þ &

"r4f

"
1=4

; where & ) 256

5

m?

M2
&
T; (11)

and where "r0 and "rf are the initial and final separations in
units of M& for an observation time T. Let us define the
critical radius and observation time where "rf starts to
deviate significantly from "r0 as

"r f;crit ) &1=4 ¼ 24m1=4
?1 M

!1=2
&5 T1=4

yr ; (12)

Tcrit )
5

256

M2
&

m?
"r4f ¼ 0:031 yr

M2
&5

m?1
"r4f;10: (13)

The measured GW phase to leading order is twice the
orbital phase for a quasicircular orbit 'GW ¼ 2'orb. The
total accumulated phase for a quasicircular inspiral is then

'GW ¼ 2
Z tf

tf!Tobs

#ðtÞdt ¼ 2
Z "rf

"r0

#ð "rÞd"r
_"r

¼ 1

16

M&
m?

"r5=2f

#!
1þ &

"r4f

"
5=8

! 1
$
; (14)

where & is the dimensionless observation time defined in
Eq. (11), and "rf is the final radius at the end of the
observation. Depending on whether the observation
time is short or long compared to the inspiral time scale
&="r4f + 1 or &="r4f - 1, Eq. (14) becomes

'short
GW . 4* 106 rads

Tyr

M&5 "r
3=2
f;10

!
1! 6

m?1

M2
&5

Tyr

"r4f;10

"
(15)

'long
GW . 2* 106 rads

T5=8
yr

M1=4
&5 m

3=8
?1

!
1! 0:1

M5=4
&5

m5=8
?1

"r5=2f;10

T5=8
yr

"
(16)

for short observations or widely separated binaries (T +
Tcrit and "rf - "rf;crit) and long observations or close-in
orbits (T - Tcrit and "rf + "rf;crit), respectively.

4

Equations (15) and (16) show that initially the GW
phase accumulates quickly as c1T þ c2T

2 but then satu-
rates to a rate c3T

5=8, where ci are time-independent con-
stants. Settingm? ¼ 10M" andM& ¼ 105M", we find that
'GW #Oð106Þ rads in a 1 yr observation.

B. Measures of LISA sensitivity to GWs

GW detectors are most sensitive to the phase of the GW
signal. Since EMRIs can accumulate millions of GW
cycles in the detector’s sensitivity band, they make for
excellent probes of the astrophysical environment.

1. Simple mass and time-scale measures

A rough measure of the accuracy to which LISA can
extract parameters can be derived by looking at the mass
measurement accuracy. This quantity is of order [10]

4We note that'long
GW is the standard PN expression for the phase

evolution as a function of time [89], when the phase evolution
culminates in merger. Individual EMRIs, however, may outlive
LISA observations, which is why we choose to use Eq. (14)
along with the asymptotes Eq. (15) and (16).
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$M&
M&

# $m?

m?
# 10!3

#
; (17)

where # is the SNR (see below). The SNR can be roughly
as large as a few tens for a 10M" CO spiraling into a
106M" within "r & 10M at a distance of 1 Gpc. Thus, the
relative mass estimation precision is at best around
10!4–10!5 [10]. Of course, for less distant sources, the
SNR can be larger, allowing a better determination of the
masses. This mass accuracy, compared to the accretion
mass or local disk mass, provides a rough measure of
whether the disk may generate important perturbations
for LISA.

Another rough measure to decide whether certain effects
are important for LISA is the following. If a perturbation
has an associated time scale T on which it changes the
inspiral phase by a factor of order unity, then the magnitude
of the phase correction corresponding to this process is
roughly

$'GW # Tobs

T
'tot

GW; (18)

where 'tot
GW is the total, accumulated GW phase in the

observation. We assume here that this $' is not a simple,
constant phase shift but a modification in the phase evolu-
tion, such that at the end of the observation, the template
dephases from the signal by an amount $'GW. LISA can
detect phase differences of order a few radians (see below).
Thus an effect is important if T & 4:4* 105 yrs for a
single year observation, see Eq. (14). In practice, T )
x= _xmay be used where xðtÞ represents any of the following
physical quantities: the mass of the SMBH or CO, the
induced angular momentum or energy dissipation rate
relative to the GW-driven dissipation rates, the inspiral
rate relative to the GW inspiral rate, or the frequency shift
relative to the Keplerian frequency.

2. Dephasing measure

A more accurate criterion to decide whether a certain
GW modification is detectable for LISA is

$'GW /
% 10=# if # / 10;

0 if # 0 10;
(19)

where #2 is the square of the signal-to-noise ratio (SNR),
defined as

#2ðhÞ ¼ 4
Z df

ShðfÞ
j~hj2: (20)

The quantity ~h is the Fourier transform of the measured
GW strain amplitude and ShðfÞ is the spectral noise density
curve of the detector. This function is given explicitly in
e.g. Sec. IIC of Ref. [7], which accounts for instrumental
and white-dwarf confusion noise, as well as averaging over
sky and orientation angles (i.e. including the corresponding
factor of 3=20, see therein).

Equation (19) is motivated by the following argu-
ments. Any accretion-disk effect is measurable only if
the EMRI is detected in the first place. We have here
conservatively chosen # / 10 as the threshold for detec-
tion. Once the EMRI is detected, the accuracy to which a
phase difference can be measured is roughly 10=#,
where # is the total SNR.
Let us now relate this phase shift measure to the SNR of

the waveform difference between signals that include and
those that neglect disk effects: $~h ) ~h1 ! ~h2. If these
waveforms differ only in phase by an amount $'GW, then

$~h ¼ ~h1ð1! ei$'GWÞ: (21)

The SNR of the difference is then

#2ð$hÞ ¼ 4
Z df

SnðfÞ
j$~hj2;

¼ 8
Z df

SnðfÞ
j~h1j2½1! cosð$'GWÞ2;

# 4
Z df

SnðfÞ
j~h1j2$'2

GW; (22)

where in the last line we have assumed that $'GW +
1 rad.
The perturbation of the waveform is significant if

#ð$hÞ * 10, which is similar to the accuracy requirements
constructed in [90–92]. If the instantaneous SNR,
j~h1j2S!1

n ðfÞ does not vary greatly while the phase
difference accumulates, then #ð$hÞ # ð$'GWÞ#ðh1Þ for
$'GW + 1 rad, which leads to the simple phase shift
criterion, Eq. (19), above.

3. Significance of disk imprints

How significantly can a signal including accretion-disk
effects be distinguished from vacuum waveforms? To ad-
dress this question, one can generalize the above measures
by allowing for both amplitude and phase modifications
and introducing the SNR of the waveform difference as

#2ð$hÞ ) min
(2

#
4
Z df

SnðfÞ
j~h1ðfÞ ! ~h2ðf;(2Þj2

$
; (23)

where ~h1 and ~h2 are the Fourier transforms of two wave-
forms (the ‘‘signal’’ and ‘‘template’’), normalized such that
#ðh1Þ ¼ #ðh2Þ ¼ 1. The template may depend on free pa-

rameters ~(2 that may be different from the true astrophys-
ical values, where the minimum difference corresponds to
the best fit. Expanding Eq. (23), we find #2ð$hÞ ¼ 2MM,
whereMM ¼ 1!O is the mismatch and

O ðh1; h2Þ ) max
(2

#
4<

Z df

SnðfÞ
~h1ðfÞ~h32ðf;(2Þ

$
(24)

is the overlap. The mismatch describes how badly accretion
disks deteriorate the chances of detecting EMRIs if the
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accretion-disk effects are not included in the template
family.

For a simple estimate, we minimize #2ð$hÞ over certain
nonphysical extrinsic parameters only, i.e. an overall
phase and time shift, as opposed to intrinsic parameters,
such as the binary’s masses or spins or other extrinsic
parameters, such as the distance to the source, the polar-
ization angles, or the sky position. When the SNR of the
difference is computed in this way, estimates of distin-
guishability are optimistic as they do not account for
possible degeneracies between all parameters. For ex-

ample, a signal h1ðf; ~(1Þ with true parameters (1 may

be mimicked by a waveform model h2ðf; ~(2Þ with differ-

ent intrinsic parameters ~(2 ! ~(1, even if the extrinsic
parameters are the same. In Sec. XC we show that the
incorrect determination of EMRI parameters in a fiducial
model (e.g. with no accretion disk) cannot mimic the
waveform of a different model (e.g. including the effects
of an accretion disk) because of the particular spectral
features introduced by accretion disks in the Fourier trans-
form of the response function.

III. REVIEW OFACCRETION-DISK MODELS

We proceed with an overview of the accretion-disk
models under consideration. As this paper aims to bridge
between the accretion-disk astrophysics community and
GW physics community, we have chosen to provide a
complete description of background material.

A. Basics of accretion-disk models

Despite a long history of observational, theoretical, and
numerical investigations, accretion disks remain one of the
most exciting unsolved problems in astrophysics. The
complexity is related to the modeling of magnetohydrody-
namic (MHD) flows, turbulence, radiative transport, and
plasma physics. Here we provide a brief overview of the
formulas used to model accretion disks; for more details
see textbooks by Shapiro & Teukolsky [34] and Frank et al.
[57].

We restrict our attention to geometrically-thin,
radiatively-efficient, stationary accretion disks, responsible
for the observed bright emission around AGNs. In this
case, as gas orbits around the central object, it radiates
thermal energy away much faster than the time scale over
which the gas particles drift inward, and the disk maintains
a thin configuration. Radiatively-efficient disks are the
most massive among accretion disks, as the mass accretion
rate is largest and the inward drift velocity is smallest. For
lower radiative efficiencies around quiescent SMBHs, ac-
cretion is described by other models, such as advection
domination, which we ignore here.

Radiatively-efficient, stationary accretion disks can be
described by the Shakura-Sunyaev !-disk model [34,39].
The tr' component of the viscous stress tensor corresponds

to an effective viscosity5 tij ¼ #)rivj, and it is respon-
sible for the slow inflow of gas. In the !-disk model, the
viscous stress is assumed to be proportional to the total
pressure ptot in the disk at each radius: tr' ¼ !ð3=2Þ!ptot.
The total pressure includes both thermal gas pressure and
radiation pressure, and the dimensionless constant of pro-
portionality ! is a free model parameter. These disks are
viscously, thermally, and convectively unstable to linear
perturbations [93–96]. In the alternative model [56], here-
after denoted "-disks, viscous stress is proportional to the
gas pressure only, tr' ¼ !ð3=2Þ!pgas, and such models
are stable.6

The nature of viscosity, however, is not sufficiently well
understood to predict which of these prescriptions is closer
to reality. Recent MHD numerical simulations of accretion
disks indicate that stresses correlate with total pressure as
in the !-disk model [97] and are thermally stable [98],
though they might be viscously unstable [99]. In cases
where the diffusion scale is larger than the wavelength of
the magneto-rotational instability, other simulations are
consistent with the"-disk model [100,101]. The instability
in !-disks implies spectral variations which are not ob-
served in many systems, while the"-disk model provides a
better match to spectral constraints [102]. In this paper, we
remain agnostic about the disk model and carry out calcu-
lations for both of them.
Shakura-Sunyaev ! and "-disks for a BH of fixed M&

mass are described by two free parameters: the accretion
rate _M& and the ! parameter in the viscosity prescription.
AGN observations show that the accretion rate relative to
the Eddington rate,7 _m& ) _M&= _M&Edd, is typically around
0.1–1 with a statistical increase towards higher luminosi-
ties [103,104]. Theoretical limits based on simulations of
MHD turbulence around BHs are inconclusive but are
consistent with ! in the range 0.001–1 [105]. Its estimated
value in protoplanetary accretion disks is lower, ! & 10!3

[106]. Observations of outbursts in binaries with an accret-
ing WD, NS, or stellar BH imply ! ¼ 0:2–0:4 [107,108].
The value of ! in AGN accretion disks is uncertain but
might be expected to be similar (for a review, see
Ref. [108]). In the following, we assume

_m &1)
_m&
0:1

¼1; *1)
*

0:1
¼1; !1)

!

0:1
¼1 (25)

but retain _m&1 and!1 to be able to describe different values.
Here * is the radiation efficiency [see Eq. (50) below].8

5Throughout this section # ) #ðrÞ denotes gas density (i.e. not
the SNR of GWs), ) is the kinematic viscosity coefficient in
units of cm2=s, and v is the gas velocity.

6Another popular model that is stable assumes tr' ¼
!ð3=2Þ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pgasptot
p

.
7We define the Eddington rate _M&Edd more precisely in

Eq. (53) below.
8Note that in all of our formulas _m&1 and *1 always appear in

the combination _m&1=*1. To simplify notation we suppress the
*1 scaling.
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The surface density, $ð"rÞ, and the scale height of the
disk from the midplane, Hð"rÞ, can be calculated as [16]

$ð"rÞ ¼ 24=5+1=5
SB

3,3=5f2T-
1=5

!
%0mp

kB!

"
4=5

_M3=5
& #2=5"4ð1!bÞ=5; (26)

Hð "rÞ ¼ fT- _M&
2,cð1! "Þ ; (27)

where b ¼ 0 for !-disks and 1 for "-disks, and the radial
dependence is implicit in the orbital velocity # ¼
M!1

& "r!3=2 and ". Here, "ð"rÞ ) pgas=ptot, where ptot ¼
pgas þ prad, pgas is the thermal gas pressure, prad is the
radiation pressure, and " satisfies

"ð1=2Þþð1=10Þðb!1Þ

1!"
¼ 23=5,4=5c

+1=10
SB !1=10-9=10

!
kB

%0mp

"
2=5

_M!4=5
& #!7=10;

(28)

with %0 ¼ 2=ð3XH þ 1Þ ¼ 0:615 the mean molecular
weight, kB the Boltzmann constant, +SB the Stefan-
Boltzmann constant, and fT ¼ 3=4 a constant related to
the assumption of optical depth (see [109]). The quantity
- ¼ %e+T=mp is the electron-scattering opacity in the
medium, with %e the number density of electrons relative
to the total density, mp the proton mass, and +T the
Thompson scattering cross-section. In practice %e ¼ ð1þ
XHÞ=2 ¼ 0:875 and - ¼ 0:348 cm2 g!1 for a fully ionized
gas of hydrogen and helium, where the mass fraction of
hydrogen is XH ¼ 0:75. Equation (28) can be solved nu-

merically for "ð "rÞ at each radius and substituted in
Eqs. (26) and (27) to obtain $ð"rÞ and Hð"rÞ. The kinematic
viscosity coefficient in the disk is

) ¼ !"bHcs ¼
_M&

3,$
: (29)

[110].
Equations (26)–(28) give a self-consistent nonrelativis-

tic description of a geometrically-thin, radiatively-
efficient, stationary accretion disk, provided the following
conditions are satisfied: the disk is optically thick to elec-
tron scattering, opacity is dominated by electron scattering,
the disk is hot enough to be fully ionized, the self-gravity of
the gas is negligible relative to the gravity of the accreting
object, and the modifications near the inner boundary
condition are neglected (see below). These conditions are
all satisfied within 6 + "r < 103 for M& < 107M", _m>
0:1, !> 0:1 [109]. Equation (28) shows that well within

"r rad ¼ 600 _m16=21
&1 !2=21

1 M2=21
&5 ; (30)

" + 1 holds, so that radiation pressure dominates over
thermal gas pressure. In this case, Eq. (28) can be inverted
analytically

"ð "rÞ . 4:3* 10!4!!1=5
1 _m!8=5

&1 M!1=5
&5 "r21=1010 for "-disks;

(31)

and Eqs. (26) and (27) simplify to

$ð "rÞ .
(
538:5 g cm!2!!1

1 _m!1
&1 "r

3=2
10 for !-disks;

1:262* 106 g cm!2!!4=5
1 _m3=5

&1 M
1=5
&5 "r!3=5

10 for "-disks;

¼
(
5:907* 10!21M!1

" !!1
1 _m!1

&1 "r
3=2
10 for !-disks;

1:384* 10!17M!1
" !!4=5

1 _m3=5
&1 M

1=5
&5 "r!3=5

10 for "-disks;
(32)

Hð "rÞ . 1:5 _m&1M& ¼ 1:5* 105M" _m&1M&5: (33)

The disk scale height is the same for the two models in the
radiation pressure dominated regime, approximately con-
stant in radius. Note that the thin disk assumption 2H + r
breaks down within "r & 3 _m&1. Since radiatively-efficient
thick disks have no widely accepted analytical models to
date, we extrapolate Eqs. (26) and (27) to this regime, as
well.

Equation (32) shows that "-disks are much more mas-
sive within "r + 1000. This is to be expected, as the effec-
tive viscosity is much smaller for "-disks relative to
!-disks by a factor of order ". Since the orbital velocity
of gas is different for different radii, viscosity leads to
energy dissipation and a slow radial inflow. A smaller
viscosity implies a smaller radial inflow velocity, which
for a fixed accretion rate corresponds to a larger mass.

The local disk mass near the binary in a logarithmic
radius bin is defined as

mdð"rÞ¼4,r2$

¼
(
7:4*10!8M"!

!1
1 _m!1

&1M
2
&5 "r

7=2
10 for!-disks;

1:7*10!4M"!
!4=5
1 _m3=5

&1 M
11=5
&5 "r7=510 for"-disks:

(34)

The gas density in the disk, the mean radial inflow velocity,
and the isothermal sound speed are

#ð "rÞ) $

2H

.
(
2:0*10!26M!2

" !!1
1 _m!2

&1M
!1
& "r3=210 for!-disks

4:6*10!23M!2
" !!4=5

1 _m!2=5
&1 M!4=5

& "r!3=5
10 for"-disks

(35)
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vgas
r ð"rÞ¼ 3

2

)

r
¼!

_M&
2,r$

¼!
_M&r

md

.
(!3:8*10!4!1 _m2

&1 "r
!5=2
10 for!-disks

!6:9*10!7!4=5
1 _m2=5

&1 M
!1=5
&5 "r!2=5

10 for"-disks

(36)

csð "rÞ )
ffiffiffiffiffiffiffiffi
ptot

#

s
¼ H# . 0:047 _m&1 "r

!3=2
10 ; (37)

where _M& is the SMBH accretion rate, defined more
precisely in Sec. IVA.

Figure 2 compares the typical velocity scales in the
problem for quasicircular EMRIs. Typically, jvr?j +
jvr;"j + jvr;!j + cs for "r * 10, where vr;! and vr;" cor-
responds to vgas

r for ! and "-disks. The figure also depicts
other relevant velocity scales which we shall derive in
Secs. IVand V below. Similarly, to get a feel of the typical
disk mass scales, Fig. 3 compares the MBH and EMRI
mass and the local disk masses for ! and "-disks, as well
as the CO accretion rate per year derived in Sec. IVB
below. The local "-disk mass and %m? are close to the
LISA detection uncertainty of the EMRI mass, $m?

[Eq. (17)] suggesting that the disk gravity and accretion
may lead to detectable effects for LISA observations.

Note that the above mentioned simple formulas describ-
ing accretion disks are nonrelativistic and neglect modifi-
cations related to the inner boundary condition of the

accretion disk. If assuming zero torque at the inner bound-
ary of the disk, r0, this introduces additional factors of
1! ðr0=rÞ1=2 for isothermal disks [34], making the surface
density profile no longer a simple power of r. General
relativistic corrections introduce additional similar factors
near the innermost stable circular orbit (ISCO), light-ring,
and horizon [78,79]. Among these, the ISCO radius is the
outermost one, at 1 0 "r? 0 9 in the equatorial plane for
spinning BHs. If the shear stress generated by the CO heats
the disk, then this may further affect the scale height and
the density profile. Nonaxisymmetric inflow across the CO
orbit and the inward migration of the CO leads to a
more complicated time-dependent density profile
[20,52,54,111–113]. We neglect these additional factors
for simple order-of-magnitude estimates and extrapolate
the disk down to "r ¼ 3 in many of our Figures (which is
close to the ISCO for a spinning BH with a=M# 0:9).

B. Gap opening

Up to this point, we neglected the effects of the CO. If
the CO is sufficiently massive so that its gravitational
torque moves gas away faster than viscosity can replenish
it, then an annular gap opens in the disk around the CO.
The gap width can be obtained from the balance between
these two competing effects and it is given by9

FIG. 2 (color online). The velocity scales in the problem as a
function of radius. From top to bottom (with corresponding
equations): Keplerian orbital velocity (2), differential rotation
at the Hill’s radius for "- and !-disks (36), isothermal sound
speed (37), azimuthal wind (78), radial inflow velocity for
!- and "-disks (36), and the GW radiation-reaction inspiral
velocity (8). The scalings with accretion-disk parameters
ð!1; _m&1Þ are as labeled. Fiducial parameters used: !1 ¼ _m&1 ¼
M&5 ¼ m?1 ¼ 1.

FIG. 3 (color online). The mass scales in the problem. Plotted
are the MBH mass,M&, the EMRI mass,m?, the local disk mass,
md, the accreted mass at Eddington rate after 1 yr (efficiency
* ¼ 0:1), %ME

&, %m
E
? (Sec. IVA), and the accreted mass at BHL

rate onto the CO for the !- and "-disks per year, %mB
?!;"

(Sec. IVB). A gap opens outside the radius marked by green
dots (Sec. III B).

9Here, and throughout the paper, primed distances correspond
to radial distances measured from the CO, i.e. r0 ¼ jr! r?j.
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"r 0
% ¼

!
fg
3,

r2?#

)
q2
"
1=3

"r?; (38)

where "r? ¼ r?=M& is the dimensionless orbital radius of
the CO, q ¼ m?=M& is the mass-ratio, and fg is a geomet-
rical factor for which 3,=fg . 40–50 according to nu-
merical simulations [114–116]. Typically, the gap width is
much larger than the horizon radius of the CO.

Gap opening requires that the equilibrium width "r0% be
larger than (i) the torque cutoff scale around the CO, and
(ii) the scale on which the tidal field of the CO dominates
over the SMBH [114,115,117,118]. The CO’s tidal torque
is shifted out of resonance by the midplane radial pressure
gradient and saturates interior to the torque cutoff scale,
r0cutoff . This is roughly equal to the disk scale height
[see Eq. (33)], r0cutoff #H [119]. The tidal field of the CO
dominates inside the Hill radius or Roche lobe, r0H,

"r 0
H ¼ ðq=3Þ1=3 "r? ¼ 0:32m1=3

?1 M
!1=3
&5 "r?10: (39)

Gas entering within r0H gets either accreted by the CO or it
may flow around the CO toward the SMBH.

Thus, gap opening requires10

H & r0% and r0H & r0%: (40)

Combining Eqs. (38) and (40), we get that a gap opens if
the mass-ratio satisfies

q >max
% ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3,

fg

)

r2#

s !
H

r?

"
3=2

;
3,

fg

)

r2?#
2

'

¼ max
% ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3,

fg
!"b

s !
H

r?

"
5=2

;
3,

fg
!"b

!
H

r?

"
2
'
; (41)

where in the last line we have utilized Eq. (29) for ), and
the terms in the brackets correspond, respectively, to H 0
r0%, and r0H 0 r0%. Equation (43) is general for both ! and
"-disks. For !-disks b ¼ 0, but for "-disks b ¼ 1 and the
RHS depends implicitly on q and r through ". Substituting
H from Eq. (33) and " from Eq. (31) and solving for q
gives the mass ratios that lead to gap opening

qgap;! >max
%
0:018!1=2

1

_m5=2
&1

"r5=2?10

; 0:092!1
_m2
&1

"r2?10

'
; (42)

qgap;" >maxf3:6* 10!4!2=5
1 _m17=10

&1 M!1=10
&5 "r!29=20

?10 ;

* 3:9* 10!5!4=5
1 _m2=5

&1 M
!1=5
&5 "r1=10?10 g (43)

for ! and "-disks, respectively, and we assumed fg ¼
0:23.

Equations (42) and (43) can be used to find the CO
orbital radius "r? at which a gap opens. For !-disks both
terms decrease quickly with radius, thus the gap may
eventually close if the CO orbital radius "r? is sufficiently
small. However, for "-disks, the second term depends very
mildly on radius. Hence, this term for "-disks is best
viewed as a radius independent necessary condition for
the COmass for gap formation. The CO radius where a gap
opens, satisfies

"r?gap;! / max

8
<
:

79!1=5
1 _m&1M

2=5
&5 m

!2=5
?1

300!1=2
1 _m&1M

1=2
&5 m

!1=2
?1

9
=
;; (44)

"r ?gap;" / 24!8=29
1 _m34=29

&1 M18=29
&5 m!20=29

?1 and (45)

m?gap;" * 3:9M"!
4=5
1 _m2=5

&1 M
4=5
&5 : (46)

Therefore, EMRIs in radiation-pressure dominated
!-disks in the LISA frequency band ("r? & 50) typically
do not open gaps unless ! & 10!3. However, a gap typi-
cally opens around the CO in a radiation-pressure domi-
nated "-disk, provided the CO mass exceeds a value given
by Eq. (46) and it is captured by the accretion disk at a
large radius "r? > 100. As the CO travels inwards, however,
it eventually crosses the radius [given by Eq. (45)] where
the gap starts to refill for "-disks too.
If the CO gets first captured in the accretion disk around

the SMBH at some large radius "r? - 100, a gap is ex-
pected to be cleared quickly, and the gas interior to the
orbit slowly drains down the SMBH on the viscous time
scale. Depending on disk parameters and less understood
nonaxisymmetric inflows [111], the inner disk may be
completely or partially cleared by the time the CO reaches
the LISA frequency band at separation "r? & 50. If there is
still residual gas interior to r?, the EMRI may eventually
catch up with the inner disk, shepherding it into the SMBH
and causing an EM brightening of the AGN [54]. We
estimate the radius at which this first happens in Eq. (47)
below. Eventually, close to the merger, the gap would refill
interior to the radii given by Eqs. (44) and (45), reigniting
the AGN activity [19–21].
The fact that in AGN disks, gaps open around EMRIs

for large r? but then eventually close for smaller separa-
tions may seem surprising because it has the opposite
behavior in protoplanetary disks. The reason for the dif-
ference is the large radiation pressure in AGN disks,
which makes H to be a constant, so that H=r? decreases
outwards in Eq. (41). In contrast, H=r? is nearly constant,
slowly increasing outwards for gas pressure dominated or
self-gravitating disks [109,110]. The other unusual feature
in Eq. (41) is the "b factor, where we recall " ¼
pgas=ðpgas þ pradÞ. This factor approaches 1 and becomes
unimportant in the gas pressure dominated regime for
"-disks, where b ¼ 1, while b ¼ 0 makes it identically

10In the planetary context, the gap opening condition is some-
times written as H & r0H & r0%, where H & r0H guarantees that
pressure effects are less important than the gravity of the CO and
nonlinearities become significant. However, the validity and
interpretation of this condition is disputed [120], and we shall
not require it here over the two criteria in Eq. (40).
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1 for !-disks. However, this factor makes a big difference
in the radiation-pressure dominated regime for "-disks,
where " + 1, see Eq. (31).11

We note that the above conditions for gap opening,
based on Eq. (40) are probably necessary but perhaps
insufficient in realistic disks. While these conditions have
been well tested for protoplanetary disks using simulations
[115,116], we are not aware of any studies discussing their
applicability in three-dimensional radiation-pressure
dominated, turbulent MHD flows for the typical EMRI
and accretion-disk parameters in AGNs. MHD simulations
of turbulent protostellar disks show that in some cases an
annular gap may form with an ‘‘antigap’’ interior to that
region, where the gas density is increased compared to the
unperturbed case [121].

1. Gap decoupling

As explained above, a gap is expected to form for
"-disks in the LISA band for a wide range of parameters.
The outer edge of the gap at ("r can initially follow the
secondary as long as the GW inspiral rate is smaller than
the viscous gas inflow rate. As the binary separation
shrinks, the GW inspiral velocity eventually overtakes
the viscous inflow rate, v?rð"r?Þ / vgas;rð( "r?Þ, and the gas
outside the gap cannot keep up with the CO: the outer disk
decouples [19]. Coincidentally, the CO can catch up with
the disk interior to the gap, if present, causing an EM flare
[54]. The evolution of the gap and binary decouple at "r? 0
"rd, which using Eqs. (8) and (36), is given by

"rd¼
8
<
:
1:4*10!5!!2

1 _m!4
&1M

!2
&5m

2
?1(

5 for!-disks;

15m5=13
?1 !!4=13

1 _m!2=13
&1 M!4=13

&5 m5=13
?1 (2=13 for"-disks;

(47)

where in the following we adopt ( ¼ 1:7 [118].
The criterion given by Eq. (47) is not satisfied anywhere

where a gap has been opened for our nominal set of
parameters in either ! or "-disks, see Eqs. (44) and (45).
However, the gap can decouple in "-disks form? * 15M"
or ! & 0:05 [see Fig. 4 below].

2. Density enhancement outside the gap

As inflowing gas is repelled by the secondary at r?, gas
accumulates outside the gap, and the surface density is
modified relative to its original value without the perturber
$ð"rÞ [Eq. (32)] as

$gapð "rÞ ¼ $ð "rÞ *

8
>>><
>>>:

1 if "r > "rn

½m?=mdðr?2k if "rn > "r > "rg

0 if "r < "rg

; (48)

where "rg ¼ ("r? is the outer boundary of the gap,
12 and k ¼

3=8 for "-disks13 [122], while rn is the radius at which the
density enhancement disappears. In practice rn is time
dependent; it moves outward with velocity of order
jvgas;rj [122]. By the time the CO enters the LISA band
rn - 100.
In Secs. IV through VII, we discuss various effects the

disk has on EMRIs and show that the opening of a gap has a
serious impact. Depending on whether a gap is opened or
not, the CO is subject to Type-II or Type-I migration,
respectively. Moreover, if a gap is opened, then the mass
density near the secondary is significantly reduced, accre-
tion and hydrodynamic drag effects are quenched. In that
case, only the gravitational effects play a role (i.e. axisym-
metric disk gravity and Type-II migration).

C. Twists, warps, and disk alignment

In general, MBHs are expected to have a non-negligible
spin and dominate the angular momentum of the EMRI and
the disk within "r & 103. In the absence of an accretion disk,
radiation-reaction tends to circularize the EMRI. Because
of GW emission, the orbital angular momentum evolves
slowly toward antialignment with the MBH spin, although
the total perturbation of the orbital inclination is very small
[42,123]. If the CO is on a misaligned orbit, collisions with
the disk will cause it to align or counteralign with the disk
[14,37,41]. In the absence of a CO, if the disk is initially

FIG. 4 (color online). Critical CO mass as a function of CO
orbital radius for various mechanisms to quench BHL accretion
onto the CO. The accretion rate is reduced for largerm? or larger
r?. Top and bottom panels correspond to M& ¼ 105 and 106M",
respectively. Gap-decoupling occurs interior to the green curves.

11The "b factors were incorrectly missing from the gap opening
criteria in Ref. [109] for "-disks.

12We assume that the inflow across the gap interior to the CO is
significantly reduced by the CO. This is a conservative estimate
since, nonaxisymmetric inflow is expected to occur across the
inner edge of the annulus at a reduced rate [111].
13In the radiation-pressure dominated regime, k has not been
determined for !-disks. We conservatively adopt k ¼ 0 in this
case.
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misaligned with the MBH spin axis, Lense-Thirring pre-
cession will cause the disk to warp and twist, and viscous
dissipation and radiative cooling leads to an aligned or
antialigned configuration with the MBHs spin (Bardeen-
Petterson effect, [124–126]). Similarly, a CO can cause
warps and twists in the disk if on an inclined orbit leading
to alignment (or antialignment) of the disk plane with the
EMRI [112]. Finally, the accretion disk may be warped by
the star cluster surrounding the MBH in the outskirts of the
disk [127], by an intermediate mass BH [128] or by its own
self-gravity [129]. Henceforth, we neglect such complica-
tions, and consider the MBH, EMRI and disk angular
momenta to be aligned or antialigned in the relative radial
range of LISA observations for simplicity.

IV. MASS INCREASE VIA GAS ACCRETION

Next, we concentrate on the mass increase effect due to
accretion. Our goal is to make order-of-magnitude esti-
mates and compare them to the detectability measures
described in Sec. II B.

A. Primary mass increase

The accretion disk feeds matter to the SMBH, but such
process is bounded by the Eddington limit. This limit
corresponds to the balance between radiation pressure
and the gravitational force in spherical symmetry.14 The
corresponding luminosity due to accretion is

LEdd ¼ 4,Gc

-
M&; (49)

whereM& is the SMBH’s mass, which is here the accreting
object, and - is the opacity [see discussion below Eq. (28)].

If a fraction * of the rest-mass energy is converted into
radiation, then the corresponding accretion rate is

_MEdd
&

M&
¼ LEdd

*M&c
2 ¼ 2:536* 10!8*!1

1 yr!1; (50)

where *0:1 ¼ *=0:1 is the normalized efficiency. Notice
that the right-hand side of this equation is mass-
independent. If the SMBH is accreting at a constant rate
_m& ¼ _M&= _MEdd

& , then

M&ðtÞ . M&;0 þ _MEdd
& t ¼ M&;0

!
1þ _m&1

*1

LEdd

c2
t
"
; (51)

where M&;0 is the initial SMBH mass. In the analysis of
Sec. III we droppedmost factors of *!1

1 , but, as is clear from
here, every factor of _m& is accompanied by a factor of *!1

1 .
Is such a change in the mass observable via EMRI GWs?

Equation (50) tells us that, during a 1 yr observation, the
SMBH’s mass changes by %M&=M& ¼ 2:2*
10!9 _m&1=*1, which is clearly below the LISA mass
measurement accuracy of Eq. (17). Another way to see
this is to compute the phase shift [Eq. (18)] for Eddington-
limited accretion, which yields $'Edd

GW#'tot
GWTobs=T Edd.

10!3 _m&1M
!1=4
&5 m3=8

?1 T
13=8
yr , much smaller than the phase

measurement accuracy. We conclude then that the change
in the SMBH’s mass via Eddington-limited accretion has a
negligible effect on the GW signal, irrespective of the type
of disk modeled. The accretion has to be very super-
Eddington or the radiation efficiency very small
( _m&;1=*1 ! 103) for it to have any impact on the GW
signal for typical EMRIs at 1 Gpc.

B. Secondary mass increase

The CO itself increases in mass too, as it feeds from the
ambient gas in the accretion disk. We consider the case
when the CO orbital inclination is aligned with the disk.
The thickness of the accretion disk [Eq. (33)] is much
larger than the horizon diameter by a factor of H=m? #
1:5 _m&1M&=m? # 104, and, thus, it completely surrounds
the CO.
In such circumstances, accretion can be analyzed within

the framework of Bondi-Hoyle-Lyttleton (BHL) [32–34].
The characteristic radius of accretion can be calculated as
the radius at which the thermal energy of particles is less
than the gravitational potential energy15

r0B¼
2m?

v2
relþc2s

.2m?

M&

r3

H2¼8:9*103M"m?1 _m!2
&1 "r

3
10: (52)

The second and third equality correspond to corotating
quasicircular COs, neglecting vrel and using Eqs. (37)
and (33).
Assuming isotropic accretion and an adiabatic equation

of state, the Euler and continuity equations can be inte-
grated to give

_mB
?

m?
¼4,#

m?

ðv2
relþc2sÞ3=2

.
(
1:5*10!7 yr!1!!1

1 _m!5
&1M

!1
&5m?1 "r

6
10 for!-disks, corotating, circularCO;

3:5*10!4 yr!1!!4=5
1 _m!17=5

&1 M!4=5
&5 m?1 "r

39=10
10 for"-disks, corotating, circularCO;

(53)

14This limit may sometimes be violated as shown in Sec. IVB below.
15We use r0 to distinguish orbital distances measured from the CO. We denote the CO orbital radius by r unless it leads to confusion,
otherwise r?. Over bar denotes units of M&.
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where # is the ambient density, cs is the sound speed, and
vrel is the relative velocity of the gas with respect to the
medium, Eqs. (8) and (35)–(37). The numerical values
shown in the second line are only representative, they
assume vrel ¼ jvgas ! v?j + cs. This is approximately
satisfied near the SMBH, but in the numerical calculations
we substitute the estimated value of vrel [see Eq. (57)
below]. Figure 3 shows the corresponding mass accretion
rate per year for ! and "-disks, including the quenching
processes discussed next.

C. Quenching of BHL accretion

Accretion can be ‘‘quenched’’ or suppressed by several
different astrophysical processes. In this subsection, we
summarize all such quenching effects that severely modify
the accretion rates quoted in Eq. (53).

1. Quenching by wind and tidal effects

When vrel is not neglected, the estimates of Eq. (53) are
reduced. The relative velocity between the CO and the gas
contains contributions from the relative bulk motion of the
gas, differential rotation of the disk, and turbulence.

The effect of differential rotation can be estimated as
follows. Since the gas velocity is different at the edge of the
accretion range relative to the bulk velocity at r at orbital
radii r4 $r0, then

$vdr¼ j$r0iriv
j
gasj. j@rv'þ&'

'rv'jrH¼
3

2
"r0H "r

!3=2; (54)

where in the second equality we have set ð$r0r;$r0'Þ ¼
ðr0H; 0Þ and in the third used v' ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M&=r

p
and &'

'r ¼
!1=r for the Christophel symbol in flat space.
Substituting in for the Hill radius [Eq. (39)], this becomes

$vdr ¼
3

2

r0H
H

cs ¼ 0:015
!
m?1

M&5

"
1=3

"r1=210 : (55)

We estimate the radial wind using $vr ¼ jvgas;r ! v?rj,
where vgas;r and v?r can be found in Eqs. (8) and (36). The
relative velocity induced by an azimuthal wind $v' is

$v'¼3!.

2

H

r
cs¼

(
0:0053 _m2

&1 "r
!5=2
10 for!-disks

0:013 _m2
&1 "r

!5=2
10 for"-disks

; (56)

which we derive in Sec. V below.
With all of this in mind, the relative velocity is then

v2
rel ¼ ð$v' þ $vdrÞ2 þ $v2

r : (57)

Figure 2 shows that $vdr dominates the relative gas veloc-
ity relative to the bulk azimuthal and radial wind velocities.
Indeed, $vdr > cs when the CO’s mass is larger thanm? *

300M&5 _m3
&1 "r

!3
10 or if "r > "rdr ) 31 _m&1M

1=3
&5 m

!1=3
?1 . In that

case, one might expect large deviations in Eq. (53). As we
show in Sec. IVC 3, however, this quenching mechanism is

typically superseded by limited gas supply. Nevertheless,
we include vrel in our calculations below.
The accretion is very anisotropic due to differential

rotation and turbulence in the accretion disk. The accretion
rate in such an advection dominated accretion flow may be
significantly less than the BHL rate [130,131]. We consider
our simple estimates to be accurate only to the order of
magnitude.

2. Quenching by thin disk geometry

Spherical BHL accretion is valid in the region where the
Bondi radius is less than (i) the scale height of the disk H
[Eq. (33)], and (ii) the Hill’s radius or Roche lobe where
tidal effects from the SMBH are negligible [Eq. (39)].
These constraints are satisfied interior to

"r thin ¼ 19 _m&1M
1=3
&5 m

!1=3
?1 ; (58)

"r tidal ¼ 26 _m&1M
1=3
&5 m

!1=3
? : (59)

Thus, the thin disk requirement is always more restrictive
for radiation-pressure dominated disks.
Beyond orbital radius "rthin [Eq. (58)], the accretion cross

section is reduced from 4,r02B to 4,r0BH because of
cylindrical symmetry. Consequently, the accretion rate is
modified as

_m 0B
? . min

#
1;
H

r0B

$
_mB
?: (60)

3. Quenching by limited gas supply

The BHL accretion rate might also be limited by the
amount of gas supply near the CO. First, note that the radial
inspiral velocity v?r is typically much slower than the
radial inflow velocity of the gas v!r and v"r for ! and
"-disks (Fig. 2). This implies that there is a constant gas
flux across the CO orbit from the outer regions. However, if
the Bondi rate in Eq. (53) was greater than the radial gas
flux toward M&, then the accretion onto m? would be
limited by the rate at which gas flows in from the outer
regions. The mass flux across the CO’s orbit is

_M flux;? ¼ 2,r$jvgas;r ! v?rj ¼ _M&

((((((((1!
v?r

vgas;r

((((((((; (61)

where v?r and vgas;r are given by Eqs. (8) and (36). Thus,
the accretion rate onto the CO becomes

_m 00
? ¼ min½ _Mflux;?; _m0B

? 2: (62)

At large separations, jv?rj + jvgas;rj, the CO accretes in-
flowing gas from the outside and the accretion rate _m?

becomes independent of radius (as long as a gap is not
opened, see Sec. III B). At very small separations, given by
Eq. (47), jv?rj> jvgas;rj, the CO sweeps up the disk inte-
rior to its orbit, and the accretion rate becomes sensitive to
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the assumptions on the available gas supply interior to the
orbit.

Is Eq. (62) an important constraint for EMRI systems
observable by LISA? If the mass-ratio is extreme
/ & 10!4, then jv?rj + jvgas;rj (Fig. 2), so Eq. (62) im-
poses a constraint if and only if _mB

? 0 _M& is violated for
the radial separations covered by the CO during the
observation. This is the case outside "r / "rq, where

"rq ¼
8
<
:
24!1=6

1 _m&1M
1=3
&5 m

!1=3
?1 for !-disks;

5:1!8=39
1 _m44=39

&1 M6=13
&5 m!20=39

?1 for "-disks:
(63)

Figure 2 shows that the accretion rate of the CO saturates at
_M& at large "r. BHL accretion is supply limited for at least
part of the observation for the particular EMRI systems we
consider in Sec. IXA below.

4. Quenching by radiation pressure

Since the BHL accretion rate is typically super-
Eddington for a mass m?, does radiation pressure quench
such large rates? One has to be careful about this point
since the derivation of the BHL accretion rate restricts to
adiabatic flows, neglecting the effects of radiation pressure,
heat transport, and cooling. Super-Eddington mass accre-
tion onto the CO is possible if the radiation is transported
inward with the inflow faster than how it can diffuse out
[132–134]. We compare the diffusion time with the infall
time below.

The infall time of the fluid element from the Bondi
radius to a distance r0 from the CO is approximately

tin . r0B
1! ~r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
rel þ c2s

q ; (64)

where ~r0 ¼ r0=r0B is the dimensionless radial distance from
the CO, and the denominator is the RMS gas velocity.

The diffusion time from a distance r0 from the CO to r0B is

tdiffðr0Þ ¼
1

2

Z r0B

r0
-#?ð0Þ0d0; (65)

where we recall that - is the gas opacity [see discussion
after Eq. (28)]. To avoid confusion, we label the local gas
density in the close vicinity of the CO as#?ðr0Þ, which at the
Bondi radius is equal to the mean disk density near the
location of the CO, #?ðr0BÞ ) #ðr?Þ in Eq. (35). For BHL

accretion, the density increases toward the CO as #?ðr0Þ ¼
#?ðr0BÞ~r0!3=2 [32–34]. Thus, Eq. (65) simplifies to

tdiff ¼-#ðr?Þr02B ð1!~r01=2Þ¼ -

,

_mB
?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
relþc2s

q ð1!~r01=2Þ; (66)

where in the second line we have used Eq. (53) to relate tdiff
to the BHL accretion rate. Comparing Eqs. (64) and (66),
we find that the diffusion time is larger than the infall time,
precisely, if _mB

? / _mcrit
? , where

_mcrit
?

m?

) ,

-

r0B
m?

ð1þ ~r01=2Þ ¼ 2,

-

1þ ~r01=2

v2
rel þ c2s

. 5:6* 10!7 yr!1 _m!2
&1 "r

3
10ð1þ ~r01=2Þ: (67)

The second line corresponds to vrel + cs, but in the nu-
merical calculations we substitute vrel from Eq. (57).
Interestingly, radiation pressure does not have any im-

pact if the BHL accretion rate exceeds the limit, _mcrit
? . For

the nominal parameter values for a "-disk, Eqs. (53) and
(67) show that _mB

? / _mcrit
? is satisfied for all 0 0 ~r0 0 1.

Therefore, we are reassured that radiation is trapped and
advected inward in this case. However, !-disks are much
less dense, and this condition is violated interior to

20!1=3
1 _m&1M

1=3
&5 m

!1=3
?1 .

More generally, BHL accretion may be quenched by the
various other effects discussed above, modifying r0B and
decreasing the gas density and thereby the diffusion and
infall times. In this case, radiation pressure may further
suppress the accretion rate onto the CO if _m? 0 _mcrit

? . This
criterion can be fulfilled by both ! and "-disks. The
accretion rate then becomes

_m000
? ¼

%
_m00
? if _m00

? / _mcrit
? ;

_mEdd
? otherwise;

(68)

where _m00
? is given by Eq. (60), and we model the radiation-

pressure quenched accretion as Eddington limited, replac-
ingM& withm? in Eq. (50). We here choose ~r0 ¼ 1, as this
gives the most conservative (smallest) estimate for _m000

? .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly
reduced (see Sec. III B). Gap formation requires m? and
r? to be sufficiently large, [Eqs. (44)–(46)]. These condi-
tions can be satisfied for"-disks during the final year of the
inspiral but not for typical !-disks. If a gap forms, the
accretion onto the CO ceases.
For large CO masses m? * 15M" or ! & 0:05, the

inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r? < rd [see
Eq. (47)]. In this case, the CO may ‘‘catch up’’ with the
gas interior to the orbit [54]. The inner disk may be filled
by nonaxisymmetric or three-dimensional overflow [111].
In fact, in turbulent MHD disks, the region interior to the
annular gap may have an over density (antigap) relative to
the case without an EMRI [121]. In this case, _m? may be
restarted interior to rd, and may exceed the BHL rate of the
original unperturbed surface density of the disk [Eq. (53)].
However, it is also possible that the inner disk drains away
before rd is reached, implying no accretion. We con-
servatively assume no accretion onto the CO if a gap is
present,
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_m? ¼
%
_m000
? if r 0 rgap;

0 otherwise:
(69)

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion-disk astrophysics. Most of
these processes act to decrease the accretion rate from _mB

?.
We summarize the EMRI parameters where various
quenching mechanisms are in play in Fig. 4. This figure
depicts the minimum CO mass m? and orbital radii where
particular processes become significant to quench the BHL
accretion rate onto the CO for !1 ¼ _m&1 ¼ 1 for different
M& ¼ 105M" (top panel) and 106M" (bottom panel). For
these parameters, accretion is first completely quenched by
gap formation for"-disks, but gaps do not form for!-disks
for EMRIs in the LISA range. Then the gap refills, and
accretion is limited by the amount of inflowing gas, radia-
tion pressure, differential rotation, and the thin disk ge-
ometry. Closer to the SMBH, these processes become less
and less significant and the accretion rate increases to the
BHL rate _mB

?. This decreases inward with the decrease of
gas density and the increase in the sound speed. The
corresponding CO mass increase is shown in Fig. 2 above.

D. Implications of BHL accretion

Let us now describe the implications of BHL accretion
on EMRI formation and the GW phase. The former is
relevant to understand whether EMRIs can remain extreme
mass-ratio systems as they inspiral in the accretion disk
toward the LISA band or if they grow in mass to form an
intermediate mass BH. Then, we estimate the correspond-
ing perturbation to the GW phase and discuss its detect-
ability with LISA.

Eqs. (53), (60), (62), (68), and (69) show that theCOmass
growth rate is sensitive to the location of the CO, i.e. _m? is
not a constant. The mass at radius "r can be estimated as

m? ¼ m?;0 þ
Z t

t0

_m?dt ¼ m?;0 þ
Z "r

"r0

_m?

_"r
d"r; (70)

where m?;0 is the initial CO mass, and _m? is the accretion
rate and _"r is the inspiral rate (8).

1. EMRI formation scenarios

Does the CO mass grow significantly in the disk prior to
the LISA observation? If the CO migrated through the disk
from very large radii, m? - 10M& could be expected by
the time the CO reaches detectable separations for LISA
observations [16,17]. At large orbital radii the accretion
rate is supply limited. Assuming that a gap does not form
and the CO consumes the inflowing gas completely and
that j _r?j + jvgas;rj

%m? 0 _M&tmerger 0 1:2M"
_m&1M

3
&5

m?1
"r4200; (71)

where "r200 ¼ "r0=200, and we have substituted the inspiral
time to coalescence tmerger given by Eq. (13).

16 The merger
time is typically less than the GW-driven inspiral time due
to angular momentum exchange with the disk discussed in
Sec. VII [17,38] so that Eq. (71) is only an upper limit on
%m?. Note that in this case, the mass increase is larger than
the instantaneous amount of disk mass within a few Hill’s
radii [Eq. (39)], called the isolation mass, due to the
viscous inflow of gas from the outer regions across the
orbit. This situation is most relevant for !-disks where a
gap does not form easily [see Eq. (44)].
Once the CO mass has grown sufficiently, the tidal

torque of the CO eventually opens a radial gap in the
disk, halting further growth. This leads to a limit called
the starvation mass17 [136], which from Eq. (42) and (43)
is

%m?! 0 maxf1800M"!
1=2
1 _m5=2

&1 M&5 "r
!5=2
?10 ;

9200M"!1 _m2
&1M&5 "r

!2
10 g; (72)

%m?" 0 maxf36M"!
2=5
1 _m17=10

&1 M9=10
&5 "r!29=20

10 ;

3:9M"!
4=5
1 _m2=5

&1 M
4=5
&5 "r1=10?10 g: (73)

Note that both Eq. (71) and (72) must be satisfied for
!-disks andEq. (73) for"-disks. In both cases, theCOmass
remains smallm? + 100M" forM& ¼ 105M". It grows to
atmost#76M" until reaching "r ¼ 25 forM& # 106M" in a
"-disk, but can growbeyond 100M" forM& * 106M" in an
!-disk, if captured in the disk outside "r * 50. If so, an
initial EMRI would morph into an intermediate mass-ratio
inspiral before entering the LISA band. Growth beyond a
mass given by Eq. (73) is halted by gap formation [17].
We conclude that EMRIs can remain extreme in mass-

ratio on their journey to the LISA band ("r & 50) for a non-
negligible set of disk parameters. Conversely, the mass
measurement with LISA could have interesting implica-
tions on the structure of the accretion disk. Suppose LISA
measures m? to be large, consistent with either Eq. (72) or
(73). This information alone would suggest that the CO has
grown by accretion in an ! or "-disk, and suggest the
possible presence of a disk, even without a direct GW
phase shift measurement. In the opposite case, if LISA
measures m? to be larger than what is expected from the
growth arguments given by Eq. (72) and (73), then this

16In the opposite extreme _r? - vgas;r, the CO growth is limited
by the interior disk mass, which is typically less than 10M2

&5M"
within "r# 103, see Fig. 3.
17If a gap opens and the CO is transported inward by Type-II
migration together with the flow (see Sec. VII below), then %m?
is limited by the local disk mass in a few Hill’s radii, i.e. the
isolation mass [135]. However, typical CO masses exceed the
local disk mass within "r & 103 (see Fig. 3), and the inward
migration rate is slower than the gas inflow rate. In this case, gas
can build up near the edge of the gap and cause the object to
grow to the starvation mass.
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could point to the common existence of intermediate mass
BHs, which is debated at the time of the writing of this
manuscript.

2. GW Observations

BHL accretion changes the GW inspiral rate of the
EMRI due to the increase in the radiating mass quadrupole.
This leads to a GW phase shift relative to a constant m?.
Is BHL accretion measurable for EMRIs with LISA
observations?

For a crude first estimate let us consider the correspond-
ing limits on the mass and time scales of Sec. II B 1.
Figure 3 shows the BHL mass accretion rate as a function
of radius (red lines). For these masses ð10M"; 10

5M"Þ,
%m?=m? # 10!5 to 10!4 for ! and "-disks. This is com-
parable to the mass measurement precision of LISA for a
source at #1 Gpc, suggesting that the perturbation caused
by the CO mass growth may be marginally significant. The
time scale argument with T B #m?= _m? is not directly
applicable as _m? varies significantly during a one-year
LISA measurement.

A more accurate analytical estimate is computed in
Appendix A, where we integrate the total perturbation to
the GW phase assuming that _m? ¼ A"rB, where A and B are
constants. The phase shift will be presented in Sec. VIII,
Eqs. (114) and (115); it shows that the phase shift accu-
mulates with time initially as $' . a1T

3 þ a2T
4, for

short observations relative to the inspiral rate, and even-
tually asymptotes to a3T

c5 , where ða1; a2; a3; c5Þ are con-
stant coefficients that depend on the EMRI and the
accretion-disk parameters.

We find that the quenching by gas supply has a major
effect on the GW phase shift. Without quenching, the effect
would be of order $'B

GW # 7 and 3000 rads for ! and
"-disks, respectively, and even larger for largerm?, assum-
ing Tobs ¼ 1 yr and M&5 ¼ m?1 ¼ _m& ¼ 1. However, at
most separations, the BHL rate is significantly suppressed
by gas supply for"-disks, but the reduced dephasing is still
about 13 rads per a year and larger for largerM&. The phase
shift is proportional to the following combination of

accretion-disk parameters: !!1
1 _m!5

&1 and !!4=5
1 _m!17=5

&1 for
the unquenched BHL rate for ! and "-disks, and _m&1 for
the supply-limited rate. These combinations may be mar-
ginally measurable by LISA observations, given suffi-
ciently strong signals.

V. HYDRODYNAMIC DRAG

Next, we consider the drag induced by a difference
between the gas and CO velocities, sometimes called
wind. This relative velocity is a consequence of a pressure
gradient in the disk and results in a force that pushes the
CO both azimuthally and radially [28,29]. As in Sec. IV,
the goal is to make order-of-magnitude estimates on the
corresponding GW phase shift and compare them to the
detectability measures of Sec. II B.

A. Azimuthal wind

If the orbital velocity of the gas is different from the
CO’s orbital velocity, the latter will experience an azimu-
thal headwind or backwind (relative to its unperturbed
azimuthal motion). To estimate the orbital velocity of the
gas, let us write the radial equation of motion assuming that
M& - m?, the orbital velocity is much larger than the
radial velocity, and that the flow is subsonic:

!
v2
'

r
þvrrrvr¼!M&

r2
!rr'?!rr'disk!

rrptot

#
; (74)

where v' and vr are the azimuthal and radial velocities of
the gas, ptot is the total pressure of the gas in a comoving
frame, and # is the gas density. For standard thin disks,
ptot ¼ #c2s ¼ #H2#2, where the scale height H is inde-
pendent of radius in the radiation-pressure dominated re-
gime [see e.g. Eqs. (33) and (37)]. The orbital average
gravitational potential of the CO, 'disk, acting on the fluid
element at radius r is

'? ¼ ! 2

,

m?

rþ r?
K
!
2

ffiffiffiffiffiffiffi
rr?

p

rþ r?

"
; (75)

where KðkÞ ¼ R,=2
0 ð1! k2sin21Þ!1=2d1 is the complete

elliptic integral of the first kind. The gravitational potential
of the disk,'disk, will be given in Sec. VI [see e.g. Eq. (94)].
Let us parameterize the radial density profile via #ðrÞ /

r., where the exponent . ¼ 3=2 and . ¼ !3=5 for ! and
"-disks, respectively, [Eq. (32)]. Note that vrrrvr is neg-
ligible in Eq. (74) since vr + cs and vr / 1=ðr$Þ, see
Eq. (36) and Fig. 2. Equation (74) then becomes

!
v2
'

r
¼!M&

r2
!rr'?!rr'diskþð3!.ÞH

2#2

r
; (76)

which one can solve to obtain

v2
' ¼ M&

r

#
1þ ð.! 3ÞH

2

r2
þ r

M&
rrð'? þ'diskÞ

$
: (77)

In the following we neglect the effects of the potential due
to the secondary, an approximation valid if the gas accretes
onto the CO from outside the Hill’s sphere, i.e. the r0B < r0H,
see Eqs. (59), as well as the disk gravity.
We then find that a corotating CO always experiences an

azimuthal headwind with velocity (i.e. orbital velocity of
gas with respect to the CO),

$v' ) #vacr! v' . 3! .

2

H2

r2

ffiffiffiffiffiffiffi
M&
r

s

¼ 3! .

2
ð1:5 _m&1Þ2 "r!5=2; (78)

where we have used Eqs. (33) and (77). This equation
agrees with Tanaka et al. [137] or the approximate equa-
tion of Levin [17]. This estimate, however, does not hold
for trans-sonic flows, as in this case the CO experiences a
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backwind, as found by Chakrabarti [29]. Since such flow
requires very high accretion rates where the thin disk
approximation may not hold, we ignore this possibility
here.

An azimuthal headwind leads to additional dissipation
of the CO’s specific angular momentum, _‘wind ¼ r _P=m?,
where _P is the rate of change of the linear momentum, so
that

_‘wind¼!r _m?$v'

m?
¼!3!.

2

_m?M&
m?

ð1:5 _m&1Þ2 "r!3=2; (79)

where we have used Eq. (78). Clearly, this is typically a
small perturbation relative even to the loss of angular
momentum through GW emission. For unsaturated BHL
accretion _m? ¼ _mB

?, substituting Eq. (53) yields

_‘Bwind
_‘GW

.
%
6:1* 10!10!!1

1 _m!3
&1M&5 "r

8
10 for !-disks;

3:4* 10!6!!4=5
1 _m!7=5

&1 M6=5
&5 "r59=1010 for "-disks:

(80)

For supply-limited BHL accretion _m? ¼ _M&, Eq. (61),
yields

_‘sup :Bondiwind
_‘GW

. 1:0* 10!7

2:5* 10!7

! "
* _m3

&1
M3

&5
m2

?1

"r210; (81)

where the top and bottom rows correspond to ! and
"-disks, respectively. The change in the angular momen-
tum dissipation rate leads to a modified inspiral rate that we
discuss in Sec. VD.

B. Radial wind

In addition to the azimuthal headwind, the CO also
experiences a wind in the radial direction. The correspond-
ing force is

_P wind ¼ _m?jv?r ! vgas;rj (82)

.
_M&m

2
?

Hc3sr
¼ 2:5* 10!22 _m!3

&1M
!1
&5m

2
?1 "r

7=2
10 ; (83)

where we have assumed jvr?j + jvgas;rj, see Fig. 2. The
radial equation of motion is thus

m?#
2r ¼ m?M&

r2
þ _Pwind: (84)

The first term on the RHS is the gravitational force, which
satisfies m?M&=r

2 ¼ m?#
2
vacr by the definition of #vac.

Therefore, unlike the azimuthal wind, the radial wind does
not dissipate angular momentum, but it modifies the orbital
velocity #vac relative to Keplerian:

#2 !#2
vac

#2
vac

¼
_Pwind

m?#
2
vacr

¼ 2:5* 10!16m?1 "r
11=2
10

_m3
&1

: (85)

The impact of this modification on the GW phase will be
discussed in Sec. VD.

C. Dynamical friction

Dynamical friction is generated by the gravitational
interaction of a perturber traveling at some relative velocity
in an ambient medium [138]. The gravity of the perturber
deflects the particles of the medium and generates a density
wake trailing the perturber. In turn, the gravitational pull of
the density wake acts like friction, decreasing the speed of
the perturber. This process is analogous to Landau-
damping in plasma physics and is also important in galactic
dynamics for objects moving through a population of stars
[139,140].
The standard treatment of dynamical friction in a gase-

ous medium usually assumes that the medium has a spa-
tially uniform initial velocity distribution relative to the
perturber. If the perturber moves on a linear trajectory with
a subsonic relative velocity in a gaseous medium, then the
density wake in front and behind the perturber approxi-
mately cancel, leading to a small drag force [141].
However, dynamical friction is more significant for a
supersonic perturber. Dynamical friction has also been
investigated for perturbers moving on quasicircular orbits
in an initially static (i.e. nonrotating) medium [142]. In this
case the density wake has a spiral structure and the drag
force is enhanced. A fully relativistic treatment was pre-
sented in Refs. [41,143].
Equations (36), (37), and (78) and Fig. 2 show that the

relative wind velocity at corotating orbits is typically non-
relativistic and subsonic in standard ! and "-disks. The
arguments mentioned above then imply that the standard
dynamical friction effect is greatly suppressed.18

The relative gas velocity at different radii outside r? 4
2
3H, however, is supersonic [see Eq. (54)] and, thus, dy-
namical friction with respect to the gas in this region may
be significant. In this case, the velocity of the medium is
mostly due to differential rotation of the accretion disk and
not the wind generated by the pressure gradient effects of
Sec. VA. Differential rotation causes the density waves to
wind up and standard dynamical friction formulas are not
applicable. This regime has been well studied in planetary
dynamics, which leads to the phenomenon called planetary
migration. In this paper, we explicitly distinguish between
such migration, described separately in Sec. VII below, and
standard dynamical friction, which as argued above has a
negligible effect on LISA EMRIs.

D. GW implications

Are such changes in the orbital dynamics measurable
with EMRI GWs? Let us first consider the effect of an
azimuthal wind, for which the inspiral rate is increased
with the time scale T a:wind ) ‘= _‘wind:

T !
aw . !4:0* 108 yr!1 _m3

&1M&5m
!1
?1 "r

4
10; (86)

18Regular dynamical friction may be significant for standard !
and "-disks for retrograde orbits [60].
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for !-disks and

T "
aw . !7:1* 104 yr!4=5

1 _m7=5
&1 M

4=5
&5 m

!1
?1 "r

19=10
10 ; (87)

for "-disks. We have here used the fact that the specific
angular momentum is ‘ ¼ r2# where # is given in
Eq. (2).

These time scales can now be used to estimate the GW
dephasing. The effect of the headwind is to change the
orbital angular velocity of the EMRI system, i.e. it induces
a $#wind. This change in frequency can be approximated
as $#wind # ð _‘wind=‘Þ#$t, so the phase shift is propor-
tional to T aw ¼ _‘wind=‘. Such a change in orbital fre-
quency induces a change in orbital phase, which we can
approximate as $'aw # $#wind$t# ð$t=T awÞ'tot

GW. For
!-disks we find $'!

aw . 0:03 rads, while for "-disks we
find $'"

aw . 33 rads, using a typical set of EMRI and disk
parameters and initial separation of "r0 ¼ 20.

A more accurate measure of the GW phase shift can be
obtained by integrating the perturbation to the inspiral rate
due to the hydrodynamic drag. The results of a similar
calculation was presented in Paper I [55] for a general
model, of which the azimuthal wind is a special case. We
provide the details of the derivation in Appendix B below.
The asymptotic analytical solution is presented in
Eqs. (114) and (115), where the coefficient and exponents
are given in Table II. For the default parameters, we get that
the perturbation to the GW phase is $'!

aw # 0:03 rad for
!-disks, $'"

aw # 47 rad for "-disks, assuming BHL ac-
cretion is not saturated for the final year of inspiral.
Including the limitation by the gas supply does limit the
process leading to $'!

aw # 0:15 rad for !-disks and
$'"

aw # 0:35 rads for "-disks. The result of the full cal-
culation including all other saturation effects is shown in
Figs. 1 and 5 for different EMRI masses and final inspiral
radii for a 1 yr observation. We conclude then that the
azimuthal wind affects the EMRI signal only marginally
for typical parameters.

Let us now consider the effect of a radial wind on the
GW phase. Since the GW phase is proportional to twice the
orbital phase for quasicircular orbits, the total GW phase
shift induced by the radial wind is roughly

$'rad:wind
GW ¼ 2ð#!#vacÞTobs .

_M&m?

#vacHc3sr
2 Tobs (88)

¼ 5:0* 10!10 rads M!1
&5m?1 _m!3

&1 "r
4
10: (89)

This radial wind is thus completely negligible for the LISA
measurement unless "r * 1000.19

VI. AXISYMMETRIC GRAVITATIONAL EFFECTS

The axisymmetric component of the disk gravity indu-
ces several effects in the orbital evolution of an EMRI: it
modifies the angular velocity of the orbit and the inspiral
rate and induces additional apsidal precession for eccentric
orbits. We examine these effects here in turn, making
order-of-magnitude estimates of the corresponding GW
phase shifts.

A. Accretion-disk potential

The gravitational potential of a thin disk may be much
stronger than the isotropic component of the enclosedmass,
Mdiskð"rÞ=r. This is to be expected since a thin ring exerts a
much stronger force than a spherical shell of the samemass,
which can point both in or out for exterior and interior test
particles, respectively. Here we estimate the Newtonian
gravitational potential of a stationary planar disk.
The total potential of the disk is a superposition of the

contributions of infinitesimal concentric rings of mass
dm ¼ 2,rdr$. Using dimensionless radius variables,

'diskð"rÞ ¼ !M&
Z "rmax

"rmin

$ð "r0Þ
4"r0

"rþ "r0
K
!
2

ffiffiffiffiffiffiffi
"r"r0

p

"rþ "r0

"
d"r0; (90)

where the surface density $ð "rÞ is to be substituted from
Eq. (26) or (32). We here used the fact that a circular ring of
mass dm and radius r0 generates a potential at r as given in
Eq. (75). Here "rmin and "rmax are the inner and outer radii
defining the radial extent of the disk, we assume "rmin # 0
and "rmax # "rrad in practice [Eq. (30)].
For inclined orbits, with the CO angular momentum

vector L? at inclination 2 relative to the total angular
momentum vector of the CO and the disk, the potential
generated by the disk can be expressed more conveniently
with the Legendre polynomials P‘ðxÞ

'diskð"rÞ ¼ !
X1

‘¼0

2,½P2‘ð0Þ22P2‘ðcos2Þ

*M&
Z "rmax

"rmin

$ð "r0Þ"r0
"r2‘<
"r2‘þ1
>

d"r0; (91)

where "r< ¼ minð"r; "r0Þ and "r> ¼ maxð"r; "r0Þ [144]. The
integrals in Eq. (91) can be simply evaluated analytically
for the particular form of $ð"rÞ given by Eq. (32). In
Appendix C 1, we carry out this exercise and show that
in the limit "rmin + "r + "rmax,

'!-diskð"rÞ . !,$!0

ffiffiffiffiffiffiffiffiffi
"rmax

p
"r2; (92)

'"-diskð "rÞ . 2,c0$"0 "r
2=5; (93)

where c0 ¼ 1:38, and Eq. (32) was used to define the
dimensionless density scales $!0 and $"0 as M&$ð "rÞ ¼
$!0 "r

3=2 and $"0 "r
!3=5, for ! and "-disks, respectively.

Substituting "rmax ¼ "rrad from Eq. (30), we get

19Note that _m&1 + 1 is unrealistic for radiatively-efficient, thin
disk models, but even so, BHL accretion would be quenched by
the limited gas supply, as explained in Sec. IVC 3.
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'diskð"rÞ
'ð"rÞ

.
8
<
:
!1:4* 10!12!!20=21

1 _m!13=21
&1 M22=21

&5 "r310 for !-disks;

1:2* 10!9!!4=5
1 _m3=5

&1 M
6=5
&5 "r7=510 for "-disks;

(94)

where we have used 'ð "rÞ ¼ "r!1 for the SMBH potential.
Equation (94) shows that the disk potential decreases

outwards and inwards for ! and "-disks. Thus interest-
ingly, the disk exerts an outward force on the CO for
!-disks. In Appendix C 1, we show that this is due to a
strong quadrupolar field generated by the outskirts of a
radiation-pressure dominated !-disk.

B. Change in the orbital frequency

The orbital angular frequency #ð"rÞ is modified due to
the axisymmetric gravitational field of the disk from its
value without the disk #vac given by Eq. (2). Equating the
centripetal acceleration to the gradient of the gravitational
potential we find

r#2 ¼ M&
r2

þ d'disk

dr
¼ r#2

vac þ
d'disk

dr
: (95)

Therefore the orbital frequency is

# . #vac

!
1þ "r2

2

d'disk

d"r

"
: (96)

C. Change in the inspiral rate

The binding energy in the Newtonian approximation is

E ¼ 1

2
#2r2/M! /M2

r
þm?'disk; (97)

where M is the total mass and / ¼ M&m?=M
2 is the

symmetric mass-ratio. For EMRIs, /M . m? and M .
M&. Assuming no other source of energy loss, other than
the GW emission, and quasicircular orbits,

dE

dt
¼ ! 32

5
/2M2r4#6: (98)

We can use Eq. (96) to express the radial and time
derivatives of the energy explicitly as a function of radius
alone:

dE

d"r
¼ /M

2"r2

!
1þ 3"r2

d'disk

d"r
þ "r3

d2'disk

d"r2

"
; (99)

dE

dt
¼ ! 32

5
/2 "r!5

!
1þ 3"r2

d'disk

d"r

"
: (100)

Therefore the radial velocity is modified as

d"r

dt
¼

!
dE

d"r

"!1 dE

dt
¼ _"rvac

!
1! "r3

d2'disk

d"r2

"
; (101)

where _"rvac is the GW inspiral rate neglecting the effects of
the disk [Eq. (8)]. Notice that the first derivative of the disk
potential does not enter the radial velocity.

D. Apsidal precession

While clearly unimportant for quasicircular EMRIs, we
briefly show that the axisymmetric disk gravity causes a
negligible amount of apsidal precession in the eccentric
case too.
The radial oscillation frequency for a nearly circular

orbit in a perturbed potential is

-2ðrÞ ¼ M&
r3

þ d2'disk

dr2
þ 3

r

d'disk

dr
; (102)

(see, e.g. [140]). If - ! #, the ellipse precesses in its plane
at a rate#! -. The dimensionless apsidal precession rate
relative to the Keplerian frequency from Eqs. (96) and
(102) is thus

#ap

#vac

) #! -

#vac
¼ ! "r3

2

!
d2'disk

d"r2
þ 2

"r

d'disk

d"r

"
: (103)

We relate #ap=#vac to the induced phase shift below; this
quantity is proportional to 'disk=' + 1.

E. GW implications

The disk potential changes the GW frequency and the
inspiral rate at fixed orbital radii. The dimensionless change
in the frequency $# ¼ ð#!#vacÞ=#vac, inspiral rate
$ _"r ¼ ð _"r! _"rvacÞ= _"rvac, and the dimensionless apsidal preces-
sion rate #ap=#vac are all proportional to derivatives of
'diskð "rÞ='ð"rÞ, up to a factor of order unity [see Eqs. (96),
(101), and (103)]. Equation (94) shows that this ratio
is typically very small, at the level of 'disk='
#ð2* 10!6; 10!5Þ for ð!;"Þ-disks with very small ! and
largeM& and "r, ð!;M&; "rÞ # ð10!3; 106M"; 100Þ, and even
smaller formore typical values. This leads to a small change
in the GW phase of Eq. (14). In Appendix C, we carry out a
detailed calculation that shows that for both ! and"-disks,
self-gravity effects induce a dephasing of approximately
10!4–10!7 rads for our nominal set of parameters in a 1 yr
observation, which is clearly below LISA’s observational
threshold.
These estimates are modified if the gravitational torques

from the CO quenches gas inflow onto the SMBH and
clears a gap (Sec. III B). In this case, the gas density is
greatly reduced interior to the CO, but extra gas accumu-
lates outside its orbit, changing the potential. In
Appendix C we show that this effect increases the dephas-
ing by roughly an order of magnitude for "-disks, but such
an increase is still well below the threshold of detectability.
Axisymmetric gravitational effects may be more important
for eccentric orbits with large semimajor axis "r# 1000.
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VII. MIGRATION

Let us now examine the role of nonaxisymmetric gravi-
tational effects induced by the disk, which lead to a phe-
nomenon known as migration in planetary dynamics. As
before, the goal is to make order-of-magnitude estimates of
the migration effect on the GW phase and compare them
with the detectability measures of Sec. II B.

A. General properties

Consider the nonaxisymmetric gravitational effects of
the disk, leading to angular momentum dissipation, analo-
gous to planetary migration (see [120,135] for reviews).
The orbiting CO exerts a nonzero average gravitational
torque on the gaseous disk, creating a spiral density
wave. The total angular momentum budget is dissipated
through viscosity and the outward angular momentum
transport of the spiral density wave. The gravitational
torque of the spiral density wave exchanges angular mo-
mentum resonantly with the CO causing it to migrate
[117]. This effect is analogous to dynamical friction (see
Sec. VC) but accounts for the inhomogeneous velocity
field of the gaseous medium.

In planetary dynamics, this phenomenon in different
regimes is called Type-I, Type-II, and Type-III migration.
The distinction is whether a gap is opened (Type-II) or not
(Type-I) and whether strong corotation torques related to
horseshoe orbits are taken into account (Type-III). In the
following we neglect Type-III migration because it is most
relevant only if the disk mass near corotating orbits is
comparable or larger than the secondary mass. Figure 3
shows that this is not the case for EMRIs in the LISA
frequency band.

In a pioneer paper, Goldreich and Tremaine presented
the first study on Type-I migration, using two-dimensional
(2D) linear perturbation theory [117]. Their results were
later improved by Tanaka et al. to account for corotation
resonances and three-dimensional effects in isothermal
disks [137], which are also consistent with three-
dimensional hydrodynamic simulations of laminar disks
[145]. Further generalizations exist for locally adiabatic 2D
disks [146]. However, recent MHD shearing box simula-
tions of turbulent protoplanetary disks with a low mass
planet show that the torques exhibit stochastic fluctuations
for Type-I migration, where even the sign of the torque
changes rapidly [147,148]. Stochastic migration is not
expected if the satellite is more massive relative to the
disk. The migration is also very sensitive to the value of
opacity and radiation processes [149]. Recently, Hirata
generalized the original study of Goldreich and Tremaine
for laminar 2D relativistic disks and found the angular
momentum transport to be larger by a factor #4 close
to the central BH [80,81]. Finally, higher-order PN
corrections may resonantly excite persistent spiral density
waves close to the SMBH even without anm?, which could
modify the torque estimates for EMRIs [82].

To our knowledge, Type-I migration is unexplored for
the expected environments for LISA EMRI sources:
for radiation-pressure-dominated, optically-thick, geo-
metrically-thin, relativistic, magnetized and turbulent
disks, where the mass of the perturbing body m? exceeds
the disk’s mass. For a simple estimate below, we explore the
GWphase shift in an EMRI system due to Type-Imigration,
using the isothermal nonrelativistic laminar formulas of
Tanaka et al. [137], where we include the effects of radia-
tion pressure by using the corresponding expressions for the
sound speed and the scale height.
If the CO is sufficiently massive and/or far out, a central

region is cleared out and a circular gap develops (see
Sec. III B). Once a gap opens, the angular momentum
exchange becomes much more regular than Type-I and it
is determined by the angular momentum transport through
the more distant part of the disk [145,147,148]. This type
of angular momentum exchange is referred to as Type-II
migration. If the local mass of the disk is greater than the
mass of the perturbing object, then the object migrates
inward on a viscous time scale with the velocity of the
accreting gas. However, for LISA EMRI sources, the local
disk mass is smaller than the CO’s (see Fig. 3). In this case,
the migration slows down, and becomes ‘‘secondary domi-
nated Type-II migration’’ [135].
Simple steady-state estimates, based on angular mo-

mentum balance, were presented by Syer and Clarke
[122]. These estimates account for the increase of the
gas density relative to an isolated disk, assuming that the
angular momentum exchange is dominated by that near
the inner-edge of the disk. Later, Ivanov et al. [112]
relaxed the steady-state assumption and estimated the
quasistationary, time-dependent evolution of the disk and
satellite using a zero stress boundary condition at the
location of the binary.
Both of these studies focused on thin, one-zone, gas

pressure dominated, Shakura-Sunyaev disks, where the
density is an increasing function of stress. This assumption
is satisfied for "-disks but not for radiation-pressure domi-
nated !-disks. In the later case, we are not aware of
literature that is applicable to Type-II migration. Recent
studies have shown that migration with an annular gap is
affected by global edge-modes for massive disks, and can
cause stochastic migration of planets either inward or out-
ward (similar to the Type-I case with MHD) [150], and the
migration rate is also sensitive to vortex forming instabil-
ities [151]. However, these phenomena have not yet been
explored in AGN accretion disks for EMRIs. For an order-
of-magnitude analysis of Type-II migration, we use both
Syer and Clarke and the asymptotic Ivanov et al. equations
to estimate the corresponding GW phase shifts for EMRIs
in "-disks. We make a conservative estimate for radiation-
pressure dominated !-disks, based on angular momentum
balance between m? and the local disk, neglecting the
accumulation of gas outside the gap.
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B. Type-I migration

For an isothermal three-dimensional disk, Type-I migra-
tion removes or increases angular momentum at a rate

_‘ mig;I ¼ 4c1
m?$r

6#4

M2
&c

2
s

¼ 4c1
m?

M&
$

r3

H2 ; (104)

where c1 ¼ ð1:4! 0:5.Þ and . ¼ 3=2 or !3=5 for ! and
"-disks, respectively, and the 4 signs highlight the sto-
chastic nature of migration in a turbulent disk [137]. The
magnitude of c1 is different for locally adiabatic 2D disks
by a factor #2, but the scaling with other parameters
remains the same [146]. Relative to the GW rate of angular
momentum loss,

_‘mig;I

_‘GW
¼
8
<
:
47:2*10!11!!1

1 _m!3
&1M&5 "r

8
10 for!-disks;

45:1*10!7!!4=5
1 _m!7=5

&1 M6=5
&5 "r59=1010 for"-disks:

(105)

Notice that the Type-I migration dominates over even the
GW loss of angular momentum at sufficiently large radii,
beyond "r . 150 for !-disks and "r . 112 for "-disks.

C. Type-II migration

If the CO is sufficiently massive and/or far out that a gap
opens (see Sec. III B) the CO is subject to Type-II migra-
tion. The angular momentum exchange depends on the
local disk mass near the binary, md given by Eq. (34).
Typically, md < m? (see Fig. 3), and the specific angular
momentum dissipation rate, in the quasistationary approxi-
mation of Syer & Clarke [122], is

_‘ mig;II;SC ¼
!
md

m?

"
k

_‘gas ¼ !
!
md

m?

"
k vorbvgas;r

2
; (106)

where _‘gas is the angular momentum loss in the gas due to
viscosity, vgas;r ¼ 2 _M&r=mdðrÞ is the radial velocity of gas
given by Eq. (36), vorb is the orbital velocity Eq. (2), and
k ¼ 3=8 for electron-scattering opacity and "-disks. If
neglecting the banking up of gas near the outer edge of
the gap, then angular momentum balance implies k ¼ 1,
which we adopt conservatively for !-disks [see Eq. (42) in
Ref. [112]]. We note that this assumption is different than
those used in Refs. [58,109]. Substituting Eqs. (6), (34),
and (36),

_‘mig;II;SC

_‘GW

¼
% 6:2* 10!6 _m&1M

3
&5m

!2
?1 "r

4
10 for !-disks;

5:8* 10!3!1=2
1 _m5=8

&1 M
13=8
&5 m!11=8

? "r25=810 for "-disks:

(107)

Notice that for !-disks, this is independent of !; the
dissipation of the CO’s angular momentum is proportional
to _M&. For "-disks, Eq. (107) also accounts for the accu-

mulation of mass near the CO, which leads to additional
angular momentum dissipation, sensitive to !.
We also consider the time-dependent solution of Ivanov

et al. [112] for "-disks that accounts for the accumulation
of gas and a zero stress boundary condition at the edge of
the gap [see also Eq. (24) in Ref. [152]]:

_‘ "
mig;II;IPP ¼ !c2vorb

_M&
m?

ðrrddÞ1=2; (108)

where rdd is the ‘‘radius of disk dominance,’’ which sat-
isfies mdðrddÞ ¼ m? [see Eq. (34)], c2 ) f1þ $½1!
ðr=rddÞ1=22gk2 , $ ¼ 6:1, and k2 ¼ 0:26. Note that c2 is
only mildly r dependent. For r ¼ rdd, c2 ¼ 1, so that
both estimates [Eqs. (106) and (108)] imply a migration
rate tracking the radial velocity of gas, so that _‘"mig;II;IPP ¼
_‘"mig;II;SC ¼ _‘gas ¼ !vorbvgas;r=2, while for r + rdd, c2 .
1:66, asymptotically independent of r. Similar to Eq. (106)
and (108) is valid for electron-scattering opacity "-disks
but is not applicable for radiation-pressure dominated
!-disks. Substituting Eq. (34) for rdd, we find for r + rdd,

_‘"mig;II;IPP

_‘GW
¼5:1*10!4!2=7

1 _m11=14
&1 M31=14

&5 m!23=14
?1 "r7=210 : (109)

D. Quenching of migration

In the following we assume that inside and outside the
minimum gap opening radius rgap [Eq. (44) and (45)] Type-
I and Type-II migration operate, where we use Eq. (105)
and (107)–(109), respectively. Once the CO has crossed
inside rgap, the gas is no longer expelled efficiently by the
tidal field of the CO, and the gas is free to flow in on the
accretion time scale with a radial velocity vgas;r [Eq. (36)].
If this is faster than the GW inspiral rate of the CO v?r

[Eq. (8)], then the gap can refill. In Sec. III B 1, we have
shown that jv?rj 0 jvgas;rj is satisfied if "r / "rd, given by
Eq. (47). Thus, if "r ¼ "rgap / "rd is met [see Eqs. (44) and
(45)], we assume that the gap refills and switch from the
disk generated torque from Type-II to Type-I. Otherwise, if
a gap has formed and cannot follow the inspiral rate of the
CO, disk torques are expected to shift out of resonance and
become too distant for efficient angular momentum ex-
change. Then the interaction is greatly suppressed, and we
assume _‘migð"rÞ ¼ 0 if "rgap 0 "r 0 "rd. Once the gap has
formed and decoupled, it can no longer refill, so we further
assume _‘mig ¼ 0 if "r 0 "rgap 0 "rd. Finally, if the gap refills
(i.e. "rgap / "rd) then Type-I migration can operate effi-
ciently even if the inspiral rate is faster than the viscous
inflow rate ("r 0 "rd), since the spiral patterns can form
much faster on a dynamical time scale tdyn ##!1. The
interaction may be significantly different only much later
when the inspiral time tGW ) r= _rGW becomes faster than
the cooling time of the disk [153], i.e.

OBSERVABLE SIGNATURES OF EXTREME MASS-RATIO . . . PHYSICAL REVIEW D 84, 024032 (2011)

024032-23



tcool )
1

!#
; (110)

where _rGW is the GW-driven inspiral rate, # is the orbital
angular velocity, and ! is the parameter in the viscosity
prescription. From Eqs. (2), (8), and (110) we get
tGW < tcool inside

"r c ) 0:055!!2=3
1 M!2=3

&5 m2=3
?1 : (111)

Typically the disk cooling does not impose a limitation
outside the ISCO for EMRIs unless ! is very small and the
mass-ratio is not extreme.

To summarize we assume,

_‘0mig ¼
( _‘mig;I; if "r < "rgap;

_‘mig;II; if "r > "rgap;
(112)

and

_‘mig ¼
8
<
:
0 if "r< "rc or "rgap< "r< "rd or "r< "rgap< "rd;

_‘0mig otherwise;

(113)

where for _‘mig;I we use Eq. (105), while for _‘mig;II either the
Syer-Clarke model Eq. (107) or the Ivanov et al. model
(109). The later is only available for "-disks in the
radiation-pressure dominated regime, while the Syer-
Clarke is applicable both for ! or "-disks. In summary,
we consider three cases for migration, which utilize the
same Type-I model but differ in the Type-II regime

(1) M!SC: !-disks with Syer-Clarke Eq. (107);
(2) M"SC: "-disks with Syer-Clarke Eq. (107);
(3) M"IPP: "-disks with Ivanov et al. Eq. (108).

E. GW implications

The change in the angular momentum dissipation rate
modifies the GW-driven inspiral rate, which modifies the
GW phase evolution. The corresponding phase shift $'GW

can be calculated in a similar way as for an azimuthal wind
(see Sec. VD above, and Paper I [55]). The interested
reader can find the details of the derivation in Appendix B.

For the default parameters, we find that Type-I migration
produces a typical GW dephasing on the order of 10!2 and
10 rad during the final year of observation in ! and
"-disks, respectively. The large increase in dephasing for
the "-disk case is due to the much larger surface density.

Even more interesting is the case where a gap opens;
Type-II migration is clearly the most dominant perturba-
tion among all the ones considered in this paper. However,
as showed in Sec. III B, a gap is expected to close for most
EMRIs in the LISA band. For !-disks, Type-II migration
can generate GW phase shifts of order 10–100 rad in 1 yr,
and up to 103–104 rad for"-disks. The modifications to the
GW spectrum are so large that if this effect is in play, that
vacuum EMRI templates might be ineffective to extract

LISA GWs. The blue lines in Fig. 1 and 5 show the phase
shift due to migration as a function of final orbital radius
including quenching effects [Eq. (113)] for both Type-II
migration models (Syer & Clarke steady state and the
Ivanov et al. quasistationary models, Eq. (107) and (109),
respectively), assuming !1 ¼ _m&1 ¼ 1. For other system
parameters and observation times, we provide asymptotic
analytical expressions in Eqs. (114) and (115) and Table II
below.

VIII. COMPARISON OF
ACCRETION-DISK EFFECTS

We summarize the GW phase shift generated by the
dominant accretion-disk effects in Table I. Different rows
show different accretion-disk effects with the parameters
of Eq. (25), while columns show different EMRI systems
with component masses given by all four combinations of
M& ¼ ð105; 106ÞM" and m? ¼ ð10; 100ÞM". The entries
represent the GW phase shift between the standard vacuum
waveform and those including the effects of the accretion
disk in the Newtonian approximation. The phase shift is
between 1 yr long GW waveforms with the same final
radius in the most sensitive LISA frequency band.20

ð"rf; "r0Þ . ð16; 25Þ for ðM&; m?Þ ¼ ð105; 10ÞM"; ð "rf; "r0Þ .
ð16; 42Þ for ðM&; m?Þ ¼ ð105; 102ÞM"; ð"rf; "r0Þ . ð3; 7:6Þ
for ðM&; m?Þ ¼ ð106; 10ÞM"; ð"rf; "r0Þ . ð3; 13Þ for
ðM&; m?Þ ¼ ð106; 102ÞM". The phase shift estimates are
derived in Appendix A, B, and C, using Eqs. (A10), (B8),
and (C5), where the underlying quantities _m?, _‘, and 'disk

are substituted from Sec. IV, V, and VI, taking into account
all of the quenching mechanisms that are in play. In par-
ticular, for migration we use Type-I and Type-II in the
appropriate radial ranges without and with gaps, respec-
tively, where we utilize either the Syer-Clarke (SC) or the
Ivanov et al. (IPP) model for Type-II migration, see
Sec. VII D.21

Table I shows that the migration estimate incorporating
the SC model in "-disks is by far dominant, followed by
migration using IPP in "-disks, and BHL accretion. The
effects of the disk’s self-gravity, wind effects, migration in
!-disks and Eddington-limited accretion onto the SMBH
are all completely negligible for LISA EMRIs. All effects
studied lead to a reduction of phase cycles in a fixed
observation time for fixed final radius, except for the effect
of disk gravity in !-disks. Other detectable EMRIs not
shown in this table (different masses and/or orbital radii)
might be more sensitive to disk effects.

20Here we do not marginalize over an arbitrary phase shift
between the two waveform templates for simplicity. These
estimates are in good agreement with the more complicated
calculations presented in Sec. X below.
21To understand which quenching mechanisms are in effect for
the particular cases, see Fig. 4 in Sec. IVC 6.
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Figs. 1 and 5 show GW phase difference induced by
various disk effects as a function of final orbital radius.
Solid curves correspond to !-disks and dotted curves to
"-disks. Curve colors represent different accretion-disk
effects: black curves correspond to BHL accretion, green
curves to azimuthal wind effects, and blue curves to mi-
gration (dotted lines for SC-", dot-dashed lines for IPP-").
Left and right panels correspond to different mass ratios

and SMBH masses. Additionally, Figs. 1 and 5 include
three disk-independent reference curves. The thin, solid
magenta line is the total accumulated GW phase without
disk effects. The thick magenta curves represent the ap-
proximate accuracy to which LISA can measure the GW
phase as a function of radius, using the simple estimates
given by Eq. (19) for a typical source located at 1 Gpc
(solid) and 10 Mpc (dashed). We present more detailed
estimates of measurement accuracy in Sec. X below.
Typically migration in "-disks generates the dominant

phase shift for all final radii. The large drop in the right
panel occurs because the gap closes around "r# 20:4 for
"-disks for these masses, changing Type-II into Type-I
migration.22 BHL accretion follows migration in impor-
tance, and in certain cases (as in the right panel of the
figure), the former can be the most important effect if the
gap refills. The sudden quenching features in the BHL
accretion curves are due to EM radiation pressure, where
photon diffusion becomes sufficiently short for EM radia-
tion to escape the flow. Observe that LISA is sensitive to
EMRIs that are close to the SMBH (e.g. "r & 50); the sharp
rise of the LISA accuracy estimate is because EMRIs at
larger radii are not detected with SNR of 10 or bigger. All
disk effects above the thick magenta line are significant
and possibly measurable, while wind effects and self-
gravity effects (not shown in the figure) always lead to
dephasings of order 1 rad or much less. These figures
suggest that GW observations may be used to test the
predictions of different accretion-disk models.
We note that for the masses in the left panel of Fig. 5, the

CO is located at "r? ¼ 43 and "r? ¼ 51 1 and 2 yrs prior to

TABLE I. Summary of accretion-disk effects on the GW phase
shift induced by different accretion-disk effects relative to vac-
uum waveforms. Rows correspond to different accretion-disk
effects: Primary Eddington-limited accretion (Primary acc.),
secondary Bondi-Hoyle-Lyttleton (BHL) accretion, azimuthal
winds (W), disk’s self-gravity (SG) and migration (M).
Columns correspond to different EMRI systems assuming a
1 yr observation. The entries xðyÞ denote x* 10y in radians.
The phase shift is negative for all effects except for SG !.
Observe that "-disk migration is the dominant effect for the
first two columns, while "-disk BHL accretion is dominant for
the last two columns.

ð10; 105Þ ð102; 105Þ ð10; 106Þ ð102; 106Þ
Primary acc. 1:0ð!3Þ 1:0ð!3Þ 1:0ð!3Þ 1:0ð!3Þ
BHL ! 1:9ðþ0Þ 4:6ð!3Þ 5:7ð!3Þ 2:9ð!3Þ
BHL " 4:6ðþ0Þ 0:0ðþ0Þ 1:8ðþ1Þ 7:0ðþ0Þ
W ! 1:5ð!2Þ 8:0ð!5Þ 8:0ð!4Þ 1:1ð!4Þ
W " 1:4ð!1Þ 0:0ðþ0Þ 3:2ð!1Þ 8:3ð!1Þ
SG ! 2:5ð!5Þ 4:9ð!5Þ 4:5ð!6Þ 8:7ð!6Þ
SG " 6:8ð!4Þ 5:5ð!4Þ 1:1ð!3Þ 8:9ð!4Þ
M !SC 6:2ð!3Þ 1:8ð!1Þ 2:4ð!6Þ 9:6ð!5Þ
M"SC 6:9ðþ2Þ 1:8ðþ2Þ 7:3ð!2Þ 8:8ð!1Þ
M "IPP 8:2ðþ1Þ 1:4ðþ1Þ 7:3ð!2Þ 8:8ð!1Þ
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FIG. 5 (color online). The GW phase shift as a function of final radius in units of M& induced by different accretion-disk effects
relative to vacuum waveforms. As in Fig. 1, solid curves correspond to !-disks, while dotted ones to "-disks. Different color curves
represent different accretion-disk effects (!1 ¼ _m&1 ¼ 1): black is for secondary Bondi-Hoyle-Lyttleton (BHL) accretion, green is for
azimuthal winds (W), and blue is for migration (M), with dotted and dot-dashed curves for "-disks in the Syer-Clarke and Ivanov et al.
model, respectively. The thin, solid magenta line is the total accumulated GW phase in vacuum, while the thick, solid (dashed)
magenta line is a measure of the sensitivity to which LISA can measure the GW phase for a source at 1 Gpc (10 Mpc). This figure
presents similar conclusions to those found in Fig. 1, but for a different set of EMRI parameters.

22Gap decoupling does not occur since "rd # 19:2.
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merger. A gap is open beyond "r? > "rgap ¼ 96 and 5 for !
and "-disks. The EMRI evolution becomes much faster
than the viscous inflow and the gap decouples at a radius of
"rd ¼ 39 for a "-disk.
To describe the phase shift for different observation

times or accretion disk parameters than those shown in
Figs. 1 and 5, we provide analytical expressions for the
asymptotic phase shift for various processes in two limits,
namely,

$'long
GW ¼ !C1!

c1
1 _mc2

&1M
c3
&5m

c4
?nT

c5
yr

!
1! C2

Mc6=2
&5

mc6=4
?1

"rc6f;10

Tc6=4
yr

"

(114)

$'short
GW ¼ !D1!

d1
1 _md2

&1M
d3
&5m

d4
?1T

d5
yr "r

d6
f;10

!
1!D2

m?1

M2
&5

Tyr

"r4f;10

"
;

(115)

where the ðC; c;D; dÞ parameters are given by the rows of
Table II. Here d1 ) c1 and d2 ) c2. The first (second)
formula is applicable if the observation time is much
shorter (longer) than the inspiral time [Eq. (13)]. The
particular processes are represented by rows in order:
the full BHL rate (i.e. assuming no quenching throughout
the observation), the supply-limited BHL rate (SB) [using
Eq. (61) throughout the observation), the corresponding
hydrodynamic drag from the azimuthal wind for the full
BHL accretion and SB (W and SW, respectively), Type-I
migration (i.e. assuming a gap is not present throughout the
observation), steady-state Type-II migration, quasistation-
ary Type-II migration (i.e. assuming a gap is open through-
out the observation), and disk self-gravity (SG). Note that

LISA observations are sensitive to the combinations
!c1
1 _mc2

&1, see corresponding columns.
Most accretion-disk effects are several orders of magni-

tude larger for "-disks relative to !-disks. This is because
"-disks can be much more massive in the regime of
interest for EMRIs. In particular, this suggests the GW
phase shift may be used to test the predictions of different
accretion disk models.

IX. RELATIVISTIC WAVEFORMS
AND DETECTION

Next, we consider accretion-disk effects in more realis-
tic waveform models. EMRI GWs are highly relativistic,
with velocities close to the speed of light and sometimes
skimming the SMBH horizon. As such, Newtonian wave-
form estimates for GW data analysis are inaccurate. Here
we investigate the relativistic correction to the EMRI dy-
namics using the extended one body framework and make
simple estimates on the imprint of accretion-disk effects on
the GW waveform. This analysis, however, continues to
neglect relativistic corrections to accretion-disk effects.

A. Systems investigated

In the rest of this paper, we restrict our investigations to
the following two representative EMRI systems:
(i) System I: Masses M& ¼ 105M", m? ¼ 10M", spin

parameter a&=M& ¼ 0:9, observation time T ¼ 1 yr,
range of orbital radius "r 2 ð16; 25Þ, orbital velo-
city v=c 2 ð0:2; 0:25Þ, GW frequency fGW 2
ð0:005; 0:01Þ Hz, GW phase 'GW # 1:3* 106 rad.

(ii) System II: MassesM& ¼ 106M", m? ¼ 10M", spin
parameter a&=M& ¼ 0:9, observation time T ¼
1 yr, range of orbital radius "r 2 ð3; 7Þ, orbital

TABLE II. Constant coefficients and exponents in Eqs. (114) and (115), for long and short observations (columns), for different
effects (rows). We use the notation xðyÞ ¼ x* 10y in radians. Observe again that the dominant dephasing is due to Type-II migration
(M2) both in the short- and long-observation limits. Also notice that all dephasing scales with positive powers of the radius (i.e. c6 > 0
and d6 > 0), implying accretion-disk effects become stronger for EMRIs orbiting at larger separations.

C1

[$'long
GW ]

C2

[$2'long
GW ]

c1
[!1]

c2
[ _m&1]

c3
[M&5]

c4
[m?1]

c5
[Tyr]

c6
["rf;10]

D1

[$'short
GW ]

D2

[$2'short
GW ]

d3
[M&5]

d4
[m?1]

d5
[Tyr]

d6
["rf;10]

BHL ! 6:9ðþ0Þ 3:2ð!1Þ !1 !5 !17=4 17=8 25=8 5=2 2:5ðþ0Þ !2:6ðþ0Þ !4 2 3 1=2
BHL " 3:2ðþ3Þ 3:2ð!1Þ !4=5 !17=5 !3 8=5 13=5 5=2 5:7ðþ3Þ 8:2ðþ0Þ !19=5 2 3 !8=5
SB 1:3ðþ1Þ 3:7ð!1Þ 0 1 3=4 !11=8 13=8 5=2 4:2ðþ2Þ 2:8ðþ1Þ !2 0 3 !11=2
Wind ! 3:4ð!2Þ 8:4ð!4Þ !1 !3 !13=4 13=8 21=8 21=2 1:5ð!2Þ 8:2ðþ0Þ !2 1 2 5=2
Wind " 4:7ðþ1Þ 4:3ð!3Þ !4=5 !7=5 !2 11=10 21=10 42=5 8:6ðþ1Þ 1:4ðþ1Þ !9=5 1 2 2=5
SW ! 1:5ð!1Þ 7:9ð!2Þ 0 3 7=4 !15=8 9=8 9=2 2:6ðþ0Þ 2:5ðþ1Þ 0 !1 2 !7=2
SW " 3:5ð!1Þ 7:9ð!2Þ 0 3 7=4 !15=8 9=8 9=2 6:2ðþ0Þ 2:5ðþ1Þ 0 !1 2 !7=2
M1 ! 4:0ð!3Þ 8:4ð!4Þ !1 !3 !13=4 13=8 21=8 21=2 1:8ð!3Þ 8:2ðþ0Þ !2 1 2 5=2
M1 " 7:0ðþ0Þ 4:3ð!3Þ !4=5 !7=5 !2 11=10 21=10 42=5 1:3ðþ1Þ 1:4ðþ1Þ !9=5 1 2 2=5
M2 !SC 2:5ðþ1Þ 1:8ð!2Þ 0 1 3=4 !11=8 13=8 13=2 1:5ðþ2Þ 1:9ðþ1Þ 0 !1 2 !3=2
M2 "SC 1:5ðþ4Þ 3:5ð!2Þ 1=2 5=8 !3=16 !31=32 45=32 45=8 1:5ðþ5Þ 2:2ðþ1Þ !11=8 !3=8 2 !19=8
M2"IPP 1:6ðþ3Þ 2:7ð!2Þ 2=7 11=4 3=14 !8=7 3=2 6 1:3ðþ4Þ 2:0ðþ1Þ !11=14 !9=14 2 !2
SG ! 2:2ð!5Þ 1:7ð!2Þ !20=21 !13=21 !59=84 3=8 11=8 11=2 5:8ð!6Þ !1:8ðþ1Þ 1=21 0 1 3=2
SG " !6:1ð!4Þ !1:0ð!2Þ !4=5 3=5 1=4 !1=40 39=40 39=10 !9:7ð!4Þ 7:8ðþ0Þ 1=5 0 1 !1=10
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velocity v=c 2 ð0:37; 0:54Þ, GW frequency fGW 2
ð0:003; 0:01Þ Hz, GW phase 'GW # 9* 105 rads.
The ISCO is located at "rISCO . 2:32.

Figs. 1 and 5 shows that accretion-disk effects are expected
to be significant for these systems.

We make the following simplifying assumptions. First,
we consider only quasicircular EMRIs on the equatorial
plane, such that the orbital angular momentum is perpen-
dicular to the SMBH’s spin angular momentum. We have
also investigated Systems with spin antialigned or zero and
found similar results. The accretion disk is also assumed to
be on the equatorial plane, such that the EMRI is com-
pletely embedded in the disk. We ignore the CO’s spin
angular momentum, as well as subleading mass-ratio terms
in the radiation-reaction fluxes and in the Hamiltonian.

Such simplifying assumptions make the problem ana-
lytically tractable within the EOB framework, employed
here for waveform modeling. As of the writing of this
paper, the EOB framework for EMRIs has not been suffi-
ciently developed for nonequatorial orbits; it has, however,
been satisfactorily tested for equatorial orbits with extreme
or comparable mass-ratios, q & 10!4 and q * 10!2.

We expect that many accretion-disk effects (migration,
BHL, and wind effects) will be maximal for the equatorial
EMRIs studied here. Other effects, however, are sub-
stantially different for EMRIs inclined with respect to
the accretion disk. Similarly, disk effects may excite ec-
centricity, which may dramatically increase the impact
of accretion-disk effects on the GW observables
[51,52,58,59]. A study of nonequatorial or eccentric
EMRIs with an accretion disk is beyond the scope of this
paper.

B. Basics of the EOB framework

We employ the adiabatic EOB framework of [83–85] to
model EMRI waveforms. The EOB scheme was first pro-
posed in [154,155] to model the coalescence of
comparable-mass BH binaries. Since then, this scheme
has been greatly enhanced and extended to other type of
systems [156–167]. Waveforms constructed in this way
have been successfully compared to a set of numerical
relativity results [168–170] and to self-force calculations
[171,172]. Recently, [83–85] proposed the combination of
EOB and BH perturbation theory techniques to model
EMRI waveforms for LISA data-analysis purposes. This
is the scheme we adopt in this paper.

In the adiabatic, EOB framework for quasicircular
EMRIs, the GW phase can be obtained by solving the
adiabatic equation

_# ¼ !
!
dE

d#

"!1
F GWð#Þ; (116)

where # ) _' is the orbital angular frequency (Eq. (2) but
with relativistic corrections), overhead dots stand for time

derivatives, E is the binary system’s total binding energy,
and F GW ) dEGW=dt is the GW energy flux. We have
here implicitly assumed a balance law: all loss of gravita-
tional binding energy is removed only by GW radiation,
dE=dt ¼ !dEGW=dt.
The binary’s binding energy in a Kerr background for a

quasicircular orbit is simply given by [173]

E ¼ %
1! 2 "r!1 þ 3& "r

!3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 3"r!1 þ 23& "r

!3=2
q ; (117)

where % ) M&m?=M is the reduced mass, with M )
M& þm? the total mass, "r ) r=M, and 3& ) a&=M& is
the reduced Kerr spin parameter. Notice that it is the
binding energy that drives the orbital evolution and not
the total energy of the system, which would also account
for the rest-mass energy.
We employ here the factorized form of the GW flux,

considered in [162,165,166], with the assumption of
adiabaticity:

F GWð#Þ ¼ 1

8,

X8

‘¼2

X‘

m¼0

ðm#Þ2jRh‘mj2; (118)

where R is the distance to the observer, m is the azimuthal
quantum number of the multipolar-decomposed waveform,
and

h‘m ¼ h
Newt;*p
‘m S

*p
‘mT‘me

i$‘mð#‘mÞ‘; (119)

and where *p is the multipolar waveform parity (i.e. *p ¼
0 if ‘þm is even, *p ¼ 1 if ‘þm is odd). All the terms in

Eq. (119) (S
*p
‘m, T‘m, $‘m, and #‘m) are functions of

ðr;';#Þ that can be found in [162,165,166]. The
Newtonian part of the waveform is given by

h
Newt;*p
‘m ) M&

R
n
ð*pÞ
‘m c‘þ*pv

‘þ*pY‘!*p;!mð,=2;'Þ; (120)

where Y‘;mð1;'Þ are the standard spherical harmonics,

n
ð*pÞ
‘m and c‘þ*p are numerical coefficients that depend on

the mass-ratio [165]. The orbital velocity v is related to the
orbital frequency via v ¼ ðM#Þ1=3, which then implies the
binary orbital separation is

"r ¼ ½1! 3& "#Þ22=3
"#2=3

; (121)

where recall that the overhead bar stands for normalization
with respect to total mass: "# ¼ M# . M&#.
At this stage one might be slightly confused, as the right-

hand side of the evolution equation one wishes to solve
[Eq. (116)] depends on a variety of quantities, including
the orbital separation and the orbital phase. The assump-
tion of adiabatic quasicircularity allows us to replace the
orbital separation in terms of the orbital frequency via
Eq. (121). By definition, the orbital phase is related to its
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frequency via the differential equation _' ¼ #. This equa-
tion, together with Eq. (116) forms a closed system of
coupled, first-order partial differential equations that can
be consistently solved.

The flux in Eq. (118), however, is not sufficiently accu-
rate to model EMRIs. First, it neglects the loss of energy
due to the absorption of GWs by the MBH. Second, it is
built from a PN expansion, which is in principle valid only
for slowly-moving sources, which EMRIs are not. This flux
can be improved by linearly adding BH absorption terms
and by adding calibration coefficients to Eq. (118) that are
fitted to a more accurate, numerical flux. This is the pro-
cedure proposed in [83–85], which we follow here. We
include up to 8 calibration coefficients, obtained by fitting
to a more accurate Teukolsky evolution in the point-
particle limit, as given in Eqs. (26)–(29) of [85], as well
as BH absorption terms as given in Appendix B of [85].

Initial data for the evolution of the system of differential
equations is obtained through a mock evolution, started at
r ¼ 100M& and ended at fGW ¼ 0:01 Hz (see e.g.
[83–85]). The mock evolution is initialized with the post-
circular data of [155]. Once the evolution terminates, one
can read initial data one-year prior to that point directly
from the numerical evolution of the mock simulation. We
obtain initial data of such form separately both in the case
of vacuum EMRIs and for EMRIs in an accretion disk, as
the evolutions are generically different. Once the orbital
phase is obtained by solving Eq. (116) with this initial data,
the waveforms are readily obtained through Eq. (119).

Before proceeding, let us comment on the differential
system one must solve numerically. As already mentioned,
since the source of Eq. (116) depends both on orbital phase
and frequency, there are truly two coupled, first-order
differential equations that must be solved. But the source
term of this equation is incredibly more complicated than
implied here. Even though S‘m, T‘m, $‘m, and #‘m are
known analytically as functions of ' and #, each term
contains very long and complicated series expansions with
fractional exponents that include special functions, such as
the polygamma function. For this reason, the EOB evolu-
tion is not a simple integration, as it naively appears to be
in this section. Instead, the coupled set of first-order equa-
tions must be solved simultaneously via numerical
methods, where here we employ a partially optimized,
MATHEMATICA routine.

C. Disk modifications to EOB GWs

GW modeling in the adiabatic EOB framework depends
sensitively on the energy E and the flux F GW.
Modifications to theMBH or the COmass naturally change
all mass scales that depend on the total massM, such as the
symmetric mass-ratio /. Radiation pressure and migration
modifies the rate of change of the angular momentum and
thus the flux. In what follows, we explain how we modify
the EOB scheme to account for such disk effects.

1. Effective hamiltonian

The effective Hamiltonian controls the conservative
evolution of the EOB model. We have considered several
accretion-disk effects that directly modify the
Hamiltonian, such as the self gravity of the disk and the
increase in mass of the SMBH and the CO. Of these effects,
the latter has been found to be the largest. We concentrate
on this effect here.
The increase in the CO’smass can bemodeled by solving

for the time evolution of m?. The differential equation that
controls this evolution is Eq. (62), where _Mflux

& is given in
Eq. (61), while _m0B

? is given by Eq. (61). Notice that _m?

depends on radius, or on orbital frequency by Eq. (121),
which itself is a function of time. Since the accretion rate is
not constant, one must solve the system of differential
equations on # and m? consistently, which we do numeri-
cally and perturbatively as follows. First, we solve the
frequency evolution equation, setting m? to a constant
and neglecting accretion. Second, we use Eq. (121) to
rewrite Eq. (62) in terms of orbital frequency. Third, we
replace this orbital frequency by the time-evolution ob-
tained in vacuum. Fourth, we numerically solve the evolu-
tion equation for _m?, as its source now depends only on
time. In step two, we are implicitly discarding nonlinear
terms that scale as ð _m?TobsÞ2, i.e. the square of the accretion
rate times the observation time. This quantity is approxi-
mately 10!8 or much smaller (clearly much smaller than
unity) for typical LISA observation times.
Once the time evolution for the CO’s mass has been

obtained, one must then make sure that all quantities that
depend on it are properly promoted to time functions. For
example, all quantities that depend on the total mass, such
as the symmetric mass-ratio / or the reduced mass % are
modified. In particular, the numerical code used to solve
the differential equation [Eq. (116)] is naturally written in
dimensions of the total mass of the system, which now
becomes a time function. A simple trick to deal with this is
to rescale all mass quantities by the factor MðtÞ=Mð0Þ,
which is equal to unity initially but deviates from
unity with time. In particular, this implies that "# !
½MðtÞ=Mð0Þ2 "# and "r ! ½MðtÞ=Mð0Þ2!1 "r.
Once these substitutions have been made, one can solve

for the frequency and phase evolutions, with m?ðtÞ a func-
tion of time, by providing appropriate initial data. When
considering BHL accretion, we choose the same initial data
as in the vacuum case (as explained in the end of Sec. IXB)
1 yr prior to reaching a GW frequency of 10!2 Hz. The
frequency and phase evolution can be compared when m?

is a constant and when it is not, which provides a measure
of the effect of BHL accretion on GWs.

2. Radiation-reaction force

The radiation-reaction force controls the rate at which
orbits inspiral. This force can be expressed in terms of the
rate of change of orbital elements such as binding energy,
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angular momentum, and the Carter constant. Since we
restrict attention to an equatorial, quasicircular EMRI
geometry, we need to consider only the energy flux.

Modifying the EOB model to account for a different
radiation-reaction force amounts to the rule

F GW ! F GW

!
1þ $ _‘

_‘GW

"
(122)

in Eq. (116). When modeling an azimuthal wind, $ _‘ ¼
_‘wind via Eq. (79), but when modeling migration, then $ _‘ is
given by Eq. (113); all throughout _‘GW is given by Eq. (6)
with e ¼ 0. When substituting in for $ _‘ one must be
careful to use the properly quenched _m? [Eq. (69)], if the
accretion-disk effect depends on the rate of BHL accretion.
All other aspects of the framework can be left unchanged,
as Eq. (122) automatically induces deviations from the
Kepler relation.

The system of EOB differential equations can now be
solved using appropriate initial data. Initial conditions for
the vacuum and accretion-disk case are prescribed via
mock evolutions as explained in detail in Sec. IXB, with
$ _‘ ¼ 0 and $ _‘ ! 0, respectively. As explained above, this
guarantees that both simulations will terminate at the same
orbital separation. Because of different radiation-reaction
force laws, however, the starting radii or frequencies are
different in each case for a fixed observation time. To
account for this, we will later maximize comparison mea-
sures over a time and phase shift between vacuum and
accretion-disk waveforms, as we explain in Sec. XA.

X. DATA-ANALYSIS CONSIDERATIONS

We are now ready to perform a more detailed data-
analysis study of the accretion-disk effects on waveforms.
We begin by investigating the dephasing of the EOB wave-
forms constructed in the previous section. We then con-
tinue with an overlap study and end with a discussion of
degeneracies between accretion-disk parameters and
EMRI system parameters.

A. Dephasing analysis

As explained in Sec. II B 2, a dephasing study is useful to
roughly determine whether two waveforms can be distin-
guished from each other given a GW detection; if the phase
difference or dephasing between waveforms is large
enough, then they are distinguishable [see Eq. (19)].
Here, we compare the dephasing of the dominant, ð‘;mÞ ¼
ð2; 2Þ vacuum and nonvacuum GW modes, initialized with
the data of Sec. IXB.

If we take one waveform to be ‘‘the signal’’ and the other
to be ‘‘the template,’’ then the dephasing depends on two
extrinsic parameters contained in the template: an overall
phase $' and time shift $t. We here study the dephasing
after minimizing it with respect to these extrinsic parame-
ters. The template also depends on other parameters, such

as the masses and spins, but we here set these to be equal to
the signal’s parameters, i.e. we do not minimize the de-
phasing over such parameters. In a realistic data-analysis
implementation, one would maximize the SNR (or mini-
mize the dephasing) over all parameters, at the cost of
introducing error into parameter estimation due to the
use of incorrect templates.
Before minimizing the dephasing over a time and a

phase shift, it is worth pointing out that its magnitude
(computed with relativistic EOB waveforms) roughly
agrees with the Newtonian results presented in Table I.
For example, the final dephasing after 12 months of evo-
lution (initializing the simulations with the same final
frequency and the same initial phase) between vacuum
and "-disk migration is #217 rads with the EOB model
and#670 rads with the Newtonian estimates for System I.
In this case, the relativistic model leads to a larger dephas-
ing than the Newtonian estimates because, in the latter,
System I evolves more rapidly due to relativistic correc-
tions and the CO spends less time in the Type-II dominated
region. We have verified that for weakly-relativistic
EMRIs, where only Type-I or Type-II migration is in
play, Newtonian and EOB dephasings agree.
A more appropriate measure of distinguishability, how-

ever, requires that one minimizes the dephasing with re-
spect to $t and $'. Following the prescription of Eq. (23)
in [169], we search for a $t and $' such that kf1ðtþ
$tÞ ! f2ðtÞk 0 $f and k'1ðtþ $tÞ !'2ðtÞ ! $'k 0 $t,
where '1;2 and f1;2 are the dominant GW phase and
frequencies for waveforms h1;2ðtÞ. The kAk notation stands
for the integral of A over a time window of length 64(GW,
where (GW is the GW wavelength (see e.g. [85] for de-
tails). The signal h1ðtÞ is assumed to be a vacuum template,
while h2 is a nonvacuum template for a specific accretion-
disk effect. We choose the tolerances $f ¼ 10!11 and $t ¼
10!6; decreasing these magnitudes does not visibly change
the dephasing results shown below. The value of $t and $'
are unique for a specific set of h1;2, i.e. for a given
accretion-disk effect. This alignment procedure has been
shown to be equivalent to maximizing the fitting factor
over time and phase of coalescence in a matched filtering
calculation with white noise [169].
Figure 6 shows the dominant dephasing (left panel) and

fractional amplitude difference (right panel) after such
alignment. As before, we plot these quantities for the
dominant GW mode as a function of time in units of
months, using different color curves for different
accretion-disk effects and different curve styles for differ-
ent types of disks. Observe that after alignment, the de-
phasing increases much less rapidly than in the previous
case. This implies that the loss of overlap will also grow
much more slowly. Dephasings after alignment thus cor-
respond to the least difference between vacuum and non-
vacuum waveform phases, without maximizing over
intrinsic EOB parameters (such as the SMBH’s and
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CO’s mass) or other extrinsic parameters (such as those
associated with the observation angles, detector motion,
etc.).

Figure 6 confirms that certain accretion-disk effects
become significant very early during a LISA observation.
As discussed in Sec. II B, a rough measure of whether the
dephasing is ‘‘distinguishable’’ for an event with SNR#10
is whether $'GW * 1 rad (see Sec. XB for a more accu-
rate measure). The imprint of migration becomes almost
immediately distinguishable for System I and "-disks,
while it takes at least one full year of observation before
one can observe the same type of migration for System II
or BHL accretion for System I. Wind effects also become
important within 1 yr of observation but for "-disks only.

Whether an effect is distinguishable is naturally sensi-
tive to the EMRI parameters and orbital radii. Indeed, the
bottom panel of Fig. 6, corresponding to System II, shows
that in this case most effects are much smaller. This is
mainly due to the assumption that System II’s orbit is much
closer to the SMBH where disk effects are less relevant.
The bottom panel further suggests that BHL and azimuthal
wind effects might be barely distinguishable after 1 yr for
"-disks only. Notice that all of these findings are consistent
with the Newtonian estimates and figures presented in the
previous sections.

The right panel of Fig. 6 shows the fractional amplitude
difference between the dominant mode of vacuum and
nonvacuum waveforms after the alignment procedure de-
scribed above. The amplitude difference follows closely
the trend of the dephasing: Type-II migration is clearly
visible in amplitude changes, while other effects are
greatly suppressed. The amplitude difference plays an
important role in the calculation of the overlap and the
SNR of the difference that we show below.

B. Overlap analysis

Dephasing studies are convenient as rough measure of
distinguishability for a fixed SNR. However, the SNR
changes during the GWobservation, as signal accumulates
and its frequency enters the detector’s more sensitive do-
main. A more accurate measure of the detection signifi-
cance of the particular disk effect in the data stream is the
SNR of the waveform difference between the data streams
with and without the effect and the so-called overlap/mis-
match. In Sec. II B, we defined all these quantities in terms
of cross-correlation integrals weighted by the spectral
noise of the LISA detector. Note that these quantities
account for the difference in both the phase and amplitude
evolution of the GW signal.
Figure 7 shows the SNR of the difference #ð$hÞ in the

ð‘;mÞ ¼ ð2; 2Þ GW harmonic after minimization over time
and phase shift in units of months. As before, different
curve styles and colors correspond to different accretion-
disk models and effects, as defined in Fig. 1. The thick
horizontal line corresponds to an SNR of 10, just about the
threshold for detection. The numbers at the top of this
figure show how the vacuum waveform SNR builds up as
a function of observation time. This figure confirms that
"-disk migration is the dominant perturbation to the mea-
sured GW signal and suggests that it is distinguishable
within 4 months of observation. Migration is followed in
significance by BHL accretion (for either! or"-disks) and
"-disk azimuthal winds. These effects become distinguish-
able only after a full year of observation. All other
accretion-disk effects are insignificant within a 1 yr evolu-
tion for System I. For System II, only "-disk BHL accre-
tion and azimuthal disks are significant and only after 1 yr
of observation. Other effects may become significant for
binaries that are closer to Earth than 1 Gpc, or if the
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FIG. 6 (color online). Aligned dephasing (left) and aligned fractional amplitude difference (right) as a function of time in units of
months for the dominant GW mode. Line style and color follow the same notation as in Fig. 5. The thick solid lines signal a 1 rad
dephasing. The top and bottom panels correspond to System I and II, respectively. Observe that the minimized dephasing exceeds unity
in a short observation time for "-disk migration and System I, while for System II, only BHL accretion and "-disk wind effects do so
after a full-year of observation.
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observation is longer, or if the binary orientation relative to
the detector is better than average.

This figure is a more realistic estimate of distinguish-
ability than the dephasing study presented in the previous
section. The increase in realism comes at the cost of a small
drop in distinguishability; e.g. although Fig. 7 suggests that
BHL accretion might be measurable after a 1 yr observa-
tion, this is only marginal in the figures above. Such a drop
is mostly due to the inclusion of detector noise in this
subsection. Measurability of accretion-disk effect would
of course improve if the source is closer to Earth, such that
the SNR of the signal is larger. Irrespective of this, all
calculations suggest that Type-II migration is such a strong
effect that it is likely to be measurable with LISA.

C. Degeneracies

Degeneracies between EMRI system parameters, such
as the SMBH and CO’s mass, and accretion-disk parame-
ters could deteriorate the extraction of accretion-disk pa-
rameters from EMRI GW observations. If one were to
maximize the overlap function over all parameters (instead
of just a time and phase offset, as done in the previous
section), one might find mismatches much closer to zero, at
the cost of biasing parameter extraction. In this subsection,
we investigate this issue and the spectral signature left by
disk-induced effects.

The effect of possible degeneracies can be assessed by
investigating the Fourier transform of the GW response
function, as this is the main ingredient in matched filtering.
We restrict our study of degeneracies to a simple analytical
estimate of the Fourier transform using the Newtonian
stationary phase approximation (SPA) (see e.g.
[174,175]). First, let us review this approximation in vac-
uum GR, and then consider the modifications introduced
by leading-order disk effects.

The Fourier transform of the response function hðtÞ ¼
AðtÞei'GWðtÞ as

~hðfÞ )
Z 1

!1
hðtÞe2,iftdt: (123)

This generalized Fourier integral can be solved via the
method of steepest descent, assuming the amplitude
changes slowly relative to the phase and noting that the
complex phase c ¼ 2,ft!'GW has a stationary point
at t ¼ t0 for which _c ) dc ðf; t0Þ=dt ¼ 2,f!
d'GWðt0Þ=dt ¼ 0. In this approximation, the Fourier trans-
form becomes [see e.g. Eq. (4.5) in [175]]

~hðfÞ ¼ 8

5

Aðt0ðfÞÞ
2

ffiffiffiffiffiffiffi
1

2 €c

s
eið2,ft0!'0Þ; (124)

where the factor of 8=5 accounts for sky-averaging over
beam pattern functions. The quantities ½t0; c ðf; t0Þ;
€c ðf; t0Þ2 for a fixed f can be found by assuming that the
phase and time of merger are fixed ðtc;'cÞ:

t0 ! tc ¼
Z #0

0

dE

d#0

!
dE

dt

"!1
d#0 ¼

Z "r0

0

d"r
_"r
; (125)

'0!'c¼
Z #0

0

dE

d#0

!
dE

dt

"!1
#0d#0¼2

Z "r0

0
#
d"r
_"r
; (126)

where #0 ) f=2 is the stationary point and "r0 ) "rðf=2Þ.
The quantity _"r can be constructed from ðdE=d"rÞ!1 _E, and
_E ¼ F GWð "r;#Þ is the GW energy loss rate, given in
Eqs. (1) and (5) in the Newtonian approximation or
Eqs. (117) and (118) in the EOB approximation, if we
neglect accretion-disk effects.
Neglecting disk effects, we can readily evaluate each of

these terms to leading (Newtonian) order. Using that the
orbital frequency is given by Eq. (2) and the rate of change
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of the orbital separation by Eq. (8) and (125) becomes t0 ¼
tc ! ð5=256ÞMu!8=3, while Eq. (126) becomes 'ðt0Þ ¼
'c ! ð1=16Þu!5=3, where we have defined the reduced
frequency u ) ,Mf, with the chirp mass M ¼ q3=5M&
and q ) m?=M& the mass-ratio. Using the Newtonian
expressions for AðtÞ ¼ M=DLðM#Þ2=3 [see e.g.
Eq. (3.5) in [175]], the sky-averaged Fourier amplitude
becomes

j~hjvac ¼
M5=6

,2=3
ffiffiffiffiffiffi
30

p
DL

f!7=6; (127)

where DL is the luminosity distance of the source and f is
the observed GW frequency, while the Fourier phase is

c vacðt0; fÞ ¼ 2,ft0 !'ðfÞ ¼ 3

128
u!5=3 þ const: (128)

Let us now repeat this calculation with accretion-disk
modifications. We modify the above algorithm by replac-
ing _E ¼ _Evacð1þ $ _‘= _‘GWÞ, where $ _‘ is given by
Eqs. (105) and (107) or (109) for Type-I, II-SC and
II-IPP migration, respectively, or Eq. (79) for azimuthal
winds. We replaced m? by Eq. (70) when modeling un-
quenched, BHL accretion. The resulting frequency-domain
phase and amplitude can be parameterized as

c =c vac ¼ 1! ~A1!
c1
1 _mc2

&1M
~a3
&5q

~a4
0 u~a5

0 ; (129)

and

j~hj=j~hjvac ¼ 1! ~B1!
c1
1 _mc2

&1M
~a3
&5q

~a4
0 u~a5

0 ; (130)

where q0 ) q=10!4 is the normalized mass-ratio q ¼
M&=m? and u0 ) ð,MfÞ=ð6:15* 10!5Þ is a normalized
reduced frequency and a GW frequency of 10!2 Hz. The
parameters ð ~A1; ~B1; ~aiÞ are given in Table III, while notice
that ðc1; c2Þ are the same as those in Table II. Note that the
expressions in Eqs. (129) and (130) are valid only in the
regime of frequency space where the accretion-disk effects

are small perturbations away from the vacuum evolution
(ie. at sufficiently small separations).
Let us discuss these results further. First, notice that

corrections to c ðt0; fÞ due to Type-II migration are orders
of magnitude larger than all other effects, as shown by the
magnitude of ~A1. Second, notice that all disk-induced
corrections depend on negative powers of frequency (or
reduced frequency u in this case). This is because such
accretion-disk corrections are largest for large radii,
equivalent to weak-field GR effects. In fact, they are domi-
nant over the leading-order vacuum term (the factor of
u!5=3 in c vac) at low frequency. This suggests that migra-
tion effects are not strongly correlated with GR vacuum
terms in the PN approximation,23 as the latter depend on
positive powers of u relative to u!5=3.
One might wonder how the accretion-disk effects mod-

ify the Fourier phase and amplitude when they are not
necessary a small perturbation away from the vacuum
evolution. In general, the accretion-disk correction changes
the functional form of the phase or amplitude as follows:

yvac !
yvac

1þ %! "a1
1 _m~a2

&1M
~a3
&5q

~a4
0 u~a5

0

; (131)

where yvac ¼ ðc ; j~hjÞwhen% ¼ ð ~A1; ~B1Þ. This means that,
unlike what Eqs. (129) and (130) suggest, the accretion-
disk effects always suppress the vacuum evolution as
%> 0. Figure 8 shows the absolute value squared of the
Fourier amplitudes as a function of frequency for an EMRI
with M& ¼ 105M" and m? ¼ 10M" and different
accretion-disk effects (neglecting all quenching). For com-
parison, we also plot the vacuum amplitude and the spec-
tral noise density curve. Observe that below f & 10!3 Hz,
accretion disk induced migration becomes dominant over
GW emission, and the Fourier amplitude is significantly
different. This effect was also demonstrated to decrease the
GW background for pulsar timing arrays [152]. A gap is
expected to be opened at small frequencies but to close at
the radii indicated with vertical lines (see Sec. III B). At
these frequencies Type-II migration transitions to Type I.
Coincidentally, hydrodynamic drag due to an azimuthal
wind and BHL accretion cease at smaller frequencies.
The precise accuracies to which disk parameters can be

estimated is difficult to ascertain. A crude Fisher analysis
that neglects degeneracies (a diagonal approximation) sug-
gests extraction accuracies of up to 1%. We expect, how-
ever, that correlations will deteriorate the accuracy of
extraction down to 10% [86]. Ultimately, a proper assess-
ment of the accuracy to which disk parameters could be
extracted from EMRI observations would require the

TABLE III. Columns are parameters in Eq. (129) and rows are
migration effects. As in Table I, the notation xðyÞ ¼ x* 10y in
radians for ~A1 and dimensionless for ~B1. Observe that the
frequency exponent ~a5 < 0, implying that these accretion-disk
effects are dominant at small frequencies (large radii).

~A1
~B1 ~a3 ~a4 ~a5

BHL ! 3ð!8Þ 2ð!7Þ 1 4 !20=3
BHL " 1ð!5Þ 1ð!4Þ 6=5 79=25 !79=15
W ! 6ð!17Þ 1ð!16Þ 1 16=5 !16=3
W " 6ð!12Þ 4ð!11Þ 6=5 59=25 !59=15
M1 ! 3ð!10Þ 4ð!9Þ 1 16=5 !16=3
M1 " 1ð!6Þ 3ð!6Þ 6=5 59=25 !59=15
M2 !SC 8ð!6Þ 2ð!5Þ 1 !2=5 !8=3
M2 "SC 6ð!3Þ 2ð!2Þ 1=4 !1=8 !25=12
M2 "IPP 6ð!4Þ 2ð!3Þ 4=7 !17=70 !7=3

23However, the detected signal is also modulated during LISA’s
orbit around the Sun which we neglect in this paper. This can
introduce correlations between parameters that change the GW
phase slowly, such as migration effects, source direction, and
orientation angles [176].
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detailed mapping of the likelihood surface with relativistic
EMRI signals, full Fourier transforms, and improved disk
modeling (including relativistic effects and magnetic
fields). This, however, is beyond the scope of this paper.

XI. DISCUSSION

We have explored the effect of accretion disks on the
GWs emitted during the inspiral of a small BH into a much
more massive one. We have found that disk migration has
the biggest influence on the EMRI dynamics. If EMRIs are
detected with LISA, our study suggests that migration
could be measurable within 4 months of observation for
a "–disk. Depending on the particular EMRI considered, a
gap could open in the accretion disk, leaving an imprint in
the GWobservable. We have studied possible degeneracies
between accretion-disk and EMRI parameters and found
that they are weakly correlated. This is because disk effects
are dominant at large separations, thus introducing nega-
tive PN terms in the frequency-domain waveform phase.
The LISA detection of a GW from an EMRI embedded in
an accretion disk could therefore allow us to measure a
combination of the ! and _m& parameters of the disk.

The prospect of probing accretion disks with GWs can
be improved in the presence of an EM counterpart. If the
EM luminosity of the SMBH’s accretion disk is observed,
one might be able to separately measure both ! and _m& by
adding the information from a GW detection. If the GW
detection does not show evidence of accretion-disk effects
but an EM signal is present, then one might be able to
distinguish between ! and "-disks.

Several caveats should be kept in mind about elements
of our analysis that could be improved on in the future.

First, we have considered a very specific type of EMRI,
consisting of quasicircular orbits on the equatorial plane. In
principle, the CO could be in an inclined and eccentric
orbit. If so, certain accretion-disk effects that were negli-
gible in our analysis, such as the self-gravity of the disk,
could become more important. Such effects would induce
additional apsidal and nodal precession, which could leave
a detectable signature on both the EM and GW signals.
Another important caveat is that we did not explore

possible degeneracies with other EMRI parameters, like
source direction. It is possible that the orbital modulation
of LISA can induces a time dependence mimicking the
effects of accretion disks. However, since these modula-
tions are periodic, we expect no strong degeneracies after a
multiyear observation.
Another important issue involves the accuracy of the

EMRI model used. Although recently an EOB-inspired
EMRI waveform model was developed [83–85], no such
model has been thoroughly tested for generic EMRIs. Even
in the case of quasicircular inspirals on the equatorial
plane, the EOB model is still only accurate up to dephas-
ings of order 10 rads. This implies that accretion-disk
effects associated with dephasing signatures of this mag-
nitude, such as the effect of BHL accretion, might be
difficult to disentangle. However, accretion-disk effects
are also important at large separations, whereas mismodel-
ing errors are of concern only close to the ISCO. Thus, the
detection of EMRIs at moderate binary separations might
allow the extraction of small accretion-disk effects.
Moreover, the effects of migration are much larger than
any possible waveform mismodeling, and so they can be
easily isolated. Ultimately, a more detailed Markov-Chain
Monte Carlo study is required to determine the accuracy to
which disk effects can be measured.
Finally, let us highlight the large uncertainty that cur-

rently exists in accretion-disk modeling. Even when con-
sidering radiatively-efficient thin Newtonian disks, there
are several viable models, here parametrized as ! and
"-disks, that can have drastically different effects on
EMRI inspirals. Unfortunately, these Newtonian models
are expected to be highly inaccurate precisely in the regime
where EMRIs are most easily seen, i.e. in the relativistic
regime close to the SMBH. A natural extension of this work
would be to consider EMRIs in the context of relativistic
accretion disks [78,79], for example, through the inclusion
of relativistic BHL accretion [41] and migration [80,81].
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APPENDIX A: PHASE CORRECTION
DUE TO CO ACCRETION

Let us compute here the GW phase evolution when the
CO’s mass is varying due to BHL accretion. The GW phase
is given by the first line of Eq. (14).

'GW ¼ 2
Z "rf

"r00
#ð"rÞ d"r_"r ¼ ! 5

32
M&

Z "rf

"r00

"r3=2

m?ð "rÞ
d"r: (A1)

Two important corrections are induced by the CO’s vari-
able mass: a change in the limits of integration "r0 ! "r00
and a change in the denominator of the integrand in the
phase evolution, m? ! m?ðtÞ. We expand both in a Taylor
series around "r0 and the initial COmassm?;0 at "r ¼ "r00 . We
evaluate the change in the total GW phase induced by
accretion while keeping "rf, the observation time T ¼ tf !
t0, and m?;0 fixed.

The limits of integration can be computed by integrating
the radial inspiral evolution Eq. (8) with the time depen-
dent m?ðtÞ,

"r 4
f ! "r400 ¼ ! 256

5

1

M2
&

Z tf

t00
m?ðtÞdt; (A2)

where

m?ðtÞ ¼ m?;0 þ
Z t

t00
_m?ðt0Þdt0: (A3)

Note that _m? ) _m?ð"rÞ given by Eqs. (53) and (69).
Changing integration variable from t to "r using dt ¼
d"r= _"r using Eq. (8) for _"rð "rÞ, we get

Z tf

t00

m?ðtÞdt ¼ m?;0

!
T þ 25

4096

M4
&

m2
?;0

h$m?i3;3
"
; (A4)

where24

h$m?iA;B )
Z "r0

"rf

d"r"rA
Z "r0

"r
d"r0 "r0B

_m?ð "r0Þ
m?;0

: (A5)

Substituting in Eq. (A2), the initial separation becomes

"r _m
00 ¼ "rf

#
1þ &SPA

"r4f

!
1þ 25

4096

M4
&

m2
?;0T

h$m?i3;3
"$

1=4
; (A6)

where &SPA is the dimensionless observation time given by
Eq. (11), the _m index was introduced to distinguish from
other modifications below, c.f. Eq. (11) for "r0. Thus, the
change in the lower integration bound in Eq. (A1) is

$"r _m?

00 ¼ "r _m
00 ! "r0 .

5

64

M2
&

m?;0 "r
3
0

h$m?i3;3: (A7)

Since the total relative change inm? is very small during
the observation, we may approximate 1=m?ðtÞ in Eq. (A1)
as

1

m?ðtÞ
¼ 1

m?;0 þ
R
t
t0

_m?ðt0Þdt0

. 1

m?;0
! 1

m2
?;0

Z t

t0

_m?ðt0Þdt0 (A8)

so that Eq. (A1) becomes

' _m?
GW.! 5

32
M&

Z "rf

"r00
d"r

"r3=2

m?;0

#
1!

Z tð "rÞ

tð "r00 Þ
dt0

_m?ðt0Þ
m?;0

$

¼ 1

16

M&
m?;0

ð"r5=200 ! "r5=2f Þ! 25

2048

M3
&

m2
?;0

h$m?i3=2;3; (A9)

where the _m? label denotes that the CO is accreting; in the
second line we have changed integration variables using
dt0 ¼ d"r0= _"r0 and used Eq. (A5).
Relative to the GW phase without accretion,

$' _m?
GW ¼ 5

32

M&
m?;0

"r3=20 $ "r _m?

00 ! 25

2048

M3
&

m2
?;0

h$m?i3=2;3

. 25

2048

M3
&

m2
?;0

!h$m?i3;3
"r3=20

! h$m?i3=2;3
"
: (A10)

Equation (A10) and (A5) can be used the calculate the GW
phase shift for arbitrary _m?. In the next two subsections we
consider BHL accretion _mB

? and gas supply-limited BHL
accretion _m? ¼ _M&.

1. Unsaturated BHL accretion

First consider the case where BHL accretion is not
limited by the amount of local gas supply, _mB

?ðrÞ 0 _M&.
BHL accretion is not quenched by local gas supply if
the observation is limited to orbital radii "r 0 "rq or,
equivalently, if the dimensionless accretion rate onto the
SMBH _m& / _m&;q. In practice, this is the case during a
year of observation approaching ISCO, if the SMBH ac-
cretion rate is moderate to high _m& * 0:3 or if the mass
ratio is very small m?=M& & 10!6 [see Eq. (A10)].
Substituting the BHL accretion rate, Eqs. (53) and (A5)

for ! and "-disks into Eq. (A10) yields

$'!;B
GW ¼ !0:733!!1

1

M2
&5

_m5
&1m?1

"r25=20;20

!
1! 280

99
x5=2

þ 175

99
x4 þ 56

99
x25=2 ! 50

99
x14

"
; (A11)

24Since h$m?iA;B + m?;0T, we approximate the lower integra-
tion bounds in Eq. (A5) with "r0.
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$'";B
GW ¼ !495!!4=5

1

M11=5
&5

_m17=5
&1 m?1

"r52=50;20

!
1! 6188

2133
x5=2

þ 7735

4266
x4 þ 2975

4266
x52=5 ! 1300

2133
x119=10

"
; (A12)

where m?1 refers to the initial CO mass at "r0, x ¼ "rf="r0,
"r0 ) "r0ð "rf; TÞ is given by Eq. (11), and "r0;20 ¼ "r0=20. The
phase evolution given by Eq. (A11) and (A12) depends on
only two sets of parameters: the time-independent coeffi-
cient preceding the parentheses, and the time-dependent
quantity &="r4f. The later also appears in the standard in-

spiral phase expression, Eq. (14), which we used to dis-
tinguish two cases: when the observation time is long or
short relative to the inspiral time scale at the given radius
[see Eqs. (15) and (16)].

We can similarly distinguish here between two asymp-
totic cases. For long observations (T - Tcrit) or small
separations ( "rf + "rf;crit), "r0 . &1=4, x . "rf=&

1=4 + 1,
we can approximate the dephasing with the general
formula

$'GW;long ¼ !C1!
!c1
1 _m!c2

&1
mc3

?n

Mc4
&5

Tc5
yr

!
1! C2

M2c6
&5

mc6
?1

"r4c6f;10

Tc6
yr

"
;

(A13)

where the coefficients ðCi; cjÞ are given by the first two
rows of Table II, and n ¼ 2 for Type-II migration, while
n ¼ 1 for all other migration disk effects. For short obser-
vations (T + Tcrit) or small separations ( "rf - "rf;crit),
&= "r4f + 1, "r0 . "rf þ &=ð4"r3fÞ, x . 1! &=ð4 "r4fÞ, and we

can approximate the dephasing with the general formula

$'GW;short ¼ ! D1

!c1
1 _mc2

&1

md1
?n

Md2
&5

Td3
yr "r

d4
f10

!
1!D2

m?1

M2
&5

Tyr

"r4f;10

"
;

(A14)

where the coefficients ðDi; djÞ are given by the first two
rows of Table II, and n ¼ 2 for Type-II migration, while
n ¼ 1 for all other migration disk effects.

2. Gas supply-limited BHL accretion

If _mB
?ð "rÞ / _M&, the accretion onto the CO is limited by

the amount of local gas supply. This is the case outside "r /
"rq, or if the SMBH accretion rate satisfies _m& / _m&;q, see
Eq. (63) for ð"rq; _m&;qÞ. In practice, this is the case for _m& &
0:1 for beta disks if the final orbital radius is not very close
to the ISCO (e.g. "rf * 10). For larger _m& accretion rates
approaching the ISCO or intermediate mass-ratio inspirals,
BHL accretion starts supply limited and becomes unsatu-
rated near the ISCO.

Assuming _m? ¼ _M& in Eqs. (A5) and (A10), we get

$'sup :BHL
GW . !4:2

_m&1M
4
&5

m3
?1

"r13=20;20

!
1! 208

63
x5=2 þ 130

63
x4

þ 80

63
x13=2 ! 65

63
x8
"

(A15)

for both ! and "-disks, where again "r0 ) "r0ð "rf; TÞ given
by Eq. (11) and x ¼ "rf="r0. Relative to the BHL accretion
case with unlimited gas supply Eq. (A11) and (A12), the
phase is a less steep function of radius. The evolution is
again determined by two combination of parameters, the
constant coefficient (which is now different) and the time-
dependent quantity &="r4f.

In the two limiting cases, where the observation is long
or short relative to the inspiral time scale, we again can
parameterize the dephasing as in Eq. (A13) and (A14),
respectively, where the coefficients ðCi; cjÞ and ðDi; djÞ are
given by the third row of Table II.

APPENDIX B: PHASE CORRECTION
DUE TOWIND AND MIGRATION

In this appendix we derive the correction to the GW
phase due to a modification in angular momentum dissi-
pation. The result of a similar, but more general, angular
momentum dissipation rate $‘=‘GW ¼ ArB is presented in
Paper I [55]. We focus on quasicircular orbits only. From
Eq. (14),

'GW ¼ 2
Z "rf

"r00
#ð "rÞd"r_"r ¼ 2

Z "rf

"r00
#ð "rÞ

!
d‘

dt

"!1
!
d‘

d"r

"
d"r

¼
Z "rf

"r00
"r!2 d"r

_‘ð "rÞ
; (B1)

where we have expressed the GW phase as a function of
radial and temporal derivatives of the specific angular
momentum of the CO. Similar to Appendix A, we calculate
the total change in the GW phase relative to the unper-
turbed GW inspiral phase by keeping the final separation "rf
and the observation time T fixed. Relative to the vacuum
inspiral Eq. (14), a modified angular momentum dissipa-
tion causes a phase shift by changing the lower integration
bound and _‘ in Eq. (B1). Since the additional specific
angular momentum loss $ _‘ is small relative to _‘GW, we
may approximate the result by expanding in a series in the
small quantity $ _‘= _‘GW.
First to estimate "r00 , note that the accelerated dissipation

of angular momentum causes an accelerated inspiral rate.
For circular orbits, ‘ ¼ M& "r

1=2, E ¼ M?=ð2 "rÞ so that

_"r ¼ 2"r1=2

M&
_‘ ¼ ! 64

5

m?

M2
&
"r!3

!
1þ $ _‘

_‘GW

"
: (B2)

This equation can be integrated to give
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"r
_‘
00 ¼ "rf

#
1þ &

"r4f

!
1þ 4

&
h$‘i3

"$
1=4

; (B3)

where we have introduce the index _‘ to distinguish from
other effects, and we define25

h$‘iA )
Z "r0

"rf

d"r"rA
!
$ _‘
_‘GW

"
d"r0: (B4)

Comparing to Eq. (11), the change in the lower integration
bound

$"r
_‘
00 ¼ "r

_‘
00 ! "r0 .

h$‘i3
"r30

: (B5)

Now using

1
_‘
¼ 1

_‘GW þ $ _‘
. 1

_‘GW

!
1! $ _‘

_‘GW

"
(B6)

for the integrand in Eq. (B1), the GW phase is

'
_‘
GW . 5

32

M&
m?

Z "r00

"rf

d"r"r3=2
!
1! $ _‘

_‘GW

"

¼ 5

32

M&
m?

#
2

5
ð"r5=200 ! "r5=2f Þ ! h$‘i3=2

$
(B7)

so that relative to the vacuum inspiral phase

$'
_‘
GW . 5

32

M&
m?

ð"r3=20 $ "r
_‘
00 ! h$‘i3=2Þ

¼ 5

32

M&
m?

!h$‘i3
"r3=20

! h$‘i3=2
"
: (B8)

Equations (B8) and (B4) are the analogues of Eqs. (A10)
and (A5) for the GW phase shift caused by an additional
source of angular momentum dissipation $ _‘. In the next
three subsections we consider the azimuthal wind, Type-I
migration, and Type-II migration. In these cases
$ _‘= _‘GW ¼ ArB, where A and B are constants, so the
integral in Eq. (B4) can be evaluated analytically.

1. Wind—unsaturated BHL accretion

If the additional angular momentum dissipation is
caused by an azimuthal wind where the accretion onto
the CO is the unsaturated BHL rate, $ _‘ð"rÞ ¼ _‘Bwindð "rÞ given
by Eq. (80). Substituting in Eqs. (B8) and (B4) we get

$'!;Bw
GW .!5:2*10!3!!1

1

M2
&5

_m3
&1m?1

"r21=20;20 ð1!8x21=2þ7x12Þ;

(B9)

$'";Bw
GW .!10!!4=5

1

M11=5
&5

_m7=5
&1 m?1

"r42=50;20

!
1!33

5
x42=5þ28

5
x99=10

"
;

(B10)

where x ¼ "rf="r0 and "r0 ) "r0ð "rf; TÞ, see discussion follow-
ing Eqs. (A12) and (A15). Following the derivation pre-
sented in Appendix A 1, we can expand in long and short
observation times relative to the inspiral time scale to
recover a dephasing as in Eq. (A13) and (A14) with the
coefficients ðCi; cjÞ and ðDi; djÞ given by the fourth and
fifth rows of Table II.

2. Wind–quenched BHL accretion

If the additional angular momentum dissipation is
caused by an azimuthal wind where the accretion onto
the CO is limited by the amount of gas supply, then we
substitute $ _‘ð"rÞ ¼ _‘sup :BHLwind ð "rÞ Eq. (81) into Eq. (B8) to
obtain the corresponding total GW phase shift

$'sBw
GW ¼

!0:065

!0:16

 !
_m3
&1M

4
&5

m3
?1

"r9=20;20ð1þ3x6!4x9=2Þ; (B11)

where throughout this section the top and bottom rows
correspond to ! and "-disks, respectively, and the parame-
ters x ) xð"rf; TÞ and "r0 ) "r0ð "rf; TÞ, see discussion follow-
ing Eqs. (A12) and (A15). Notice that although we are here
setting _m? ¼ _M&, there is still a dependence on the type of
accretion disk, due to the factor of . in Eq. (79).
Again, as in Appendix A 1, we expand in long and short

observation times to obtain the dephasing of Eqs. (A13)
and (A14) with the coefficients ðCi; cjÞ and ðDi; djÞ given
by the sixth and seventh rows of Table II.

3. Type-I migration

Let us now compute the dephasing introduced by the
angular momentum dissipation due to Type-I migration.
Substituting Eqs. (105) into Eqs. (B8) and (B4) we get

$'!;TI
GW ¼!6:1*10!4!!1

1

_m!3
&1M

2
&5

m?1
"r21=20;20 ð1!8x21=2þ7x12Þ;

(B12)

$'";TI
GW ¼ !1:5!!4=5

1

_m!7=5
&1 M11=5

&5
m?1

* "r42=50;20

!
1! 33

5
x42=5 þ 28

5
x99=10

"
; (B13)

where again x ) xð"rf; TÞ and "r0 ) "r0ð "rf; TÞ.
We now take the two limiting cases of long and short

observations. For long and short observations, we find
dephasings as in Eq. (A13) and (A14) with coefficients
ðCi; cjÞ and ðDi; djÞ given by the eighth and ninth rows of
Table II.

25Since _‘wind= _‘GW + 1, we approximate the lower integration
bound with "r0 in Eq. (B4).
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4. Type-II migration

Consider now the dephasing corresponding to the angu-
lar momentum dissipation due to Type-II migration.
Substituting Eqs. (107) and (109) into Eqs. (B8) and (B4)
we get

$'!;TII;SC
GW ¼ !8* 10!3 _m&1M

4
&5

m3
?2

* "r13=20;20

!
1! 16

3
x13=2 þ 13

3
x8
"
; (B14)

$'";TII;SC
GW ¼ !22!1=2

1

_m5=8
&1 M

21=8
&5

m19=8
?2

* "r45=80;20

!
1! 19

4
x45=8 þ 15

4
x57=8

"
; (B15)

$'";TII;IPP
GW ¼!1:2!2=7

1

_m11=14
&1 M45=14

&5
m37=14

?2

"r60;20ð1!5x6þ4x15=2Þ;

(B16)

where again x ) xð"rf; TÞ and "r0 ) "r0ð"rf; TÞ. Notice that
we have normalized the CO’s mass to m?2 ¼
m?=ð100M&Þ, where a gap opens and Type-II migration
occurs.

Let us now take the two limiting cases of long and short
observations. For long and short observations, we find a
dephasing as in Eq. (A13) and (A14), respectively, with
ðCi; cjÞ and ðDi; djÞ given by the tenth, eleventh, and
twelfth rows of Table II.

APPENDIX C: PHASE CORRECTION
DUE TO THE DISK GRAVITY

Let us study how the gravitational potential generated by
the disk,'disk, affects the GW phase. The latter is given by

'GW ¼ 2
Z tf

t00

#dt ¼ 2
Z "rf

"r00

#ð "rÞd"r
_"r
; (C1)

where now both the angular velocity #ð "rÞ and the inspiral
rate _"r are modified by the disk potential, see Eq. (96) and
(101). The later also implies a change in the integration
bound for a fixed "rf and observation time.

We can integrate Eq. (101) perturbatively to obtain

"r 00 ¼ "rf

#
1þ &

"r4f

!
1þ 4

&
h'diski6;2

"$
1=4

; (C2)

where we have defined

h$'im;n )
Z "r0

"rf

"rm
dn'disk

d"rn
d"r: (C3)

Substituting Eqs. (96) and (101) in Eq. (C1) gives

'GW ¼ 5

32/

Z "r00

"rf

"r3=2
!
1þ "r2

2

d'disk

d"r
þ "r3

d2'disk

d"r2

"
d"r

¼ 5

32/

#
2

5
ð "r5=200 ! "r5=2f Þ þ 1

2
h$'i7=2;1 þ h$'i9=2;2

$
:

(C4)

Subtracting from this expression the vacuum expression
for the GW phase, we find

$'disk
GW ¼ ! 5

32

M

m?

!h$'i6;2
"r3=20

! 1

2
h$'i7=2;1 ! h$'i9=2;2

"
:

(C5)

The result is algebraically similar to the phase shift due to a
modified angular momentum loss rate Eq. (B8) or a modi-
fied CO mass Eq. (A10). Note that the overall minus sign is
compensated for by the sign of the potential 'disk < 0.

1. Disk potential

Let us compute a more convenient form of the disk
potential 'disk. Assuming that $ðrÞ ¼ $0r

., the
accretion-disk parameters ð!; _m&;M&Þ, carried by $0,
can be taken out of the integrals in Eqs. (90) and (91).
The integral only depends on ð.; "r; "rmin; "rmaxÞ. We may
evaluate the integrals in the Legendre expansion (91).

'disk ¼ 2,$0

X1

‘¼0;2

½P‘ð0Þ22
%

"r1þ.

‘þ 2þ .

#
1!

!
"rmin

"r

"
‘þ2þ.

$

þ "r1þ.

‘! 1! .

#
1!

!
"r

"rmax

"
‘!1!.

$'
: (C6)

Next we exercise the gauge freedom to set

'new
diskð"rÞ ) 'diskð "rÞ þ

2,rmax$ðrmaxÞ
1þ .

(C7)

and in the following drop the ‘‘new’’ specifier. Note that for
both disk models .>!1; it is 3=2 and !3=5 for ! and
"-disks. The disk potential in Eq. (C6) is expressed as a
sum of two terms in the curly brackets, which correspond
to the potential of the disk interior and exterior to the orbit,
respectively.
Let us discuss the contribution of various multipolar

harmonics, ‘.

'‘¼0
disk ¼ 2,$0 "r

.þ1

ð1þ .Þð2þ .Þ

#
1þ ð1þ .Þ

!
"rmin

"r

"
2þ.

$

'‘¼2
disk ¼ !,

2

$0 "r
2

ð.! 1Þ

!
"r.!1
max ! 5

4þ .
"r.!1 ! .! 1

4þ .

"r4þ.
min

"r5

"

'‘¼4
disk ¼ ! 81,

32

$0r
.þ1

ð3! .Þð6þ .Þ

#
1! 6þ .

9

!
"r

"rmax

"
3!.

! 3! .

9

!
"rmin

"r

"
6þ.

$
: (C8)
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In each case we have arranged the terms in increasing order
for . ¼ 3=2. Equation (C8) shows that for .> 1 and "r +
"rmax the potential is dominated by the quadrupolar
harmonic ‘ ¼ 2,

'.>1ð "rÞ . '‘¼2ð"rÞ . !,

2

$0 "r
.!1
max

ð.! 1Þ "r
2: (C9)

When !1< .< 1, the disk potential is asymptotically
independent of the inner and outer boundaries for "rmin +
"r + "rmax. We can then analytically evaluate the infinite
sum and get

'.<1ð "rÞ . 2,c0$0 "r
.þ1; (C10)

where

c0 ¼
1

.þ 1

&ð1þ .
2Þ&ð

1!.
2 Þ

&ð3þ.
2 Þ&ð!.

2 Þ
(C11)

so that c0 ¼ 1:38 for "-disks, where . ¼ !3=5.
Equations (C9) and (C10) represent the asymptotic solu-
tions for ! and "-disks, respectively. Substituting the
particular surface density profiles for the two disk models
leads to the potential given by Eq. (94).

2. Axisymmetric disk gravity without a gap

We can now evaluate the GW phase shift, Eq. (C5), for
the potential generated by! and"-disks without a gap. We
restrict to "rmin + "r + "rmax and substitute Eq. (94)

$'adg;!
GW ¼ !8:3* 10!5!!20=21

1

M43=21
&5

_m13=21
&1 m?1

* "r11=20;20

!
1! 21

10
x11=2 þ 11

10
x7
"
; (C12)

$'adg;"
GW ¼ 3:0* 10!4!!4=5

1

_m3=5
&1 M

11=5
&5

m?1

* "r39=100;20

!
1þ 3

10
x39=10 ! 13

10
x27=5

"
; (C13)

where again x ¼ "rf="r0. The sign difference is due to the
fact that the disk exerts an outward pull for ! and an
inward push for "-disks. In the long and short observation
limits, we find dephasing as in Eq. (A13) and (A14) with
ðCi; cjÞ and ðDi; djÞ given by the 13th and 14th rows of
Table II.

[1] K. Danzmann and A. Rüdiger, Classical Quantum Gravity
20, S1 (2003).

[2] K. Danzmann, Adv. Space Res. 32, 1233 (2003).
[3] T. Prince, American Astronomical Society Meeting 202,

3701 (2003).
[4] ‘‘LISA’’, www.esa.int/science/lisa,lisa.jpl.nasa.gov.
[5] J. Carre and E.K. Porter, arXiv:1010.1641.
[6] C. Cutler and M. Vallisneri, Phys. Rev. D 76, 104018

(2007).
[7] L. Barack and C. Cutler, Phys. Rev. D 70, 122002

(2004).
[8] N. Yunes, M. Miller, and J. Thornburg, Phys. Rev. D 83,

044030 (2011).
[9] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. C. Miller, I.

Mandel, C. J. Cutler, and S. Babak, Classical Quantum
Gravity 24, R113 (2007).

[10] L. Barack and C. Cutler, Phys. Rev. D 69, 082005
(2004).

[11] J. R. Gair, Classical Quantum Gravity 26, 094034 (2009).
[12] J. E. Barnes and L. Hernquist, Astron. Astrophys. Rev. 30,

705 (1992).
[13] M.C. Begelman, R.D. Blandford, and M. J. Rees, Nature

(London) 287, 307 (1980).
[14] J. Miralda-Escudé and J. A. Kollmeier, Astrophys. J. 619,

30 (2005).
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BENCE KOCSIS, NICOLÁS YUNES, AND ABRAHAM LOEB PHYSICAL REVIEW D 84, 024032 (2011)

024032-38

http://dx.doi.org/10.1088/0264-9381/20/10/301
http://dx.doi.org/10.1088/0264-9381/20/10/301
http://dx.doi.org/10.1016/S0273-1177(03)90323-1
www.esa.int/science/lisa,lisa.jpl.nasa.gov
http://arXiv.org/abs/1010.1641
http://dx.doi.org/10.1103/PhysRevD.76.104018
http://dx.doi.org/10.1103/PhysRevD.76.104018
http://dx.doi.org/10.1103/PhysRevD.70.122002
http://dx.doi.org/10.1103/PhysRevD.70.122002
http://dx.doi.org/10.1103/PhysRevD.83.044030
http://dx.doi.org/10.1103/PhysRevD.83.044030
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1103/PhysRevD.69.082005
http://dx.doi.org/10.1103/PhysRevD.69.082005
http://dx.doi.org/10.1088/0264-9381/26/9/094034
http://dx.doi.org/10.1146/annurev.aa.30.090192.003421
http://dx.doi.org/10.1146/annurev.aa.30.090192.003421
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1086/426467
http://dx.doi.org/10.1086/426467
http://dx.doi.org/10.1086/383467
http://dx.doi.org/10.1086/383467
http://dx.doi.org/10.1086/386360
http://dx.doi.org/10.1111/j.1365-2966.2006.11155.x
http://dx.doi.org/10.1088/0004-637X/709/2/725
http://dx.doi.org/10.1086/429618
http://dx.doi.org/10.1086/429618
http://dx.doi.org/10.1088/0004-637X/714/1/404
http://dx.doi.org/10.1088/0004-637X/714/1/404
http://dx.doi.org/10.1088/0004-6256/140/2/642
http://dx.doi.org/10.1088/0004-6256/140/2/642
http://dx.doi.org/10.1086/590230
http://dx.doi.org/10.1086/590230
http://dx.doi.org/10.1086/498236
http://dx.doi.org/10.1086/498236
http://dx.doi.org/10.1038/323310a0
http://dx.doi.org/10.1086/431341
http://dx.doi.org/10.1086/522931
http://dx.doi.org/10.1086/522931
http://arXiv.org/abs/astro-ph/9305034
http://dx.doi.org/10.1086/172863
http://dx.doi.org/10.1103/PhysRevD.53.2901
http://dx.doi.org/10.1086/174897
http://dx.doi.org/10.1086/174897


[33] H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).
[34] S. L. Shapiro and S. A. Teukolsky, Black Holes, White

Dwarfs and Neutron Stars: The Physics of Compact
Objects, by Stuart L. Shapiro, Saul A. Teukolsky, edited
by S. L. Shapiro and S. A. Teukolsky (Wiley, New York,
1986), p. 672.

[35] R. Edgar, New Astron. Rev. 48, 843 (2004).
[36] R. Narayan, Astrophys. J. 536, 663 (2000).
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[38] V. Karas and L. Šubr, Astron. Astrophys. Rev. 376, 686

(2001).
[39] N. I. Shakura and R.A. Sunyaev, Astron. Astrophys. 24,

337 (1973).
[40] C. F. Gammie, Astrophys. J. 597, 131 (2003).
[41] E. Barausse and L. Rezzolla, Phys. Rev. D 77, 104027

(2008).
[42] F. D. Ryan, Phys. Rev. D 52, R3159 (1995).
[43] J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron.

Soc. 208, 721 (1984).
[44] O.M. Blaes, Mon. Not. R. Astron. Soc. 212, 37P (1985).
[45] J. F. Hawley, Astrophys. J. 381, 496 (1991).
[46] R. Narayan, S. Kato, and F. Honma, Astrophys. J. 476, 49

(1997).
[47] S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1

(1998).
[48] I. V. Igumenshchev, R. Narayan, and M.A. Abramowicz,

Astrophys. J. 592, 1042 (2003).
[49] Y. T. Liu and S. L. Shapiro, Phys. Rev. D 82, 123011

(2010).
[50] J. D. Schnittman and J. H. Krolik, Astrophys. J. 684, 835

(2008).
[51] A. I. MacFadyen and M. Milosavljević, Astrophys. J. 672,
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[53] T. Bogdanović, C. S. Reynolds, and R. Massey, Astrophys.

J. 731, 7 (2011).
[54] P. Chang, L. E. Strubbe, K. Menou, and E. Quataert, Mon.

Not. R. Astron. Soc. 407, 2007 (2010).
[55] N. Yunes, B. Kocsis, A. Loeb, and Z. Haiman,

arXiv:1103.4609.
[56] P. J. Sakimoto and F. V. Coroniti, Astrophys. J. 247, 19

(1981).
[57] J. Frank, A. King, and D. J. Raine, Accretion Power in

Astrophysics, by Juhan Frank and Andrew King and Derek
Raine, edited by J. Frank, A. King, and D. J. Raine
(Cambridge University, Cambridge, England, 2002),
pp. 398.

[58] P. J. Armitage and P. Natarajan, Astrophys. J. 634, 921
(2005).

[59] K. Hayasaki, Publ. Astron. Soc. Jpn. 61, 65 (2009).
[60] C. J. Nixon, P. J. Cossins, A. R. King, and J. E. Pringle,

Mon. Not. R. Astron. Soc. 4121591 (2011).
[61] P. T. Leung, Y. T. Liu, W. Suen, C. Y. Tam, and K. Young,

Phys. Rev. Lett. 78, 2894 (1997).
[62] P. Papadopoulos and J. A. Font, Phys. Rev. D 59, 044014

(1999).
[63] A. Nagar, G. Diaz, J. A. Pons, and J. A. Font, Phys. Rev. D

69, 124028 (2004).
[64] A. Nagar, J. A. Font, O. Zanotti, and R. de Pietri, Phys.

Rev. D 72, 024007 (2005).

[65] A. Nagar, O. Zanotti, J. A. Font, and L. Rezzolla, Phys.
Rev. D 75, 044016 (2007).

[66] A. Nagar, O. Zanotti, J. A. Font, and L. Rezzolla, Phys.
Rev. D 75, 044016 (2007).

[67] F. P. Esposito, Astrophys. J. 165, 165 (1971).
[68] B. Kocsis and A. Loeb, Phys. Rev. Lett. 101, 041101

(2008).
[69] M. Marklund, G. Brodin, and P. K. S. Dunsby, Astrophys.

J. 536, 875 (2000).
[70] G. Brodin, M. Marklund, and M. Servin, Phys. Rev. D 63,

124003 (2001).
[71] D. Papadopoulos, N. Stergioulas, L. Vlahos, and J.

Kuijpers, Astron. Astrophys. 377, 701 (2001).
[72] A. Källberg, G. Brodin, and M. Bradley, Phys. Rev. D 70,

044014 (2004).
[73] C. A. Clarkson, M. Marklund, G. Betschart, and P.K. S.

Dunsby, Astrophys. J. 613, 492 (2004).
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