Implications of the eccentric Kozai–Lidov mechanism for stars surrounding supermassive black hole binaries

Citation

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41412242

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current/terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Implications of the eccentric Kozai–Lidov mechanism for stars surrounding supermassive black hole binaries

Gongjie Li,1⋆ Smadar Naoz,2 Bence Kocsis3 and Abraham Loeb1

1Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138, USA
2Department of Physics & Astronomy, Division of Astronomy and Astrophysics, UCLA, Los Angeles, CA 90095, USA
3Institute for Advanced Study, Princeton, NJ 08540, USA

Accepted 2015 May 2. Received 2015 April 14; in original form 2015 February 12

Abstract
An enhanced rate of stellar tidal disruption events (TDEs) may be an important characteristic of supermassive black hole (SMBH) binaries at close separations. Here, we study the evolution of the distribution of stars around an SMBH binary due to the eccentric Kozai–Lidov (EKL) mechanism, including octupole effects and apsidal precession caused by the stellar mass distribution and general relativity. We identify a region around one of the SMBHs in the binary where the EKL mechanism drives stars to high eccentricities, which ultimately causes the stars to either scatter off the second SMBH or get disrupted. For SMBH masses 10^7 and 10^8 M⊙, the TDE rate can reach ~10^{-2} yr^{-1} and deplete a region of the stellar cusp around the secondary SMBH in ~0.5 Myr. As a result, the final geometry of the stellar distribution between 0.01 and 0.1 pc around the secondary SMBH is a torus. These effects may be even more prominent in nuclear stellar clusters hosting a supermassive and an intermediate mass black hole.

Key words: black hole physics – galaxies: kinematics and dynamics – galaxies: nuclei.

1 INTRODUCTION
Supermassive black holes (SMBHs) are ubiquitous at the centres of galaxies (Kormendy & Ho 2013). Stars passing close to the SMBH can be tidally disrupted, and the fall back of the stellar debris produces a strong electromagnetic tidal disruption flare (e.g. Gezari 2012). More than a dozen tidal disruption event (TDE) candidates have been observed until present (e.g. Bade, Komossa & Dahle 1996; Gezari et al. 2003, 2006, 2008, 2009; van Velzen et al. 2011; Gezari et al. 2012; Holoien et al. 2014), including two candidates with relativistic jets (Bloom et al. 2011; Levan et al. 2011; Zauderer et al. 2011; Cenko et al. 2012). TDEs can provide valuable information on dormant SMBHs, which are otherwise difficult to detect.

The rate of the TDEs provides information about the SMBH and the stellar distribution in the centre of galaxies (Stone & Metzger 2014). The rate of TDEs is highly uncertain observationally due to the small sample size. It is estimated to be in the range of 10^{-5}–10^{-4} per galaxy per year by Donley et al. (2002), Gezari et al. (2008), Maksym (2012) and van Velzen & Farrar (2014). This roughly agrees with the theoretical estimates, discussed by Frank & Rees (1976), Lightman & Shapiro (1977), Cohn & Kulsrud (1978), Magorrian & Tremaine (1999), Wang & Merritt (2004), Brock-amp, Baumgardt & Kroupa (2011) and Stone & Metzger (2014). However, the TDE rate may be enhanced due to the presence of a non-axisymmetric gravitational potential around the SMBH (Merritt & Poon 2004), or due to a massive perturber (Perets, Hopman & Alexander 2007). In addition, the TDE rate may be higher in galaxies with more than one SMBH (Ivanov, Polnarev & Saha 2005; Chen et al. 2009, 2011; Wegg & Bode 2011), or when the SMBH binary (SMBHB) recoils due to the emission of gravitational waves (Stone & Loeb 2011; Li et al. 2012; Stone & Loeb 2012). Some TDEs may not appear as flares and therefore be missed in observations (Guillochon & Ramirez-Ruiz 2015).

The interaction between an SMBHB and an ambient star cluster has been discussed in the literature using numerical scattering experiments by Sesana, Gualandris & Dotti (2011) and using direct N-body simulations by Iwasawa et al. (2011), Gualandris & Merritt (2012), Meiron & Laor (2013) and Wang et al. (2014). In particular, it has been shown that the star cluster may either increase or decrease the eccentricity of the SMBHB depending on the fraction of counter-rotating to corotating stars. The SMBHB ejects a population of stars from the cluster in an anisotropic manner, and the SMBHB produces a deficit in the number density of stars, a dip in the velocity dispersion in the inner regions, and an inner counter-rotating and an outer corotating torus of stars with respect to the binary.

In this paper, we focus on the distribution of stars orbiting close to one member of the SMBHB and perturbed by the other SMBH...
through hierarchical three-body interactions. We examine the effect of these hierarchical three-body interactions. Specifically, the outer SMBH perturbs the stellar population around the inner SMBH, and leads to long-term variations in the eccentricities and inclinations of the stellar orbits while keeping the semimajor axes of their orbits fixed. In particular, when the orbit of the SMBH secondary is circular and if the mutual inclination between the orbits of the SMBHB and a star is over 40°, the stellar eccentricity and inclination undergo periodic oscillations, known as the quadrupole Kozai–Lidov mechanism (Kozai 1962; Lidov 1962). This is caused by the long-term (orbit-averaged) Newtonian (NT) gravitational effect expanded in multipole to the quadrupole order, i.e. second order in the semimajor axial ratio of the stellar and the outer SMBH’s orbit. More generally, it has been found that when the outer orbit is eccentric, the analogous octupole eccentric Kozai–Lidov (EKL) mechanism (third order in semimajor axial ratio) causes the eccentricity to be excited very close to unity and the inner orbit to flip relative to the invariable plane from prograde to retrograde or vice versa (e.g. Ford, Kozinsky & Rasio 2000; Katz, Dong & Malhotra 2011; Naoz et al. 2011; Lithwick & Naoz 2011; Naoz et al. 2011a,b; Li et al. 2014a,b). The TDE rate has been discussed in the literature for stars orbiting an SMBHB, where the quadrupole Kozai–Lidov mechanism can enhance the tidal disruption rate (Ivanov et al. 2005; Chen et al. 2009, 2011; Wegg & Bodé 2011). For the Galactic Centre, the Kozai–Lidov mechanism driven by the stellar disc has also been discussed and the additional effects of NT apsidal precession were shown to play a significant role (Chang 2009). In light of recent developments in the understanding of hierarchical three-body interactions, we revisit this problem. Since the stellar eccentricity can be increased to a value much closer to unity by eccentric perturbers, we expect the EKL mechanism to enhance TDE rates with respect to the circular case. We therefore seek to re-evaluate the total number of stars vulnerable to TDE due to EKL.

It is well known that apsidal precession quenches the EKL mechanism (e.g. Ford et al. 2000; Blaes, Lee & Socrates 2002; Naoz et al. 2013b). In galactic nuclei, this may be due to the NT gravitational effect of the spherical stellar cusp or general relativistic (GR) precession, provided that the corresponding precession time-scale is much shorter than the Kozai time-scale (Chang 2009). Furthermore, the EKL mechanism may be quenched if the eccentricity of the star is changed by the stellar cluster due to scalar resonant relaxation, or if the orbital plane is reoriented by the stellar cluster due to vector resonant relaxation (Rauch & Tremaine 1996; Kocsis & Tremaine 2011, 2015) or Lense–Thirring precession (Merritt et al. 2010; Merritt & Vasileiou 2012). We find that NT precession and GR precession may have a large effect on the EKL mechanism, but tidal effects, scalar and vector resonant relaxation, and Lense–Thirring precession are typically less important. The time-scale on which the EKL mechanism operates increases if the outer SMBH mass is reduced. Thus, GR precession may dominate over and quench the EKL mechanism most efficiently if the outer SMBH is less massive than the inner SMBH (see fig. 2 in Naoz & Silk 2014). Similarly, we find that NT precession also suppresses the EKL mechanism most efficiently when the outer SMBH is less massive. Tidal disruption is expected in the opposite regime when the EKL mechanism is very prominent, i.e. when the outer SMBH is more massive than the inner SMBH. We identify the outcome of the EKL mechanism as a function of SMBHB parameters and quantify the TDE rate.

Our discussion is organized as follows. In Section 2, we describe the adopted methods. In Section 3, we characterize the parameter space to identify where the EKL mechanism is important. Then, we calculate the tidal disruption rate and discuss the final stellar distribution due to the EKL mechanism with an illustrative example in Section 4, and for stars surrounding an intermediate-mass black hole (IMBH) in Section 5. Finally, we summarize our main results in Section 6.

2 METHOD

We study the tidal disruption of stars due to the EKL mechanism in galaxies that host an SMBHB. The three-body system consists of an ‘inner binary’ comprised of the SMBH and a star, and an ‘outer binary’ comprised of the outer SMBH and the centre mass of the inner binary, as shown in Fig. 1. We denote the masses of the objects by m_0 (inner SMBH), m_1 (star) and m_2 (outer SMBH), and for orbital parameters we use subscript 1 and 2 for the inner and outer binary, respectively. In order for the EKL mechanism to operate, we require the triple system to be in a hierarchical configuration: the inner binary on a much tighter orbit than the third object, such that (e.g. Lithwick & Naoz 2011; Katz et al. 2011),

$$\epsilon = \frac{a_1}{a_2} \frac{e_2}{1-e_2^2} < 0.1,$$

where a and e are, respectively, the semimajor axis and eccentricity.

2.1 Comparison of time-scales

We examine the range of orbital parameters in order to identify the regions in which the EKL mechanism may operate. The relevant processes’ time-scales can be expressed as

$$t_K = \frac{2\pi a_1^3(1-e_1^2)^{3/2}}{\sqrt{G}a_1^{3/2}m_2}$$

$$t_{\text{int}} = \frac{1}{e} t_K$$

$$t_{\text{GR1}} = \frac{2\pi a_1^{5/2}c^2(1-e_1^2)}{3G^{3/2}(m_0 + m_1)^{3/2}}$$

$$t_{\text{GR2}} = \frac{2\pi a_2^{5/2}c^2(1-e_2^2)}{3G^{3/2}(m_0 + m_1 + m_2)^{3/2}}$$

$$t_{\text{GR, int}} = \frac{16}{9} \frac{a_1^3c^2(1-e_1^2)^{3/2}(m_0)^{3/2}}{\sqrt{\alpha}e_1 \sqrt{1-e_1^2} G^{1/2}m_2^{3/2}}$$
Implications of the EKL mechanism

\[t_{\text{NT}} = 2\pi \left(\sqrt{\frac{Gm_0/a_1^3}{\tau_{\text{EKL}}}} \int_0^\infty d\psi \frac{M_*(r) \cos \psi}{\rho_0} \right)^{-1} \]

(7)

\[t_{\text{RR},s} = \frac{4\pi\omega}{\beta_2^2\Omega^2} \frac{m_0^2}{M_*(r)m_1} \]

(8)

\[t_{\text{RR},v} = \frac{2\pi f_{\text{int}}}{\Omega} \frac{1}{\sqrt{M_*(r)m_1}} \]

(9)

\[t_{\text{rel}} = 0.34 \frac{\sigma^3}{G^2\rho m_1 \ln \Lambda} \]

(10)

\[t_{\text{LT}} = \frac{a_1^3 c^3 (1 - e^2)^{3/2}}{2G^2m_0^2 s} \]

(11)

\[t_{\text{GW}} = \frac{a_1^4}{4} \frac{5}{64} \frac{\epsilon^5}{G^4m_0m_2(m_0 + m_2)} \]

(12)

Here \(t_k \) is the quadrupole (\(O(a_1/\alpha)^2 \)) Kozai time-scale. Following Naoz et al. (2013b), \(t_{\text{oct}} \) is the octupole (\(O(a_1/\alpha)^3 \)) Kozai time-scale. \(t_{\text{GR}} \) and \(t_{\text{GR},v} \) are the time-scales of the first-order post NT GR precession at the quadrupole order (\(O(a_1/\alpha)^2 \)) on the inner and outer orbits, and \(t_{\text{GR},\text{rel}} \) is the time-scale associated with the first post-NT (IPN) order GR interaction between the inner and outer orbits. Following Kocsis & Tremaine (2011), \(t_{\text{NT}} \) is the time-scale of the NT precession caused by the stellar potential, and \(t_{\text{RR},s} \) and \(t_{\text{RR},v} \) are the time-scales of the scalar and vector resonant relaxation. \(t_{\text{rel}} \) is the two-body relaxation time-scale. \(t_{\text{LT}} \) is the Lense–Thirring precession time-scale and \(t_{\text{GW}} \) is the time-scale of the orbital decay of the binary SMBHB due to gravitational wave radiation. For the resonant relaxation time-scales, \(M_*(r) \) is the mass of the stars interior to \(r \), \(\sigma \) is the net rate of precession due to GR and NT, \(\beta \) is estimated to be \(1.05 \pm 0.02 \) by Eilon, Kupi & Alexander (2013). For the Lense–Thirring time-scale, \(s \bar{G}m_0^2/\epsilon \) is the spin angular momentum of the inner SMBH. The separation of the SMBHB is set to \(0.3 \) pc.

The EKL mechanism operates if the following criteria are satisfied:

(i) The three-body configuration satisfies the hierarchical condition (\(\epsilon < 0.1 \), see equation 1).

(ii) The stars stay in the Hill sphere of the inner SMBH in order for them to remain bound to it, i.e. \(a_1(1+e_1) < a_2(1-e_2)(m_0/3m_2)^{1/3} \).

(iii) The quadrupole (\(O(a_1/\alpha)^2 \)) Kozai time-scale, \(t_k \), needs to be shorter than the time-scales of the other mechanisms that modify the orbital elements, otherwise the EKL mechanism is suppressed. The competing mechanisms include NT precession, GR precession, scalar resonant relaxation, vector resonant relaxation, two-body relaxation, Lense–Thirring precession and the gravitational radiation.

Note that the secular approximation fails when the perturbation from the outer SMBH is too strong or when the eccentricity reaches values very close to unity (e.g. Antonini & Perets 2012; Katz & Dong 2012; Antognini et al. 2014; Antonini, Murray & Mikkola 2014; Bode & Wegg 2014). This means that there are some systems that are poorly described by our approximation. However, we expect that those systems reach even higher eccentricities than the one predicted by the octupole approximation (e.g. Antognini et al. 2014), and thus our overall qualitative conclusions may hold even for those systems, but the quantitative rate values possibly underestimate the true rates.

To calculate the NT time-scale, the resonant relaxation time-scales, and the two-body relaxation time-scale, we adopt the spherically symmetric model for the stellar density discussed in O’Leary & Loeb (2009). Specifically, the stellar density distribution is a power law of semimajor axis and the normalization is fixed by the \(M-\sigma \) relation,

\[\rho_*(r) = \frac{3 - \alpha m_0}{2\pi r^7} \left(\frac{G\sigma_0^2 m_0/\sigma_1^2}{m_0/m_1} \right)^{-3+\alpha} \]

(13)

where \(k = 4, M_0 = 1.3 \times 10^6 \) \(\text{M}_{\odot} \) and \(\sigma_0 = 200 \) km s\(^{-1} \) (Tremaine et al. 2002), and we set \(\alpha = 1.75 \).

Fig. 2 shows the time-scales for the case of a \(1 \) \(\text{M}_{\odot} \) star orbiting a \(10^7 \) \(\text{M}_{\odot} \) SMBH. The separation of the SMBHB is set to \(0.3 \) pc. The upper panel corresponds to \(m_2 = 10^6 \) \(\text{M}_{\odot} \), and the lower panel corresponds to \(m_2 = 10^8 \) \(\text{M}_{\odot} \). For the Lense–Thirring time-scale, \(s \) is set to unity. The eccentricity of the star–SMBH system, \(e_1 \), is assumed to be \(2/3 \) and \(e_2 \) is assumed to be 0.7. The EKL-dominated region is larger for higher \(e_2 \) with fixed \(a_1 \) and \(a_2 \). Fig. 2 shows that the EKL mechanism is suppressed for a \(10^7-10^8 \) \(\text{M}_{\odot} \) binary at all radii, but it may operate at least in a restricted range for a \(10^7-10^8 \) \(\text{M}_{\odot} \) binary. Note that although the octupole time-scale \(t_{\text{oct}} \) is longer than some of the other secular time-scales, our simulations show that the eccentricity can nevertheless reach high values provided that \(t_k \) is the shortest time-scale and \(t_{\text{RR}} \) is at most moderately larger than the other time-scales. Since \(t_{\text{oct}} = t_k/\epsilon \) and \(1/\epsilon \sim 10-30 \), \(t_{\text{oct}} \) is only moderately larger than the other time-scales in most of the relevant phase space when \(t_k \) is the shortest time-scale. Thus, in the following, we identify the regions where the eccentricity may be excited using conditions (i)–(iii) above irrespective of \(t_{\text{oct}} \). Typically, the conditions on the quadrupole Kozai time-scale (\(t_k < t_{\text{GR}} \) and \(t_k < t_{\text{NT}} \)) set the lower limit for \(a_1 \) for a fixed \(a_2 \), and the

![Figure 2](https://example.com/figure2.png)

The different time-scales as a function of the semimajor axis of the stars (\(a_1 \)), where \(e_1 = 2/3, m_0 = 10^7 \) \(\text{M}_{\odot} \), and \(m_1 = 1 \) \(\text{M}_{\odot} \), and \(e_2 = 0.7 \).

The upper panel corresponds to \(m_2 = 10^6 \) \(\text{M}_{\odot} \), and in the lower panel, \(m_2 = 10^8 \) \(\text{M}_{\odot} \).
To test the dependence on panel, and from 0.1 to 10 pc, and the parameter space is independent of the mass of the star as long as
the mean eccentricity for an isotropic thermal distribution. There is no systematic change in the number of stars affected by the EKL versus
elements. We go beyond the analyses of Chen et al. (2011) and Wegg & Bode (2011), who considered only the quadrupole ($O(a_1/a_2)$) Kozai–Lidov mechanism, where the z-component of angular momentum is constant. This assumption does not hold when the orbit of the SMBHB is eccentric, and one needs to include the octupole order terms ($O(a_1/a_2)^3$) (e.g. Naoz et al. 2013a). The Hamiltonian can be decomposed as
2.2.2 GR effects

Next, we consider the leading order (1PN) effects of GR. We follow Naoz et al. (2013b), who derived the double-averaged 1PN Hamiltonian to the octupole ($O(a_1/a_2)^3$) order. The Hamiltonian consists of four terms: \mathcal{H}_{a_1}, \mathcal{H}_{a_2}, $\mathcal{H}_{a_1a_2}$, \mathcal{H}_{1PN} (Naoz et al. 2013b). Here, $\mathcal{H}_{a_1a_2}$ does not contribute to the dynamical evolution, and the long-term effect of \mathcal{H}_{1PN} is typically negligible, as its time-scale is longer than that of the Kozai time-scale and the GR precession of the inner and outer orbits as long as the star stays within the Hill sphere of the inner SMBH. Thus, we only consider the effects of \mathcal{H}_{a_1} and \mathcal{H}_{a_2} which cause the GR precession of the arguments of periastrides,

$$\frac{dg_1}{d\tau_{1PN,a_1}} = -\frac{3G^{3/2}(m_0 + m_1)^{3/2}}{a_1^{5/2}e_2^2(1 - e_1^2)},$$
$$\frac{dg_2}{d\tau_{1PN,a_2}} = -\frac{3G^{3/2}(m_0 + m_1 + m_2)^{3/2}}{a_2^{5/2}e_3^2(1 - e_2^2)}.$$

Given that we neglect \mathcal{H}_{1PN}, and higher order post-NT corrections such as Lense–Thirring precession and gravitational radiation, the other conserved quantities, L_j, G_j, H_j, h_j, are not affected for $j \in \{1, 2\}$.

2.2.3 NT precession

The NT potential of a spherical stellar cusp causes apsidal precession at the rate (Tremaine 2005):

$$\dot{\theta}_{1NT} = \left(1 - e_1^2\right)^{1/2} \int_0^\pi M_s(r) \cos \psi \, d\psi,$$

where Φ_s is the stellar potential, r is the distance to the central SMBH and ψ is the true anomaly of the inner orbit. The averaged precession rate of g_1 due to NT precession is expressed below:

$$\dot{g}_{1,NT} = \left(\frac{GM_0}{a_1}\right)^{1/2} \frac{\partial \Phi_s}{\partial a_1} \cos \psi.$$

Figure 4. The number of stars (N) influenced by the EKL mechanism, assuming a stellar density distribution in equation (13), and that the stellar mass is negligible and $e_1 = 2/3$ (the mean eccentricity assuming a thermal distribution). We determine the range of stellar semimajor axis a_1 where the EKL mechanism operates for a fixed set of SMBH masses, m_0, m_2, and outer orbital parameters, e_2 and a_2. Plotting the corresponding number of stars as a function of m_0 and m_2 for an array of e_2 and a_2 as shown, captures a large parameter space. The EKL mechanism affects a large number of stars over a wide range of SMBH binary parameters when $a_2 \lesssim 3$ pc.

$$\mathcal{H}_{\text{Kozai, quad}} = C_2 \left\{ (2 + 3e_1^2) (3 \cos^2 i_\text{tot} - 1) \right. \right.$$
$$\left. + 15e_1^2 \cos^2 \phi \right\}$$

$$\mathcal{H}_{\text{Kozai, oct}} = \frac{15}{4} \epsilon_M C_2 \left[A \cos \phi + 10 \cos i_\text{tot} \sin^2 i_\text{tot} \right.$$
$$\left. \times (1 - e_1^2) \sin g_1 \sin g_2 \right\},$$

where

$$\epsilon_M = \frac{m_0 - m_1}{m_0 + m_1},$$

$$C_2 = \frac{G^2}{16} \frac{(m_0 + m_1)^3}{(m_0 + m_1 + m_2)^3} \frac{m_2^2}{(m_0m_1)^3} L_1^4 G_2^4,$$

$$A = 4 + 3e_1^2 - \frac{5}{2} B \sin^2 i_\text{tot},$$

$$B = 2 + 5e_1^2 - 7e_1^2 \cos 2g_1.$$
where $M(r)$ is the mass of the stellar system interior to r and
$r \equiv r(\psi) = a_1(1 - e_1^2)/\left(1 + e_1 \cos \psi\right)$ from Kepler’s equation. Ex-
PLICIT analytic expressions for the apsidal precession rate are given
in appendix A of Kocsis & Tremaine (2015).

2.2.4 Tidal dissipation

To investigate if tides can suppress eccentricity excitation, we con-
sidere the ‘equilibrium tide’ with constant time lag to calculate
the inner binary’s orbital evolution when the pericentre distance
is larger than $2R_\star$. Similarly to Naoz, Farr & Rasio (2012) and
Naoz & Fabrycky (2014), we include the differential equation gov-
erning the orbital evolution following Eggleton, Kiseleva & Hut
(1998), Eggleton & Kiseleva-Eggleton (2001) and Fabrycky &
Tremaine (2007). For the star, we assume the viscous time-scale
is 10 yr, which corresponds to the quality factor (Goldreich & Soter
1966) $Q \sim 10^5$ for a 10 d orbit (or $Q \sim 4 \times 10^8$ for a 100 yr orbit).

In Fig. 5, we show a representative example of the evolution with
and without tides. The effect of tides is negligible mainly because
the orbital period is long and Q is low.

3 SMBH-BINARY SYSTEM

Requiring the criteria listed in Section 2.1, the minimum and the
maximum distance of the star affected by the EKL mechanism
from the inner SMBH can be calculated. However, not all stars in
this region will be disrupted, since the excitation of the eccentric-
ity depends sensitively on the orbital orientation, and the param-
eter region where the eccentricity can be excited is complicated
(Li et al. 2014b). In addition, when the Kozai time-scale is only
slightly smaller than the GR or the NT time-scale (with κ still
being the smallest), the evolution of the inner orbit is complex.
For instance, the eccentricity of the inner orbit can be excited in
configurations where the eccentricity cannot be excited due to the
Kozai–Lidov mechanism alone. This excitation may be caused by
the resonances between the NT, GR or Kozai–Lidov precessions
(Naoz et al. 2013b).

We consider the following illustrative example: $m_1 = 10^3 M_\odot$,
$m_2 = 10^4 M_\odot$, $a_1 = 0.5$ pc, $e_1 = 0.5$. We adopt the isotropic
stellar distribution function of equation (13), assuming the stars
have a solar mass, and that the eccentricity distribution is thermal
($dN/de = 2\pi\epsilon$). We run large Monte Carlo simulations, integrating the
equations presented in Section 2, where the equations of motion for
the EKL mechanism are given by Hamilton’s equations (equations
A26–A35 in Naoz et al. 2013a), and
$g_1 = g_1,\text{EKL} + g_1,\text{GR} + g_1,\text{NT}$,
$g_2 = g_2,\text{EKL} + g_2,\text{GR}$. We distinguish three outcomes for the EKL
evolution: ‘TDE’, ‘scattered by the SMBH companion’ and ‘surviving’,
as explained now.

The eccentricity of the star needs to reach very close to unity to
cause tidal disruption. The tidal radius is $R_t = 5 \times 10^{-6}$ pc around
a $10^3 M_\odot$ SMBH. We identify the TDE with $a_1(1 - e_1) < 3R_t$,
since the stars may still be disrupted due to accumulated heating
under the strong tide outside the tidal radius (Li & Loeb 2013).

Since the size of the Hill sphere of the less massive SMBH is
small (i.e. 0.08 pc in our example), the star may reach the apocentre
outside the Hill sphere before disruption as the eccentricity
increases. Namely, the gravitational pull of the companion SMBH
(m_2) will be larger than m_1. We refer to this as a ‘scattering event’
($a_1(1 + e_1) > a_2(1 - e_2)(m_1/(3m_2))^{1/3}$). Note that the secular
approximation is no longer valid for the scattering events. Three-body
integrations of the dynamical evolution of scattering events show
that they may either lead to an exchange interaction, where the star
is captured by the outer SMBH, they may cause the ejection of the
star producing a hyper-speed star (Samsing 2015; Guillochon &
Loeb 2014), or they may be tidally disrupted. The scattering events
resulting in a capture may systematically increase the eccentricity
distribution of stars orbiting the companion SMBH. For the third
category, we label the stars neither disrupted nor scattered by the
companion after 1 Gyr as ‘survivors’.

Fig. 6 shows the results of the numerical simulation in the final
a$_{1-1}$ and a$_{1-e_1}$ planes. We use open circles to mark stars that under-
gon TDEs, crosses for stars that were scattered by the companion
and full circles for stars that survived. The disruption/scattering
time is colour coded, and it indicates that most of the disruption
events occur within ~ 0.5 Myr. This corresponds to the octupole
Kozai time-scale, which is roughly $0.2-2$ Myr for these systems at
a$_1 = 0.03-0.08$ pc. Out of all 1000 stars between a$_1 = 0.0275$
and 0.075 pc, 57 are disrupted, and 726 are scattered by the outer black
hole. According to the stellar density distribution in equation (13),
there are $\sim 10^5$ stars in this semimajor axis range. Normalized by
the total number of stars in this semimajor axis range, it indicates
that the tidal disruption rate is $\sim 10^{-2}$ yr$^{-1}$ in the first ~ 0.5 Myr.
for the less massive black hole due to EKL, while \(\sim 7 \times 10^4 \) stars undergo scattering events by the outer SMBH.

Since the eccentricity of the stars with high inclinations are more likely to be excited, the stars with high inclinations are more vulnerable to tidal disruption, the final inclination distribution is no longer isotropic (the lower panels in Fig. 7) and the stars around the SMBH form a torus-like configuration (see Naoz & Silk 2014). The number of stars in this range according to the distribution of equation (13) is \(\sim 10^5 \) (assuming the stars are 1 M\(_\odot\)). This suggests that the tidal disruption rate is \(\sim 10^{-2} \) yr\(^{-1}\) in the first \(\sim 0.5 \) Myr for the less massive black hole.

Figure 6. The outcome of the evolution around an SMBH binary with \(m_0 = 10^3 \text{M}_\odot, m_2 = 10^8 \text{M}_\odot, a_2 = 0.5 \text{ pc}, e_2 = 0.5 \). We plot the final \(i_1 \) versus \(a_1 \) and \(e_1 \) versus \(a_1 \) for stars that survived, were disrupted, or were scattered in the simulation after 1 Gyr. The colour code indicates the time when the star is disrupted or is scattered. Out of the 1000 stars between \(a_1 = 0.0275 \text{ pc} \) and \(0.075 \text{ pc} \), 57 are disrupted, and 726 are scattered by the outer black hole. The number of stars in this range according to the thermal distribution of equation (13) is \(\sim 10^5 \) (assuming the stars are 1 M\(_\odot\)). This suggests that the tidal disruption rate is \(\sim 10^{-2} \) yr\(^{-1}\) in the first \(\sim 0.5 \) Myr for the less massive black hole.

Figure 7. The initial distribution and the final distribution of the stars after 1 Gyr in our illustrative example shown in Fig. 6. The final distribution represent the surviving stars.

Figure 8. The final cumulative distribution of the eccentricity of stars in our illustrative example for \(m_0 = 10^3 \text{M}_\odot, m_2 = 10^8 \text{M}_\odot \) separated by 0.5 pc in an eccentric orbit with \(e_2 = 0.5 \). For stars at distance larger than 0.04 pc, the final eccentricity distribution becomes shallower than that inside of 0.04 pc.

4 SMBH–IMBH SYSTEM

Let us consider next the perturbations of an SMBH on stars orbiting an IMBH. IMBHs may form through runaway mergers during core collapse in globular clusters (Portegies Zwart & McMillan 2002). Since globular clusters sink to the galactic centre through dynamical friction, and the disrupted globular cluster could contribute to most of the mass in nuclei stellar cluster for galaxies with total mass below 10\(^{11}\) M\(_\odot\), this setup may be common in the Universe (Portegies Zwart et al. 2006; Antonini 2013; Gnedin, Ostriker & Tremaine 2014). Alternatively, IMBH may form at cosmologically early times from Population III stars in galactic nuclei (Madau & Rees 2001), or in accretion discs around SMBHs (Goodman & Tan 2004; McKernan et al. 2012, 2014). In the Milky Way centre, the orbits of the S stars are consistent with that caused by the dynamical interactions of IMBHs (Merritt, Gualandris & Mikkola 2009). In addition, IRS 13E may potentially host an IMBH, though its existence is controversial (Maillard et al. 2004; Schödel et al. 2005; Fritz et al. 2010). The TDE rate has been discussed by Chen & Liu (2013) and Mastrobuono-Battisti, Perets & Loeb (2014). Here, we consider the interactions of stars surrounding IMBHs in the centre of galaxies with the central SMBH due to the hierarchical three-body interactions, and consider the re-distribution of the stars as a result of the interaction.

We set the IMBH mass to \(10^4 \text{M}_\odot \) at a distance of 0.1 pc from Sgr A\(\ast \) \((a_2 = 0.1 \text{ pc}, e_2 = 0.7, m_2 = 10^4 \text{M}_\odot \) and \(m_2 = 4 \times 10^7 \text{M}_\odot \)). These parameters for the IMBH are allowed according to limits on the astrometric wobble of the radio image of Sgr A\(\ast \) (Hansen & Milosavljević 2003; Reid & Brunthaler 2004), the study of hyper-velocity stars (Yu & Tremaine 2003) and the study of the orbits of S stars (Gualandris & Merritt 2009). We set the distance of stars to be uniformly distributed between 0.00045 and 0.0028 pc. The tidal disruption radius for 1 M\(_\odot\) stars is 4.89 \times 10^{-7} pc. The minimum distance is set by requiring the GR precession time-scale to be longer than the Kozai time-scale, and the maximum distance is set by requiring the stars to stay in the Hill sphere of the IMBH. Note that in this case the hierarchical criterion (i) in Section 2.1, \(e < 0.1 \), is satisfied as long as the stars are within the IMBH’s Hill sphere. We assume the distribution of the stellar eccentricity to be uniform. We take into account GR precession, NT precession and EKL at octupole order in the integration.

In 1000 runs, we find that \(\sim 40 \) end up in tidal disruption and \(\sim 500 \) are scattered as shown in Fig. 9. The tidal disruption/scattering time...
We first compared the Kozai time-scale with the secular time-scales of other mechanisms that may suppress EKL in galactic nuclei. These include NT precession, GR precession, resonant relaxation, two-body relaxation, Lense–Thirring precession and orbital decay due to gravitational wave emission. We have found that for the SMBHB cases we considered, NT precession and GR precession may suppress EKL, especially when the inner SMBH is more massive than the outer SMBH (as shown in Fig. 4). This is consistent with the results by Naoz & Silk (2014) for dark matter particles around SMBHBs, as well as the three-body scattering experiments done by Chen et al. (2009), Wegg & Bode (2011) and Chen et al. (2011), who observed that the TDEs were dominated by the three-body chaotic interactions rather than EKL mechanism for stars surrounding the more massive black hole. However, we found that a massive outer binary allows a non-negligible region of parameter space where the EKL mechanism may operate and lead to TDEs. We also demonstrated that tidal effects are typically negligible for the stellar orbital evolution (see Fig. 5).

To illustrate the EKL effects on stars surrounding the less massive black hole, we ran 1000 numerical experiments with different initial conditions for a star cluster surrounding a $10^3 \, M_\odot$ black hole, which is being perturbed by a $10^3 \, M_\odot$ outer black hole. We have found over ~ 50 out of the 1000 runs stars are disrupted in ~ 0.5 Myr. Scaled with the total number of stars according to equation (13), this corresponds to a TDE rate of 10^{-2} yr$^{-1}$ for the first ~ 0.5 Myr. In contrast, Chen et al. (2011) considered tidal disruption rates for stars surrounding the more massive SMBH, using numerical three-body scattering experiments. They estimated the tidal disruption rate to be as high as 0.2 yr$^{-1}$ mainly due to three-body scattering effects, in the first 3×10^5 yr for stars surrounding a $10^7 \, M_\odot$ SMBH perturbed by an 81 times less massive outer SMBH. For the same SMBHB configuration, EKL only affects at most $\sim 10^3$ stars surrounding the less massive SMBH as shown in Fig. 4, and affects at most $\sim 10^3$ stars surrounding the more massive SMBH. Thus, EKL contributes negligibly to the total tidal disruption rate in this case, but EKL contributes significantly to the TDE rate of stars around the secondary SMBH.

The EKL mechanism also affects the stellar distribution for stars surrounding the less massive SMBH. As shown in Fig. 7, the survived stars within a particular range of radii are distributed in the shape of a torus (Naoz & Silk 2014). In addition, a large number of stars orbiting the less massive black hole will be scattered by the outer black hole following the EKL-induced eccentricity increase. In our illustrative example, ~ 670 out of 1000 stars are eventually transferred to an orbit around the outer, more massive SMBH. This may produce hyper-velocity stars (Guillochon & Loeb 2014).

Finally, we studied the tidal disruption of stars by an IMBH during mergers of globular clusters with galactic nuclei. For an IMBH of mass $10^4 \, M_\odot$ at a distance of 0.1 pc from Sgr A*, 4 per cent of stars get disrupted within the relevant distance range around the IMBH, and ~ 50 per cent get scattered within 105 yr. This yields a temporary tidal disruption rate of 10^{-4} yr$^{-1}$. Some of the scattering events may produce hyper-velocity stars or additional TDEs. The EKL mechanism produces a torus-like stellar distribution for the surviving stars, which may be resolved by the Gemini, VLT and Keck telescopes in near-infrared. Further investigations of this process using numerical scattering experiments would be a worthwhile in the future.

5 CONCLUSIONS

SMBHBs are natural outcomes of galaxy mergers. An SMBHB may show an enhanced TDE rates due to the EKL mechanism and chaotic three-body interactions (Ivanov et al. 2005; Chen et al. 2009, 2011; Wegg & Bode 2011). The higher tidal disruption rates may in turn serve as a flag to identify closely separated black hole binaries on subparsec scale, which are difficult to detect otherwise. We focused on the effect of the EKL mechanism (see Naoz et al. 2011, 2013a) on the surrounding stars in SMBHB. This mechanism can excite the stars’ eccentricity to values very close to unity (e.g. Naoz et al. 2013a,b; Li et al. 2014a,b). We identified the range of physical parameters where EKL is important.