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1. Introduction

In Maldacena’s AdS/CFT duality [1], M/string theory on AdS is equivalent to a

field theory on the boundary of AdS. This is a concrete example of the plausibly

much more general holographic principle [2, 3, 4]. The holographic description of

AdS gravity relies on very special properties of AdS, such as the fact that the ratio

of the volume and surface area approaches a constant at large radius. Hence it is far

from obvious how the holographic principle can be concretely realized in a general

setting. Discussions of holography in cosmology have appeared in [5], in flat space

in [6], and in negatively curved spaces other than AdS in [7, 8, 9, 10].

In this paper we propose a holographic description of M/string theory in a fam-

ily of negatively curved symmetric spacetimes. AdSD+1 can be represented as the

coset SO(D, 2)/ SO(D, 1). We consider holography for other noncompact cosets1,

mainly SU(2, 1)/U(2), which is a signature (4, 0) space with no supersymmetry, and

1Holography for the cases of vacua of the form AdS×X , where X is a compact coset space, has
been studied in [11].
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SO(2, 2)/ SO(2) and SO(3, 2)/ SO(3), which are signature (4, 1) and (6, 1) spaces with

eight supersymmetries. There are many other similar noncompact cosets. These

spaces have unusual features such as closed timelike curves but nevertheless pro-

vide an interesting and challenging arena in which to expand our understanding of

holography.

An important new feature is that the conformal boundary metric for these cosets

has zero eigenvalues. This feature also appears in the conformal boundary metric

at null infinity in Minkowski space, and so may be pertinent in more physically

interesting spacetimes. Despite the degeneracy of the conformal boundary metric

there is a nondegenerate conformal boundary measure. We argue that this is enough

to enable us to define the boundary theory via its correlators. We find that, as

in AdS, the bulk isometries become conformal isometries of the boundary, and the

boundary scalar operators and scalar correlation functions transform accordingly.

(Similar results may hold for higher spin, but they are not explicitly investigated

here.) Another generic feature, associated with the degeneracy of the boundary

metric, is the appearance of an infinite-dimensional enlarged conformal symmetry

group, in some ways analogous to the enlargement of SO(2, 2) to two copies of the

Virasoro algebra on the boundary of AdS3.

This paper is organized as follows. In section 2 we consider M-theory on SU(2, 1)/

U(2)×S7. The geometry and symmetries of SU(2, 1)/U(2) and its conformal bound-
ary are described. The boundary measure is conformally the standard round measure

on S3, while the conformal boundary metric has signature (+, 0, 0). The Einstein-

Kähler deformations are discussed, following [12, 13]. The compactification is shown

to be free of tachyonic instabilities. A prescription is given, generalizing [1, 14, 15],

for defining the correlators of the boundary conformal field theory as appropriately

rescaled limits of bulk correlators. They are seen to be finite despite the degen-

eracy of the boundary metric. Two-point functions are explicitly computed using

the SU(2, 1) conformal isometry group. Section 3 concerns IIB string theory on

SO(2, 2)/ SO(2)× S5 and also briefly M-theory on SO(3, 2)/ SO(3)× S4. These are
both supersymmetric lorentzian signature spacetimes. In the former case we pro-

pose that the appropriate boundary theory is two-dimensional. In the final section 4

we conjecture a dual description in terms of conformal field theories from branes on

spacetimes with degenerate metrics. We also describe how solitons can spontaneously

break SO(D, 2) conformal invariance down to a smaller subgroup, and suggest that

at the duals to such configurations may in some cases be interesting lorentzian cosets.

2. M-theory on SU(2, 1)/U(2)× S7

In this section we consider M-theory compactified on SU(2, 1)/U(2) × S7 and its

holographic representation on the boundary of SU(2, 1)/U(2). This is a euclidean

space with no supersymmetry, as can be easily seen from the absence of a candidate

2
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supergroup. In section 2.1 we describe the bulk geometry of this space as well

as the degenerate conformal geometry of the boundary. Relevant results relating

the metric deformations to boundary data [12, 13] are recalled in section 2.2. In

section 2.3 the mass of a scalar field is related to the quadratic Casimir of SU(2, 1)

and it is shown that there are no tachyonic instabilities. In section 2.4 a modification

of the AdS/CFT prescription is given for constructing the scalar correlators of the

conformal field theory on the boundary as limits of bulk correlators.

2.1 Geometry of SU(2, 1)/U(2) and its conformal boundary

The coset space H = SU(2, 1)/U(2) is topologically the open ball in C2 with the

Bergman metric

ds2 =
dz1dz̄1 + dz2dz̄2
1− z1z̄1 − z2z̄2 +

1

(1− z1z̄1 − z2z̄2)2 (z̄1dz1 + z̄2dz2)(z1dz̄1 + z2dz̄2) , (2.1)

where z1z̄1 + z2z̄2 < 1. This is a Kähler metric with Kähler potential

K = −1
2
ln(1− z1z̄1 − z2z̄2) . (2.2)

Under the change of coordinates

z1 = r cos
θ

2
ei(ϕ+ψ)/2 , z2 = r sin

θ

2
e−i(ϕ−ψ)/2 , (2.3)

this metric takes the form

ds2 =
dr2

(1− r2)2 +
r2

4(1− r2)(σ
2
1 + σ

2
2) +

r2

4(1− r2)2σ
2
3 , (2.4)

where the left-invariant one-forms are

σ1 = cosψdθ + sinψ sin θdϕ ,

σ2 = − sinψdθ + cosψ sin θdϕ ,
σ3 = dψ + cos θdϕ . (2.5)

In this metric r ∈ [0, 1), θ ∈ [0, π), ϕ ∈ [0, 2π), and ψ ∈ [0, 4π). Defining
r = tanh y yields yet another form of the metric,

ds2 = dy2 +
1

4
sinh2 y(σ21 + σ

2
2) +

1

4
sinh2 y cosh2 yσ23 . (2.6)

The geometry (2.1) has an SU(2, 1) isometry group because the left action on

the SU(2, 1) group manifold remains unbroken in the quotient by the right action of

U(2). This group is generated by the following eight Killing vectors.

H1 = z1∂z1 − z̄1∂z̄1 , H2 = z2∂z2 − z̄2∂z̄2 , (2.7)

L1 = z2∂z1 − z̄1∂z̄2 , L̄1 = z̄2∂z̄1 − z1∂z2 , (2.8)

L2 = ∂z1 − z̄1z̄2∂z̄2 − z̄21∂z̄1 , L̄2 = ∂z̄1 − z1z2∂z2 − z21∂z1 , (2.9)

L3 = ∂z̄2 − z1z2∂z1 − z22∂z2 , L̄3 = ∂z2 − z̄1z̄2∂z̄1 − z̄22∂z̄2 . (2.10)

3
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The commutation relations between these generators are given in appendix A. So

far the structure of SU(2, 1)/U(2) is qualitatively similar to euclidean AdS4, which

is the coset SO(4, 1)/ SO(4). However, the structure of the conformal boundary

is quite different. The conformal boundary metric is determined (up to conformal

transformations) by rescaling (2.6) by a singular function of y such that the induced

metric at the boundary y =∞ is finite. Rescaling (2.6) by 64e−4y yields the induced
metric on a surface of constant y,

ds2 = 4e−2y(1− e−2y)2(σ21 + σ22) + (1− e−4y)2σ23 . (2.11)

This is a squashed three-sphere. As the boundary is approached, the squashing

becomes more and more severe, until finally at the boundary it degenerates to

ds2 = σ23 = (dψ + cos θdϕ)
2 . (2.12)

This metric has signature (+, 0, 0).

Degenerate conformal metrics have appeared in other contexts. For example,

the boundary of AdS4 × S7 is S3 × S7, but after conformal rescaling, the metric on
the S7 factor is degenerate, and one has an effectively three-dimensional metric. An

analogous interpretation of (2.12) as a metric on a one-dimensional space does not

seem possible, since the one-form σ3 is not closed. Another example is the conformal

metric at null infinity of Minkowski space, which has signature (0,+,+). This last

example suggests that the problem of degenerate boundary metrics may be relevant

for flat space holography.

Since the metric (2.12) is degenerate, the associated measure on the boundary

vanishes. It is nevertheless possible to define a conformal measure on the bound-

ary. Rescaling (2.6) by 214/3e−8y/3, one finds the finite induced volume form at the
boundary

ε3 = σ1 ∧ σ2 ∧ σ3 , (2.13)

and associated measure

d3Ω = sin θdθdψdφ . (2.14)

Global scale transformations in the boundary theory are induced by shifts of y. Since

different powers of ey are required to make the induced measure and metric finite,

their scaling dimensions will not be related by the usual factor of 2/3 (in three

dimensions). Rather the scale transformations are

ds23 → Ω2(x̂)ds23 ,
ε3 → Ω2(x̂)ε3 , (2.15)

where x̂ is a coordinate on the S3 boundary.

Despite the degeneracy of the metric, the conformal Killing equation

Lξgab = f(x̂)gab , (2.16)

4
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which does not involve the inverse metric, is well defined. Conformal Killing vectors

on the boundary with an su(2, 1) Lie bracket algebra are obtained by restrictions

of (2.7)–(2.10), namely

h1 = −i(∂ϕ + ∂ψ) ,
h2 = i(∂ϕ − ∂ψ) , (2.17)

l1 = −e−iϕ
(
∂θ +

i

sin θ
(∂ψ − cos θ∂ϕ)

)
,

l̄1 = −eiϕ
(
∂θ − i

sin θ
(∂ψ − cos θ∂ϕ)

)
, (2.18)

l2 = −e−i(ϕ+ψ)/2
(
sin

θ

2
∂θ +

i

2 cos θ
2

(
∂ϕ +

(
1 + 2 cos2

θ

2

)
∂ψ

))
, (2.19)

l̄2 = −ei(ϕ+ψ)/2
(
sin

θ

2
∂θ − i

2 cos θ
2

(
∂ϕ +

(
1 + 2 cos2

θ

2

)
∂ψ

))
, (2.20)

l3 = e−i(ϕ−ψ)/2
(
cos

θ

2
∂θ − i

2 sin θ
2

(
∂ϕ −

(
1 + 2 sin2

θ

2

)
∂ψ

))
, (2.21)

l̄3 = ei(ϕ−ψ)/2
(
cos

θ

2
∂θ +

i

2 sin θ
2

(
∂ϕ −

(
1 + 2 sin2

θ

2

)
∂ψ

))
. (2.22)

One may check explicitly that the function f in (2.16) is

f(x̂) = ∇mξ
m . (2.23)

f vanishes for (2.17)–(2.18) which are the SU(2)×U(1) isometries of the boundary.
We note that despite the degeneracy of the metric the covariant divergence is still well

defined. When the metric is nondegenerate, one can easily show that the coefficient

on the right hand side of (2.16) is always 2/D (in D dimensions) with f defined

in (2.23), simply by contraction with the inverse metric. However, the metric (2.12)

does not have an inverse so no such demonstration is possible, and we remarkably

find the same function with a different coefficient. These conformal Killing vectors

also preserve the measure

Lξε3 = f(x̂)ε3 . (2.24)

Here we encounter the standard conformal transformation law for a nondegenerate

measure.

Due to the degeneracy of the metric, there are infinitely many conformal Killing

vectors in addition to (2.17)–(2.22), as detailed in appendix B. Because they do not

arise from the isometries of the bulk, there is no reason to expect that they annihi-

late the vacuum or provide simple relations among the correlators of the boundary

theory. A somewhat similar situation occurs in AdS3, for which the bulk isometries

are SL(2,R) × SL(2,R), but the conformal Killing vectors of the boundary theory

5
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generate two copies of the Virasoro algebra. In that case the existence of the infinite-

dimensional Virasoro algebra of course has profound consequences for the boundary

theory. We do not know if that is also the case for SU(2, 1)/U(2).

2.2 Deformations

In this section we discuss deformations of the metric SU(2, 1)/U(2) which pre-

serve the Einstein equations but in general destroy the isometries. There is a well-

developed theory of such deformations. A key relevant result [12, 13] is that for any

strictly pseudoconvex domain Ω in Cn with a smooth boundary ∂Ω there is a unique

complete Einstein-Kähler metric. The Kähler potential is2

K = −1
2
ln s , (2.25)

where s is a solution of Fefferman’s equation (slightly rewritten)

(−s)n+1 det ∂i∂j̄ ln s = −1 (2.26)

subject to the Dirichlet boundary condition

s|∂Ω = 0 . (2.27)

This boundary condition ensures that the boundary points are an infinite distance

from the interior.

The case of SU(2, 1)/U(2) arises from the domain in C2 bounded by the S3

given by

v ≡ 1− |z1|2 − |z2|2 = 0 . (2.28)

The solution of (2.26) is then simply

s = v . (2.29)

It is easy to check that the resulting Kähler metric is indeed the Bergman metric (2.1).

A Kähler-Einstein deformation of the Bergman metric can then be succinctly

described by deforming the equation for the boundary (2.28), for example by a poly-

nomial in (z, z̄). One can then find s near the boundary in a power series expansion

in v with a ln v term.

2.3 Scalar fields and stability

Consider a scalar field φ with mass m. The wave equation is

∇2φ−m2φ = 0 (2.30)

2The factor of 12 , not present in [13] , is inserted to conform to the conventions of this paper.
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where ∇2 is the laplacean for the metric (2.4),

∇2 = (1− r2)2 ∂rr + (1− r
2)(3− r2)
r

∂r + (2.31)

+
4(1− r2)

r2

(
∂θθ + cot θ∂θ + csc

2 θ(∂ϕϕ − 2 cos θ∂ϕψ + (1− r2 sin2 θ)∂ψψ
)
.

The quadratic Casimir for SU(2, 1) is

CII = −1
2
{L1, L̄1}+ 1

2
{L2, L̄2}+ 1

2
{L3, L̄3}+ T 2 + 3

4
Y 2 , (2.32)

where we redefined Y = −H1 −H2, T = (H2 −H1)/2. Using the vector fields (2.7)–
(2.10), we find that the laplacean is proportional to the Casimir with a factor of

4. Therefore the solutions of the wave equation for a scalar field of mass m form a

representation of SU(2, 1) with quadratic Casimir

CII =
m2

4
. (2.33)

Next we use the su(2, 1) algebra to classify the solutions of this equation. The

representations were studied in [16]. The rank of SU(2, 1) is two and highest-weight

representations are labelled by (t, y), such that

Y |ψ〉 = y|ψ〉 , T |ψ〉 = t|ψ〉 . (2.34)

Using the commutation relations [L1, L̄1] = −2T , [L2, L̄2] = −32Y + T , [L3, L̄3] =
3
2
Y − T , and the highest-weight conditions

L1|ψ〉 = L2|ψ〉 = L3|ψ〉 = 0 , (2.35)

we obtain from (2.32) the equation

CII |ψ〉 = t2 + 2t+ 3
4
y2|ψ〉 . (2.36)

or in terms of integers (p, q) such that t = 1
2
(p+ q) and y = 1

3
(p− q),

m2 =
4

3
(p2 + q2 + pq) + 4(p+ q) . (2.37)

For the scalar field φ, the highest-weight conditions imply y = 0, or p = q and we

obtain the relation between the mass m of the scalar field and the highest weight p

of the form

m2 = 4p(p+ 2) . (2.38)

The functional integral in the quantum theory includes all normalizable modes

of φ, even if they do not solve the wave equation. These can be characterized as

eigenmodes φk of the laplacean with eigenvalues λk that obey

−∇2φk +m2φk = λkφk . (2.39)
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If there is a negative eigenvalue λk with normalizable eigenmode φk, fluctuations of

φk are unstable. We wish to show that no such instabilities arise for M-theory on

SU(2, 1)/U(2)×S7. Supersymmetry cannot be invoked since there are no appropriate
covariantly constant spinors in this geometry.

At large y, the angular part of the laplacean is exponentially suppressed, and φk
obeys

1√
g
∂y
√
g∂yφk = e

−4y∂ye4y∂yφk = (m2 − λk)φk , (2.40)

using
√
g → e4y. This implies that the leading asymptotic behavior of φk is

φk → e(−2+
√
4+m2−λk)y . (2.41)

On the other hand, if φk is normalizable we need

φk ≤ e−2y (2.42)

at infinity. It is possible to satisfy (2.42) with negative λk only if m
2 < −4.3 The

spectrum of eleven-dimensional supergravity on S7 has been studied in [17] and has

been shown to contain three families of scalars with masses m2 = 1
4
((k − 3)2 − 9),

1
4
((k + 8)2 − 9), 1

4
((k + 3)2 − 9) and two families of pseudoscalars with masses m2 =

1
4
(k2 − 9), 1

4
((k + 6)2 − 9), where k = 1, 2, . . . etc. (Here we have shifted the mass

and performed the overall normalization so that conventions of [17] agree with those

in [14]). The most negative mass2 is m2 = −9/4, which is insufficient to produce an
instability.

The theory also contains vector fields with linearized equations of motion

d ∗ dA = 0 . (2.43)

Consider an ansatz

A = a(y)σ1 . (2.44)

Then (2.43) becomes

(∂2ya+ 2∂ya)e
2ydyσ2σ3 +O(e−2y)dyσ2σ3 = 0 . (2.45)

This implies that the leading behavior of A is a constant, and that there is no nor-

malizable zero mode of the form (2.44). Similar conclusions apply to A ∼ σ2, while

for A = aσ3 one finds a ∼ ey, which is also non-normalizable. Hence there are

no normalizable zero modes of this form. Allowing for angular dependence of a, a

negative eigenvalue for (2.43), or considering massive vectors in the theory (which

all have m2 > 0) only makes it more difficult to get a normalizable eigenmode.

In conclusion, the vector fields on SU(2, 1)/U(2) also do not induce an instability.

We have also checked that normalizable graviton zero modes do not exist, in har-

mony with the uniqueness theorem [13] discussed in section 2.2. We conclude that

SU(2, 1)/U(2)× S7 is a stable solution of M-theory.
3We assumed here that, as is generically expected, the large y behavior is governed by the

dominant exponent (2.41); in principle the coefficient of this term could vanish.
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2.4 The boundary theory

In accord with the holographic principle, we wish to represent the bulk M-theory

on SU(2, 1)/U(2) × S7 as a conformal field theory on the conformal boundary of

SU(2, 1)/U(2)× S7. In this section we describe (for scalars) how the operators and
correlation functions of this boundary theory can be defined as limits of various bulk

quantities. This procedure is a modification of that used to define the boundary

theory for AdS4 × S7. The resulting correlators are well behaved and transform

appropriately under the boundary conformal group SU(2, 1), despite the degeneracy

of the boundary metric. In section 4 we discuss possible dual representations in terms

of branes.

Let us consider the conformal field theory on the boundary of SU(2, 1)/U(2)×S7
with the degenerate metric

ds2 = σ23 = (dψ + cos θdϕ)
2 , (2.46)

and measure

d3Ω = sin θdθdψdφ . (2.47)

A conformal transformation is a diffeomorphism together with a Weyl transforma-

tion. A field of conformal dimension ∆ transforms as

δξO =
(
Lξ + ∆

3
∇mξ

m

)
O , (2.48)

where Lξ is the usual Lie derivative, equal to ξm∂m acting on scalars. The metric
and measure both have ∆ = −3.
For simplicity let us restrict our attention to scalar operators O in the boundary.

Let δi, with i = 1, 2, . . . , 8, denote the eight SU(2, 1) conformal transformations

generated by the vectors (2.17)–(2.22) on S3. The quadratic Casimir associated to

such an operator follows from squaring (2.48) as

CIIO = gijδiδjO = 4
9
∆(∆− 3)O , (2.49)

where gij is the flat signature (4, 4) metric for the su(2, 1) Lie algebra appearing

in (2.32). Comparing (2.49) to (2.33) we see that for every scalar field of mass m

there is a boundary operator with weight ∆ obeying

m2 =
16

9
∆(∆− 3) . (2.50)

The two-point function of the scalar fields 〈O∆1(z)O∆2(w)〉 is fixed by the re-
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quirement of invariance under conformal transformations. The requirement of in-

variance under the isometries generated by (2.17)–(2.18) leads to the following equa-

tions:

[h
(z)
1 + h

(w)
1 ]〈O∆1(z)O∆2(w)〉 = 0 ,

[h
(z)
2 + h

(w)
2 ]〈O∆1(z)O∆2(w)〉 = 0 ,

[l
(z)
1 + l

(w)
1 ]〈O∆1(z)O∆2(w)〉 = 0 ,

[l̄1
(z)
+ l̄1

(w)
]〈O∆1(z)O∆2(w)〉 = 0, (2.51)

where the superscripts (z) and (w) on the generators denote the coordinates on S3.

In order to fully exploit the symmetries, the S3 coordinate z is traded for an SU(2)

group element g defined by

gz =

(
z1 z̄2
−z2 z̄1

)
=

(
cos θ

2
ei(ϕ+ψ)/2 sin θ

2
ei(ϕ−ψ)/2

− sin θ
2
e−i(ϕ−ψ)/2 cos θ

2
e−i(ϕ+ψ)/2

)
. (2.52)

Invariance under the SU(2)×U(1) isometries generated by (2.51) then requires that
the correlators are invariant under a left SU(2) action and a right U(1) action on g.

This requires that the correlator depends only on two real functions or one complex

function U

〈O∆1(z)O∆2(w)〉 = f(U, Ū) , (2.53)

where

U =
1

2
Tr[(1 + σ3)g

†
zgw]

= z̄1w1 + z̄2w2

= cos
θz

2
cos

θw

2
exp

i(ϕw + ψw − ϕz − ψz)
2

+

+ sin
θz
2
sin

θw
2
exp
−i(ϕw − ψw − ϕz + ψz)

2
, (2.54)

and Ū is the conjugate. The requirement for the two-point function to be covariant

under the transformation generated by l2 is

[l
(z)
2 + l

(w)
2 ]〈O∆1(z)O∆2(w)〉 = −

1

3

[
∆1∇ · l(z)2 +∆2∇ · l(w)2

]
〈O∆1(z)O∆2(w)〉 , (2.55)

which can be rewritten in the form

z̄1

(
−2
3
∆f + (1− U)∂Uf

)
+ w̄1

(
−2
3
∆f + (1− Ū)∂Ūf

)
= 0 , (2.56)

where ∆ = ∆1 = ∆2. The condition that ∆1 = ∆2 follows from comparing equa-

tion (2.55) with its conjugate. Note that ∇ · l2 ≡ 1√
g
∂i(
√
g li2) = 2z̄1, where√

g ∼ sin θ.
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The other three equations have (z1, w1), (z̄2, w̄2) and (z2, w2) consecutively, in

place of (z̄1, w̄1). The function

f(U, Ū) = |1− U |−4∆/3 (2.57)

satisfies (2.56). Since moreover each term in front of z̄1 and w̄1 vanishes separately,

this function satisfies evidently all the other equations. Thus we have found that the

two-point function of two scalar fields of dimension ∆ is given by

〈O∆(z)O∆(w)〉 = const.

|1− U |4∆/3 . (2.58)

In the preceding we saw that conformal invariance determines the two-point func-

tions of the boundary operators. Higher-point functions will not be fully determined

by conformal invariance. The recipe for calculating a general correlation function

within the AdS/CFT correspondence, as formulated in [14, 15], is the following:

first, compute the supergravity partition function in terms of the boundary values of

the fields; then, identify the operators in the boundary conformal field theory whose

sources are the given boundary values; finally, interpret the supergravity partition

function as a generating functional of those operators. This prescription associates

to each field φ in the supergravity action a corresponding operator O by the relation

〈e
∫
∂
φ0O〉 = e−I(φ) . (2.59)

Here I(φ) is the classical action evaluated on the solutions of the supergravity equa-

tion of motion subject to some boundary condition, the integral is over the boundary,

and the left hand side is interpreted as a partition function of the connected Green

functions for the operators O. Because of the boundary degeneracy, it is not mani-
festly obvious that this prescription can be adapted to SU(2, 1)/U(2). In this section

we see that the divergences cancel and the prescription can indeed be adapted.

Let us consider a scalar field of mass m in the bulk of SU(2, 1)/U(2). We will

not keep track of finite normalization constants in the rest of this section. In order

to compute the correlation function of the operators O, we first have to calculate the
action

I(φ) =

∫
drdθdψdϕ

√
g((∇φ)2 +m2φ2) (2.60)

for a solution of a classical equation of motion

∇2φ = m2φ , (2.61)

subject to the boundary condition

lim
r→1φ(r, θ, ψ, ϕ) = (1− r

2)2−
2∆
3 φ0(θ, ψ, ϕ) . (2.62)
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We use the metric (2.4) in the bulk of SU(2, 1)/U(2) and the relation between the

mass m of the scalar field and the dimension ∆ of the boundary operator, m2 =
16
9
∆(∆− 3). The solution of (2.61) is given by

φ(r, θ, ψ, ϕ) =

∫
K(r, θ, ψ, ϕ; θ′, ψ′, ϕ′)φ0(θ′, ψ′, ϕ′) sin θ′dθ′dψ′dϕ′ , (2.63)

where the bulk-to-boundary propagator is

K(r, θ, ψ, ϕ; θ′, ψ′, ϕ′) =
(1− r2)2∆/3
|1− rU |4∆/3 (2.64)

with

U = cos
θ

2
cos

θ′

2
exp

i(ϕ′ + ψ′ − ϕ− ψ)
2

+ sin
θ

2
sin

θ′

2
exp
−i(ϕ′ − ψ′ − ϕ+ ψ)

2
,

as above. Note that

lim
r→1K(r, θ, ψ, ϕ; θ

′, ψ′, ϕ′) =
(1− r2)2− 2∆3
sin θ′

δ(θ′ − θ)δ(ψ′ − ψ)δ(ϕ′ − ϕ) . (2.65)

Upon integrating by parts, we find that only the boundary term contributes to the

action (2.60):

I(φ) = lim
r→1

∫
d3Ω

1

(1− r2)φ∂rφ . (2.66)

I(φ) = −
∫
d3Ωd3Ω′

φ0(θ, ϕ, ψ)φ0(θ
′, ϕ′, ψ′)

|1− U |4∆/3 . (2.67)

We see that the boundary action is indeed a finite function of φ0, despite the degen-

eracy of the boundary metric, and that it correctly reproduces the two-point function

of O as determined by conformal invariance in the preceding section. In principle this
boundary action can also be used to determine the higher-point correlation functions

of O and might also be extended to fields of higher spin.

3. Supersymmetric lorentzian cosets

In this section we consider compactifications of IIB on SO(2, 2)/ SO(2)× S5 and M-
theory on SO(3, 2)/ SO(3)×S4, where SO(2, 2)/ SO(2) ≡W4,2 and SO(3, 2)/ SO(3) ≡
W5,2 are the noncompact cousins of the Stiefel manifolds SO(4)/ SO(2) ≡ V4,2 and

SO(5)/ SO(3) ≡ V5,2. Each of these spaces is defined with the divisor subgroup

embedded canonically in the larger group. These examples differ from that of the

previous section in that they have lorentzian signature and are supersymmetric. The

unbroken supersymmetries are described in section 3.1. The geometry of W4,2 and

its conformal boundary are detailed in section 3.2. In section 3.3 scalar fields in W4,2
are described.
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3.1 Supersymmetry

In this section it is shown that the spaces W5,2×S4 and W4,2×S5 preserve the same
amount of supersymmetry as AdS4×V5,2 and AdS5×V4,2, respectively, namely eight
supersymmetries in all cases.

On a space with nonvanishing cosmological constant, unbroken supersymmetries

are constructed from solutions of the Killing spinor equation

Dmη = 0 , (3.1)

where Dm = ∇m − iΓm. The integrability condition for this equation is that the

operator [Dm, Dn] =
1
4
Cmn

abΓab has zero modes, where Cmn
ab is the Weyl tensor.

Hence we are interested in the holonomy of the Weyl tensor.

We first recall that the Weyl holonomy of V5,2 is SU(3). Following the conventions

and methodology of [18], define (TAB)CD = δACδ
B
D − δADδ

B
C to be the generators of

SO(5), where A,B,C,D range from 1 to 5. To make the canonical embedding of

SO(3) (~5→ ~3 +~1 +~1) manifest, rewrite the generators as

X i =
1

2
εijkT jk , Xm = T 4m, Xm̂ = T 5m , X0 = T 45 , (3.2)

where X i generate the SO(3) subgroup, and the indices i,m, m̂ range from 1 to 3.

The values of the nonvanishing structure constants of SO(5) (defined by [TA, TB] =

CC
ABTC) are then

Ck
ij = εijk , Cn

im = C
n̂
im̂ = −εimn , C n̂

m0 = −Cn
m̂0 = δ

n
m , (3.3)

Ci
mn = C

i
m̂n̂ = −εimn , C0mn̂ = −δmn . (3.4)

The metric on G/H inherited from the group-invariant metric on G is not in

general an Einstein metric, but can sometimes be transformed into an Einstein metric

without losing any isometries by appropriately rescaling the vielbein components.

Consider the matrices of structure constants (CD)
a
b , as D runs over the indices in

the normalizer of the subgroup, and a and b run over flat coset indices. It was shown

in [18] that if these matrices are block diagonal in the spaces spanned by the vielbein

components ea1 , ea2 , . . . , then an arbitrary rescaling of the vielbein, eai → r(ai)e
ai ,

preserves the original isometries. One can try to find a rescaling to obtain an Einstein

metric on the coset space. For V5,2, rescale with r(m) = r(m̂) = 4 and r(0) =
√
32/3.

The Riemann tensor for the rescaled coset can be calculated using the Maurer-

Cartan equations and the Jacobi identities for the products of structure constants.

In terms of the structure constants and squashing parameters, the Riemann tensor is

Ra
bde =

1

4
Ca
bcC

c
de

(
a b

c

)
r(d)r(e)

r(c)
+
1

2
Ca
biC

i
der(d)r(e) +

+
1

8
Ca
cdC

c
be

(a c
d

)(b c
e

)
− 1
8
Ca
ceC

c
bd

(a c
e

)(b c
d

)
, (3.5)
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with (
a b

c

)
≡ r(a)r(c)

r(b)
+
r(b)r(c)

r(a)
− r(a)r(b)

r(c)
, (3.6)

where a, b, . . . are the flat G/H coset indices, namely m, m̂, 0, and i is an H index.

The flat metric is defined as γab = −CC
aDC

D
bC . The nonvanishing components of the

Weyl tensor for V5,2 read

Cmn
pq = C

m̂n̂
p̂q̂ = C

mn
p̂q̂ = 5(δ

m
p δ

n
q −δmq δnp ), Cmn̂

pq̂ = 2δ
m
n δ

p
q −3δmq δnp −3δmp δnq . (3.7)

The holonomy of V5,2 is SU(3) if there exists a two-form J such that

C M
AB NJ

N
P = C

N
AB PJ

M
N , C M

AB NJ
N

M = 0. (3.8)

The form with the components

J n
m = J

n̂
m̂ = 0, J n̂

m = −J m
n̂ = δ

m
n (3.9)

satisfies equations (3.8) with the Weyl tensor of (3.7). Thus, the holonomy of V5,2 is

SU(3). The spinor ~8 of spin(7) decomposes as ~8 = ~1 + ~1 + ~3 + ~3∗ under SU(3). The
two singlets account for two covariantly constant spinors on V5,2. The full symmetry

group for M-theory on AdS4×V5,2 is OSp(2, 2|2)×SO(5), which has 8 supercharges.
Similar arguments are valid for V4,2, obtained by the canonical embedding of

SO(2) in SO(4): ~4 → ~2 + ~1 + ~1. Upon calculating the Weyl tensor, one finds that

the holonomy of V4,2 is SU(2). This eliminates half the supersymmetries, but, due

to chirality constraints, these can be used to construct only 8 supercharges for IIB

string theory on AdS5 × V4,2 [19] . The full symmetry group is SU(2, 2|1)× SO(4).
Now consider W4,2 and W5,2. To obtain the generators of SO(n − 2, 2) from

SO(n), simply multiply the generators Xm and Xm̂ by i, so that only the structure

constants in (3.4) will change sign while those in (3.3) remain the same. Note also

that only the γ00 component of the flat metric changes sign. From (3.5), we find

that Rab
cd(Wn,2) = −Rab

cd(Vn,2). Therefore, C
ab
cd(Wn,2) = −Cab

cd(Vn,2). Since the

“0” components of the Weyl tensor all vanish according to (3.7), the flat metric on

the algebra generated by the Weyl tensors of Wn,2 and Vn,2 are the same. Hence the

holonomies of W4,2 and W5,2 are SU(2) and SU(3) respectively. The full symmetry

groups of compactifications IIB|W4,2×S5 and M|W5,2×S4 are SU(4|1) × SO(2, 2) and
OSp(4|2)× SO(3, 2) respectively, both of which have 8 supercharges.

3.2 Geometry of W4,2 ≡ SO(2, 2)/ SO(2) and its boundary
The coset space obtained by quotienting SO(2, 2) by the SO(2) subgroup is a sym-

metric Einstein space with negative cosmological constant and signature (4, 1). Topo-

logically W4,2 is S
1 × R4, so that π1(W4,2) = Z.
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The riemannian metric on W4,2 can be obtained by an analytic continuation of

the V4,2 metric and takes the form

ds2 = −1
9
(dψ+cosh y1dϕ1+cosh y2dϕ2)

2+
1

6
(dy21+sinh

2 y1dϕ
2
1+dy

2
2+sinh

2 y2dϕ
2
2) ,

(3.10)

where yi ∈ [0,∞), ϕi ∈ [0, 2π), and ψ ∈ [0, 4π). The coordinate ψ parametrizes
the U(1) fiber of W4,2 viewed as a U(1) bundle over AdS2 × AdS2. It is accordingly
convenient to view the geometry as a Kaluza-Klein compactification to the four

dimensional space

dŝ2 =
1

6
(dy21 + sinh

2 y1dϕ
2
1 + dy

2
2 + sinh

2 y2dϕ
2
2) , (3.11)

with the U(1) gauge field strength

F = ε1 + ε2 , (3.12)

where the εi are proportional to the volume elements of the two AdS2 factors in (3.11).

The isometries of this space are generated by the six Killing vectors

Li0 = i∂ϕi ,

Li−1 = ie−iϕi(coth yi∂ϕi + i∂yi) ,

Li1 = ieiϕi(coth yi∂ϕi − i∂yi) , (3.13)

which, together with J = i∂ψ, generate an SO(2, 2) × SO(2) algebra (so(2, 2) ∼=
sl(2, R)× sl(2, R)):

[Li0, L
j
±1] = ∓δijLi±1 , [Li1, L

j
−1] = 2δ

ijLi0 ,

[Li0, J ] = [L
i
1, J ] = [L

i
−1, J ] = 0 , (3.14)

where i = 1, 2.

The boundary of W4,2 might be defined by

sinh2 y1 + sinh
2 y2 = Λ

2 →∞ , (3.15)

which can be written in terms of a new coordinate χ ∈ [0, π
2
) as

sinh y1 = Λ cosχ , sinh y2 = Λ sinχ . (3.16)

The conformal boundary metric is

ds2 = cos2 χdϕ21 + sin
2 χdϕ22 . (3.17)

We have not succeeded in making sense of the notion of a theory on the bound-

ary (3.17).4 In most locations it is a degenerate signature (+,+, 0) metric, but at

χ = 0, π/2, it degenerates further to signature (+, 0, 0).
4Similar issues arise in other examples such as IIB string theory on AdS2 ×AdS3 × S5.
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An alternate procedure that yields a smoother result is to suppress the χ coordi-

nate. A motivation for this is that distances in the χ direction are all zero, together

with those along with the U(1) fiber and the S5, in the conformal boundary metric.

The variable χ is eliminated in the two-dimensional (rather than three-dimensional)

“boundary” defined by

sinh2 yi = Λ
2
i →∞ , (3.18)

which is simply T 2 with the conformal boundary metric

ds2 = dϕ21 + dϕ
2
2 . (3.19)

The so(2, 2) algebra on the boundary is generated by the vector fields

li0 = i∂ϕi , li−1 = ie
−iϕi∂ϕi , li1 = ie

iϕi∂ϕi . (3.20)

This algebra can be extended to two copies of the Virasoro algebra with the genera-

tors

lin = ie
inϕi∂ϕi . (3.21)

Hence the boundary theory may be related to a two-dimensional conformal field

theory.

Note that the vector fields (3.20) are not conformal Killing vectors of the full

boundary. Rather they are each conformal Killing vectors of one of the two S1 bound-

ary components. This is related to the appearance of the two “scale” parameters Λi
defining the boundary in (3.18).

A novel feature of this spacetime is the existence of closed timelike curves. Ex-

amples are the curves χ = π/4, ϕ1 = ϕ2, constant ψ and large y. Unlike in AdS4
these cannot be eliminated by going to the covering space.

3.3 Scalar fields in W4,2

In this section we derive the relation between the mass m of the scalar field in the

bulk and the highest weights j, h1, h2 of the so(2, 2)× so(2) algebra.
The scalar field φ in the bulk of SO(2, 2)/ SO(2) is described by the wave equation

∇2φ = m2φ , (3.22)

where ∇2 is the laplacean for the metric (3.10),

∇2 = 3
( 2

sinh2 y1
∂ϕ1ϕ1 +

2

sinh2 y2
∂ϕ2ϕ2 −

4 coth y1
sinh y1

∂ϕ1ψ −

− 4 coth y2
sinh y2

∂ϕ2ψ + 3∂ψψ − 2 coth2 y1∂ψψ − 2 coth2 y2∂ψψ +

+ 2 coth y1∂y1 + 2∂y1y1 + 2 coth y2∂y2 + 2∂y2y2

)
. (3.23)
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The laplacean can be written in terms of the Casimir of so(2, 2)× so(2) as

∇2 = −6
(

2∑
i=1

(
1

2
{Li1, Li−1} − Li20

)
+
1

2
J2

)
. (3.24)

Highest weight states |h〉 are characterized by

Li0|h〉 = hi|h〉 , J |h〉 = j|h〉 , Li1|h〉 = 0 . (3.25)

Acting with the Casimir operator (3.24) on the highest weight state |h〉 leads to the
relation

m2 = 6

(
h1(h1 − 1) + h2(h2 − 1)− j2

2

)
. (3.26)

Hence for every scalar field φ of mass m we expect operators O in the boundary
theory with corresponding weights.

4. Brane constructions

The holographic principle suggests that M/string theory on a given space can be

represented as a field theory on the boundary of the space. In the preceding section,

following the logic of the AdS/CFT correspondence, the boundary correlators for

various cosets have been described as limits of bulk correlators. In some of the AdS

cases, dual description of the boundary theory for example as a large N gauge theory,

are possible. In this section such dual descriptions will be considered for the cases

at hand.

The field theory on the boundary of AdS4 × S7 can be defined as the infrared
limit of a theory of M2-branes, or the strong-coupling, infrared limit of the D2-brane

gauge theory. This theory lives on S3 with the round metric. One may consider the

same limit on S3 with the squashed metric5

ds2 = σ23 +
1

a
(σ21 + σ

2
2) . (4.1)

It is natural to conjecture that in the limit that the squashing parameter a is taken

to infinity, one obtains the dual description of M-theory on SU(2, 1)/U(2)× S7. (A
similar conjecture was advanced in the context of Taub-Nut where a finitely squashed

S3 is encountered [8, 9].) The results of section 2 can be regarded as evidence that

this limit is well defined.6 Similar conjectures for W4,2 and W5,2 involve Yang-Mills

5Free field theory partition functions on this space are computed in [20].
6The scalar curvature of the metric (4.1) is R = 2−1/2a, and so is negative for the SU(2, 1)/U(2)

(as well as Taub-Nut) boundary metric. This will lead to Coulomb-branch instabilities near the

origin for the gauge theory scalars due to the Rφ2 coupling. Hence the flow into the infrared could

be quite nontrivial, and there may be subtleties concerning the order in which the infrared and

a→ 0 limit are taken.
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theory on a degenerate four-geometry and the (0, 2) fivebrane conformal field theory

on a degenerate six-geometry. While perhaps plausible, these descriptions do not

seem terribly useful in their present formulation and are therefore unsatisfying.

It would be illuminating to find these or other noncompact coset spaces as near-

horizon geometries of brane configurations. The branes may have nontrivial world-

volume geometry and/or internal field excitations. The spacetime supergravity so-

lution for such brane configurations is not in general known. However it may be

possible in some cases with enough symmetry to find the near horizon geometry

without knowing the full spacetime solution. One construction that may lead to

noncompact coset spaces — although perhaps not the ones explicitly discussed in

this paper — involves the spontaneous breakdown of conformal invariance. This can

occur in the presence of solitons. The generators of the conformal group SO(D, 2) of

D-dimensional Minkowski space are

va = λxa + bax2 − 2xab · x , (4.2)

together with the Poincare generators. A scalar field φ for example transforms as

δφ = va∂aφ+
D − 2
2D

∂av
aφ . (4.3)

A given expectation for φ breaks the conformal group down to a subgroup generated

by those v’s that annihilate φ in (4.3). Unbroken global scale invariance (generated

by v = λx) requires

xa∂aφ = −D − 2
2

φ , (4.4)

so φ must scale in the specified way with x. In general this implies for D > 2 that

φ will be singular at the origin. Now consider the special conformal transformations

parametrized by the vector ba in (4.2). If φ is invariant under some translations so

that for longitudinal transformations baL∂aφ = 0, then (4.4) is necessary and sufficient

to ensure invariance under the associated special conformal transformations. The

transverse transformations with baT∂aφ 6= 0 are necessarily broken.
In summary, if the field configuration φ scales as (4.4) and is invariant under d-

dimensional Poincare transformations, it follows that the conformal group SO(D, 2)

is broken down to SO(d, 2). An obvious generalization of this statement pertains to

the brane worldvolume metric as well as higher-rank tensor fields. Further conditions

should be imposed if supersymmetry is to be preserved.

In general, there are many noncompact cosets of which only three examples were

discussed in this paper. One obvious generalization is to quotient by both a left and a

right action. There are also many ways to spontaneously break conformal invariance

with solitons or nontrivial induced metrics on a brane worldvolume. It would be

interesting to find a plausible candidate for a dual pair.
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A. SU(2, 1) commutation relations

The relations between the generators (2.7)-(2.10) and the standard ones Fi are

F1 =
1

2
(L1 − L̄1) F2 = − i

2
(L1 + L̄1)

F3 =
1

2
(H2 −H1) F4 = −1

2
(L2 + L̄2)

F5 =
i

2
(L2 − L̄2) F6 =

1

2
(L3 + L̄3)

F7 = − i
2
(L3 − L̄3) , F8 = −

√
3

2
(H1 +H2) , (A.1)

The standard generators Fi satisfy

[Fi, Fj] = ifijkFk , (A.2)

with f123 = 1, f147 = 1/2, f156 = −1/2, f246 = 1/2, f257 = 1/2, f345 = 1/2,
f367 = −1/2, f458 =

√
3/2, f678 =

√
3/2.

B. Conformal Killing vectors for the SU(2, 1)/U(2) boundary

The conformal Killing vectors of the boundary ξk should satisfy the following equa-

tion

Lξσ3 = f̂(θ, ϕ, ψ)σ3 , (B.1)

where L is the Lie derivative along the vector field ξ. In components, (B.1) takes
the form

∂θξ
ψ + cos θ∂θξ

ϕ = 0 , (B.2)

− sin θξθ + ∂ϕξψ + cos θ∂ϕξϕ = f̂ cos θ , (B.3)

∂ψξ
ψ + cos θ∂ψξ

ϕ = f̂ . (B.4)

The solution of the above equations with f̂ = feαϕ+βψ 6= 0 is given by the following
set of vectors, parametrized by two numbers α, β and a function f(θ),

Lαβf =
eαϕ+βψ

β sin θ

[
f(θ)(α− β cos θ)∂θ − fθ(θ)∂ϕ +

(
f(θ) sin θ + fθ(θ) cos θ

)
∂ψ

]
. (B.5)
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For f̂ = 0 we get

Ha
g = e

aϕ

[
− a

sin θ

{∫
dθg(θ) sin θ + C

}
∂θ + g(θ)∂ϕ −

{∫
dθ cos θgθ(θ) + C

}
∂ψ.

]
(B.6)

Here α, β, a and C are arbitrary constants and f(θ), g(θ) are arbitrary functions

of θ such that the corresponding Killing vectors are nonsingular. These generators

enlarge the SU(2, 1) algebra of conformal Killing vectors.
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