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MINIMAL SUFFICIENT CAUSATION AND DIRECTED

ACYCLIC GRAPHS

By Tyler J. VanderWeele and James M. Robins

University of Chicago and Harvard University

Notions of minimal sufficient causation are incorporated within
the directed acyclic graph causal framework. Doing so allows for the
graphical representation of sufficient causes and minimal sufficient
causes on causal directed acyclic graphs while maintaining all of the
properties of causal directed acyclic graphs. This in turn provides a
clear theoretical link between two major conceptualizations of causal-
ity: one counterfactual-based and the other based on a more mecha-
nistic understanding of causation. The theory developed can be used
to draw conclusions about the sign of the conditional covariances
among variables.

1. Introduction. Two broad conceptualizations of causality can be dis-
cerned in the literature, both within philosophy and within statistics and
epidemiology. The first conceptualization may be characterized as giving an
account of the effects of certain causes; the approach addresses the question,
“Given a particular cause or intervention, what are its effects?” In the con-
temporary philosophical literature, this approach is most closely associated
with Lewis’ work [17, 18] on counterfactuals. In the contemporary statistics
literature, this first approach is closely associated with the work of Rubin
[30, 31] on potential outcomes, of Robins [25, 26] on the use of counterfac-
tual variables in the context of time-varying treatment and of Pearl [21] on
the graphical representation of various counterfactual relations on directed
acyclic graphs. This counterfactual approach has been used extensively in
statistics both in the development of theory and in application. The second
conceptualization of causality may be characterized as giving an account of
the causes of particular effects; this approach attempts to address the ques-
tion, “Given a particular effect, what are the various events which might have
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been its cause?” In the contemporary philosophical literature, this second
approach is most notably associated with Mackie’s work [19] on insufficient
but necessary components of unnecessary but sufficient conditions (INUS
conditions) for an effect. In the epidemiologic literature, this approach is
most closely associated with Rothman’s work [29] on sufficient-component
causes. This work is more closely related to the various mechanisms for a
particular effect than is the counterfactual approach. Rothman’s work on
sufficient-component causes has, however, seen relatively little development,
extension or application, though the basic framework is routinely taught
in introductory epidemiology courses. Perhaps the only major attempt in
the statistics literature to extend and apply Rothman’s theory has been the
work of Aickin [1] (comments relating Aickin’s work to the present work are
available from the authors upon request).

In this paper, we incorporate notions of minimal sufficient causes, cor-
responding to Rothman’s sufficient-component causes, within the directed
acyclic graph causal framework [21]. Doing so essentially unites the mecha-
nistic and the counterfactual approaches into a single framework. As will be
seen in Section 5, we can use the framework developed to draw conclusions
about the sign of the conditional covariances among variables. Without the
theory developed concerning minimal sufficient causes, such conclusions can-
not be drawn from causal directed acyclic graphs. In a related paper [35] we
have discussed how these ideas relate to epidemiologic research. The present
paper develops the theory upon which this epidemiologic discussion relies.

The theory developed in this paper is motivated by several other con-
siderations. As will be seen below, the incorporation of minimal sufficient
cause nodes allows for the identification of certain conditional independen-
cies which hold only within a particular stratum of the conditioning vari-
able (i.e., “asymmetric conditional independencies,” [7]) which were not evi-
dent without the minimal sufficient causation structures. We note that these
asymmetric conditional independencies have been represented elsewhere by
Bayesian multinets [7] or by trees [3]. Another motivation for the develop-
ment of the theory in this paper concerns the notion of interaction. Prod-
uct terms are frequently included in regression models to assess interactions
among variables; these statistical interactions, however, even if present, need
not imply the existence of an actual mechanism in which two distinct causes
both participate. Interactions which do concern the actual mechanisms are
sometimes referred to as instances of “synergism” [29], “biologic interac-
tions” [32] or “conjunctive causes” [20], and the development of minimal
sufficient cause theory provides a useful framework to characterize mecha-
nistic interactions. In related work [37] we have derived empirical tests for
interactions in this sufficient cause sense.

As yet further motivation, we conclude this Introduction by describing
how the methods we develop in this paper clarified and helped resolve an
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Fig. 1. Causal directed acyclic graph under the alternative hypothesis of familial coag-

gregation.

analytic puzzle faced by psychiatric epidemiologists. Consider the follow-
ing somewhat simplified version of a study reported in Hudson et al. [10].
Three hundred pairs of obese siblings living in an ethnically homogenous
upper-middle class suburb of Boston are recruited and cross classified by
the presence or absence of two psychiatric disorders: manic-depressive dis-
order P and binge eating disorder B. The question of scientific interest is
whether these two disorders have a common genetic cause, because, if so,
studies to search for a gene or genes that cause both disorders would be
useful. Consider two analyses. The first analysis estimates the covariance β

between P2i and B1i, while the second analysis estimates the conditional
covariance α between P2i and B1i among subjects with P1i = 1, where Bki

is 1 if the kth sibling in the ith family has disorder B and is zero otherwise,
with Pki defined analogously. It was found that the estimates β and α were
both positive with 95% confidence intervals that excluded zero.

Hudson et al. [10] substantive prior knowledge is summarized in the di-
rected acyclic graph of Figure 1 in which the i index denoting family is
suppressed. In what follows, we will make reference to some standard re-
sults concerning directed acyclic graphs; these results are reviewed in detail
in the following section.

In Figure 1, GB and GP represent the genetic causes of B and P , respec-
tively, that are not common causes of both B and P. The variables E1 and
E2 represent the environmental exposures of siblings 1 and 2, respectively,
that are common causes of both diseases, for example, exposure to a partic-
ularly stressful school environment. The variables GB and GP are assumed
independent as would typically be the case if, as is highly likely, they are
not genetically linked. Furthermore, as is common in genetic epidemiology,
the environmental exposures E1 and E2 are assumed independent of the
genetic factors. The causal arrows from P1 to B1 and P2 to B2 represent
the investigators’ beliefs that manic-depressive disorder may be a cause of
binge eating disorder but not vice-versa. The node F represents the com-
mon genetic causes of both P and B as well as any environmental causes of
both P and B that are correlated within families. There is no data available
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for GB , GP , E1, E2 or F . The reason for grouping the common genetic
causes with the correlated environmental causes in F is that, based on the
available data {Pki,Bki; i = 1, . . . ,300, k = 1,2}, we can only hope to test
the null hypothesis that F so defined is absent, which is referred to as the
hypothesis of no familial coaggregation. If this null hypothesis is rejected,
we cannot determine from the available data whether F is present due to a
common genetic cause or a correlated common environmental cause. Thus
E1 and E2 are independent on the graph because, by definition, they repre-
sent the environmental common causes of B and P that are independently
distributed between siblings.

Now, under the null hypothesis that F is absent, we note that P2 and
B1 are still correlated due to the unblocked path P2 −Gp − P1 −B1, so we
would expect β 6= 0 as found. Furthermore, P2 and B1 are still expected
to be correlated given P1 = 1 due to the unblocked path P2 − Gp − P1 −
E1 −B1, so we would expect α 6= 0 as found. Thus, we cannot test the null
hypothesis that F is absent without further substantive assumptions beyond
those encoded in the causal directed acyclic graph of Figure 1.

Now Hudson et al. [10] were also willing to assume that for no subset of the
population did the genetic causes Gp and GB of P and B prevent disease.
Similarly, they assumed there was no subset of the population for whom
the environmental causes E1 and E2 of B and P prevented either disease.
We will show in Section 5 that under these additional assumptions, the null
hypothesis that F is absent implies that the conditional covariance α must
be less than or equal to zero, provided that there is no interaction, in the
sufficient cause sense, between E and GP . If it is plausible that no sufficient
cause interaction between E and GP exists, then the null hypothesis that
F is absent is rejected because the estimate of α is positive with a 95%
confidence interval that does not include zero.

Thus, the conclusion in the argument above that familial coaggregation
of diseases B and P was present depended critically on the existence of (i)
a formal definition of a sufficient cause interaction, (ii) a substantive under-
standing of what the assumption of no sufficient cause interaction entailed,
and (iii) a sound mathematical theory that related assumptions about the
absence of sufficient cause interactions to testable restrictions on the distri-
bution of the observed data, specifically on the sign of a particular condi-
tional covariance. In this paper, we provide a theory that offers (i)–(iii).

The remainder of the paper is organized as follows. The second section
reviews the directed acyclic graph causal framework and provides some basic
definitions; the third section presents the theory which allows for the graph-
ical representation of minimal sufficient causes within the directed acyclic
graph causal framework; the fourth section gives an additional preliminary
result concerning monotonicity; the fifth section develops results relating
minimal sufficient causation and the sign of conditional covariances; the
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sixth section provides some discussion concerning possible extensions to the
present work.

2. Basic definitions and concepts. In this section, we review the directed
acyclic graph causal framework and give a number of definitions regarding
sufficient conjunctions and related concepts. Following Pearl [21], a causal
directed acyclic graph is a set of nodes (X1, . . . ,Xn), corresponding to vari-
ables, and directed edges among nodes, such that the graph has no cycles
and such that, for each node Xi on the graph, the corresponding variable is
given by its nonparametric structural equation Xi = fi(pai, ǫi), where pai are
the parents of Xi on the graph and the ǫi are mutually independent random
variables. These nonparametric structural equations can be seen as a gener-
alization of the path analysis and linear structural equation models [21, 22]
developed by Wright [43] in the genetics literature and Haavelmo [9] in the
econometrics literature. Robins [27, 28] discusses the close relationship be-
tween these nonparametric structural equation models and fully randomized,
causally interpreted structured tree graphs [25, 26]. Spirtes, Glymour and
Scheines [33] present a causal interpretation of directed acyclic graphs out-
side the context of nonparametric structural equations and counterfactual
variables. It is easily seen from the structural equations that (X1, . . . ,Xn)
admits the following factorization: p(X1, . . . ,Xn) =

∏n
i=1 p(Xi|pai). The non-

parametric structural equations encode counterfactual relationships among
the variables represented on the graph. The equations themselves represent
one-step ahead counterfactuals with other counterfactuals given by recur-
sive substitution. The requirement that the ǫi be mutually independent is
essentially a requirement that there is no variable absent from the graph
which, if included on the graph, would be a parent of two or more variables
[21, 22].

A path is a sequence of nodes connected by edges regardless of arrowhead
direction; a directed path is a path which follows the edges in the direction
indicated by the graph’s arrows. A node C is said to be a common cause of
A and B if there exists a directed path from C to B not through A and a
directed path from C to A not through B. A collider is a particular node
on a path such that both the preceding and subsequent nodes on the path
have directed edges going into that node. A backdoor path from A to B is
a path that begins with a directed edge going into A. A path between A

and B is said to be blocked given some set of variables Z if either there is
a variable in Z on the path that is not a collider or if there is a collider on
the path such that neither the collider itself nor any of its descendants are
in Z. If all paths between A and B are blocked given Z, then A and B are
said to be d-separated given Z. It has been shown that if all paths between
A and B are blocked given Z, then A and B are conditionally independent
given Z [8, 13, 40].
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Suppose that a set of nonparametric structural equations represented by
a directed acyclic graph H is such that its variables X are partitioned into
two sets X = V ∪W . If in the nonparametric structural equation for V ∪W ,
by replacing each occurrence of Xi ∈ W by fi(pai, ǫi), the nonparametric
structural equations for V can be written so as to correspond to some causal
directed acyclic graph G, then G is said to be the marginalization of H

over the set of variables W . A causal directed acyclic graph with variables
X = V ∪W can be marginalized over W if no variable in W is a common
cause of any two variables in V .

In giving definitions for a sufficient conjunction and related concepts,
we will use the following notation. An event is a binary variable taking
values in {0,1}. The complement of some event E we will denote by E. A
conjunction or product of the events X1, . . . ,Xn will be written as X1 · · ·Xn.
The associative OR operator, ∨, is defined by A ∨B =A+B −AB. For a
random variable A with sample space Ω we will use the notation A ≡ 0
to denote that A(ω) = 0, for all ω ∈ Ω. We will use the notation 1A=a to
denote the indicator function for the random variable A taking the value
a; for some subset S of the sample space Ω, we will use 1S to denote the
indicator that ω ∈ S. We will use the notation A

∐
B|C to denote that A

is conditionally independent of B given C. We begin with the definitions of
a sufficient conjunction and a minimal sufficient conjunction. These basic
definitions make no reference to directed acyclic graphs or causation.

Definition 1. A set of events X1, . . . ,Xn is said to constitute a suffi-
cient conjunction for event, D if X1, . . . ,Xn = 1⇒D = 1.

Definition 2. A set of events X1, . . . ,Xn which constitutes a sufficient
conjunction for D is said to constitute a minimal sufficient conjunction for
D if no proper subset of X1, . . . ,Xn constitutes a sufficient conjunction for
D.

Sufficient conjunctions for a particular event need not be causes for an
event. Suppose a particular sound is produced when and only when an in-
dividual blows a whistle. This particular sound the whistle makes is a suf-
ficient conjunction for the whistle’s having been blown, but the sound does
not cause the blowing of the whistle. The converse, rather, is true; the blow-
ing of the whistle causes the sound to be produced. Corresponding then to
these notions of a sufficient conjunction and a minimal sufficient conjunction
are those of a sufficient cause and a minimal sufficient cause which will be
defined in Section 3.

Definition 3. A set of events M1, . . . ,Mn, each of which may be some
product of events, is said to be determinative for some event D if D =
M1 ∨M2 ∨ · · · ∨Mn.
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Fig. 2. Causal directed acyclic graphs with sufficient causation structures.

Definition 4. A determinative set M1, . . . ,Mn of (minimal) sufficient
conjunctions for D is nonredundant if no proper subset of M1, . . . ,Mn is
determinative for D.

Example 1. Suppose A=B ∨CE and D =EF . If we consider all the
minimal sufficient conjunctions for A among the events {B,C,D}, we can
see that B and CD are the only minimal sufficient conjunctions, but it is not
the case that A=B∨CD. Clearly then, a complete list of minimal sufficient
conjunctions for A generated by a particular collection of events may not be
a determinative set of sufficient conjunctions for A. If we consider all minimal
sufficient conjunctions for A among the events {B,C,D,E}, we see that B
and CD and CE are all minimal sufficient conjunctions. In this example,
B ∨CD ∨CE is a determinative set of minimal sufficient conjunctions for
A but is not nonredundant. We see then that even when a complete list of
minimal sufficient conjunctions generated by a particular collection of events
constitutes a determinative set of minimal sufficient conjunctions, it may not
be a nonredundant determinative set of minimal sufficient conjunctions.

3. Minimal sufficient causation and directed acyclic graphs. In this sec-
tion, we develop theory which allows for the representation of sufficient
conjunctions and minimal sufficient conjunctions on causal directed acyclic
graphs. We begin with a motivating example.

Example 2. Consider a causal directed acyclic graph given in Figure
2(i). Suppose E1E2 and E3E4 constitute a determinative set of sufficient
conjunctions for D. We will show in Theorem 1 below that it follows that the
diagram in Figure 2(ii) is also a causal directed acyclic graph where EiEj

is simply the product or conjunction of Ei and Ej ; because the sufficient
conjunctions E1E2 and E3E4 are determinative, it follows that D =E1E2 ∨
E3E4. An ellipse is put around the sufficient conjunctions E1E2 and E3E4
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to indicate that the set is determinative. As will be seen below, in order
to add sufficient conjunctions it is important that a determinative set of
sufficient conjunctions is known or can be constructed. Consider the causal
directed acyclic graph given in Figure 2(iii). Suppose that no determinative
set of sufficient conjunctions can be constructed from E1 and E2 alone;
suppose further, however, that there exists some other cause of D, say A,
independent of E1 and E2, such that E1E2 and AE2 form a determinative
set of sufficient conjunctions. Then, Theorem 1 below can again be used to
show that Figure 2(iv) is a causal directed acyclic graph. Furthermore, it
will be shown in Theorem 2 that for any causal directed acyclic graph with a
binary node which has only binary parents, a set of variables {Ai}

n
i=0 always

exists such that a determinative set of sufficient causes can be formed from
the original parents on the graph and the variables {Ai}

n
i=0.

Theorem 1 provides the formal result required for the previous example.

Theorem 1. Consider a causal directed acyclic graph G with some node
D such that D and all its parents are binary. Suppose that there exists a set
of binary variables A0, . . . ,Au such that a determinative set of sufficient
conjunctions for D, say M1, . . . ,MS , can be formed from conjunctions of
A0, . . . ,Au along with the parents of D on G and the complements of these
variables. Suppose further that there exists a causal directed acyclic graph
H such that the parents of D on H that are not on G consist of the nodes
A0, . . . ,Au and such that G is the marginalization of H over the set of vari-
ables which are on the graph for H but not G. Then, the directed acyclic
graph J formed by adding to H the nodes M1, . . . ,MS , removing the di-
rected edges into D from the parents of D on H , adding directed edges from
each Mi into D and adding directed edges into each Mi from every parent
of D on H which appears in the conjunction for Mi is itself a causal directed
acyclic graph.

Proof. To prove that the directed acyclic graph J is a causal directed
acyclic graph, it is necessary to show that each of the nodes on the directed
acyclic graph can be represented by a nonparametric structural equation
involving only the parents on J of that node and a random term ǫi which
is independent of all other random terms ǫj in the nonparametric structural
equations for the other variables on the graph. The nonparametric structural
equation for Mi may be defined as the product of events in the conjunction
for Mi. The nonparametric structural equation for D can be given by

D =M1 ∨ · · · ∨Mn.

The nonparametric structural equations for all other nodes on J can be
taken to be the same as those defining the causal directed acyclic graph
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H . Because the nonparametric structural equations for D and for each
Mi on J are deterministic, they have no random-error term. Thus, for the
nonparametric structural equations defining D and each Mi on J , the re-
quirement that the nonparametric structural equation’s random term ǫi is
independent of all the other random terms ǫj in the nonparametric struc-
tural equations for the other variables on the graph is trivially satisfied.
That this requirement is satisfied for the nonparametric structural equa-
tions for the other variables on J follows from the fact that it is satisfied
on H . �

In Theorem 1, sufficient conjunctions for D are constructed from some set
of variables that, on some causal directed acyclic graph H , are all parents
of D and thus, within the directed acyclic graph causal framework, it makes
sense to speak of sufficient causes and minimal sufficient causes.

Definition 5. If, on a causal directed acyclic graph, some node D with
nonparametric structural equation D = fD(paD, ǫD) is such that D and all
its parents are binary, then X1, . . . ,Xn is said to constitute a sufficient cause
for D if X1, . . . ,Xn are all parents of D or complements of the parents of
D and are such that fD(paD, ǫD) = 1 for all ǫD whenever paD is such that
X1 · · ·Xn = 1; if no proper subset of X1, . . . ,Xn also constitutes a sufficient
cause for D, then X1, . . . ,Xn is said to constitute a minimal-sufficient cause
for D. A set of (minimal) sufficient causes, M1, . . . ,Mn, each of which is a
product of the parents of D and their complements, is said to be determi-
native for some event D if, for all ǫD, fD(paD, ǫD) = 1 if and only if paD is
such that M1 ∨M2 ∨ · · · ∨Mn = 1; if no proper subset of M1, . . . ,Mn is also
determinative for D, then M1, . . . ,Mn is said to constitute a nonredundant
determinative set of (minimal) sufficient causes for D.

If, for some directed acyclic graph G there exist A0, . . . ,Au which satisfy
the conditions of Theorem 1 for some node D on G so that a determinative
set of sufficient causes for D can be constructed from A0, . . . ,Au along with
the parents of D on G and their complements, then D will be said to admit
a sufficient causation structure. As in Example 2, we will, in general, replace
the Mi nodes with the conjunctions that constitute them. The node D with
directed edges from the Mi nodes is effectively an OR node. The Mi nodes
with the directed edges from the Ai nodes and the parents of D on G

are effectively AND nodes. We call this resulting diagram a causal directed
acyclic graph with a sufficient causation structure (or a minimal sufficient
causation structure if the determinative set of sufficient conjunctions for D
are each minimal sufficient conjunctions).
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Because a causal directed acyclic graph with a sufficient causation struc-
ture is itself a causal directed acyclic graph, the d-separation criterion ap-
plies and allows one to determine independencies and conditional indepen-
dencies. A minimal sufficient causation structure will often make apparent
conditional independencies within a particular stratum of the conditioning
variable which were not apparent on the original causal directed acyclic
graph. The following corollary is useful in this regard.

Corollary 1. If some node D on a causal directed acyclic graph admits
a sufficient causation structure then conditioning on D = 0 conditions also
all sufficient cause nodes for D on the causal directed acyclic graph with the
sufficient causation structure.

Example 2 (Continued). Consider the causal directed acyclic graph
with the minimal sufficient causation structure given in Figure 2(ii). Con-
ditioning on D = 0 also conditions on E1E2 = 0 and E3E4 = 0, and thus,
by the d-separation criterion, Ei is conditionally independent of Ej given
D = 0 for i ∈ {1,2}, j ∈ {3,4}. In the causal directed acyclic graph with the
minimal sufficient causation structure in Figure 2(iv), no similar conditional
independence relations within the D= 0 stratum holds. Although condition-
ing on D = 0 conditions also on E1E2 = 0 and AE2 = 0 there still remains
an unblocked path E1 −E1E2 − E2 −AE2 −A between E1 and A, and so
E1 and A are not conditionally independent given D = 0; Similarly, there
are unblocked paths between E1 and E2 given D = 0 and also between E2

and A given D = 0.

The additional variables A0, . . . ,Au needed to form a set of sufficient
causes for D we will refer to as the co-causes of D. The co-causes A0, . . . ,Au

required to form a determinative set of sufficient conjunctions for D will
generally not be unique. For example, if D = A0 ∨A1E then it is also the
case that D = B0 ∨B1E, where B0 = A0 and B1 = A0A1. Similarly, there
will, in general, be no unique set of sufficient causes that is determinative
for D. For example, if E1 and E2 constitute a set of sufficient causes for D
so that D = E1 ∨ E2, then it is also the case that E1E2, E1E2, and E1E2

also constitute a set of sufficient causes for D, and so we could also write
D = E1E2 ∨ E1E2 ∨ E1E2. It can be shown that not even nonredundant
determinative sets of minimal sufficient causes are unique.

Corresponding to the definition of a sufficient cause is the more philosoph-
ical notion of a causal mechanism. A causal mechanism can be conceived of
as a set of events or conditions which, if all present, bring about the outcome
under consideration through a particular pathway. A causal mechanism thus
provides a particular description of how the outcome comes about. Suppose,
for instance, that an individual were exposed to two poisons, E1 and E2,
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such that in the absence of E2, the poison E1 would lead to heart failure
resulting in death; and that in the absence of E1, the poison E2 would lead
to respiratory failure resulting in death; but such that when E1 and E2 are
both present, they interact and lead to a failure of the nervous system again
resulting in death. In this case, there are three distinct causal mechanisms for
death each corresponding to a sufficient cause for D: death by heart failure
corresponding to E1E2, death by respiratory failure corresponding to E1E2

and death due to a failure of the nervous system corresponding to E1E2. It is
interesting to note that in this case none of the sufficient causes correspond-
ing to the causal mechanisms is minimally sufficient. Each of E1E2, E1E2

and E1E2 is sufficient for D but none is minimally sufficient, as either E1 or
E2 alone is sufficient for death. We will refer to a sufficient cause for D as a
causal mechanism for D if the node for the sufficient cause corresponds to
a variable, potentially subject to intervention, which whenever the variable
takes the value 1, the outcome D inevitably results.

The last example shows that the existence of a particular set of deter-
minative sufficient causes does not guarantee that there are actual causal
mechanisms corresponding to these sufficient causes; it only implies that
a set of causal mechanisms corresponding to these sufficient causes cannot
be ruled out by a complete knowledge of counterfactual outcomes. In par-
ticular, in the previous example, the set {E1,E2} is a determinative set of
sufficient causes that does not correspond to the actual set of causal mecha-
nisms {E1E2,E1E2,E1E2}. If there are two or more sets of sufficient causes
that are determinative for some outcome D then although the two sets of
determinative sufficient causes are logically equivalent for prediction, we
nevertheless view them as distinct. In such cases, some knowledge of the
subject matter in question will, in general, be needed to discern which of
the sets of determinative sufficient causes actually corresponds to the true
causal mechanisms. For instance, in the previous example, we needed biolog-
ical knowledge of how poisons brought about death in the various scenarios.
We will, in the interpretation of our results, assume that there always exists
some set of true causal mechanisms which forms a determinative set of suffi-
cient causes for the outcome. The concept of synergism is closely related to
that of a causal mechanism and is often found in the epidemiologic literature
[11, 29, 32]. We will say that there is synergism between the effects of E1

and E2 on D if there exists a sufficient cause for D which represents some
causal mechanism and such that this sufficient cause has E1 and E2 in its
conjunction. In related work, we have developed tests for synergism, that is,
tests for the joint presence of two or more causes in a single sufficient cause
[36, 37]. In some of our examples and in our discussion of the various results
in the paper, we will sometimes make reference to the concepts of a causal
mechanism and synergism. However, all definitions, propositions, lemmas,
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theorems and corollaries will be given in terms of sufficient causes for which
we have a precise definition.

The graphical representation of sufficient causes on a causal directed
acyclic graph does not require that the determinative set of sufficient causes
for D be minimally sufficient, nor does it require that the set of determina-
tive sufficient causes for D be nonredundant. To expand a directed acyclic
graph into another directed acyclic graph with sufficient cause nodes, all
that is required is that the set of sufficient causes constitutes a determina-
tive set of sufficient causes for D. However, a set of events that constitutes
a sufficient cause can be reduced to a set of events that constitutes a min-
imal sufficient cause by iteratively excluding unnecessary events from the
set until a minimal sufficient cause is obtained. Also, a set of determinative
sufficient causes that is redundant can be reduced to one that is nonredun-
dant by excluding those sufficient causes or minimal sufficient causes that
are redundant. It is sometimes an advantage to reduce a redundant set of
sufficient causes to a nonredundant set of minimal sufficient causes. This
is so because allowing sufficient causes that are not minimally sufficient or
allowing redundant sufficient causes or redundant minimal sufficient causes
can obscure the conditional independence relations implied by the structure
of the causal directed acyclic graph. This is made evident in Example 3.

Example 3. Consider the causal directed acyclic graph with the mini-
mal sufficient causation structure given in Figure 3(i). Conditioning onD = 0
conditions also on AB = 0 and EF = 0 and by the d-separation criterion,
A and E are conditionally independent given D = 0. But now consider an
expanded structure for this causal directed acyclic graph which involves
only minimal sufficient causes but which allows redundant minimal suffi-
cient causes. Define Q= BE, then AQ is a minimal sufficient cause for D

since AQ= 1⇒ AB = 1⇒D = 1, but A= 1;D = 1 and Q= 1;D = 1.
Now AB,AQ,EF is a determinative but redundant set of minimal sufficient
causes for D. Figure 3(ii) gives an alternative causal directed acyclic graph
with a minimal sufficient causation structure for the causal relationships
indicated in Figure 3(i). In Figure 3(ii), conditioning on D = 0 conditions
also on AB = 0, AQ= 0 and EF = 0, but the d-separation criteria no longer
imply that A and E are conditionally independent given D = 0; because
of conditioning on D = 0, there is an unblocked path between A and E,
namely A−AQ−Q−BE −E. Allowing the redundant minimal sufficient
cause AQ in the minimal sufficient causation structure obscures the condi-
tional independence relation. Similar examples can be constructed to show
that allowing sufficient causes that are not minimally sufficient can also
obscure conditional independence relations [35].
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Fig. 3. Example illustrating that redundant sufficient causes can obscure conditional in-

dependence relations.

Although allowing sufficient causes that are not minimally sufficient or
allowing redundant sufficient causes or redundant minimal sufficient causes
can obscure the conditional independence relations implied by the structure
of the causal directed acyclic graph, it may sometimes be desirable to include
nonminimal sufficient causes or redundant sufficient causes. For example, as
noted above, nonminimal sufficient cause nodes or redundant sufficient cause
nodes may represent separate causal mechanisms upon which it might be
possible to intervene. Further discussion of conditional independence rela-
tions in sufficient causation structures with nonminimally sufficient causes
and redundant sufficient causes is given in Section 6.

Note a sufficient cause need only involve one co-cause Ai in its conjunction
because if it involved Ai1 , . . . ,Aik , then Ai1 , . . . ,Aik could be replaced by
the product A′

i = Ai1 · · ·Aik . In certain cases though, it may be desirable
to include more than one Ai in a sufficient cause if this corresponds to
the actual causal mechanisms. If a set of variables A0, . . . ,Au satisfying
Theorem 1 can be constructed from functions of the random term U = ǫGD of
the nonparametric structural equation for D on G and their complements
so that Ai = fi(U), then H can be chosen to be the graph G with the
additional nodes U,A0, . . . ,Au and with directed edges from U into each Ai

and from each Ai into D. This gives rise to the definition, given below, of a
representation for D.

Definition 6. If D and all of its parents on the causal directed acyclic
graph G are binary and there exists some set {Ai, Pi} such that each Pi is
some conjunction of the parents of D and their complements, such that there
exist functions fi for which Ai = fi(ǫD), where ǫD is the random term in the
nonparametric structural equation for D on G and such that D =

∨
iAiPi,

then {Ai, Pi} is said to constitute a representation for D.
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If the Ai variables are constructed from functions of the random term ǫD
in the nonparametric structural equation for D on G, then these Ai variables
may or may not allow for interpretation, and they may or may not be such
that an intervention on these Ai variables is conceivable. In certain cases,
the Ai variables may simply be logical constructs for which no intervention
is conceivable. Although in certain cases it may not be possible to intervene
on the Ai variables, we will still refer to conjunctions of the form AiPi as
sufficient causes for D, as it is assumed that it is possible to intervene on
the parents of D which constitute the conjunction for Pi.

Suppose that for some node D on a causal directed acyclic graph G, a set
of variables A0, . . . ,Au satisfying Theorem 1 can be constructed from func-
tions of the random term U = ǫD in the nonparametric structural equation
for D on G, so that a representation for D is given by D =

∨
iAiPi. Then,

in order to simplify the diagram, instead of adding to G the variable U and
directed edges from U into each Ai so as to form the minimal sufficient cau-
sation structure, we will sometimes suppress U and simply add an asterisk
next to each Ai indicating that the Ai variables have a common cause.

Proposition 1. For any representation for D, the co-causes Ai will be
independent of the parents of D on the original directed acyclic graph G.

Proof. This follows immediately from the fact that for any representa-
tion for D, the co-causes are functions of the random term in the nonpara-
metric structural equation for D. �

If some of the sufficient causes for D are unknown, then it is not obvious
how one might make use of Theorem 1. The theorem allowed for a sufficient
causation structure on a causal directed acyclic graph, provided there existed
some set of co-causes A0, . . . ,Au. Theorem 2 complements Theorem 1 in that
it essentially states that when D and all of its parents are binary such a set
of co-causes always exists. The variables A0, . . . ,Au are constructed from
functions of the random term ǫD in the nonparametric structural equation
for D on G. Before stating and proving Theorem 1, we illustrate how the
co-causes can be constructed by a simple example.

Example 4. Suppose E is the only parent of D, then the structural
equation for D is given by D = f(E,εD). Define A0, A1 and A2 as follows:
let A0(ω) = 1 if f(1, εD(ω)) = f(0, εD(ω)) = 1 and A0(ω) = 0 otherwise; let
A1(ω) = 1 if f(1, εD(ω)) = 1 and f(0, εD(ω)) = 0, and A1(ω) = 0 otherwise;
and let A2(ω) = 1 if f(1, εD(ω)) = 0 and f(0, εD(ω)) = 1, and A2(ω) = 0
otherwise. It is easily verified that D =A0 ∨A1E ∨A2E and that A0, A1E

and A2E constitute a determinative set of minimal sufficient causes for D.
Note that this construction will give a determinative set of minimal sufficient
causes for D regardless of the form of f and the distribution of εD.
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Theorem 2. Consider a causal directed acyclic graph G on which there
exists some node D such that D and all its parents are binary, then there
exist variables A0, . . . ,Au that satisfy the conditions of Theorem 1 and such
that the sufficient causes constructed from A0, . . . ,Au along with the parents
of D on G and their complements are, in fact, minimal sufficient causes.

Proof. The nonparametric structural equation for D is given by D =
f(paD, εD). Suppose D has m parents on the original causal directed acyclic
graph G. Since these parents are binary, there are 2m values which paD
can take. Since f maps (paD, εD) to {0,1}, each value of εD assigns to
every possible realization of paD either 0 or 1 through f . There are 22

m
such

assignments. Thus, without loss of generality, we may assume that εD takes
on some finite number of distinct values N ≤ 22

m

; and so, we may write
the sample space for εD as ΩD = {ω1, . . . , ωN}, and we may use ω = ωi and
εD = εD(ωi) interchangeably. The co-causes A0, . . . ,Au can be constructed
as follows. Let Wi be the indicator 1εD=εD(ωi). Let Pi be some conjunction

of the parents of D and their complements, that is, Pi = F i
1 · · ·F

i
ni
, where

each F i
k is either a parent of D, say Ej or its complement Ej . For each Pi,

let Ai ≡ 1 if F i
1 · · ·F

i
ni

is a minimal sufficient cause for D and

Ai =
∨

j

{Wj :WjF
i
1 · · ·F

i
ni

is a minimal sufficient cause for D}

otherwise. Let Mi = Pi if Ai = 1, and Mi =AiPi otherwise. It must be shown
that each Mi = AiF

i
1 · · ·F

i
ni

is a minimal sufficient cause and that the set
of Mi’s constitutes a minimal sufficient cause representation for D (or more
precisely, the set of Mi’s for which Ai is not identically 0 constitutes a
minimal sufficient cause representation for D). We first show that each Mi =
AiF

i
1 · · ·F

i
ni

is a minimal sufficient cause for D. Clearly, this is the case if
Ai ≡ 1. Now consider those Ai such that Ai is not identically 0 and not
identically 1 and suppose Ai =W i

1 ∨ · · · ∨W i
υi
, where each W i

j is such that

W i
jF

i
1 · · ·F

i
ni

is a minimal sufficient cause for D. If AiF
i
1 · · ·F

i
ni

is not a

minimal sufficient cause, then either F i
1 · · ·F

i
ni

= 1⇒D = 1 or there exists j
such that

AiF
i
1 · · ·F

i
j−1F

i
j+1 · · ·F

i
ni

⇒ D= 1.

Suppose first that F i
1 · · ·F

i
ni

= 1 ⇒ D = 1 then there does not exist a Wj

such that WjF
i
1 · · ·F

i
ni

is a minimal sufficient cause for D; but this contra-
dicts Ai is not identically 1. On the other hand, if there exists j such that
AiF

i
1 · · ·F

i
j−1F

i
j+1 · · ·F

i
ni

⇒D = 1, then it is also the case that

W i
1F

i
1 · · ·F

i
j−1F

i
j+1 · · ·F

i
ni

⇒ D= 1,
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since Ai is simply a disjunction of the W i
j ’s. However, it would then follow

that W i
1F

i
1 · · ·F

i
ni

is not a minimal sufficient cause for D. But this contradicts

the definition ofW i
1. Thus, AiF

i
1 · · ·F

i
ni

must be a minimal sufficient cause for
D. It remains to be shown that the set of Mi’s for which Ai is not identically
0 constitutes a minimal sufficient cause representation for D. We must show
that if D = 1, then there exists a Mi = AiPi for which Mi = 1. Now D is a
function of (εD,E1, . . . ,Em), so let (ε∗D,E

∗

1 , . . . ,E
∗

m) be any particular value
of (εD,E1, . . . ,Em) for which D = 1. Consider the set {E1, . . . ,Em}. If for
any j,

εD = ε∗D, E1 =E∗

1 , . . . ,Ej−1 =E∗

j−1,

Ej+1 = E∗

j+1, . . . ,Em =E∗

m ⇒ D = 1,

remove Ej from {E1, . . . ,Em}. Continue to remove those Ej from this set
which are not needed to maintain the implication D = 1. Suppose the set
that remains is {Eh1 , . . . ,EhS

}, then either we have Eh1 = E∗

h1
, . . . ,EhS

=
E∗

hS
⇒D= 1 or we have

Eh1 =E∗

h1
, . . . ,EhS

=E∗

hS
;D = 1

and

εD = ε∗D, Eh1 =E∗

h1
, . . . ,EhS

=E∗

hS
⇒ D = 1.

If Eh1 = E∗

h1
, . . . ,EhS

= E∗

hS
⇒ D = 1, then if we define Fj as the indi-

cator Fj = 1(Ehj
=E∗

hj
), F1 · · ·FS is a minimal sufficient cause for D and

there thus exists an i, such that Pi = F1 · · ·FS and Mi = Pi, and when
Eh1 = E∗

h1
, . . . ,EhS

= E∗

hS
, we have Mi = 1. If Eh1 = E∗

h1
, . . . ,EhS

= E∗

hS
;

D = 1 but εD = ε∗D,Eh1 = E∗

h1
, . . . ,EhS

= E∗

hS
⇒ D = 1, then if we define

Fj as the indicator 1(Ehj
=E∗

hj
), 1εD=ε∗

D
F1 · · ·FS is a minimal sufficient cause

for D; and there exists an i such that Mi = AiPi and Pi = F1 · · ·FS ; and
εD = ε∗D ⇒Ai = 1, such that

εD = ε∗D, Eh1 =E∗

h1
, . . . ,EhS

=E∗

hS
⇒ Mi = 1.

We have thus shown when D = 1, there exists an Mi such that Mi = 1 and
so the Mi’s constitutes a minimal sufficient cause representation for D. �

The variables Ai constructed in Theorem 2, along with their correspond-
ing conjunctions Pi of the parents of D and their complements, we define
below as the canonical representation for D. It is easily verified that the
co-causes and representation constructed in Example 4 is the canonical rep-
resentation for D in that example.
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Definition 7. Consider a causal directed acyclic graph G, such that
some node D and all of its parents are binary. Let ΩD be the sample space
for the random term ǫD in the nonparametric structural equation for D

on G. The conjunctions Pi = F i
1 · · ·F

i
ni
, where each F i

k is either a parent of
D or the complement of a parent of D, along with the variables Ai con-
structed by Ai ≡ 1 if F i

1 · · ·F
i
ni

is a minimal sufficient cause for D and

Ai =
∨

ωj∈ΩD
{1εD=εD(ωj) : 1εD=εD(ωj)F

i
1 · · ·F

i
ni

is a minimal sufficient cause

for D}; otherwise, is said to be the canonical representation for D.

As noted above, there will in general exist more than one set of co-causes
A0, . . . ,Au, which together with the parents of D and their complements can
be used to construct a sufficient cause representation forD. The set of Ai’s in
the canonical representation constitutes only one particular set of variables
which can be used to construct a sufficient cause representation. If D has
three or more parents, examples can be constructed in which the canonical
representation is redundant. Examples can also be constructed to show that
when the canonical representation is redundant, it is not always uniquely
reducible to a nonredundant minimal sufficient cause representation. Al-
though the canonical representation will not always be nonredundant, it
does however guarantee that for a binary variable with binary parents, a
determinative set of minimal sufficient causes always exists. The canonical
representation in a sense “favors” conjunctions with fewer terms. As can
be seen in the simple illustration given in Example 4, the canonical repre-
sentation will never have Ai = 1, for some conjunction Pi, when there is a
conjunction Pj with Aj = 1 and such that the components of Pj are a subset
of those in the conjunction for Pi.

4. Monotonic effects and minimal sufficient causation. Minimal suffi-
cient causes for a particular event D may have present in their conjunction
the parents of D or the complements of these parents. In certain cases, no
minimal sufficient cause will involve the complement of a particular parent
of D. Such cases closely correspond to what will be defined below as a posi-
tive monotonic effect. Essentially, a positive monotonic effect will be said to
be present when a function in a nonparametric structural equation is non-
decreasing in a particular argument for all values of the other arguments of
the function. In this section, we develop the relationship between minimal
sufficient causation and monotonic effects.

Definition 8. The nonparametric structural equation for some node
D on a causal directed acyclic graph with parent E can be expressed as
D = f(p̃aD,E, ǫD), where p̃aD are the parents ofD other than E; E is said to
have a positive monotonic effect onD if, for all p̃aD and ǫD, f(p̃aD,E1, ǫD)≥
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f(p̃aD,E2, ǫD) whenever E1 ≥ E2. Similarly, E is said to have a negative
monotonic effect on D if, for all p̃aD and ǫD, f(p̃aD,E1, ǫD)≤ f(p̃aD,E2, ǫD)
whenever E1 ≥E2.

Note that this notion of a monotonic effect is somewhat stronger than
Wellman’s qualitative probabilistic influence [41]. See [38, 39] for further
discussion.

Theorem 3. If E is parent of D and if D and all of its parents are bi-
nary, then the following are equivalent: (i) E has a positive monotonic effect
on D; (ii) there is some representation for D which is such that none of the
representation’s conjunctions contain E; (iii) the canonical representation
of D,

∨
iAiPi, is such that no conjunction Pi contains E.

Proof. We see that (iii) implies (ii) because the representation required
by (ii) is met by the canonical representation of D, as constructed in The-
orem 2. To show that (ii) implies (i), we assume that we have a repre-
sentation for D such that D =

∨
iAiPi, where each Pi is some conjunc-

tion of the parents of D and their complements but does not contain E.
If f(p̃aD,E, ǫD) = 1, then f(p̃aD,E, ǫD) = 1 because D =

∨
iAiPi and none

of the Pi involve E; from this, (i) follows. To show that (i) implies (iii) we
prove the contrapositive. Suppose that the canonical representation of D,
{Ai, Pi}, is such that there exists a Pi which contains E in its conjunction.
Then there exists some value ε∗D of εD and some conjunction of the parents
of D and their complements, say F1 · · ·Fn, such that WiF1 · · ·FnE consti-
tutes a minimal sufficient cause for D, where Wi = 1(ε∗

D
=εD). Let p̃a∗D take

the values given by F1 · · ·Fn. This may not suffice to fix p̃a∗D, but there
must exist some value of the remaining parents of D other than E which, in
conjunction with WiF1 · · ·FnE, gives D = 0; for if there were no such values
of the other parents, then WiF1 · · ·Fn itself would be sufficient for D, and
WiF1 · · ·FnE would not be a minimal sufficient cause for D. Let p̃a∗D be
such that p̃a∗D and E together with ε∗D give D= 1, but p̃a∗D and E with ε∗D
give D = 0. Then, f(p̃a∗D,E, ε∗D) = 1, but f(p̃a∗D,E, ε∗D) = 0, and thus, (i)
does not hold. This completes the proof. �

5. Conditional covariance and minimal sufficient causation. When two
binary parents of some event D have positive monotonic effects on D, it is
in some cases possible to determine the sign of the conditional covariance of
these two parents. In general, even in the setting of monotonic effects, the
conditional covariance may be of either positive or negative sign; however,
when additional knowledge is available concerning the minimal sufficient
causation structure of D, it is often possible to determine the sign of the
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conditional covariance of two parents ofD. Theorem 4 gives conditions under
which the sign of the conditional covariance can be determined. Theorems
5 and 6 extend the conclusions of Theorem 4 to certain cases concerning
the conditional covariance of two variables that may not be parents of the
conditioning variable. The proof of Theorem 4 is suppressed; the proof in-
volves extensive but routine algebraic manipulation and factoring (details
are available from the authors upon request).

Theorem 4. Suppose that E1 and E2 are the only parents of D on some
causal directed acyclic graph, that E1, E2 and D are all binary and that both
E1 and E2 have a positive monotonic effect on D. Then, for any repre-
sentation for D such that D =A0 ∨A1E1 ∨A2E2 ∨A3E1E2, the following
hold:

(i) If A0 ≡ 0, then Cov(E1,E2|D)≤ 0.
(ii) If A0 ≡ 0, A1 and A2 are independent and E1 and E2 are indepen-

dent, then Cov(E1,E2|D)≤ 0.
(iii) If A1 ≡ 1 or A2 ≡ 1, then Cov(E1,E2|D)≤ 0 provided Cov(E1,E2)≤

0.
(iv) If A1 ≡ 1 or A2 ≡ 1, then Cov(E1,E2|D) = 0.
(v) If A1 ≡ 0 or A2 ≡ 0, then Cov(E1,E2|D)≥ 0 provided Cov(E1,E2)≥

0.
(vi) If A1 ≡ 0 or A2 ≡ 0, then Cov(E1,E2|D)≤ 0 provided Cov(E1,E2)≤

0.
(vii) If A3 ≡ 0, then Cov(E1,E2|D)≤ 0 provided Cov(E1,E2)≤ 0.
(viii) If A3 ≡ 0, A1 and A2 are independent, E1 and E2 are independent

and also A0 is independent of either A1 or A2, then Cov(E1,E2|D) = 0.

Note that parts (i)–(viii) of Theorem 4 all require some knowledge of a
sufficient cause representation for D, that is, that A0 = 0, A1 ≡ 1 or A1 ≡ 0,
etc. Conclusions about the sign of the conditional covariance cannot be
drawn from Theorem 4 without some knowledge of a sufficient causation
structure. In general, this knowledge of a sufficient causation structure would
come from prior beliefs about the actual causal mechanisms for D. As can
be seen from Theorem 4, if no knowledge of the sufficient causes is available,
the conditional covariances Cov(E1,E2|D) and Cov(E1,E2|D) may be of
either sign, even if E1 and E2 have positive monotonic effects on D. For
example, if E1 and E2 have positive monotonic effects on D and (v) holds
then Cov(E1,E2|D)≥ 0; but if E1 and E2 have positive monotonic effects
on D and (i) holds, then Cov(E1,E2|D)≤ 0.

If E1 and E2 are the only parents of D, possibly correlated due to some
common cause C, and have positive monotonic effects onD then the minimal
sufficient causation structure for the causal directed acyclic graph is that
given in Figure 4.
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Fig. 4. Minimal sufficient causation structure when E1 and E2 have positive monotonic

effects on D.

Recall the asterisk is used to indicate that A0, A1, A2 or A3 may have
a common cause U . If one of A0, A1, A2 or A3 is identically 0 or 1, then
Theorem 4 may be used to draw conclusions about the sign of the condi-
tional covariance Cov(E1,E2|D). For example, if one believes that there is
no synergism between E1 and E2 in the actual causal mechanisms for D

then A3 ≡ 0; if this holds, then parts (vii) and (viii) of Theorem 4 can be
used to determine the sign of the conditional covariance. Theorem 4 has an
obvious analogue if one or both of E1 or E2 have a negative monotonic effect
on D. If D has more than two parents, but if the two parents, E1 and E2,
are independent of all other parents of D, then the causal directed acyclic
graph can be marginalized over these other parents, and Theorem 4 could
be applied to the resulting causal directed acyclic subgraph.

Some of the conclusions of Theorem 4 require knowing the sign of Cov(E1,E2)
and Proposition 2 below (proved elsewhere [39]) relates the sign of Cov(E1,E2)
to the presence of monotonic effects. In order to state this proposition and
to allow for the development of extensions to Theorem 4, we need a few
additional definitions.

Definition 9. An edge on a causal directed acyclic graph from X to
Y is said to be of positive (negative) sign if X has a positive (negative)
monotonic effect on Y . If X has neither a positive monotonic effect nor a
negative monotonic effect on Y , then the edge from X to Y is said to be
without a sign.

Definition 10. The sign of a path on a causal directed acyclic graph
is the product of the signs of the edges that constitute that path. If one of
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Fig. 5. Examples requiring extensions to Theorem 4.

the edges on a path is without a sign, then the sign of the path is said to be
undefined.

Definition 11. Two variables X and Y are said to be positively mono-
tonically associated if all directed paths between X and Y are of positive
sign, and all common causes Ci of X and Y are such that all directed paths
from Ci to X not through Y are of the same sign as all directed paths from
Ci to Y not through X ; the variables X and Y are said to be negatively
monotonically associated if all directed paths between X and Y are of neg-
ative sign, and all common causes Ci of X and Y are such that all directed
paths from Ci to X not through Y are of the opposite sign as all directed
paths from Ci to Y not through X .

Proposition 2. If X and Y are positively monotonically associated,
then Cov(X,Y ) ≥ 0. If X and Y are negatively monotonically associated,
then Cov(X,Y )≤ 0.

Rules for the propagation of signs have been developed elsewhere [38,
39, 41] and, as seen from Proposition 2, are useful for determining the sign
of covariances; however, as will be seen below, rules for deriving the sign
of conditional covariances are more subtle. Theorem 4 concerns the condi-
tional covariance of two parents of the node D. However, often what will
be desired is the sign of the conditional covariance of two variables which
are not parents of the conditioning node. For example, in the coaggregation
problem discussed in the Introduction, we wanted to draw conclusions about
Cov(P2,B1|P1 = 1), but neither P2 nor B1 are parents of P1 in Figure 1. In
the remainder of the paper we will thus extend Theorem 4 so as to allow for
application to two variables, say F and G, which are not parents of the con-
ditioning node D. The variables F and G might be ancestors, descendants
or have common causes with the parents, E1 and E2, of D. Consider, for
example, the causal directed acyclic graphs in Figure 5.

If we were interested in the sign of Cov(F,G|D) in Figures 5(i)–(iii), then
clearly Theorem 4 is insufficient. Theorems 5 and 6 below will allow us to
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extend the conclusions of Theorem 4 to examples such as those in Figure 5
and to certain other cases involving two variables that may not be parents
of the conditioning variable. Lemmas 1–5 below will be needed in the proofs
and application of Theorems 5 and 6. Lemmas 1 and 2 are consequences
of Theorems 1 and 2 in the work of Esary, Proschan and Walkup [5]. Lem-
mas 3–5 are proved elsewhere in related work concerning the properties of
monotonic effects [38].

Lemma 1. Let f and g be functions with n real-valued arguments, such
that both f and g are nondecreasing in each of their arguments. If
X = (X1, . . . ,Xn) is a multivariate random variable with n components,
such that each component is independent of the other components, then
Cov(f(X), g(X)) ≥ 0.

Lemma 2. If F and G are binary and u1 and u2 are nondecreasing
functions, then sign(Cov(u1(F ), u2(G))) = sign(Cov(F,G)).

Lemma 3. Let X denote some set of nondescendants of A that blocks
all backdoor paths from A to Y . If all directed paths between A and Y are
positive, then P (Y > y|a,x) and E[y|a,x] are nondecreasing in a.

Lemma 4. Suppose that E is binary. Let Q be some set of variables
which are not descendants of F nor of E, and let C be the common causes
of E and F not in Q. If all directed paths from E to F (or from F to E)
are of positive sign and all directed paths from C to E not through {Q,F}
are of the same sign as all directed paths from C to F not through {Q,E},
then E[F |E,Q] is nondecreasing in E.

Lemma 5. Suppose that E is not a descendant of F . Let Q be some set
of nondescendants of E that block all backdoor paths from E to F and let D
be a node on a directed path from E to F such that all backdoor paths from D

to F are blocked by {E,Q}. If all directed paths from E to F , except possibly
those through D, are of positive sign, then E[F |D,Q,E] is nondecreasing in
E.

Obvious analogues concerning negative signs hold for all of the lemmas
above. Theorem 5 below will allow us to determine the sign of the conditional
covariance of F and G on graphs like those in Figure 5, provided there
are appropriate signs on the edges. The conclusion of Theorem 5 concerns
the equality of the sign of two conditional covariances, Cov(F,G|D) and
Cov(E1,E2|D). The theorem itself does not require knowledge of a sufficient
causation representation and thus applies to general causal directed acyclic
graphs. However, to draw conclusions about the sign of Cov(E1,E2|D), one
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must still appeal to Theorem 4 which does require some knowledge of a
sufficient causation representation.

Theorem 5. Suppose that E1, E2 and D are binary variables, that E1

and E2 are parents of D, that F and G are d-separated given {E1,E2,D},
that F and {E2,D} are d-separated given E1 and that G and {E1,D} are d-
separated given E2. If Cov(F,E1) ≥ 0 and Cov(G,E2) ≥ 0 then
sign(Cov(F,G|D)) = sign(Cov(E1,E2|D)).

Proof. Conditioning on E1 and E2, we have

Cov(F,G|D) = E[Cov(F,G|D,E1,E2)|D]

+ Cov(E[F |D,E1,E2],E[G|D,E1,E2]|D).

The first expression is 0 since F and G are d-separated given {E1,E2,D}.
Furthermore, since F and {E2,D} are d-separated given E1 and G and
{E1,D} are d-separated given E2, the second expression can be reduced to
Cov(E[F |E1],E[G|E2]|D). Thus,

Cov(F,G|D) = Cov(E[F |E1],E[G|E2]|D).

If Cov(F,E1)≥ 0 and Cov(G,E2)≥ 0 then, since E1 and E2 are binary, we
have that E[F |E1] is nonincreasing in E1 and E[G|E2] is nonincreasing in E2,
and so by Lemma 2, sign(Cov(E[F |E1],E[G|E2]|D)) = sign(Cov(E1,E2|D)).
We thus have

sign(Cov(F,G|D)) = sign(Cov(E1,E2|D))

and this completes the proof. �

Note Theorem 5 requires that Cov(F,E1)≥ 0 and Cov(G,E2)≥ 0; Propo-
sition 2 can be used to check whether these covariances are nonnegative; that
is, the covariances will be nonnegative if F and E1 are positively monoton-
ically associated and if G and E2 are positively monotonically associated.

Example 5. Note that the graphs in Figures 5(i) and (ii) satisfy the
d-separation restrictions of Theorem 5. In Figure 5(i), G is an ancestor of
E2 whereas F is related to E1 as a descendant and by a common cause.
In Figure 5(ii), F is a descendant of E1 and G is related to E2 both as an
ancestor and by a common cause. The d-separation restrictions of Theorem 5
would still hold in Figures 5(i) and (ii) if F and E1 or G and E2 had multiple
common causes or if there were several intermediate variables between E1

and F and between G and E2.
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Note, however, that Theorem 5 requires that F be d-separated from
{E2,D} given E1 and that G be d-separated from {E1,D} given E2. Thus,
if F or G were a descendant of D, these assumptions would be violated.
Consequently, Theorem 5 could not be applied to the diagram in Figure
5(iii). Nor could Theorem 5 be applied to the paper’s introductory motiva-
tion to draw conclusions about the sign of Cov(P2,B1|P1 = 1) for the graph
in Figure 1, since B1 is a descendant of the conditioning variable P1.

Theorem 6 below gives a result that allows for F and G to be descendants
ofD. Before stating this result we note, however, that Theorem 5 is restricted
in yet another way. Theorem 5 required that F and G be d-separated given
{E1,E2,D}. If F and G have common causes then the d-separation restric-
tions required by Theorem 5 will again, in general, not hold. Theorem 5
would thus not apply to the graphs given in Figure 6.

Theorem 6 gives a result similar to Theorem 5 which allows for F or G to
be descendants of D and allows also for F and G to have common causes. As
with Theorem 5, the conclusion of Theorem 6 concerns the equality of the
sign of two conditional covariances and the theorem itself does not require
knowledge of a sufficient causation representation. But once again, to draw
conclusions about the sign of Cov(F,G|D) using Theorem 6, one must know
the sign of Cov(E1,E2|D) and thus, appeal must again be made to Theorem
4 which does require some knowledge of a sufficient causation representation.

Theorem 6. Suppose that E1, E2 and D are binary variables, that E1

and E2 are parents of D, that F and G are d-separated given {E1,E2,D,Q},
where Q is some set of common causes of F and G (each component of
which is univariate and independent of the other components in Q) that F
and E2 are d-separated given {E1,D,Q}, that G and E1 are d-separated
given {E2,Q,D}, that Q and {E1,E2} are d-separated given D and that Q

Fig. 6. Examples in which F and G have a common cause.
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and D are d-separated. Suppose also that E[F |E1,D,Q] is nondecreasing in
E1 and that E[G|E2,D,Q] is nondecreasing in E2. If Cov(E1,E2|D) ≥ 0,
and for each element of Qi of Q, every directed path from Qi to F is the
same sign as every directed path from Qi to G, then Cov(F,G|D) ≥ 0. If
Cov(E1,E2|D) ≤ 0, and for each element of Qi of Q, every directed path
from Qi to F is the opposite sign as every directed path from Qi to G, then
Cov(F,G|D)≤ 0.

Proof. We will prove the first of the results above; the proof of the
second is similar. Conditioning on {E1,E2,Q}, we have

Cov(F,G|D) = E[Cov(F,G|D,Q,E1,E2)|D]

+ Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|D).

The first expression is 0 since F and G are d-separated given {E1,E2,Q,D}.
We can furthermore re-write the second expression as follows:

Cov(F,G|D)

= Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|D)

= E[Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|Q,D)|D]

+ Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]|D).

We will show that each of these two expressions is positive. Since F and
E2 are d-separated given {E1,D,Q}, E[F |D,Q,E1,E2] = E[F |E1,D,Q]; and
since G and E1 are d-separated given {E2,D,Q}, E[G|D,Q,E1,E2] =
E[G|E2,D,Q]. By assumption, we have that E[F |E1,D,Q] is nondecreas-
ing in E1 and that E[G|E2,D,Q] is nondecreasing in E2. For fixed q,

Cov(E[F |D,Q= q,E1,E2],E[G|D,Q= q,E1,E2]|Q= q,D)

= Cov(E[F |E1,D,Q= q],E[G|E2,D,Q= q]|Q= q,D)

= Cov(E[F |E1,D,Q= q],E[G|E2,D,Q= q]|D),

since Q and {E1,E2} are d-separated given D. And since E[F |E1,D,Q= q]
is nondecreasing in E1 and E[G|E2,D,Q = q] is nondecreasing in E2, by
Lemma 2, Cov(E[F |E1,D,Q= q],E[G|E2,D,Q= q]|D) = Cov(E1,E2|D)≥
0. Thus, we have that Cov(E[F |D,Q= q,E1,E2],E[G|D,Q= q,E1,E2]|Q=
q,D)≥ 0 for all q and taking expectations over Q we have E[Cov(E[F |D,Q,

E1,E2],E[G|D,Q,E1,E2]|Q,D)|D]≥ 0. We have shown that the first of the
two expressions above is nonnegative. We now show that the second expres-
sion

Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]|D)
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is also nonnegative. As before, E[F |D,Q,E1,E2] = E[F |E1,D,Q] and E[G|D,

Q,E1,E2] = E[G|E2,D,Q]. By hypothesis, for each element of Qi of Q ev-
ery directed path from Qi to F is the same sign as every directed path
from Qi to G; without loss of generality, we may assume that the sign of
all of these directed paths are positive. By Lemma 3 with X = {E1,D} and
X = {E2,D}, respectively, E[F |E1,D,Q= q] and E[G|E2,D,Q= q] are both
nondecreasing in each dimension of q. Note that we may apply Lemma 3
because if there were any backdoor paths from Q to F or to G, then Q

would have some parent which would also be a common cause of F and G

and thus also a member of the set Q, but this would violate the assumption
that the members of Q were independent of one another. Furthermore,

E[E[F |D,Q= q,E1,E2]|Q= q,D] = E[E[F |E1,D,Q= q]|Q= q,D]

= E[E[F |E1,D,Q= q]|D]

and similarly, E[E[G|D,Q = q,E1,E2]|Q = q,D] = E[E[G|E2,Q = q]|D] =
E[E[G|E2,Q= q]|Q= q,D] since Q and {E1,E2} are d-separated given D.
Thus,

E[E[F |D,Q= q,E1,E2]|Q= q,D] = E[E[F |E1,D,Q= q]|D]

and

E[E[G|D,Q= q,E1,E2]|Q= q,D] = E[E[G|E2,D,Q= q]|D]

are both nondecreasing in each dimension of q from which it follows by
Lemma 1 that Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]) ≥
0. Since Q and D are d-separated we also have

Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]|D)

= Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D])≥ 0

and this completes the proof. �

Note the application of Theorem 6 requires that E[F |E1,D,Q] is nonde-
creasing in E1 and that E[G|E2,D,Q] is nondecreasing in E2. Either of the
following will suffice for E[F |E1,D,Q] to be nondecreasing in E1 (similar
remarks hold for E[G|E2,D,Q]): (i) F and D are d-separated given {Q,E1}
and F and E1 are positively monotonically associated or (ii) if F is a descen-
dant of E1 and D, F and E1 do not have common causes and all directed
paths from E1 to F not through D are of positive sign. Condition (i) suffices
by Lemma 4; condition (ii) suffices by Lemma 5.

Example 6. Although the graphs in Figure 5(iii) and in Figure 6 do
not satisfy the d-separation restrictions of Theorem 5, it can be verified that
the these graphs do satisfy the d-separation restrictions of Theorem 6.
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At first glance, the d-separation restrictions of Theorems 5 and 6 appear
to severely limit the settings to which conclusions about conditional covari-
ances can be drawn. The d-separation requirements are, in fact, somewhat
less restrictive than they may first seem. We argue that the d-separation
restrictions of either Theorems 5 or 6 will apply to most graphs in which
neither F nor G is a cause of the other (though the restrictions on the set of
common causes Q, if any, of F and G in Theorem 6 are more substantial).
Theorem 5 requires (i) that F and G are d-separated given {E1,E2,D} and
(ii) that F and {E2,D} are d-separated given E1 and that G and {E1,D}
are d-separated given E2. In Theorems 5 and 6 (and Figures 5 and 6), F
was either an ancestor or descendant of or shared a common cause with E1;
and G was either an ancestor or descendant of or shared a common cause
with E2. The d-separation restrictions essentially just require that F and G

are sufficiently structurally separated so that (i) F and G are only asso-
ciated because of {E1,E2,D} and (ii) F is associated with {E2,D} only
through E1; and G is associated with {E1,D} only through E2. If neither
F or G is a descendant of D, then the conditions will, in general, only be
violated if one of F or G is a cause of the other or if they share a common
cause. Theorem 6, however, allowed for F and G to have common causes
Q. The restrictions on Q in Theorem 6 were somewhat substantial, but the
restrictions on F and G are very similar to those of Theorem 5 except that
they were made conditional on Q. Theorems 5 and 6 will thus apply to a
wide range of graphs, as can also be seen by the variety of graphs in Figures
5 and 6, in which neither F nor G is a cause of the other.

As is clear from Proposition 2, rules concerning the propagation of signs
were sufficient to determine the sign of the covariance between two variables.
For conditional covariances, the principles guiding such a determination are
more subtle. The principle behind the proofs of Theorems 5 and 6 was to
partition the conditional covariance into two components

Cov(F,G|D) = E[Cov(F,G|D,Q,E1,E2)|D]

+ Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|D)

with Q=∅ in the proof of Theorem 5. The d-separation restrictions allowed
for the conclusion that Cov(F,G|D,Q,E1,E2) = 0. Additional d-separation
restrictions were needed so that the second expression Cov(E[F |D,Q,E1,E2],
E[G|D,Q,E1,E2]|D) could be reduced to a form in which the sign of this
conditional covariance could be determined from signed edges and an appeal
to Theorem 4.

Having stated Theorem 6, we can now return to the motivating example
presented in the paper’s Introduction.
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Fig. 7. Causal directed acyclic graph with signed edges, under the null hypothesis of no

familial coaggregation.

Example 7. In the motivating example described in Figure 1, with data
available only on P1, P2,B1,B2, we wish to test the null hypothesis of no fa-
milial coaggregation (i.e., the null hypothesis that there are no directed edges
emanating from F ). Note that Hudson et al. [10] consider an alternative ap-
proach using a threshold model with additive multivariate normal latent
factors. Here we use a sufficient causation approach. Given the substantive
knowledge that for no subset of the population do the genetic causes Gp and
GB of P and B prevent disease and that for no subset of the population do
the environmental causes E1 and E2 of B and P prevent either disease, we
have that E1 and E2 have positive monotonic effects on P1 and B1 and on
P2 and B2, respectively, and that GP has a positive monotonic effect on P1

and on P2 and that GB has a positive monotonic effect on B1 and on B2.
The null hypothesis of no familial coaggregation can then be represented by
the signed causal directed acyclic graph given in Figure 7.

If, in addition, using prior biological knowledge, it is assumed that there
is no synergism between E1 and GP in the sufficient cause sense, then we
can apply part (vii) of Theorem 4 and, under the null hypothesis of no fa-
milial coaggregation, we have that Cov(E1,GP |P1 = 1) ≤ 0. By Theorem 6
with Q=∅ we have that sign(Cov(B1, P2|P1 = 1)) = sign(Cov(E1,GP |P1 =
1)). Under the null hypothesis of no familial coaggregation we thus have
sign(Cov(B1, P2|P1 = 1)) = sign(Cov(E1,GP |P1 = 1))≤ 0. Thus, as claimed
in the Introduction, a test of the null Cov(B1, P2|P1 = 1) ≤ 0 is a test of
no familial coaggregation under the assumption of no synergism between
E1 and GP . Note that by the symmetry of this example, a test of the null
Cov(B2, P1|P2 = 1)≤ 0 is a test of no familial coaggregation under the as-
sumption of no synergism between E2 and GP . The development of a theory
of minimal sufficient causation on directed acyclic graphs provided the con-
cepts necessary to derive these results.

6. Discussion. In this paper we have incorporated notions of minimal
sufficient causation into the directed acyclic graph causal framework. Doing
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so has provided a clear theoretical link between two major conceptualizations
of causality. Causal directed acyclic graphs with minimal sufficient causation
structures have furthermore allowed for the development of rules governing
the sign of conditional covariances and of rules governing the presence of
conditional independencies which hold only in a particular stratum of the
conditioning variable.

The present work could be extended in a number of directions. Theory
could be developed concerning cases in which a sufficient causation struc-
ture involves redundant sufficient causes or sufficient causes that are not
minimally sufficient. Specifically, it might be possible to develop a system
of axiomatic rules which govern conditional independencies within strata
of variables on a causal directed acyclic graph with a sufficient causation
structure, to furthermore demonstrate the soundness and completeness of
this axiomatic system and to construct algorithms for applying the rules
to identify all conditional independencies inherent in the graph’s structure.
Another direction of further research might involve the incorporation of the
AND and OR nodes that arise from sufficient causation structures into other
graphical models such as summary graphs [4], MC-graphs [12], chain graph
models [2, 6, 14, 15, 16, 23, 34, 42] and ancestral graph models [24]. Finally,
further work could be done extending the results of Theorem 4 to yet more
general settings than those of Theorems 5 and 6.
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