The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.1126/science.1167742

Accessed
March 10, 2018 8:48:34 AM EST

Citable Link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4142693

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)
biogeographic patterns. Their study, too, is centered on a large database, but in this case it is entirely of living organisms, the marine bivalves. Over 28,000 records of bivalve genera and subgenera from 322 locations around the world have now been compiled by these authors, giving a global record of some 854 genera and subgenera and 5132 species. No fossils are included in the database, but because bivalves have a good fossil record, it is possible to estimate accurately the age of origin of almost all extant genera. It is then possible to plot a backward survivorship curve (8) for each of the 27 global bivalve provinces (9).

On the basis of these curves, Krug et al. find that origination rates of marine bivalves increased significantly almost everywhere immediately after the K-Pg mass extinction event. The highest K-Pg origination rates all occurred in tropical and warm-temperate regions. A distinct pulse of bivalve diversification in the early Cenozoic was concentrated mainly in tropical and subtropical regions (see the figure).

The steepest part of the global backward survivorship curve for bivalves lies between 65 and 50 million years ago, pointing to a major biodiversification event in the Paleogene (65 to 23 million years ago) that is perhaps not yet captured in Alroy et al.’s database (5, 7). The jury is still out on what may have caused this event. But we should not lose sight of the fact that the steep rise to prominence of many modern floral and faunal groups in the Cenozoic may bear no simple relationship to climate or any other type of environmental change (10, 11).

References

obstacles that prevent the emergence of a computational social science?

To date, research on human interactions has relied mainly on one-time, self-reported data on relationships. New technologies, such as video surveillance (1), e-mail, and “smart” name badges, offer a moment-by-moment picture of interactions over extended periods of time, providing information about both the structure and content of relationships. For example, group interactions could be examined through e-mail data, and questions about the temporal dynamics of human communications could be addressed: Do work groups reach a stasis with little change, or do they dramatically change over time (2)? What interaction patterns predict highly productive groups and individuals? Can the diversity of news and content we receive predict our power or performance (3)? Face-to-face group interactions could be assessed over time with “sociometers.” Such electronic devices could be worn to capture physical proximity, location, movement, and other facets of individual behavior and collective interactions. The data could raise interesting questions about, for example, patterns of proximity and communication within an organization, and flow patterns associated with high individual and group performance (4). We can also learn what a “macro” social network of society looks like (5), and how it evolves over time. Phone companies have records of call patterns among their customers extending over multiple years, and e-commerce portals such as Google and Yahoo collect instant messaging data on global communication. Do these data paint a comprehensive picture of societal-level communication patterns? In what ways do these interactions affect economic productivity or public health? It is also increasingly easy to track the movements of people (6). Mobile phones allow the large-scale tracing of people’s movements and physical proximities over time (7). Such data may provide useful epidemiological insights: How might a pathogen, such as influenza, driven by physical proximity, spread through a population?

The Internet offers an entirely different channel for understanding what people are saying, and how they are connecting (8). Consider, for example, this past political season, tracing the spread of arguments, rumors, or positions about political and other issues in the blogosphere (9), as well as the behavior of individuals “surfing” the Internet (10), where the concerns of an electorate become visible in the searches they conduct. Virtual worlds, which by their nature capture a complete record of individual behavior, offer ample opportunities for research—experimentation that would otherwise be impossible or unacceptable (11). Similarly, social network Web sites offer a unique opportunity to understand the impact of a person’s position in the network on everything from their tastes to their moods to their health (12), whereas Natural Language Processing offers increased capacity to organize and analyze the vast amounts of text from the Internet and other sources (13).

In short, a computational social science is emerging that leverages the capacity to collect and analyze data with an unprecedented breadth and depth and scale. Substantial barriers, however, might limit progress. Existing ways of conceiving human behavior were developed without access to terabytes of data describing minute-by-minute interactions and locations of entire populations of individuals. For example, what does existing sociological network theory, built mostly on a foundation of one-time “snapshot” data, typically with only dozens of people, tell us about massively longitudinal data sets of millions of people, including location, financial transactions, and communications? These vast, emerging data sets on how people interact surely offer qualitatively new perspectives on collective human behavior, but our current paradigms may not be receptive.

There are also enormous institutional obstacles to advancing a computational social science. In terms of approach, the subjects of inquiry in physics and biology present different challenges to observation and intervention. Quarks and cells neither mind when we discover their secrets nor protest if we alter their environments during the discovery process. As for infrastructure, the leap from social science to a computational social science is larger than from biology to a computational biology, largely due to the requirements of distributed monitoring, permission seeking, and encryption. There are fewer resources available in the social sciences, and even the physical (and administrative) distance between social science departments and engineering or computer science departments tends to be greater than for the other sciences.

Perhaps the thorniest challenges exist on the data side, with respect to access and privacy. Much of these data are proprietary (e.g., mobile phone and financial transactional information). The debacle following AOLs public release of “anonymized” search records of many of its customers highlights the potential risk to individuals and corporations in the sharing of personal data by private companies (14). Robust models of collaboration and data sharing between industry and academia are needed to facilitate research and safeguard consumer privacy and provide liability protection for corporations. More generally, properly managing privacy issues is essential. As the recent U.S. National Research Council’s report on geographical information system data highlights, it is often possible to pull individual profiles out of even carefully anonymized data (15). Last year, the U.S. National Institutes of Health and the Wellcome Trust abruptly removed a number of genetic databases from online access (16). These databases were seemingly anonymized, simply reporting the aggregate frequency of particular genetic markers. However, research revealed the potential for de-anonymization, based on the statistical power of the sheer quantity of data collected from each individual in the database (17).

Because a single dramatic incident involving a breach of privacy could produce rules and statutes that stifle the nascent field of computational social science, a self-regulatory regime of procedures, technologies, and rules is needed that reduces this risk but preserves research potential. As a cornerstone of such a self-regulatory regime, U.S. Institutional Review Boards (IRBs) must increase their technical knowledge to understand the potential for intrusion and individual harm because new possibilities do not fit their current paradigms for harm. Many IRBs would be poorly equipped to evaluate the possibility that complex data could be de-anonymized. Further, it may be necessary for IRBs to oversee the creation of a secure, centralized data infrastructure. Currently, existing data sets are scattered among many groups, with uneven skills and understanding of data security and widely varying protocols. Researchers themselves must develop technologies that protect privacy while preserving data essential for research. These systems, in turn, may prove useful for industry in managing customer privacy and data security (18).

Finally, the emergence of a computational social science shares with other nascent interdisciplinary fields (e.g., sustainability science) the need to develop a paradigm for training new scholars. Tenure committees and editorial boards need to understand and reward the effort to publish across disciplines. Initially, computational social science needs to be the work of teams of social and computer scientists. In the long run, the question will be whether academia should nurture computational social scientists, or teams of computationally literate social scientists and socially literate computer scientists. The emergence of cognitive science offers a powerful model for the development of a computational social science. Cognitive science has involved fields ranging from neurobiology to philosophy to computer science. It has attracted the investment of substantial
resources to create a common field, and created enormous progress for public good in the last generation. We would argue that a computational social science has a similar potential, and is worthy of similar investments.

References and Notes
18. M.V.A. has applied for a patent on an algorithm for protecting privacy of communication content.
19. Additional resources in computational social science can be found in the supporting online material.

Supporting Online Material
www.sciencemag.org/cgi/content/full/323/5915/721/DC1
10.1126/science.1167742

CELL BIOLOGY

Moonlighting in Mitochondria

Martin G. Myers Jr.

Molecules known as signal transducers and activators of transcription (STATs) regulate gene expression in the nucleus in response to cell surface receptors that are activated by cytokines. On page 793 of this issue, Wegzryn et al. (1) reveal that the isoform Stat3 also functions in another organelle—the mitochondria—to control cell respiration and metabolism. This finding not only reveals a new role for Stat3, but implies its potential role in linking cellular signaling pathways to energy production.

Stat3 proteins represent the canonical mediators of signals elicited by type I cytokine receptors at the cell surface (2). For instance, the adipoctyokine leptin activates Stat3 in hypothalamic neurons to promote the expression of the catabolic neuropeptide, propiomelanocortin, thereby regulating whole-body energy intake and metabolism (3). The binding of a cytokine to its receptor triggers an intracellular cascade of events, beginning with the activation of an enzyme, Jak kinase, which is associated with the receptor’s cytoplasmic domain. The activated receptor-Jak complex then recruits and phosphorylates a tyrosine residue in cognate STAT proteins. This modification causes the STAT protein to relocate to the nucleus, where, as a dimer, it binds to specific DNA sequences and promotes gene expression (see the figure). Thus, the well-understood job of STAT proteins is to transmit a transcriptional signal from the cell surface to the nucleus.

The phosphorylation of some STAT proteins on a specific serine residue may also contribute to their regulation (2).

Wegzryn et al. have now identified another crucial role for Stat3, the isoform that responds to cytokines of the interleukin-6 and -10 families (including leptin). These cytokines act in the immune system and many other organ systems to regulate diverse cellular processes, including differentiation, proliferation, and apoptosis (2). Noting that GRIM-19, a mitochondrial protein, interacts with Stat3 and inhibits Stat3 transcriptional activity (4–7), the authors investigated the potential mitochondrial location of Stat3, revealing that a fraction of cellular Stat3 resides within the mitochondria of mouse myocytes and hepatocytes. Here, Stat3 associates with GRIM-19–containing...
Supporting Online Material for

Computational Social Science

David Lazer,* Alex Pentland, Lada Adamic, Sinan Aral, Albert-László Barabási, Devon Brewer, Nicholas Christakis, Noshir Contractor, James Fowler, Myron Gutmann, Tony Jebara, Gary King, Michael Macy, Deb Roy, Marshall Van Alstyne

*E-mail: david_lazer@harvard.edu

Published 6 February 2009, Science 323, 721 (2009)
DOI: 10.1126/science.1167742

This PDF file includes:

Complete list of author affiliations
References
Online resources
Supplementary Online Materials

“Computational Social Science” Science 323: 721-723 (6 February 2009)

Contact Information

David Lazer
Director, Program on Networked Governance
Associate Professor of Public Policy
Harvard Kennedy School
Harvard University
Cambridge, MA 02138
david_lazer@harvard.edu
http://www.davidlazer.com

Alex Pentland
Professor
MIT Media Laboratory
20 Ames Street
Cambridge, MA 02142, USA
pentland@media.mit.edu
http://web.media.mit.edu/~sandy/

Lada Adamic
Assistant Professor
School of Information and Center for the Study of Complex Systems
University of Michigan
1085 S. University Ave.
Ann Arbor, MI 48109
ladamic@umich.edu
http://www-personal.umich.edu/~ladamic/

Sinan Aral
Assistant Professor
NYU Stern School of Business
44 West 4 Street Room 8-81
New York, NY, 10012
Research Affiliate
MIT Sloan School of Management.
saral@nyu.edu
Personal Webpage: http://pages.stern.nyu.edu/~saral

Albert-László Barabási
Professor
Devon D. Brewer
Interdisciplinary Scientific Research
P.O. Box 15110
Seattle, WA 98115
 interscientific@yahoo.com
http://www.interscientific.net

Nicholas A. Christakis
Professor
Department of Health Care Policy, Harvard Medical School
Department of Sociology, Harvard University
180 Longwood Avenue
Boston, MA 02115-5899
christak@hcp.med.harvard.edu
http://christakis.med.harvard.edu/

Noshir Contractor
Jane S. & William J. White Professor of Behavioral Sciences, Northwestern University
Professor of Industrial Engineering & Management Science, McCormick School of Engineering
Professor of Communication Studies, School of Communication
Professor of Management & Organizations, Kellogg School of Management
Director, Science of Networks in Communities (SONIC)
Research Laboratory Affiliate, National Center for Supercomputing Applications, University of
Illinois at Urbana-Champaign
2145 Sheridan Road, TECH D241
Evanston, Illinois 60208-3119
nosh@northwestern.edu
http://nosh.northwestern.edu

James H. Fowler
Associate Professor
Political Science Department
University of California, San Diego
Social Science Building 383
9500 Gilman Drive #0521
La Jolla, CA 92093-0521
Myron P. Gutmann
Professor of History and Information
Director, Inter-university Consortium for Political and Social Research
University of Michigan
PO Box 1248, Ann Arbor, MI 48106-1248
gutmann@umich.edu
http://www.icpsr.org/ICPSR/staff/gutmann.html

Tony Jebara
Associate Professor
Department of Computer Science
Columbia University
1214 Amsterdam Avenue, Mail Code 0401
New York, NY 10027
jebara@cs.columbia.edu
http://www1.cs.columbia.edu/~jebara/

Gary King
Professor
Director, Institute of Quantitative Social Science
Harvard University
Cambridge, MA 02138
king@harvard.edu
http://gking.harvard.edu/

Michael Macy
Professor
Social Dynamics Laboratory
372 Uris Hall
Cornell University
Ithaca, New York
14853-7601 Cornell University
Mwm14@cornell.edu
http://www.people.cornell.edu/pages/mwm14/

Deb Roy
Associate Professor of Media Arts and Sciences
MIT Media Laboratory
20 Ames Street
Cambridge, MA 02142, USA
dkroy@media.mit.edu
http://web.media.mit.edu/~dkroy/
Marshall Van Alstyne
Associate Professor
Boston University School of Management
595 Commonwealth Avenue
Boston, MA 02215
Research Associate
MIT Center for E-Business
mva@bu.edu

Acknowledgments
This paper is an outgrowth of a December 7, 2007 conference by the same title. Thanks go to
the Institute for Quantitative Social Science and the Program on Networked Governance at
Harvard University (the latter supported by National Science Foundation grant # 0131923), and
the MIT Legatum Center for sponsorship of that conference. Video of this conference is

S. Aral acknowledges generous funding support from the Marketing Sciences Institute and the
Institute for Innovation and Information Productivity. A.-L.B. is supported by James S.
McDonnell Foundation 21st Century Initiative in Studying Complex Systems, the National
Science Foundation within the DDDAS (CNS-0540348), ITR (DMR-0426737) and IIS-0513650
programs, the US Office of Naval Research Award N00014-07-C, The Office of Naval Research
(ONR), Grant: N00014-07-C-0227 and by the Defense Threat Reduction Agency.

The viewpoints expressed in this article are the authors’ alone.
Additional References

example.” *Academy of Management Review* 31: 681-703

http://dx.doi.org/10.1016/j.socnet.2005.11.003

Fowler, J.H., Dawes, C.T., Christakis, N.A. “Model of Genetic Variation in Human Social Networks.” *Proceedings of the National Academy of Sciences*, http://dx.doi.org/10.1073/pnas.0806746106

http://dx.doi.org/10.1007/s11113-008-9095-4

http://doi.acm.org/10.1145/1134707.1134732

Online resources

http://socdynamics.org

http://www.hks.harvard.edu/netgov