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Direct reciprocity and conditional cooperation are important mecha-
nisms to prevent free riding in social dilemmas. However, in large
groups, these mechanisms may become ineffective because they re-
quire single individuals to have a substantial influence on their peers.
However, the recent discovery of zero-determinant strategies in the
iterated prisoner’s dilemma suggests that we may have underesti-
mated the degree of control that a single player can exert. Here,
we develop a theory for zero-determinant strategies for iterated mul-
tiplayer social dilemmas, with any number of involved players. We
distinguish several particularly interesting subclasses of strategies: fair
strategies ensure that the own payoff matches the average payoff of
the group; extortionate strategies allow a player to perform above
average; and generous strategies let a player perform below average.
We use this theory to describe strategies that sustain cooperation, in-
cluding generalized variants of Tit-for-Tat and Win-Stay Lose-Shift.
Moreover, we explore two models that show how individuals can
further enhance their strategic options by coordinating their play with
others. Our results highlight the importance of individual control and
coordination to succeed in large groups.

evolutionary game theory | alliances | public goods game |
volunteer’s dilemma | cooperation

Cooperation among self-interested individuals is generally
difficult to achieve (1–3), but typically the free rider problem

is aggravated even further when groups become large (4–9). In
small communities, cooperation can often be stabilized by forms
of direct and indirect reciprocity (10–17). For large groups, how-
ever, it has been suggested that these mechanisms may turn out to
be ineffective, as it becomes more difficult to keep track of the
reputation of others and because the individual influence on others
diminishes (4–8). To prevent the tragedy of the commons and to
compensate for the lack of individual control, many successful
communities have thus established central institutions that enforce
mutual cooperation (18–22).
However, a recent discovery suggests that we may have un-

derestimated the amount of control that single players can exert in
repeated games. For the repeated prisoner’s dilemma, Press and
Dyson (23) have shown the existence of zero-determinant strategies
(or ZD strategies), which allow a player to unilaterally enforce
a linear relationship between the own payoff and the coplayer’s
payoff, irrespective of the coplayer’s actual strategy. The class of
zero-determinant strategies is surprisingly rich: for example, a player
who wants to ensure that the own payoff will always match the
coplayer’s payoff can do so by applying a fair ZD strategy, like Tit-
for-Tat. On the other hand, a player who wants to outperform the
respective opponent can do so by slightly tweaking the Tit-for-Tat
strategy to the own advantage, thereby giving rise to extortionate
ZD strategies. The discovery of such strategies has prompted sev-
eral theoretical studies, exploring how different ZD strategies
evolve under various evolutionary conditions (24–30).
ZD strategies are not confined to the repeated prisoner’s di-

lemma. Recently published studies have shown that ZD strate-
gies also exist in other repeated two player games (29) or in
repeated public goods games (31). Herein, we will show that such
strategies exist for all symmetric social dilemmas, with an arbi-
trary number of participants. We use this theory to describe
which ZD strategies can be used to enforce fair outcomes or to
prevent free riders from taking over. Our results, however, are

not restricted to the space of ZD strategies. By extending the
techniques introduced by Press and Dyson (23) and Akin (27), we
also derive exact conditions when generalized versions of Grim, Tit-
for-Tat, and Win-Stay Lose-Shift allow for stable cooperation. In
this way, we find that most of the theoretical solutions for the re-
peated prisoner’s dilemma can be directly transferred to repeated
dilemmas with an arbitrary number of involved players.
In addition, we also propose two models to explore how indi-

viduals can further enhance their strategic options by coordinating
their play with others. To this end, we extend the notion of ZD
strategies for single players to subgroups of players (to which we
refer as ZD alliances). We analyze two models of ZD alliances,
depending on the degree of coordination between the players.
When players form a strategy alliance, they only agree on the set
of alliance members, and on a common strategy that each alliance
member independently applies during the repeated game. When
players form a synchronized alliance, on the other hand, they
agree to act as a single entity, with all alliance members playing the
same action in a given round. We show that the strategic power of
ZD alliances depends on the size of the alliance, the applied
strategy of the allies, and on the properties of the underlying social
dilemma. Surprisingly, the degree of coordination only plays a role
as alliances become large (in which case a synchronized alliance
has more strategic options than a strategy alliance).
To obtain these results, we consider a repeated social dilemma

between n players. In each round of the game, players can decide
whether to cooperate (C) or to defect (D). A player’s payoff
depends on the player’s own decision and on the decisions of all
other group members (Fig. 1A): in a group in which j of the other
group members cooperate, a cooperator receives the payoff aj,
whereas a defector obtains bj. We assume that payoffs satisfy the
following three properties that are characteristic for social
dilemmas (corresponding to the individual-centered interpretation
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of altruism in ref. 32): (i) irrespective of the own strategy, players
prefer the other group members to cooperate (aj+1 ≥ aj and bj+1 ≥ bj
for all j); (ii) within any mixed group, defectors obtain strictly higher
payoffs than cooperators (bj+1 > aj for all j); and (iii) mutual co-
operation is favored over mutual defection ðan−1 > b0Þ. To illustrate
our results, we will discuss two particular examples of multiplayer
games (Fig. 1B). In the first example, the public goods game (33),
cooperators contribute an amount c> 0 to a common pool, knowing
that total contributions aremultiplied by r (with 1< r< n) and evenly
shared among all group members. Thus, a cooperator’s payoff is
aj = rcðj+ 1Þ=n− c, whereas defectors yield bj = rcj=n. In the second
example, the volunteer’s dilemma (34), at least one group member
has to volunteer to bear a cost c> 0 in order for all group members
to derive a benefit b> c. Therefore, cooperators obtain aj = b− c
(irrespective of j), whereas defectors yield bj = b if j≥ 1 and b0 = 0.
Both examples (andmanymore, such as the collective risk dilemma)
(7, 8, 35) are simple instances of multiplayer social dilemmas.
We assume that the social dilemma is repeated, such that in-

dividuals can react to their coplayers’ past actions (for simplicity,
we will focus here on the case of an infinitely repeated game). As
usual, payoffs for the repeated game are defined as the average
payoff that players obtain over all rounds. In general, strategies
for such repeated games can become arbitrarily complex, as
subjects may condition their behavior on past events and on the
round number in nontrivial ways. Nevertheless, as in pairwise
games, ZD strategies turn out to be surprisingly simple.

Results
Memory-One Strategies and Akin’s Lemma. ZD strategies are
memory-one strategies (23, 36); they only condition their behavior
on the outcome of the previous round. Memory-one strategies can
be written as a vector p= ðpC;n−1; . . . ; pC;0; pD;n−1; . . . ; pD;0Þ. The
entries pS;j denote the probability to cooperate in the next round,
given that the player previously played S∈ fC;Dg and that j of the
coplayers cooperated (in the SI Text, we present an extension in
which players additionally take into account who of the coplayers
cooperated). A simple example of a memory-one strategy is the
strategy Repeat, pRep, which simply reiterates the own move of the
previous round, pRepC;j = 1 and pRepD;j = 0. In addition, memory-one
strategies need to specify a cooperation probability p0 for the first
round. However, our results will often be independent of the initial
play, and in that case we will drop p0.
Let us consider a repeated game in which a focal player with

memory-one strategy p interacts with n− 1 arbitrary coplayers
(who are not restricted to any particular strategy). Let vS;jðtÞ
denote the probability that the outcome of round t is ðS; jÞ. Let
vðtÞ= ½vC;n−1ðtÞ; . . . ; vD;0ðtÞ� be the vector of these probabilities. A
limit distribution v is a limit point for t→∞ of the sequence
½vð1Þ+ . . . + vðtÞ�=t. The entries vS;j of such a limit distribution
correspond to the fraction of rounds in which the focal player
finds herself in state ðS; jÞ over the course of the game.
There is a surprisingly powerful relationship between a focal

player’s memory-one strategy and the resulting limit distribution
of the iterated game. To show this relationship, let qCðtÞ be the
probability that the focal player cooperates in round t. By definition
of pRep we can write qCðtÞ=pRep · vðtÞ= ½vC;n−1ðtÞ+ . . . + vC;0ðtÞ�.
Similarly, we can express the probability that the focal player
cooperates in the next round as qCðt+ 1Þ= p · vðtÞ. It follows that
qCðt+ 1Þ− qCðtÞ= ðp− pRepÞ · vðtÞ. Summing up over all rounds
from 1 to t, and dividing by t, yields ðp−pRepÞ · ½vð1Þ+ . . .
vðtÞ�=t= ½qCðt+ 1Þ− qCð1Þ�=t, which has absolute value at most
1=t. By taking the limit t→∞ we can conclude that

�
p−pRep

�
· v= 0: [1]

This relation between a player’s memory-one strategy and the
resulting limit distribution will prove to be extremely useful.
Because the importance of Eq. 1 has been first highlighted by Akin
(27) in the context of the pairwise prisoner’s dilemma, we will refer
to it as Akin’s lemma. We note that Akin’s lemma is remarkably
general, because it neither makes any assumptions on the specific
game being played, nor does it make any restrictions on the strat-
egies applied by the remaining n− 1 group members.

Zero-Determinant Strategies in Multiplayer Social Dilemmas. As an
application of Akin’s lemma, we will show in the following that
single players can gain an unexpected amount of control over
the resulting payoffs in a multiplayer social dilemma. To this
end, we first need to introduce some further notation. For
a focal player i, let us write the possible payoffs in a given round
as a vector gi = ðgiS;jÞ, with giC;j = aj and giD;j = bj. Similarly, let us
write the average payoffs of i’s coplayers as g−i = ðg−iS;jÞ, where
the entries are given by g−iC;j = ½jaj + ðn− j− 1Þbj+1�=ðn− 1Þ and
g−iD;j = ½jaj−1 + ðn− j− 1Þbj�=ðn− 1Þ. Finally, let 1 denote the 2n-
dimensional vector with all entries being one. Using this notation, we
can write player i’s payoff in the repeated game as πi = gi · v, and the
average payoff of i’s coplayers as π−i = g−i · v. Moreover, by defini-
tion of v as a limit distribution, it follows that 1 · v= 1. After these
preparations, let us assume player i applies the memory-one strategy

p = pRep + αgi + βg−i + γ1; [2]

with α, β, and γ being parameters that can be chosen by player i
(with the only restriction that β≠ 0). Due to Akin’s lemma, we
can conclude that such a player enforces the relationship
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Fig. 1. Illustration of the model assumptions for repeated social dilemmas. (A)
We consider symmetric n−player social dilemmas in which each player can either
cooperate or defect. The player’s payoff depends on its own decision and on the
number of other group members who decide to cooperate. (B) We will discuss
two particular examples: the public goods game (in which payoffs are pro-
portional to the number of cooperators) and the volunteer’s dilemma (as the
most simple example of a nonlinear social dilemma). (C) In addition to individual
strategies, we will also explore how subjects can enhance their strategic options
by coordinating their play with other group members. We refer to the members
of such a ZD alliance as allies, and we call group members that are not part of
the ZD alliance outsiders. Outsiders are not restricted to any particular strategy.
Some or all of the outsiders may even form their own alliance.
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0 =
�
p− pRep

�
· v=

�
αgi + βg−i + γ1

�
v= απi + βπ−i + γ: [3]

Player i’s strategy thus guarantees that the resulting payoffs of
the repeated game obey a linear relationship, irrespective of how
the other group members play. Moreover, by appropriately
choosing the parameters α, β, and γ, the player has direct control
on the form of this payoff relation. As in Press and Dyson (23),
who were first to discover such strategies for the prisoner’s di-
lemma, we refer to the memory-one strategies in Eq. 2 as zero-
determinant strategies or ZD strategies.
For our purpose, it will be convenient to proceed with

a slightly different representation of ZD strategies. Using the
parameter transformation l=−γ=ðα+ βÞ, s=−α=β, and ϕ=−β,
ZD strategies take the form

p = pRep +ϕ
�ð1− sÞ�l1− gi

�
+ gi − g−i

�
; [4]

and the enforced payoff relationship according to Eq. 3 becomes

π−i = sπi + ð1− sÞl: [5]

We refer to l as the baseline payoff of the ZD strategy and to s as
the strategy’s slope. Both parameters allow an intuitive interpre-
tation: when all players adopt the same ZD strategy p such that
πi = π−i, it follows from Eq. 5 that each player yields the payoff l.
The value of s determines how the mean payoff of the other
group members π−i varies with πi. The parameter ϕ does not
have a direct effect on Eq. 5; however, the magnitude of ϕ de-
termines how fast payoffs converge to this linear payoff relation-
ship as the repeated game proceeds (37).
The parameters l;  s; and ϕ of a ZD strategy cannot be chosen

arbitrarily, because the entries pS;j are probabilities that need to
satisfy 0≤ pS;j ≤ 1. In general, the admissible parameters depend
on the specific social dilemma being played. In SI Text, we show
that exactly those relations 5 can be enforced for which either
s= 1 (in which case the parameter l in the definition of ZD
strategies becomes irrelevant) or for which l and s< 1 satisfy

max
0≤ j≤n−1

�
bj −

j
n− 1

bj − aj−1
1− s

�
≤ l≤ min

0≤ j≤n−1

�
aj +

n− j− 1
n− 1

bj+1 − aj
1− s

�
:

[6]

It follows that feasible baseline payoffs are bounded by the payoffs
for mutual cooperation and mutual defection, b0 ≤ l≤ an−1, and that
the slope needs to satisfy −1=ðn− 1Þ≤ s≤ 1. With s sufficiently
close to 1, any baseline payoff between b0 and an−1 can be achieved.
Moreover, because the conditions in Eq. 6 become increasingly re-
strictive as the group size n increases, larger groups make it more
difficult for players to enforce specific payoff relationships.

Important Examples of ZD Strategies. In the following, we discuss
some examples of ZD strategies. At first, let us consider a player
who sets the slope to s= 1. By Eq. 5, such a player enforces the
payoff relation πi = π−i, such that i’s payoff matches the average
payoff of the other group members. We call such ZD strategies
fair. As shown in Fig. 2A, fair strategies do not ensure that all
group members get the same payoff; due to our definition of
social dilemmas, unconditional defectors always outperform
unconditional cooperators, no matter whether the group also
contains fair players. Instead, fair players can only ensure that
they do not take any unilateral advantage of their peers. Our
characterization 6 implies that all social dilemmas permit a
player to be fair, irrespective of the group size. As an example,
consider the strategy proportional Tit-for-Tat (pTFT), for which
the probability to cooperate is simply given by the fraction of
cooperators among the coplayers in the previous round

pTFTS;j =
j

n− 1
: [7]

For pairwise games, this definition of pTFT simplifies to Tit-for-
Tat, which is a fair ZD strategy (23). However, also for the public
goods game and for the volunteer’s dilemma, pTFT is a ZD
strategy, because it can be obtained from Eq. 4 by setting s= 1
and ϕ= 1=c, with c being the cost of cooperation.
As another interesting subclass of ZD strategies, let us con-

sider strategies that choose the mutual defection payoff as
baseline payoff, l= b0, and that enforce a positive slope 0< s< 1.
The enforced payoff relation 5 becomes π−i = sπi + ð1− sÞb0, im-
plying that on average the other group members only get
a fraction s of any surplus over the mutual defection payoff.
Moreover, as the slope s is positive, the payoffs πi and π−i are
positively related. As a consequence, the collective best reply for
the remaining group members is to maximize i’s payoffs by
cooperating in every round. In analogy to Press and Dyson (23),
we call such ZD strategies extortionate, and we call the quantity
χ = 1=s the extortion factor. For games in which l= b0 = 0, Eq. 5
shows that the extortion factor can be written as χ = πi=π−i. Large
extortion factors thus signal a substantial inequality in favor of
player i. Extortionate strategies are particularly powerful in so-
cial dilemmas in which mutual defection leads to the lowest
group payoff (as in the public goods game and in the volunteer’s
dilemma). In that case, they enforce the relation πi ≥ π−i; on
average, player i performs at least as well as the other group
members (as also depicted in Fig. 2B). As an example, let us
consider a public goods game and a ZD strategy pEx with l= 0,
ϕ= n=½ðn− rÞsc+ rc�, for which Eq. 4 implies

pExS;j =
j

n− 1

�
1− ð1− sÞ nðr− 1Þ

r+ ðn− rÞs
	
; [8]

independent of the player’s own move S∈ fC;Dg. In the limit
s→ 1, pEx approaches the fair strategy pTFT. As s decreases from
1, the cooperation probabilities of pEx are increasingly biased to
the own advantage. Extortionate strategies exist for all social
dilemmas (this follows from condition [6] by setting l= b0 and
choosing an s close to 1). However, larger groups make extor-
tion more difficult. For example, in public goods games with
n> r=ðr− 1Þ, players cannot be arbitrarily extortionate any longer
as [6] implies that there is an upper bound on χ (SI Text).
As the benevolent counterpart to extortioners, Stewart and

Plotkin described a set of generous strategies for the iterated
prisoner’s dilemma (24, 28). Generous players set the baseline
payoff to the mutual cooperation payoff l= an−1 while still
enforcing a positive slope 0< s< 1. These parameter choices
result in the payoff relation π−i = sπi + ð1− sÞan−1. In particular,
for games in which mutual cooperation is the optimal outcome
for the group (as in the public goods game and in the prisoner’s
dilemma but not in the volunteer’s dilemma), the payoff of
a generous player satisfies πi ≤ π−i (Fig. 2C). For the example of
a public goods game, we obtain a generous ZD strategy pGe by
setting l= rc− c and ϕ= n=½ðn− rÞsc+ rc�, such that

pGe
S; j =

j
n− 1

+ ð1− sÞ n− j− 1
n− 1

nðr− 1Þ
r+ ðn− rÞs: [9]

For s→ 1, pGe approaches the fair strategy pTFT, whereas lower
values of s make pGe more cooperative. Again, such generous
strategies exist for all social dilemmas, but the extent to which
players can be generous depends on the particular social di-
lemma and on the size of the group.
As a last interesting class of ZD strategies, let us consider players

who choose s= 0. By Eq. 5, such players enforce the payoff relation
π−i = l, meaning that they have unilateral control over the mean
payoff of the other group members (for the prisoner’s dilemma,
such equalizer strategies were first discovered in ref. 38). However,
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unlike extortionate and generous strategies, equalizer strategies
typically cease to exist once the group size exceeds a critical
threshold. For the example of a public goods game this thresh-
old is given by n= 2r=ðr− 1Þ. For larger groups, single players
cannot determine the mean payoff of their peers any longer.

Stable Cooperation in Multiplayer Social Dilemmas. Let us next ex-
plore which ZD strategies give rise to a Nash equilibrium with
stable cooperation. In SI Text, we prove that such ZD strategies
need to have two properties: they need to be generous (by setting
l= an−1 and s> 0), but they must not be too generous [the slope
needs to satisfy s≥ ðn− 2Þ=ðn− 1Þ]. In particular, whereas in the
repeated prisoner’s dilemma any generous strategy with s> 0 is
a Nash equilibrium (27, 28), larger group sizes make it increasingly
difficult to uphold cooperation. In the limit of infinitely large
groups, it follows that s needs to approach 1, suggesting that ZD
strategies need to become fair. For the public goods game, this
implies that stable cooperation can always be achieved when
players cooperate in the first round and adopt proportional Tit-
for-Tat thereafter. Interestingly, this strategy has received little
attention in the previous literature. Instead, researchers have fo-
cused on other generalized versions of Tit-for-Tat, which co-
operate if at least k coplayers cooperated in the previous round (4,
39, 40). Such memory-one strategies take the form pS;j = 0 if j< k
and pS;j = 1 if j≥ k. Unlike pTFT, these threshold strategies nei-
ther enforce a linear relation between payoffs, nor do they induce
fair outcomes, suggesting that pTFT may be the more natural
generalization of Tit-for-Tat in large-scale social dilemmas.
In addition to the stable ZD strategies, Akin’s lemma also

allows us to characterize all pure memory-one strategies that
sustain mutual cooperation. In SI Text, we show that any such
strategy p needs to satisfy the following four conditions

pC;n−1 = 1; pC;n−2 = 0; pD;1 ≤
an−1 − a0
bn−1 − an−1

;

and pD;0 ≤
an−1 − b0
bn−1 − an−1

; [10]

with no restrictions being imposed on the other entries pS;j. The
first condition pC;n−1 = 1 ensures that individuals continue to play C
after mutual cooperation; the second condition pC;n−2 = 0 guaran-
tees that any unilateral deviation is punished; and the last two
conditions describe whether players are allowed to revert to co-
operation after rounds with almost uniform defection. Surprisingly,
only these last two conditions depend on the specific payoffs of the
social dilemma. As an application, condition 10 imply that the
threshold variants of Tit-for-Tat discussed above are only a Nash
equilibrium if they use the most stringent threshold: k= n− 1. Such
unforgiving strategies, however, have the disadvantage that they are
often susceptible to errors: already a small probability that players
fail to cooperate may cause a complete breakdown of cooperation
(41). Instead, the stochastic simulations by Hauert and Schuster (5)
showed that successful strategies tend to cooperate after mutual

cooperation and after mutual defection [i.e., pC;n−1 = pD;0 = 1 and
pS;j = 0 for all other states ðS; jÞ]. We refer to such a behavior as
WSLS, because for pairwise dilemmas it corresponds to the Win-
Stay, Lose-Shift strategy described by ref. 36. Because of condition
[10], WSLS is a Nash equilibrium if and only if the social dilemma
satisfies ðbn−1 + b0Þ=2≤ an−1. For the example of a public goods
game, this condition simplifies to r≥ 2n=ðn+ 1Þ, which is always
fulfilled for r≥ 2. For social dilemmas that meet this condition,
WSLS provides a stable route to cooperation that is robust to errors.

Zero-Determinant Alliances. In agreement with most of the theo-
retical literature on repeated social dilemmas, our previous
analysis is based on the assumption that individuals act in-
dependently. As a result, we observed that a player’s strategic
options typically diminish with group size. As a countermeasure,
subjects may try to gain strategic power by coordinating their
strategies with others. In the following, we thus extend our the-
ory of ZD strategies for single individuals to subgroups of play-
ers. We refer to these subgroups as ZD alliances. Because the
strategic power of ZD alliances is likely to depend on the exact
mode of coordination between the allies, we consider two dif-
ferent models: when subjects form a strategy alliance, they only
agree on the set of alliance members and on a common ZD
strategy that each ally independently applies. During the actual
game, there is no further communication between the allies.
Strategy alliances can thus be seen as a boundary case of co-
ordinated play, which requires a minimum amount of coordi-
nation. Alternatively, we also analyze synchronized alliances, in
which all allies synchronize their actions in each round (i.e., the
allies cooperate collectively, or they defect collectively). In ef-
fect, such a synchronized alliance thus behaves like a new entity
that has a higher leverage than each player individually. Syn-
chronized alliances thus may be considered as a boundary case of
coordinated play that requires substantial coordination.
To model strategy alliances, let us consider a group of nA

allies, with 1≤ nA < n. We assume that all allies make a binding
agreement that they will play according to the same ZD strategy
p during the repeated game. Because the ZD strategy needs to
allow allies to differentiate between the actions of the other allies
and the outsiders, we need to consider a more general state space
than before. The state space now takes the form ðS; jA; j−AÞ. The
first entry S corresponds to the focal player’s own play in the pre-
vious round, jA gives the number of cooperators among the other
allies, and j−A is the number of cooperators among the outsiders. A
memory-one strategy p again needs to specify a cooperation prob-
ability pS;jA;j−A for each of the possible states. Using this state space,
we can define ZD strategies for a player i in a strategy alliance as

p=pRep+ϕ
�
ð1− sÞ�l1− gi

�
+ gi −

�
nA − 1

�
wAgA −

�
n− nA

�
w−Ag−A

�
:

[11]

The vector gA contains the average payoff of the other allies for
each possible state, and g−A is the corresponding vector for the
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Fig. 2. Characteristic dynamics of payoffs over the
course of the game for three different ZD strategies.
Each panel depicts the payoff of the focal player πi

(blue) and the average payoff of the other group
members π−i (red) by thick lines. Additionally, the
individual payoffs of the other group members are
shown as thin red lines. (A) A fair player ensures
that the own payoff matches the mean payoff of
the other group members. However, fair strategies
cannot ensure that all group members yield the
same payoff. (B) For games in which mutual de-
fection leads to the lowest group payoff, extortionate players ensure that their payoffs are above average. (C) In games in which mutual cooperation is the
social optimum, generous players let their coplayers gain higher payoffs. The three graphs depict the case of a public goods game with r = 4, c= 1, and group
size n= 20. For the strategies of the other group members, we used random memory-one strategies, where the cooperation probabilities were independently
drawn from a uniform distribution. For the strategies of the focal player, we used (A) pTFT, (B) pEx with s= 0:8, and (C) pGe with s= 0:8.
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outsiders. The weights w−A ≥ 0 and wA ≥ 0 are additional para-
meters that determine the relative importance of outsiders
and other allies, being subject to the constraint ðnA − 1ÞwA +
ðn− nAÞw−A = 1. In the special case of a single player forming
an alliance, nA = 1, this guarantees that the two definitions of
ZD strategies 4 and 11 are equivalent.
Similarly to the case of single individuals, we can apply Akin’s

lemma to show that strategy alliances enforce a linear relation-
ship between their own mean payoff πA and the mean payoff of
the outsiders π−A (for details, see SI Text)

π−A = sAπA +
�
1− sA

�
l; [12]

where the slope of the alliance is given by sA = ½s− ðnA − 1ÞwA�=
½1− ðnA − 1ÞwA�: A strategy alliance can enforce exactly those
payoff relationships 12 for which either sA = 1 or for which l
and sA < 1 satisfy the conditions

max
0≤ j≤n−nA

�
bj−

j
n− nA

bj − aj−1
1− sA

�
≤ l≤ min

nA−1≤ j≤n−1

�
aj+

n− j− 1
n− nA

bj+1 − aj
1− sA

�
:

[13]

Interestingly, to reach this strategic power, an alliance needs to put
a higher weight on the within-alliance payoffs (i.e., wA needs to
exceed w−A; SI Text), such that the allies are stronger affected by
what the other allies do, as opposed to the actions of the outsiders.
For single player alliances, nA = 1, condition 13 again simplifies to
the previous condition 6. However, as the alliance size nA increases,
condition 13 becomes easier to satisfy. Larger alliances can there-
fore enforce more extreme payoff relationships. For the example
of a public goods game, we noted that single players cannot be
arbitrarily extortionate when n> r=ðr− 1Þ. Alliances, on the other
hand, only need to be sufficiently large, nA=n≥ ðr− 1Þ=r. Once an
alliance has this critical mass, there are no bounds to extortion.
In a similar way, we can also analyze the strategic possibilities

of a synchronized alliance. Because synchronized alliances act as
a single entity, they transform the symmetric social dilemma
between n independent players to an asymmetric game between
n− nA + 1 independent players. From the perspective of the al-
liance, the state space now takes the form ðS; jÞ, where S∈ fC;Dg
is the common action of all allies and where 0≤ j≤ n− nA is the
number of cooperators among the outsiders. ZD strategies for
the synchronized alliance can be defined analogously to ZD
strategies for single players

p = pRep +ϕ
��
1− sA

��
l1− gA

�
+ gA − g−A

�
; [14]

with gA being the payoff vector for the allies and g−A being the
payoff vector of the outsiders. For a single player alliance, nA = 1,
this again reproduces the definition of ZD strategies in 4. By
applying Akin’s lemma to Eq. 14, we conclude that synchronized
alliances enforce π−A = sAπA + ð1− sAÞl, which is the same as re-
lationship 12 for strategy alliances. Surprisingly, we even find that
for reasonable alliance sizes, nA ≤ n=2, strategy alliances and syn-
chronized alliances have the same set of enforceable parameters l
and sA, as given by Eq. 13 (see SI Text for details). Thus, for the
two models of ZD alliances considered here, the exact mode of
coordination is irrelevant for the alliance’s strategic power unless
the alliance has reached a substantial size.
Table 1 gives an overview of our findings on ZD strategies and

ZD alliances in multiplayer social dilemmas. It shows that, although
generally, ZD strategies exist for all group sizes, the power of single
players to enforce particular outcomes typically diminishes or dis-
appears in large groups. Forming ZD alliances then allows players
to increase their strategic scope. The impact of a given ZD alliance,
however, depends on the specific social dilemma: although ZD
alliances can become arbitrarily powerful in public goods games,
their strategic options remain limited in the volunteer’s dilemma.

Discussion
When Press and Dyson (23) discovered the new class of ZD
strategies for the repeated prisoner’s dilemma, this came as a big
surprise (24, 25): after more than five decades of research, it
seemed unlikely that any major property of the prisoner’s di-
lemma has been overlooked. For repeated multiplayer dilemmas
the situation is different. Although various Folk theorems guar-
antee that cooperation is also feasible in large groups (42, 43),
there has been considerably less theoretical research on the evo-
lution of cooperation in repeated multiplayer dilemmas (4, 5, 39,
40). This lack of research may be due to the higher complexity: the
mathematics of repeated n-player dilemmas seems to be more
intricate, and numerical investigations are impeded because the
time to compute payoffs increases exponentially in the number of
players (5). Nevertheless, we showed here that many of the results
for the repeated prisoner’s dilemma can be directly transferred to
general social dilemmas, with an arbitrary number of involved
subjects. The foundation for this progress is a new framework,
provided by Akin’s lemma and the theory of Press and Dyson.
Using this framework, we extended the theory of repeated

multiplayer dilemmas into three directions. The first and most
immediate direction is our finding that ZD strategies exist in all
social dilemmas. These strategies allow players to unilaterally dic-
tate linear payoff relations, irrespective of the specific social di-
lemma being played, irrespective of the group size, and irrespective
of the counter measures taken by the other group members. In
particular, we showed that any social dilemma allows players to be
fair, extortionate, or generous. Each of these strategy classes has its
own particular strengths: extortionate strategies give a player a rel-
ative advantage compared with the other group members; fair
strategies help to avoid further inequality within a group; and
generous strategies allow players to revert to mutual cooperation
when a coplayer defected by accident. At the same time, ZD
strategies are remarkably simple. For example, to be fair in a public
goods game, players only need to apply a rule called proportional
Tit-for-Tat: if j of the n− 1 other group members cooperated in
the previous round, then cooperate with probability j=ðn− 1Þ in
the following round. Extortionate and generous strategies can be
obtained in a similar way, by slightly modifying pTFT to the own
advantage or to the advantage of the others.
As the second direction, we explored which ZD strategies and

which pure memory-one strategies can be used to sustain co-
operation in multiplayer dilemmas. Among ZD strategies, such
strategies need to be generous (such that players never try to
outperform their peers) (27, 28), but at the same time they must
not be too generous. The right degree of generosity depends on the
size of the group but not on the specific social dilemma being
played. As a rule of thumb, we obtain that in larger groups, subjects
are required to show less generosity.
As the last direction, we extended the concept of zero-

determinant strategies from single players to subgroups of players,
to which we refer to as ZD alliances. Depending on the degree of
coordination, we explored two forms of ZD alliances: members
of a strategy alliance only agree on using a common ZD strategy
during the game, but they do not coordinate each of their
decisions; members of a synchronized alliance, on the other
hand, act as a single entity—they either all cooperate or they all
defect in a given round. The effect of such ZD alliances depends
on the size of the alliance, the applied strategy, and the prop-
erties of the underlying social dilemma. In general, we find that
by coordinating their play with others, subjects can increase their
strategic options considerably. The exact mode of coordination,
however, only turns out to play a minor role: As long as the size
of the ZD alliance is below half the group size, strategy alliances
and synchronized alliances have the same strategic power. In ad-
dition to their static properties, ZD strategies for the prisoner’s
dilemma also have a remarkable dynamic component (23, 44):
when a player commits himself to an extortionate ZD strategy,
then adapting coplayers learn to cooperate over time. Numerical
simulations in the SI show an analogous result for multiplayer
dilemmas: when ZD alliances apply strategies with a positive
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slope, they can trigger a positive group dynamics among the out-
siders. The magnitude of this dynamic effect again depends on the
size of the alliance, and on the applied strategy of the allies.
Here, we focused on ZD strategies; but the toolbox that we

apply (in particular Akin’s lemma) is more general. As an ex-
ample, we identified all pure memory-one strategies that allow
for stable cooperation, including the champion of the repeated
prisoner’s dilemma, Win-Stay Lose-Shift (36, 45). We expect that
there will be further applications of Akin’s lemma to come. Such
applications may include, for instance, a characterization of all

Nash equilibria among the stochastic memory-one strategies or
an analysis of how alliances are formed and whether evolutionary
forces favor particular alliances over others (46, 47).
Overall, our results reveal how single players in multiplayer

games can increase their control by choosing the right strategies
and how they can increase their strategic options by joining
forces with others.
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Table 1. Strategic power of different ZD strategies for three different social dilemmas

Strategy
class

Typical
property

Prisoner’s
dilemma Public goods game Volunteer’s dilemma

Fair strategies π−A = πA Always exist Always exist Always exist
Extortionate

strategies
π−A ≤ πA Always exist In large groups, single players cannot be

arbitrarily extortionate, but sufficiently large
ZD alliances can be arbitrarily extortionate

Even large ZD alliances cannot be
arbitrarily extortionate

Generous
strategies

π−A ≥ πA Always exist In large groups, single players cannot be
arbitrarily generous, but sufficiently large ZD
alliances can be arbitrarily generous

Do not ensure that own payoff is
below average

Equalizers π−A = l Always exist May not be feasible for single players, but is
always feasible for sufficiently large ZD alliances

Only feasible if size of ZD alliance is
nA =n−1, can only enforce l=b− c

Analogously to the case of individual players, ZD alliances are fair when they set sA = 1; they are extortionate when l=b0 and 0< sA < 1; they are generous
for l= an−1 and 0< sA <1; and they are equalizers when sA = 0. For each of the three considered social dilemmas, we explore whether a given ZD strategy is
feasible by examining the respective conditions in Eq. 13. In the repeated prisoner’s dilemma, single players can exert all strategic behaviors (23, 28, 29). Other
social dilemmas either require players to form alliances to gain sufficient control (as in the public goods game), or they only allow for limited forms of control
(as in the volunteer’s dilemma). These results hold both for strategy alliances and for synchronized alliances.
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