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There are deep, yet largely unexplored, connections between
computer science and biology. Both disciplines examine how
information proliferates in time and space. Central results in
computer science describe the complexity of algorithms that solve
certain classes of problems. An algorithm is deemed efficient if it can
solve a problem in polynomial time, which means the running time of
the algorithm is a polynomial function of the length of the input. There
are classes of harder problems for which the fastest possible algorithm
requires exponential time. Another criterion is the space requirement
of the algorithm. There is a crucial distinction between algorithms
that can find a solution, verify a solution, or list several distinct
solutions in given time and space. The complexity hierarchy that is
generated in this way is the foundation of theoretical computer
science. Precise complexity results can be notoriously difficult. The
famous question whether polynomial time equals nondeterministic
polynomial time (i.e., P = NP) is one of the hardest open problems in
computer science and all of mathematics. Here, we consider simple
processes of ecological and evolutionary spatial dynamics. The basic
question is: What is the probability that a new invader (or a new
mutant) will take over a resident population?We derive precise com-
plexity results for a variety of scenarios. We therefore show that
some fundamental questions in this area cannot be answered by
simple equations (assuming that P is not equal to NP).

evolutionary games | fixation probability | complexity classes

Evolution occurs in populations of reproducing individuals.
Mutation generates distinct types. Selection favors some

types over others. The mathematical formalism of evolution de-
scribes how populations change in their genetic (or phenotypic)
composition over time. Deterministic models of evolution are based
on differential equations. They assume infinitely large population
size and ignore demographic and other stochasticity. The more
precise descriptions of evolutionary dynamics, however, use sto-
chastic processes, which take into account the intrinsic randomness
of when and where individuals reproduce and how many of their
offspring survive. They also describe populations of finite size.
A well-known stochastic process of evolution was formulated

by Moran in 1958 (1). In any one-time step, a random individual
is chosen proportional to fitness for reproduction and a random
individual is chosen for death. The offspring of the first indi-
vidual is added to the population. The total population size re-
mains constant and is given by N. The original process was
formulated for constant fitness, which means the fitness value of
individuals does not depend on the relative abundance of various
types in the population; it is a fixed number. The crucial question
is: What is the probability that a newly introduced mutant will
generate a lineage that takes over the entire population? This
quantity is called the fixation probability. For the original Moran
process, there is a simple formula. If the resident has fitness 1
and the mutant has fitness r, then the fixation probability of the
mutant is given by ρ= ð1− 1=rÞ=ð1− 1=rNÞ.
The Moran process assumes that the biological population is

well mixed. The offspring of any one individual can replace any
other individual. If there is a spatial or social population struc-
ture, then such is not the case. The question arises as to which
population structures affect the outcome of evolution, for example,

by modifying the fixation probability. The classic studies of
Maruyama (2) and Slatkin (3) showed that symmetrical pop-
ulation structures, such as regular lattices, do not change the
fixation probability compared with the well-mixed population.
The effect of population structure on evolution is also at the
heart of the famous Wright–Fisher debate (4–6).
In 2005, evolutionary graph theory was introduced as a tool to

study how generalized population structures affect evolutionary
outcome (7), and it has been studied in many other works (8–12).
The individuals occupy the vertices of the graph. The links (edges)
determine who interacts with whom for receiving payoff and for
reproduction. There can be a single graph for game dynamical in-
teraction and evolutionary replacement, or the interaction and re-
placement graphs can be distinct (13). Often, the graph is held
constant during evolutionary updating, but it is also possible to
study dynamically changing graphs (14–22). The original Moran
process is recovered as a special case given by the complete graph.
It turns out that all isothermal graphs, where all vertices have the
same rate of updating (the same “temperature”), have the same
fixation probability as the well-mixed population (7). All symmet-
rical population structures lead to isothermal graphs, but the con-
verse is not true.
Many evolutionary contests, however, are not fought out with

constant fitness. Instead, the fitness of individual types depends
on the frequency (i.e., relative abundance) of types in the pop-
ulation. A well-known approach to frequency-dependent selection
is evolutionary game theory (23–27). Here, the fitnesses of in-
dividuals are linear functions of the frequencies. The coefficients
of the linear function are the elements of the payoff matrix.
Again, constant selection is a special case of frequency-dependent
selection; for constant selection, all entries in a row of the payoff
matrix are the same and this property holds for all rows. Evo-
lutionary game theory has traditionally been investigated with
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deterministic equations describing infinitely large populations
(23–26) and, more recently, has moved to finite population size
and stochastic processes (27–38).
Evolutionary games have a long history of being studied on

spatial lattices (28, 39–42) and, more recently, on graphs (7, 27, 43,
44). The crucial quantity that needs to be calculated to evaluate
natural selection is the fixation probability, ρ, of a newly introduced
mutant that arises at a random position on the graph. If ρ> 1=N,
where N is the population size, then natural selection favors the
fixation of the new mutant, because a neutral mutant would have a
fixation probability of 1=N. In a contest between two strategies,
another question would be if the fixation probability of the first
strategy exceeds the fixation probability of the second strategy. If
such is the case, then the first strategy would be more abundant in
mutation-selection equilibrium for low mutation rate. The crucial
problem is of the following form: Given a graph and a payoff
matrix, what are the fixation probabilities of an individual of a new
type arising in a population of the other type?
Spatial structure plays an important role in many cases. For

example, spatial structure can affect the rate of neutral evolution
(45), and there are results that describe which spatial structures
do or do not affect the outcome of constant selection (46–48).
Some population structures can be amplifiers or suppressors of
constant selection (7, 49, 50), meaning that they modify the in-
tensity of selective differences. Finally, for evolutionary games,
spatial structure can favor evolution of cooperation (28, 51).
The study of spatial dynamics also has a long tradition in

ecology (52–56). Here, the typical setting is that different species
compete for ecological niches. Many evolutionary models are
formally equivalent to ecological ones, especially if we consider
only selection and not mutation. Then we can interpret the dif-
ferent types of evolutionary games as different species. Again, a
crucial question is: What is the probability that a newly introduced
species can get established or take over an ecological niche?
This paper is structured as follows. First, we give an intuitive ac-

count of the foundation of theoretical computer science. We de-
scribe classes of problems that can be solved by algorithms in certain
time and space constraints. Subsequently, we present two simple
problems of evolutionary dynamics in spatial settings. The first
problem is motivated by a very simple ecological dynamic; the sec-
ond problem is the general setting of evolutionary games on graphs.
In both cases, the basic question is to calculate the takeover prob-
ability (or fixation probability) of a new type. That is, we introduce a
new type in a random position in the population, and we ask what is
the complexity of an algorithm that can characterize the probability
that the new type takes over the population (becomes fixed). Un-
expectedly, we are able to prove exact complexity results (Table 1).
The class PTIME (denoted as P) consists of problems whose

solutions can be computed by an algorithm that uses polynomial
time. Formally, an algorithm uses polynomial time if the running
time of the algorithm grows as a polynomial function of the size of
the input. In computer science, P represents the class of problems
that can be solved efficiently.
The class nondeterministic polynomial time (denoted as NP)

consists of problems for which solutions exist that are of polynomial
length, and given a candidate for a solution of polynomial length,
whether the candidate is indeed a solution can be checked in
polynomial time. Therefore, an NP algorithm can verify a solution
in polynomial time.
To proceed further, we need the notion of “reduction” between

classes of problems. A reduction, from a given problem P1 to a

problem P2, is a translation such that a solution for P2 can provide
a solution for P1. More precisely, if there is a polynomial-time
reduction from P1 to P2, then a polynomial-time algorithm for P2
implies a polynomial-time algorithm for P1.
A given problem is NP-hard if for every problem in NP, there

is a polynomial reduction to the given problem. A problem is NP-
complete if it is both NP-hard and there is an NP algorithm for
the problem.
For example, consider a Boolean formula over variables, and

the question of whether there exists an assignment to the vari-
ables such that the formula is true. A polynomial candidate so-
lution is an assignment of truth values to variables, and given a
candidate assignment, the formula can be evaluated in poly-
nomial time. This question is the famous satisfiability (SAT)
problem in computer science. The SAT problem is NP-complete.
The class P is contained in NP, and a major long-standing open

question in computer science is whether P = NP. A polynomial-
time algorithm for an NP-complete (or an NP-hard) problem would
imply that P = NP, resolving the long-standing open problem.
The class sharp (# P) intuitively corresponds to counting the

number of solutions. A problem is in # P if it counts the number
of distinct solutions such that (i) every possible candidate for a
solution is of polynomial length, and (ii) given a candidate for a
solution, it can be checked in polynomial time whether the candi-
date is a solution. For example, given a Boolean formula, the
problem of whether there are at least k distinct satisfying assign-
ments to the formula is a # P-problem. A given problem is
# P-hard, if for every # P-problem, there is a polynomial-time re-
duction to the given problem. A # P-complete problem is a problem
that is both # P-hard and for which there is a # P-solution. For
example, counting the number of solutions in SAT is # P-complete.
The class NP is contained in # P because, given the enumer-

ation of solutions for # P, it is easy to check if there exists at least
one solution. Intuitively, an NP problem asks whether there is at
least one solution, whereas # P is the counting version that asks
if there are least k distinct solutions (and the special case of k= 1
gives NP). Again, a major open question is whether NP = # P.
Note that a polynomial-time algorithm for a # P-complete
problem would be an even bigger result, because it would imply
both P = NP and P = # P.
The class PSPACE consists of problems that can be solved with

polynomial space. Note that a polynomial space algorithm can
reuse space and can, in general, require exponential time. Every
# P problem can be solved in PSPACE by simply enumerating
each candidate for a solution and checking if it is a solution. Because
we can reuse space to enumerate the candidates for solutions, the
enumeration can be achieved in polynomial space. Moreover,
every polynomial-time algorithm uses, at most, polynomial space.
Hence, it follows that # P is contained in PSPACE. The notion of
PSPACE-hardness and PSPACE-completeness is similar to the
notion of NP-hardness and NP-completeness, but with respect to
the problems in PSPACE. Again, a long-standing open question in
computer science is whether #P = PSPACE, and a polynomial-
time algorithm for a PSPACE-complete (or PSPACE-hard)
problem would imply P = NP = # P = PSPACE.
We have mentioned that the major questions about the equality

of the complexity classes are open problems, but the widely be-
lieved conjecture is that P is strictly contained in NP, NP is strictly
contained in # P, and # P is strictly contained in PSPACE.
In other words, it is widely believed that NP-complete problems
cannot be solved in polynomial time, # P-complete problems are
harder than NP-complete problems, and PSPACE-complete
problems are harder than # P-complete problems. A pictorial
illustration of the complexity classes is shown in Fig. 1.

Results
The first problem is motivated by ecological dynamics. There is
an ecosystem occupied by resident species. The spatial structure
of the ecosystem is given by a graph. An invading species is in-
troduced (an illustration is provided in Fig. 2). We assume the
invading species has a competitive advantage in the sense that

Table 1. Complexity results for various models and
computational questions

Model Qualitative Quantitative

Ecological scenario NP-complete # P-complete
Linear fitness PSPACE-complete PSPACE-complete
Exponential fitness P PSPACE-complete
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once a position is occupied by the invading species, the resident
cannot get it back. The invading species, however, has a density
constraint: If the number of invaders around a focal invader is
above a threshold, h, then the invader in the focal vertex cannot
colonize another vertex.
We are interested in the probability that the invader starting from

a random initial position will take over the entire ecosystem (and
therefore drive the resident to extinction). There are two types of
questions. The “qualitative question” is whether the takeover prob-
ability is greater than 0. The “quantitative question” is concerned
with computing the takeover probability subject to a small error. Fig.
2 gives a pictorial illustration. We prove the following results. The
qualitative question is NP-complete (SI Appendix, Theorem 4). The
quantitative question is # P-complete (SI Appendix, Theorem 8).
The second problem is concerned with evolutionary games in

structured populations. There are two types, A and B, whose
reproductive rates depend on local interactions. We consider the
setting of games on graphs. Each vertex is occupied by one in-
dividual, which is either A or B. Interactions occur pairwise with
all neighbors. The payoff matrix is given by

A B
A
B

�
a b
c d

�
. [1]

The entries of the payoff matrix can be positive or negative (or
0). Each individual interacts with all of its neighbors on the graph
to derive a payoff sum. The payoff sum is translated into repro-
ductive success as follows. If the payoff sum is positive, then the
fecundity equals the payoff sum. If the payoff sum is negative,
then the fecundity is 0. We refer to this translation as linear
fitness. In any one time step, a random individual is chosen for
reproduction proportional to its fecundity. The offspring, which
is of the same type as the parent, is placed into an adjacent
position on the graph (illustrations are provided in Figs. 3 and 4).

We are interested in the probability that a single A individual
starting in a random position on the graph generates a lineage
that will take over the entire population; this probability is generally
called fixation probability. As before, there are two types of ques-
tions. The qualitative question is whether the fixation probability is
positive. The quantitative question is concerned with computing the

fixation probability subject to a small error. We prove the following
results. The qualitative question is NP-hard and in PSPACE. The
quantitative question is # P-hard and in PSPACE. The results
follow from SI Appendix, Theorems 4, 8, and 15.
Note that the first problem can also be obtained as a special

case of the second problem. In the payoff matrix (1), we can set,
for example, a=−1, b= 1, c= d= 0. This “game” has the property

Fig. 1. Pictorial illustration of the complexity classes P, NP, # P, and PSPACE. The
complexity class P is contained in NP, NP is contained in # P, and # P is contained
in PSPACE. The widely believed conjecture is that these complexity classes are
different. A problem is NP-hard if it is at least as hard as each problem in NP, and
the case is similar for # P-hardness and PSPACE-hardness. The intersection of NP
and NP-hard gives the NP-complete problems, the intersection of # P and
# P-hard gives the # P-complete problems, and the intersection of PSPACE
and PSPACE-hard gives the PSPACE-complete problems. A polynomial-time
solution for an NP-hard or NP-complete problem would imply P = NP.

Fig. 2. Illustration of mutant introduction. The residents (type A) are col-
ored blue, and the mutants (type B) are colored red. The black edges are the
edges of the interaction graph and the red edges are the edges of the re-
production graph. The probability of introducing a mutant in a specific
vertex is always 1 over the number of vertices. The computational questions
of interest regarding the takeover probability are as follows: whether the
probability is positive (qualitative question) and what is an approximation of
the probability (quantitative question).
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that type B never reproduces and type A reproduces until half of
its neighbors are also of type A. This parameter choice leads to
the same qualitative behavior and the same complexity bounds as
described in the first problem.
A generalization of games on graphs is the setting where the

interaction graph and the replacement graph are distinct (13).
Thus, each individual interacts with all of its neighbors on the
interaction graph to receive payoff. Subsequently, an individual
is chosen for reproduction proportional to its fecundity. The off-
spring is placed randomly among all neighbors of the focal indi-
vidual on the replacement graph. In this case, both the qualitative
and quantitative questions become PSPACE-complete (SI Ap-
pendix, Theorem 15).

We also consider a variation of the second problem. In par-
ticular, we change the mapping from payoff to fecundity. We
now assume that fecundity is an exponential function of payoff,
and refer to it as exponential fitness (an illustration is provided in
Fig. 4). Therefore, the fecundity of an individual is always positive
(even if its payoff sum is negative). In this setting, the qualitative
question can be decided in polynomial time. The reason is that the
fixation probability is positive if the graph is connected. Thus, to
answer the qualitative question, the algorithm only needs to check
whether the graph is connected; this problem is in P. However, the
quantitative question has the same complexity as the previous
problem (SI Appendix, Theorems 16 and 17).
A very special case of games on graphs is constant selection.

Type A has constant fecundity a and type B has constant fecundity
b independent of any interactions (i.e., fecundity is independent of
the population structure). The qualitative question concerning the
fixation probability of A is in P. The quantitative question is in
PSPACE, but any nontrivial lower bound is an open question.
Finally, although we establish computational hardness for sev-

eral problems, we also show that two classic problems can be solved
in polynomial time (SI Appendix, section 7). First, we consider the
molecular clock, which is the rate at which neutral mutations ac-
cumulate over time. The molecular clock is affected by population
structure (13). We show that the molecular clock can be computed
in polynomial time because the problem reduces to solving a set of
linear equalities, which can be achieved in polynomial time using
Gaussian elimination. Second, we consider evolutionary games in a
well-mixed population structure, where the underlying structure is
the complete graph (38). We show that the exact fixation proba-
bility can be computed in polynomial time. In this case, the prob-
lem can be reduced to computing absorption probabilities in
Markov chains, where each state represents the number of mu-
tants. Hence, the Markov chain is linear in the number of vertices
of the graphs, and because absorption probabilities in Markov
chains can be computed in polynomial time (by solving a set of
linear equalities), we obtain the desired result.

Methods: Proof Ideas
We now present the key intuition and main ideas of our results. The most
interesting and technically insightful results are the lower bounds (i.e., the
hardness proofs), and we present the key ideas only for them.

NP-Hardness of the Qualitative Ecological Problem. One of the most classic NP-
complete problems is the 3SAT-problem, which is the SAT problem where every
clause has exactly three literals (a literal is a Boolean variable x or a negation of a
variable x). Given instances of the 3SAT problem, we construct instances of the
ecological problem where we have a start vertex, where the mutant arises, fol-
lowed by a sequence of vertices (i.e., each vertex can reproduce a mutant to the
next), one for each clause. By means of our construction, a vertex in this sequence
can reproduce, at most, three times, one of which must be the next vertex of the
sequence, with the others corresponding to, at most, two literals of the clause
(intuitively, these two literals represent the ones that are not set to true by a
candidate-satisfying assignment). The last vertex of the sequence reproduces to a
new sequence of vertices that corresponds to an assignment of truth values to the
variables. Each vertex in this new sequence can reproduce twice, one to the next
vertex of the sequence and other to a variable or its negation. The variables or the
corresponding negation can then reproducemutants to the corresponding literals
of the clauses. After this sequence, all vertices that do not correspond to a literal
in a clause become mutants. In essence, our construction ensures that if there is
a satisfying assignment, then with positive probability, all vertices can become
mutants, and, conversely, if there is no satisfying assignment, then the proba-
bility that all vertices become mutants is 0.

# P-Hardness of the Quantitative Ecological Problem. A # P-complete problem
is counting the number of perfect matchings in a bipartite graph (which also
corresponds to computing the permanent of a Boolean matrix). A bipartite
graph consists of two set of vertices, a set on the left side and a set on the
right side, with edges from the left side to the right side. A perfect matching
is a one-to-one mapping of each vertex of the left side to a vertex on the
right side such that there is an edge between them. First, we argue that for
the hardness proof, it suffices to consider bipartite graphs in which each
vertex on the left side has an out-degree of 2k for some integer k. A key idea
in our construction is that in a full binary tree, if the root becomes a mutant

Fig. 3. Illustration of reproduction with matrix
A B

A

B

�
a b

c d

� . The residents

(type A) are colored blue, and the mutants (type B) are colored red. The black
edges are the edges of the interaction graph, and the red edges are the
edges of the reproduction graph. In the first figure beside each vertex, the payoff
of the vertex (which is the sum of the payoff of the interactions) is shown. Because
the first figure shows the payoff computation, the interaction edges that are re-
sponsible for the payoff calculation are boldfaced. In the second figure, the vertex
labeled 3 is selected for reproduction. The reproduction edges from vertex 3 are
boldfaced, and each edge has the probability 1/2. Finally, the successor 5 is chosen
for replacement (i.e., vertex 3 reproduces to vertex 5).
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and every vertex can reproduce exactly once, then the set of mutants will
eventually consist of a path from the root to a leaf, chosen uniformly at
random. Our construction is then as follows: We have a start vertex where
the mutant arises, which reproduces to turn each of the vertices on the left
side of the bipartite graph to mutants. Each of the vertices on the left side is
the root of a full binary tree, where the leaves correspond to the right side
of the bipartite graph. We show that the fixation process corresponds to a
perfect matching (defined from the path in the full binary trees), and given
an approximation of the fixation probability, the exact number of perfect
matchings of the bipartite graph can be computed.

PSPACE-Hardness for the Game on Evolutionary Graph Problem. Our PSPACE-
hardness proof shows that the evolutionary process can solve the following
concurrent-if problem, which we show is PSPACE-hard. The concurrent-if
problem consists of a set of Boolean variables x1, x2, . . . , xn, with a given
initial truth assignment to the variables, and a set of if-statements. Each if-
statement si is of the following form: If a conjunctive clause Ci over the
variables is true, then assign a truth value to a variable [e.g., if ðx2∧x4∧x5Þ,
then x3 is assigned false]. The problem is to decide whether the first variable
(which is the accepting variable) eventually becomes true. We show that
each variable can be represented as four vertices, and each if-statement as a
single vertex, in the evolutionary graph, and the evolutionary process can
mimic the execution of the concurrent-if problem. Finally, if the accepting
variable becomes true, then it corresponds to making a special vertex in the
evolutionary graph as a mutant. There exists a part of the evolutionary
graph that can only become mutants after the special vertex has become a
mutant. Using this construction, we show that both the qualitative and
quantitative problems are PSPACE-hard for evolutionary games on graphs.

Discussion
In summary, we have established computational complexity results
for some fundamental problems of ecological and evolutionary

dynamics in structured populations. Our main results are summa-
rized in Table 1. We now discuss the significance of our findings.

Interdisciplinary Connection. Although both computer science and
biology examine the proliferation of information in time and space,
the deep connection between them has been largely unexplored.
Our work provides precise computational complexity results for
several well-studied problems in biology and can be viewed as a step
to establish a connection between the two disciplines.

Well-Studied Open Problem. The problems we have considered are
basic aspects of well-studied questions for ecological and evo-
lutionary dynamics in structured populations (7, 28, 37, 42, 50,
51). Several reviews have been written on this topic (8, 11, 43,
57). We first discuss the significance of an algorithmic approach
in evolutionary graph theory. An efficient algorithm, which con-
siders all (even worst-case) graphs for evolutionary processes, is
important for the following reasons.
First, it has been shown that some population structures

(called amplifiers) can increase the effect of natural selection
(7, 51), but amplifiers are rare and constructing them is difficult (7,
11, 50, 51, 58, 59). If there were an efficient algorithmic approach
that worked for all graphs, then one could design candidates for
amplifiers and efficiently check their fixation probabilities. Be-
cause there exists no algorithmic approach, research has to focus
on special classes of graphs to identify simple formulas, such as
calculating the fixation probabilities on star-like graphs (58).
Second, it is known that some population structures and evo-

lutionary dynamics promote evolution of cooperation but that
others do not (51). An important open problem is to characterize
the set of graphs that promote cooperation. An efficient algorithmic

Fig. 4. Illustration of different payoffs to fitness

with
A B

A

B

�
−1 2

1 −2

� . The residents (type A) are blue,

and the mutants (type B) are red. The black edges
are the edges of the interaction graph, and the red
edges are the edges of the reproduction graph. In
the figure of the first row, we show the payoff for every
vertex. In the next row, we show the fitness, which is
either a linear function of the payoff but at least 0 or an
exponential function of the payoff. Finally, in the third
row, with each vertex, we show the probability, which is
the normalized fitness, that the vertex is selected for
reproduction [in the last figure, the number x is the sum
of the fitness (i.e., x = e2 + 2e+ 2e

1
2 + 2e−

1
2)].
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approach would be useful to check candidate structures. Because
no efficient algorithm exists, one has to study special cases, for
example, by considering nearly regular graphs (51).
Thus, a general algorithmic approach is a very important problem

for the well-studied question concerning the effect of population
structures on evolutionary dynamics. An algorithmic approach has
been studied for important special cases, such as for complete
graphs (60), and NP-hardness was stated for the quantitative
problem (7). The review by Shakarian et al. (57) identifies the
complexity of computing fixation probabilities on evolutionary
graphs as an important open question in the area. In that review,
two open problems (2.1 and 2.2) are identified that ask for the
complexity of computing the exact fixation probabilities for graphs
and for games on graphs. Our results not only present answers to
those crucial questions but also show that both the approximation
problem and the qualitative question are computationally hard. The
most interesting aspects of our results are the lower bounds, which
show that there exists no efficient algorithm in most cases, under the

widely believed conjecture that P is different from NP. A simple
equation-based solution would give an efficient algorithm; thus, our
result formally shows that for evaluating the fixation probability in
spatial settings, there does not exist a simple equation-based solu-
tion in general. Our results are significant for the following reasons:
(i) They establish the computational complexity for fundamental
problems of ecological and evolutionary dynamics in structured
populations (e.g., considered in 7, 8, 11, 28, 37, 42, 43, 50, 51, 57),
and (ii) they significantly improve the complexity result of Lieber-
man et al. (7) and solve the computational complexity questions of
the area as identified in the review by Shakarian et al. (57).

Methodological Insight.Our proof ideas also reveal some important
points. We show how evolutionary processes in structured pop-
ulations can mimic aspects of computation. This insight could be
useful for future research on understanding the computational
complexities of other stochastic processes on population structures.
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