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When electric current flows in a solder bump, electromigration generates stress, but creep relaxes

it. After some time, the bump develops a steady-state stress field. We present a theory to show that

the two processes — electromigration and creep — set an intrinsic length. When the intrinsic

length is large compared to the height of the bump, electromigration is fast relative to creep and the

steady-state stress field is linearly distributed in the bump. When the intrinsic length is small

compared to the height of the bump, electromigration is slow relative to creep and the steady-state

stress field nearly vanishes in the bump, except in a thin layer along the boundary of the bump. We

further show that a critical electric current exists, below which the bump can sustain the

steady-state stress field without forming voids. Theoretical predictions are compared with existing

experimental observations. VC 2011 American Institute of Physics. [doi:10.1063/1.3656002]

I. INTRODUCTION

In microelectronic devices, intense electric currents moti-

vate atoms to diffuse — a process known as electromigration.

Although electromigration is present in many components of

the devices, the current density needed to cause electromigra-

tion in solder bumps is much smaller than in any other com-

ponents.1 Electromigration can cause the bumps to form

voids, leading to failure.2

Blech observed, in an interconnect line, a critical current

density, below which electromigration does not cause dam-

age.3 This observation was interpreted by Blech and Herring

as follows:4 As the electric current causes atoms to migrate

from one end to the other along the interconnect, a gradient

of stress builds up, counteracting electromigration. After

some time, the interconnect develops a steady-state stress

gradient and net migration of atoms stops. The magnitude of

the stress at either end of the interconnect is limited by some

mechanisms of failure, such as the formation of voids and

extrusion of the metal into the surrounding dielectrics,

so that the achievable stress gradient is large in short inter-

connects. Consequently, short interconnects are immortal,

immune from electromigration-induced failure.5–8 This

consideration has played a significant role in the design of

interconnects.1,9–11

It is tempting to apply the Blech-Herring analysis to sol-

der bumps. However, solder bumps require an additional

consideration. During operation, a bump can reach 75% of

its melting point12 and the bump creeps.13 The bump is often

surrounded by relatively compliant molding compounds,

possibly allowing creep to relax the stress in the bump. By

contrast, an interconnect is often confined by relatively stiff

dielectrics, which enables the interconnect to retain hydro-

static stress in the presence of creep.14

To apply the Blech-Herring analysis to solder bumps, this

paper considers concurrent electromigration and creep. When

electric current flows in the bump, stress is generated by elec-

tromigration, but relaxed by creep. After some time, the bump

develops a steady-state stress field. To determine this steady-

state stress field, Sec. II reviews a theory of concurrent elec-

tromigration and creep. Section III shows that the relative

rates of the two processes — electromigration and creep —

can be quantified by an intrinsic length. When the height of

the bump is small compared to the intrinsic length, electromi-

gration is fast relative to creep and the theory recovers the

classical prediction of Blech and Herring, in which the

steady-state stress is linearly distributed in the bump. When

the height of the bump is large compared to the intrinsic

length, electromigration is slow relative to creep and the

theory reveals a unique situation, in which the steady-state

stress nearly vanishes in the bump, except in a thin layer

around the boundary of the bump.

These two limiting cases, as well as the intermediate

behavior, are illustrated in Sec. IV with a thin film. Section

V then establishes a critical stress, above which voids will

grow, based on the Laplace condition. Section VI uses Pb-

free solder data to investigate how the critical current density

needed to cause void nucleation depends on various parame-

ters of the solder. We find that, at normal operating tempera-

tures, for a SnAg4Cu0.5 solder bump larger than�1 lm,

creep is important and the Blech-Herring analysis is inad-

equate. Section VII compares the theoretical predictions to

experimental observations. Finally, in Sec. VIII, we justify

our approximation of the solder bump as a thin film by com-

parison to 3D simulations.

II. THEORY OF CONCURRENT ELECTROMIGRATION
AND CREEP

When electric current passes through a solder bump, the

flow of electrons — the electron wind — motivates atoms of
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the bump to diffuse. As atoms relocate from the cathode to

the anode, a field of stress builds up in the bump, tensile at the

cathode, and compressive at the anode. While electromigra-

tion generates stress, creep tends to relax it. After some time,

the concurrent electromigration and creep set up a steady-

state stress field in the bump. This section summarizes a previ-

ously developed theory of concurrent creep and diffusion.15

Following Darken,16 we imagine that inert markers are

scattered throughout a material. These markers do not dif-

fuse; rather, they move along with the deformation of the

material. It should be noted that this idea is not merely hypo-

thetical. Movements of markers in solder bumps have been

visualized with diamond particles and arrays of nanoindenta-

tions.17,18 Let x1; x2; x3ð Þ represent the coordinates of a fixed

space, and ti x1; x2; x3; tð Þ be the velocity vector of the marker

at position x1; x2; x3ð Þ at time t. The gradient of the marker

velocity defines the strain-rate tensor

dij ¼
1

2
ti;j þ tj;i

� �
: (1)

Let X be the volume per atom in the body. Imagine a plane

fixed in space and perpendicular to the axis xi. The net

atomic flux, Ni, is the number of atoms that move across the

plane per unit area and per unit time, as shown in Fig. 1. We

can independently measure this net atomic flux and the

marker velocity. The convection flux, ti=X, is the number of

atoms moving with the marker across the plane per unit area

per unit time. The difference between the two fluxes defines

the self-diffusion flux Ji, namely,

Ni ¼ Ji þ
ti

X
: (2)

This equation states that the net flux, Ni, is the sum of the

diffusion flux, Ji, and the convection flux, ti=X.

To emphasize the main features of this theory with mini-

mum complication, we neglect elasticity. We also know that

abundant sources and sinks, such as grain boundaries and

dislocations, exist in a solder bump, as illustrated in Fig. 2.

As noted by Balluffi, these sources and sinks tend to main-

tain equilibrium concentrations of vacancies, which are usu-

ally small.19 Therefore, a fixed volume will contain a

constant number of atoms at all time and the net atomic flux

is divergence free,

Nk;k ¼ 0: (3)

A combination of Eqs. (2) and (3) gives

tk;k ¼ �XJk;k: (4)

This equation states that, even though the material is incom-

pressible, the marker velocity has a divergence to compen-

sate for the divergence in the diffusion flux.

We take the strain-rate to be the sum of that due to

creep, dC
ij , and that due to diffusion, dD

ij ,

dij ¼ dC
ij þ dD

ij : (5)

We assume that the divergence in diffusion flux causes an

equal strain rate in all three directions,

dD
ij ¼ �

X
3

Jk;kdij; (6)

where dij ¼ 1 when i ¼ j and dij ¼ 0 otherwise. We adopt

this rule based on experimental evidence of its validity: it is

consistent with observations of lateral shrinkage of thin foils

during selective evaporation,20 and it correctly predicts the

bending of a thin foil diffusion couple.21 However, it can be

modified if, for some reason, atoms are preferentially placed

on certain crystal planes.22

Combining Eqs. (1) and (4)–(6) gives the creep strain

rate in terms of the marker velocity field,

dC
ij ¼

1

2
ti;j þ tj;i

� �
� 1

3
tk;kdij: (7)

Since creep generates negligible acceleration, the force bal-

ance equations can be written as

rij

� �
; j
¼ 0; in the volume; (8)

rijnj ¼ ti; on the surface: (9)

The mean stress is defined as

FIG. 1. (Color online) The marker velocity determines the convection flux,

ti=X. The net atomic flux Ni can also be independently measured. The

atomic flux in excess of the convective flux defines the diffusion flux Ji.

FIG. 2. (Color online) Two possible scenarios exist for growth of a void. In

(a), flux divergence generates vacancies, which coalesce to form voids. In

(b), sinks/sources keep vacancy concentrations at the equilibrium level. Flux

divergence generates stress under constraint, leading to growth of a void.
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rm ¼
1

3
r11 þ r22 þ r33ð Þ: (10)

The chemical potential induced by this mean stress is

l ¼ �Xrm. This quantity represents the free energy change

associated with moving an atom in a stress-free reference

body to a point in the material subject to mean stress rm. Fol-

lowing Blech and Herring,4 both the electron wind force and

the gradient of the chemical potential drive diffusion,

Ji ¼
D

XkT
Fi þ Xrmð Þ;i½ �; (11)

where D is the self-diffusion coefficient, kT is the tempera-

ture in the unit of energy, and Fi is the electron wind force.

The electron wind force relates to the electric current

through the relation Fi ¼ Zeqji, where Z is the effective va-

lence of atoms, e is the elementary charge, q is the resistiv-

ity, and j is the current density.23

The deviatoric stress tensor is given by

sij ¼ rij � rmdij: (12)

The equivalent stress is defined as

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

q
: (13)

The creep strain rate is commonly written as the product of the

deviatoric stress and some function of the equivalent stress

dC
ij ¼ a reð Þsij: (14)

The function aðreÞ is determined by fitting the relation

between stress and strain rate measured under a simple stress

state. For instance, performing a uniaxial tension test, experi-

mentalists may obtain a constitutive equation with the gen-

eral form

dC
11

_e0

¼ f
r11

r0

� �
; (15)

where dC
11 and r11 are the strain rate and stress in the loading

direction, r0 is a reference stress, and _e0 is the strain rate in the

loading direction at the stress r0. For a uniaxial tensile test, the

equivalent stress is re ¼ r11 and the deviatoric stress is

s11 ¼ 2r11=3. Thus, equating Eqs. (14) and (15) gives

a reð Þ ¼ 3 _e0f re=r0ð Þ= 2reð Þ and the general 3D constitutive

equation is

dC
ij

_e0

¼ 3

2

sij

re
f

re

r0

� �
: (16)

Define the effective creep strain rate as dC
e ¼ ð2dC

ij d
C
ij =3Þ1=2

.

This definition, in combination with Eqs. (12), (13), and

(16), gives that dC
e = _e0 ¼ f re=r0ð Þ. Thus, the function relates

the effective creep strain rate to the effective stress.

III. SCALING ANALYSIS AND LIMITING CASES

This theory has a characteristic length, as can be seen

through a scaling analysis. Inserting the creep model in

Eq. (16) and the creep strain rate expression (7) into the force

balance in Eq. (8), we obtain

1

3

re

_e0f re=r0ð Þ ti;j þ tj;i �
2

3
tk;kdij

� �� �
; j

þ rmð Þ;i¼ 0: (17)

Inserting the diffusion law in Eq. (11) into the kinematic

constraint in Eq. (4), we obtain

tk;k ¼ �
D

kT
Fk þ Xrmð Þ;k
h i	 


;k

: (18)

As mentioned above, the effective stress re is related to the

effective strain rate dC
e through the function f. The effective

strain rate is defined as dC
e ¼ ð2dC

ij d
C
ij =3Þ1=2

, and the creep

strain rate tensor dC
ij is related to the velocity field by Eq. (7).

Consequently, Eqs. (17) and (18) consist of four partial dif-

ferential equations that govern the four fields t1, t2, t3, and

rm. Under the special condition that the diffusion flux is

divergence-free, Jk;k ¼ 0 and tk;k ¼ 0, Eq. (17) recovers

Stokes’s equation for creep and Eq. (18) recovers Herring’s

equation for self-diffusion.

Let K be the length to be determined. Scale the stress by

r0, the marker velocities by K _e0, the wind forces by Xr0=K,

and the spatial coordinates by K. Equations (17) and (18)

become dimensionless and parameter-free, provided we set

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
DXr0

kT _e0

s
: (19)

This length characterizes the relative rate of creep and diffu-

sion. Let H be a length scale in the boundary-value problem,

e.g., the height of a solder bump. Large values of K=H indi-

cate that the time necessary for diffusion across the material

is fast relative to the time necessary for creep.

We now wish to investigate how K=H affects the

steady-state stress field in a solder bump. Since the electron

wind force is roughly constant through the thickness of the

solder, it alone does not result in a divergence in diffusion

flux. However, different materials contact the solder at its

boundaries and atoms diffuse at different rates on each side

of the boundary. For instance, the diffusivity of Sn in Sn is

much faster than that of Sn in Cu. This results in a diver-

gence in the diffusion flux of Sn at the boundary between Sn

and Cu. For a steady state to be reached, a stress gradient

must be built up to counteract this divergence in diffusion

flux. The length over which this stress gradient will be built

up depends on the ratio K=H.

In one limit, K=H � 1, diffusion is so much faster than

creep that the effect of creep can be neglected. In this limit,

the theory outlined in Sec. II will reduce to the analysis of

Blech and Herring.4 For a steady state to be reached, the dif-

fusion flux must vanish, Ji ¼ 0. For a 1D wind force in the

x3 direction, Eq. (11) then gives F3 þ X drm=dx3ð Þ ¼ 0 in

the steady state. The stress gradient is a constant governed

by the boundary conditions and is built up through the entire

thickness of the solder.

083716-3 Pharr et al. J. Appl. Phys. 110, 083716 (2011)
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In the other limit, K=H � 1, creep is extremely fast rel-

ative to diffusion. Since creep tends to relax stress, in this

limit, it seems that the stress may be zero everywhere in the

solder. However, as previously mentioned, there is a flux

divergence at the boundary. To satisfy this boundary condi-

tion, a stress gradient must be built up to offset this flux

divergence. Since the characteristic length K is small relative

to the size H of the boundary value problem, this stress will

be localized near the boundary of the solder, as illustrated in

Fig. 3.

IV. STRESS IN A THIN FILM

To see how the physical ideas developed in Sec. III arise

mathematically, let us consider a thin film of a solder mate-

rial sandwiched between two other materials, as illustrated in

Fig. 4. Let us also assume the material under uniaxial tension

obeys power-law creep _e ¼ _e0 r=r0ð Þn. An electron wind

force will cause atoms to diffuse in the direction of the wind

force, creating a state of compression near the anode and ten-

sion near the cathode. This stress state is biaxial with

r11 ¼ r22, and the equivalent stress is re ¼ r11j j.
Equation (11) gives the diffusion flux as J3 ¼ D=XkTð Þ

F3 þ 2X=3½ �dr11=dx3ð Þ. This diffusion flux induces a strain

rate dD
11 ¼ � X=3ð ÞdJ3=dx3. The bounding materials above

and below the film constrain it from deforming laterally, so

that the total strain rates vanish in the lateral directions:

d11 ¼ 0. Scaling the stresses by r0 and the spatial coordi-

nates by the thickness H, we obtain

� 4

9

K
H

� �2d2 ~r11

d~x2
3

þ ~rn
11 ¼ 0; (20)

where K is the characteristic length given in Eq. (19) and the

tildes represent non-dimensional quantities. We have dropped

the absolute value by examining this expression on the do-

main �1=2 � ~x3 � 0, where the material is under tension.

The boundary conditions are such that atoms do not dif-

fuse out of the solder and into the bounding materials. Thus,

the diffusion flux vanishes at the faces of the film, or

d~r11 ~x3 ¼ 61=2ð Þ
d~x3

¼ � 3F3H

2Xr0

: (21)

From Eq. (20), two clear limits exist. For K=H � 1, the

second term is negligible and the stress field will be linear in

~x3, namely ~r11 ~x3ð Þ ¼ � 3F3H= 2Xr0ð Þ½ �~x3. This limit is con-

sistent with the seminal analysis of Blech, in which the stress

is distributed linearly along the length of the material.4

For K=H � 1, it seems tempting to entirely drop the

first term in Eq. (20). However, this would result in ~r11 ¼ 0

everywhere and would not satisfy the boundary conditions in

Eq. (21). Instead, we have a boundary-layer effect, in which

the stress in nearly zero everywhere through the thickness

of the film, but deviates rapidly from zero near the bounda-

ries to satisfy the boundary conditions. In Eq. (20), let u

¼ d~r11

d~x3
so that � 4

9
K
H

� �2 du
d~x3
þ ~rn

11 ¼ � 4
9

K
H

� �2 du
d~r11

d~r11

d~x3
þ ~rn

11

¼ � 4
9

K
H

� �2 du
d~r11

uþ ~rn
11 ¼ 0. Separating the variables and inte-

grating results in d~r11

d~x3

� �2

¼ 9

2 nþ1ð Þ K=Hð Þ2 ~rnþ1
11 þ C, where C is

an integration constant. As previously argued, for K=H � 1,

the stress is essentially zero over most of the domain. Thus,

~r11 ~x3 ¼ 0ð Þ � 0 and d~r11=d~x3 ~x3 ¼ 0ð Þ � 0 so that C � 0.

We now have

d~r11

d~x3

� �2

¼ 9

2 nþ 1ð Þ K=Hð Þ2
~rnþ1

11 : (22)

The maximum tensile stress will be located at the boundary,

~x3 ¼ �1=2. Substituting the boundary condition in Eq. (21)

into Eq. (22) gives

~rmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

F3ffiffiffi
2
p

Xr0

K

� �2= nþ1ð Þ

: (23)

Hence, for a power-law creep material with K=H � 1, the

maximum stress in the film scales as K2= nþ1ð Þ and is inde-

pendent of the thickness H.

FIG. 3. (Color online) Solder bump with stress distribution for a rapidly

creeping material. The horizontal axis is the stress level and the vertical axis

is the position through the thickness of the solder bump. The solid line

shows the stress distribution through the thickness of the solder rm x3ð Þ. The

dotted line indicates zero stress; to the left of this curve, the material is in

compression, and to the right of the curve, the material is in tension. Stress

is nearly zero everywhere, but deviates from zero near the boundaries to

counteract the flux divergence there. The flux divergence is illustrated in the

three boxes, which represent differential volume elements at three locations

through the thickness.

FIG. 4. (Color online) A thin film of a solder material, height H, is subject

to a through-thickness electron wind force, F3. The film is sandwiched

between two materials that constrain it. Atoms do not diffuse into the two

surrounding materials, so that there is no diffusion flux into or out of the sol-

der. As atoms migrate through the solder, they create a state of compression

near the upper boundary and tension near the lower boundary.
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To get a better sense of how stress varies through the

thickness, Eq. (20) subject to the boundary conditions in Eq.

(21) was solved using the finite-element software COMSOL

Multiphysics. In this software, the 1D general form in the

PDE (partial differential equation) modes was selected to

perform the analysis. We have used n¼ 3 and

F3H=Xr0 ¼ 86:9, which are representative values for a

SnAgCu solder during operation (with j¼ 108 A/m2,

T¼ 100 	C, H¼ 50 lm).12 The stress distribution through the

film thickness is plotted in Fig. 5 as a function of K=H. The

stress is zero at the middle of the film, is tensile on one side,

and is compressive on the other. We can clearly see a transi-

tion from the boundary layer regime to the Blech regime

(linear stress distribution) as K=H increases. Also from Fig.

5, we observe that a large K=H or fast diffusion relative to

creep results in a relatively large stress. Likewise, slow diffu-

sion relative to creep results in a relatively small stress. We

can interpret this observation in the following way: if atomic

diffusion is fast relative to creep, a large stress is built up

before it can be relaxed by deformation (creep). Conversely,

if creep is fast relative to diffusion, the material is liquid-like

and can deform very rapidly to prevent large stress build-up.

V. VOID FORMATION IN SOLDER BUMPS

It is commonly suggested that voids are formed in the

solder by supersaturation of vacancies at the cathode.24 The

idea is that atoms diffuse by a vacancy mechanism in the

direction of the electron flow; hence, vacancies migrate in

the direction opposite to atomic diffusion. When enough

vacancies accumulate near the cathode, they can condense to

form a void, as shown in Fig. 2(a). The void can grow as

additional vacancies are supplied to it. Once the voids propa-

gate across the length of the contact, the bump fails. This

physical picture is adopted by most researchers in the area.

The above picture, however, is inconsistent with the fol-

lowing consideration: A solder bump has numerous sources

and sinks of vacancies spread throughout it, such as grain

boundaries and dislocations. As noted by Balluffi, these sour-

ces and sinks tend to keep vacancy concentrations at equilib-

rium levels, as illustrated in Fig. 2(b).19 Hence, vacancy

supersaturation is unlikely. Instead, we adopt an alternative

physical picture for the formation of voids. In our picture,

conduction electrons motivate atoms in the solder to diffuse,

which can result in flux divergence. Under constraint, this

flux divergence creates stress in the solder. Stress acts on the

initial flaws in the material that were created during the man-

ufacturing process. According to the Laplace equation, these

flaws will grow, provided

r >
2c
a
; (24)

where c is the surface tension and a is the initial flaw radius,

as in Fig. 6. We assume that the material will fail (have a big

change in resistance) when these initial flaws grow. Con-

versely, the material will be immortal as long as the stress

everywhere in the material is less than the critical stress,

rc ¼ 2c=a. A similar physical picture has long been used in

analyzing the formation of voids during tensile creep or the

removal of pores during sintering.25

VI. ANALYSIS USING PB-FREE SOLDER DATA

We now desire to perform a similar analysis of an actual

solder system. Under a uniaxial tensile test, a double power

law form commonly is found to represent the creep behavior

in a solder. For instance, Wiese gives the relation for

SnAg4Cu0.5 as

_e ¼ A1D1

r
r0

� �3

þA2D2

r
r0

� �12

; (25)

where _e is the creep rate in the loading direction, r0 ¼ 1 MPa

is a reference stress, A1 ¼ 4
 10�7=sec, A2 ¼ 1
 10�12

=sec, D1¼ expð�3223=TÞ, and D2¼ expð�7348=TÞ.26

The first term on the right hand side of Eq. (25) corresponds

to the creep behavior in the low-stress regime, where disloca-

tion climb processes dominate the deformation behavior.26

The second term corresponds to the creep behavior in the

high-stress regime, where combined glide/climb processes

dominate.26 Other parameters needed for the simulation

include: Z ¼ 18,12 e ¼ 1:602
 10�19C, q100	C ¼ 1:48

10�7Ohm�m,27 XSn ¼ 2:705
 10�29m3, and D ¼ 1:07


10�3 exp �105000=RTð Þ m2=sð Þ.28 It is worthwhile to note

that the diffusivity given is the self-diffusivity of Sn. This

value was used because the solder bumps of interest are

FIG. 5. (Color online) Stress distribution through the film thickness as a

function of characteristic length K for a material with power law creep. The

stress distribution changes from a boundary layer-type distribution to a lin-

ear one as K=H increases. Also, the maximum stress increases as K=H
increases.

FIG. 6. (Color online) For voids to grow, we have the condition r > 2c=a,

where c is the surface tension and a is the initial flaw radius.
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composed of primarily Sn and because Sn is the dominate dif-

fusing species in an important mode of electromigration fail-

ure.29 Also, the diffusivity used in the simulation is for

diffusion along the a-axis (body-centered tetragonal crystal

structure). The diffusivity along the c-axis is comparable, with

an activation energy of 107 kJ=mol.28

With these data, the characteristic length K is plotted as

a function of temperature in Fig. 7. From this figure, we see

that, for the above data, the characteristic length K increases

as the temperature increases. This occurs because the diffu-

sivity increases more rapidly with temperature than the creep

rate does. Also, in the plotted temperature range, the charac-

teristic length is in the micron scale, which is roughly com-

parable to the size of a typical solder bump (� 50 lm).

For the constitutive law in Eq. (25), the governing ordi-

nary differential equation is

� 2DX
9kT

d2r11

dx2
3

þ r11

2r0

A1D1

r11j j
r0

� �2

þA2D2

r11j j
r0

� �11
" #

¼ 0:

(26)

The boundary conditions are

dr11 x3 ¼ 6H=2ð Þ
dx3

¼ � 3F3

2X
: (27)

As mentioned in Sec. V, we hypothesize that a critical stress

exists, above which voids will grow. This critical stress is

given by the Laplace equation: rc ¼ 2c=a. For Sn,

c � 0:5 N=m30 and assuming that the initial flaw has a radius

of 100 nm, a representative value for this critical stress is

rcritical � 10 MPa. It should be noted that this is a simple

model to estimate the critical stress. Alternatively, the creep

strengths of the material may be used if these data are avail-

able. For instance, the creep strength of a SnAg3.5 solder at

100 	C is about 5 MPa.12 This value is comparable to the

value estimated from the Laplace equation. The main point

for the purposes of this paper is that a critical stress exists

and is a constant on the order of 10 MPa. This critical stress

depends on material properties of the solder and on the man-

ufacturing process.

We would like to calculate the current density necessary

to reach this critical stress. For each film thickness and tem-

perature, the current density (from Fi ¼ Zeqji) was varied in

COMSOL until a maximum stress of rmax ¼ rc ¼ 10 MPa

was achieved and this current density was recorded as the

critical current density jc. The critical current density as a

function of thickness and temperature is plotted in Fig. 8.

From this figure, for a given thickness, the critical current

density decreases as the temperature increases. The explana-

tion for this observation can be ascertained by examining

Fig. 7; the characteristic length K increases as the tempera-

ture increases. As previously discussed, for a given current

density, an increase in K results in an increase in rmax. A

larger maximum stress for each current density means it

requires a smaller current density to reach rc. Thus, the criti-

cal current density will decrease as temperature increases.

It is also interesting to note the functional form of jc Tð Þ
when K=H � 1. Although SnAg4Cu0.5, in general, obeys a

double power law relation given by Eq. (25), for the stress

levels and temperatures of interest, the first term usually is

much larger than the second. Thus, it can be approximated

by single power-law creep, as analyzed in Sec. IV, and we

can rewrite Eq. (23) as

rc ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

Zeqjcð Þffiffiffi
2
p

Xr0

� �2= nþ1ð Þ

K2= nþ1ð Þ; (28)

and therefore

jc / 1=K: (29)

Also, since K is given by K ¼
ffiffiffiffiffiffiffiffiffi
DXr0

kT _e0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
kT D0 exp � QD

kT

� �
C0 exp Qc

kT

� �q
, one obtains jc /

ffiffiffiffiffiffi
kT
p

exp

QD�QC

2kT

� �
. We can further simplify this relationship by notic-

ing that the square root term is quite weak. For instance, for

an increase from 100 	C to 200 	C, jc will increase only by

13%, due to the contribution from the
ffiffiffiffiffiffi
kT
p

term. The de-

pendence on the exponential term is much stronger. Thus,

we approximately have

FIG. 7. (Color online) Characteristic length as a function of temperature.

For SnAg4Cu0.5 with constitutive law in Eq. (25), K increases with T, mean-

ing diffusion increases more rapidly than creep does as the temperature

increases.

FIG. 8. (Color online) Critical current density as a function of thickness and

temperature for SnAg4Cu0.5. The bottom left region indicates the Blech re-

gime, and the top right region represents the boundary-layer regime.
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jc / exp
QD � QC

2kT

� �
: (30)

Thus, in the boundary layer regime, we expect an exponential

dependence of the critical current density on temperature.

Such a dependence cannot easily be explained in terms of

Blech’s analysis. In his analysis, he attributed this dependence

to the increase in flow stress, i.e., a change in the maximum

compressive/tensile stresses the material can withstand. Albeit

a possible explanation, our theory has a more straightforward

explanation, as given in the derivation above. Specifically, for

a material in the boundary layer regime, the critical current

density scales with the reciprocal of the characteristic length,

jc / 1=K. The characteristic length depends on the diffusivity

and creep law of the material, which exhibit Arrhenius-type

relations. Consequently, the critical current density scales

exponentially with temperature, as given in Eq. (30).

The critical product jcH, as recognized by Blech, is plot-

ted as a function of the thickness H in Fig. 9. In his analysis,

Blech claims this product should be a constant, above which

electromigration damage will occur.4 The product should be

independent of the size. This figure demonstrates that, for a

given temperature, there is a transition from the Blech regime

to the boundary-layer regime as the film thickness increases.

Specifically, between 100 and 150 	C, using experimentally

determined solder properties, this transition occurs between

1-10 lm. This means that, according to the data and the simu-

lation, a solder larger than 10 lm is actually in the boundary

layer regime during operation. Thus, it appears that this

boundary layer effect may be important in proper analysis of

the stress distribution in Pb-free solder bumps.

VII. COMPARISON WITH EXPERIMENTAL RESULTS

Comparison with experiments is difficult, due to the lack

of data for critical current densities in actual solder bumps.

However, we can still make some comparisons to solder mate-

rials with slightly different geometries. For instance, Hsu

et al.31 measured the critical current density as a function of

temperature for 350-lm-long Blech-type SnAg3.8Cu0.7 solder

stripes. This material is in the boundary layer regime for the

testing conditions, so we expect ln jcð Þ / 1=T, as given in

Eq. (30). A comparison of the simulated results (for a 350 lm

SnAg3.8Cu0.7 solder stripe) and the experimental data is given

in Fig. 10. The apparent activation energy, Q, found from the

simulation is 0.385 eV. The experimental data also shows an

exponential dependence with Q¼ 0.333 eV, comparable to

the predicted value.

As another example, Yoon et al.32 examined the de-

pendence of the threshold current density on line length. In

these experiments, five SnPb solder lines were tested with

lengths ranging between 100 and 1000 lm at a temperature

of 140 	C. Their experiments found that the critical current

density is a constant independent of line length. Using the

creep and law and diffusivity from Siewert et al.12, the char-

acteristic length of SnPb is found to be K ¼ 0:199lm at

140 	C. Thus, K=H � 1 for these experiments and we pre-

dict the SnPb solder to be well within the boundary layer

regime. As was suggested in Sec. IV, for a solder in the

boundary layer regime, we predict the critical current density

to be independent of size, as was found in the experiments.

VIII. 3D SOLDER VERSUS THIN FILM

In Secs. IV-VII, we have approximated the solder bump

as a thin film. Initially, we desired to solve the full set of 3D

governing equations, Eqs. (17) and (18), using the finite ele-

ment software COMSOL Multiphysics. However, it was

found that the creep law for the solder is highly nonlinear,

leading to some convergence and/or memory problems. We

then realized that we should be able to approximate the sol-

der bump as a thin film, making the problem 1D. A 1D prob-

lem has a drastically reduced number of degrees of freedom,

which allowed for a much finer mesh and ultimately for con-

vergence in COMSOL.

However, we need to justify this approximation of the

solder bump being represented as a thin film. To do so, we

implemented Eqs. (17) and (18) in COMSOL using the gen-

eral form of the PDE modes module. However, the constitu-

tive law used was a linear relation, namely dC
ij ¼ sij=2g,

where g is the viscosity of the material. This linear problem

is much easier to solve with the finite element software. The

boundary conditions used are no flux through any surfaces,

FIG. 9. (Color online) Critical product as a function of film thickness and

temperature.

FIG. 10. (Color online) Critical current density as a function of temperature.

The experimental data is for a 350 lm SnAg3.8Cu0.7 solder stripe.
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traction-free lateral surfaces, and no marker velocity on the

upper and lower boundaries,

Jini ¼ 0 all surfaces

ti ¼ rijnj ¼ 0 lateral surfaces

ti ¼ 0 top=bottom surfaces:

(31)

Typical stress distributions resulting from the simulation are

shown in Fig. 11.

Physically, differences between the 3D model and the

thin film one will arise due to stress relaxation via creep on

the lateral surfaces of the 3D model. Such relaxation cannot

occur in the 1D model, since the material is constrained from

deforming laterally. However, for K=H � 1, we expect the

stress to be confined to thin layers near the upper and lower

boundaries. Since we also have a no marker velocity bound-

ary condition at these boundaries, in these layers, we roughly

have no lateral deformation. Thus, in the region where stress

exists, the material is constrained laterally, suggesting that

the thin film approximation is appropriate. Likewise, for

K=H � 1, creep is very slow compared to diffusion. Thus,

stress relaxation via creep is negligible, and the thin film

approximation seems valid. The comparisons given in Fig.

12 confirm these ideas. From this figure, we can see that, in

these two limiting cases, K=H � 1 and K=H � 1, the 3D

and 1D simulations agree quite well. Thus, these physical

justifications and simulations suggest that the approximation

of the solder bump as a thin film is valid for the two limiting

cases: K=H � 1 and K=H � 1.

IX. CONCLUSIONS

To determine the stress field in a solder bump, we have

presented a theory that couples creep and electromigration.

This theory results in governing Eqs. (17) and (18), a set of

coupled PDE’s that allow for the calculation of the stress and

deformation fields. From these equations, an intrinsic length

emerges, Eq. (19), which characterizes the relative rates of

creep and diffusion. When diffusion is slow relative to creep,

we find the stress is relatively small and localized to the

boundary of the solder. We suggest that, when stress exceeds

a threshold value, voids will form in the solder. Using Pb-

free solder data, we discover that the effects of creep are sig-

nificant and must be taken into account for proper analysis of

electromigration-induced failure in solder bumps. Compari-

sons with experiments demonstrate general agreement with

the theory. To further augment the content of this theory, we

need more experimental data on electromigration failure in

Pb-free solders. Specifically, it would be useful to have a

systematic study measuring critical current density for vari-

ous solder sizes and operating temperatures.
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