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Abstract 

We present results for a photonic microwave resonator designed and fabricated at 17.4GHz 

with a record high Quality factor (Q = 26,400) at room temperature over a mode volume 

smaller than one cubic wavelength. The cavity is uniquely designed to have its electric field 

concentrated in air, which allows for efficient coupling to free space and facilitates 

interactions with gaseous atomic systems and fluids.  

1. Introduction 

Photonic crystal cavities with high Quality factors (Qs) are capable of extending the lifetime 

of cavity photons confined within mode volumes (V) of the order of a cubic-wavelength, and 

hence can greatly enhance the interaction between electromagnetic fields and matter. 

Recently, high Q/V photonic crystal cavities have been extensively investigated with various 

geometries at optical frequencies, acting as a powerful platform for studying cavity quantum 

electrodynamics (cQED) [1] and developing a myriad of nano-photonic devices. Yet few 

photonic crystal cavities have been reported at microwave frequencies [2-7]. 

A high Q/V microwave cavity is demanded for a number of applications. In atomic physics, a 

single Rydberg atom coupled to a single photon is the fundamental system for cavity QED 

studies, especially when one reaches the interesting strong coupling regime where energy can 

be coherently exchanged between the two. For strong coupling to occur, the atom-photon 

coupling rate g (inversely proportional to square root of V) must exceed both the photon 

leakage rate (inversely proportional to Q) and the atom decoherence rate. Since the frequency 

difference of Rydberg states is in the microwave region [8], a high Q/V microwave cavity is 

crucial to achieve this type of coupling. Strong coupling in Rydberg atoms has been 

previously observed in large-scale Fabry-Perot cavities and superconducting circuits [8, 9]. 

Photonic crystal cavities, in contrast, offer an alternative platform that is more compact and 



 

 

can be operated at room temperature.  

Secondly, given the cavity’s intrinsic field enhancement factor, there are also significant 

advantages in practical applications such as tunable microwave filters and antennas, where the 

efficiency of a radiator can be significantly improved by coupling with the cavity mode [10]; 

fluorescence microscopy for biological systems, where a high Q/V microwave cavity can be 

used to control the temperature and drive the biological reactions [11]; resonance-enhanced 

microwave detectors [3]; particle accelerators [5, 6]; and refractive index sensors. 

In this work, we have designed and experimentally demonstrated an all-dielectric photonic 

crystal microwave cavity. The cavity can be fabricated with a variety of materials using 

conventional machining techniques. We report a cavity mode at 17.4GHz with a very small 

mode volume limited to about one cubic-wavelength and a record-high Q-factor of 26,400 at 

room temperature. Besides the high Q/V factor, the defect mode has a TM-polarized electric 

field concentrated in the air region [12], as opposed to most photonic crystal cavities designs 

with TE-polarized electric field concentrated in the host dielectric [13]. These features are 

crucial for effectively coupling microwaves to matter in a number of applications. Moreover, 

when a center-fed antenna is placed inside the cavity acting as a radiating dipole, we observe a 

strong signature of the cavity’s Purcell enhancement factor. In summary, we believe this type 

of device offers great promise for studying cavity QED phenomena as well as for enabling 

novel applications at microwave frequencies.  

2. Cavity design 

The structure we propose starts from a so-called rectangular dielectric rod waveguide with a 

periodic array of circular holes, as shown in Fig. 1(a) [13-17]. We choose a refractive index of 

3.1 for the rod, which corresponds to the refractive index of alumina (Al2O3) at microwave 

frequencies. The rectangular waveguide has an aspect ratio (thickness/width) of 2:1, and 

supports a fundamental TM-polarized mode with its major component aligned along the y-

axis [Fig. 1(c)]. From our previous work [13], introducing a suitable periodic array of holes in 

the bulk materials of this high aspect-ratio waveguide results in a relatively wide bandgap for 

TM-polarized modes. Here we select the thickness to be w = 4.72mm, depth h = 9.43mm, and 

hole periodicity a = 4.15mm. The radius of the holes is chosen as r = 1.25mm.  

Next, we introduce a defect region into the cavity by gradually increasing the periodicity 

(hole-to-hole distance) and hole diameter for each segment starting from a pair of outer holes 



 

 

and symmetrically moving towards the center. When the feature size of a segment is enlarged, 

the band-gap is red-shifted, resulting in a graded photonic band, as shown in Fig. 1(b). This 

allows confining an air-band mode in the defect region: the air-band mode is coupled to the 

evanescent Bloch modes within the band-gaps at each end, effectively trapping it between a 

pair of Bragg mirrors. 

 

 

Fig. 1. (a) Schematic of the device. (b) Diagram of tapered photonic bandgap. (c) Transverse 

mode profile of the fundamental TM-polarized mode. (d) Mode profile of the cavity mode. 

A three-dimensional finite-difference time-domain (FDTD) code was used to calculate the 

resonant frequency and the Q factor of the cavity mode. On each side of the cavity we 

introduce 10 segments with progressive tapering of the hole diameter and spacing, in order to 

adiabatically couple the cavity mode to the evanescent Bloch mode. This adiabatic process is 

tuned to suppress the scattering loss resulting from the effective index mismatch between the 

two modes [18, 19]. Without material losses, the cavity mode has an ultra-high Q factor of 

2,500,000, limited by scattering alone (Q = Qsc). The cavity mode profiles are shown in Fig. 

1(d), where the Ey component is plotted at the mirror plane of y-axis and x-axis, respectively. 

The tapered section’s parameters are tailored to localize an air-band mode resonating at 

17.4GHz by maximizing confinement along the z-axis, which results in a small cavity mode 

volume. As expected from the general features of air-band modes, the electric field 
concentrates in the air-region. However, the maximum of the electric field density [

€ 

ε E 2
] is 

not in the air region, so we define the effective cavity mode volume as, 
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Veff =
ε E 2dV∫∫∫

Emax,air
2  (1) 

where Emax,air is the electric field maximum in the air region, located at the center of the 

cavity. For our cavity we found an effective mode volume of 0.99λ3. 

The cavity mode is normally excited from an external waveguide port. The amount of energy 

stored (U) is proportional to the launched power (P0), according to [20], 

€ 

U =
2
ω 0

Q2

Qw

P0 (2) 

In Eq. 2 Qw denotes the quality factor responsible for the field energy leakage from the cavity 

section via the dielectric waveguide. The total cavity quality factor Q, including material 

losses, can be written as 

€ 

1
Q

=
1
Qsc

+
1
Qm

+
1
Qw

 (3) 

where Qsc accounts for scattering losses due to mode mismatch in the tapered section and Qm 

for material losses in the dielectric. Substituting Eq. 2 into Eq. 1, we have 

€ 

U =Umax =
P0
w0

Q , when 

€ 

Qw =
QscQm

Qsc +Qm

 (4) 

Therefore, for given Qsc and Qm, it is important to tune Qw by fixing the number of Bragg 

mirror pairs on each side of the resonator so as to achieve optimal critical coupling conditions 

by satisfying Eq. 4. 

3. Fabrication and measurement 

The resonator was fabricated with ultra-high purity alumina from Coorstek (AD998 

PlasmaPure). This material has a relatively high refractive index of 3.1 at microwave 

frequencies and very small dielectric losses. Dielectric losses are important as they ultimately 

limit the quality factor of the resonator. The material that we use has a nominal loss factor of 

tan(δ) = 2.5×10-5 at 6GHz, which results in Qm = 44,000. For our device, we put 14 Bragg 

mirror pairs at each side, which corresponds to Qw = 210,000. Therefore, the total Q factor is 

expected to be 36,000. Fabrication was done with standard computer-numerical-control 

(CNC) milling techniques, with a nominal positional accuracy of ~10 µm for each hole.  



 

 

 

Fig. 2. (a) Images of the fabricated alumina cavity with slant sections at both ends to facilitate 

coupling to metallic waveguides. (b) Setup for transmittance measurement. (c) Coupling 

components between the metallic waveguide and the dielectric rod. 

The fabricated structure is shown in Fig. 2(a), and the setup used for our two-port 

transmittance measurements in Fig. 2(b). The device was connected to a network analyzer via 

conventional WR62 microwave waveguides placed at each end. Because of the geometrical 

mismatch between the metallic waveguide (15.8mm×7.9mm) and our dielectric waveguide 

resonator (4.72mm×9.43mm), we designed slant sections at both ends of the resonator to 

allow partial insertion into the WR62 waveguide and thereby facilitate coupling [Fig. 2(c)]. In 

Fig. 3(a), we show the amplitude spectrum from the transmission measurement. It 

demonstrates a large bandgap from 15.4GHz to 17.7GHz, which is consistent with the theory. 

The transmission coefficient of the cavity mode can be generally fitted using a Fano model 

[21, 22], 

€ 

t = A ηexp(iϕ) +
1

1+ i ω −ω 0

ΔωFWHM /2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 (5) 

where A is a constant representing system loss, η2 denotes the ratio of power coupled to other 

channels (direct transmission, higher-order modes, etc.), φ is the phase difference, ω0 is the 



 

 

resonant frequency, and ΔωFWHM is the cavity full-width half-maximum linewidth. 

 

Fig. 3. (a) Amplitude spectrum with a large frequency range from 15GHz to 18GHz, showing 

the bandgap of the structure. (b) Amplitude and phase spectra of the cavity mode from the 

transmittance measurement. The dashed curves are fitted with Eq. 5. 

Unlike most photonic crystal cavity experiments at optical frequencies, here both amplitude 

and phase of the transmittance can be obtained. By varying the position of the resonator with 

respect to the waveguide ports, both η and φ can be modified, whereas ω0 and ΔωFWHM stay 

constant. Here we select a set of data with minimized coupling to direct, non-resonant 

channels (negligible η), which results in a Lorentzian resonance lineshape. We plot the 

resulting spectra in Fig. 3(b), where the cavity resonance is clearly seen at 17.405GHz, in 

good agreement with the design value. By fitting the measured data with Eq. 5 we obtain a 

full-width half-maximum linewidth ΔωFWHM of 0.659MHz, corresponding to a Q factor of 

26,400, which is slightly smaller than the expected Q value of 36,000. With the resonator end-

coupled to a larger WR90 waveguide, we observed Q values up to 29,500 albeit with a less 

symmetrical line-shape. The observed discrepancy of Q factor can be attributed to higher 

dielectric losses in the bulk material at this frequency, to fabrication tolerances on the holes 

position and size and to resonant losses at the transition between waveguide and dielectric. In 

general, a higher Q factor can be obtained with less lossy materials or at cryogenic 

temperatures.  

Next, we insert a small antenna inside the cavity in order to study the interaction between the 

cavity mode and a radiating dipole. The antenna is constructed by stripping both the outer 

conductor and the dielectric core of a coaxial cable (Megaphase Corp., model ClearPath-A06), 



 

 

exposing the inner conductor for a total length of 9 mm. The relatively small diameter (0.305 

mm) of the inner conductor was chosen to minimize any perturbation of the cavity mode. 

In Fig. 4(a), we plot the reflectance spectrum measured with a network analyzer connected to 

the above mentioned center-fed antenna, when this is placed in free space (red) and in the 

center hole of cavity (blue). A clearly visible reflectance dip with a 2.2dB depth at ~17.43GHz 

is observed, which we interpret as a convincing signature of the Purcell effect of the cavity. 

When the antenna is coupled to the cavity mode, the radiation rate is enhanced, and thus the 

load impedance is modified. This results in a variation of the reflectance at the analyzer port, 

due to the impedance mismatch between the antenna load and the cable. From Fig. 4(a), we 

also note that there is a change in the resonant frequency of the system, from 17.40GHz to 

17.43GHz. This is due to the small but non-negligible perturbation of the metallic antenna, 

which blue-shifts the resonance. The free-space background in Fig. 4(a) (red-solid curve) 

arises from the small reflectance between the network analyzer/cable connection, and the 

cable/antenna connection. This background prevents us from accurately quantifying the load 

impedance variation and subsequently extracting a numerical value for the Purcell 

enhancement factor.  

 

Fig. 4. (a) Reflectance measurement of the center-fed antenna, with and without the cavity. (b) 

Reflectance depth as a function of the z-position. Also shown (dashed line), the simulated 

electric-field amplitude along the resonator. 

Next, we scanned the antenna in z-direction along the length of the dielectric rod to probe the 



 

 

electric field distribution of the cavity mode. This is analogous to near-field scanning optical 

microscopy (NSOM) [23, 24]. In Fig. 4(b), we plot the measured reflectance depth as a 

function of the z-position (blue-solid). In comparison, we also plot the electric field amplitude 

(black-dash). It can be seen that the two curves follow the same z-dependence, which verifies 

that the S11 dip we observe is due to coupling to the cavity mode.  

4. Summary 

A high-Q microwave resonator with a mode volume smaller than one cubic wavelength has 

been designed and fabricated. A record high Quality factor (Q = 26,400) for photonic crystal 

cavities at microwave frequencies has been measured at room temperature. In addition to its 

ultra-high Q/V factor, the cavity is uniquely designed to have its electric field concentrated in 

air. Coupling to this cavity mode is enhanced by the Purcell factor. We believe that this device 

is well suited for conducting microwave cavity QED experiments and for developing a variety 

of novel microwave devices.  
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Figure captions 

Fig. 1. (a) Schematic of the device. (b) Diagram of tapered photonic bandgap. (c) Transverse 

mode profile of the fundamental TM-polarized mode. (d) Mode profile of the cavity mode. 

Fig. 2. (a) Images of the fabricated alumina cavity with slant sections at both ends to facilitate 

coupling to metallic waveguides. (b) Setup for transmittance measurement. (c) Coupling 

components between the metallic waveguide and the dielectric rod. 

Fig. 3. (a) Amplitude spectrum with a large frequency range from 15GHz to 18GHz, showing 

the bandgap of the structure. (b) Amplitude and phase spectra of the cavity mode from the 

transmittance measurement. The dashed curves are fitted with Eq. 5. 

Fig. 4. (a) Reflectance measurement of the center-fed antenna, with and without the cavity. (b) 

Reflectance depth as a function of the z-position. Also shown (dashed line), the simulated 

electric-field amplitude along the resonator. 
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