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Reliable preparation of entanglement between distant systems
is an outstanding problem in quantum information science and
quantum communication. In practice, this has to be accom-
plished by noisy channels (such as optical fibers) that generally
result in exponential attenuation of quantum signals at large
distances. A special class of quantum error correction protocols,
quantum repeater protocols, can be used to overcome such
losses. In this work, we introduce a method for systematically
optimizing existing protocols and developing more efficient
protocols. Our approach makes use of a dynamic programming-
based searching algorithm, the complexity of which scales only
polynomially with the communication distance, letting us effi-
ciently determine near-optimal solutions. We find significant
improvements in both the speed and the final-state fidelity for
preparing long-distance entangled states.

entanglement � optimal control � quantum information �
quantum repeater

Sequential decision-making in probabilistic systems is a widely
studied subject in the field of economics, management science,

and engineering. Applications range from problems in scheduling
and asset management to control and estimation of dynamical
systems (1). In this article we use these techniques for solving a class
of decision-making problems that arise in quantum information
science (2, 3). Specifically we consider the optimal design of a
so-called quantum repeater for quantum communication. Such
repeaters have potential application in quantum communication
protocols for cryptography (4–6) and information processing (7),
where entangled quantum systems located at distant locations are
used as a fundamental resource. In principle, this entanglement can
be generated by sending a pair of entangled photons through optical
fibers. However, in the presence of attenuation, the probability of
success in preparing a distant entangled pair decreases exponen-
tially with distance (8).

Quantum repeaters can reduce such exponential scaling to
polynomial scaling with distance and thus provide an avenue to
long-distance quantum communication even with fiber attenuation.
The underlying idea of quantum repeater (9, 10) is to generate a
backbone of entangled pairs over much shorter distances, store
them in a set of distributed nodes, and perform a sequence of
quantum operations with only a finite probability of success.
Purification operations (11, 12) improve the fidelity of the entan-
glement in the backbone, and connection operations join two
shorter-distance entangled pairs of the backbone to form a single,
longer-distance entangled pair. By relying on a quantum memory
at each node to let different sections of the repeater reattempt
failed operations independently, a high-fidelity entangled state
between two remote quantum systems can be produced in polyno-
mial time. A quantum repeater protocol is a set of rules that
determine the choice and ordering of operations based on previous
results. An optimal protocol is one that produces entangled pairs of
a desired fidelity in minimum time within the physical constraints
of a chosen implementation.

The complexity of finding the optimal repeater protocols can be
understood by the following analogous example problem (1): given
a sequence of rectangular matrices M1M2. . . Mn, such that Mk is
dk � dk�1 dimensional, find the optimal order of multiplying the
matrices such that the number of scalar multiplications is mini-
mized. This is a typical example of a nesting problem, in which the
order in which operations are carried out affects the efficiency. For
example, if M1 � 1 � 10, M2 � 10 � 1, and M3 � 1 � 10, then
(M1M2)M3 takes only 20 scalar operations, and M1(M2M3) requires
200 scalar multiplications. A brute-force enumeration of all possible
nesting strategies and evaluation of their performance is exponen-
tial in n. To solve this problem more efficiently, we observe that the
optimal nesting strategy (M1. . . (. . .). . . Mp)(Mp�1. . . Mn) should
carry out the solution to its subparts optimally, that is, the nesting
(M1. . .(. . .). . . Mp) should represent the best nesting strategy for
multiplying M1M2. . . Mp. This is the well known dynamic program-
ming strategy (1), in which one seeks to optimize a problem by
comparing different, already optimized subparts of the problem.
Dynamic programming enables us to find the optimal solution to
the original problem in time that is polynomial in n.

Quantum repeaters also have a nested (self-similar) structure, in
which shorter-distance entanglement is used to create longer-
distance entanglement, which is then used in turn for further
extending the distance between entangled pairs. This structure
allows us to use the methods of dynamic programming to find
optimal nesting strategies for designing quantum repeater
protocols.

We now proceed to detail the specific optimization problem, then
discuss our dynamic programming solution to the problem. We next
examine two representative schemes that we wish to optimize [the
scheme of Briegel and colleagues (BDCZ scheme) in refs. 9 and 10,
and the scheme of Childress et al. (CTSL scheme) in refs. 13 and
14], and find significant improvements in both preparation time and
final fidelity of long-distance entangled pairs.

Dynamic Programming Approach
General Quantum Repeater Protocol. Quantum repeater protocols
have a self-similar structure, where the underlying operations at each
stage of the repeater have the same basic algorithms. In other
words, the structure of the problem remains the same at each stage,
but the parameters can be different. A generic quantum repeater
consists of three kinds of operations: entanglement generation,
entanglement connection, and entanglement purification. Entan-
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gled pairs are first generated and stored over a short distance, L0.
At the first nesting level, two entangled pairs of distance L0 can be
extended to distance L1 � 2L0 by means of an entanglement
connection (6). Because of the limited fidelity of the short pairs and
the imperfections from the connection operations, the fidelity of
the longer pair produced by connection is generally lower than that
of the shorter one. Nevertheless, the fidelity of the longer pair can
be improved by entanglement purification, which is able to extract
high-fidelity entangled pairs from an ensemble of low-fidelity ones
by using operations that are local (restricted to qubits within a given
node) (11, 12). An efficient approach of entanglement purification
is entanglement pumping (9, 10), which purifies one and the same
pair by using low-fidelity pairs with constant fidelity.� Thus, at the
(k � 1)th nesting level, the three underlying operations (prepara-
tion at distance Lk, connection, and purification) lead to prepara-
tion at a distance Lk�1 � 2Lk.**

Inductive Optimization. We now define the optimization problem.
Definition. For given physical resources, desired distance, Lfinal,
and final fidelity, Ffinal, an optimal protocol minimizes the
expected time to have an entangled pair of fidelity, F � Ffinal, at
a distance L � Lfinal.

To solve this optimization problem, the choice of parameters for
the quantum operation cannot be viewed in isolation; one has to
trade off the desirability of low present cost (in terms of time) with
the undesirability of high future costs. If one tries to enumerate and
test all possible adjustable parameters, the complexity to search for
the optimized implementation scales at least exponentially with the
number of repeater nodes. A simple example is provided if we make
our only adjustable parameter the choice between zero and one
purification step at each stage of the protocol. For the BDCZ
scheme with 128 � 1 repeater nodes, there are already 2128 � 1038

possibilities, which is beyond the capability of current computers.
Thus, a systematic searching method is needed to find the optimized
implementation of such a huge parameter space.

Based on the self-similar structure above, we may express the
optimized protocol to produce long entangled pairs in terms of a set
of optimized protocols for producing shorter pairs. The general
searching procedure can be performed inductively, as detailed in
the following list.

1. Find and store implementations that optimize the average time
(for all fidelities f1, . . . , fq) with distance � n � 1, taking �(q).

2. Assume known optimized implementations (for all fidelities)
with distance � n.

3. Find optimized implementations to produce unpurified pairs
(for all fidelities) with distance � n � 1 by trying (connecting)
all combinations of known optimized implementations with
distance � n, with complexity of order �(q2n).

4. Find optimized implementations to produce purified pairs (for
all fidelities) with distance � n � 1 by trying all combinations of
unpurified pairs with distance � n � 1, pumping for m � 0, 1,
2, 3, . . . times; complexity goes as �(mmax q2).

5. Store the optimized implementations (for all fidelities) with
distance � n � 1, based on step 4.

6. Replace n by n � 1, and go to step 2.

We make a discrete set of target fidelities [see supporting
information (SI) Methods for details], F � {f1, f2, . . . , fq}, such
that only a finite number of different optimal protocols with
shorter distances need to be developed. The complexity for each

step of our optimization procedure is shown in the list; the full
procedure scales as �(q2n2), where the �(n) repetitions of step 3
take the most time.‡‡ In practice, we found the full search of step
3 to be unnecessary; the search can be restricted to pairs of
distance n/2 � �(log(n)), leading to complexity �(q2n log(n)).

Repeater Schemes and Physical Parameters. So far, we have only
taken a general perspective in explaining quantum repeater pro-
tocols and describing the procedure of inductive searching by using
dynamic programming. In this subsection, we specify the parame-
ters to be optimized by examining the schemes of the quantum
repeater, physical restrictions on entanglement generation for
current techniques, and the error models of local quantum gates.
Only with a functional relationship between physically adjustable
parameters and repeater operation outputs can we find the opti-
mized implementations for procedures 1, 3, and 4 in the list above.

There are several different schemes for building a quantum
repeater that differ primarily in the amount of physical resources
utilized. For example, in the BDCZ scheme (9, 10) (Fig. 1), the
maximum number of qubits in the quantum memory (to store
intermediate states for connection and purification) required for
each repeater node increases logarithmically with the total number
of repeater nodes. In the CTSL scheme (13, 14) (Fig. 2), an efficient
way to use quantum memory is proposed, and only two qubits are
needed for each node, regardless of the total number of repeater
nodes. One of the two qubits is called the communication qubit,
which is optically active and can be used to generate entanglement
with other communication qubits from neighboring nodes. The
other qubit is called the storage qubit, which can be used to store
quantum state over very long time. As shown in Fig. 2b, with the
help of local gates (orange solid ovals) between communication and
storage qubits, the entangled state between communication qubits
can be used to implement teleportation-based gates (e.g., the
Controlled NOT gate) between storage qubits from neighboring
nodes (7, 15). Such remote gates (orange dashed ovals) are suffi-
cient for entanglement connection and purification of the storage
qubits; communication qubits are providing the necessary resource
mediating the gates between remote storage qubits. For clarity, we
will omit the communication qubits in the following discussion but

�In principle, repeater schemes exist (see ref. 10 and references therein) that work much
faster. For those schemes, however, the number of memory qubits per repeater station
scales at least linearly with the final distance, which make them impractical.

**Because we must wait for entanglement generation and purification to succeed before
proceeding to the next nesting level, the overall time for successful pair generation, in
general, is much longer than that of classical communication over the given distance.

‡‡For the CTSL scheme, there will be another �(q) overhead, associated with �(q) possible
fidelity choices of the entangled state for the Controlled NOT gate (see Fig. 2b).
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Fig. 1. Quantum repeater scheme from refs. 9 and 10 (BDCZ scheme). (a) In
a typical realization with n � 1 � 9 nodes, the number of qubits per node is
bounded by 2 log22n � 8. (b–d) Two entangled pairs with distance 1 are
connected (orange oval) at node 1 to produce an entangled state with
distance 2, which is stored (purple arrows) in the qubits at higher level. (e–g)
Another entangled state with distance 2 is produced to purify (purple arrows)
the entangled state stored in qubits at higher level. Similarly, entangled states
with distance 2n can be connected to produce entangled state with distance
2n�1, which may be further purified, as indicated in a.
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still keep track of the mediated operation between remote storage
qubits.

To model errors in the physical operations, we need to introduce
a number of parameters determined by the quantum hardware. For
entanglement generation, the relationship between the fidelity of
the elementary pair, F0, and the generation time, �e, depends on the
physical parameters (such as the signal propagation speed, c, the
fiber attenuation length, Latt, the efficiency of single photon col-
lection and detection, �, and the distance of elementary pair, L0)
and the specific approach to generate entanglement.§§

For entanglement connection and pumping, the dominant im-
perfections are errors from measurement and the local two-qubit
gate, which we model with a depolarizing channel. In particular, the
model for measurement is quantified by a reliability parameter (9,

10), �, which is the probability of faithful measurement. For
example, a projective measurement of state �0� would be

P0 � ��0��0� � �1 	 �	�1��1�.

Similarly, the model for the local two-qubit gate is characterized by
a reliability parameter (9, 10), p. With probability, p, the correct
operation is performed; otherwise the state of these two qubits is
replaced by the identity matrix (9, 10). For example, the action on
a two-qubit operation, Uij, would be

Uij
Uij
†3 pUij
Uij

† �
1 	 p

4
Trij

� � Iij,

where Trij [
] is the partial trace over the subsystem i and j, and Iij
is the identity operator for subsystem i and j. In general, the
reliability parameters (� and p) should be reasonably high [i.e.,
above some thresholds (9, 10)], so that the suppression of error from
entanglement pumping dominates the new errors introduced by
entanglement connection and entanglement pumping.¶¶

Optimization Parameters. We now list the adjustable parameters
we can optimize during procedures 1, 3, and 4 in the list above.

1. During the entanglement generation, there is freedom to
choose the generation time �e, which is determined by the
success probability and the communication time. In general,
the higher the success probability, the shorter the generation
time and the lower the fidelity of the entangled state, so the
generation time and the fidelity should be balanced (13, 14).

2. During the entanglement connection, the distances of two
shorter pairs can be adjusted, and the total distance is kept
unchanged.

3. During entanglement purification, the number of steps is also
adjustable, which should balance the gain in fidelity and the
overhead in time.

Additional Operations. Besides the operations from the original
quantum repeater schemes, some additional operations might be
useful. For example, we may skip several intermediate repeater
nodes (node skipping) to generate entanglement between distant
nodes directly with a substantially lower success probability. Also,
during entanglement pumping, we might consider multilevel pump-
ing (16), in which several levels of entanglement pumping are nested
together before the next level of entanglement connection (Fig.
2f �). Multilevel pumping can produce entangled pairs with higher
fidelity than single-level pumping. Such additional operations can
be easily incorporated into search procedures 1, 3, and 4. We will
show that the dynamic programming approach can use these
additional operations appropriately to reduce the average time,
extend the upper bounds for achievable final fidelity, and even
improve the threshold for the reliability parameters of p and �.

Results and Discussion
Improvement of BDCZ and CTSL Schemes. With procedures as listed
above, we implemented a computer program to examine the mean
time to prepare entangled pairs and to search according to our
dynamic programming prescription through the parameter space
outlined earlier. We looked for optimal protocols for a quantum
repeater for all distances �1,280 km and target fidelities �0.8.
Unless otherwise specified, we use Latt � 20 km, � � 0.2, and � �
P � 0.995 for the rest of the discussion. We first fix L0 � 10 km, and
we will consider the optimization of L0 to justify such a choice later.
To visualize the results, the profile of the optimized time (smooth

§§For example, the entanglement generation approach using scattering as proposed in
refs. 13 and 14 would be

F0 � F0��e	 �
1
2 � 1 � � 1 	

L0

�ec
eL0/Latt�2�1 	 �	/�� ¶¶We neglect the time associated with local operations, which is usually much shorter than

the communication time between neighboring repeater stations. Nonnegligible gate
operation time can easily be included in our optimization.

0 1 2 k k+1 n-1n-2 n

0 1 2 n-1n-2 n
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0 1 l l+1 n-1 n
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... ...         
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g
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Fig. 2. Quantum repeater scheme from refs. 13 and 14 (CTSL scheme). (a) This
scheme has exactly two qubits per node. The communication qubits (green
nodes) are used for entanglement generation and short-term storage; the
storage qubits (black nodes) are used for long-term storage. (b) With the help
of local gates (orange solid ovals) between communication and storage
qubits, the entangled state between communication qubits can be used to
implement entangling gates (e.g., the Controlled NOT gate) between storage
qubits from neighboring nodes. The effective remote gate is highlighted by
the orange dashed oval. Such remote gate is sufficient for entanglement
connection and purification of storage qubits. The communication qubits are
omitted in the following plots. (c and d) Entanglement connection to produce
an unpurified entangled state with distance n. (e–g) Entanglement connec-
tion to produce an unpurified entangled state with distance n 
 2 to purify the
entangled state with distance n. ( f� and f �) Illustration of multilevel pumping.
An entangled state with distance n 
 4 is used to purify an entangled state
with distance n 
 2, and the (purified) latter is used to purify an entangled
state with distance n. The only difference between f and f� is the fidelity of the
entangled state with distance n 
 2. The latter has higher fidelity.
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surface) is plotted in Fig. 3 a and b with respect to the final distance
(from 10 to 1,280 km) and the fidelity (from 0.90 to 0.99) for both
the BDCZ and the CTSL schemes. The calculation optimizes over
the elementary pair generation (both distance and generation
time), the connecting positions, and the number of pumping steps,
with spacing between neighboring repeater nodes of 10 km; both
additional operations (node skipping and multilevel pumping) are
also included for the optimization. For comparison, the unopti-
mized time profiles (meshes) for the BDCZ and the CTSL schemes
are also plotted. The unoptimized protocol assumes fixed elemen-
tary pair fidelity (F0 � 0.96 and 0.99 for BDCZ and CTSL,
respectively), simple connection patterns (detailed in refs. 9, 10, 13,
and 14), and a constant number of pumping steps.

As expected, the unoptimized protocol always takes a longer time
than the optimized protocol for the same final distance and target
fidelity. Time profiles for the unoptimized protocols have stairlike
jumps in Fig. 3 a and b. For the BDCZ scheme (Fig. 3a), the jumps
occurring with increasing distance (occurring at distances L/L0 �
2 p � 1 � 1, 3, 5, 9, 17, 33, . . . ) are the results of time overhead from
the additional level of connection; the jump occurring at Ffinal �
0.98 is due to the sudden change in the number of pumping steps
from 1 to 2. Similarly, for the CTSL scheme (Fig. 3b), the two jumps
are due to the change of the number of pumping steps from 1 to 2
and finally to 3. For the optimized protocols, the time increases
smoothly with increasing final distance and fidelity.

The improvement factor (i.e., the ratio between the times for
unoptimized and optimized protocols) is plotted for both the
BDCZ and the CTSL schemes in Fig. 3 c and d. As we might expect,
the previously mentioned jumps lead to sharp stripes where the
improvement factor changes discontinuously. There are several
regions where the optimization gives significant improvement. For
example, for the BDCZ scheme, the vertical bright stripes indicate
that the optimization provides a time-efficient way to generate
entangled pairs for distance (2 p � ��) L0 (with �� � 0), gaining a
factor of �10; the horizontal bright stripes indicate that efficiently
arranging the number of pumping steps can also speed up the
scheme by a factor of �30 or even more. For most of the optimized
protocols, a distant pair is divided into two shorter pairs with similar

distance and fidelity (symmetric partition), but occasional asym-
metric partitioning can further reduce the time by �10%.

For the BDCZ scheme, the correspondence between jumps
and stripes essentially accounts for all of the features of the
improvement plot (Fig. 3c). For the CTSL scheme, however,
besides the stripes, there is also a region (with distance L � 100
km and fidelity F � 97.5%) where the improvement factor is
infinity: optimization not only boosts the speed, but also extends
the upper bound of achievable fidelity for distant pairs.

We also study the improvement for other choices of reliability
parameters, p and �, especially those values close to the threshold
(9, 10). Suppose the reliability parameters are p � � � 0.990. In Fig.
4 a and c, we plot the speedup in time associated with various final
distances and fidelities for the BDCZ scheme. For both (optimized
and unoptimized) protocols, the highest achievable fidelity is
�97.5% (compared with 99% in Fig. 3c), limited by errors from
local operations. The improvement factor ranges between [1.5, 600]
(compared with [1, 100] in Fig. 3c). Apart from these differences,
the key features (horizontal and vertical stripes) of improvement
from optimization are very similar between Figs. 3c and Fig. 4c.

For the CTSL scheme, however, unoptimized and optimized
protocols behave very differently, when p � � � 0.990. As shown
in Fig. 4 b and d, the unoptimized protocol cannot effectively create
entangled pairs for distances �200 km, whereas the optimized
protocol is still able to efficiently create distant entangled pairs with
very high fidelity. Thus our optimization lowers the threshold
requirement for the CTSL scheme of quantum repeater.

To understand the reason for the improvement of the highest
achievable fidelity (Fig. 3d) and the parameter threshold (Fig. 4d),
we examine the optimized protocol of the CTSL scheme in the next
two subsections.

Comparison Between Optimized and Unoptimized Protocols. We first
compare the detailed procedures between two (optimized and
unoptimized) protocols by using the CTSL scheme to produce a
pair with final distance L � 11L0 and fidelity Ffinal � 97.6%, with

Fig. 3. Plots of time profiles and improvement factors. (a and b) Speedup in
time associated with various final distances and fidelities. Shown are t (Ffinal,
L) for unoptimized (meshes) and optimized (smooth surface) implementations
of the BDCZ scheme (a) and of the CTSL scheme (b). (c and d) Pseudocolor plots
of the improvement factor, tunopt/topt, for the BDCZ scheme (c) and for the CTSL
scheme (d), in the region (Ffinal � 97.5), the improvement factor tunopt/topt3
�. The default parameters are Latt � 20 km, � � 0.2, and p � � � 0.995.

Fig. 4. Plots of time profiles and improvement factors. The subplots are
arranged in the same way as Fig. 3. Local operations have lower reliability
parameters, p � � � 0.990. (a and c) For the BDCZ scheme, the optimization
procedure only improves the speed of the quantum repeater and does not
extend the achievable region in the F–L plot. (b and d) For the CTSL scheme,
for distances �200 km, the improvement factor, tunopt/topt 3 �. Here, the
reliability parameter (p � � � 0.990) is insufficient to create distant entangled
pairs with the unoptimized implementation, but the optimized implementa-
tion (with multilevel pumping) is still able to create high-fidelity distant
entangled pairs, because multilevel pumping lowers the threshold of the
reliability parameters for the CTSL scheme.

17294 � www.pnas.org�cgi�doi�10.1073�pnas.0703284104 Jiang et al.



default reliability parameters p � � � 0.995. We choose the highest
fidelity achievable by the unoptimized protocol, so that we will see
almost all features that give improvements. The results for the
unoptimized protocol (Fig. 5a) follow refs. 13 and 14 exactly,
whereas the optimized protocol (Fig. 5b) is from our systematic
search using dynamic programming. They differ in the following
aspects: (i) during entanglement generation, the optimized imple-
mentation generates elementary pairs with fidelity lower than 0.99
to reduce the generation time and uses entanglement pumping
afterward to compensate for the fidelity loss; (ii) during entangle-
ment connection, the rule of producing a long pair from two almost
identical shorter pairs is slightly modified (e.g., the pair pointed to
by the black arrow in the ninth row is from the connection of two
quite different pairs in the tenth row); (iii) the number of pumping
steps after each connection varies from 0 to 3 for optimized
implementation; (iv) finally, the optimized implementation uses
multilevel pumping, which is discussed in detail in the next subsec-
tion. For clarity, the additional operation of node skipping is
suppressed in the optimization here. The overall average time is
reduced from 11 to 1.5 sec, improved by a factor of 8.

Note that our optimization results based on average-time ap-
proximation (see Fig. 6 and SI Methods) are confirmed by the
Monte Carlo simulation of the optimized protocols, verifying the
substantial speedup.

Multilevel Pumping. We now consider the additional operation of
multilevel pumping in more detail. We discuss multilevel pumping
only for the CTSL scheme, not for the BDCZ scheme. (In the
BDCZ scheme, introduction of multilevel pumping requires addi-
tional quantum memory qubits.) In the original unoptimized pro-
tocol (13, 14), the purified entangled state with distance n [between
the 0th and the nth nodes (n � 5)] is produced by entanglement
pumping, and the entangled states used for pumping (called
pumping pairs) are unpurified entangled states with distance n 
 2
(Fig. 2f). The fidelity of these pumping pairs with distance n 
 2 are
limited by the connection operation, which imposes an upper bound
for the fidelity of the purified pair with distance n. The underlying
restriction is that the pumping pair is unpurified.

We may lift this restriction by allowing the use of a purified

pumping pair. This is multilevel pumping. For example, the pump-
ing pair with distance n 
 2 may also be produced by entanglement
pumping from pumping pairs with distance n 
 4 (Fig. 2f�), and so
on. By doing multilevel pumping, the fidelity of the pumping pair
with distance n 
 2 is increased (Fig. 2f�), and the same for the
fidelity upper-bound for the entangled state with distance n.
Although multilevel pumping can increase the fidelity, it also slows
down the repeater scheme.

When the reliability of local operations is above the threshold for
the unoptimized protocol (e.g., p � � � 0.995), we find that
multilevel pumping is necessary only for the last two or three levels
to the high-fidelity pair we want to produce. Such multilevel

Fig. 5. Two implementations with targeting final distance L � 11L0 and fidelity Ffinal � 0.976, by using the CTSL scheme. Each storage qubit is represented by

*. All of the relevant entangled states are shown. The order to produce these entangled states is from bottom to top; states on the same row can be produced
simultaneously. The two kinds of entangled states are: purified entangled states (type A, solid black line) and unpurified entangled states (type B, dashed blue
line). On the left side of each purified entangled state, there is a label ‘‘Ak,’’ where the number k indicates that this purified entangled state is obtained from
k steps of entanglement pumping. (a) The unoptimized (Left) implementation has three pumping steps after each entanglement connection, with average time
of �11 sec to produce the pair wanted. (b) The optimized (Right) implementation is from optimization over pair-generation time, connection position, and the
number of pumping steps. The optimized choice of connection position does not necessarily break the long pair into two almost identical shorter pairs; for
example, the entangled state to which the black arrow points in the ninth row is obtained by connecting two very different shorter pairs in the row below. In
addition, the possibility of multilevel pumping is also taken into account during the dynamic programming. As pointed out by the red arrows, the pair of storage
qubits in the third row pumps the pair in the second row, and the latter pumps the pair in the first row. The average time is �1.5 sec for the optimized
implementation, about 8 times faster than the unoptimized one.
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Fig. 6. Results of Monte Carlo simulation. Monte Carlo simulation for
unoptimized/optimized implementations for the BDCZ scheme (a) and the
CTSL scheme (b), with a final distance of 1,280 km and a fidelity of 0.97. The
time distributions for distant pairs are plotted, with red (blue) bars for
optimized (unoptimized) implementation. In each plot, the red (blue) dia-
mond indicates the estimated time from average-time approximation for
optimized (unoptimized) implementation. The average-time approximation
provides a good estimate up to some overall factor (2 � 3), which is not very
sensitive to the implementation.
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pumping can be identified in the optimized implementation; for
example, as indicated by red arrows in Fig. 5b, the pair of storage
qubits in the third row pumps the pair in the second row, and the
latter pumps the pair in the first row. On the other hand, when the
reliability of local operations is below such a threshold (e.g., p � � �
0.990), multilevel pumping is needed after almost every entangle-
ment connection.

If we exclude the possibility of multilevel pumping in dynamic
programming, the infinite improvement factor for pairs with dis-
tance L � 100 km and fidelity F � 97.5% in Fig. 3d would disappear.
Similarly, in Fig. 4d, without multilevel pumping, there would be no
improvement of the parameter threshold, and even the optimized
protocol could not efficiently create distant (L � 200 km) entangled
pairs. For the CTSL scheme, multilevel pumping not only enables
us to prepare entangled pairs with very high fidelity, but also lowers
the required threshold of the reliability parameters (p and �) for
local operations. Therefore, the flexibility to include additional
operations in our dynamic programming provides a new perspective
on the optimization of quantum repeater schemes.

Other Improvements. In addition to the previously discussed fea-
tures in the plots of improvement factor, there is an overall
improvement for all final distances and fidelities. Such overall
improvement comes from the optimized choice of the distance (by
node skipping) and the generation time for each elementary pair
used. Such overall improvement is �1.5 (or 2 � 3) for the BDCZ
(or CTSL) scheme, which indicates that the original choice of
uniform distance L0 � 10 km and initial fidelities F0 � 96% (or
99%) are quite close to the optimal.

Finally, we consider whether it is possible to gain some additional
speedup if we are allowed to choose the location of the nodes of the
quantum repeater. To answer this question, we discretize the dis-
tance into smaller units, for example, 1 km �� Latt. Because the
distance of each elementary pair is determined by the dynamic
programming, the optimized location of the nodes can be inferred
from the distances of the elementary pairs. We find that the
speedup due to optimization over the location of the nodes is fairly
small, no more than 15% in time (for cases with final distances �200
km). In general, we find that as long as the node spacing is less than
the attenuation length (L0 � Latt), a quantum repeater can be
implemented almost optimally.

Experimental Implications. Throughout our analysis we have as-
sumed relatively high fidelity of local measurements and operations
(� � P � 0.995 or 0.99) and memory times exceeding total
communication times. Recent experiments with tapped ions (17,
18), neutral atoms (19), and solid-state qubits (20) are already
approaching these values of fidelity and memory times. At the same
time, high initial entanglement fidelity (F0 � 96% or 99%) is also
needed for the optimized protocols. Entanglement fidelity of
�90% can be inferred from recent experiments with two ions in
independent traps (21). Although optimization procedure can yield

protocols compatible with fairly low initial fidelity and high local
error rates, in practice, these errors introduce a large overhead in
communication time.

Besides the schemes considered here, there are other quantum
repeater schemes, in particular, the Duan et al. (22) scheme (DLCZ
scheme) that requires a smaller set of quantum operations and
relatively modest physical resources. The original DLCZ scheme
does not use active entanglement purification and hence cannot
correct arbitrary errors. In such a case, optimization is straightfor-
ward and has been discussed in ref. 22. Recently, the DLCZ scheme
has been extended to include active entanglement purification to
suppress, for example, phase noises (23, 24). The extended DLCZ
scheme becomes very similar to the BDCZ scheme in terms of the
self-similar structure. The technique of dynamic programming can
be applied to optimize the extended DLCZ scheme as well.

Conclusion and Outlook
We have demonstrated how dynamic programming can be a
powerful tool for systematically studying the optimization of quan-
tum repeater protocols. We find substantial improvements to two
specific repeater schemes (9, 10, 13, 14). Beyond searching for
optimal choices in previously known elements of the schemes
(entanglement generation, connection, and pumping), our system-
atic study can also incorporate more sophisticated additional op-
erations, such as node skipping, multilevel pumping, and the
flexible location of repeater stations. In particular, our multilevel
pumping procedure extends the maximum achievable fidelity for
distant pairs. It should be possible to include additional possibilities
to the optimization problem of quantum repeater, such as different
choices of entanglement generation and possibly more efficient
usage of local qubits (25, 26). It would also be interesting to study
the optimization problem of quantum repeater with finite storage
time of the quantum memory (27, 28). Even the optimized proto-
cols have a rather limited speed (corresponding to generation of
one high-fidelity pair over 1,280 km in 1 to �100 sec (see Fig. 6).
Therefore, improvement of experimental techniques (to obtain
higher local-operation fidelities and more efficient atom–photon
coupling) as well as development of new theoretical approaches to
speed up quantum repeaters still remain an outstanding goal.
Furthermore, the dynamic programming techniques may find ap-
plication in other outstanding problems in quantum information
science, such as the optimization of quantum error correction for
fault-tolerant quantum computation. In particular, the optimization
of the network-based quantum computation scheme with minimal
resources (15) might be possible.
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