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Xavier Gabaix and David Laibson 
MIT; and Harvard University and NBER 

The 6D Bias and the 

Equity-Premium Puzzle 

1. Introduction 

Consumption growth covaries only weakly with equity returns, which 
seems to imply that equities are not very risky. However, investors have 

historically received a very large premium for holding equities. For 

twenty years, economists have asked why an asset with little apparent 
risk has such a large required return.1 

Grossman and Laroque (1990) argued that adjustment costs might 
answer the equity-premium puzzle. If it is costly to change consump- 
tion, households will not respond instantaneously to changes in asset 

prices. Instead, consumption will adjust with a lag, explaining why con- 

sumption growth covaries only weakly with current equity returns. In 
Grossman and Laroque's framework, equities are risky, but that riski- 
ness does not show up in a high contemporaneous correlation between 

consumption growth and equity returns. The comovement is only ob- 
servable in the long run. 

Lynch (1996) and Marshall and Parekh (1999) have simulated discrete- 
time delayed-adjustment models and demonstrated that these models 
can potentially explain the equity-premium puzzle.2 In light of the com- 

plexity of these models, both sets of authors used numerical simulations. 

We thank Ben Bernanke, Olivier Blanchard, John Campbell, James Choi, Karen Dynan, 
George Constantinides, John Heaton, Robert Lucas, Anthony Lynch, Greg Mankiw, Jona- 
than Parker, Monika Piazzesi, Ken Rogoff, James Stock, Jaume Ventura, Annette Vissing, 
and seminar participants at Delta, Insead, Harvard, MIT, University of Michigan, NBER, 
and NYU for helpful comments. We thank Emir Kamenica, Guillermo Moloche, Eddie 
Nikolova, and Rebecca Thornton for outstanding research assistance. 
1. For the intellectual history of this puzzle, see Rubinstein (1976), Lucas (1978), Shiller 

(1982), Hansen and Singleton (1983), Mehra and Prescott (1985), and Hansen and 
Jagannathan (1991). For useful reviews see Kocherlakota (1996) and Campbell (1999). 

2. See also related work by Caballero (1995), He and Modest (1995), Heaton and Lucas 
(1996), Luttmer (1995), and Lynch and Balduzzi (2000). 
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We propose a continuous-time generalization of Lynch's (1996) model. 
Our extension provides two new sets of results. First, our analysis is 
analytically tractable; we derive a complete analytic characterization of 
the model's dynamic properties. Second, our continuous-time frame- 
work generates effects that are up to six times larger than those in 
discrete-time models. 

We analyze an economy composed of consumers who update their 
consumption every D (as in "delay") periods. Such delays may be moti- 
vated by decision costs, attention allocation costs, and/or mental ac- 
counts.3 The core of the paper describes the consequences of such 

delays. In addition, we derive a sensible value of D based on a decision- 
cost framework. 

The 6D bias is our key result. Using data from our economy, an econo- 
metrician estimating the coefficient of relative risk aversion (CRRA) from 
the consumption Euler equation would generate a multiplicative CRRA 
bias of 6D. For example, if agents adjust their consumption every D = 4 

quarters, and the econometrician uses quarterly aggregates in his analy- 
sis, the imputed coefficient of relative risk aversion will be 24 times 

greater than the true value. Once we take account of this 6D bias, the 

Euler-equation tests are unable to reject the standard consumption 
model. High equity returns and associated violations of the Hansen- 

Jagannathan (1991) bounds cease to be puzzles. 
The basic intuition for this result is quite simple. If households adjust 

their consumption every D - 1 periods, then on average only 1/D house- 
holds will adjust each period. Consider only the households that adjust 
during the current period, and assume that these households adjust 
consumption at dates spread uniformly over the period. Normalize the 

timing so the current period is the time interval [0, 1]. When a household 

adjusts at time i E [0, 1], it can only respond to equity returns that have 

already been realized by time i. Hence, the household can only respond 
to fraction i of within-period equity returns. Moreover, the household 
that adjusts at time i can only change consumption for the remainder 
of the period. Hence, only a fraction 1 - i of this period's consumption is 
affected by the change at time i. On average the households that adjust 
during the current period display a covariance between equity returns 
and consumption growth that is biased down by factor 

1 1 
i(1 - i)di = - . 

6 

3. See Gabaix and Laibson (2000b) for a discussion of decision costs and attention allocation 
costs. See Thaler (1992) for a discussion of mental accounts. 
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The integral is taken from 0 to 1 to average over the uniformly distrib- 
uted adjustment times. 

Since only a fraction 1/D of households adjust in the first place, the 
aggregate covariance between equity returns and consumption growth is 

approximately 6 X 1/D as large as it would be if all households adjusted 
instantaneously. The Euler equation for the instantaneous-adjustment 
model implies that the coefficient of relative risk aversion is inversely 
related to the covariance between equity returns and consumption 
growth. If an econometrician used this Euler equation to impute the 
coefficient of relative risk aversion, and he used data from our delayed 
adjustment economy, he would impute a coefficient of relative risk aver- 
sion that was 6D times too large. 

In Section 2 we describe our formal model, motivate our assumptions, 
and present our key analytic finding. In Section 2.2 we provide a heuris- 
tic proof of our results for the case D - 1. In Section 3 we present 
additional results that characterize the dynamic properties of our model 

economy. In Section 4 we close our framework by describing how D is 
chosen. In Section 5 we consider the consequences of our model for 
macroeconomics and finance. In Section 6 we discuss empirical evidence 
that supports the Lynch (1996) model and our generalization. The model 
matches most of the empirical moments of aggregate consumption and 
equity returns, including a new test which confirms the 6D prediction 
that the covariance between ln(Ct+h/Ct) and Rt+1 should slowly rise with h. 
In Section 7 we conclude. 

2. Model and Key Result 

Our framework is a synthesis of ideas from the continuous-time model 
of Merton (1969) and the discrete-time model of Lynch (1996). In essence 
we adopt Merton's continuous-time modeling approach and Lynch's 
emphasis on delayed adjustment.4 

We assume that the economy has two linear production technologies: a 
risk-free technology and a risky technology (i.e., equities). The risk-free 
technology has instantaneous return r. The returns from the risky tech- 
nology follow a geometric diffusion process with expected return r + 7r 
and standard deviation a. 

We assume that consumers hold two accounts: a checking account 
and a balanced mutual fund. A consumer's checking account is used for 
day-to-day consumption, and this account holds only the risk-free asset. 

4. See Calvo (1983), Fischer (1977), and Taylor (1979) for earlier examples of delayed adjust- 
ment in macroeconomics. 
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The mutual fund is used to replenish the checking account from time to 
time. The mutual fund is professionally managed and is continuously 
rebalanced so that a share 0 of the mutual-fund assets is always invested 
in the risky asset.5 The consumer is able to pick 0.6 In practice, the 
consumer picks a mutual fund that maintains the consumer's preferred 
value of 0. We call 0 the equity share (in the mutual fund). 

Every D periods, the consumer looks at her mutual fund and decides 
how much wealth to withdraw from it to deposit in her checking ac- 
count. Between withdrawal periods-i.e., from withdrawal date t to the 
next withdrawal date t + D-the consumer spends from her checking 
account and does not monitor her mutual fund. For now we take D to be 
exogenous. Following a conceptual approach taken in Duffie and Sun 
(1990), we later calibrate D with a decision-cost model (see Section 4). 
Alternatively, D can be motivated with a mental-accounting model of the 
type proposed by Thaler (1992). 

Finally, we assume that consumers have isoelastic preferences and 
exponential discount functions: 

C? s 1' - 1 
Uit = Et e-Pp(s t)( c1 ds. 

=t 1 - y 

Here i indexes the individual consumer and t indexes time. 
We adopt the following notation. Let wt represent the wealth in the 

mutual fund at date t. Between withdrawal dates, wit evolves according to 

dwit = wit[(r + 07T) dt + 0o dzt], 

where zt is a Wiener process. We can now characterize the optimal 
choices of our consumer. We describe each date at which the consumer 
monitors-and in equilibrium withdraws from-her mutual fund as a 
reset date. Formal proofs of all results are provided in the appendix. 

PROPOSITION 1 On the equilibrium path, thefollowing properties hold: 

1. Between reset dates, consumption grows at a fixed rate (1/y)(r - p). 
2. The balance in the checking account just after a reset date equals the net 

present value (NPV) of consumption between reset dates, where the NPV is 
taken with the risk-free rate. 

5. This assumption can be relaxed without significantly changing the quantitative results. 
In particular, the consumer could buy assets in separate accounts without any instanta- 
neous rebalancing. 

6. The fact that 0 does not vary once it is chosen is optimal from the perspective of the 
consumer in this model. 
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3. At reset date r, consumption is ci+ = awil-, where a is a function of the 

technology parameters, preference parameters, and D. 
4. The equity share in the mutualfund is 

IT 
0 2 (1) 

Here ci+ represents consumption immediately after reset, and wi,- rep- 
resents wealth in the mutual fund immediately before reset. 

Claim 1 follows from the property that between reset dates the rate of 
return to marginal savings is fixed and equal to r. So between reset dates 
the consumption path grows at the rate derived in Ramsey's (1928) 
original deterministic growth model: 

c 1 
- = -(r - p). 

c y 

Claim 2 reflects the advantages of holding wealth in the balanced mutual 
fund. Instantaneous rebalancing of this fund makes it optimal to store 
"extra" wealth-i.e., wealth that is not needed for consumption be- 
tween now and the next reset date-in the mutual fund. So the checking 
account is exhausted between reset dates. Claim 3 follows from the 

homotheticity of preferences. Claim 4 implies that the equity share is 
equal to the same equity share derived by Merton (1969) in his instan- 
taneous-adjustment model. This exact equivalence is special to our insti- 
tutional assumptions, but approximate equivalence is a general property 
of models of delayed adjustment (see Rogers, 2001, for numerical exam- 
ples in a related model). Note that the equity share is increasing in the 
equity premium (7r) and decreasing in the coefficient of relative risk 
aversion (y) and the variance of equity returns (u,2). 

Combining claims 1-3 implies that the optimal consumption path be- 
tween date rand date r + D is cit = aee(1/Y)(r-P)(t- 3Wi 

- and the optimal balance 
in the checking account just after reset date r is 

r+D ++D 

ise r(s r)ds = J ael/)(r-p)(s )-r(s -) W -ds. 

Claim 3 implies that at reset dates optimal consumption is linear in 
wealth. The actual value of the propensity to consume, a, does not matter 
for the results that follow. Any linear rule-e.g., linear rules of thumb- 
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will suffice. In practice, the optimal value of a in our model will be close to 
the optimal marginal propensity to consume derived by Merton, 

ar= + 1 ) r+ 
y y/ \ 2ya2 

Merton's value is exactly optimal in our framework when D = 0. 

2.1 OUR KEY RESULT: THE 6D BIAS 

In our economy, each agent resets consumption at intervals of D units of 
time. Agents are indexed by their reset time i E [0,D). Agent i resets 
consumption at dates {i, i + D, i + 2D, . . . }. 

We assume that the consumption reset times are distributed uni- 

formly.7 More formally, there exists a continuum of consumers whose 
reset indexes i are distributed uniformly over [0, D). So the proportion of 
agents resetting their consumption in any time interval of length At < D 
is At/D. 

To fix ideas, suppose that the unit of time is a quarter of the calendar 

year, and D = 4. In other words, the span of time from t to t + 1 is one 

quarter of a year. Since D = 4, each consumer will adjust her consump- 
tion once every four quarters. We will often choose the slightly non- 
intuitive normalization that a quarter of the calendar year is one period, 
since quarterly data constitute the natural unit of temporal aggregation 
with contemporary macroeconomic data. 

Call Ct the aggregate consumption between t - 1 and t: 

jD (jt c 1 

Ct = cis ds) 
- di. 

i=0 =t-1 D 

Note that ft=t-l cisds is per-period consumption for consumer i. 

Suppose that an econometrician estimates y and /3 using a consump- 
tion Euler equation (i.e., the consumption CAPM). What will the econo- 
metrician infer about preferences? 

THEOREM 2 Consider an economy with true coefficient of relative risk aversion 
y. Suppose an econometrician estimates the Euler equation 

Et-_1 ( Ct1 t 1 

7. The results change only a little when we relax the assumption of a uniform distribution. 
Most importantly, if reset dates were clumped at the end of periods-a natural 
assumption-then the implied bias would be infinite. 
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for two assets: the risk-free bond and the stock market. In other words, the 
econometrician fits j8 and y to match the Euler equation above for both assets. 
Then the econometrician will find 

A 6Dy for D> 1, 
6i (2) 

3(1 
6 
) y for O D<I l 

3(1 - D) + D 
' 

plus higher-order terms characterized in subsequent sections. 

Figure 1 plots y/y as a function of D. The formulae for the cases 0 D D 
c 1 and D 1 are taken from Theorem 2. 

The two formulae paste at the crossover point, D = 1. Convexity of the 
formula below D = 1 implies that y/y - 6D for all values of D. The case 
of instantaneous adjustment (i.e., D = 0) is of immediate interest, since 
it has been solved already by Grossman, Melino, and Shiller (1987). With 
D = 0 the only bias arises from time aggregation of the econometrician's 
data, not delayed adjustment by consumers. Grossman, Melino, and 
Shiller show that time aggregation produces a bias of y/y = 2, matching 
our formula for D = 0. 

The most important result is the equation for D > 1, = 6Dy, which 
we call the 6D bias. For example, if each period (t to t + 1) is a quarter of 
a calendar year, and consumption is reset every D = 4 quarters, then we 

FIGURE 1 RATIO OF ESTIMATED y TO TRUE y 

30 

25 

67y/[3(1-D)+D ] 
10 

0 

5 

2-2_ 
0 i i __ _I I 

0 1 2 3 4 5 
D=(time between consumption resets)/(time between econometric observations) 
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get y = 24y. Hence y is overestimated by a factor of 24. If consumption is 
revised every 5 years, then we have D = 20, and 1 = 120y. 

Reset periods of 4 quarters or more are not unreasonable in practice. 
For an extreme case, consider the 30-year-old employee who accumu- 
lates balances in a retirement savings account [e.g., a 401(k)] and fails to 

recognize any fungibility between these assets and his preretirement 
consumption. In this case, stock-market returns will affect consumption 
at a considerable lag (D > 120 quarters for this example). 

However, such extreme cases are not necessary for the points that we 
wish to make. Even with a delay of only 4 quarters, the implications for 
the equity-premium puzzle literature are dramatic. With a multiplicative 
bias of 24, econometrically imputed coefficients of relative risk aversion 
of 50 suddenly appear quite reasonable, since they imply actual coeffi- 
cients of relative risk aversion of roughly 2. 

In addition, our results do not rely on the strong assumption that all 
reset rules are time- and not state-contingent. In Appendix B we incorpo- 
rate the realistic assumption that all households adjust immediately 
when the equity market experiences a large (Poisson) shock. In practice, 
such occasional state-contingent adjustments only slightly modify our 
results. 

Our qualitative results are robust to our assumption about the uniform 
distribution of adjustment dates. For example, if adjustment occurs at 
the end (or beginning) of the quarter, then the multiplicative bias in the 
estimated coefficient of relative risk aversion is infinite, since the continu- 
ous flow of consumption in the current quarter is unaffected by current 
asset returns. By contrast, if adjustments occur at exactly the middle of 
the quarter, then the multiplicative bias is 4D, since the consumers that 
do adjust can only respond to half of the stock returns and their adjust- 
ment only affects half of the consumption flow (i.e. V2 * /2 = 4). 

We can also compare the 6D bias analytically with the biases that 

Lynch (1996) simulates numerically in his original discrete-time model. 
In Lynch's framework, agents consume every month and adjust their 

portfolio every T months. Lynch's econometric observation period is the 
union of F one-month intervals, so D = T/F. In Appendix C we show 
that when D- 1 Lynch's framework generates a bias which is bounded 
below by D and bounded above by 6D. Specifically, an econometrician 
who naively estimated the Euler equation with data from Lynch's econ- 

omy would find a bias of 

/ 6F2 
- D + higher-order terms. (3) 

y (F + 1)(F + 2) 
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Holding D constant, the continuous-time limit corresponds to F -- oo, 
and for this case A/y = 6D. The discrete-time case where agents consume 
at every econometric period corresponds to F = 1, implying y/y = D, 
which can be derived directly. 

Finally, the 6D bias complements participation bias (e.g., Vissing, 
2000; Brav, Constantinides, and Geczy, 2000). If only a fraction s of 

agents hold a significant share of their wealth in equities (say s = 3), then 
the covariance between aggregate consumption and returns is lower by a 
factor s. As Theorem 8 demonstrates, this bias combines multiplicatively 
with our bias: if there is limited participation, the econometrician will 
find the values of y in Theorem 2, divided by s. In particular, for D - 1, 
he will find 

6D 
= - . (4) 

s 

This formula puts together three important biases generated by Euler- 

equation (and Hansen-Jagannathan) tests: 9 will be overestimated be- 
cause of time aggregation and delayed adjustment (the 6D factor), and 
because of limited participation (the 1/s factor). 

2.2 ARGUMENT FOR D > 1 

In this section we present a heuristic proof of Theorem 2. A rigorous 
proof is provided in Appendix A. 

Normalize a generic period to be one unit of time. The econometrician 
observes the return of the stock market from 0 to 1: 

0'2 1 

InR = r + iT - 2 + a dzs, (5) 

where r is the risk-free interest rate, ir is the equity premium, o2 is the 
variance of stock returns, and z is a Wiener process. The econometrician 
also observes aggregate consumption over the period: 

C1= ( cisds - di. 
i=o s=o D 

As is well known, when returns and consumption are assumed to be 
jointly lognormal, the standard Euler equation implies that8 

8. Et_l[P(Ct/Ct_l)- Rt] = 1 with R- = e"a-a/2+2'aa. The subscripts and superscripts a denote 
asset-specific returns and standard deviations. As Hansen and Singleton (1983) showed, 
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7T 

C, (6) cov (ln , In R) 

We will show that when D - 1 the measured covariance between 
consumption growth and stock-market returns, cov(ln[Cl/Co], In R1), will 
be lower by a factor 6D than the instantaneous covariance, cov(d In Ct, d 
In Rt)/dt, that arises in the frictionless CCAPM. As is well known, in the 
frictionless CCAPM 

cov(d In Ct, d In Rt)/dt 

Assume that each agent consumes one unit in period [-1,0].9 So aggre- 
gate consumption in period [-1,0] is also one: Co = 1. Since In (CI/CO) - 

C1/Co - 1, we can write 

cov In C, InR, - cov(Ci, In R1) (7) 

cov(Ca,ln R) di (8) 

with Ci1 = Jf cisds the time-aggregated consumption of agent i during 
period [0,1]. 

First, take the case D = 1. Agent i E [0,1) changes her consumption 
at time i. For s E [0,i), she has consumption cis = awi, - e(1/)(r-p)(s-T, where 

= i - D. 

Throughout this paper we use approximations to get analytic results. 
Let = max(r,p,0 O,r2, u202, a). When we use annual periods, e will be 

In + / ev 
- 

t p - 
2 

+ i t - a a a 

If we evaluate this expression for the risk-free asset and equities, we find that 

/ Ct 
Tr = y cov In -- In lRt . 

Note that 7r + r = /,. 
9. This assumption need not hold exactly. Consumption need be unity only up to 

0<o0(VE) + 0(e) terms, in the notation defined below. 
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approximately 0.05.10 For quarterly periods, e will be approximately 0.01. 
We can express our approximation errors in higher-order terms of &. 

Since consumption in period [-1,0] is normalized to one, at time T 

i - D, a times wealth will be equal to 1 plus small corrective terms; more 
formally, 

awi - = 1+ 0<0~ + 0(E), 

awi+ =1 + 0:0(V') + 0(E). 

Here O(e) represents stochastic or deterministic terms of order E, and 
0,(Vs) represents stochastic terms that depend only on equity innova- 
tions that happen before time 0. Hence the O<0(V,) terms are all orthogo- 
nal to equity innovations during period [0,1]. 

Drawing together our last two results, for s E [0,i), 

ci e(1/y)(r-p)(s-raw - 

[1 + 0(e)][1 + 0<,(x/0) + 0(e)] 

= 1 + 0<o(\/S) + 0(E). 

Without loss of generality, set z(0) = 0. So consumer i's mutual fund 
wealth at date t = i- is 

awi,t=i- = e(r? on- 0'2/2)D+&o[z(i)-z(i-D)l]awi7+ 

= [1 + Ooz(i) + O<0(,V') + 0(E)][1 + 0<0(V8) + 0(e)] 

= 1 + O0z(i) + O<0(VE ) + 0(E). 

The consumer adjusts consumption at t = i, and so for s E [i,l] she 
consumes 

ci- =e(y)(r p)(s aw,t=i 

= [1 + 0(e)][1 + Ooz(i) + 0 ,0(V_) + 0(e)] 
= 1 + 00uz(i) + 0,0(y'_) + 0(E). 

The covariance of consumption and returns for agent i is 

10. For a typical annual calibration r = 0.01, p - 0.05, Ohr = (0.78)(0.06), U2 = (0.16)2, 
=222 =7T/yoa)2 = (0.06/3 x 0.16)2, and a = 0.04. 
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cov(Cil,lnR1) = cov(ci,,ln R)ds 

= 0 ds + cov 1 + 0oz(i) + 0<o(V-) 

+ O(e),arz(l) +r + - - ds 

= f [02cov(z(i),o-z(1)) + O(312)]ds 

= O-2i(1 - i) + O(3/2) 

0o'2i(l - i). 

Here and below - means "plus higher-order terms in "." 

The covariance contains the multiplicative factor i because the con- 
sumption change reflects only return information which is revealed be- 
tween date 0 and date i. The covariance contains the multiplicative factor 
1 - i because the change in consumption occurs at time i, and therefore 
affects consumption for only the subinterval [i,1]. 

We often analyze "normalized" variances and covariances. Specifi- 
cally, we divide the moments predicted by the 6D model by the moments 

predicted by the benchmark model with instantaneous adjustment and 
instantaneous measurement. Such normalizations highlight the "biases" 
introduced by the 6D economy. 

For the case D = 1, the normalized covariance of aggregate consump- 
tion growth and equity returns is 

1 cov(Cl,ln R1) = cov(Cil,Rl) 
0o-2 0 or2 D 

n 1 
i(l - i) di = - 

6 

which is the (reciprocal of the) 6D factor for D = 1. 
Consider now the case D- 1. Consumer i E [0,D) resets her consump- 

tion at t = i. During period 1 (i.e., t E [0,1]) only agents with i E [0,1] will 
reset their consumption. Consumers with i E (1,D] will not change their 

consumption, so they will have a zero covariance, cov(C1,Rl) = 0. 
Hence, 
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cov(C,i,R1) = i(l - i) if i E [0,1], 

0O if iE [1,D] . 

For D - 1 the covariance of aggregate consumption is just 1/D times 
what it would be if we had D = 1: 

1 D 1 di 
- cov (ln(Cl/C0),R,) I - cov(Cil,Rl) 

- 

6D 

6D 

The 6D lower covariance of consumption with returns translates into a 
6D higher measured CRRA 9. Since 0 = ir/yo2 [equation (1)], we get 

C, 7T 
cov (ln -, ln R) = 6D 

The Euler equation (6) then implies 

= 6Dy, 

as anticipated. 
Several properties of our result should be emphasized. First, holding 

D fixed, the bias in y does not depend on either preferences or technol- 
ogy: r, 7r,-,p, y. This independence property will apply to all of the addi- 
tional results that we report in subsequent sections. When D is endoge- 
nously derived, D itself will depend on the preference and technology 
parameters. 

For simplicity, the derivation above assumes that agents with different 
adjustment indexes i have the same "baseline" wealth at the start of each 
period. In the long run this wealth equivalence will not apply exactly. 
However, if the wealth disparity is moderate, the reasoning above will 
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still hold approximately.11 Numerical analysis with 50-year adult lives 

implies that the actual bias is very close to 6D, the value it would have if 
all of the wealth levels were identical period by period. 

3. General Characterization of the Economy 
In this section we provide a general characterization of the dynamic 
properties of the economy described above. We analyze four properties 
of our economy: excess smoothness of consumption growth, positive 
autocorrelation of consumption growth, low covariance of consumption 
growth and asset returns, and nonzero covariance of consumption 
growth and lagged equity returns. 

Our analysis focuses on first-order effects with respect to the parame- 
ters r, p, Orr, o2, or22, and a. Call E = max(r,p, Tr, cr2, C202, ). We assume 
e to be small. Empirically, 8s 0.05 with a period length of a year, and 
E - 0.01 with a period length of a calendar quarter. All the results that 
follow (except one12) are proved with O(e312) residuals. In fact, at the cost 
of more tedious calculations, one can show that the residuals are actually 
0(82).13 

The following theorem is the basis of this section. The proof appears 
in Appendix A. 

THEOREM 3 The autocovariance of consumption growth at horizon h - 0 can be 

expressed as 

cov (In , In 
Ct 

)= 02u2r(D,h) + 0(83/2), (9) 
Ch+t-1 Ct-i 

where 

r(D,h) - [d(D + h) + d(D - h) - d(h) - d(-h)l, (10) 

11. More precisely, it is only important that the average wealth of households that switch on 
date t not differ significantly from the average wealth of households that switch on any 
date s E [t - D,t + D]. To guarantee this cross-date average similarity we could assume 
that each reset interval ends stochastically. This randomness generates "mixing" be- 
tween populations of households that begin life with different reset dates. 

12. Equation (12) is proved to O(fV), but with more tedious calculations can be shown to 
be O(e). 

13. One follows exactly the lines of the proofs presented here, but includes higher-order 
terms. Calculations are available from the authors upon request. 
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ED = 4 
) 

) 
ID + i - 21', 5(11) 

;=0 i 2 x 5! 

and (4) = 4!/i!(4 - i)! is the binomial coefficient. 

The expressions above are valid for noninteger values of D and h. The 
functions d(D) and F(D,h) have the following properties, many of which 
will be exploited in the analysis that follows14: 

d C4. 
d(D)= ID|/2for IDI 2. 
d(O) =7. 

r(D,h) - 1/D for large D. 

F(D,h) ' 0. 
F(D,h) > O iff D + 2 > h. 
F(D,h) is nonincreasing in h. 
F(D,0) is decreasing in D, but F(D,h) is hump-shaped for h > 0. 
r(0,h) = 0 for h - 2. 

r(0,0) = 

r(0,1) = 

Figure 2 plots d(D) along with a second function which we will use 
below. 

3.1 r(D,0) 

We begin by studying the implications of the autocovariance function, 
F(D,h), for the volatility of consumption growth (i.e., by setting h = 0). 
Like Caballero (1995), we also show that delayed adjustment induces 
excess smoothness. Corollary 4 describes our quantitative result. 

COROLLARY 4 In thefrictionless economy (D = 0), var (dC/Ct)/dt = 0o202. In 
our economy, with delayed adjustment and time aggregation bias, 

var(ln[C,/Ct _]) 2 

O'202 3 

The volatility of consumption, '202T(D,O), decreases as D increases. 

The normalized variance of consumption, F(D,0), is plotted against D 
in Figure 3. 

14. r is continuous, so F(O,h) is intended as limDr0F(D,h). 
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FIGURE 2 THE FUNCTIONS d(x) AND e(x) 
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FIGURE 3 THE NORMALIZED VARIANCE OF CONSUMPTION GROWTH, 
r(D,O) 
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For D = 0, the normalized variance is 2, well below the benchmark 
value of 1. The D = 0 case reflects the bias generated by time aggregation 
effects. As D rises above zero, delayed adjustment effects also appear. 
For D = 0, 1, 2, 4, 20 the normalized variance takes values 0.67, 0.55, 
0.38, 0.22, and 0.04. For large D, the bias is approximately 1/D. 

Intuitively, as D increases, none of the short-run volatility of the econ- 

omy is reflected in consumption growth, since only a proportion 1/D of 
the agents adjust consumption in any single period. Moreover, the size 
of the adjustments only grows as /-D. So the total magnitude of adjust- 
ment is falling as 1/-D, and the variance falls as 1/D. 

3.2 F(D,h) WITH h > 0 

We now consider the properties of the (normalized) autocovariance func- 
tion r(D,h) for h = 1, 2, 4, 8. Figure 4 plots these respective curves, 
ordered from h = 1 on top to h = 8 at the bottom. Note that in the 
benchmark case-instantaneous adjustment and no time-aggregation 
bias-the autocovariance of consumption growth is zero. With only 
time-aggregation effects, the one-period autocovariance is r(0,1) = 6, 
and all h-period autocovariances with h > 1 are zero. 

FIGURE 4 NORMALIZED AUTOCOVARIANCE F(D,h) WITH h = 1, 2, 4, 8 
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3.3 REVISITING THE EQUITY-PREMIUM PUZZLE 

We can also state a formal and more general analogue of Theorem 2. 

PROPOSITION 5 Suppose that consumers reset their consumption every ha peri- 
ods. Then the covariance between consumption growth and stock-market returns 
at horizon h will be 

cov (In t+h], In R[t,t+h] + (/2), 
C[t-h,t] b(D) 

where D = ha/h and 

b(D) 6D for D1l, 

6 2 for O D 1. 
3(1 - D) + D 

The associated correlation is 

corr (In [tt+h, In R[tt+h b(D)(D,) + O ). (12) 
C [t-h ,t] 

+ 
) 

In the benchmark model with continuous sampling and adjustment, 
the covariance is just 

cov(d In Ct,d In R) 
= 0a-2 

dt 

Moreover, in that model the covariance at horizon h is just 

cov (In ,lnR[tt+h ) = 0o2h. v 
[t-h,t] 

So the effect introduced by the 6D model is captured by the factor 1/b(D) 
which appears in Proposition 5. 

We compare this benchmark with the effects generated by our dis- 
crete-observation, delayed-adjustment model. As the horizon h tends to 
+oo, the normalized covariance between consumption growth and asset 
returns tends to 

Of2h 1 1 1 
lim - - 
h-a b(h,/h) O-2h b(O) 2 
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which is true for any fixed value of ha. This effect is due exclusively to 
time aggregation. Delayed adjustment ceases to matter as the horizon 

length goes to infinity. 
Proposition 5 covers the special case discussed in Section 2: horizon 

h = 1, and reset period ha - D > 1. For this case, the normalized covari- 
ance is approximately equal to 

0o2 1 1 

b(D) 00-2 6D 

Figure 5 plots the multiplicative covariance bias factor l/b(ha/h) as a 
function of h, for ha = 1. In the benchmark case (i.e., continuous sam- 

pling and instantaneous adjustment) there is no bias; the bias factor is 

unity. In the case with only time-aggregation effects (i.e., discrete sam- 
pling and ha = 0) the bias factor is l/b(O/h) = -. 

Hence, low levels of comovement show up most sharply when hori- 
zons are low. For D - 1 (i.e., ha/h > 1), the covariance between consump- 
tion growth and stock returns is 6D times lower than one would expect 
in the model with continuous adjustment and continuous sampling. 

FIGURE 5 MULTIPLICATIVE COVARIANCE BIAS FACTOR 1/b(l/h) 
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We now characterize the covariance between current consumption 
growth and lagged equity returns. 

THEOREM 6 Suppose that consumers reset their consumption every ha = Dh 

periods. Then the covariance between ln(C[t,t+l/C[t_ ,t]) and lagged equity returns 
In R[t+Sl,t+s2] (s1 < s2 ? 1) will be 

[t-l,t] 

with 

V(D,sl,s2) = e(sl) - e(s2) - e(sl + D) + e(s2 + D) (14) V(D,s,s2) = , (14) 
D 

where 

3x2 - IX13 
for Ixl 1, 

e(x) = ( (15) 
3x - 1 

for Ix| 1. 6 

The following corollary will be used in the empirical section. 

COROLLARY 7 The covariance between In (C[s+h-l,s+h}/C[s- ,sl) and lagged equity 
returns In R [s+l] will be 

( 
, 

C -[s+h -l,+h] 
, 

R ) 
C [s-l,s] 

2 e(1 + D) - e(1) - e(1 - h + D) + e( - h) 2) (16) 

D 

In particular, when h - D + 2, cov (ln [C[s+h-l,s+hI/C[s-i,s]], In R[,s+l]) = or2; 
one sees full adjustment at horizons (weakly) greater than D + 2. 

In practice, Theorem 6 is most naturally applied when the lagged 
equity returns correspond to specific lagged time periods: s2 = sl + 1, s = 
0, -1,-2,.... 
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FIGURE 6 NORMALIZED COVARIANCE OF CONSUMPTION 
GROWTH AND LAGGED ASSET RETURNS, V(D,s,s + 1), FOR 
D = 0.25,1, 2, 4 
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Note that V(D,sl,s2) > 0 iff s2 > -D - 1. Hence, the covariance in 
Theorem 6 is positive only at lags 0 through D + 1. 

Figure 6 plots the normalized covariances of consumption growth and 

lagged asset returns for different values of D. Specifically, we plot 
V(D,s,s + 1) against s for D = 0.25, 1, 2, 4, from right to left. 

Consider a regression of consumption growth on some arbitrary 
(large) number of lagged returns, 

In Ct+ s ln R,l+ 
Ct s=s 

One should find 

3s = OV(D,s,s + 1). 

Note that the sum of the normalized lagged covariances is one: 

1 0 , +1 
OC2 cov(lnC[t't, In R[t+s,t+s+l]) 

0 s=--o [t-l,t] 

o 

- V(D,s,s + 1)= 1. 
S= -00 



278 * GABAIX & LAIBSON 

This implies that the sum of the coefficients will equal the portfolio share 
of the stock market,15 

0 

s= 0. (17) 
s=-D-1 

3.4 EXTENSION TO MULTIPLE ASSETS AND 
HETEROGENEITY IN D 

We now extend the framework to the empirically relevant case of multi- 

ple assets with stochastic returns. We also introduce heterogeneity in 
D's. Such heterogeneity may arise because different D's apply to differ- 
ent asset classes and because D may vary across consumers. 

Say that there are different types of consumers I = 1, . . . ,n and 
different types of asset accounts m = 1, . . .,n,,. Consumers of type I 
exist in proportion p;(ElPI = 1) and look at account m every Dm, periods. 
The consumer has wealth w,m invested in account m, and has an associ- 
ated marginal propensity to consume (MPC), a,,m. In most models the 
MPC's will be the same for all assets, but for the sake of behavioral 
realism and generality we consider possibly different MPC's. 

For instance, income shocks could have a low D = 1, stock-market 
shocks a higher D = 4, and shocks to housing wealth a D = 40.16 Ac- 
count m has standard deviation m-,, and shocks dzmt. Denote by pm, = 

cov(dznt,dzmt)/dt the correlation matrix of the shocks, and by rm, = pmn, m(r 
their covariance matrix. 

Total wealth in the economy is YZ,mPpwlm, and total consumption 
EI,m plclmWlm. A useful and natural quantity is 

pllmwlm (18) 
=r',m,,pjrajCm,Wrm, 

A shock dzmt in wealth account m will get translated at mean interval 

1EtpjDjm into a consumption shock dC/C = ElOlmdZnt. 
We can calculate the second moments of our economy. 

15. This is true in a world with only equities and riskless bonds. In general, it's more 
appropriate to use a model with several assets, including human capital, as in the next 
section. 

16. This example implies different short-run marginal propensities to consume out of 
wealth windfalls in different asset classes. Thaler (1992) describes one behavioral 
model with similar asset-specific marginal propensities to consume. 
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THEOREM 8 In the economy described above, we have 

cov (n cL n R n Rtt+1 ) = OmomnV(Dm,l,s2) + 0(e12) (19) 
\ ^~t-l / l~,m 

and 

cov (In n C -t+h _ l ) = im'lmOIm'(Tmm'F(Dm,mD1im',h) + 0(/2) (20) 
Ct+h-l t-1(20) 

with 

F(D,D',h) = [d(D + h) + d(D' - h) - d(D' - D - h) - d(h)], (21) 
DD' 

V defined in (14), and d defined in (11). 

The function F(D,t), defined earlier in (10), relates to r(D,D',t) by 
r(D,D,t) = F(D,t). Recall that V(D,O,1) = 1/b(D). So a conclusion from 
(19) is that, when there are several types of people and assets, the bias 
that the econometrician would find is the harmonic mean of the individ- 
ual biases b(Dim), the weights being given by the shares of variance. 

As an application, consider the case with identical agents (n- = 1; 1 is 

suppressed for this example) and different assets with the same MPC, am 
= a. Recall that V(D,O,1) = 1/b(D). So the bias Ay/y will be 

V /022 (21 

.Y ( 
mm 
E m2b,(m) - (22) 

,.)/ V ^ , O2 
2 

Hence, with several assets, the aggregate bias is the weighted mean of 
the biases, the mean being the harmonic mean, and the weight of asset 
m being the share of the total variance that comes from this asset. This 
allows us, in Appendix B, to discuss a modification of the model with 
differential attention to big shocks (jumps). 

These relationships are derived exactly along the lines of the single- 
asset, single-type economy of the previous sections. Equation (19) is the 
covariance between returns, In R[t+s lt+s] = 'nz t+slt+s2] + 0(e), and the repre- 
sentation formula for aggregate consumption is 
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Ct-, m - 
in = 

S I - 1 a(i)ztl +i-ODt-l+ildi +0(3/2), (23) 

where a(i) = (1 - il)+. Equation (23) can also be used to calculate the 
autocovariance (20) of consumption, if one defines 

F(D,D',h) = a(i)a)cov(zt- + i - D, t- +il Z[t - 1 +j+h - D',t 1 +j +h) . (24) a(i)a(j)cov(z[t--+i-D't-l+i]'[t-l+j+h-D',t-l+j+h]) (24) 
Ji,e[-U1,1 V D' 

The closed-form expression (21) of F is derived in Appendix A. 

3.5 SKETCH OF THE PROOF 

Proofs of the propositions appear in Appendix A. In this subsection we 
provide intuition for those arguments. We start with the following repre- 
sentation formula for consumption growth. 

PROPOSITION 9 We have 

1 1 
ln C1= Oo a(i)z[t+~-Dt+ di + 0(e). (25) 

Ct 1 D 

Note that the order of magnitude of Ooa- 1 a(i)z[t+i D,t+idi/D is the order of 

magnitude of or, i.e. O(V/~). 
Assets returns can be represented as In R[t+sl t+s2] = 

OZ[t+sl,t+s2 + O(e). So 
we get 

cov (ln C-,lnR+S,s+2 ) 

= 6Of2 j a (i) cov(z_ +iDt-i]Z + )di + ?0(32) (26) 

J-o0 Fai0 A -12 - - irdi 
= 0'2 f a(i) A ([t - 1 + i - D,t - 1 + il n [s + sl,s + s2) 

-1D 

+o(3/2). (27) 

Here A(I) is the length (the Lebesgue measure) of the interval I. Likewise 
one gets 
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Ch+t-l C1t 

1 a(i)acov(z di d + 

- 

2?2f~ f Xa(i)a()COV(Z[h+t-l+i-D,h+t-l+i]Z[ Dt-l+j])d d + 0( /2) 

= 02c2 jf1 a(i)a(j)A([h + t - 1 + i - D,h + t - 1 + i] 

di dj 
n[t - 1 + - D,t -1 + ]) 

D 
+ 0(/2). 

D D 

The bulk of the proof is devoted to the explicit calculation of this last 

equation and equation (27). 

4. Endogenizing D 
Until now, we have assumed that D is fixed exogenously. In this section 
we discuss how D is chosen, and provide a framework for calibrating D. 

Because of delayed adjustment, the actual consumption path will devi- 
ate from the first-best instantaneously adjusted consumption path. In 

steady state, the welfare loss associated with this deviation is equivalent, 
using a money metric, to a proportional wealth loss of17 

y l AC \2 
Ac= 2 E (- ) + higher-order terms. (28) 

Here AC is the difference between actual consumption and first-best 

instantaneously adjusted consumption. If the asset is observed every D 

periods, we have 

Ac = 4 yO22D + 0(e2) (29) 

Equations (28) and (29) are derived in Appendix A. We assume18 that 
each consumption adjustment costs a proportion q of the wealth w. A 

17. This is a second-order approximation. See Cochrane (1989) for a similar derivation. 
18. This would come from a utility function 

~ 
/ \-y 01-0 c 

~ 
Y 

U= E 1 - q e- Pi e-"S ds 
_ \ i Jo 1 - y 

if the adjustments to consumption are made at dates (,i)i0o A session of consumption 
planning at time t lowers utility by a consumption equivalent of qe-Pt. 
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sensible calibration of q would be qw = (1%)(annual consumption) = 

(0.01)(0.04)w = (4 x 10-4)w. 
The NPV of costs as a fraction of current wealth is qEn,>e-'"D, implying a 

total cognitive cost of 

q A- = 
1e-pD 

The optimal D minimizes both consumption variability costs and cogni- 
tive costs, i.e., D* = arg min Ac + Aq: 

1 q 
D = arg min4 - y2r2D +1 D 4 1e- pD 

so 

1 e-PD qp 

4 
y 2 q 

(1 - e-PD)2 (eD/2-ePD/2)2 

qP 
2 PD 4 sinh 

and we find for the optimal D 

D =- arcsinh I q 

p 2020 . 2 

2 q (30) 

when pD << 1. 
We make the following calibration choices: q = 4 x 10-4, Cr2 = (0.16)2, 

y = 3, p = 0.01, r = 0.06, and 0 = rr/(ycr2) = 0.78. Substituting into our 

equation for D, we find 

D - 2 years. 

This calibration implies that D-values of at least 1 year (or 4 quarters) are 

quite easy to defend. Moreover, our formula for D* is highly sensitive to 
the value of 0. If a liquidity-constrained consumer has only a small 
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fraction of her wealth in equities-because most of her wealth is in other 
forms like human capital or home equity-then the value of D will be 

quite large. If 0 = 0.05 because of liquidity constraints, then D* - 30 
years. 

Note that formula (30) would work for other types of shocks than 
stock-market shocks. With several accounts indexed by m, people would 

pay attention to account m at intervals of length 

Dm= - arcsinh / qmP (31) 
p ,2 0.2 m 

with qmwm representing the cost of evaluating asset m, and Om generalized 
as in equation (18). Equation (31) implies sensible comparative statics on 
the frequency of reappraisal. Thus we get a mini-theory of the allocation 
of attention across accounts.19 

5. Consequencesfor Macroeconomics and Finance 

5.1 SIMPLE CALIBRATED MACRO MODEL 

To draw together the most important implications of this paper, we 
describe a simple model of the U.S. economy. We use our model to 

predict the variability of consumption growth, the autocorrelation of 
consumption growth, and the covariance of consumption growth with 
equity returns. 

Assume the economy is composed of two classes of consumers: stock- 
holders and nonstockholders.20 The consumers that we model in Section 
2 are stockholders. Nonstockholders do not have any equity holdings, 
and instead consume earnings from human capital. Stockholders have 
aggregate wealth St, and nonstockholders have aggregate wealth Nt. 
Total consumption is given by the weighted sum 

Ct = a(S, + N). 

Recall that a is the marginal propensity to consume. So consumption 
growth can be decomposed into 

19. See Gabaix and Laibson (2000a,b) for a broader theoretical and empirical analysis of 
attention allocation. 

20. This is at a given point in time. A major reason for nonparticipation is that relatively 
young agents have most of their wealth in human capital, against which they cannot 
borrow to invest in equities (see Constantinides, Donaldson, and Mehra, 2000). 
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dC sdS ndN 
= + 

C S N 

Here s represents the wealth of stockholders divided by the total wealth 
of the economy, and n = 1 - s represents the wealth of nonstockholders 
divided by the total wealth of the economy. So s and n are wealth shares 
for stockholders and nonstockholders respectively. We make the simpli- 
fying approximation that s and n are constant in the empirically relevant 
medium run. 

Using a first-order approximation, 

ln(Ct/Ct_l) = s In(S/St_ ) + n ln(N,/Nt_l). 

If stockholders have loading in stocks 0, the ratio of stock wealth to total 
wealth in the economy is 

0 = sO. (32) 

To calibrate the economy we begin with the observation that human 

capital claims about 2 of GDP Y. In this model, human capital is the 
discounted net present value of labor income accruing to the current 
cohort of nonstockholders. We assume that the expected duration of the 

remaining working life of a typical worker is 30 years, implying that the 
human capital of the current workforce is equal to 

r30 2 2(1 - e-30r) 
H= e-rt-Ydt= Y =17Y, 

Jo 3 3r 

where Y is aggregate income. Capital income claims 3 of GDP. Assuming 
that it has the riskiness (and the returns) of the stock market, the amount 
of capital is 

1 
K = Y 5Y, 

3(r + Ir) 

so that the equity share of total wealth is 

K 
0 = - 0.22. 

K+ H 
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By assuming that all capital is identical to stock-market capital, we impli- 
citly increase the predicted covariance between stock returns and con- 

sumption growth. A more realistic model would assume a more heteroge- 
neous capital stock, and hence a lower covariance between stock returns 
and consumption growth. 

In this model economy, we work with data at the quarterly frequency. 
We assume ac = 0.16/V4, i = 0.06/4, r = 0.01/4, and y = 3, so the equity 
share [equation (1) above] is 0 = 7r/(ycr2) = 0.78. Then equation (32) 
implies s = 0.28. In other words, 28% of the wealth in this economy is 
owned by shareholders. All of stockholders' claims are in either stock or 
risk-free bonds. To keep things simple, we counterfactually assume that 
N and S are uncorrelated. 

We have to take a stand on the distribution of D's in the economy. We 
assume that D-values are uniformly distributed from 0 to D = 120 quar- 
ters (i.e., 30 years). We adopt this distribution to capture a wide range of 
investment styles. Extremely active investors will have a D-value close to 
0, while passive savers may put their retirement wealth in a special 
mental account, effectively ignoring the accumulating wealth until after 

age 65 (Thaler, 1992). We are agnostic about the true distribution of D- 

types, and we present this example for illustrative purposes. Any wide 

range of D-values would serve to make our key points. 
To keep the focus on stockholders, we assume that nonstockholders 

adjust their consumption instantaneously in response to innovations in 
labor income-i.e., at intervals of length 0. 

Theorem 3 implies that the quarterly volatility of aggregate consump- 
tion growth is 

C = nF2(0,0)(N + O 2 f f F(D,D',0) 2dd 
,D'E[O,D] D 

We assume that the quarterly standard deviation of growth in human 
capital is oN = 0.01.21 Our assumptions jointly imply that orc = 0.0063.22 
Most of this volatility comes from variation in the consumption of 
nonstockholders. Stockholders generate relatively little consumption vola- 

21. We calibrate 0-N from postwar U.S. data on wage growth. From 1959 to 2000 the stan- 
dard deviation of per capita real wage growth at the quarterly frequency has been 
0.0097 (National Income and Product Accounts, Commerce Department, Bureau of 
Economic Analysis). If wages follow a random walk, then the standard deviation of 
growth in human capital, oN, will equal the standard deviation in wage growth. 

22. Figure 3 plots the function r(D,0). Note that F(0,0) = 2 and that F(D,0) - 1/D for large 
D. In the decomposition of 2c above, n2F(0,0)0a2 = 0.34 X 10-4 and 
0202 f JD,D'E[O,D] F(D,D',O)dD dD'/D2 = 0.049 X 10-4. 
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tility, because they represent a relatively small share of total consump- 
tion and because they only adjust consumption every D periods. This 

adjustment rule smooths out the response to wealth innovations, since 

only a fraction 1/D of stockholders adjust their consumption during any 
single period and the average adjustment is of magnitude /D. 

Our model's implied quarterly consumption volatility-arc = 0.0063- 
lies below its empirical counterpart. We calculate the empirical -c using 
the cross-country panel dataset created by Campbell (1999).23 We esti- 
mate o-c = 0.0106 by averaging across all of the countries in Campbell's 
dataset: Australia, Canada, France, Germany, Italy, Japan, the Nether- 
lands, Spain, Sweden, Switzerland, the United Kingdom, and the 
United States.24 Part of the gap between our theoretical standard devia- 
tion and the empirical standard deviation may reflect measurement er- 

ror, which should systematically raise the standard deviation of the 

empirical data. In addition, most of the empirical consumption series 
include durables, which should raise the variability of consumption 
growth (Mankiw, 1982). By contrast, the U.S. consumption data omit 

durables, and for the United States we calculate occ = 0.0054, closely 
matching our theoretical value. 

Next, we turn to the first-order autocorrelation of consumption 
growth, applying again Theorem 3: 

Pc corr ln Ct- In Ct-2 
\( -i Ct_i 

/ 
ru 

r 
dDd~Vrl (D, D',) 

D dD 
= (o2)-1 (n2 (0,1) + 022 (DD',) dDdD' ) 

,D'E[0,D] D 

Using our calibration choices, our model implies Pc = 0.34.25 This theo- 
retical prediction lies well above the empirical estimate of -0.11, found 

by averaging across the country-by-country autocorrelations in the 

Campbell dataset. Here too, both measurement error and the inclusion 
of durables are likely to bias the empirical correlations down. Again, the 
U.S. data, which omits durables, come much closer to matching our 
theoretical prediction. In the U.S. data, Pc = 0.22. 

23. We thank John Campbell for sharing this dataset with us. 
24. We use quarterly data from the Campbell dataset. The quarterly data begins in 1947 for 

the United States, and begins close to 1970 for most of the other countries. The dataset 
ends in 1996. 

25. The respective effects are n22rF(0,1) = 0.077 x 10-4 and 2o2 J fDD'Eio,DI F(D,D',1) 
dD dD'/D2 0.048 x 10-4. 
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We turn now to the covariation between aggregate consumption 
growth and equity returns, cov(ln[Ct/Ct_l,ln Rt). We find 

cov (In I- ,ln Rt ) = @2 V(D,0,1) = 0.13 X 10-4, 
V c_ti DE-J[O,D] D 

assuming that in the short run the consumption growth of nonstock- 
holders is uncorrelated with that of stockholders. The covariance 
estimate of 0.13 x 10-4 almost matches the average covariance in the 

Campbell dataset, 0.14 x 10-4. This time, however, the U.S. data do not 

"outperform" the rest of the countries in the Campbell dataset. For the 
United States, the covariance is 0.60 x 10-4. However, all of these 
covariances come much closer to matching our model than to matching 
the benchmark model with instantaneous adjustment and measure- 
ment. The benchmark model with no delayed adjustment predicts that 
the quarterly covariance will be 00o2 - 50 x 10-4. 

What would an econometrician familiar with the consumption-CAPM 
literature conclude if he observed quarterly data from our 6D economy, 
but thought he were observing data from the benchmark economy? 
First, he might calculate 

7IT 

y ~~= =7r2 1000, 
cov(ln[C /Ct _],lnRt) 

and conclude that the coefficient of relative risk aversion is over 1000. If 
he were familiar with the work of Mankiw and Zeldes (1991), he might 
restrict his analysis to stockholders and calculate 

I7 
y = - 300 . 

cov(ln[St/St L],lnRt) 

Finally, if he read Mankiw and Zeldes carefully, he would realize that he 
should also do a continuous-time adjustment (of the type suggested by 
Grossman, Melino, and Shiller, 1987), leading to another halving of his 
estimate. But, after all of this hard work, he would still end up with a 
biased coefficient of relative risk aversion: 300/2 = 150. For this economy, 
the true coefficient of relative risk aversion is 3! 

These observations suggest that the literature on the equity-premium 
puzzle should be reappraised. Once one takes account of delayed adjust- 
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ment, high estimates of y no longer seem anomalous. If workers in 
midlife take decades to respond to innovations in their retirement ac- 
counts, we should expect naive estimates of y that are far too high. 

Defenders of the Euler-equation approach might argue that economists 
can go ahead estimating the value of y and simply correct those estimates 
for the biases introduced by delayed adjustment. However, we do not 
view this as a fruitful approach, since the adjustment delays are difficult to 
observe or calibrate. 

For an active stock trader, knowledge of personal financial wealth may 
be updated daily, and consumption may adjust equally quickly By con- 
trast, for the typical employee who invests in a 401(k) plan, retirement 
wealth may be in its own mental account,26 and hence may not be inte- 

grated into current consumption decisions. This generates lags of de- 
cades or more between stock price changes and consumption responses. 
Without precise knowledge of the distribution of D-values, econo- 
metricians will be hard pressed to measure y accurately using the Euler- 

equation approach. 
In summary, our model tells us that high imputed y-values are not 

anomalous and that high-frequency properties of the aggregate data can 
be explained by a model with delayed adjustment. Hence, the equity 
premium may not be a puzzle. 

Finally, we wish to note that our delayed-adjustment model is comple- 
mentary to the theoretical work of other authors who have analyzed the 

equity-premium puzzle.27 Our qualitative approach has some similarity 
with the habit-formation approach (e.g., Constantinides, 1990; Abel, 
1990; Campbell and Cochrane, 1999). Habit-formation models imply that 
slow adjustment is optimal because households prefer to smooth the 

growth rate (not the level) of consumption. In our 6D model, slow adjust- 
ment is optimal only because decision costs make high-frequency adjust- 
ment too expensive. 

6. Review of Related Empirical Evidence 
In this section, we review two types of evidence that lend support to our 
model. In the first subsection we review survey evidence which suggests 
that investors know relatively little about high-frequency variation in 
their equity wealth. In the second subsection we show that equity inno- 
vations predict future consumption growth. 

26. See Thaler (1992). 
27. For other proposed solutions to the equity-premium puzzle see Kocherlakota (1996), 

Bernartzi and Thaler (1995), and Barberis, Huang and Santos (2000). 
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6.1 KNOWLEDGE OF EQUITY PRICES 

Consumers can't respond to high-frequency innovations in equity val- 
ues if they don't keep close tabs on the values of their equity portfolios. 
In this subsection, we discuss survey evidence that suggests that con- 
sumers may know little about high-frequency variation in the value of 
their equity wealth.28 We also discuss related evidence that suggests that 
consumers may not adjust consumption in response to business-cycle- 
frequency variation in their equity holdings. All of this evidence is 

merely suggestive, since survey responses may be unreliable. 
The 1998 Survey of Consumer Finances (SCF) was conducted during 

the last six months of 1998, a period of substantial variation in equity 
prices. In July the average value of the Wilshire 5000 equity index was 
10,770. The index dropped to an average value of 9,270 in September, 
before rising back to an average value of 10,840 in December. Kennickell, 
Starr-McCluer, and Surette (2000) analyze the 1998 SCF data to see 
whether self-reported equity wealth covaries with movements in stock- 
market indexes. They find that the SCF equity measures are uncor- 
related with the value of the Wilshire index on the respondents' respec- 
tive interview dates. Only respondents who were active stock traders 
(?12 trades/year) showed a significant correlation between equity hold- 

ings and the value of the Wilshire index. 

Dynan and Maki (2000) report related results. They analyze the re- 

sponses to the Consumer Expenditure Survey (CEX) from the first quar- 
ter of 1996 to the first quarter of 1999. During this period, the U.S. equity 
markets rose over 15% during almost every 12-month period. Neverthe- 
less, when respondents were surveyed for the CEX, one-third of stock- 
holders reported no change in the value of their securities during the 12- 
month period before their respective interviews.29 

Starr-McCluer (2000) analyzes data from the Michigan Survey Re- 
search Center (SRC) collected in the summer of 1997. One of the survey 
questions asked, "Have you [Has your family] changed the amount you 
spend or save as a result of the trend in stock prices during the past few 
years?" Among all stockholder respondents, 85.0% said "no effect." 
Among stockholder respondents with most of their stock outside retire- 
ment accounts, 83.3% said "no effect." Even among stockholders with 
large portfolios (- $250,000), 78.4% said "no effect." 

28. We are grateful to Karen Dynan for pointing out much of this evidence to us. 
29. For the purposes of this survey a change in the value of equity securities includes 

changes due to price appreciation, sales, and/or purchases. 
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6.2 THE EFFECT OF LAGGED EQUITY RETURNS ON 
CONSUMPTION GROWTH 

Dynan and Maki (2000) analyze household-level data on consumption 
growth from the CEX, and ask whether lagged stock returns affect future 

consumption growth. They break their results down for nonstockholders 
and stockholders. For stockholders with at least $10,000 in securities a 1% 
innovation in the value of equity holdings generates a 1.03% increase in 

consumption of nondurables and services. However, this increase in con- 

sumption occurs with a lag. One third of the increase occurs during the 
first 9 months after the equity price innovation. Another third occurs 10 to 
18 months after the innovation. Another quarter of the increase occurs 19 
to 27 months after the innovation, and the rest of the increase occurs 28 to 
36 months after the innovation. 

We now turn to evidence from aggregate data. We look for a relation- 

ship between equity returns and future consumption growth. Specifi- 
cally, we evaluate Cov (ln[Ct+h/Ct], In Rt+,) for h = 1, 2, . . . , 25. 

Under the null hypothesis of D = 0, the quarterly covariance between 

equity returns and consumption growth is predicted to be 

( Ct+l 
0.2 

Cov (n C,ln = O2 2 

(0.22)(0.16//-4)2 

2 
= 0.0007. 

The effects of time-aggregation bias are incorporated into this prediction. 
An equity innovation during period t + 1 only affects consumption after 
the occurrence of the equity innovation. So the predicted covariance, 
Cov(ln[Ct,+/Ct],ln Rt+l), is half as great as it would be if consumption 
growth were measured instantaneously. 

This time-aggregation bias vanishes once we extend the consumption 
growth horizon to two or more periods. So, if D = 0 and h- 2, 

Cov(ln[Ct+h/Ct],lnRt+l) = =o2 
= (0.22)(0.16/V4)2 
= 0.0014. 

Hence the assumption D = 0 implies that the profile of 
Cov(ln[Ct+h/Ct],ln Rt+l) for h > 2 should be flat. 
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FIGURE 7 COVARIANCE OF Rt+1 AND ln(Ct+h/Ct) 

a) 
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Notes: 
1. Dataset is from Campbell (1999). Full dataset includes Australia, Canada, France, Germany, Italy, 
Japan, the Netherlands, Spain, Sweden, Switzerland, the United Kingdom, and the United States. 
2. To identify countries with large stock markets, we ordered the countries by the ratio of stock-market 
capitalization to GDP (1993). The top half of the countries were included in our large-stock-market 
subsample: Switzerland (0.87), the United Kingdom (0.80), the United States (0.72), the Netherlands 
(0.46), Australia (0.42), and Japan (0.40). 
3. We assume that households have D-values that are uniformly distributed from 0 to 30 years. 

Figure 7 plots the empirical values of Cov(ln[Ct+h/Ct],ln Rt,+) for h E 

{1,2, . . . ,25}.30 We use the cross-country panel dataset created by Camp- 
bell (1999).31 Figure 7 plots the value of Cov(ln[Ct+h/C],ln Rt+l), averaging 
across all of the countries in Campbell's dataset: Australia, Canada, 
France, Germany, Italy, Japan, the Netherlands, Spain, Sweden, Switzer- 
land, the United Kingdom, and the United States.32 Figure 7 also plots the 

30. See Hall (1978) for early evidence that lagged stock returns predict future consumption 
growth. See Lettau and Ludvigson (2001) for a VAR approach that implies that lagged 
stock returns do not predict future consumption growth. Future work should attempt 
to reconcile our results with those of Lettau and Ludvigson. 

31. We thank John Campbell for giving this dataset to us. 
32. Specifically, we calculate Cov(ln Rt+,ln[Ct+h/Ct]) for each country and each h-quarter 

horizon, h {1,2, . . . ,25}. We then average across all of the countries in the sample. 
We use quarterly data from the Campbell dataset. The quarterly data begin in 1947 for 
the United States, and begin close to 1970 for most of the other countries. The dataset 
ends in 1996. 
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average value of Cov(ln[Cth1/Ct], ln Rt+l), averaging across all of the coun- 
tries with large stock markets. Specifically, we ordered the countries in the 
Campbell dataset by the ratio of stock-market capitalization to GDP in 
1993. The top half of the countries were included in our large-stock-market 
subsample: Switzerland (0.87), United Kingdom (0.80) United States 
(0.72), Netherlands (0.46), Australia (0.42), and Japan (0.40). 

Two properties of the empirical covariances stand out. First, they 
slowly rise as the consumption growth horizon h increases. Contrast this 
increase with the counterfactual prediction for the D = 0 case that the 
covariance should plateau at h = 2. Second, the empirical covariances 
are much lower than the covariance predicted by the D = 0 case. For 

example, at a horizon of 4 quarters, the average empirical covariance is 

roughly 0.0002, far smaller than the theoretical prediction of 0.0014. 

Figure 7 also plots the predicted33 covariance profile implied by the 6D 
model.34 To generate this prediction we assume that D-values are uni- 

formly distributed from 0 years to 30 years, as discussed in the previous 
section. 

The 6D model predicts that the covariance Cov(ln[Ct+h/Ct], In Rt+l) 
slowly rises with the horizon h. To understand this effect, recall that the 
6D economy slowly adjusts to innovations in the value of equity hold- 
ings. Some consumers respond quickly to equity innovations, either 
because these consumers have low D-values, or because they have a 

33. Corollary 7 gives 

2,l[,,Cll r,, dD 
Cov(ln[Ct+h/Ct],ln Rt+l) = Io2 [e(l + D) - e(1) - e(1 - h + D) + e(l - h)] D- 

JDEIO,D] DD 
34. The following approximation for the covariances provides intuition for the orders of 

magnitude. In normalized units, 

1 ( Cth ma (c h 
2 

cov In - ,R+1 D max D1 . 

When the D's are uniformly distributed in [O,D], 

1 C,+h D ( Ct dD 
- cov In , +1 = cov In -,, ,Rt+ D 
Qo-2 \ Q / Jo \, C D 

D ( h dD - max 1 

1 + ln- . 
D h 

This approximation turns out to be quite good for h - 2. 
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high D-value and are coincidentally coming up to a reset period. Other 
consumers respond with substantial lags. For our illustrative example, 
the full response will take 30 years. For low h, the 6D model predicts that 
the covariance profile will be close to zero. As h goes to infinity, the 
covariance profile asymptotes to the prediction of the instantaneous 
adjustment model, so limh,, Cov(ln[C,,h/C,], In R,+,) = o02 = 0.0014. 

Figure 7 shows that our illustrative calibration of the 6D model does a fairly 
good job of matching the empirical covariances. 

This analysis has shown that the empirical data are completely incon- 
sistent with the standard assumption of instantaneous adjustment. 
Lagged equity returns affect consumption growth at very long horizons: 
Cov(ln[Ct+h/CJ, In Rt+l), rises slowly with h, instead of quickly plateauing 
at h = 2. This slow rise is a key test of the 6D framework. 

We conclude from Figure 7 that the 6D model successfully predicts the 
profile of Cov(ln[Ct+h/Ct], In R,,,) for h = 1,2, . . . ,25. However, the 6D 
model fails to predict the profile of a closely related quantity, the normal- 
ized Euler covariance, 

1 
__( Ct+h_ 

-Cov In , E In Rt+i . 
h \ L-t i=l 

) 

This h-period covariance generalizes the one-period Euler covariance, 
Cov(ln[Ct+l/Ct], In Rt+ ).35,36 

The standard model with D = 0 predicts that the h-period normalized 
Euler covariance will equal [(2h - 1)/2h]]o2 for all (integer) values of h. 
The factor (2h-1)/2h captures time-aggregation bias, which becomes pro- 
portionately less important as the horizon increases. By contrast, the 6D 

modelpredicts that, if the D's are uniformly distributed between 0 and D 
(e.g., D = 30 years = 120 quarters), the h-period normalized Euler covari- 

35. We thank Monika Piazzesi, whose insightful discussion of this paper at the NBER 
Macroeconomics Annual Conference led us to add analysis of the covariance Euler 
equation to this final draft. 

36. The Euler covariances link the equity premium to the coefficient of relative risk aver- 
sion. Consider the h-period Euler equation for a discrete-time model with instanta- 
neous adjustment, Et_F,[(Ct+h/C,)-5exp(ih=l In Rt+i)] = 1 (for all assets a). Manipulation 
of this equation implies 

7T 

cov([T_h= In Rt+iJ, In [Ct+h/Ct )h 

where 7r is the 1-period equity premium. 
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ance should approximately37 equal (h/4D)[3 - 2 In (h/D)] 0-2 for h < D. 
For both the standard model (D = 0) and the 6D model, the normalized 
Euler covariance should rise monotonically with h, but this rise should 
be much steeper for the standard model. 

The empirical data match neither prediction. In the twelve-country 
Campbell data, an initial rise in the Euler covariance from h = 1 to h = 7 is 

subsequently reversed for larger values of h. For h > 20, the Euler covari- 
ances are very small in magnitude, with some negative point estimates.38 

This result seems to contradict the encouraging results plotted in Fig- 
ure 7. To understand this tension, we assume stationarity and decom- 

pose the h-period Euler covariance: 

/ h CtC 
Cov (n 

C lnRt+i Cov (In 
n Rt 

t i=1 

+ Cov (n C,l n R+ ). 
i--l v t-i = 

The h-period Euler covariance (i.e., the left-hand side) is zero for large 
h's, and the first sum on the right-hand side is positive (this is the 

quantity plotted in Figure 7). It follows that the second term on the right- 
hand side should be negative: 

37. We use the approximation above, 

2 cov In ,n Rt+1 
- 1 + In - 

Oa2 - + 
t D h 

' 

to get 

I&r Ct+h 1 Ct 
( ) 

h O 2cov In ,n Rt + 
. 

+ In Rt+h 
= V ( n ,ln R+ ) ho'2 h'o c=l Ct 

1 ,h' D 
- - -I 1 + In - dh' 
h JoD 1 h' 

=_ 3-21n- for h <D 
4D D 

D 
= 1 - for h > D. 

4h 

38. See Cochrane and Hansen (1992) for an early empirical analysis of the multiperiod 
Euler equation. Daniel and Marshall (1997, 1999) report that consumption Euler equa- 
tions for aggregate data are not satisfied at the quarterly frequency but improve at 
the two-year frequency. Our results are consistent with theirs, but we find that this 
relatively good performance deteriorates as the horizon is lengthened. 
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E Cov (nt, In < 0, 

which can be verified in our sample.39 In words, lagged consumption 
growth negatively predicts the current stock return. Such predictability 
explains why the Euler covariance does not follow the profile predicted 
by the 6D model. Of course, this predictability is inconsistent with any 
model in which the stock market follows a martingale. Alternative frame- 
works, like Campbell and Cochrane's (1999) model of habit formation, 
Barberis, Huang, and Santos's (2001) prospect-theory model of asset 

pricing, or animal-spirits models, are needed to explain why lagged 
consumption growth negatively forecasts future stock returns. 

7. Conclusion 

Grossman and Laroque (1990) argue that adjustment costs might explain 
the equity-premium puzzle. Lynch (1996) and Marshall and Parekh 
(1999) have successfully numerically simulated discrete-time delayed ad- 

justments models which confirm Grossman and Laroque's conjecture. 
We have described a continuous-time generalization of Lynch's (1996) 
model. We derive a complete analytic characterization of the model's 

dynamic properties. In addition, our continuous-time framework gener- 
ates effects that are up to six times larger than those in discrete-time 
models. 

We analyze an economy composed of consumers who update their 

consumption every D periods. Using data from our economy, an econo- 
metrician estimating the coefficient of relative risk aversion (CRRA) from 
the consumption Euler equation would generate a multiplicative CRRA 
bias of 6D. Once we take account of this 6D bias, the Euler equation tests 
are unable to reject the standard consumption model. 

We have derived closed-form expressions for the first and second mo- 
ments of this delayed-adjustment economy. The model matches most of 
the empirical moments of aggregate consumption and equity returns, 
including a new test which confirms the 6D prediction that the covariance 

39. For quarterly horizons h & {5,10,15,20,25}, the average value of 

h-1 Co 
Cov In ,In Rt+1 

i=1 \)t-i 

is {-0.9,-2.0,-4.6,-2.8,-3.6} x 10-4 for all of the countries in the Campbell dataset, and 
{-1.2,-2.4,-5.0,-3.0,-3.2} x 10-4 for the countries with large stock markets. 
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between ln(Ct+h/Ct], and Rt+1 should slowly rise with h. The 6D model fails 
long-horizon Euler-equation tests, but this failure is due to the interesting 
empirical regularity that high lagged consumption growth predicts low 
future equity returns. 

Future work should test the new empirical implications of our frame- 
work, including the rich covariance lag structure that we have derived. 
Most importantly, our model implies that standard Euler-equation tests 
should be viewed very skeptically. Even small positive values of D (e.g., 
D = 4 quarters) dramatically bias the inferences that economists draw 
from Euler equations and the related Hansen-Jagannathan bounds. 

Appendix A. Proofs 
We use approximation to get analytic results. Let e = max(r,p, Or, 
o-2,o-202, a). For annual data e 8 0.05. We shall use the notation f() = 

0<t(o), for k E IR, to mean that f is measurable with respect to the 
information known at time t, and there is so - 0 and a constant A > 0 
such that for e e sA, we have Eo[f2]1/2 ? Alekl. More concisely, the 
norms are in the L2 sense. For instance: 

ert+raz(t) 1 + -rz(t) + rt + +0S(83/2) 
2 

= 1 + oz(t) + Os(e) = 1 + Os(e1/2). 

We will often replace O<t(ek) by O(ek) when there is a clear smallest time t 
such that f is measurable with respect to the information known at time 
t. For instance, we would write ert+(t) = 1 + az(t) + 0(8) to mean ert+z(t) - 
1 + az(t) + 0t(e). 

Also, we shall often use the function 

a(i) =(1 - lil)+. (33) 

Finally, for z a generic standard Brownian motion, we define Zl, = z(j ) 
- z(i), and remark that 

cov(z[,_ D,i,Z,[j-D', ) = min ((D 
- (i - j)+)+,(D' - (j - i)*)+), (34) 

as both are equal to the measure [i - D,i] n [j - D',j]. 

A.1 PROOF OF PROPOSITION 1 

Denote by v(w) =Efo[e-tc1-Y/(1 - y)]dt the expected value of the utils 
from consumption under the optimal policy, assuming the first reset 
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date is t = 0. So v(.) is the value function that applies at reset dates. Say 
that the agent puts S in the checking account, and the rest, w - S, in the 
mutual fund. Call M the (stochastic) value of the mutual fund at time D. 

By homotheticity, we have v(w) = vwl-Y7/(l - y). We have 

v(w) = e" t dt + e-PDE[v(w')] (35) 
J 1-y 

with 

rD 

w= M + SerD - ter(D-t)dt. 

Optimizing over ct for t E [0,D), we get ct~ = E [v'(w')]e(r-)(D-t), so that 

consumption growth is that of the Ramsey model: ct = awe[(r-p)/]t for some 
a (by the implicit-function theorem one can show that it is a continuous 
function of D, and it has Merton's value when D = 0). To avoid bank- 

ruptcy, we need S - So = f0 cte-rtdt. Imagine that the consumer starts by 
putting aside the amount So. Then, he has to manage optimally the 

remaining amount, w - So. Given some strategy, he will end up with a 
stochastic wealth w', and he has to solve the problem of maximizing 
vE [w'1-7/(1 - y)]. But this is a finite-horizon Merton problem with utility 
derived from terminal wealth, whose solution is well known: the whole 
amount w - So should be put in a mutual fund with constant rebalanc- 
ing, with a proportion of stocks 0 = 7r/(yo2). In particular, only the 
amount So is put in the checking account. 

A.2 PROOF OF PROPOSITION 9 

The basis of our calculations is the representation formula for consump- 
tion, Proposition 9. To prove it we shall need the following 

LEMMA 10 We have 

wit+s = wt{1 + Oa'[z(t + s) - z(t)] + O(E)}. (36) 

PROOF If the agent doesn't check her portfolio between t and t + s, we 
have 

Wis 
_ 

Wite(r+ r- 02r2 /22)s+ao[z(t+s)-z(t)J wit+s = wit 

= witl + -0 [z(t + s) - z(t)] + O(e)}. (37) 
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When the agent checks her portfolio at time T, she puts a fraction f = 

fD aee-rt+[(r-P)/1]tdt = 0(e) in the checking account, so that 

i+ = w-(1 -f) (38) 
= w,[1 + 0(e)]. (39) 

Pasting together (37) and (39) at different time intervals, we see that (37) 
holds between two arbitrary dates (i.e., possibly including reset dates) t 
and t + s, and the lemma is proven. 

We can now proceed to the 

PROOF OF PROPOSITION 9 Say that i E [O,D] has her latest reset point 
before t - 1 at ti = t - 1 - i. The following reset points are ti + mD for m 
> 1, and for s - t - 1 we have [the first 0(e) term capturing the determin- 
istic increase of consumption between reset dates] 

( Witj + t (Wii,+mD 
- 

Witi+(m-1)D)lsti+mD [1 + 0(e)] 
a m>_l / 

Wti 
+ E Witi[ 0'Z[ti+(m-1)D,ti+mD]+?O()]ls>ti+mD+O(E)/ 

m>l 

so that, using the notation im 
= 

witiOZ[ti+(m-_)D,ti+mD], 

fTC ds + 0(e) = (T - ti)wit + 
T 

1m 
lst+mD ds 

ti a m21 ti 

= (T - 
ti)witi + ,im(T 

- (ti + mD))+ 
m>1 

and we get 
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a t+l f t ttt-l 

cit+ - ct + 0(e) = ( -2 + c ) cis ds 

= C im[(t + 1 - Tim)+ - 2(t - Tim) +(t - 1- Tim)+] 
m21 

rim=ti+mD 

= a vjma(t - (ti + mD)), 
m>l 

since (x + 1) - 2x+ + (x - 1)+ = a(x) 

= a E ,ma(1 + i - mD), 
m>1 

because ti = t - 1 - i. 
Let wt- D = Wi0,t -D- which implies that wi, -D- = Wt-D-i[l + 0(e)] for all 

i. Note that io is an arbitrarily selected index value. We now get the 
expression for consumption growth, 

rD di 
Ct+ - Ct = (cit+l - Cit) 

Jo - D 

= Oa 
ft-D-00z[t-l-i+(m-l)D,t-l-i+mD]a(1 + i - 

mD)D + 0(e). 

Defining j D - 1 - i, and noting that the above expressions paste 
together, we have 

Ct+1 - Ct 1 dj 
OWD 

1= 
O0Z[t+j-D,t+ja(j)- +0(E). awt-1 J_1 D 

One can likewise calculate 

Ct = 1 + 0(i), 
aWt-D-1 

SO 
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__i r1 dj 
In 

= 0- Z[t+j_D,t+j]a(j)D+ 0(e). ct J-1 D 

A.3 PROOF OF THEOREM 2 

Use Proposition 9, In Rt+1 = 
-Z[t,t+l] + 0(e), to get 

cov In -,n Rt+l ) 02 a(i) cov (Z[t+i-D,t+i],,Z[tt+l] ) 

+ O<t(3/2) 

with 

1ri~~~~~~ d i di 
a(i) cov (Z[t+i.Dt+i,t,t+l]) D -= a(i)min(D,i) - by (34) 

D 

3(1 - D) + D2 
~~= /if D_1 

6 

1 
=- if D 1. 

6D 

Using (1) and (6), this leads to the expression (2). 

A.4 PROOF OF THEOREM 3 

First we need 

LEMMA 11 We have, with d defined in (11),for D E R, 

a(i)a(i + D) di= d"(D). 

PROOF OF LEMMA 11 Define, for D E R, 

g(D) f a(i)a(i + D)di. (40) 

First, note that g is even because a is. In addition, for D 2 2, g(D) = 0: 
for the integrand to be nonzero in (40), we need both li[ < 1 and Ii + DI < 
1, which is impossible for D 2 2. 
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For a general D, we derive (in the sense of the theory of distributions, 
with Dirac's 8function40) g over D, starting from (40): 

g4)(D) = f a(i)a(4)(i + D)di 

= f a"(i)a"(i + D)di by integration by parts 

= J (-1)J(j - 2 + D) 

by direct calculation (or combinatorial insight) using a"(x) = 8(x + 1) - 

28(x) + 8(x - 1). We now integrate g(4)(D), which gives 

g(D) = ( ) j - 2 + D1 + + bjDJ 
j=0 / 2 x 3! j=0 

3 
= d" (D) + bjDj, 

j=0 

where the bj are integration constants. But the condition g(D) = 0 for D 
2 forces the bj's to be 0, which concludes the proof. 

The rest of the proof is in two steps. First we prove (41)-(42), then we 
calculate this expression of p(D,t). 

Step 1. Using (25) at t and t + h, we get 

cov (n n Ct+l+h -22F(D,h) + 0(Ch2) 
V Ct t+h 

with 

40. Dirac's g-function is equal to 0 everywhere except at 0, where 8(0) = o. 
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((r di Il 
F(D,h) = cov a(i)z[t+i-D,t+i] 

- 
/ j a)Zt+ D,th+ j] I D-i gI t-1 

l 

' 
[ - ,t+ 

dl 
D 

di dj 
DD' 

so using (34) we get 

p(D,h) 
r(D,h) = p 

D2 

with 

p(D,h) f f a(i)a(j)(D - ii - j - hl)+ di dj. 
i,jE[- 1,1l] 

(41) 

(42) 

Step 2. Our next step is to calculate p(D,h). Start with the case D > h + 2: 
then (D - Ii - j - h)+ = D - i - j - hi, as ii - j - hi - 1 + 1 + h c D), 
and given fI jfij[1,1a(i)aj) di dj = (ie[-, 1] a(i) di) (fi[-l1]a(j) dj) = 1, we get 

p(D,h) = D - A(h) 

with 

A(h) =- i - j 

for D h + 2 

j - hla(i)a(j) di dj. 

Going back to a general D > 0, we get from (42) 

p"(D) = f f a(i)a(j) (D - ii - j - hl)di dj 
ijGR 

= f (iD -h) + a(i - D - h)]di 

= f a(i)[a(i + D - h) + a(i + D + h)]di, 

because a is even and by an application of change in variables. So from 
Lemma 11, p"(D) = d"(D - h) + d"(D + h), and 

(43) 
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p(D,h) = d(D + h) + d(D - h) + do + d1D 

for some real numbers do, dl. Equation (43) gives us d, = 0, since d'(x) = ? 
for x > 2. Finally, p(O) = 0 gives A(h) = -do = d(h) + d(-h), which 
concludes the proof. 

A.5 PROOF OF COROLLARY 4 

F(D,0) is monotonic by direct calculation from the result in Theorem 3. 
Theorem 3 also implies 

2 D2 D3 
F(D,O) ---+-for DE[0,1]. 

3 6 20 

Alternatively, this result can be obtained more directly from the calcula- 
tion at the end of the proof of Theorem 3. 

A.6 PROOF OF PROPOSITION 5 

Extend the argument used to prove Theorem 2. To calculate the correla- 
tion coefficient, use the variance results from Corollary 4. 

A.7 PROOF OF THEOREM 6 

Because V(sl,s2) = V(sl,1) - V(s2,1), it is enough to fix s2 = 1. We use the 
notation s = sl. Recall (25), so that 

cov ( In[tt+ lnR[t+st+l = W(s) + 0(3/2) 
C[t-i,t] D 

with 

rs I1 di 
W(s) = D a(i) cov (z[t+i-D,t+i],Z[t+s,t+l]) 

= a(i) (i- max(i - D,s))di. (44) 

So, using the Heaviside function-H(x) 1 if x - 0, 0 if x < 0 (so that 
H' = 8)- 

W'(s) = - a(i)H (i 
- max(i - D,s)) H(s - i + D)di 

= - f a(i)H (i - s)H(s - i + D)di 
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and 

W"(s) = f a(i)[8(i - s)H(s - i + D) - 8(s - i + D)H(i - s)] di 

= a(s) - a(s + D). 

Introducing the function e defined in (15), which satisfies e" = a, we get 

W(s) = e(s) - e(s + D) + Wo + Wls (45) 

for some constants W0, W. Observe that for s - 1, (44) gives W(s) = 0, so 
(45) gives us W, = 0 (and W0 = D/2). This allows us to conclude the 

proposition. 

A.8 PROOF OF COROLLARY 7 

Immediate application of the preceding theorem. 

A.9 PROOF OF THEOREM 8 

The expression (23) is derived exactly as in Proposition 9. The only new 
work is to calculate F(D,D',h). Using (34), we get 

p(D,D',h) 
F(D,D'.h) = 

DD' 

with 

p(D,D',h) = a(i)a(j)min((D - (i - - h)+)+,(D' - (j - i + h)+)+ di dj. 
ji,E[-l,l] 

To calculate p, we derive (again, H(x) = 1,o is Heaviside's function) 

PD' = a(i)a(j)H (((D - (i - j - h)+)+ - (D' - (j - i + h)+)+ 

H(D' - (j - i + h)+)di dj 

and 
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PD'D' = fa(i)a(j)H ((D -(i - j - h)+)+ - (D' - ( - i + h)+)+ 

(D' - (j -i + h)+)didj 

- a(i)a(j)8 ((D 
- (i - j - 

h)) 
- (D' - (j - i + h))+) 

H(D' - (j - i+ h)+)didj 

= a(i)[a(i + D' - h) - a(i + D' - D - h)]di. 

So Lemma 11 gives 

p = d(D' - h) - d(D' - D - h) + eo + elD', 

where e0,el are functions of D and h. As p = 0 for D' = 0, we get e = 

-d(-h) + d(-D - h) = -d(h) + d(D + h), as d is even. As we should 
have p(D,D,h) = p(D,h) for p in (42), we can conclude el = 0 and deduce 
the value of e0, so Theorem 8 is proven. 

A.10 DERIVATION OF THE UTILITY LOSSES 

A fully rigorous derivation, e.g. of the type used by Rogers (2001), is 

possible here. Such a derivation begins with the Bellman equation (35), 
and then uses a Taylor expansion to derive an expression for v of the 

type v = vo + vlD + O(v2). This approach is tedious and not very in- 
structive about the economic origins of the losses, which is why we 

present the following more heuristic proof. 
Equation (28) is standard (e.g., see Cochrane, 1989). For complete- 

ness's sake, though, let us mention a way to derive it. We want to 
calculate U(C) - U(C'), where C = (c)t,,0 is the optimum vector of 

(stochastic) consumption flows, U(C) = E[fle-Ptu(ct)], and C' is another 
vector that can be bought with the same Arrow-Debreu prices p. For C 
and C' close, we have 

AU- U(C') - U(C) 
C' - C 

= U'(C)(C' - C) + (C' - C)' U"(C) 2 + 0((C - C)3). 

By optimality of C we have U'(C) = Ap for some p, and pC = pC' = initial 
wealth = W; thus we have U'(C) (C - C') = 0. Expressing U" finally gives 
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U = - E fe- tu"(ct)(ct - c)2 dt 
2 _ 

A change AW in the initial wealth creates, by homotheticity of the opti- 
mal policy, a change in consumption ACt/ct = AW/W, hence a change in 

utility 

-AW 
AU = E e-P'tu(c )c- dt 

W _ 

So the suboptimality of plan C' is equivalent to a wealth loss [using 
u'(c) = c-] of 

A/W 1 E[oe-u"(ct)c2 ( C 
t 2dt] 

--.- 1 ct 
=C- W 2 E [fIe-Ptu'(c)ct dt] 

y / (Ct -C ) 
2 

2U ct ) ) 

where the weights in the mean < > are given by <X,> = E [fo e-'cl-"YXtdt] / 
E [fo e-Pct - dt]. This proves equation (28). 

We now derive <Ac2/c2>, with Act = c' - ct. With latest reset at time r, 

Ac, c - ce -t c = (W' - Wt)[1 + 0(E)] 
a a 

= 
(wT- wt + W - w)[1 + 0(e)]. 

Now application of Lemma 10 gives (sparing the reader the tedious 

derivation), 

(Wr- 
Wt)2 = E 

K -?fo(fo t )2 
dt - 2) 

02 +(D2D 

- +0(e2) 
2 

Defining I such that E[cl-I = c -Ye- t, with T > 0, we get 
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((W - wr)2 /t) = (Ca202o2tD) 

= a202cr2DfO e- 'tt dt 

Jf e- etdt 

= a202r2D /I, 

= 02 o2DO(e) = 0(82). 

The cross term ((w, - wt)(w' - w)) = 0. 
So we have the important (and general in these kinds of problems) fact 

that the first-order contribution to the welfare loss is the direct impact of 
the delayed adjustment-the w, - wt term-whereas the indirect impact 
(where a suboptimal choice of consumption creates modifications in fu- 
ture wealth) is second order. In other terms, 

(At/Ct) = (C t/C t)without modification of the wealth process + 0(e2) 

= ((W, - wt)2/v2) + O(82) 

= 02o2D/2 + O(e2). 

Using (28), we get (29). 

Appendix B. Model with Immediate Adjustment in 
Response to Large Changes in Equity Prices 

Suppose that people pay greater attention to "large" movements in the 
stock markets (because they are more salient, or because it is more 
rational to do so). How does our bias change? We propose the following 
tractable way to answer this question. Say that the returns in the stock 
market are 

dRt = (A, + r) dt + cr dzt + djt 

where jt is a jump process with arrival rate A. For instance, such jumps 
may correspond to crashes, or to "sharp corrections," though we need 
not have E[djt] < 0. To be specific, when a crash arrives, the return falls 
by J (to fix ideas, say J = 0.1-0.3). To model high attention to crashes, we 
say that consumption adjusts to dzt shocks every D periods, and adjusts 
to dj shocks immediately (D = 0 for those Poisson events). 

Denote by o2 the variance of Brownian shocks, and by or' = E[dj2] /dt 
= A2 the variance of jump shocks. The total variance of the stock market 
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is a2 -= 2 = (2 + o, assuming for simplicity that the two types of 
shocks are independent. The equity premium is Xr = L - AJ. By writing 
down the standard value function for the Merton problem, one sees that 
the optimal equity share, 0, is now the solution of a nonlinear equation 

T - yo20 
- A A[(1 - OJ)-- 1] = 0. 

For tractability, we use the approximation J << 1 (which is reasonable, 
since a typical value for J is 0.1 to 0.25). We get the analogue of the 

simple formula (1): 

IT 
0 2 

Yo-tot 

plus higher-order terms in J. One can show that formula (22), which was 
derived in the case of assets with Brownian shocks, carries over to the 
case of a mix of Brownian shocks and jumps. Thus we get, to first order, 

I 
_ ( a2 1 a2 1 
-I + 

y \7ot2b(D) Ua2t b(0) 

with b(0) = 2 and ra2t = o2 + (-. Thus, the new bias is the harmonic 
mean of the b(D) = 6D (if D - 1) bias for "normal" Brownian shocks, and 
the shorter b(0) = 2 bias of the Brownian shocks. 

As a numerical illustration, say a "jump" corresponds to a monthly 
change in the stock market of more than J = 25% in absolute value. This 

corresponds, empirically, to an estimate of A = 0.53%/year (5 months 
since 1925), i.e. a crash every 14 years. Then a2 AJ = 2/ = 0.014. o'l/O'tot A 
Take D = 4 quarters as a baseline. The new '/y becomes 20.6, which is 
close to the old ratio of 24. 

Appendix C: Expression of the Bias in the Lynch Setup 
when D - 1 
In Lynch's (1996) discrete-time setup, agents consume every month and 

adjust their portfolio every T months. The econometric observation pe- 
riod is time-aggregated periods of F months, so D = T/F. 

Say consumer i E {1, . . . ,T} adjusts her consumption at i + nT, n E 
Z. Say the econometrician looks at period 1, ... ,F}. The aggregate per 
capita consumption over this period is 
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1 T F 

CF = T Ci.S (46) 
i= s=l 

The returns are 

F 

In RF = rs, (47) 
s=l 

where r, = In RS. Call C,i = sF= cis the consumption of agent i in the 
period. 

For i > F, cov(CiF,ln RF) = 0, because agent i did not adjust her con- 
sumption during the period. 

For 1 - i c F, we have cit = 1 + 0(e) (normalizing) when t < i, and ci = 
1 + 0= 1rs + O(e) when t - i, where the O(e) terms incorporate the 
deterministic part of consumption growth. The stochastic part, in rs, has 
the order of magnitude r = O(e/2), and dominates those terms. Infor- 
mation about stock returns up to i will affect only consumption from 
time i to F, so, denoting by ACiF the difference in total consumption 
between a given period of length F and the previous one, 

cov(ACiF, In RF) = cov (F + 1 - i)0 rs, rs 
s=l s= 

= ao2i(F+ 1- i) for 1 ii F. 

So 

cov(CF,,ln RF) = o2i(F + 1 -i)ll_iF Ti=l 

0or2 F 
= T- (F+ 1)i- i 

T i=1 

0oa2 F( + 1) FF + 1)(2F + 1)(2F + 1) 
T 2 6 

=02 F(F + 1)(F + 2) 

6T 
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But given that the mean per-period consumption c,t = 1 + 0(1e/2), the 

aggregate consumption is CF = F + O<o(1/2), and 

cov(ACF/CF,ln RF) cov(ACF,ln RF)/F 

(F + 1)(F + 2) 
6T 

The naive econometrician would predict cov(ACF/CF, In RF) = 0a2F. 
The econometrician estimating = 7rF/cov(ACF/CF,ln RF) will get a bias 
[with D = T/F and as 0 = 7r/(yo-2)] of 

_ 6F2 
- = D . (48) 
y (F + 1)(F + 2) 

Holding D constant, the continuous-time limit corresponds to F -- , 
and we find the value y/y = 6D. The discrete-time case where agents 
would consume at every econometric period corresponds to F = 1, and 
then one gets y/y = D, which can be easily derived directly. 
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1. Introduction 

Gabaix and Laibson extend some earlier work examining the effects of 

infrequent consumption decision-making by individuals. Grossman and 

Laroque (1990) developed a continuous-time model in which an individ- 
ual adjusts consumption infrequently because of proportional adjust- 
ment costs. Marshall and Parekh (1999) present numerical results for an 

economy composed of heterogeneous agents behaving in this way. Cali- 
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Comment 
ANTHONY W. LYNCH 
New York University 

1. Introduction 

Gabaix and Laibson extend some earlier work examining the effects of 

infrequent consumption decision-making by individuals. Grossman and 

Laroque (1990) developed a continuous-time model in which an individ- 
ual adjusts consumption infrequently because of proportional adjust- 
ment costs. Marshall and Parekh (1999) present numerical results for an 

economy composed of heterogeneous agents behaving in this way. Cali- 
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brating equity returns to U.S. data, they find that undetectably small 

consumption adjustment costs can alleviate the equity-premium puzzle 
by delivering the low volatility of aggregate consumption growth and its 
low correlation with equity return found in U.S. data. 

Agents facing proportional adjustment costs use a state-dependent 
decision rule. As an alternative, Lynch (1996) examined an economy in 
which decisions are made at fixed intervals and are unsynchronized 
across agents. Agents choose nondurable consumption and portfolio 
composition, and either or both can be chosen infrequently. A small 

utility cost is associated with both decisions being made infrequently. 
Calibrating returns to the U.S. economy, Lynch (1996) also found that 
less frequent and unsynchronized decision making delivers the low vola- 

tility of aggregate consumption growth and its low correlation with eq- 
uity return found in U.S. data. Allowing portfolio rebalancing to occur 

every period has a negligible effect on the joint behavior of aggregate 
consumption and returns. 

Gabaix and Laibson present a continuous-time generalization of 

Lynch's model and are able to obtain analytic expressions for the bias 
to risk aversion imparted by less frequent consumption adjustments. 
The paper also calibrates a version of the model that incorporates tem- 

poral aggregation, delayed adjustment, and nonparticipation in stocks 

by a fraction of the agents. Consistent with the results in Lynch (1996) 
and Marshall and Parekh (1999), Gabaix and Laibson also find that a 

delayed-consumption-adjustment model can help explain the equity- 
premium puzzle by producing lower consumption-growth volatility 
and lower contemporaneous covariance of consumption growth with 

equity returns. 

Although not modeled explicitly by Lynch or by Gabaix and Laibson, 
constant decision intervals arise when it is costly to gather information 
about wealth innovations and to solve optimization problems. Duffie 
and Sun (1990) presented a model of this type and showed that if utility 
is power, risky-asset return is in geometric Brownian motion, and trans- 
action costs are proportional to wealth, then the optimal decision inter- 
val is a constant. 

This discussion first describes the model and summarizes some of its 
key implications. Then the calibration and empirical work are discussed. 
Finally, some general comments and conclusions are presented. 

2. Model Setup and Main Results 

The economy has a riskless rate r and a risky return that follows geomet- 
ric Brownian motion with an instantaneous mean return of 7r + r and an 
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instantaneous variance of o-2. Agents have power utility and adjust con- 
sumption every D periods. At each adjustment time, agents set aside an 
amount for consumption over the next D periods, which earns the 
riskless rate r until consumed. The agents place their remaining wealth 
in an investment portfolio that is continuously rebalanced. Thus, the 
optimal risky-asset weight 0 is same as in the D = 0 case: 0 = r/(,y(2). 
The economy has a continuum of agents, indexed by adjustment times, 
which are uniformly distributed over any interval of length D. 

When D = 0, the econometrician still faces temporal aggregation. The 
variance of log per-period aggregate consumption growth is 2 of instanta- 
neous volatility when D = 0, is declining in D, and is approximately 1/D 
times instantaneous volatility when D is large. Instantaneous log 
consumption-growth autocorrelation is 0 at all lags when D = 0. In 
contrast, because of temporal aggregation, log per-period consumption 
growth autocorrelation when D = 0 is 4 at lag 1 and is 0 at lags of 2 or 
more. With temporal aggregation and D > 0, log per-period consump- 
tion growth autocorrelation is positive and decreasing in lag length at 

lags less than D + 2 and is 0 at lags of D + 2 or more. The instantaneous 
contemporaneous covariance of log consumption growth with log risky- 
asset return with D = O is 0o2. The contemporaneous covariance of log 
per-period consumption growth with log per-period risky-asset return is 
0Oo2/2 with D = 0 and is 0oa2/(6D) with D > 1. Finally, with D = 0, the 
instantaneous covariance of log consumption growth with lagged log 
risky-asset return is 0 at all lags > 0, while the covariance of log per- 
period consumption growth with lagged log per-period risky-asset re- 
turn is positive at lags less than 2 and is 0 at lags of 2 or more. Once D > 
1, the covariance of log per-period consumption growth with lagged log 
per-period risky-asset return is positive at lags less than D + 2 and is 0 at 

lags of D + 2 or more. 
To summarize, the contemporaneous covariance of consumption 

growth with risky-asset return is lower than instantaneous due to tem- 

poral aggregation alone, lower still due to infrequent adjustment, and 

decreasing in D. The variance of consumption growth is lower than the 
instantaneous variance due to temporal aggregation alone, is lower still 
due to infrequent adjustment, and is decreasing in D. The covariance of 

consumption growth with lagged consumption growth and with lagged 
risky-asset return is positive for lags less than 2 due to temporal aggre- 
gation alone, and in general is positive for lags less than D + 2 and 
zero otherwise. 

While the paper typically fixes the lag or the period length and varies 
D, it would be useful to examine what happens to the various statistics 
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of interest as the lag or the period length is varied for fixed D. Such an 

analysis would be helpful for generating testable implications, since one 

particular distribution for D holds empirically. 
The paper's assumption that agents continuously rebalance their in- 

vestment portfolios seems inconsistent with a fixed adjustment interval, 
since the assumed fixed interval between consumption adjustments is 
difficult to justify when agents know the risky-asset return. The paper's 
closed-form solutions rely on continuous portfolio rebalancing by agents. 
Restricting the ability of an agent to rebalance her portfolio within her 

adjustment period may affect the distribution of aggregate consumption 
growth. In an economy with infinite-lived agents making unsynchro- 
nized consumption and portfolio decisions every D periods, the cross- 
sectional distribution of agent wealth (expressed as a fraction of total 
wealth) becomes increasingly disperse over time, indicating that aggre- 
gate consumption growth does not have a steady-state distribution. This 
concern prompted Lynch (1996) to build an overlapping-generations 
economy with finite-lived individuals and a deterministically growing 
wealth endowment for each period's newborn. Lynch finds that the impli- 
cations for aggregate consumption growth of infrequent consumption 
adjustments are largely unaffected by the portfolio-rebalancing fre- 

quency of agents. 

3. Calibration and Empirical Work 
Gabaix and Laibson estimate D based on a cost of adjusting consumption 
of 0.04% of wealth and obtain an estimate of 2 years. This estimate is likely 
to overstate D, since their calculations assume continuous portfolio 
rebalancing. The paper then calibrates a simple macro model with share- 
holders who delay consumption and nonshareholders who do not delay. 
The calibration makes many simplifying assumptions: both groups have 
the same propensity to consume, and the wealth of the two groups is 
assumed to be uncorrelated. Some sensitivity analysis would be useful. 

While the endogenous adjustment period is calculated to be 2 years, 
the calibrated model has a continuum of agents and D is uniformly 
distributed from 0 to 30 years. This switch is not innocuous. For exam- 
ple, the empirical section attempts to explain the pattern of covariances 
between equity Rt+1 and ln(Ct+h/Ct) as a function of h. The paper uses 
quarterly data for this section and finds these covariances are roughly 
increasing in h out to at least 20 quarters, particularly for countries with 
large stock markets. This model generates the upward-sloping pattern 
out to at least 20 quarters that is found in the data. But this result 
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depends critically on D taking values out to at least 20 quarters. If the 

paper used the calibrated adjustment period of D = 8 quarters, the covari- 
ance pattern would be flat for h- 10 quarters. 

In the calibration section, the paper only compares the model with the 
data on consumption growth's volatility, contemporaneous covariance 
with return, and first-lag autocorrelation. Then, the empirical section 

attempts to explain the pattern of covariances between equity Rt,, and 
ln(Ct+h/Ct) and the pattern of h-period Euler equations, both as functions 
of h. However, the distinction between the paper's calibration and empiri- 
cal work seems artificial. Since the model also provides many other mo- 
ments that could be compared with the data, it would be useful to cali- 
brate a model and then examine how it performs with respect to a wide 

range of moments for aggregate consumption growth. A more systematic 
analysis would be instructive. It would also be useful to have standard 
errors for the data estimates as part of such an analysis. One approach 
simulates samples using the model and calculates a distribution for the 
statistic of interest. This distribution can then be used to calculate a p- 
value for the data estimate under the null that the model holds. 

For example, the paper does not examine consumption-growth auto- 
correlations beyond the first lag, even though the model provides predic- 
tions about them. Heaton (1993) finds negative autocorrelation at the 5th 

lag for quarterly seasonally adjusted consumption changes, negative 
autocorrelation at the 1st and 4th lags for monthly seasonally adjusted 
consumption changes, and negative autocorrelation at the 1st, 2nd, and 
5th lags for quarterly non-seasonally-adjusted consumption changes. 
Negative autocorrelation at any lag is inconsistent with the model. So 

despite the likely role being played by measurement error, Heaton's 
results are challenges for the paper's delayed-consumption-adjustment 
model. Thus, while a useful first step, the empirical work is far from 
conclusive, and more needs to be done to ascertain whether delayed 
consumption adjustment is playing a role in the U.S. economy and in 
other economies. 

4. General Comments and Conclusions 
The assumption of a predetermined delay interval D is difficult to justify. 
At the very least, agents are likely to adjust consumption after large 
changes in equity value. While this effect causes all investors to adjust at 
the same time (see, for example, Marshall and Parekh, 1999), Gabaix and 
Laibson find the upward bias to risk aversion can still be large. However, 
their adjustment trigger of 25% monthly return in absolute value is quite 
extreme, and the upward bias associated with a more modest and reason- 
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able trigger point is likely to be much smaller. A model in which inves- 
tors adjust consumption after a large change in equity value is empiri- 
cally distinguishable from the fixed-decision-interval model. The former 

predicts that the standard Euler equation should perform well in those 

periods that are preceded by a period with a large equity return in 
absolute value. Empirical work is needed to characterize the delayed- 
adjustment rule (if any) being used by agents in the U.S. economy and 
other economies. 

The model assumes that equity value is in geometric Brownian mo- 
tion. There is much evidence that equity returns are predictable and 
heteroscedastic. The implication may be a delay interval D that depends 
on the same variables that forecast means and variances. 

It seems unlikely that agents always take recent wealth innovations into 
account when making high-frequency consumption decisions. Gabaix 
and Laibson's analytical results serve to emphasize the potentially large 
effect of such behavior on the joint distribution of aggregate consumption 
and equity return. Hopefully, their work will prompt more theoretical and 

especially empirical work directed toward understanding how agents 
delay adjusting their consumption and how this delay affects aggregate 
consumption in the U.S. and other countries. 
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mium in postwar data, at least for "reasonable parameters" for the en- 
dowment process and the coefficient of relative risk aversion y. This is 
the equity-premium puzzle stated by Mehra and Prescott (1985). Simply 
increasing y (and somehow arguing that this is "reasonable") does not 
solve the puzzle, because a high y counterfactually leads to a high risk- 
free rate. The few models in the literature today that may be considered 
puzzle-free still rely on high y's. An example is Campbell and Cochrane 
(1999), who use an average y of 50. An argument that relies on esti- 
mation bias for y alone, as suggested by the title of the paper, cannot 
therefore be enough to reconcile the standard model with the data. But 
there is more to the model of Gabaix and Laibson than the title indicates, 
because it is populated by agents whose heterogeneity matters. 

The high equity premium and the low risk-free rate are, literally speak- 
ing, no puzzles in the model: asset prices are specified exogenously. 
The endogenous variables in this model are the consumption processes 
of individual investors. By summing these over a group of investors, 
the paper obtains a measure of aggregate consumption. The interpreta- 
tion of this portfolio choice model, or Merton model, as a production 
economy with exogenous production technologies (or as a small open 
economy) leads to another endogenous variable: net borrowing by this 

group of investors (or the current account). The behavior of these en- 

dogenous variables (consumption and net borrowing) is what is puz- 
zling in models with exogenous returns (such as Constantinides, 1990). 
My discussion will thus concentrate on the model-implied behavior of 
these endogenous variables. 

The model is a continuous-time version of Lynch (1996). Agents are 
indexed by a first adjustment time i and an interval length Di between 

adjustments, which together define an (exogenous) adjustment se- 

quence {i, i + Di, i + 2Di, . . . }. Between adjustment times [i + jD, i + (j 
+ 1)Di), j E N, agents do not know the returns of risky assets and do not 
trade them. This feature makes assets illiquid. As in a limited- 

participation model, the Euler equations for only a subset of agents hold 
at any point in time t in this economy. With adjustment delays, the first- 
order conditions for risky-asset holdings at time t are only satisfied for 
those agents that are adjusting at time t. The intuition from a closed- 

economy version of this model tells us that in this case agents need to be 

compensated to hold these illiquid assets. The resulting equity premium 
is not so much a risk premium in the usual sense as a liquidity premium. 

We need to be careful, however, in applying closed-economy intuition 
to this setup, because it is not clear whether the implications of the 
model will survive in a closed-economy setting. The reason is that 

agents in the model continuously observe the riskless rate, which is 
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assumed to be constant. In a closed economy, the riskless rate responds to 
stock-market movements and therefore reveals information from other 

agents in the economy (who get to adjust their consumption earlier in 

response to these movements). This means that even agents who do not 

directly observe stock returns can infer from the riskless rate whether 
the stock market just tanked and thus can adjust their consumption 
immediately. The closed-economy version of the model with learning 
will be more difficult to solve, but future research will hopefully tell us 
how it behaves. 

The puzzles lie in the numbers, so I will compare the model's implica- 
tion with the joint time series of quarterly U.S. aggregate consumption 
and real stock returns. I will show that adjustment delays alone cannot 

provide an explanation for the equity premium. The model fails along 
three main dimensions: (i) consumption growth from the model is too 
autocorrelated, (ii) the normalized covariance of returns with consump- 
tion monotonically increases with horizon in the model, while it is 

hump-shaped in the data with a peak at 2 years, and (iii) returns are 
assumed to be i.i.d., while they are predictable in the data. 

The reason for (i) is that stock-market shocks trigger a series of individ- 
ual consumption adjustments in the same direction by agents who only 
get to adjust later to the shock. The resulting aggregate consumption 
growth process thus looks autocorrelated and predictable by stock re- 
turns. The model does not seem to generate too much predictability for 

consumption, but it does imply too much autocorrelation for consump- 
tion growth. 

The reason for (ii) is that as we lower the frequency at which we 
observe data relative to the frequency at which consumption decisions 
are made, the model looks more and more like a standard model without 
adjustment delays. In standard models the covariance between con- 
sumption growth and stock returns divided by horizon increases with 
horizon. This feature is counterfactual; it is known as the equity-premium 
puzzle at long horizons and is documented by Cochrane and Hansen 
(1992). 

There is a long list of variables that successfully predict stock returns 
in (iii). The list includes term spreads (Campbell, 1987), the dividend- 
earnings ratio (Lamont, 1996), and the consumption/wealth ratio (Lettau 
and Ludvigson, 2001). I show that even lagged consumption growth 
(which is a variable directly taken from the model) is a predictor (but of 
course less successful than other variables). 

In addition to these three problems, the model may be relying on large 
and counterfactual net borrowing from "foreigners" (agents whose con- 
sumption is not used to define aggregate consumption) to sustain the 
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exogenously fixed low risk-free rate, but I have not looked at the behav- 
ior of net borrowing. 

In the process of documenting the properties of the model, I also show 
that the first three autocorrelations of consumption growth are signifi- 
cantly different from zero in the data. Moreover, consumption growth is 
heteroscedastic in the data. For example, a Garch(l,l) is significant. 
These two properties mean that consumption growth is certainly not 
i.i.d., an assumption often made by recent consumption-based asset 
pricing models (following Hall, 1978). Heteroscedasticity may be impor- 
tant for explaining the time variation in expected returns which is not 
captured in this paper. Models that replicate this time variation typically 
rely on features of preferences which produce time-varying risk aversion 
(Campbell and Cochrane, 1999; Barberis, Huang, and Santos, 2001; 
Veronesi, 2001). 

I also show that the cross-correlation of consumption growth and 
stock returns data seems to be seasonal. This seasonality appears even 
though the consumption data are seasonally adjusted. At first sight this 
adjustment looks successful, because the autocorrelation function of con- 
sumption growth does not show any obvious seasonal patterns. The 
cross-moments with returns, however, seem to indicate that it may mat- 
ter for stock pricing that real-life investors are consuming a seasonal 

consumption process. This raises the question whether the predictability 
of consumption growth is a feature of the data that should be matched 

by an asset-pricing model. 
The following discussion will thus concentrate on the autocorrelation 

and predictability of consumption growth, the predictability of returns, 
and the equity premium at long horizons. Here, "consumption" always 
refers to aggregate consumption. I will then return to the interpretation 
of adjustment delays in terms of cognitive costs that is offered in this 

paper and suggest extensions. 

2. Data and Calibration 
The comparison of the model with the data relies on two series: con- 

sumption and real stock returns. Consumption is for nondurables and 
services excluding shoes and clothing, seasonally adjusted in 1996 chain- 

weighted dollars. The returns are for all stocks traded on NASDAQ, 
AMEX, and the NYSE. The calculation of real returns relies on the con- 
sumer price index. The sample consists of quarterly data from 1953:1 to 
2000:3. 

Since I use different consumption and returns data than the paper, I 
also use slightly different parameter values to calibrate the model: r + Tr 
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= 0.08, o = 0.16, y = 4, Di = 4 or Di = 10, Vi. I assume that initial 

adjustment times i are uniformly distributed over [0,D]. 

3. Autocorrelation of Consumption Growth 

Figure 1 shows the autocorrelation of consumption growth at different 

lags h together with 95% confidence bounds. The autocorrelation is sig- 
nificant up to the third quarter, which means that consumption growth 
is definitely not i.i.d. The figure also shows the autocorrelations implied 
by the model for D = 4 and D = 10. The general pattern is that the 
autocorrelation in a model with interval length D between two decisions 
dies off after D periods. The autocorrelation in the data seems to be best 
matched by choosing D = 4. The first two autocorrelations of 0.85 and 
0.57 produced by the model for D = 4 are clearly too high compared to 
the data. 

As an aside, I would like to add that autocorrelation is not the only 
dimension in which consumption growth is not i.i.d. Consumption 

FIGURE 1 AUTOCORRELATION OF CONSUMPTION GROWTH 

1 I I I I I I I I I I 

0.8 

0.6 - \ D=4- 

0.4- 

0.2 
_ - -- - - - - - 

r- 

5 6 7 
Lags h (in quarters) 

8 9 10 11 12 



322 * PIAZZESI 

Table 1 MAXIMUM-LIKELIHOOD ESTIMATES OF A log ct = co + cl A log ct_1 
+ cA2 A log C2 +- + et 

Co C1 C2 C3 a0 al a2 

0.01 0.31 0.03 0.23 0.00 0.03 0.95 
(7.04) (4.01) (0.33) (2.93) (0.64) (1.19) (29.56) 
Here Et is conditionally normal with mean 0 and variance 0o 2 = + Cae_1 + a20-.- e estimation 
uses quarterly data on U.S. consumption of nondurables and services without shoes and clothing from 
1953:1 to 2000:3. t-statistics are in brackets. 

growth is also heteroscedastic, a property which may be important for 

explaining the time variation in expected returns (which is not captured 
by the model). This can be seen from Table 1, which reports the 
maximum-likelihood estimates of an AR(3) combined with a Garch(l,l). 
The estimate of the Garch parameter a2 is 0.95 and is strongly significant. 
The autoregressive parameters are partial correlations, so they differ 
from Figure 1, which shows autocorrelations. 

4. Equity Premium at Long Horizons 
To see how the model behaves as we vary the observation horizon h for a 
fixed decision interval length D > 1, consider the following equation that 
determines the equity premium in the model: 

cov(log(ct+h+l/ct),log R, t+h) 
T = ? /? 6D. (1) 

h 

Figure 2 shows the covariance factor on the right-hand side of this equa- 
tion, the covariance of consumption growth and stock returns divided 

by the horizon. In the data, this covariance is hump-shaped as a function 
of horizon: increasing up to 2 years and then decreasing. The model 

predicts a monotonically increasing covariance. The reason is that as we 
lower the observation frequency relative to the decision interval length 
D, the model behaves more and more like the original Merton model 
without adjustment delays. Therefore the model predicts a high covari- 
ance of consumption growth and stock returns at long horizons, which 
is counterfactual. 

The equity premium at long horizons was noted by Cochrane and 
Hansen (1992) and was seen as causing a problem for the time- 

aggregation literature because aggregation problems matter less as we 
lower the frequency at which we observe the data. The same now 

applies to a model with adjustment delays. Figure 2 does not show the 
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FIGURE 2 COVARIANCE OF log(ct+h/ct) AND log Rt,t+h DIVIDED BY h 
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standard errors around the covariance estimates, which get large with 
horizon to the extent that the hump in the empirical covariance is not 

significant. The equity premium, however, is not much of a puzzle if 
we take into account standard errors in this case (as can be seen from 
the cross-correlation at h = 0 in Figure 5 below). 

5. Predictability of Consumption Growth 
To look at the predictability of consumption with stock returns, Gabaix 
and Laibson compute the cumulative covariance of log stock returns log 
Rt t+ from time t to time t + 1 with consumption growth log(ct+l+h/ct) from 
time t to time t + 1 + h, for different quarterly horizons h. By decompos- 
ing this covariance measure into its individual elements, we get 

c ( Ct+h+l ) h co Ct+i+l o cov log 
-- , log R, t+)= cov log i-- ,log Rt+l . 

Ct i=0 t+i 
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From the last equation, we can see that this cumulative covariance mea- 
sure does not only reflect whether stock returns predict consumption 
growth, because part of the covariance is due to the contemporaneous 
covariance cov(log(c,t+/ct), log R,,,,) between returns and consumption 
growth. 

Figure 3 plots this cumulative consumption measure (like Figure 7 in 
the paper), while Figure 4 plots the individual components in the sum 
on the right-hand side of the last equation. Both figures are based on 
U.S. data for nondurables and services instead of the total consumption 
series from different countries used in the paper. The dashed lines are 
95% confidence bounds based on Newey-West standard errors. Figure 3 
shows that the contemporanous covariance estimate in the data is al- 
ready nonzero, and then the covariance measure increases up to 7 quar- 
ters. Beyond that, the covariance slightly decreases with horizon, but 
confidence bounds become large. The figure shows that the covariance 
pattern in the data is well replicated by the model if the interval length D 
between decisions is set to 4 quarters. 

FIGURE 3 COVARIANCE OF log (ct+l+h/Ct) AND log Rt,t+ 
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FIGURE 4 COVARIANCE OF (Ct+l+h/Ct+h) AND log Rt,t+l 
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The covariance of the total consumption data (used in the paper) with 
returns seems to increase with horizon. To replicate this, Gabaix and 
Laibson use a distribution for D over [0,30] years to compute the covari- 
ance measure from the model. This is not necessary for data on nondura- 
bles and services. Section 6.2 of the paper compares Figure 7 with the 

plain Merton model with i.i.d. consumption growth. This is not really 
an appropriate comparison, because it is clear that a model where con- 

sumption growth is assumed to be i.i.d. does not imply any predictabil- 
ity. Models with exogenous returns like Constantinides (1990) tend to 
produce too much predictability, and so they provide a more natural 
benchmark. 

The individual covariances in Figure 4 represent the slope of the cumu- 
lative covariance function in Figure 3. We can see that the slope is signifi- 
cant and positive for horizons 1, 2, and 4, while it becomes negative at 
horizon 8. This pattern looks somewhat seasonal, even though the con- 
sumption series is seasonally adjusted. This pattern suggests that the 
covariance increase until h = 7 in Figure 3 may be due to seasonalities. In 

20 
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this case, it is not clear whether this predictability is a feature that the 
model should match. More generally, the pattern raises doubts about the 
use of seasonally adjusted data for tests of consumption-based asset 
pricing models. 

6. Predictability of Returns 
Stock returns can be predicted with a large number of variables. Figure 
5 shows the cross-correlation between current consumption growth 
log(ct+l/ct) and returns from time t + h to t + h + 1 for varying horizons 
h together with approximate 95% confidence bounds (computed as 
?2-/T, where T is the number of observations in the sample). The 

pattern of this cross-correlation for h = 0, -1, -2, -4, -8 shows again 
that the equity premium is measured with a lot of noise (supposing the 
standard Euler equation holds) and that consumption growth is predict- 
able with stock returns as documented in Section 5. The interesting 
stylized fact that emerges from this graph is that the cross-correlation is 

FIGURE 5 CROSS-CORRELATION OF log(ct+1/ct) WITH log Rt,t+l+h 
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also significant at h = 4. This means we can use current returns to 

predict consumption growth one year from now. 
The model by Gabaix and Laibson is not consistent with this feature of 

the data, because it assumes that these returns are i.i.d. and thus not 

predictable. Future research will hopefully show whether adjustment 
delays can be combined with something else, such as habit formation, so 
that the extended model can capture this important stylized fact. 

7. Some Evidence about Cognitive Costs 
The paper assumes that agents do not receive or process stock-market 
informationbetween any two periods. If this assumption is a good descrip- 
tion of individual behavior, real net mutual-fund inflows should react to 

past stock return information. To check this implication of the model, I 
collect monthly data on net inflows into stock funds from 1984:1 to 2001:2. 
These data can be obtained from the Web site of the Investment Company 
Institute. Real inflows are computed based on the consumer price index. I 
also subtract a linear trend from the real inflows. Figure 6 shows that only 

FIGURE 6 CORRELATION BETWEEN Inflows(t) AND log Rt_h,t-h+1 

0.5 , i 

0.4 - 

0.3 

| 0.2- 

- 

'D 0.1- 8 

10 15 
Lags h (in months) 

25 



328 * PIAZZESI 

the contemporaneous correlation between real net inflows and returns is 

significant, not the correlation between inflows and past returns. While 
this is certainly not conclusive evidence against cognitive costs, the graph 
still provides some evidence that investors do not react to past return 
information when choosing their portfolio. 

8. Extension to General Equilibrium 
The riskless rate is exogenous in this model and therefore does not 
reveal any information that agents have who have only recently ad- 

justed their portfolio. I doubt this feature of the model will still be true in 
a closed-economy version where the riskless rate is allowed to move in 

response to a stock-market crash. This version is not easy to compute, 
but the wealth distribution matters even without idiosyncratic shocks. It 
would be interesting to link it to models in the incomplete-market litera- 
ture (e.g., Krusell and Smith, 1997) which also try to increase individual 

consumption volatility like Gabaix and Laibson, but with a different 
mechanism. There is some hope that a combination of the two will be 
successful at explaining the equity-premium puzzle. 
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Discussion 

David Laibson admitted that how to fix D, the length of the period be- 
tween readjustments of consumption, is an important question, and that 
one would not expect everyone in the economy to have the same D. He 

explained that the assumption of continuous rebalancing was not a crucial 
one, as it affected only second-order terms. He was very receptive to 
the idea that some important financial events capture people's atten- 
tion. An extension to the model to capture this phenomenon through a 
Poisson arrival rate of important events affects the results only slightly. 
Laibson recognized that dealing with the long-horizon evidence was im- 

portant and suggested that the picture would look better using interna- 
tional data. He also said that at long horizons, standard errors become 

very large, so the evidence neither supported nor rejected the framework. 
Robert Barsky suggested that if consumption had to be committed in 

advance, the effects could be the same as when investors rebalance their 

portfolios only intermittently because of cognitive costs. He asked 
whether the model could deal with the puzzle that stocks outperform 
bonds over long periods. Laibson agreed that cognitive costs are just one 
possible explanation for delayed adjustment. He guessed that the model 
had nothing to say about the returns on stocks relative to bonds. 

David Romer suggested that the authors should look more carefully at 
the equity premium over long rather than short horizons, as their expla- 
nation seemed to have an effect only at short horizons. He commented 
that even if the model failed to explain all of the puzzle at long horizons, 
it was still a useful contribution. He did not see why there should be one 
single explanation for the entire equity-premium puzzle, a view with 
which Laibson was sympathetic. Romer also said that the fact that the 
equity premium had fallen in recent years made him nervous about 
theories that predict a premium at all times and places. Xavier Gabaix 
remarked that, according to recent surveys, it appears that the public's 
expected return on stocks remains high, even though actual returns 
have fallen. 

Nobuhiro Kiyotaki suggested that limited participation can arise en- 
dogenously from the costs of rebalancing portfolios. He suggested that 
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the authors could get a sense of the importance of cognitive costs by 
looking at the size of asset holdings of participants and nonparticipants 
in the stock market. 

Greg Mankiw was struck by the fact that the model predicted positive 
autocorrelation of consumption growth, counter to some of the empiri- 
cal evidence. Laibson responded that he thought the model did reason- 

ably well on this score. Jim Stock said he would like to see an examina- 
tion of the temporal aggregation problem in this context. 

Gertler suggested that looking at the standard deviation of individual 

consumption in the model and in the data would be a good way of 

evaluating the empirical plausibility of the model. Laibson replied that 
he believed the jumps in consumption predicted by the model were of a 
reasonable order of magnitude. 




