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Abstract

We argue directly from Witten’s analysis of large N, baryons that the structure of the
s-wave low-spin baryon states in QCD becomes spin-independent as N. — oo. This
property leads to SU(6)-like behavior of static matrix elements, such as the axial-
vector current matrix elements recently studied by Dashen, Manohar and Jenkins.
Our analysis suggests a method for applying large N, results for N. = 3, even though
the baryon states for large N, are very different.
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Introduction

The classic paper by Witten on baryons in the large N. approximation shows that low-lying large
N, baryons can be described by a Hartree wave-function with all (or almost all, for low-lying excited
states) quarks in the same ground-state wave function, bound in a potential produced by all the
other quarks. [1] One sentence in [1] hints that the spin structure of large N. baryonic bound states
of light quarks may be an interesting thing to study. Witten notes that while spin-orbit coupling
will seriously deform the high-spin baryons away from an s-wave ground state, the low-spin, ground
state baryons may not be deformed. In this note, we attempt to make this notion precise. We will
argue that spin-independence of large N, baryons emerges as an approximate symmetry of a rather
unusual type. Spin dependent terms vanish as N. — oo when the baryon spin is held fixed. Thus
the states of low spin in the baryon multiplet are spin-independent, while the states with spin of
order N./2 are seriously modified by spin-spin and spin-orbit interactions. We will then analyze
the matrix elements of operators in these baryon states and show that for the ground states, the
matrix elements have the structure suggested by spin-flavor symmetry arguments. Applied to the
axial-vector current, this yields the results that Dashen and Manohar [2] and Jenkins [3] obtained
by studying pion-baryon scattering. However, we see that the result is far more general, depending
only large N., not on chiral symmetry.

One difficulty that arises in applying large N, ideas to baryons in our world is that baryon states
for large N. look nothing like the baryons for N. = 3. It is purely coincidental that for only two
flavors of quarks, the low lying states for any odd N. > 3 have the same quantum numbers as the
states for N, = 3. For more than two flavors, the quantum numbers of the low-lying states look
entirely different. It is thus important to extract results from a large N. analysis in a form that
can be unambiguously applied to N. = 3. It seems clear that you should not directly compute
properties of the large N. baryon states and then just take over the results to N, = 3. What we
will suggest is to formulate the result as a sum over quark states, without regard to the value of
N.. This approach fits in nicely with the rest of our analysis.

We will work entirely within the Hartree picture of large N, baryons. However, to get started,
we must know what spin states to consider. We begin by considering heavy quarks, as discussed ex-
plicitly by Witten. In this case, we know what the Hartree Hamiltonian looks like. The interactions
are approximately spin independent simply because the quark masses are large and the baryons

are nonrelativistic bound states. In this case, we know that the states are nonrelativistic states of



N. quarks, each with two spins states and f flavors states (for f flavors), completely symmetric
in spin, flavor and space variables. This is conveniently described in a (2f)™e dimensional tensor
product space with independent spin indices and flavor indices for each of the quarks (labeled by
z =1 to N.). In the ground states, all the quarks will be in the same s-wave space wave function,
and thus the states are completely symmetric in spin and flavor. The spin and flavor states are

then described by a tower of (spin,flavor) representations of increasing spin as shown below (for odd

N.):

(Ne-1)/2 (Ne=1)/2 (Ne—3)/2 (Ne—3)/2
—_—— —_—— —_—— —_——
| | L] ANN
(1)
(Nc—5)/2 (Nc—5)/2
—_—— —_——

If the quarks are not heavy, we cannot in general ignore the spin dependent interactions. We do
not know how to write down the Hartree potential. Nevertheless, we can plausibly argue that the
low lying baryon states can be described in the same space, and by the same representations. For
this to be the case, it is sufficient that no dramatic phase changes occur as we decrease the quark
masses from large values, much greater than the QQCD scale parameter A, down to small values,
less than or of the order of A. This certainly appears to be true for N, = 3, where the baryon octet
and decuplet bound states of the light v, d and s quarks correspond exactly to the states we would
expect if the quarks were heavy. It would be quite bizarre if large N. worked very differently.! In
what follows, we will assume that this is correct and see what we can say about the states for large

N..

Energies

We can write the energy of the baryon states in the Hartree language as follows:

Z H (2)

!This argument is independent of the Hartree approximation.



where n labels the number of quarks involved. It is convenient to think of this as a matrix in the
(2f)Ne x (2f)Ne dimensional spin-flavor space of the baryon states. The H" are matrix functionals
of the Hartree wave function, ®(r), and it’s adjoint, ®(7)!, where ® is a 2f x 2f matrix in spin
and flavor space. The explicit expression involves a tensor product of n ®s and n ®'s, one in each

quark space,

H" = Z /dgrgg1 e dgrzn
L (3)

where the h™s are (2f)Ne x (2f)Ne matrices acting on the spin and flavor space, {z1, -+, ,} refers to
a set of distinct quark lines (x; # x;) and ®(r;), is the Hartree wave function as a matrix acting in
the space of the x quark. Because each term in the sum in (3) describes an interaction that involves
only the n quarks in the set {1, -+, z,}, the matrix is nontrivial only in a (2f)" x (2f)" subspace
(a different one for each term in the sum). The matrix is the identity on the quark variables that
are not in the set {zq, -, 2,}. In this note, we will discuss the limit in which the f light quarks
are degenerate, in which case there is an SU(f) flavor symmetry, and the h™s are trivial in flavor
space for all of the quarks, simply the product of identity matrices in each of the f dimensional
flavor spaces of the individual quark lines. We will return to the question of SU(f) breaking in a
future publication.

The trick that allows us to demonstrate the spin independence of the low-spin states is to break
up the energy according to the transformation properties of the k™ under the spin and orbital
angular momentum generators on the various quark lines in the frame of reference in which the
baryon is at rest. In particular, we will take as our “zeroth-order” term in the energy, the sum of

the pieces of A" that are singlets under spin and orbital rotations, so that

iln(FIm e ,an) = hg(rmv e ,7“%) + Ailn(ﬂ:n U 7Fwn) (4)
and
Nc
H=% / Bry, - &,
R (5)



where the hgs are c-number functions (if you prefer, multiplied by the identity matrix in the full
space) of the magnitudes of the coordinates, r, = |r;|. The remainder, AiL”(FI_l, -+ Ty, ), transforms
nontrivially under the spin and/or orbital angular momentum on at least one of the quark lines.
The plan now is to imagine using Hy to determine the Hartree potential, and then treat the
A%”(le,---,ﬂgn) as a perturbation. Note that the Aj for n > 1 contribute in large N, even
though they are of order 1/N"~!  because combinatoric factors from the sum in (3) cancel the N,
dependence of the individual graphs. [1] While we cannot determine the Hartree potential for light
quarks explicitly, even in this approximation, it is clear that resulting ground-state Hartree wave
functions will be spin independent and functions only of r;, so that the matrix functions, ®(r;)

become c-numbers:
(i) — B(rz) - (6)

In this approximation, all the spin states in the ground-state baryon multiplet are degenerate and
have the same space wave function. We can now put the s-wave, spin independent Hartree wave
functions back into the full expression for the energy and ask what is the effect it the spin dependent
terms. Roughly speaking, we will find that while the terms in Hy involving two or more quarks add
coherently to give a large effect, the spin dependent terms add incoherently for the low spin states.

This is why the spin dependent terms have a small effect.

Splittings

Let us now consider in detail the splittings introduced by A%”(le, Ty, ). We will need three

simple facts:
1. ARM(Fy,, -+, Fy,) is of order 1/N1);

2. Terms transforming nontrivially under orbital angular momentum on any quark line vanish

when integrated over space in (3);

3. The spin matrix structure on each quark line (labeled by ) can always be written in the form

a+b- Gz, where &, are the Pauli matrices acting on the quark line.

Using these facts, the integrations in (3) can be formally done, and the results replaced by unknown

constants, so that energy has the following form (still a matrix in the (2f)™ x (2f)Me spin-flavor



space):
1
Nn 1

NEO‘I‘Z

a a a e
Z Z Opyt 00z, ffoten (7)

{z1,,2n} %=1,
€{1,-,Ne} :0

where we have defined o2 = I. Note that the tensor, k is completely symmetric.

The next step is note that all the terms proportional to 6% on any quark line, z, are actually
irrelevant. For these terms, we can do the sum over = explicitly, picking up a factor of order V..
The result looks just like the term in (7) with one less quark line (n — n —1). Thus if we eliminate

all the o0, it simply changes the values of the unknown parameters in (7), and we can write the

energy as
N¢ 1 3
a a Qg
NeEo + Z Nn—1 E E Oyt 0y, ffeen (8)
n=2 c {z1,,2n} Gz1, " 0%Tn
e{1,--,N¢} =1

Note that the n = 1 term in the sum has disappeared because of rotation invariance. There is no
way to build a spin-dependent term with only one & in the s-wave ground state.

Finally, consider what happens if instead of summing over the sets {zy, -, z,}, we sum inde-
pendently over the individual quark lines. This introduces combinatoric factors, but for small n,
they are of order 1 as N. — oo and can be absorbed into the unknown coefficients. We also make
errors by including contributions when two or more quarks lines in the sum are the same, but these
are always down by powers of N. compared to contributions we keep because they involve fewer

sums over quark lines. Thus we can write the energy as

N¢ 1
N.Ey + Z N E Z gl .. gl R
n=2 c n azq, 1 T (9)
- M N Z ST S R = NP (SYND),
n=2 al c c

where S is the total spin of the baryon. Though we derived this result thinking about first order
perturbation theory in A%”(le, oo Ty, ), it is actually completely general — it is clear that the
counting of powers of N, in higher order terms goes exactly the same way.

(9) has the property promised in the introduction. The spin dependent corrections are small
(order 1/N, — two factors of IV, smaller than the total energy) for fixed spin as N. — oo. However,
near the top of the ground-state multiplet where S = O(N./2), the corrections are as large as the
zeroth order term. For the top of the multiplet, the perturbation theory breaks down completely
and the Hartree wave function for the high spin states is not simply related to ¢(r).



Matrix Elements

All of the above, we believe, is well known to workers in the field, although we have not seen it
expressed in this way in the literature. The advantage of the systematic approach described above
is that we can now apply the same ideas to discuss matrix elements of operators between baryon
states. The results will be similar to those for the baryon energies. We will find large N, predictions
for the matrix elements that are corrected by terms that are smaller by a factor of order S*/NZ.
Thus the predictions should be reliable at the bottom of the ground state baryon multiplet.

Consider first the matrix elements of two-quark operators of the form

$Ty (10)

where I' is a product of a flavor matrix A times some ~ matrix. In a large N. baryon state, the
matrix element will involve the same flavor matrix, A, and a matrix, &, in spin space that is either
1 or & depending on whether the matrix element is a scalar or a vector under rotations. There may
also be orbital contributions to the spin structure of the operator, but these are irrelevant to matrix
elements in the low-spin ground states because the expectation values are computed in the s-wave
Hartree wave functions. Thus the form of the operator on any single quark line, x, is proportional
to Apk;, where A, and &, are just the matrices A and k acting on the flavor and spin spaces of the
x quark.

Arguments precisely analogous to those that we used to discuss the energies then imply that
the leading order contribution to the matrix element of the operator (which like the energy, we will

express as a (2f)Ne x (2f)Ne matrix in the spin-flavor space) has the form:

Ne

Z (aAzky + boiAk00) (11)

z=1

where @ and b are constants. The second term in (11) arises because there are effects that are
leading order in N, from diagrams of the form shown in Fig. 1, where the shaded region represents
some planar collection of gluon lines. This term does not have a dramatic effect on the form of the
matrix element, but it allows for the possibility that vector and scalar operators are renormalized
differently. Except for this unknown difference in normalization of vector and scalar operators, (11)
is the standard result of SU(2f) symmetry arguments. Note also that the constants a and b will
depend on the details of the 4 matrix structure in (10). For example, the space component of the

axial vector current, with I' = A9 will yield different values of a¢ and b than the operator with



I' = Ao, even though both transform like vectors. As noted by Dashen and Manohar [2], the

matrix elements (11) can be of order N, because of the sum over quarks.

Figure 1: General diagram contributing to renormalization of two-quark operators.

Our result, (11), contains the results of Dashen and Manohar [2] and Jenkins [3] for the isovector
axial vector current, but it is more general. For example, it predicts similar SU(6) relations for the

isoscalar axial vector current as well.

Four-quark operators

Next consider matrix elements of four-quark operators, such as
Ity PIty (12)
As above, the matrix element in large N, baryons will involve the substitution
't — A's', [? — A%s?, (13)

where the x’s are o’s or identity matrices in spin space depending on whether IV is a vector or
scalar under rotations.
Now by the usual argument, the leading large N. prediction for the matrix elements in the

ground-state baryon states is

Tyl xTC T2 T2 5 RS 5 B S B

Ne
Z (alAl kD AZ k24 ClgO';lAl ki o A% k2
e (14)

1 1 a 2 2 a a 1 1 a a 2 2 a
—I—a;),AI1 Ky To AI2 Ky, Oy + 40, AI1 Ky Op On AI2 Ky, UI2) ,

which, because of the double sum, can grow like N? as N, — oo.
It should be clear to the reader how similar predictions can be obtained for matrix elements of

operators with more quark fields.



Comments

It is worth restating the warning in the introduction about the application of these predictions to
N. = 3. In our view, the only sensible way to proceed is to take the result (11) or (14) and apply
it for N. = 3, because real large N. baryons simply do not look anything like N. = 3 baryons.
Unfortunately, this is not always done. For example, calculations in Skyrmion models [4] are not
consistent with this view. A particularly obvious problem with Skyrmion calculation is that they
yield non-zero proton matrix-elements of 3s operators. It is clear that these matrix elements are
non-zero for large N, for precisely the same reason that the large N, baryons and the N, = 3 baryons
have very different quantum numbers. The strange quarks in the large N, baryon are not part of the
sea. They are valence quarks! The 3s operators have nonzero matrix elements in large V. baryons
simply because the large N, baryons have the wrong valence structure. Qur prediction for matrix
elements of Ss operators, based on (11) or (14) or their generalizations, is zero to leading order in
N,, as you should expect from the absence of quark loops in leading order large N. calculations.
In this paper, we have set up a formalism that is useful for exploiting the approximate spin
independence of low spin baryon states in a systematic way. In a future publication, we will give
some examples of applications of (11) and (14) and discuss the effects of SU(f) flavor symmetry
breaking. We will also give explicit examples of 1/N. corrections and show how to apply these

arguments to excited baryon states.
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