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Comparison of Effects of Inhibitors of Viral and Cellular Protein
Kinases on Human Cytomegalovirus Disruption of Nuclear Lamina
and Nuclear Egress

Mayuri Sharma, Donald M. Coen

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA

Human cytomegalovirus (HCMV) kinase UL97 is required for efficient nuclear lamina disruption during nuclear egress. However,
cellular protein kinase C (PKC) has been implicated in this process in other systems. Comparing the effects of UL97 and cellular kinase
inhibitors on HCMV nuclear egress confirms a role for UL97 in lamina disruption and nuclear egress. A pan-PKC inhibitor did not
affect lamina disruption but did reduce the number of cytoplasmic capsids more than the number of nuclear capsids.

Transit of herpesvirus capsids from the nucleus to the cyto-
plasm (nuclear egress) involves phosphorylation-driven dis-

ruption of the nuclear lamina underlying the inner nuclear mem-
brane (reviewed in references 1 to 3). Lamina disruption in herpes
simplex virus 1 (HSV-1) and murine cytomegalovirus correlates
with the recruitment of cellular protein kinase C (PKC) isoforms
by the viral nuclear egress complex (NEC) (4, 5). During HSV-1
infection, the PKC inhibitor bisindolylmaleimide 1 (Bim-1) re-
duced cytoplasmic capsid numbers with little effect on nuclear
capsid numbers, suggesting a role for PKC in nuclear egress (6).
Also, in a cellular process akin to herpesvirus nuclear egress, rear-
rangement of nuclear lamins requires an isoform of PKC (7).
However, during human cytomegalovirus (HCMV) infection, the
NEC recruits the viral kinase UL97, not PKC, to the nuclear rim
(8). Moreover, UL97 is required for efficient lamin A/C phosphor-
ylation and lamina disruption during nuclear egress (9–11). Nev-
ertheless, a textbook view is that in HCMV nuclear egress, host
PKC functions interchangeably with UL97 in the NEC for phos-
phorylation-driven disruption of the nuclear lamina (12). A role
for PKC or other cellular kinases in these processes would be con-
sistent with HCMV replication proceeding, albeit inefficiently, in
the absence of UL97 (11, 13). Additionally, both UL97 and cellular
cyclin-dependent kinase 1 (Cdk-1, which dissolves nuclear lamina
during mitosis) phosphorylate lamin A/C residue Ser22, and
Ser22 phosphorylation increases somewhat during HCMV infec-
tion in the absence of UL97 (9, 11).

To compare the roles of viral and cellular kinases during lam-
ina disruption and nuclear egress, we utilized inhibitors of UL97,
PKC, and Cdk-1 at concentrations that exert substantial effects in
herpesvirus systems without major cytotoxicity (6, 14, 15) (see
Fig. S1 at https://coen.med.harvard.edu), i.e., the UL97 inhibitor
maribavir (MBV) (16) at 1 �M; the PKC isoform �, �1, �2, �, �,
and ε inhibitor Bim-1 (17) at 10 �M; and the Cdk-1, Cdk-2, and
Cdk-5 inhibitor roscovitine (Rosc) (18) at 15 �M (6, 14, 15).
Neither Bim-1 nor Rosc inhibited UL97 autophosphorylation ac-
tivity in vitro (see Fig. S2 at https://coen.med.harvard.edu). Each
inhibitor or a vehicle control (0.1% dimethyl sulfoxide [DMSO])
was added to serum-fed (dividing) mock-infected or HCMV
strain AD169-infected cells at 48 h postinfection (hpi) to limit the
inhibition of steps prior to nuclear egress. At 72 hpi, we stained
cells for lamin A/C and the viral DNA polymerase subunit UL44.
Replication compartment formation (UL44 staining) had pro-

gressed comparably across the infected samples (Fig. 1A). In ve-
hicle-treated infected cells, lamin A/C staining exhibited a charac-
teristic deformed shape, which is a marker of lamina disruption
(9, 19, 20). There was a significant reduction in these nuclear
deformities in MBV-treated infected cells (Fig. 1B), similar to
when MBV is present throughout infection (9). However, MBV
treatment did not significantly reduce the frequency of nuclear
deformities in mock-infected cells (6% in both MBV-treated and
vehicle-treated samples). Bim-1 or Rosc treatment did not result
in significant differences from untreated HCMV-infected cells
(Fig. 1B) or mock-infected cells (data not shown). These results
confirm the importance of UL97 in lamina disruption during
HCMV nuclear egress but provide no evidence of a role for PKC or
Cdk-1 in this process.

In parallel, we measured viral titers at 96 hpi with MBV, Bim-1,
and Rosc added at 48 hpi. All three inhibitors led to significant
reductions in viral titers as follows: MBV, 10-fold; Bim-1, 100-
fold; Rosc, 30-fold (Fig. 2, left). Thus, the lack of effect of Bim-1 or
Rosc on lamina disruption was not due to a lack of activity. We
assessed the effects of these compounds on viral protein expres-
sion (Fig. 2, right) as described previously (8, 11). MBV exerted
little, if any, effect on the levels of the proteins assayed. Unexpect-
edly, while Bim-1 and Rosc did not reduce levels of UL44 and
pp28, they did reduce levels of UL97 and UL50 2- to 5-fold, sug-
gesting a role for PKC and Cdk in the expression of these proteins.
Nevertheless, the reductions in UL97 and UL50 levels were sub-
stantially smaller than what one would expect to explain the effects
of these compounds on viral titers, and they were not sufficient to
affect lamina disruption (Fig. 1B).

We then compared nuclear egress in the presence or absence of
kinase inhibitors from 48 to 96 hpi by using electron microscopy
as described previously (11). MBV led to significant reductions
(�10-fold) in the number of cytoplasmic capsids without de-
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FIG 1 Effects of kinase inhibitors on nuclear lamina morphology. (A) Human foreskin fibroblasts were mock infected or infected with wild-type (WT) HCMV
AD169rv (multiplicity of infection � 1). At 48 hpi, cells were treated with DMSO or with the viral or cellular kinase inhibitor MBV, Bim-1, or Rosc. Cells were
fixed and stained for lamin A/C (green) and UL44 (red) at 72 hpi. Images were acquired by confocal microscopy and are presented as median planes from
Z-stacks. (B) Mock-infected or virus-infected cells from the confocal microscopy images (n � 117 to 154 per condition) were assessed for nuclear lamina
deformities and analyzed for significance with Fisher’s exact tests. For a family-wise type I error rate of 0.05 in a set of six comparisons, a result can be considered
significant only when the P value is 	0.0085. *, P 	 0.0001. No asterisk indicates no significant difference.

FIG 2 (Left) Effects of viral or cellular kinase inhibitors on HCMV replication as determined by plaque assays with supernatants from cells infected with
wild-type (WT) HCMV AD169rv (multiplicity of infection � 1) in the absence or presence of MBV, Bim-1, or Rosc (added at 48 hpi) at 96 hpi. Mean log titers
(with error bars displaying standard errors of the means) from three independent experiments were assessed for statistically significant differences by one-way
analysis of variance, followed by Sidak’s multiple-comparison tests (five comparisons). The P values obtained are shown. No label indicates no significant
difference. (Right) Effects of viral or cellular kinase inhibitors on viral protein expression. Lysates were obtained from mock-infected (lane M) or wild-type
HCMV-infected cells (in the absence or presence of the kinase inhibitors shown at the top) from a parallel setup at 96 hpi. The undiluted lysates (lanes N) or serial
dilutions (2-fold [1:2] or 5-fold [1:5]) were separated by SDS-PAGE, which was followed by Western blotting with antibodies against UL44, UL50, UL97, and
pp28, as well as a loading control (�-actin), as indicated to the left.
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creasing the number of nuclear capsids (Fig. 3), consistent with
the importance of UL97 for nuclear egress (10, 11). Bim-1 led to
significant reductions (�100-fold) in cytoplasmic capsid num-
bers, similar to results obtained with Bim-1 in the HSV-1 system
(6), but also significant reductions (3-fold) in nuclear capsid
numbers (Fig. 3). Rosc treatment did not cause any significant
alterations in capsid numbers consistent with a role for Cdk after
nuclear egress (21, 22).

We also scored for each of the three capsid forms (A, B, and C)
(23) in the nucleus by analyzing the data by using Kruskal-Wallis
tests with Dunn’s multiple-comparison posttests (Table 1). MBV
led to no more than modest reductions in the A and C forms (2.5-
and 2-fold, respectively), which were not significant (P � 0.4314
and 0.7291). Bim-1 led to reductions in all three forms of capsids,
with a drastic (32-fold) and significant (P � 0.0007) effect on C
capsids. Since C capsids contain viral DNA, their reduction likely
makes a major contribution to the severe effect of Bim-1 on viral
titers. Rosc did not significantly affect the numbers of any of the
nuclear capsid forms.

In summary, our results show that HCMV UL97 and PKC are
not interchangeable. UL97 is important for lamina disruption and
nuclear egress. PKC appears to be important for capsid formation
and accumulation in both the nucleus and the cytoplasm. As
Bim-1 led to a more drastic reduction in cytoplasmic capsid num-
bers than in nuclear capsid numbers, PKC may also be important
for nuclear egress. If so, PKC could act indirectly by promoting

capsid formation and expression of UL97 and UL50. Alterna-
tively, PKC may act directly during nuclear egress, but if it does, its
role is evidently not disruption of the nuclear lamina. This is con-
sistent with HCMV not inducing changes in the staining pattern
of lamin B (8) (see Fig. S3A and B at https://coen.med.harvard
.edu), which is an important substrate of PKC (24, 25). Thus,
functions for PKC in HCMV-infected cells differ from those at-
tributed to this kinase during nuclear egress in other systems (4,
5, 7).
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