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Abstract

We use confocal microscopy to directly visualize the formation and complex morphologies of

trapped non-wetting fluid ganglia within a model 3D porous medium. The wetting fluid continues

to flow around the ganglia after they form; this flow is characterized by a capillary number, Ca.

We find that the ganglia configurations do not vary for small Ca; by contrast, as Ca is increased

above a threshold value, the largest ganglia start to become mobilized and are ultimately removed

from the medium. By combining our 3D visualization with measurements of the bulk transport, we

show that this behavior can be quantitatively understood by balancing the viscous forces exerted

on the ganglia with the pore-scale capillary forces that keep them trapped within the medium. Our

work thus helps elucidate the fluid dynamics underlying the mobilization of a trapped non-wetting

fluid from a 3D porous medium.

PACS numbers:
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I. INTRODUCTION

Imbibition, the displacement of a non-wetting fluid from a porous medium by an immisci-

ble wetting fluid, is crucial to many technological applications, including aquifer remediation,

CO2 sequestration, and oil recovery. When the three-dimensional (3D) pore space is highly

disordered, the fluid displacement through it is complicated; this leads to the formation and

trapping of discrete ganglia of the non-wetting fluid within the porous medium [1–9]. Some

of this trapped non-wetting fluid becomes mobilized, and can ultimately become removed

from the medium, as the capillary number characterizing the continued flow of the wetting

fluid, Ca, is increased [10–14]. The pore-scale physics underlying this phenomenon remains

intensely debated. Visual inspection of the exterior of a porous medium, as well as some

simulations, suggest that as Ca increases, the ganglia are not immediately removed from the

medium; instead, they break up into smaller ganglia only one pore in size [15–17]. These

then remain trapped within the medium, becoming mobilized and removed only for large

Ca. By contrast, other simulations, as well as experiments on individual ganglia, suggest

that the ganglia do not break up; instead, all ganglia larger than a threshold size, which de-

creases with increasing Ca, become mobilized and removed [18–22]. The differences between

these conflicting pictures, such as the geometrical configurations of the trapped ganglia, can

have significant practical consequences: for example, smaller ganglia present a higher surface

area per unit volume, potentially leading to their enhanced dissolution in the wetting fluid

[23, 24]. This behavior impacts diverse situations ranging from the spreading of contami-

nants in groundwater aquifers to the storage of CO2 in brine-filled formations. Elucidating

the physics underlying ganglion trapping and mobilization is thus critically important; how-

ever, despite its enormous industrial relevance, a clear understanding of this phenomenon

remains lacking. Unfortunately, systematic experimental investigations of it are challenging,

requiring direct measurements of the pore-scale ganglia configurations within a 3D porous

medium, combined with measurements of the bulk transport through it, over a broad range

of flow conditions.

Here, we use confocal microscopy to directly visualize the formation and complex mor-

phologies of the trapped non-wetting fluid ganglia within a model 3D porous medium. The

ganglia vary widely in their sizes and shapes. Intriguingly, these configurations do not vary

for sufficiently small Ca; by contrast, as Ca increases above a threshold value ≈ 2 × 10−4,
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the largest ganglia start to become mobilized and removed from the medium. Both the size

of the largest trapped ganglion, and the total amount of trapped non-wetting fluid, decrease

with Ca. We do not observe significant effects of ganglion breakup in our experiments. By

combining our 3D visualization with measurements of the bulk transport properties of the

medium, we show that the variation of the ganglia configurations with Ca can instead be

quantitatively understood using a mean-field model balancing the viscous forces exerted on

the ganglia with the capillary forces that keep them trapped within the medium.

II. EXPERIMENTAL METHODOLOGY

We prepare model 3D porous media by lightly sintering dense, disordered packings of

hydrophilic glass beads, with radii a = 19 ± 1 µm, in thin-walled square quartz capillaries

of cross-sectional area A = 9 mm2. The packings have length L = 1 cm; they thus span

approximately 78 or 263 pores transverse to or along the imposed flow direction, respectively.

Scattering of light from the surfaces of the beads typically precludes direct observation of the

multiphase flow within the medium. We overcome this limitation by formulating Newtonian

fluids whose compositions are carefully chosen to match their refractive indices with that

of the glass beads [25]; the wetting fluid is a mixture of 91.4 wt% dimethyl sulfoxide and

8.6 wt% water, dyed with fluorescein, while the non-wetting oil is a mixture of aromatic

and aliphatic hydrocarbons (immersion liquid, Cargille, 5040). The dynamic viscosities of

the wetting fluid and the oil are µw = 2.7 mPa s and µo = 16.8 mPa s, respectively, as

measured using a stress-controlled rheometer. The densities of the wetting fluid and the oil

are ρw = 1.1 g cm−3 and ρo = 0.83 g cm−3, respectively. The two fluids are fully immiscible

over the experimental timescale; the interfacial tension between them is γ = 13.0 mN m−1,

as measured using a du Noüy ring. The contact angle between the wetting fluid and glass

in the presence of the oil is θ ≈ 5◦, as measured using confocal microscopy.

Prior to each experiment, a porous medium is evacuated under vacuum and saturated with

gaseous CO2, which is soluble in the wetting fluid; this procedure eliminates the formation of

trapped bubbles. We then saturate the pore space with the dyed wetting fluid; this enables

us to visualize it in 3D using a confocal microscope, as schematized in Figure 1(a). We

acquire 3D stacks of 39 optical slices parallel to the xy plane, at z positions at least several

bead diameters deep within the medium; the slices each span an area of 912 µm×912 µm in
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the xy plane, are 7 µm thick, and are spaced by 8 µm along the z direction. We identify the

glass beads by their contrast with the dyed wetting fluid. To visualize the pore structure of

the entire medium, we acquire additional stacks, at the same z positions, but at multiple xy

locations spanning the entire width and length of the medium. The porosity of the packings,

measured using the 3D visualization, is φ = 0.41± 0.03.

We subsequently flow 15 pore volumes of the non-wetting oil at a prescribed volumetric

flow rate Qo = 1 mL h−1 through the porous medium; this process is often referred to as

primary drainage. Because the oil is undyed, we identify it by its additional contrast with the

dyed wetting fluid in the imaged pore space. We then continuously flow the wetting fluid at a

prescribed flow rate Qw; this process is referred to as secondary imbibition. We characterize

the wetting fluid flow using the capillary number Ca ≡ µwQw/Aγ; by progressively varying

Qw over the range 10−1 − 103 mL h−1, we explore four decades of Ca ≈ 6× 10−7 − 6× 10−3

in our experiments. The Reynolds number characterizing the pore-scale flow is given by

Re ≡ ρw(Q/φA)at/µw ≈ 8×10−6−8×10−2, where at ≈ 0.16a is the typical radius of a pore

entrance, and therefore, our experiments are characterized by slow, viscous flow. The Bond

number characterizing the influence of gravity relative to capillary forces at the pore scale

is given by Bo ≡ g(ρw − ρo)a
2
t/γ ≈ 10−6, indicating that gravity likely influences trapping

only above vertical length scales comparable to that of the entire medium. We therefore

neglect gravity from our subsequent theoretical analysis.

To visualize the dynamics of the fluid displacement during both primary drainage and

secondary imbibition, we repeatedly acquire a series of optical slices, at a fixed z position

several bead diameters deep within the medium, but at multiple xy locations spanning

the entire length of the medium. This procedure thus enables us to directly visualize the

multiphase flow, both at the scale of the individual pores and at the scale of the overall

medium.

The secondary imbibition leads to the formation of discrete oil ganglia, many of which

remain trapped within the pore space. To probe the ganglia configurations, we reacquire

a second set of 3D stacks at the same x, y, and z positions as the stacks obtained during

the initial characterization of the pore structure. By comparing the two sets of stacks, we

obtain the 3D morphologies of the trapped oil ganglia at sub-pore resolution. We restrict

our analysis to an area several beads away from each edge of the medium to minimize

boundary effects. To explore the variation of the ganglia configurations with the imposed
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flow conditions, we increase Qw in increments. For each value of Qw, we flow > 13 pore

volumes of the wetting fluid, thus establishing a new steady state, before reacquiring an

additional set of 3D stacks. By again comparing each set of stacks with that obtained

during the initial pore structure characterization, we obtain the 3D morphologies of the oil

ganglia left trapped at each Ca.

To quantify the bulk transport behavior, we use differential pressure sensors to measure

the pressure drop ∆P across a porous medium constructed in a manner similar to that used

for the 3D visualization. We first saturate the medium with the wetting fluid and varyQw; by

measuring the proportionate variation in ∆P , we determine the single-phase permeability of

the medium, k ≡ µw(QwL/A)/∆P = 1.67 µm2. The permeability of a disordered packing of

monodisperse spheres is typically estimated using the Kozeny-Carman relation, k = 1
45

φ3a2

(1−φ)2

[26]; this yields k = 1.59 µm2, in excellent agreement with our measured value. We then

flow the oil, and reflow the wetting fluid, through the porous medium, following the same

procedure as that used for the 3D visualization. The oil trapped after secondary imbibition

occludes some of the pore space, modifying the flow through it; this reduces the wetting fluid

permeability to a value κk, where κ ≤ 1 is known as the end-point relative permeability. For

each Ca investigated, we flow > 13 pore volumes of the wetting fluid at its corresponding

Qw, and then measure ∆P at Qw = 10−1 mL h−1. Comparing ∆P with that measured

during single-phase flow at Qw = 10−1 mL h−1 directly yields κ.

III. RESULTS AND DISCUSSION

A. Dynamics of multiphase flow

To mimic the migration of a non-wetting fluid into a geological formation, we first drain

the 3D porous medium, initially saturated with the dyed wetting fluid, with the undyed

non-wetting oil at Qo = 1 mL h−1. The oil displaces the wetting fluid through a series of

intermittent, abrupt bursts into the pores; this indicates that a threshold capillary pressure

difference must build up in the oil before it can invade a pore [27, 28]. This pressure is

given by 2γ cos θ/at, where at ≈ 0.16a is the typical radius of a pore entrance [5, 29–36].

Because the packing of the beads is disordered, at varies from pore to pore, forcing the

path taken by the invading oil to similarly vary spatially, as exemplified by the optical
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FIG. 1: (a) Schematic of primary drainage through a model 3D porous medium. We directly

visualize the flow within the medium using confocal microscopy. The pore space is initially satu-

rated with the fluorescently-dyed wetting fluid, which is displaced by the undyed non-wetting oil.

(b) Optical section through part of the medium, taken as the oil displaces the wetting fluid at

Qo = 1 mL h−1. Section is obtained at a fixed z position, away from the lateral boundaries of the

medium. Bright areas show the pore space, saturated with the fluorescently-dyed wetting fluid,

and the black circles show cross-sections of the beads making up the medium. Additional black

areas show the invading oil. The path taken by the oil varies spatially, as seen in the region spanned

by the arrow. (c) Optical section through the same part of the medium, taken after invasion by

≈ 9 pore volumes of the oil. Some wetting fluid remains trapped in the crevices and pores of the

medium, as indicated. (d) Time sequence of zoomed confocal micrographs, with the pore space

subtracted; binary images thus show oil in black as it bursts into the pores. Time stamp indicates

time elapsed after subtracted frame. Upper and lower arrows in the last frame show wetting fluid

trapped in a crevice or in a pore, respectively. Scale bars in (b-c) and (d) are 500 µm and 200 µm,

respectively. Imposed flow direction in all images is from left to right.
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FIG. 2: (a) Schematic of secondary imbibition through a model 3D porous medium. We directly

visualize the flow within the medium using confocal microscopy. The fluorescently-dyed wetting

fluid displaces the undyed non-wetting oil. (b) Optical section through part of the medium, taken

as the wetting fluid displaces the oil at Ca = 6.4 × 10−7. Section is obtained at the same fixed

z position, away from the lateral boundaries of the medium, as in Figure 1(b-c). Bright areas

show the fluorescently-dyed wetting fluid, and the black circles show cross-sections of the beads

making up the medium. Additional black areas show the oil. The wetting fluid first snaps off oil in

crevices throughout the medium, as seen in the region spanned by the double-headed arrow, and

then bursts into the pores of the medium, starting at the inlet, as seen in the region spanned by

the single-headed arrow. Some oil ganglia remain trapped within the medium, as indicated. (c-d)

Time sequence of zoomed confocal micrographs, with the oil-filled pore space subtracted; binary

images thus show wetting fluid in white as it (c) initially snaps off oil in the crevices, and then (d)

invades the pores. Time stamps indicate time elapsed after subtracted frame. Last frame shows

unchanging steady state; arrow indicates a trapped oil ganglion. Scale bars in (b) and (c-d) are

500 µm and 200 µm, respectively. Imposed flow direction in all images is from left to right.
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sections in Figures 1(b) and (d) [37–41]. Consequently, the interface between the oil and

the displaced wetting fluid interface is ramified [tip of the arrow in Figure 1(b)]. As the

oil continues to drain the medium, it eventually fills most of the pore space, as shown in

Figure 1(c); however, the smallest pores remain filled with the wetting fluid [rightmost

indicator in Figure 1(c) and lower arrow in Figure 1(d)]. Thin layers of the wetting fluid,

≈ 1 µm thick, remain trapped in the crevices of the medium, surrounding the oil in the

pores [leftmost indicator in Figure 1(c) and upper arrow in Figure 1(d)]. This observation

provides direct confirmation of the predictions of a number of theoretical calculations and

numerical simulations [6, 8, 9, 42–52].

To investigate the dynamics of secondary imbibition, we then flow the wetting fluid

continuously at Ca = 6.4 × 10−7. The presence of the thin layers of the wetting fluid

profoundly changes the flow dynamics: unlike the case of primary drainage, the invading

fluid does not simply burst into the pores. Instead, we observe that the wetting fluid first

flows through the thin layers, snapping off the oil in crevices throughout the entire medium

[53–55] over a period of approximately 60 s, as seen in the region spanned by the double-

headed arrow in Figure 2(b) and in the time sequence shown in Figure 2(c). This behavior

agrees with the predictions of recent numerical simulations [56]. The wetting fluid then also

begins to invade the pores through a series of intermittent, abrupt bursts, starting from the

inlet, as seen in the region spanned by the single-headed arrow in Figure 2(b) and in the

time sequence shown in Figure 2(d). Interestingly, as the wetting fluid invades the medium,

it bypasses many of the pores, leaving discrete oil ganglia of varying sizes in its wake. Many

of these ganglia remain trapped within the pore space, as indicated in Figure 2(b).

B. Trapped oil ganglia configurations

We use our confocal micrographs to measure the total amount of oil trapped within the

porous medium; this is quantified by the residual oil saturation, Sor ≡ Vo/φV , where Vo is

the total volume of oil imaged within a region of volume V . After secondary imbibition at

Ca = 6.4× 10−7, we find Sor ≈ 9%, similar to the results of some previous experiments on

bead packs [14]. To mimic discontinuous core-flood experiments on reservoir rocks, we then

explore the variation of Sor in response to progressive increases in the wetting fluid Ca. We

find that Sor does not vary significantly for sufficiently small Ca; however, as Ca is increased
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FIG. 3: Residual oil saturation Sor, normalized by its maximum value, does not vary significantly

for small wetting fluid capillary number Ca, but decreases precipitously as Ca increases above

2× 10−4 (dashed grey line). Residual oil saturation is measured using 3D confocal micrographs.

above 2 × 10−4, Sor decreases precipitously, as shown in Figure 3, ultimately reaching only

≈ 7% of its initial value. These results are consistent with the results of previous core-

flood experiments, which show similar behavior for fluids of a broad range of viscosities and

interfacial tensions [14]. The measured threshold value of Ca is also consistent with the

results of some numerical simulations [22].

To better understand this behavior, we inspect the reconstructed 3D morphologies of the

individual ganglia for each Ca investigated. At the smallest Ca ≈ 6× 10−7 − 2× 10−4, the

ganglia morphologies vary widely, as exemplified by the 3D renderings shown in Figure 4.

The smallest ganglia are spherical, only occupying single pores, and span ≈ 0.3 beads in

size [left, Figure 4]; in stark contrast, the largest ganglia are ramified, occupying multiple

pores, and span many beads in size [right, Figure 4]. To quantify the significant variation

in their morphologies, we measure the length L of each ganglion along the flow direction,

and plot 1-CDF(L), where CDF =
∑L

0 Lp(L)/
∑

∞

0 Lp(L) is the cumulative distribution
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FIG. 4: 3D renderings of oil ganglia trapped after secondary imbibition at Ca = 6.4 × 10−7. The

left ganglion is spherical and only spans ≈ 0.3 beads in diameter, whereas the right ganglion is

more ramified and spans multiple beads. Renderings are produced using 3D confocal micrographs.

function of ganglia lengths and p(L) is the number fraction of ganglia having a length L.

Consistent with the variability apparent in the 3D renderings, we find that the ganglia

lengths are broadly distributed, as indicated by the circles in Figure 5. Interestingly, in

agreement with recent X-ray microtomography experiments [57–59], we find that the decay

of this distribution is consistent with a power law, 1-CDF(L) ∝ L−3.5 [solid line in Figure 5],

as predicted by percolation theory [Appendix 1]. Moreover, we find that the largest trapped

ganglion has a length Lmax ≈ 13 bead diameters [arrow in Figure 5]; while we cannot

exclude the influence of boundary effects or the limited imaging volume, this value is in

good agreement with the prediction of percolation theory incorporating a non-zero viscous

pressure: Lmax ≈ α(a2Ca/κk)−ν/(1+ν) ≈ 9α bead diameters, where ν ≈ 0.88 is a scaling

exponent obtained from numerical simulations [60], α is a constant of order unity, and we

use the value of κ measured at the lowest Ca [60, 61]. Taken together, these results suggest

that the configurations of the ganglia left trapped after secondary imbibition are consistent

with the predictions of percolation theory.

As Ca increases, we do not observe significant effects of ganglia breakup; this observation

is contrary to some previous suggestions [16], and confirms the predictions of other numerical

simulations [20, 62]. Instead, the ganglia configurations remain the same for all Ca < 2×10−4

[◦, �, and × in Figure 5]. Moreover, we find that the largest ganglia start to become

mobilized and removed from the porous medium, concomitant with the observed decrease

in Sor, once Ca increases above 2 × 10−4 [Figure 5]. We quantify this behavior by plotting

the variation of Lmax with Ca. While Lmax remains constant at small Ca, it decreases

precipitously as Ca increases above 2×10−4, as shown by the circles in Figure 6. Remarkably,
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along the flow direction using 3D confocal micrographs, after secondary imbibition at a range of

wetting fluid capillary numbers Ca. Solid line shows ∼ L−3.5 scaling. Arrow indicates maximum

ganglion length Lmax at the lowest Ca = 6.41 × 10−7.

this behavior closely mimics the observed variation of Sor with Ca [Figure 3]. These results

thus suggest that the variation of Sor with increasing Ca is not determined by the breakup

of the trapped ganglia; instead, it may reflect the mobilization and removal of the largest

ganglia from the medium.

C. Physics of ganglion mobilization

To test this hypothesis, we analyze the distribution of pressures in the wetting fluid as it

flows through the porous medium. Motivated by previous studies of this flow [12, 18, 63, 64],

we make the mean-field assumption that the viscous pressure drop across a ganglion of length

L is given by Darcy’s law,

Pv =
µw

κk

Qw

A
L (1)
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FIG. 6: Variation of maximum trapped oil ganglion length Lmax, measured along the flow direction

using 3D confocal micrographs, and 2.5 times the theoretical L∗, calculated using Eq. (3.3), with

the wetting fluid capillary number Ca. Similar to the variation of the residual oil saturation Sor,

shown in Figure 3, Lmax does not vary significantly for small wetting fluid capillary number Ca,

but decreases precipitously as Ca increases above 2× 10−4 (dashed grey line). Both Lmax and L∗

do not scale as ∼ Ca−1, indicated by the solid line.

The end-point relative permeability κ ≤ 1 quantifies the modified transport through the

medium due to the presence of the trapped oil. To determine Pv at each Ca investigated, we

directly measure the variation of κ with Ca for a porous medium constructed in a manner

similar to, and following the same flow procedure as, that used for visualization of the ganglia

configurations. Interestingly, κ does not vary significantly for sufficiently small Ca; however,

as Ca increases above 2×10−4, κ quickly increases, concomitant with the observed decreased

in Sor, as shown in Figure 7. This observation suggests that the bulk transport behavior

of the medium depends strongly on the trapping of oil within it. To quantify the close link

between the variation of κ and Sor with Ca [14], we plot κ as a function of the wetting

fluid saturation, 1 − Sor. Consistent with our expectation [65], we find that κ increases
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FIG. 7: Variation of wetting fluid end-point relative permeability κ, measured using pressure

transducers, with the wetting fluid capillary number Ca. Similar to the variation of the residual

oil saturation Sor, shown in Figure 3, κ does not vary significantly for small wetting fluid capillary

number Ca; however, it increases dramatically as Ca increases above 2× 10−4 (dashed grey line).

monotonically with increasing wetting fluid saturation, as shown in Figure 8.

For a ganglion to squeeze through the pores of the medium, it must simultaneously

displace the wetting fluid from a downstream pore, and be displaced by the wetting fluid

from an upstream pore. To displace the wetting fluid from a downstream pore, a threshold

capillary pressure must build up at the pore entrance, as schematized by the right set of

arrows in Figure 9; this threshold is given by Pt = 2γ cos θ/at, where at is the radius of

the pore entrance [6, 29–34], with an average value ≈ 0.16a for a 3D packing of glass beads

[35, 36]. Similarly, for the trapped oil to be displaced from an upstream pore, the capillary

pressure within the pore must fall below a threshold, as schematized by the left set of arrows

in Figure 9; this threshold is given by Pb = 2γ cos θ/ab, where ab is instead the radius of

the pore itself, with an average value ≈ 0.24a [35, 36]. Thus, to mobilize a ganglion and

ultimately remove it from the porous medium, the total viscous pressure drop across it must
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FIG. 8: Variation of wetting fluid end-point relative permeability κ, measured using pressure

transducers, with the saturation of wetting fluid in the pore space, 1 − Sor. We find that κ

increases monotonically as the amount of trapped oil is decreased.

exceed a capillary pressure threshold,

Pt − Pb =
2γ cos θ

ab

(

ab
at

− 1

)

(2)

Balancing Eqs. (1) and (2), we therefore expect that [66], at a given Ca, the smallest

ganglia remain trapped within the medium, while the viscous pressure in the wetting fluid

is sufficiently large to mobilize all ganglia larger than

Lmax = L∗

≡
2 cos θ

Ca

(

ab
at

− 1

)

κk

ab
(3)

To critically test this prediction, we compare the variation of both Lmax, directly measured

using confocal microscopy, and L∗, calculated using the measured values of θ, k, and κ,

with Ca. For small Ca, we find Lmax < L∗, as shown by the first three points in Figure 6;

this indicates that the viscous pressure in the wetting fluid is too small to mobilize any

ganglia. Consequently, Sor does not vary significantly for this range of Ca, consistent with
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FIG. 9: 2D schematic showing an oil ganglion (orange) trapped within the pore space, with wetting

fluid flowing from left to right; beads are shown by white circles. Dashed lines show threshold

curvatures required for the ganglion to invade the downstream pores or be displaced from the

upstream pores.

the measurements shown in Figure 3. As Ca increases, Lmax remains constant; however, L∗

steadily decreases, eventually becoming comparable to Lmax at Ca ≈ 2 × 10−4, shown by

the dashed line in Figure 6. Strikingly, as Ca increases above this value, we find that both

Lmax and L∗ decrease in a similar manner, with Lmax ≈ 2.5L∗; this indicates that the viscous

pressure in the wetting fluid is sufficient to mobilize and remove more and more of the largest

ganglia. Consequently, we expect Sor to also decrease with Ca in this range, in excellent

agreement with our measurements [Figure 3]. The similarity in the variation of Lmax and

Sor with Ca, and the close agreement between our measured Lmax and the predicted L∗

for Ca > 2 × 10−4, thus confirm that the reduction in Sor reflects the mobilization of the

largest ganglia. Finally, we note that, due to the concomitant variation of the wetting

fluid permeability with Ca, the measured Lmax does not decrease as Ca−1 [solid line in

Figure 6]; this is in contradiction to results obtained for an isolated ganglion [18], for which

the permeability is a constant, which are often assumed to also apply to a population of

many ganglia.
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IV. CONCLUSIONS

Using confocal microscopy, we directly visualize the dynamics of primary drainage and

secondary imbibition, as well as the intricate morphologies of the resultant trapped non-

wetting fluid ganglia, within a 3D porous medium, at pore-scale resolution. During imbibi-

tion, the wetting fluid first flows through thin layers coating the solid surfaces, snapping off

the non-wetting fluid in crevices throughout the medium. It then displaces the non-wetting

fluid from the pores of the medium through a series of intermittent, abrupt bursts, starting

from the inlet, leaving ganglia of the non-wetting fluid in its wake. These vary widely in their

sizes and shapes, consistent with the predictions of percolation theory. We do not observe

significant effects of ganglion breakup, contrary to some previous suggestions. Instead, for

small Ca, the ganglia configurations do not appreciably change; this likely reflects the fact

that the ganglia sizes, and hence the viscous pressure drops across them, are limited, con-

sistent with the predictions of percolation theory incorporating a non-zero viscous pressure

gradient. However, as Ca is increased above a threshold value, more and more of the largest

ganglia become mobilized and removed from the medium. By coupling the 3D visualization

and bulk transport measurement, we show that the variation of the ganglia configurations

can be understood by balancing the viscous forces exerted on the ganglia with the pore-scale

capillary forces that keep them trapped within the medium. This work thus helps elucidate

the fluid dynamics underlying the mobilization of a trapped non-wetting fluid from a 3D

porous medium.

Our results provide direct visualization of the multiphase flow and the ganglia configura-

tions within a 3D porous medium; moreover, they highlight the applicability of mean-field

ideas in understanding the mobilization of the trapped non-wetting fluid. This work may

thus help guide theoretical models or numerical simulations (e.g. [67, 68]). Moreover, be-

cause many geophysical flows give rise to residual trapping, we expect that our work will

be relevant to a number of important applications, including enhancing oil recovery, under-

standing the distribution of contaminants in groundwater aquifers, or the storage of CO2 in

sub-surface formations.
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V. APPENDIX

Percolation theory predicts that the number fraction of ganglia with volume s is, for

large s, given by p(s) ∝ s−τ , where τ ≈ 2.2 is a scaling exponent [69–71]. Moreover,

the volume of a ganglion is related to its length by the relation s ∝ L3/(τ−1). Combining

these two relations yields p(L) ∝ L−3τ/(τ−1), and therefore, Lp(L) ∝ L−3τ/(τ−1)+1. In our

experiments, we measure the complementary cumulative distribution function of ganglia

lengths, 1-CDF(L) =
∑

∞

L Lp(L)/
∑

∞

0 Lp(L) ∝ L−3τ/(τ−1)+2 ∝ L−3.5 for τ ≈ 2.2. This

prediction is in good agreement with the large L tail of our data, as shown by the solid line

in Figure 5.
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