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ABSTRACT: Polarization transfer is demonstrated as a sensitive 
technique for the measurement of isotopic fractionation of proto-
nated carbons at natural abundance.  This method allows kinetic 
isotope effects (KIEs) to be determined with substantially less 
material or shorter acquisition time compared with traditional 
experiments.  Computations quantitatively reproduce the KIEs in 
a Diels–Alder reaction and a catalytic glycosylation.  The glyco-
sylation is shown to occur by an effectively concerted mechanism. 

The accurate determination of kinetic isotope effects (KIEs) can 
provide uniquely powerful and sensitive information about reac-
tion mechanisms, and has therefore been one of the primary tools 
of physical-organic chemistry for the past several decades.1  From 
a practical standpoint, application of KIE analyses is often limited 
by accessibility to the requisite isotopically labelled materials.  In 
1995, the Singleton group introduced a crucially important ad-
vance in this regard, through the development of methods for 
measuring KIEs at natural isotopic abundance.2  The Singleton 
method has been applied successfully to illuminate the mecha-
nisms of many important reactions.3  However, to achieve suffi-
cient fractionation for the accurate determination of KIEs by this 
method, reactions must be carried to either very low conversion 
(for product analysis) or high conversion (for starting material 
analysis). The requirement that small percentages of a reaction 
mixture be analyzed, combined with the intrinsically low sensitiv-
ity of the 13C nucleus in NMR spectroscopy, has hampered the 
application of KIE methodology to reactions in which the reagents 
or catalysts are precious.4 Here we show that 1H to 13C polariza-
tion transfer can reduce the time and material required for many 
KIE measurements substantially, and apply the improved protocol 
to analysis of the mechanism of a catalytic glycosylation reaction 
at the boundary between the SN1 and SN2 mechanisms. 

Measurements of intermolecular 13C KIEs at natural abundance 
rely on kinetic resolution: at high conversions, the remaining 
starting material becomes enriched in the slower reacting isotope 
(usually 13C), while at low conversions, the product is enriched in 
the faster reacting isotope (usually 12C). Under pseudo-first-order 
conditions, the change in isotopic composition at a particular site 
is related to the fractional conversion (F) via: = ln(1 − )ln[(1 − )( / )] = ln(1 − )ln[(1 − ( / ))] 
where RSM is the ratio of heavy to light isotopes in recovered start-
ing material, RPDT is the ratio in product, and R0 is the ratio in the 
unfractionated starting materials.5  In general, the degree of frac-
tionation – and therefore the accuracy of KIE determinations – is 

higher for recovered starting material at high conversion than for 
product at low conversion.  However, in cases where the starting 
material is unstable or where low reaction efficiency precludes 
attainment of high conversion, product analysis is the only practi-
cal option.  Regardless of whether starting material or product is 
analyzed, the enrichments are small because 13C KIEs are them-
selves intrinsically small (0.98-1.10).5 

The Singleton method employs quantitative single pulse 13C NMR 
spectroscopy to measure the isotopic ratios R and R0, each of 
which is determined using the signal of a carbon with negligible 
KIE as an internal standard. When the enrichment is calculated as 
the ratio of ratios R/R0, any discrepancy between the response 
factors, s and sref, cancels: 

13 13

12 13

0
0 0

[ ] [ ]
;

[ ] [ ]
actual measured

ref ref

actual actual

ref refmeasured actual

C s C
R R

C s C

R Rs s
R R

s sR R

 

   
    

     
This cancellation of errors can be exploited to allow for the use of 
more sensitive NMR methods with non-uniform response factors. 
In particular, distortionless enhancement by polarization transfer 
(DEPT),6 which leverages the larger gyromagnetic ratio of 1H 
over 13C (43 and 11 MHz T-1, respectively), can theoretically 
yield a four-fold improvement in sensitivity or, equivalently, a 
sixteen-fold reduction in experimental time. In practice, quantita-
tive implementations of DEPT sacrifice sensitivity to maximize 
response factor uniformity by using arrayed values of Δ (the mag-
netization transfer delay) and β (the read pulse angle).7 However, 
without the need for uniform response factors in KIE measure-
ments, the maximum theoretical sensitivity improvement can be 
retained through a single choice of set values for the Δ and β pa-
rameters. 

To explore this polarization transfer approach, we selected the 
Diels–Alder reaction between isoprene and maleic anhydride as a 
test case. Although Singleton and co-workers determined the 13C 
KIEs for this reaction by analyzing recovered isoprene at high 
conversion, we chose instead to analyze product at low conver-
sion.  For reactions that combine two molecules into one, product 
analysis is more efficient than starting material analysis because it 
allows the KIEs to be determined with respect to both reactants 
(maleic anhydride and isoprene) in one set of experiments.  Addi-
tionally, because of reduced fractionation, product analysis consti-
tutes a more challenging test of our methodology.4a,8   

Given measurements of 1JCH obtained from coupled HSQC exper-
iments, numerical optimization of Δ and β using product operator 
expressions (see SI)7b gave optimized values of Δ=3.319 ms (1JCH 
= 150.6 Hz) and β = 55.72°. These parameters correspond to posi-
tive enhancements of 3.3 for CH and CH3 groups and 3.7 for 
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In general, SN1 mechanisms give rise to small normal or inverse 
12C/13C KIEs, while SN2 mechanisms produce relatively large 
normal KIEs (Scheme 1). In a traditional SN1 mechanism with 
rate-limiting leaving group dissociation, the large degree of heter-
olysis in the transition state would ordinarily cause a large, normal 
isotope effect. However, the bonds in the cation are strengthened 
by hyperconjugation. These effects are nearly offsetting: for ex-
ample, the equilibrium isotope effects (EIEs) for trityl chloride 
solvolysis and phenethyl bromide methanolysis are 0.98 and 1.01, 
respectively.16 By contrast, in an SN2 mechanism, the degrees of 
bond formation and bond cleavage are relatively equal, with a 
strong preference for a linear geometry. This can produce large 
KIEs; for example, the concerted addition of cyanide to methyl 
chloride gives a KIE of 1.07.14a 

Glycosylation is a special case of nucleophilic substitution in 
which distinguishing between the SN1 and SN2 mechanisms is 
more challenging.  This is because the presence of an oxygen 
adjacent to the site of displacement (i.e., C1) can stabilize incipi-
ent positive charge.  Thus, any potential concerted pathway be-
comes asynchronous (dotted line in Scheme 1) and approaches the 
oxocarbenium ion intermediate of the SN1 mechanism (lower-
right-hand corner).  Accordingly, the SN2 KIEs are depressed 
relative to those of a synchronous mechanism.  For example, the 
acidic hydrolysis of β‐methylglucoside, which proceeds by an 
SN1 mechanism, displays a 13C KIE of 1.011, and the concerted 
enzymatic hydrolysis of the same substrate results in a KIE of 
1.032.9 

The thiourea-catalyzed glycosylation of galactose developed re-
cently in our laboratories17 (Table 3) offers an opportunity to 
study this interesting borderline region between SN1 and SN2: the 
reaction occurs with stereochemical inversion, displays relatively 
large α-1H/2H KIEs, and is faster for sugars with cation-stabilizing 
axial substituents. In this reaction, the instability of the starting 
material requires product analysis. The DEPT-55 method de-
scribed above is particularly well-suited for this case because its 
improved sensitivity offsets the difficulties of low fractionation 
associated with product analysis, all the KIEs of interest belong to 
protonated carbons, and the catalyst and products are relatively 
precious. 

Catalytic glycosylations were carried to 12% and 100% conver-
sion and the products analyzed. As expected, small and normal 
KIEs were observed at C1, C2, and C5 (Table 3), indicating sig-
nificant oxocarbenium character in the transition state.  Calcula-

tions were performed in order to distinguish between the SN1 and 
SN2 mechanisms. The SN1 KIEs can be approximated by EIEs.18  
The calculated value at C1 is 0.981.  This value does not vary 
significantly with the choice of computational method and is low-
er than the KIE determined experimentally. By contrast, C1 KIEs 
for the SN2 mechanism are predicted to lie between 0.99–1.01. In 
particular, PBE0-D3(BJ)/6-31G*/PCM reproduces every experi-
mental KIE to within 0.001. This agreement validates the picture 
of an asynchronous mechanism with a large degree of charge 
separation. 

Table 3. Measured vs. Predicted Glycosylation KIEs 

 

C1 C2 C4 C5 

 experimentala 1.000(4) 1.006(5) 1.000(4) 1.008(4) 

predictedb SN2 KIEs 

PBE0-D3(BJ) 0.999 1.006 0.999 1.007 

B3LYP-D3(BJ) 0.993 1.006 0.999 1.007 

M06-2X 1.008 1.011 0.998 1.005 

SN1 (predictedb,c) 0.981 1.007 1.000 1.011 

a DEPT-55 KIEs and standard errors over two trials. Other 
KIEs: 1.001(4) at C3, 1.000(3) at C6. KIEs are relative to the C2 
methyl group. b 6-31G*/PCM.  All predicted KIEs at C3 and C6 
are within 0.001 of unity. c PBE0-D3(BJ) EIEs for the ionization 
of galactosyl chloride 4. 

An alternative stepwise mechanism involving ionization followed 
by rate-limiting nucleophilic addition cannot be ruled out. When 
the commitment factor for the cationic intermediate is small, the 
apparent KIE is the product of the EIE for the ionization step 
(taking starting chloride as the reference) and the KIE of the nu-
cleophilic addition step (taking cation as the reference). This is 
equivalent to calculating the KIE for the addition step with start-
ing chloride as the reference (see SI). Because the latter procedure 
is also the one followed for an SN2 prediction, both predictions 
are necessarily identical. 

Although SN1 and SN2 represent formally limiting mechanisms, 
the experimental characteristics of a stepwise process with rate-
limiting addition and a loose-but-concerted displacement con-
verge when the intermediate is high in energy (Scheme 1). Specif-
ically, such reactions are positive order in both the nucleophile 
and electrophile and yield stereochemical inversion. While this 
KIE analysis cannot rule out the possibility of a shallow interme-
diate along the reaction coordinate, it confirms that the reaction 
occurs through a cooperative mechanism in which dual activation 
of the nucleophile and electrophile are required for catalysis. 
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