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Stochastic modeling of cell growth with symmetric or asymmetric division

Andrew Marantan1 and Ariel Amir2

1Department of Physics, Harvard University, Cambridge, MA 02138
2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

We consider a class of biologically-motivated stochastic processes in which a unicellular organism
divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically
between its progeny. Assuming the final amount of the resource is controlled by a growth policy
and subject to additive and multiplicative noise, we derive the “master equation” describing how
the resource distribution evolves over subsequent generations and use it to study the properties of
stable resource distributions. We find conditions under which a unique stable resource distribution
exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an
asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists)
has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment
equations to draw a stability phase diagram for the system that reveals the counterintuitive result
that asymmetry serves to increase stability while at the same time widening the stable distribution.
We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny
as a form of damage control. In the appendix, motivated by the asymmetric division of cell volume
in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells
follow different growth policies.

PACS numbers: 87.10.Ca, 87.10.Ed, 87.17.Ee, 87.10.Mn, 87.17.Aa, 87.18.Tt

I. INTRODUCTION

When a unicellular organism divides, it allocates its
cellular resources (proteins, DNA, etc.) to its newborn
daughter cells. Though the parent cell often distributes
many of these resources equally (as occurs in prokary-
otes like Escherichia coli or eukaryotes like Schizosac-
charomyces pombe), there are exceptions. For example,
the yeast Saccharomyces cerevisiae divides by budding,
which results in the budded daughter cell inheriting a
smaller volume. In other cases this asymmetric alloca-
tion serves a more obvious purpose, as when a parent
cell actively segregates its damaged proteins into one of
its (ill-fated) daughter cells [1–3] to ensure the other sur-
vives or when a mother cell keeps most of its stores of a
scarce resource so that it may continue to proliferate [4].
Whether it be volume, proteins or another resource, the
population-level distribution for a given resource tends
to stabilize over successive generations and the amount
of symmetry or asymmetry in the division of that re-
source nontrivially affects the stable distribution’s sta-
tistical properties.

While in previous studies we focused (theoretically and
experimentally) on the correlations between various cell
cycle variables [5, 14, 15], we devote this study to a quan-
titative, statistical analysis of stable resource distribu-
tions. Assuming that every cell in the population at-
tempts to accrue resources according to a species-specific
growth policy that takes into account the initial amount
of the resource at birth, v, and specifies the desired (pre-
division) amount vG = f(v), we find the conditions un-
der which a unique stable resource distribution exists and
study its properties. In addition, we allow for multiplica-
tive and additive noise during growth (see Sec. II) and
assume that the asymmetry ratio r (the ratio of the re-

sources allocated to the two offspring) is fixed [10, 16–18]
and leave the more general case to App. E.

More formally, we show that the distribution for the
amount of resources a cell born into the nth generation
has at birth, Pn(v), evolves into the distribution for the
next generation Pn+1(v) according to an (integral) mas-
ter equation (see Sec. III),

Pn+1 (v) =

∫ ∞
0

dv′ K(v, v′)Pn (v′) , (1)

in which the growth policy f(v) determines the kernel
of the integral, K(v, v′). Then by taking Pn+1(v) =
Pn(v) = P (v), we obtain a homogenous Fredholm in-
tegral equation of the second kind,

P (v) =

∫ ∞
0

dv′ K(v, v′)P (v′), (2)

which provides a necessary condition for a stable resource
distribution that allows us to address questions of exis-
tence and uniqueness (Sec. IV). Note that our choice to
work with cell generations instead of time is for analyti-
cal convenience: the two approaches are equivalent with
regards to understanding stability (see App. A).

Given the abundance of recent studies experimentally
probing cell size distributions by tracking cell volume
at the single-cell level, both for symmetrically dividing
cells [5–9] and asymmetrically dividing cells [10, 11], we
couch the majority of our discussion of the stable re-
source distribution in terms of the cell volume distribu-
tion in symmetrically- or asymmetrically-dividing cells.
Other recent studies looked at protein number distribu-
tions at the single-cell level [12–14], and so we also pay
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special attention to asymmetric division of damaged pro-
teins in Sec. VIII. Nevertheless, the mathematical results
we derive apply equally well to other resource distribu-
tion problems.

In addition to the evolution and consistency equations
(Eqs. 1 and 2), we present here three main results for
the case of affine linear growth policies:

1. explicit formulae for the stable volume and damage
distributions’ mean and variance in terms of the
policy and noise parameters (Secs. V and VIII),

2. an asymptotic analysis that reveals the stable dis-
tribution’s power-law tail and provides an equation
for the tail’s power (Sec. VI),

3. a stability phase diagram characterizing the range
of parameters for which a stable distribution exists
(Sec. VII) that suggests that asymmetric division
actually improves stability.

We also extend our results on the moments of the stable
distribution to a model in which mother and daughter
cells follow different growth policies (see App. F).

II. MODEL SPECIFICATION

We begin building our stochastic model by discussing
how cells of the asymmetrically-dividing yeast S. cere-
visiae grow and divide. An nth generation cell born with
volume vn will grow exponentially in time [19–23] to a
fully-grown size vGn , at which point the daughter cell buds
off the mother cell (note that for organisms like E. coli
which divide symmetrically, we would say the original
“mother” cell produces two “daughters”). Since volume
is conserved, the birth volumes of the mother and daugh-
ter cells, which we denote by vMn+1 and vDn+1, must add

up to vGn ,

vGn = vDn+1 + vMn+1. (3)

Both volumes contribute to the birth volume distribution
for the next generation, Pn+1(v).

The question of stability then depends on the manner
in which the cells control their growth. Building on the
work of Refs. [5, 15, 24], we abstract away the myriad
biological underpinnings of a cell’s behavior (e.g. bio-
chemical pathways, replication of DNA, etc.) by assum-
ing a cell born with volume vn attempts to grow to its
final (pre-division) size vGn according to a species-specific
growth policy, vGn = f(vn). Some of our results hold for
arbitrary policies, but we focus mostly on the class of
affine linear policies,

f(v) = ∆ + c v, (4)

in which the cell adds a constant volume ∆ (indepen-
dent of initial size) to its initial volume (weighted by a
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FIG. 1. (Color online) (a) Schematic for asymmetric divi-
sion (budding) in yeast. We consider the growth and divi-
sion of a cell born with volume vn at the beginning of the
nth generation. While this cell grows exponentially in time,
vn(t) = vn e

λt, a new cell starts to emerge from it as a bud.
After growing to a total (i.e. both mother and bud) volume
vGn according to a growth policy vGn = f(v), the budding
daughter cell detaches from the larger mother cell. The vol-
ume of the daughter cell after division, vDn+1 is related to the
volume of the mother cell after division, vMn+1, by a fixed ra-
tio r, vDn+1 = r vMn+1. (b) Our model also applies to cases of
asymmetric resource division in symmetrically-dividing cells.

dimensionless control coefficient c) during growth. We
should note this is a special case of a more general class
of processes first considered from a thoroughly mathe-
matical perspective in a series of papers (Refs. [25] and
[26]) by Kesten in the 1970s. As is argued in Ref. [5],
we can always treat the affine linear policy as the first-
order Taylor expansion of a nonlinear policy about the
typical cell size. This procedure should result in a good
approximation provided the noise is not too large. Note
that the control coefficient c in our model relates to the
parameter α in Ref. [5] by

c = 2(1− α). (5)

This class of policies contains three special cases that
have been proposed to describe the growth of certain or-
ganisms. The first case, known as the timer policy, is the
policy with ∆ = 0,
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f(v) = c v, (6)

which results in the cells growing for a constant time
(see Eq. 9). However, as we show in Sec. IV, this policy
results in an inherently unstable population.

The second case, the threshold or critical size policy
[27], arises in the limit as c = 0,

f(v) = ∆. (7)

As the name implies, under this policy the cells divide
when they grow to a specific critical size ∆, eliminating
correlations between initial and final cell size and leading
to a narrow stable distribution. However, this lack of
correlation stands in contrast to experiment: studies in
both bacteria [28] and yeast [23] suggest that final size is
actually correlated with initial size.

The third case, known as the incremental policy [5, 6,
10, 22], sits between the threshold and timer policies,

f(v) = ∆ + v. (8)

A cell following this policy attempts to increase its birth
volume by a set amount ∆. The molecular mechanism
behind this policy is not fully understood [29]. This pol-
icy is also appropriate in the case of damage control, as
we show in the next section.

Now to carry out any given policy, the cell must grow
exponentially for a time tG(vn) related to f(vn) by

f(vn) = vn e
λtG(vn) =⇒ tG(vn) =

1

λ
log

(
f(vn)

vn

)
. (9)

In reality, the cells cannot grow for precisely this time and
so their actual fully-grown volume is affected by noise.
The exponential dependence of vGn on tG(vn) (Eq. 9)
then implies that errors in the growth time give rise to
multiplicative noise,

vGn = vn e
λ(tGn+tNn ) = f(vn) eλt

N
n , (10)

where tNn (superscript N for “noise”) is the growth timing
error. We can also allow for additive noise, vNn , in which
case our noisy growth model becomes

vGn = f(vn) eλt
N
n + vNn . (11)

We should also note that, depending on how careful we
are in choosing f(v) and the distributions for the noise
parameters, this model allows for cell volume to decrease;
however, given the low magnitude of noise we consider,
the probability for this scenario is small enough to be
negligible (see Table I and Fig. 2).

After the cell reaches its final volume vGn , we assume
it divides such that vDn+1 = r vMn+1, where the asymmetry
ratio 0 ≤ r ≤ 1 is always the same. Combining this as-
sumption with volume conservation (Eq. 3), we can write
the post-division mother and daughter volumes directly
in terms of the fully-grown cell volume:

vMn+1 =
1

1 + r
vGn , vDn+1 =

r

1 + r
vGn . (12)

Note that we can go from vMn+1 to vDn+1 by taking r →
1/r, so in what follows it suffices to give the results for
vMn+1, from which one can obtain the results for vDn+1

via this transformation. This symmetry under relabeling
mothers and daughters must hold for all our population-
level results.

A. Damage Control

We also consider how symmetrically-dividing cells can
control their levels of damaged proteins by dividing
these undesirable proteins asymmetrically between their
daughter cells. Assuming the damaged proteins are not
autocatalytic, we can describe the accrual of damaged
proteins in a cell, d, by a volume-dependent rate q (v(t)),
such that

d

dt
(d(t)) = q (v(t)) . (13)

Given that both the mechanisms that result in damaged
proteins (e.g. environmental radiation or pollution) and
the cell volume itself are stochastic, it follows that the
rate of damage is also stochastic. Nevertheless, Eq. 13
still implies that the amount of damaged proteins in a
cell at time t after birth is given by

d(t) = d0 + exp

[∫ t

0

dτ q (v(τ))

]
, (14)

where d0 refers to the initial amount of damage present at
birth. Thus it follows that the amount of damage an nth
generation cell has at the time of division (the same time
tG from Eq. 9) takes the same form as the incremental
policy (Eq. 8),

dGn = ∆ + dn + δ∆, (15)

where dn is the amount of damage an nth generation cell
has at birth, dGn is the final amount of damage, ∆ is the
average amount of damage added during the cycle,

∆ =

〈
exp

[∫ tG

0

dτ q (v(τ))

]〉
(16)
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and δ∆ is an additive (relative to the damage) noise term
summarizing the stochasticity of the damage rate about
the mean. Note that we have not yet made any assump-
tions as to the distribution for δ∆. Furthermore, since we
assume the cells divide their volume symmetrically, the
asymmetry ratio r and Eq. 12 (with v replaced with d)
now apply solely to the division of the damaged proteins.

III. DERIVING THE EVOLUTION RELATION
FOR THE CELL SIZE DISTRIBUTION

We begin our derivation of Eq. 1 by calculating the
distribution for vGn . Marginalizing over the birth volume
vn and the noise parameters tNn and vNn , we can write
PGn (v) as

PGn (v) =

∫
dv′Pn(v′)

∫∫
dtN dvN P

(
tN , vN

)
× P

(
vGn = v

∣∣vn = v′, tN , vN
)
, (17)

where the distribution P
(
tN , vN

)
describes the noise,

Pn(v′) describes the birth volume distribution for the
nth generation and P

(
vGn
∣∣vn, tNn , vNn ) enforces the con-

straints of our noisy growth model (Eq. 11),

P
(
vGn
∣∣vn, tN , vN) = δ

(
vGn −

(
f(vn) eλt

N

+ vN
))

.

(18)
We assume the noise is independent across generations
and independent of birth volume. Putting the above ex-
pression back into Eq. 17, we have

PGn (v) =

∫
dv′

[∫∫
dtN dvN δ

(
v −

(
f(v′) eλt

N

+ vN
))

P
(
tN , vN

)]
Pn (v′) . (19)

Now the simple scaling relation between vMn+1 and vGn (Eq. 12) allows us to obtain the distribution for vMn+1 by a
change of variables,

PMn+1 (v) = (1 + r)PGn [(1 + r) v] , (20)

which we can write out fully as

PMn+1 (v) = (1 + r)

∫
dv′

[∫∫
dtN dvN δ

(
(1 + r) v −

(
f(v′) eλt

N

+ vN
))

P
(
tN , vN

)]
Pn (v′) ,

=

∫
dv′

[∫∫
dtN dvN δ

(
v − 1

1 + r

(
f(v′) eλt

N

+ vN
))

P
(
tN , vN

)]
Pn (v′) .

(21)

Since there are always as many mother cells as daughter cells in a given generation, our cell volume distribution for
the next generation is given by:

Pn+1 (v) =
1

2

[
PMn+1 (v) + PDn+1 (v)

]
. (22)

Using our expression for PMn+1 (v) from Eq. 21 and then taking r → 1/r to get PDn+1 (v), we can rewrite Eq. 22 as a
recursive integral equation:

Pn+1 (v) =
1

2

∫
dv′
(∫∫

dtN dvN
[
δ

(
v − 1

1 + r

(
f(v′) eλt

N

+ vN
))

+δ

(
v − r

1 + r

(
f(v′) eλt

N

+ vN
))]

P
(
tN , vN

))
Pn (v′) . (23)

This suggests that we should define the integral kernel K(v, v′) as

K(v, v′) =
1

2

∫∫
dtN dvN

[
δ

(
v − 1

1 + r

(
f(v′) eλt

N

+ vN
))

+ δ

(
v − r

1 + r

(
f(v′) eλt

N

+ vN
))]

P
(
tN , vN

)
, (24)

which we can then use to write our evolution equation in the form of Eq. 1.



5

IV. ON THE EXISTENCE AND UNIQUENESS
OF THE STABLE DISTRIBUTION

Having completed our derivation of the evolution equa-
tion for the cell volume distribution (Eq. 1), we are
now in a position to study the properties of stable
distributions (should they exist) by taking Pn+1(v) =
Pn(v) = P (v), in which case our recursive integral equa-

tion turns into a homogeneous Fredholm integral equa-
tion of the second kind (Eq. 2). Evidently the stable
distributions P (v) are eigenfunctions of the linear oper-
ator

∫∞
0
dv′ K(v, v′) with eigenvalue 1. However, finding

analytic expressions for these eigenfunctions is difficult
in practice: even if we were to consider only additive
Gaussian noise, vN ∼ N (0, σv), the resulting form of the
kernel (Eq. 24),

K(v, v′) =
1 + r

2
√

2πrσv

r exp

−
(
v − 1

1+rf(v′)
)2

2 (σv/(1 + r))
2

+ exp

−
(
v − r

1+rf(v′)
)2

2 (r σv/(1 + r))
2


 , (25)

is complicated enough that an analytical solution is out of our reach. Though the fact that this kernel is the sum of
two Gaussians might suggest that the stable distribution is also a mixture of two Gaussians, this is not the case (see
Fig. 8). However, such a mixture is approximately valid for nearly-symmetric division. Our chances are no better
when we trade additive noise for Gaussian multiplicative noise, tN ∼ N (0, σt), in which case the kernel,

K(v, v′) =
1

2
√

2πλσt

1

v

exp

− 1

2λ2σ2
t

(
log

[
v

r
1+rf(v′)

])2
+ exp

− 1

2λ2σ2
t

(
log

[
v

1
1+rf(v′)

])2
 , (26)

becomes a mixture of log-normals instead of a mixture
of Gaussians. Again, the immediate ansatz (a mixture of
two log-normals) is not exactly a solution, but is approx-
imately correct for r ≈ 1 [5, 10].

Though casting the problem in terms of a homogeneous
Fredholm integral equation of the second kind does not
give us the ability to analytically construct stable distri-
butions, it does enable us to apply powerful mathemat-
ical machinery in addressing questions of existence and
uniqueness.

For example, we can use functional analysis to help
address the question of the existence of a stable distri-
bution. Given our formal expression for the kernel (Eq.
24) in terms of Dirac delta functions, it is apparent that

∫ ∞
0

dv K(v, v′) =

∫
dtN dvN P (tN , vN ) = 1. (27)

Hence the constant function q(v) = 1 is a left eigenfunc-
tion of our kernel with eigenvalue 1. Thus we know that
1 is an eigenvalue of the adjoint of the kernel, which im-
plies that it is also an eigenvalue of the kernel itself, and

so we know that our linear operator admits at least one
right eigenfunction with eigenvalue 1.

Now while it is true that Eq. 2 admits at least one
solution, it could be the case that none of these solu-
tions can actually be considered a probability distribu-
tion. There are two possible issues: first, there may not
be any non-negative eigenfunctions (i.e. eigenfunctions
q(v) such that q(v) ≥ 0 ∀ v) and second, should a non-
negative eigenfunction exist, it may not be normalizable
in the L1 sense. The issue of normalizability arises due
to the fact that the stable distribution P (v) is defined on
the infinite domain [0,∞); the problem vanishes in the
discrete case (finding the stable distribution for a Markov
chain).

The problem of normalizability does in fact occur un-
der the timer model (Eq. 6), under which the growth
time is independent of the initial cell size, tG = log(c)/λ
(Eq. 9), and there are no natural volume scales in the
system. Since every cell grows exponentially for a time
tG, we expect cell size to perform a geometric random
walk, falling off as 1/v (which is non-normalizable). We
can check this ansatz directly. First we note that the
kernel (Eq. 26) becomes

K(v, v′) =
1

2
√

2πλσt

1

v

(
exp

[
−
(
log[v′]− log

[
1+r
cr v

])2
2λ2σ2

t

]
+ exp

[
−
(
log[v′]− log

[
1+r
c v
])2

2λ2σ2
t

])
. (28)
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Multiplying this kernel by a factor of 1/v′, we can rewrite
the resulting expression as the sum of two log-normal
distributions in v′,

K(v, v′)
1

v′
=

1

2v

[
log Nv′

(
log

[
1 + r

cr
v

]
, λ2σ2

t

)
+ log Nv′

(
log

[
1 + r

c
v

]
, λ2σ2

t

)]
. (29)

If we then integrate over v′, the two lognormal distribu-
tions integrate to 1, leaving us with

∫ ∞
0

dv′ K(v, v′)
1

v′
=

1 + 1

2v
=

1

v
, (30)

and so the non-normalizable function 1/v′ is indeed a
right eigenfunction with eigenvalue 1. Moreover, since
the only parameter in the system with units of volume
is v itself, it follows from dimensional analysis that this
is the unique eigenfunction. Thus the timer model is
inherently unstable.

However, when a stable distribution does exist, our
mathematical machinery helps us show that it is unique.
Assuming there exists a finite (nonzero) number of prob-
ability distributions satisfying Eq. 2, the normalizability
(
∫
dv P (v) = 1) and positivity (P (v) > 0) of the distri-

butions imply that we can always choose a cutoff volume
V such that P (v > V) < ε for every distribution for any
ε > 0. Hence we can choose ε small enough to safely
discretize Eq. 2 (a process we describe in detail in App.
B). More explicitly, we convert our integral equation into
a finite-dimensional matrix equation,

pn+1 = K pn, (31)

where pn is a discrete probability vector and K ∈
R(N+1)×(N+1) is a discrete version of Eq. 24. As we
show in App. B, we can construct K such that it is a
non-negative, connected stochastic matrix. Thus it fol-
lows from the Perron-Frobenius theorem that 1 is the
largest eigenvalue of K and its corresponding eigenvec-
tor is unique and non-negative. Moreover, since 1 is the
largest eigenvalue of K, the system is guaranteed to con-
verge to a unique, stable distribution over successive gen-
erations.

While it may appear that a similar argument would
also prove the existence of the stable distribution, the
situation is more nuanced. In order for Eq. 31 to be a
good approximation of the continuous case, the proba-
bility for a cell to be in the overflow bin (v > V), i.e. the
last element of p, must decay to zero as V → ∞. How-
ever, this is not a priori guaranteed; indeed, for unstable
systems, the probability for being in the last bin remains
finite even as we increase V, whereas in stable systems
we do in fact see the overflow probability decay with V.
Thus by checking the cutoff dependence of the overflow

probability in the discretized problem, we can attempt to
numerically determine whether the continuous problem
(Eq. 2) admits a stable distribution, as we illustrate in
Fig. 9 for both stable and unstable systems.

Though the numerical method for addressing the ques-
tion of existence can be useful, we would prefer to for-
mally answer the question with functional analysis. Un-
fortunately, the infinite domain over which the distribu-
tion is defined complicates the standard approaches. We
instead provide an alternative avenue by which to ana-
lyze the stability of the system. Beginning in Sec. V, we
carry out a moment-based analysis that elucidates the
statistical properties of stable distributions. Then, mo-
tivated by the manner in which certain moments cease
to exist (Eq. 45), we seek self-consistent power-law-tailed
solutions to Eq. 2 and use the power of the tail to asymp-
totically determine when the solution is normalizable (see
Sec. VI). This asymptotic analysis, taken together with
the numerical approach, allows us to find conditions for
the existence of the stable distribution and argue for its
uniqueness, non-negativity and normalizability.

V. STATISTICAL PROPERTIES OF THE
STABLE DISTRIBUTION UNDER AFFINE

LINEAR GROWTH POLICIES

Here we assume a unique stable distribution exists and
we focus on elucidating its statistical properties, namely
its moments. Since the stable distribution is related to
the mother and daughter distributions by Eq. 22, we can
calculate the kth moment as

〈vk〉 =
1

2

∫ ∞
0

dv vk
(
PM (v) + PD(v)

)
,

=
1

2

(〈
(vM )k

〉
+
〈
(vD)k

〉)
,

(32)

where we can use Eq. 12 to write the moments
〈
(vM )k

〉
and

〈
(vD)k

〉
in terms of

〈
(vG)k

〉
,

〈
(vM )k

〉
=

1

(1 + r)k
〈
(vG)k

〉
,

〈
(vD)k

〉
=

rk

(1 + r)k
〈
(vG)k

〉
.

(33)

Using our noisy growth model (Eq. 11) to write
〈
(vG)k

〉
in terms of the birth volume v,

〈
(vG)k

〉
=

〈(
f(v) eλt

N

+ vN
)k〉

, (34)

we then obtain an equation for the kth moment of v which
itself depends on moments of v,

〈vk〉 =
1 + rk

2(1 + r)k

〈(
f(v) eλt

N

+ vN
)k〉

. (35)
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Setting k = 1 in Eq. 35, we find that the mean of the
stable distribution satisfies the following relation,

〈v〉 =
1

2

〈
f(v) eλt

N

+ vN
〉

=
1

2
〈f(v)〉

〈
eλt

N
〉

(36)

where we assume that the expected value of the addi-
tive noise is zero, 〈vN 〉 = 0, and that the birth volume
and multiplicative noise are independent. We have not
yet made any assumptions on the multiplicative noise;
however it is useful to note that, for Gaussian tN (i.e.
tN ∼ N (0, σt)),

〈
ekλt

N
〉

= e
1
2k

2λ2σ2
t . (37)

For the sake of generality, we continue using the more
general moments.

Now were it the case that 〈f(v)〉 = f(〈v〉), then Eq. 36
would furnish a possibly nonlinear consistency equation

which we could solve for 〈v〉. However, this is generally
not true: the exception being when f(v) is an affine linear
policy (Eq. 4). Assuming the cells follow such a policy,
Eq. 36 becomes an explicit equation for 〈v〉,

〈v〉 =
1

2
(∆ + c 〈v〉)

〈
eλt

N
〉
, (38)

implying that the mean of the stable distribution is

〈v〉 =
∆〈eλtN 〉

2− c〈eλtN 〉
. (39)

As for the variance of the stable volume distribution, we
need to know the second moment 〈v2〉, which we can
compute in a similar manner:

〈v2〉 =
∆2〈e2λtN 〉

2 (1+r)2

1+r2 − c2〈e2λtN 〉

( 〈
(vN )2

〉
∆2〈e2λtN 〉

+
2 + c〈eλtN 〉
2− c〈eλtN 〉

)
, (40)

which leads to the following expression for the variance:

σ2
v =

∆2〈e2λtN 〉
2 (1+r)2

1+r2 − c2〈e2λtN 〉

 〈
(vN )2

〉
∆2〈e2λtN 〉

+
4〈e2λtN 〉 − 2 (1+r)2

1+r2 〈e
λtN 〉2

(2− c〈eλtN 〉)2 〈e2λtN 〉

 . (41)

Our formulae for the mean and variance (Eqs. 39 and
41) agree well with simulations (Table I). We also employ
a Fredholm integral equation solver by K. Atkinson and
L. Shampine [30] to numerically solve Eq. 2 for the stable
distribution (using the multiplicative-noise kernel from
Eq. 26) and compare with direct cell growth simulations
in Fig. 2. The two methods agree well with each other
and offer different computational advantages: the Monte
Carlo approach is easier to implement than an integral
equation solver, but takes longer to converge to the stable
distribution than it takes to numerically solve the integral
equation.

These exact expressions for the mean and variance of
the stable distribution are not only experimentally use-
ful, but also of great theoretical interest. Cell volumes are
always positive and so all moments of the stable distri-
bution should also be positive. However, Eq. 39 implies
the first moment is only positive when

c <
2

〈eλtN 〉
= c(1)

max. (42)

Likewise, the second moment (Eq. 40) and variance (Eq.
41) are positive only when the more stringent condition

c <

√
2 (1 + r)√

(1 + r2)〈e2λtN 〉
= c(2)

max, (43)

is met. What then does it mean when the control coeffi-
cient c is large enough that our formal expressions predict
negative moments? This does not necessarily imply that
the stable distribution ceases to exist: rather, it shows
that the tail of the distribution becomes heavy enough
that these moments cease to exist. Probability distribu-
tions for which some or all moments do not exist (e.g. the
Cauchy distribution), despite being labeled, on occasion,
as pathological, are still valid probability distributions.

These moment constraints suggest that we might be
able to analyze the behavior of the tail of the stable dis-
tribution by understanding which of its moments do and
do not exist. This of course requires us to derive an ex-
pression for the kth moment, a calculation we leave for
App. C. Once again, since all the moments of the volume
distribution should be positive, it follows from Eq. C7
that the kth moment only exists if

2(1 + r)k >
(
1 + rk

)
ck
〈
ekλt

N
〉
, (44)
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Monte Carlo cell growth simulation

numerically-solved eigendistribution

Monte Carlo cell growth simulation

FIG. 2. (Color online) Stable cell volume distribution for an
affine linear model f(v) = ∆ + c v with control coefficient
c = 1 and asymmetry ratio r = 0.6 under two different mul-
tiplicative noise amplitudes: λσt = 0.1 (top) and λσt = 0.2
(bottom). The blue bars represent the results of a direct
simulation of asymmetric cell growth (see Table I for more
details). The stable solution can be bimodal, as is the case
for λσt = 0.1. The results of these simulations compare well
with the numerically-solved eigendistributions of our eigen-
value equation (2) which we obtained using a Fredholm inte-
gral equation solver by K. Atkinson and L. Shampine [30].

which implies that the kth moment of the stable distri-
bution exists only if the control coefficient c satisfies

c < (1 + r)

(
2

(1 + rk)
〈
ekλtN

〉) 1
k

= c(k)
max. (45)

Interestingly, the properties of the additive noise do
not appear to factor into this constraint at all. Never-
theless, Eq. 45 still holds when we have only additive
noise, as we explore in Sec. VIII. To be more concrete,
we consider the case of Gaussian multiplicative noise
tN ∼ N (0, σt) (and optional additive noise), in which
case this constraint becomes

c < (1 + r) e−
1
2kλ

2σ2
t

(
2

1 + rk

) 1
k

. (46)

Notice that, for σt 6= 0, the right hand side is a mono-
tonically decreasing function of k and as we take k →∞,
the constraint approaches c = 0, implying that if the

λσt = 0.2
r = 1.0
r = 0.6
r = 0.3
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FIG. 3. (Color online) Dependence of the coefficient of vari-
ation (CV) on the control coefficient c for three asymmetry
ratios r = {1.0, 0.6, 0.3} with multiplicative noise of ampli-
tude λσt = 0.2. We give the analytical expression for the
CV in Eq. 50. Note that the value of c at which the CV

diverges (which we denote by c
(2)
max in Eq. 43), decreases with

increasing asymmetry.

kth moment exists, so too do all the lower moments
(k − 1), (k − 2), . . . , 0. Furthermore, so long as multi-
plicative noise is present and c > 0, there will always
be an integer k∗ past which the moments cease to exist
(the case for solely additive noise is more nuanced, see
Sec. VIII). This suggests that the stable distribution has
a power law tail P (v) ∼ 1/v1+β with k∗ < β ≤ k∗ + 1,
which one can see more formally in Ref. [25]. Note that
this power-law tail is not captured by the methods used
in Refs. [5] and [14], in which the stable distribution is
approximated as log-normal in form.

We can also use the bounds on the control coefficient
to rewrite the first and second moments more compactly,

〈v〉 =
∆

c
(1)
max − c

,

〈v2〉 =
∆2

(c
(2)
max)2 − c2

(
c
(1)
max + c

c
(1)
max − c

)
.

(47)

These expressions also lead to a simple and elegant rela-
tion for the coefficient of variation (CV),

CV2 =
σ2
v

〈v〉2
=
〈v2〉 − 〈v〉2

〈v〉2
,

=
(c

(1)
max)2 − (c

(2)
max)2

(c
(2)
max)2 − c2

,

(48)
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FIG. 4. (Color online) Dependence of the power law exponent
β on the linear control coefficient c for asymmetry ratios r =
{1.0, 6.0, 3.0} and multiplicative noise amplitude λσt = 0.2.
These curves all satisfy our consistency equation (72). As
we increase λσt we also increase the spread (variance) of the
stable volume distribution and induce a heavier tail. In the
symmetric case, β = 0 at c = 2, indicating that the system
becomes unstable. Interestingly, for asymmetric division, β =
0 for c > 0, implying that asymmetry can actually act to
stabilize the system while at the same time bringing about a
heavier tail (see Fig. 6).

from which it is apparent that CV ∈ [CVmin,∞), where
the minimum value, CVmin, occurs at c = 0,

CV2
min =

(
c
(1)
max

c
(2)
max

)2

− 1. (49)

Thus we can write the CV as

CV = CVmin

(
1−

(
c

c
(2)
max

)2
)−1/2

. (50)

As expected, turning up the control coefficient also in-

creases the coefficient of variation. Of course as c→ c
(2)
max,

the CV diverges along with the second moment. We plot
the dependence of the CV on c and r for multiplicative
noise with λσt = 0.2 in Fig. 3.

VI. AN ASYMPTOTIC ANALYSIS OF THE
TAIL OF THE STABLE DISTRIBUTION

Our work in Sec. V suggests that the stable cell vol-
ume distribution under an affine linear policy possesses

a power-law tail. However, our previous analysis only
allows us to bound the power β of this tail between k∗

(the power of the highest extant moment) and k∗ + 1,
i.e. k∗ < β ≤ k∗ + 1. Here we carry out an asymptotic
analysis of the tail to extend our results to non-integer
powers and to study when and how an initial distribution
converges to a stable distribution. Our analysis also al-
lows us to study the stability properties of a larger class
of policies,

f(v) = ∆ + c∆
( v

∆

)α
, (51)

where we now allow for a nonlinear dependence on v con-
trolled by an exponent α. Note that (51) reduces to the
affine linear policy (4) when α = 1.

Our asymptotic analysis proceeds by considering how
an initial distribution with a power law tail evolves over
successive generations under Eq. 1. Thus we assume our
initial distribution P0(v) behaves as a power law with
exponent 1 + β when v � V0 for some cutoff volume V0,

P0(v) =
N
v1+β

for v � V0, (52)

where N is a normalization constant. The distribution
for the next generation, P1(v), is then given by Eq. 1,

P1(v) =

∫ ∞
0

dv′ K(v, v′)P0(v′). (53)

Since we only wish to specify the tail of P0(v), it will be
useful to split the integral in Eq. 53 into two parts,

P1(v) =

∫ V0

0

dv′ K(v, v′)P0(v′)

+

∫ ∞
V0

dv′ K(v, v′)
N

(v′)1+β
, (54)

where we have inserted the power law form of P0(v′) (Eq.
52) in the integral over v′ ∈ [V0,∞). In order for our
asymptotic analysis to work, we must both evaluate the
second term and show that the first term, for which we
do not know the exact form of P0(v′), falls off with v
faster than a power law tail.

In order to make progress, we assume that we have
Gaussian multiplicative noise and no additive noise, al-
lowing us to use the kernel from Eq. 26. For computa-
tional convenience, we split this kernel into two terms,

K(v, v′) =
1

2

(
K (v, v′; r) +K

(
v, v′;

1

r

))
, (55)

where we define the subkernel K(v, v′; r) by
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K(v, v′; r)

=
1√

2πλσt v
exp

[
− 1

2λ2σ2
t

(
log

[
(1 + r)v

rf(v′)

])2
]
. (56)

Let us now consider the first term in Eq. 54. The mean
value theorem implies there exists a v̂0 ∈ [0, V0] such that

∫ V0

0

dv′ K(v, v′)P0(v′) = K(v, v̂0)

∫ V0

0

dv′ P0(v′),

≤ K(v, v̂0),

(57)

where we use the normalization (
∫∞

0
dv′ P0(v′) = 1) and

positivity (P0(v′) ≥ 0 ∀ v′ ∈ [0,∞)) of the probabil-
ity distribution to bound this first term from above by
K(v, v̂0). Now since K(v, v̂0) is log-normal in v, it follows
that this term falls off with v no slower than

∫ V0

0

dv′ K(v, v′)P0(v′) ∼ O
(

1

v1+log v

)
. (58)

Since we only care about the tail of P1(v), we can al-
ways take v large enough to make this term fall off faster
than any fixed-power tail, and so we can safely ignore the
contribution of the first term in Eq. 54.

Turning our attention to the second term in Eq. 54,
we first split it into two pieces,

N
∫ ∞
V0

dv′
K(v, v′)

(v′)1+β
=
N
2

(
K(v; r) +K

(
v;

1

r

))
, (59)

where we define the integrated subkernel K(v; r) by

K(v; r) =

∫ ∞
V0

dv′ K(v, v′; r)
1

(v′)1+β
, (60)

and K(v; 1/r) is obtained by taking r → 1/r in K(v; r).
Unfortunately the form of our generalized growth policy
(Eq. 51) makes it rather difficult to perform these inte-
grals. However, since the integral runs over v′ ∈ [V0,∞)
and V0 � ∆, we can approximate our generalized growth
policy (Eq. 51) as

f(v′) ≈ c∆

(
v′

∆

)α
, (61)

and thereby approximate the subkernel K(v, v′; r) by

K(v, v′; r) ≈ 1√
2πλσt v

exp

[
− 1

2λ2σ2
t

(
log

[
c r

1 + r

∆

v

(
v′

∆

)α])2
]
. (62)

Thus the integrated subkernel has the form

K(v; r) ≈ 1

v

∫ ∞
V0

dv′√
2πλσt v′

1

(v′)β
exp

[
− 1

2λ2σ2
t

(
log

[
c r

1 + r

∆

v

(
v′

∆

)α])2
]
. (63)

We can evaluate this integral exactly by changing variables from v′ to x, defined as

x =
v′

∆

(
c r

1 + r

∆

v

) 1
α

, (64)

which allows us to write K(v; r) as

K(v; r) ≈ ∆β( 1
α−1)

α v1+ β
α

(
c r

1 + r

) β
α
∫ ∞
x0

dx x−β
(

α√
2πλσt x

exp

[
−α

2 log2 x

2λ2σ2
t

])
, (65)

where x0 is a function of v,

x0 =
V0

∆

(
c r

1 + r

∆

v

) 1
α

(66)

In the large v limit, i.e. v � V0, the lower limit of integration approaches zero. Thus this integral reduces to the
expectation value of x−β for a log-normal distribution with σ = λσt/α:∫ ∞

0

dx x−β
(

α√
2πλσt x

exp

[
−α

2 log2 x

2λ2σ2
t

])
= exp

[
β2λ2σ2

t

2α2

]
. (67)



11

Using this, we can write K(v; r) as

K(v; r) ≈ ∆β( 1
α−1)

α v1+ β
α

(
c r

1 + r

) β
α

exp

[
β2λ2σ2

t

2α2

]
, (68)

from which we can obtain K(v; 1/r) by taking r → 1/r.
Substituting K(v; r) and K(v; 1/r) into Eq. 59 then
yields, for v � V0,

P1(v) ≈ N c
β
α ∆β( 1

α−1)

α v1+ β
α

exp

[
β2λ2σ2

t

2α2

](
1 + r

β
α

2(1 + r)
β
α

)
(69)

Repeating this procedure again to produce the dis-
tribution for the next generation, P2(v), we find that

P2(v) ∼ 1/v1+β/α2

. That is, evolving a distribution with
a power law tail 1/v1+β results in a distribution with a
power law tail 1/v1+β/α. Then by a simple inductive ar-
gument, after evolving our initial distribution n times,
we are left with a distribution whose tail is given by

P0(v) ∼ 1

v1+β
→ · · · → Pn(v) ∼ 1

v1+β/αn
. (70)

This implies that, for 0 < α < 1, the power of the tail
gets higher and the tail itself gets lighter. Thus for such
policies, the stable distribution decays faster than any
power law tail. On the other hand, for α > 1, successive
iterations only bring the tail of the distribution closer to
1/v. Though the distribution will never reach the non-
normalizable distribution 1/v in finite time, it follows
that growth policies with supralinear growth asymptote
to 1/v.

When α = 1, the power of the tail does not change
from generation to generation. This suggests that the
stable distribution should indeed have a power law tail,
the only question is what the power of the tail should
be. Now if we make the ansatz that the initial power-law
distribution P0(v) is the actual tail of the stable distri-
bution, then Eq. 69 requires that

1

v1+β
=

cβ

v1+β

(
1 + rβ

2(1 + r)β

)
exp

[
β2λ2σ2

t

2

]
, (71)

which is a constraint equation for β:

c = (1 + r) exp

[
−1

2
βλ2σ2

t

](
2

1 + rβ

) 1
β

. (72)

This equation for β matches the constraint we found for
the existence of the kth moment (Eq. 45), only now
we have a constraint valid for real values of β instead
of just integer values, allowing us to plot the power law
exponent as a function of the control coefficient c and
multiplicative noise amplitude λσt (Fig. 4).
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FIG. 5. (Color online) The power-law tail for symmetric di-
vision (r = 1) under the policy f(v) = ∆ + v, i.e. c = 1, with
multiplicative noise amplitude λσt =

√
log 2. As indicated

in Eq. 75, this is the smallest noise amplitude for which the
variance ceases to exist. The solid blue line is the stable cell
volume distribution (obtained via the discretization of the in-
tegral equation discussed in App. B) and the dashed red line
represents the power law with exponent 1+β = 3 determined
by Eq. 74.

A. The Special Case of Symmetric Division

We can explicitly solve for β in the case of symmet-
ric division. Taking r = 1 in Eq. 72 yields a greatly
simplified expression:

c = 2 exp

[
−1

2
βλ2σ2

t

]
, (73)

which implies that β is

β =
2 (log 2− log c)

λ2σ2
t

. (74)

The power of the tail grows with both the multiplica-
tive noise amplitude (λσt) and the control coefficient c.
Hence for a typical case with c = 1 and λσt = 0.2, we
have β = 34.7, which implies that the stable distribution
is rather well behaved. But how much noise could a cell
with c = 1 tolerate before having an undefined variance?
In other words, how large can we take λσt while keeping
β ≥ 2? Solving Eq. 74 for λσt, we see that the bound on
the noise is fairly generous,

λσt ≤
√

log 2 ≈ 0.8. (75)
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FIG. 6. (Color online) Stability phase diagram for multiplica-
tive noise with amplitude λσt = 0.2. The labels 〈v〉 and 〈v2〉
represent the regions (defined by Eq. 45) in which the first
and second moments exist, respectively. Note that the stable
region includes the 〈v〉 region, which includes the 〈v2〉 region,
and so on. The overall region of stability is described by the
area under the curve given in Eq. 76 and is independent of
the noise amplitude; however, the regions in which the various
moments of the stable distribution exist do depend (weakly)
on the noise. That increasing asymmetry (i.e. r → 0) allows
for larger values of the control coefficient c is a consequence of
the fact that, though the smaller cells produced in asymmet-
ric division eventually grow large, they produce many more
smaller cells as they grow. Thus the large number of small-
volume cells compensated for the relatively small number of
large cells.

We show in Fig. 5 that the tail of the stable distribution
at this multiplicative noise level does indeed have β = 2.

VII. STABILITY PHASE DIAGRAM

The power-law constraint from Eq. 72 allows us to
make a prediction about stability. In the limit as β → 0,
the tail of the stable cell volume distribution will edge
closer and closer to 1/v, at which point the integral of the
distribution will diverge logarithmically. Thus if the sys-
tem is operating under conditions such that β < 0, then
the cell volume distribution will not converge to a stable
distribution but instead asymptote to a non-normalizable
function. We can then understand the stability of the
system by taking the limit as β → 0 in Eq. 72, which im-
plies that, for a fixed asymmetry ratio, the largest stable

control coefficient (c
(0)
max) is given by

c(0)
max =

1 + r√
r
. (76)

Remarkably, this stability bound is only a function of the
asymmetry ratio and not dependent on the amplitude of
the noise. Moreover, though it may not appear to be
true at first glance, Eq. 76 is indeed invariant under
the transformation r → 1/r (i.e. changing the arbitrary
“mother” and “daughter” labels), as all our population-
level results must be. We should note, however, that
this is only true when ∆ 6= 0 (as we show in Sec. IV,
there is no stable distribution when ∆ = 0). We combine
this stability bound with our constraints for the moments
(Eq. 45) to produce a stability phase diagram in Fig. 6
for multiplicative noise of amplitude λσt = 0.2.

It is rather interesting that increasing asymmetry (r
approaching 0) increases stability (i.e. the range of stable
values of c). To gain some intuition as to why this occurs,
we consider how a single cell (with r very close to zero)
grows into a stable population. Every generation, our
original cell will get larger and larger, and so as time goes
on this cell will grow to infinity. This is the mechanism
by which the heavy tail arises. However, every generation
it will spawn a very tiny cell (since r is so small) that will
also begin to grow larger and larger. But as these tiny
cells grow, they spawn even tinier cells, and so at any
given time, there exist many cells of small volume even
though the older cells continue to swell in size.

Now since P (v) represents the volume distribution for
this population, the relatively large number of small cells
counteracts the effects of the relatively few large cells.
The larger the asymmetry, the larger this disparity (and
control coefficient c) can be while still maintaining a sta-
ble situation.

VIII. ADDITIVE MODELS AND DAMAGE
CONTROL

In the case of additive models (i.e. models with no
multiplicative noise), the results of Sec. V still hold with
all of the expectations over multiplicative noise set to

unity, 〈ekλtN 〉 → 1. The stability constraint from Eq.
76 is also intact, though the behavior of the tail is quite
different. Without multiplicative noise, the bounds on

the control coefficient, c
(k)
max,

c < (1 + r)

(
2

1 + rk

) 1
k

= c(k)
max. (77)

do not tend to zero as k →∞. Instead we find that there
exists a bound c

(∞)
max,

c(∞)
max =

{
1 + r if 0 ≤ r ≤ 1,

1 + 1
r if r ≥ 1,

(78)
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FIG. 7. (Color online) Stability phase diagram for systems
with no multiplicative noise and additive noise of any ampli-
tude. Unlike the case of multiplicative noise (cf. Fig. 6), the
bounds on the moments do not depend on the noise ampli-
tude, but only on the asymmetry ratio (Eq. 77). In addition,
as we indicate in Eq. 78, under additive models there is a re-
gion c ≤ 1 + r in which all moments of the stable distribution
exist.

such that if c < c
(∞)
max, then all moments of the stable

distribution exist. Note that c
(∞)
max is indeed still invariant

under r → 1/r. Furthermore, since c
(∞)
max is always at least

1, when c ≤ 1 it follows that all moments exist for any
choice of r. Thus it appears that additive models with
c ≤ 1 are not heavy-tailed. We display this interesting
behavior more visually in Fig. 7.

It is also useful to pay special attention to the damage
model (Eq. 15) in which the control coefficient c is set to
1. In this case, the mean damage at birth 〈d〉 is simply
the mean damage accrued per growth cycle,

〈d〉 = ∆, (79)

and the variance of the damage simplifies to

σ2
d =

σ2
∆(1 + r2) + 2∆2(1− r)2

1 + r(4 + r)
, (80)

where ∆ is the average amount of damage incurred per
cycle and σ2

∆ is the variance about this average. This
agrees with Eq. 17 in the supplementary material of Ref.
[5] for r = 1 (note the different noise convention). The
variance in the damage at birth, σ2

d, increases with in-
creasing asymmetry, but in a very nontrivial way. As the
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FIG. 8. (Color online) Stable damage distributions (top) and
the corresponding cumulative distributions (bottom) for var-
ious asymmetry ratios with additive noise amplitude σ∆ =
0.2. In cases where the cells’ damage tolerance threshold is
below the mean damage incurred during growth (∆), the cells
can increase the probability for their progeny to be under the
threshold by dividing the damage asymmetrically. Though it
may appear that the cumulative distributions meet at proba-
bility 1/2, they do not: the mean is the same for all values of
r (see Eq. 79) but in general the median is not. We numeri-
cally solved for these distributions using a Fredholm Integral
Equation Solver by K. Atkinson and L. Shampine [30].

asymmetry increases, the stable distribution first moves
from unimodal to bimodal, and then as r approaches 0,
more and more peaks emerge (see Fig. 8).

There is, however, a potential benefit to this increas-
ing spread. For example, say the cells can only tolerate
an amount of damage d∗ < ∆. Then the fraction of
the population with d < d∗ (which can be seen in the
plots of the cumulative distribution in Fig. 8) is actu-
ally greater for greater asymmetry (smaller r). Naively,
the best thing to do is to put all of the damage into one
daughter cell, but this likely requires a complex mecha-
nism. Thus an optimization problem arises: given some
metric of the difficulty of effecting a certain amount of
asymmetry, one can ask for the optimal asymmetry level
r∗ that maximizes the fraction of the population with
damage levels d < d∗. Of course we should note that
none of our modeling takes into account cell death or the
effects of damage on cell growth, and so this argument is
merely heuristic.
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IX. CONCLUSION

By treating the abstract mathematical problem of
stochastic division, we are able to eschew the delicate and
complicated matter of the actual biological implementa-
tion while broadening the scope of our results. From an
experimental perspective, the value of our analysis rests
in our explicit formulae for the readily-measurable mo-
ments of the stable distribution and the corresponding
stability phase diagram. Our analysis also provides in-
triguing characterizations of the existence and uniqueness
of the stable distribution and its power-law tail.
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Appendix A: Equivalence of the generation-based
and time-based stable cell birth volume distributions

Though it is analytically convenient to work with a
generation-based analysis, in practice it is useful to con-
sider the distribution for the birth size of cells present at
a given time. Here we show that, in the long-time limit,
the stable birth volume distribution for a given genera-
tion of cells is also the stable birth volume distribution
for cells present at time t. To see this, we write our dis-
tribution for the birth volume of a cell present at time
t, Pt(v), in terms of the birth volume distribution for a
given generation, Pn(v),

Pt(v) =

∞∑
n=0

Pn(v)P (n|t). (A1)

where P (n|t) is probability for the cell to belong to the
nth generation at time t. For long times t � λ−1, it
will be very unlikely that our chosen cell is from an early
generation, so P (n|t) will be concentrated around high
generation numbers. Then since we know that Pn(v) →
P (v) for large n, it follows that we can approximate the
sum by

Pt(v) ≈ P (v)

∞∑
n=0

P (n|t) = P (v), (A2)

which, in the limit as t→∞, should give us the desired
correspondence between the stable birth volume distri-
bution for a given generation and at a given time,

lim
t→∞

Pt(v) = P (v). (A3)

Appendix B: Discretization and consistency

Here we discuss the process of discretizing Eq. 2 to
produce the finite-dimensional matrix equation of Eq. 31.
Instead of considering the probability density Pn(v) on
the half-line, we define a volume cutoff V and divide the
interval [0,V] into a set of N volume bins, allowing us
to define a probability vector pn whose first N elements
represent the probability that a cell has a volume in a
given bin during generation n and whose last element
represents the probability for a cell in generation n to
have a volume v ≥ V. We can construct the elements of
the matrix K (excluding the final row and final column)
by taking integrals over the kernel (Eq. 24),

Kij =
N

V

∫ i V
N

(i−1) V
N

dv

∫ j V
N

(j−1) V
N

dv′ K(v, v′). (B1)

Owing to the different range of integration for the over-
flow bin, the matrix elements for the final row are slightly
different, but still based on our continuous kernel,
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FIG. 9. (Color online) Probability for a cell to be in the
overflow bin as a function of cutoff volume for an affine linear
policy f(v) = ∆+c v with asymmetry ratio r = 0.6 under the
discretization choice (Eq. B3). All volumes are measured in
units of ∆ and the volume bins have a width of ∆×10−3. Note
that the y-axis is logarithmic. The probabilities correspond
to the final element of the eigenvector of K with eigenvalue
1. For c = 0.5, 1.0 and 1.5, the overflow probability falls off
exponentially with the cutoff volume V/∆ until the overflow
probability becomes small enough to be sensitive to numerical
errors. The policy with c = 2.2 operates in an unstable regime
(see Fig. 6) and the overflow probability falls off extremely
slowly with the cutoff, reflecting the non-normalizability of
the unstable distribution. This suggests that our choice in
discretizing Eq. 2 is consistent.

K(N+1), j =
N

V

∫ ∞
V

dv

∫ j V
N

(j−1) V
N

dv′ K(v, v′). (B2)

This ensures that the first N columns of K sum to 1,
which is necessary for K to be a stochastic matrix.

As for the final column, Ki,(N+1) is the probability for
a cell in the overflow bin to end up in the ith bin during
the next generation. However, simply knowing that a
cell is in the overflow bin does not give much information
about its actual volume: we no longer have the option of
assuming the cell is equally likely to be anywhere in the
bin since the bin [V,∞) has infinite size. Thus it appears
that there is some ambiguity in discretizing Eq. 2.

Fortunately, the ambiguity in choosing Ki,(N+1) is ir-
relevant when Eq. 2 admits a stable distribution. As
we note in Sec. IV, the existence of a stable distribu-
tion implies that we can always make the probability for
being in the overflow bin arbitrarily small by choosing
a large enough cutoff V. Since the Ki,(N+1) will always
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be multiplied by this infinitesimal probability, our choice
should not matter so long as we ensure that K is still
a non-negative, connected stochastic matrix so that the
Perron-Frobenius theorem is still applicable.

On the other hand, if the system is unstable, the over-
flow probability will not decay to zero for any choice of
Ki,(N+1). If it were to decay, then we could construct a
stable distribution by smoothing the discrete solution, in
direct contradiction to our assumption of stability. Thus
a system is stable if and only if the overflow probability in
its discrete analogue decays to zero with the cutoff. This
is true for any choice of Ki,(N+1) that preserves the non-
negativity, connectedness and stochasticity of K, though
the choice may affect the speed and accuracy with which
Eq. 31 can be solved.

Fig. 9 illustrates this method for a particularly simple
choice of Ki,(N+1),

Ki,(N+1) =
1

N + 1
. (B3)

Appendix C: Calculation of the kth moment of the
stable volume distribution

Here we calculate the kth moment of the stable cell
volume distribution under the affine linear policy of Eq.
4. Under such a policy, Eq. 35 becomes

〈
vk
〉

=
1 + rk

2(1 + r)k

〈(
(∆ + c v) eλt

N

+ vN
)k〉

. (C1)

We then use the Binomial theorem to expand the term
inside the expectation operator,

(
(∆ + c v) eλt

N

+ vN
)k

=

k∑
j=0

(
k

j

)
(vN )k−j ejλt

N

(∆ + c v)j , (C2)

and then similarly for the factor of (∆ + c v)j ,

(∆ + c v)j = ∆j

j∑
l=0

(
j

l

)(c v
∆

)l
, (C3)

which then results in the following expansion for 〈vk〉,

〈
vk
〉

=
∆k(1 + rk)

2(1 + r)k

k∑
j=0

j∑
l=0

(
k

j

)(
j

l

)〈(
vN

∆

)k−j〉〈
ejλt

N
〉〈(c v

∆

)l〉
. (C4)

To solve this expression for 〈vk〉, we have to move all the 〈vk〉 terms to the left hand side. First we re-index the sum,

〈
vk
〉

=
∆k(1 + rk)

2(1 + r)k

k∑
l=0

〈(c v
∆

)l〉 k∑
j=l

(
k

j

)(
j

l

)〈(
vN

∆

)k−j〉〈
ejλt

N
〉
, (C5)

so that we can now extract the term depending on the kth moment,

〈
vk
〉

=
∆k(1 + rk)

2(1 + r)k

 ck

∆k

〈
ekλt

N
〉 〈
vk
〉

+

k−1∑
l=0

〈(c v
∆

)l〉 k∑
j=l

(
k

j

)(
j

l

)〈(
vN

∆

)k−j〉〈
ejλt

N
〉 . (C6)

Then we can explicitly solve for 〈vk〉,

〈
vk
〉

=
∆k(1 + rk)

2(1 + r)k − (1 + rk) ck
〈
ekλtN

〉 k−1∑
l=0

〈(c v
∆

)l〉 k∑
j=l

(
k

j

)(
j

l

)〈(
vN

∆

)k−j〉〈
ejλt

N
〉
. (C7)

Starting from the explicit formula for the mean (Eq. 39), this equation is sufficient to recursively generate as many
moments of the stable distribution as we wish.
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TABLE I. Comparison of predicted and simulated moments
of the stable cell volume distribution for affine linear growth
policies (Eq. 4) under a range of asymmetry ratios (r), control
coefficients (c) and multiplicative noise strengths (λσt). The
values reported for the normalized mean 〈v/∆〉 and variance
σ2
v/∆

2 are the theoretical values obtained from Eqs. 39 and
41. We compare each of these values to cell growth simula-
tions (N = 104) in which the initial set of cells were allowed
to grow for 10 generations, after which 500 cells would be ran-
domly chosen to serve as seeds for another cycle of growth.
We repeated this cycling procedure 9 times to make for 10 full
cycles of growth. We also prevented cells from shrinking by
forcing cells that would have shrunk to not change volume at
all. Nonetheless, the relative error in both the mean (∼ 10−4)
and variance (∼ 10−3) is small.

r c λσt 〈v〉 /∆ RelErr [〈v〉] σ2
v/∆

2 RelErr
[
σ2
v

]
0.6 0.5 0.1 0.67 2.12× 10−4 0.035 7.51× 10−4

0.6 0.5 0.2 0.68 8.88× 10−4 0.053 1.94× 10−3

0.6 1.0 0.1 1.01 2.83× 10−4 0.102 1.17× 10−3

0.6 1.0 0.2 1.04 6.62× 10−4 0.161 2.60× 10−3

0.6 1.5 0.1 2.04 1.31× 10−3 0.781 5.67× 10−3

0.6 1.5 0.2 2.17 2.54× 10−3 1.417 1.29× 10−2

1.0 0.5 0.1 0.67 2.13× 10−4 0.0048 2.93× 10−3

1.0 0.5 0.2 0.68 4.73× 10−4 0.0205 3.80× 10−3

1.0 1.0 0.1 1.01 2.81× 10−4 0.0138 3.12× 10−3

1.0 1.0 0.2 1.04 5.87× 10−4 0.0607 3.84× 10−3

1.0 1.5 0.1 2.04 9.62× 10−4 0.0982 5.34× 10−3

1.0 1.5 0.2 2.17 2.23× 10−3 0.493 1.03× 10−2

Appendix D: Simulating asymmetric cell division

We performed a Monte Carlo simulation of asymmetric
cell division to compare with our analytical results from
Sec. V. These simulations consisted of repeated rounds
of stochastic growth and division with fixed asymmetry
ratio r. We also prevented cells from shrinking during
the growing phase (which is possible, though rare, due
to noise). Table I shows the close numerical agreement
between the simulations and our predictions for the mean
and variance from Eqs. 39 and 41.
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FIG. 10. (Color online) The effects of a stochastic division
fraction on the coefficient of variation (CV) of the stable cell
volume distribution under the policy f(v) = ∆ + c v. Note
that for a fixed mean division fraction 〈s〉, the correspond-
ing variance σs must be bounded above as shown in Eq. E9.
The black line indicates the value of the CV for the maximum
possible σs for given 〈s〉. Note that the CV at σs = 0 corre-
sponds to the CV for a system with fixed division fraction (or
asymmetry ratio).

Appendix E: The effects of stochasticity in the
asymmetry ratio

If we allow for a stochastic asymmetry ratio, the pri-
mary difference in our development in Sec. V is that Eq.
35 now involves expectations of functions of r,

〈vk〉 =
1

2

(〈
rk

(1 + r)k

〉
+

〈
1

(1 + r)k

〉)
×
〈(

f(v) eλt
N

+ vN
)k〉

. (E1)

However, it is generally inconvenient to compute mo-
ments with 1 + r in the denominator. Instead, we first
define the division fraction s = 1/(1 + r) such that

vM = s vG, vD = (1− s) vG, (E2)

which allows us to write Eq. E1 as

〈vk〉 =
1

2

(〈
sk
〉

+
〈
(1− s)k

〉)
×
〈(

f(v) eλt
N

+ vN
)k〉

. (E3)
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For affine linear policies, we can use this to explicitly
obtain the mean and variance. Since 〈s〉 + 〈1 − s〉 = 1,
the expression for the mean is the same as in Eq. 39;

however, the expression for the variance does change,

σ2
v =

∆2〈e2λtN 〉
2

〈s2〉+〈(1−s)2〉 − c2〈e2λtN 〉

 〈
(vN )2

〉
∆2〈e2λtN 〉

+
4〈e2λtN 〉 − 2〈eλt

N
〉2

〈s2〉+〈(1−s)2〉

(2− c〈eλtN 〉)2 〈e2λtN 〉

 . (E4)

We can also provide an expression for the kth moment (analogous to Eq. C7),

〈
vk
〉

=
∆k

2
〈sk〉+〈(1−s)k〉 − ck

〈
ekλtN

〉 k−1∑
l=0

〈(c v
∆

)l〉 k∑
j=l

(
k

j

)(
j

l

)〈(
vN

∆

)k−j〉〈
ejλt

N
〉
, (E5)

from which we derive a necessary constraint on the con-
trol coefficient for the existence of the kth moment (i.e.
the analogue of Eq. 45),

c <

(
2

(〈sk〉+ 〈(1− s)k〉)
〈
ekλtN

〉) 1
k

. (E6)

Now in order to proceed, we must specify the distribu-
tion for s. Given that s ∈ [0, 1], it is not quite appropri-
ate to use a Gaussian. Thus we instead assume a beta
distribution,

P (s) =
sα−1(1− s)β−1

B[α, β]
, (E7)

where the parameters α, β ≥ 1 are related to the mean s̄
and variance σ2

s by

α = s̄

(
s̄(1− s̄)
σ2
s

− 1

)
,

β = (1− s̄)
(
s̄(1− s̄)
σ2
s

− 1

)
.

(E8)

Note that we are not free to choose the mean and vari-
ance arbitrarily. If we fix the mean s̄ ∈ [0, 1], then the
standard deviation is bounded below by 0 and above by

σs ≤

s̄
√

1−s̄
1+s̄ for 0 ≤ s̄ ≤ 1

2 ,

(1− s̄)
√

s̄
2−s̄ for 1

2 ≤ s̄ ≤ 1.
(E9)

Nevertheless, by taking α and β large with s̄ fixed, the
beta distribution will begin to resemble a highly-peaked
Gaussian. Moreover, for our purposes the beta distribu-
tion is convenient as it allows us to explicitly calculate
the relevant moments,

〈sk〉 =
B[α+ k, β]

B[α, β]
, 〈(1− s)k〉 =

B[α, β + k]

B[α, β]
. (E10)

We use these expressions in Eq. E4 to plot (in Fig. 10)
the coefficient of variation (CV = σv/〈v〉) for the stable
volume distribution for different average division frac-
tions, 〈s〉 = s̄, and variances, σ2

s .
We can also use these explicit moments to write our

constraint on the control coefficient (Eq. E6) as

c <

(
2 B[α, β]

(B[α+ k, β] + B[α, β + k]〉)
〈
ekλtN

〉) 1
k

. (E11)

Assuming the above expression holds for arbitrary k, we
can take the limit as k → 0 to obtain the stability curve
just as we did in Eq. 76. However, in this case the
stability curve is significantly more complicated,

c(0)
max = exp

[
ψ(α+ β)− 1

2
(ψ(α) + ψ(β))

]
, (E12)

where ψ(·) is the digamma function. In general this
stochasticity tightens the control coefficient constraints;
however, the effect is negligible for the lower moments.

Appendix F: Investigating a
mother/daughter-dependent model

In the main text we assume that the distinction be-
tween mothers and daughters is only a matter of which
cell is born larger; however, the differences may run
deeper. It is believed [23, 31–35] that newly-born daugh-
ter cells employ a different growth policy than do experi-
enced mother cells. Here, we account for this by allowing
for two different growth policies, fM (v) and fD(v), for
mother and daughter cells, respectively. Now if we know
the birth size distributions for the mother and daughter
cells for generation n, PMn (v) and PDn (v), what are our
birth size distributions for mothers and daughters in the
next generation, PMn+1(v) and PDn+1(v)?

If we pick one cell from the population of the (n+1)th
generation, it has four possible lineages. If its mother was
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experienced (i.e., not a first-time mother), then it could
either be the resulting mother cell (M → M) or the re-
sulting daughter cell (M → D). On the other hand, if its
mother was a first-time mother, then it can either be the

now-experienced mother cell (D → M) or the daughter
cell (D → D). We can then write the distributions for
mother and daughter cell size as

PMn+1 (v) = P
(
vMn+1 = v

∣∣M →M
)
P (M →M) + P

(
vMn+1 = v

∣∣D →M
)
P (D →M) ,

PDn+1 (v) = P
(
vDn+1 = v

∣∣M → D
)
P (M → D ) + P

(
vDn+1 = v

∣∣D → D
)
P (D → D ) .

(F1)

Since at any given time there are an equal number of mothers and daughters, we have

PMn+1 (v) =
1

2

[
P
(
vMn+1 = v

∣∣M →M
)

+ P
(
vMn+1 = v

∣∣D →M
)]
,

PDn+1 (v) =
1

2

[
P
(
vDn+1 = v

∣∣M → D
)

+ P
(
vDn+1 = v

∣∣D → D
)]
.

(F2)

Then following Eq. 21, we can write the distributions for vMn+1 in terms of the growth policies fM (v) and fD(v),

P
(
vMn+1 = v

∣∣M →M
)

=

∫
dv′

[∫∫
dtN dvN δ

(
v − 1

1 + r

(
fM (v′) eλt

N

+ vN
))

P
(
tN , vN

)]
PMn (v′) ,

P
(
vMn+1 = v

∣∣D →M
)

=

∫
dv′

[∫∫
dtN dvN δ

(
v − 1

1 + r

(
fD(v′) eλt

N

+ vN
))

P
(
tN , vN

)]
PDn (v′) ,

(F3)

and then also for vDn+1,

PDn+1

(
vDn+1 = v

∣∣M → D
)

=

∫
dv′

[∫∫
dtN dvN δ

(
v − r

1 + r

(
fM (v′) eλt

N

+ vN
))

P
(
tN , vN

)]
PMn (v) ,

PDn+1

(
vDn+1 = v

∣∣D → D
)

=

∫
dv′

[∫∫
dtN dvN δ

(
v − r

1 + r

(
fD(v′) eλt

N

+ vN
))

P
(
tN , vN

)]
PDn (v′) .

(F4)

It is again convenient to define two sub-kernels, much as we do in Eq. 62,

KM (v, v′; r) =

∫∫
dtN dvN δ

(
v − 1

1 + r

(
fM (v′) eλt

N

+ vN
))

P
(
tN , vN

)
,

KD(v, v′; r) =

∫∫
dtN dvN δ

(
v − r

1 + r

(
fD(v′) eλt

N

+ vN
))

P
(
tN , vN

)
,

(F5)

with which we may rewrite Eq. F2 in integral form,

PMn+1 (v) =
1

2

∫
dv′ KM (v, v′; r)PMn (v′) +

1

2

∫
dv′ KD

(
v, v′;

1

r

)
PDn (v′) ,

PDn+1 (v) =
1

2

∫
dv′ KM

(
v, v′;

1

r

)
PMn (v′) +

1

2

∫
dv′ KD (v, v′; r)PDn (v′) .

(F6)

Since we are looking for stable distributions, we can remove the generation dependence and rewrite the above set
of equations as

PM (v) =
1

2

∫
dv′
[
KM (v, v′; r)PM (v′) +KD

(
v, v′;

1

r

)
PD (v′)

]
,

PD (v) =
1

2

∫
dv′
[
KM

(
v, v′;

1

r

)
PM (v′) +KD (v, v′; r)PD (v′)

]
.

(F7)

Instead of a single homogeneous Fredholm integral equation of the second kind as in Eq. 2, we now have a system
of homogenous Fredholm integral equations of the second kind. Though these relations for mother and daughter
distributions are entangled, we can decouple them. Since the asymmetry ratio r = vD/vM is fixed, it follows that
PM (v/r) = r PD(v). Thus we can write the integral over PD(v′) in the equation above for PM (v) as
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r
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(
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1

r

)(
1

r
PM

(
v′

r

))
=

∫
dv′ KD

(
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1

r

)
PM (v′) , (F8)

which allows us to write a single Fredholm integral equation of the second kind for PM (v),

PM (v) =

∫
dv′ KM (v, v′)PM (v′) , (F9)

where we are now able to define the mother kernel KM (v, v′) as

KM (v, v′) =
1

2

(
KM (v, v′; r) +KD

(
v, rv′;

1

r

))
. (F10)

Then to calculate PD(v), we merely have to use the relation PD(v) = PM (v/r)/r.
Now that we have a necessary condition for a stable solution (Eq. F9), we can use it to calculate the kth moment,

〈(
vM
)k〉

=
1

2

(
1

1 + r

)k [〈(
fM (vM )eλt

N

+ vN
)k〉

+

〈(
fD(vM )eλt

N

+ vN
)k〉]

. (F11)

Once again, to obtain the kth moment for vD, we only need to note that
〈(
vD
)k〉

= rk
〈(
vM
)k〉

. For concreteness,

we again assume that both mothers and daughters follow affine linear growth policies,

fM (v) = ∆M + cM v,

fD(v) = ∆D + cD v.
(F12)

where the control coefficients (cM and cD) and additive volumes (∆M and ∆D) are generally different. We can then
obtain an explicit expression for the first moment:

〈
vM
〉

=

(
∆M + ∆D

) 〈
eλt

N
〉

2(1 + r)− (cM + rcD)
〈
eλtN

〉 , (F13)

which is positive only if

2(1 + r) > (cM + rcD)
〈
eλt

N
〉
. (F14)

Note that, in our original model, if we were to use a purely linear policy (∆ = 0), then the corresponding mean
(Eq. 39) would no longer exist (recall that the only eigenfunction in this case, 1/v, is non-normalizable). However,
by allowing mothers and daughters to follow separate policies, one of the additive volumes (∆M ,∆D) can be zero
without invalidating the mean (see Eq. F13).

It is also useful to have an expression for the second moment:

〈(
vM
)2〉

=

(
∆M

)2
+
(
∆D
)2

+
(
∆McM + r∆DcD

) 〈
vM
〉

2(1 + r)2 − ((cM )
2

+ r2 (cD)
2
)
〈
e2λtN

〉 〈
e2λtN

〉
, (F15)

the existence of which imposes a stronger constraint on
the control coefficients cM and cD,

2(1 + r)2 >
((
cM
)2

+ r2
(
cD
)2)〈

e2λtN
〉
. (F16)

We can also consider the constraints for higher mo-
ments. While the actual expression for the kth moment
is complicated (though similar to Eq. C7), the constraint
implied by the kth moment is much simpler,

2(1 + r)k >
((
cM
)k

+ rk
(
cD
)k)〈

ekλt
N
〉
. (F17)

Assuming this expression is valid for non-integer k, we
can take the limit as k → 0 to determine for which values
of cM and cD the system will be stable, just as we do
in deriving Eq. 76. However in this case we need to
perform a few more manipulations. Assuming Gaussian
multiplicative noise, we write Eq. F17 as
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FIG. 11. (Color online) Stability phase diagrams for two
different asymmetry ratios. The stability phase boundary
is given by Eq. F20. We also use our moment constraint
equation (Eq. F17) to indicate the regions in which the first
moment (〈v〉) and second moment (〈v2〉) exist. Note that the
〈v2〉 region is a subset of the 〈v〉 region which is itself a subset
of the stable region. The boundaries never intersect, though
they do at some points come quite close. In both cases the
noise amplitude is λσt = 0.1. We also assume that at least
one of the additive constants ∆M and ∆D is nonzero. (a) The
symmetric case (r = 1). Note the mirror symmetry across the
line cM = cD. (b) An asymmetric case (r = 0.6). The re-
gions in which the various moments exist are skewed towards
the cD axis due to the fact that daughter cells can afford to
have a higher control coefficient than mother cells due to their
smaller size at birth.

cM < (1 + r) exp

[
−1

2
kλ2σ2

t

] 2

1 +
(
r c

D

cM

)k


1
k

. (F18)

In this form, we can take the limit as k → 0 just as we do
in Sec. VI, only this time instead of an absolute bound
on the control coefficients, we obtain an equation for a
phase boundary:

cM =
1 + r√
r c

D

cM

, (F19)

which we can write more conveniently as

cM =
(1 + r)2

r cD
. (F20)

Note that when cM = cD, this reduces to our result from
Eq. 76.

As is the case for a single-policy system, the overall
stability depends only on the asymmetry ratio, not the
noise amplitude. Of course stability does not require the
existence of the mean or variance, and so a stable dis-
tribution is not necessarily a biologically well-behaved
distribution. In Fig. 11, we construct a phase diagram
showing the stable region for cM and cD as well as the
region in which the mean exists and the region in which
the variance exists for two different values of r. Note that
these regions are concentrated along the cD axis in the
asymmetric case, reflecting the fact that daughter cells
can afford a larger control coefficient due to their smaller
size at birth.
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H. Salman, and D. L. Stein, Phys. Rev. E 92, 042713
(2015).

[15] P.-Y. Ho and A. Amir, Frontiers in microbiology 6 (2015),
10.3389/fmicb.2015.00662.

[16] A. Marr, P. Painter, and E. Nilson, in Symp. Soc. Gen.
Microbiol, Vol. 19 (1969) pp. 237–261.

[17] J. Männik, F. Wu, F. J. Hol, P. Bisicchia, D. J. Sher-
ratt, J. E. Keymer, and C. Dekker, Proceedings of the
National Academy of Sciences 109, 6957 (2012).

[18] L. Robert, M. Hoffmann, N. Krell, S. Aymerich,
J. Robert, and M. Doumic, BMC biology 12, 17 (2014).

[19] S. Elliott and C. McLaughlin, Proceedings of the Na-
tional Academy of Sciences 75, 4384 (1978).

[20] S. Di Talia, J. M. Skotheim, J. M. Bean, E. D. Siggia,
and F. R. Cross, Nature 448, 947 (2007).

[21] M. Godin, F. F. Delgado, S. Son, W. H. Grover, A. K.
Bryan, A. Tzur, P. Jorgensen, K. Payer, A. D. Grossman,
M. W. Kirschner, et al., Nature methods 7, 387 (2010).

[22] P. Wang, L. Robert, J. Pelletier, W. L. Dang, F. Taddei,
A. Wright, and S. Jun, Current biology 20, 1099 (2010).

[23] J. J. Turner, J. C. Ewald, and J. M. Skotheim, Current
Biology 22, R350 (2012).

[24] Y. Tanouchi, A. Pai, H. Park, S. Huang, R. Stamatov,
N. E. Buchler, and L. You, Nature 523, 357 (2015).

[25] H. Kesten, Acta Mathematica 131, 207 (1973).
[26] H. Kesten, The Annals of Probability , 355 (1974).
[27] W. Donachie, Nature (1968), 10.1038/2191077a0.
[28] L. Koppes, M. Meyer, H. Oonk, M. De Jong, and N. Nan-

ninga, Journal of bacteriology 143, 1241 (1980).
[29] L. Robert, Frontiers in microbiology 6 (2015),

10.3389/fmicb.2015.00515.
[30] K. E. Atkinson and L. F. Shampine, ACM Transactions

on Mathematical Software (TOMS) 34, 21 (2008).
[31] A. Colman-Lerner, T. E. Chin, and R. Brent, Cell 107,

739 (2001).
[32] E. L. Weiss, C. Kurischko, C. Zhang, K. Shokat, D. G.

Drubin, and F. C. Luca, The Journal of cell biology 158,
885 (2002).

[33] M. P. Cosma, EMBO reports 5, 953 (2004).
[34] S. Di Talia, H. Wang, J. M. Skotheim, A. P. Rosebrock,

B. Futcher, and F. R. Cross, PLoS biology 7, 2375
(2009).

[35] T. L. Laabs, D. D. Markwardt, M. G. Slattery, L. L. New-
comb, D. J. Stillman, and W. Heideman, Proceedings of
the National Academy of Sciences 100, 10275 (2003).

http://dx.doi.org/ http://dx.doi.org/10.1016/S0092-8674(00)80493-6
http://dx.doi.org/10.1126/science.1080418
http://dx.doi.org/10.1038/emboj.2009.412
http://dx.doi.org/10.1038/emboj.2009.412
http://dx.doi.org/ 10.1038/msb.2013.13
http://dx.doi.org/ 10.1038/msb.2013.13
http://dx.doi.org/10.1103/PhysRevLett.112.208102
http://dx.doi.org/ 10.1016/j.cell.2014.11.022
http://dx.doi.org/ 10.1016/j.cell.2014.11.022
http://dx.doi.org/ 10.1016/j.cub.2014.12.009
http://dx.doi.org/ 10.1016/j.cub.2014.12.009
http://dx.doi.org/10.1016/j.bpj.2015.07.002
http://dx.doi.org/10.1016/j.bpj.2015.07.002
http://dx.doi.org/ 10.1103/PhysRevE.93.012408
http://dx.doi.org/10.1016/j.cub.2015.11.067
http://dx.doi.org/10.1016/j.cub.2015.11.067
http://dx.doi.org/10.1073/pnas.1403232111
http://dx.doi.org/10.1073/pnas.1403232111
http://arxiv.org/abs/http://www.pnas.org/content/111/45/15912.full.pdf
http://stacks.iop.org/1478-3975/3/i=3/a=002
http://stacks.iop.org/1478-3975/3/i=3/a=002
http://dx.doi.org/10.1103/PhysRevLett.108.238105
http://dx.doi.org/10.1103/PhysRevE.92.042713
http://dx.doi.org/10.1103/PhysRevE.92.042713
http://dx.doi.org/10.3389/fmicb.2015.00662
http://dx.doi.org/10.3389/fmicb.2015.00662
http://dx.doi.org/ 10.1073/pnas.1120854109
http://dx.doi.org/ 10.1073/pnas.1120854109
http://dx.doi.org/ 10.1186/1741-7007-12-17
http://dx.doi.org/10.1038/nature06072
http://dx.doi.org/ 10.1038/nmeth.1452
http://dx.doi.org/10.1016/j.cub.2010.04.045
http://dx.doi.org/10.1016/j.cub.2012.02.041
http://dx.doi.org/10.1016/j.cub.2012.02.041
http://dx.doi.org/10.1038/nature14562
http://dx.doi.org/10.1007/BF02392040
http://dx.doi.org/10.1038/2191077a0
http://dx.doi.org/10.3389/fmicb.2015.00515
http://dx.doi.org/10.3389/fmicb.2015.00515
http://dx.doi.org/10.1145/1377596.1377601
http://dx.doi.org/10.1145/1377596.1377601
http://dx.doi.org/10.1016/S0092-8674(01)00596-7
http://dx.doi.org/10.1016/S0092-8674(01)00596-7
http://dx.doi.org/ 10.1083/jcb.200203094
http://dx.doi.org/ 10.1083/jcb.200203094
http://dx.doi.org/10.1038/sj.embor.7400251
http://dx.doi.org/ 10.1371/journal.pbio.1000221
http://dx.doi.org/ 10.1371/journal.pbio.1000221
http://dx.doi.org/10.1073/pnas.1833999100
http://dx.doi.org/10.1073/pnas.1833999100

	Stochastic modeling of cell growth with symmetric or asymmetric division
	Abstract
	I Introduction
	II Model Specification
	A Damage Control

	III Deriving the Evolution Relation for the Cell Size Distribution
	IV On the Existence and Uniqueness of the Stable Distribution
	V Statistical properties of the stable distribution under affine linear growth policies
	VI An Asymptotic Analysis of the Tail of the Stable Distribution
	A The Special Case of Symmetric Division

	VII Stability Phase Diagram
	VIII Additive Models and Damage Control
	IX Conclusion
	 Acknowledgments
	A Equivalence of the generation-based and time-based stable cell birth volume distributions
	B Discretization and consistency
	C Calculation of the kth moment of the stable volume distribution
	D Simulating asymmetric cell division
	E The effects of stochasticity in the asymmetry ratio
	F Investigating a mother/daughter-dependent model
	 References


