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Ed sum: 
New computational tools reveal the contribution of microsatellite insertions and 
deletions to the mutational landscape in human cancer.  
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Abstract 

Microsatellites (MSs) are tracts of variable-length repeats of short DNA motifs that exhibit high 

rates of mutation in the form of insertions or deletions (indels) of the repeated motif. Despite their 

prevalence, the contribution of somatic MS indels to cancer is largely unexplored due to 

difficulties in detecting them in short-read sequencing data. Here we present two tools: 

MSMuTect, for accurate detection of somatic MS indels, and MSMutSig, for identification of 

genes containing MS indels at higher frequency than expected by chance. Applying MSMuTect to 

whole-exome data from 6,747 human tumors representing 20 tumor types, we identified >1000 novel 

MS indels in cancer genes. Additionally, we demonstrate that the number and pattern of MS indels 

can accurately distinguish microsatellite stable (MSS) tumors from tumors with microsatellite 

instability (MSI), which may improve classification of clinically relevant subgroups. Finally, we 

identify seven novel MS indel driver hotspots – four in known cancer genes (ACVR2A, RNF43, 

JAK1, and MSH3) and three in genes not previously implicated as cancer drivers (ESRP1, 

PRDM2 and DOCK3). 

  



	

	

Introduction 

Microsatellites (MSs), are regions of the genome characterized by repetition of a short 

sequence motif (usually 1-6 bp)1. MSs are abundant in non-transcribed regions of the human 

genome, but also occur in exons and untranslated regions (UTRs; Fig. S1). In the germline, rates 

of insertions and deletions (indels) in MSs are significantly higher than rates of single nucleotide 

substitutions elsewhere in the genome (10-4-10-3 compared to ~10-8 per locus per generation, 

respectively)2. The increased mutation rate within MS indels is thought to arise due to DNA 

polymerase slippage during replication, leading to changes in the number of repeats. MS indels 

frequently result in frameshift mutations and can therefore dramatically alter protein function or 

expression1.  

More than 40 hereditary diseases are caused by germline MS indels3,4,5. In addition, many 

cancer genes6 (e.g. PTEN and NF1) contain MS loci, and in some cases, somatic MS indels have 

been causally implicated in cancer7. Tumors with microsatellite instability (MSI) have 

dramatically increased numbers of MS indels owing to loss of normal mismatch repair (MMR) 

function8. Although the MSI phenotype has been observed across tumor types, it appears to be 

most common in colon adenocarcinoma (COAD), stomach adenocarcinoma (STAD), and uterine 

corpus endometrial carcinoma (UCEC)8. Given the important prognostic and therapeutic 

implications of MSI status, many clinical centers perform PCR- or immunohistochemistry-based 

MSI testing for these tumor types 9–12. 



	

	

Despite their potential significance, somatic MS indels have not been systematically 

analyzed in cancer due to challenges associated with their detection via current massively parallel 

sequencing data, including read length limits and PCR errors.13 The frequency of such 

sequencing errors varies significantly across MS loci (Online Methods); therefore, methods 

utilizing principled statistical modeling and noise estimation are required to accurately identify 

MS indel events. 

Discovering cancer-associated MS loci relies on identifying evidence of positive selection 

(i.e., mutation frequencies higher than expected by chance). However, simply comparing the 

frequency of mutations at each MS locus to the average mutation frequency across the genome is 

inadequate, as the background mutation frequency can vary by nearly two orders of magnitude14. 

Therefore, accurate estimates of site-specific background mutation frequencies are required to 

maximize the sensitivity to discover cancer-associated MS loci while minimizing the rate of false 

calls15. 

To address these challenges, we developed two new tools: MSMuTect for detecting 

somatic MS indels from sequencing data and MSMutSig for detecting loci and genes with 

significantly increased frequency of MS indels. Applying these tools across 6,747 tumors 

representing 20 tumor types, we uncover unique properties of MS indels and identify MS loci 

that likely represent cancer driver events. Comparison of MS indels across clinical MS groups 

reveals differences between MSS and MSI tumors that may be relevant for clinical decision-

making. 

 

  



	

	

Results 

MSMuTect identifies MS indels from exome sequencing data  

In an effort to improve detection of somatic MS indels, we globally re-aligned reads7 

from whole-exome sequencing data of 6,747 tumor/normal pairs across 20 tumor types from The 

Cancer Genome Atlas (TCGA) to the unique sequence flanking 383,515 MS loci, defined as 

sites with at least five repeats of a 1-6 bp motif in the exome territory (Online Methods; Fig. 

S2)1. This re-alignment step reduced the fraction of misaligned reads compared to the standard 

alignment (Fig. S3). We then counted, for every MS locus, the number of reads supporting each 

MS repeat length, thus producing two histograms of MS repeat lengths, one for the tumor and 

one for the matched normal sample (Fig. 1A). 

Sequencing errors, PCR amplification errors, and other sources of noise can change the 

number of MS repeats present in a given read. Therefore, the true underlying allele(s) must be 

statistically inferred from the data (Fig. 1B). Critical to this inference is the empirical estimation 

of the noise associated with each type of MS. We trained empirical noise models, one for each 

MS type (defined by its motif and number of repeats), using data from homozygous sites derived 

from the X chromosome of 4,411 male normal samples (i.e., sites having only one true allele at 

each MS locus). We had sufficient data to reliably estimate the noise models for the motifs A, C, 

AC, and AG, which together represent 98% of the MS loci in the exome (Online Methods). 

To accurately identify the alleles present in tumor and normal samples and detect somatic 

MS indels, we used these noise models to calculate, for each MS locus, the set of most likely 

alleles (Fig. 1C; Online Methods). For each locus, we used a log-likelihood ratio test to compare 

models in which the locus harbored one versus two distinct alleles (either distinct germline alleles 

or a somatic mutation at a homozygous site). If the two-allele model fit the data better, we then 

compared it to a three-allele model, and so forth, to a maximum of four alleles. Finally, in cases 



	

	

where the set of alleles were different between the tumor and normal, we reported a somatic MS 

indel event only after ensuring that the histogram of MS repeat lengths in the tumor was indeed 

described better by the inferred tumor alleles than by the inferred normal alleles (Fig. 1C; Online 

Methods). 

  We tested the sensitivity and specificity of MSMuTect using an approach similar to that 

previously described for MuTect17. We analyzed sequencing replicates from a single individual 

and selected parameters that, on average, generated no greater than five false positives per exome 

(Fig S4; Online Methods). To evaluate sensitivity, we simulated MS indels by inserting or 

deleting a single motif repeat at different loci throughout the genome. We evaluated the 

sensitivity across various allele fractions and MS loci lengths and found that it was highest for 

shorter MS loci and decreased when the MS indel allele fraction fell below 20% (Fig. S5; Online 

Methods).    

 

MS indel mutational landscape 

 We applied MSMuTect across 6,747 TCGA whole exome tumor/normal pairs representing 

20 tumor types (Tables S1, S2). Our analysis identified 174,638 MS indels, with a range of 0 to 

900 per tumor. We observed extensive inter- and intra-tumor variability in the MS indel rate, 

similar to the variability reported for single nucleotide variations and copy-number alterations (Fig. 

2; Fig S6)15. The average MS indel frequency varied significantly across tumor types, with the 

highest frequencies in colorectal (COAD, READ), stomach (STAD) and endometrial tumors 

(UCEC), consistent with frequent MMR deficiency in these tumors. 

Breast cancer (BRCA) had the fifth highest MS indel rate, and although BRCA is not 

typically thought to have high rates of MS indels, there is a subset with known MSI features19, 



	

	

and a recent study6 identified mutational signatures consistent with loss of mismatch repair in 

BRCA. A recent report by Hause et al13 did not identify MSI-H cases in TCGA BRCA; 

however, they analyzed a subset of the TCGA breast cancer cohort (266/1069 cases) that 

included only 3/36 tumors in which we identified >100 MS indels. Previous reports20,21,22 

have identified a small fraction of MSI cases in cohorts of cervical squamous cell carcinoma and 

endocervical adenocarcinoma (CESC), uterine carcinosarcoma (UCS) and adrenocortical 

carcinoma (ACC), and indeed our analysis identified MS indels in these tumor types (ranked 6th, 

7th and 8th in average MS indel frequency, respectively). 

         To validate the identified MS indels, we analyzed RNA-seq data available for a subset of 

the samples (Table S3). For each of the 150 significantly mutated MS indels (described below) 

with sufficient RNA-seq coverage (≥4 reads), we manually compared the alleles inferred by 

MSMuTect to the alleles observed in the RNA-seq data, and validated 87% of them (Table S3). 

Importantly, RNA-seq likely underestimates the accuracy of MSMuTect because MS indels that 

introduce premature stop codons can trigger nonsense-mediated decay of the altered mRNA 

transcript, thus decreasing the likelihood of observing RNA-seq reads that support the MS indel. 

Indeed, MS loci closer to the 3’ end of the transcript, which are less likely to trigger nonsense-

mediated decay, had higher validation rates (e.g. ACVR2A (96%) and RNF43 (100%); Table 

S3). For four of the five cases in which two distinct somatic events were identified at the same 

site, we were able to validate all three alleles (one wild type and two alternate alleles). 

 

MSMuTect correctly classifies tumors with respect to MS stability 

We next asked whether MSMuTect could recapitulate independent measures of tumor 

MS stability. As part of TCGA, tumors from the COAD, STAD, and UCEC cohorts were 



	

	

experimentally classified as exhibiting microsatellite stability (MSS, no indels) or microsatellite 

instability (MSI-low [MSI-L], indel at one MS locus; MSI-high [MSI-H], indels at 2 or more 

MS loci) using a PCR-based assay to assess size variability at the five Bethesda MS loci12. 

Applying MSMuTect, we found that tumors classified as MSI-H had significantly more MS 

indels than samples that were MSS or MSI-L (MSI-H vs MSS: COAD median 104.5 vs. 3.0, P 

<10-22; STAD 64.5 vs. 1.0, P <10-28; UCEC 94.5 vs. 2.0, P <10-58, Mann-Whitney; Fig. 3A; 

Online Methods). There was no difference in the number of  

MS indels in tumors classified as MSI-L versus MSS for COAD, but there was a small 

difference in UCEC and STAD (UCEC median 9 vs. 2, P <10-6; STAD 3 vs 2, P<10-3, Mann-

Whitney) due to contribution from a small number of MSI-L cases with many MS indels 

(discussed below). In addition, we found that MSI-H tumors were significantly (P<10-16, t-test, 

Fig. S7) more likely to have several MS indels at the same locus and were also more likely to 

have one (or more) MS indels at heterozygous germline MS sites. 

Although MSMuTect separates the majority of MSI-H tumors from MSI-L and MSS 

tumors, there were several cases with an apparent discrepancy between the MS indel count and the 

Bethesda designation (Fig. 3A). MMR-deficient tumors are known to have a specific pattern of 

SNVs (MSI-SNV signature), and thus the fraction of SNVs associated with the MSI-SNV 

signature can be used as an orthogonal metric to identify the MSI phenotype23(Online Methods). 

As expected, tumors in which MSI-SNVs comprised >15% of the total SNVs (red in Fig. 3A) 

were nearly all (264/277) classified as MSI-H and had high MS indel counts. In addition, 7 of the 

12 MSI-H STAD and UCEC tumors with the lowest MS indel counts (<10) had an MSI-SNV 

fraction <15% (blue in Fig. 3A), suggesting that the samples may have been misclassified as MSI-

H by the PCR-based assay. 



	

	

We also observed that many of the MSI-L and MSS samples with the highest number of 

MS indels also had a relatively high number of total SNVs (Fig. 3A). Mutations in the 

exonuclease (proofreading) domain of polymerase epsilon (POLE) can dramatically increase the 

number of SNVs; therefore, to investigate the potential interaction of POLE-mediated 

mutagenesis with MS indels, we calculated the fraction of SNVs that were likely contributed by 

POLE-mediated mutagenesis (POLE-SNVs; Online Methods). All but one of the 63 samples in 

which POLE-SNVs comprised >15% of the total SNVs had a somatic missense mutation in the 

exonuclease domain of POLE (n=60) or polymerase delta (POLD1; n=2). Although the 

majority of the POLE/POLD1-mutated tumors (45/63) were classified as MSS or MSI-L, they 

had significantly more MS indels than other MSS and MSI-L tumors (median 54 vs. 2 among 

MSI-L and 18.5 vs 2 among MSS), raising the possibility that POLE/POLD1 exonuclease 

domain mutations may contribute to the MS indel burden and highlighting the limitations of the 

PCR-based MSI assay (Fig. 3A). 

 

 

Differences in MS indel properties in MSS and MSI samples 

In addition to differences in numbers of MS indels, MSI and MSS samples also differ in 

their association between MS indel frequency and DNA replication timing, and both are distinct 

from the association reported for SNVs14,24. In general, unlike SNV density, MS indel density 

does not show a strong correlation with replication timing. Interestingly, there was no correlation in 

MSS samples (slope = -0.03, Pearson correlation = -0.47, P=0.43, t-test; Fig. 3B), and only a 

marginal, but significant, decrease with replication timing in MSI samples (slope = -0.1, 

Pearson correlation = -0.995, P=0.0003, t-test; Fig. 3B)25, which is opposite to the direction 

observed for SNVs.  



	

	

Likewise, in both MSI and MSS tumors, MS indels are more common at loci with 

longer repeat lengths; however, the slope and shape of these relationships differ (Fig. 3C). 

Moreover, the ratio of insertions to deletions is different between MSS and MSI cases, with MSI 

cases having a tendency towards deletions25 while MSS cases tend towards insertions (Fig. 3D; 

P<10-31, χ 2 test). The tendency to increase repeat lengths in MSS cases is consistent  

with germline MS indels, which have been shown to preferentially undergo insertions in MS loci 

with <15 repeats2. 

 

MS indels in known cancer genes 

We next sought to identify somatic MS indels that drive tumorigenesis. We first 

attempted to identify novel MS indels across 727 known cancer genes6 in a cohort of 4,064 

TCGA samples with curated mutations calls (Online Methods). We focused our analysis on 

MS loci for which the inferred allele matched the reference allele in at least 90% of the normal 

(germline) samples (Fig. S8). MS indels at loci with greater germline diversity may have 

weaker functional effects or represent noisy sites. We detected 1470 MS indels across these 

genes (Table S4), including 89 indels that had been previously identified by the TCGA 

consortium and 1105 indels in samples without any other indel or non-synonymous SNVs 

reported in the same gene (thus potentially representing novel loss-of-function events in these 

genes). The remaining 276 indels were identified in samples that had a separate event (indel or 

nonsynonymous SNV) in the same gene; in these cases, the identified MS indel may represent 

the “second hit”26. In some genes, previously unidentified MS indels comprise a substantial 

fraction of the total number of mutations. Reassuringly, MS indels were enriched in tumor 

suppressor genes (TSGs)27 compared to oncogenes (993 MS indels in 70 TSGs vs 272 MS 



	

	

indels in 53 oncogenes, P<10-58, binomial test). 

 

MSMutSig, A Tool for Identifying Driver MS indels 

 Next, we extended our MutSig suite of tools15 for detecting candidate cancer genes and 

developed MSMutSig to specifically address the unique properties of MS indels. Our analysis of 

~250,000 MS loci revealed that the two major factors (covariates) that influence the mutation 

frequency of an MS locus are the motif sequence and repeat length (Fig. 3C; Online Methods). 

We, therefore, estimated the background mutation frequency for each motif and repeat length 

separately. We first attempted to apply a binomial model but found that many loci harbored more (or 

fewer) mutations than predicted by the model (Fig. S9).  To address this, we applied a more dispersed 

distribution – the negative-binomial – and fit the extra dispersion parameter such that no MS loci in 

non-coding regions would be nominated as significantly mutated (at Benjamini-Hochberg FDR 

q<0.1). This model indeed also captured the variability of MS indel rates in coding regions (Figs. 

S10-S12). 

Once optimized, we applied MSMutSig across 20 tumor types. For the three tumor types 

with high frequencies of MSI cases (COAD, STAD, and UCEC), we considered the MSS and MSI 

subgroups (as defined by TCGA) separately (Fig. 3B-D). The only tumor types that yielded 

significant MS loci (q<0.1) were the MSI subtypes of COAD, STAD, and UCEC. In COAD, we 

identified 3 significant MS loci in the genes ACVR2A, RNF43 and DOCK3; in STAD, 4 loci in 

ACVR2A, RNF43, MSH3 and PRDM2; and in UCEC, 5 loci in RNF43, DOCK3, JAK1, ESRP1 and 

ACVR2A. Thus, our analysis nominated a total of 7 MS hotspots in 7 genes (Table 1). Three of 

these genes (ACVR2A, RNF43 and JAK1) have been previously identified as cancer genes based on 

an increased mutation frequency in one or more tumor types6 (Fig. 5). In the TCGA colon cancer 

study28, MSH3 was not nominated as significantly mutated but was noted to be highly mutated by 



	

	

manual examination of the sequence data. Notably, due to the high mutability of MS loci, beyond 

major cancer genome studies, the literature is mixed regarding which of the 17,398 genes with MS 

loci are associated with cancer.29 The remaining three genes (ESRP1, PRDM2 and DOCK3) have 

not been previously identified as cancer genes (discussed below).  Previously identified cancer 

drivers such as TGFRB230 and RPL2231 are missing from our list since their MS loci were 

excluded from the analysis due to high variability in germline samples. 

All seven of the significantly mutated MS indels cause a frameshift mutation within an 

exon. Frameshift mutations typically result in decreased gene expression because the altered 

mRNA undergoes nonsense-mediated decay32. However, if a frameshift mutation occurs near the 

end of a gene, nonsense-mediated decay is less likely to occur33. Of the 7 MS indels identified 

here, four (in ESRP1, MSH3, JAK1, and PRDM2) lead to a significant reduction in mRNA 

expression levels (Table 1, Fig. 4) whereas the MS indels in ACVR2A and DOCK3 occur near the 

3’ end of the gene and thus are not expected to lead to nonsense-mediated decay. The MS indel in 

RNF43 is in the second to last exon; however, the presence of this indel does not correlate with a 

reduced RNF43 expression level (Mann-Whitney P=0.4), and may represent an exception to the 

‘50 bp rule’, similar to UPF1.34,35  

 

Genes Nominated by MSMutSig are Candidate Cancer Drivers 

The ACVR2A gene, encoding Activin A Receptor Type IIA, harbors the most frequently 

mutated novel MS locus in our list (p.K437fs), with mutations in ~80% (32/40) of MSI colon 

tumors, ~75% (52/69) of MSI stomach tumors, and ~19% (29/157) of MSI endometrial tumors 

(Table 1; Fig 5).  ACVR2A is a member of the TGF-β signaling pathway, which plays a major 

role in cell growth and is known to be highly mutated in all three of these tumor types. Consistent 



	

	

with a tumor suppressor role, two studies 36,37 showed that expression of wildtype ACVR2A in 

MSI colon cancer cell lines with mutated ACVR2A led to reduced cell growth. When these novel 

MS indel events are considered with other reported alterations, ACVR2A is among the most 

frequently mutated genes in colorectal cancer with mutations in ~20% of all cases. 

The gene encoding Ring Finger Protein 43 (RNF43) harbors the MS indel p.G659fs in 

40% (16/40) of MSI colon tumors, 35% (24/69) of MSI stomach tumors, and 23% (36/155) of 

MSI endometrial tumors. RNF43 is a negative regulator of the WNT signaling pathway, which is 

involved in controlling cell proliferation38. This gene was reported as significant in STAD by TCGA39, 

however it was not due to its MS indels. Giannakis et al.7 recently detected the same RNF43 MS indel 

through manual review of RNF43 sequence data and determined that it is frequently present in 

colon and endometrial tumors.  

The gene encoding the protein MutS Homolog 3 (MSH3) is a member of the Mismatch 

Repair (MMR) pathway, and germline mutations in MSH3 are known to increase the risk of  

developing MSI tumors41. We identified the MS indel hotspot p.K383fs in 40% (28/69) of 

stomach tumors.  In mouse models, inactivation of MSH3 alone does not lead to cancer, but 

concurrent loss of MSH3 and MSH6 results in an increased rate of tumor formation42. 

The gene encoding the protein PR domain 2 (PRDM2), is a histone H3 lysine 9 

methyltransferase and has been implicated as a tumor suppressor in several tumor types43. 

Decreased PRDM2 expression has been associated with renal cell carcinoma44, esophageal 

squamous cell carcinoma45 and meningiomas46. We identified the MS indel hotspot p.K1489fs in 

48% (33/69) of stomach tumors. Analysis of gene expression data revealed decreased expression in 

mutated cases (P=0.016 Mann-Whitney; Fig. S13), consistent with partial nonsense-mediated 

decay. 

The epithelial splicing regulatory protein 1 (ESRP1) is an epithelial cell-type-specific 



	

	

splicing regulator47. Its MS indel hotspot (ESRP1 p.K511fs) is mutated in approximately 20% 

(31/158) of MSI endometrial tumors. ESRP1 regulates alternative splicing of FGFR247 from the 

IIIc mesenchymal isoform to the IIIb epithelial isoform47. Thus, mutations in ESRP1 may 

contribute to the epithelial-mesenchymal transition (EMT). In pancreatic cancer48, the transition 

from expression of the FGFR2-IIIb isoform to the FGFR2-IIIc isoform is associated with 

increased cell growth, migration, and invasion. We analyzed TCGA RNA-seq data and found 

that MS indels in ESRP1 were associated with both a significant decrease in ESRP1 expression 

(Fig. 4a; P <1.5x10-9 Mann-Whitney) as well as a significant increase in the ratio of isoform IIIc 

to IIIb in ESRP1 mutant cases (Fig. 4b; P <9x10-7 Mann-Whitney). 

Our finding that JAK1 harbors the frameshift mutation p.N860fs in 21% (33/158) of 

endometrial tumors (Table 1) was somewhat unexpected given JAK1’s known role as an 

oncogene49. Park et al.25 found that the JAK1 p.N860fs indel is associated with repression of 

transcript levels of JAK1 downstream targets, and a recent study50 suggested that truncated JAK1 

modulates the IFNγ signaling pathway and enables tumor immune evasion. We compared 

expression of an IFNγ-mediated gene signature51 in tumors with or without the JAK1 p.N860fs 

indel and found a significant reduction in expression in 21 of 27 IFNγ-related genes in tumors with 

the p.N860fs indel. Therefore, JAK1 loss may promote tumor survival by inhibiting an IFNγ-

mediated antitumor immune response. 

Finally, DOCK3 encodes the protein Dedicator of cytokinesis 3 and carries the MS indel 

mutation p.T1850fs in 40% of colon tumors (16/40) and 23% of endometrial tumors (33/145) 

(Table 1). DOCK3 (also known as MOCA) is an exchange factor for Rac GTPases and was 

recently implicated as an inhibitor of the WNT signaling pathway52. CTNNB1, a core member of 

the WNT pathway, is mutated in approximately 30% of endometrial tumors, and DOCK3 

mutations are mutually exclusive with CTNNB1 mutations (P <0.015, hypergeometric test in 



	

	

UCEC MSI cases; P<0.005 among all UCEC cases).	

 

 

Discussion 

Here, we introduce MSMuTect, a tool for accurately identifying somatic indels in MS 

loci, and MSMutSig, a tool for identifying candidate cancer genes with significantly enriched MS 

indel events. MSMuTect relies on careful realignment of MS-containing reads to MS loci and 

uses a principled statistical test to identify somatic events by applying an empirical noise profile 

based on motif and repeat length. Given the wide variation in background mutation rates across 

MS loci, this approach is necessary to reduce the rate of false positive MS indel calls.  

An alternate method for detecting somatic MS indels, recently reported by Hause et al13, 

nominates a somatic MS indel if a single tumor read supports a different number of motif repeats 

than the normal sample. This approach for calling MS indels results in a large number of apparent 

MS indels, with a median of ~900 MS indels per MSS sample compared to <10 using MSMuTect, 

and only a ~3-fold difference in number of MS indels between MSS and MSI cases (897 in MSS 

vs 3009 in MSI) versus an ~18-fold difference using MSMuTect (8 vs 145).  These apparent 

differences may be due in part to the inclusion of many subclonal MS indels by Hause et al, 

whereas MSMuTect primarily considers clonal events. 

MSMuTect infers the alleles in both the tumor and normal (germline) samples, and somatic 

MS indels are nominated only when the observed MS repeat lengths in the tumor are better 

explained by the tumor allele(s) than by the normal allele(s). A recent report by Kim et al25 used 

the Kolmogov-Smirnov (KS) test to compare repeat length distributions in the tumor and normal 

sample at each MS locus for a limited set of endometrial and colon cancers. Although the total 

number of reported MS loci is comparable to the number identified by MSMuTect (median of 



	

	

~150 for MSI-H cases and ~2 for MSS), the KS test does not infer the actual (potentially multiple) 

alleles in the tumor and normal samples. In addition to reducing the risk of false-positive MS indel 

calls, identifying MS alleles in the normal sample has the potential to discover novel germline MS 

indels. Indeed, we found that a small percentage of cases (5/6748, 0.075%) had a germline RNF43 

allele that was identical to the most common somatic RNF43 mutant allele, raising the possibility 

of an inherited pathogenic RNF43 MS indel.  A recent study by Taupin et al.53 showed that 

inherited RNF43 variants are a risk factor for the familial cancer syndrome Serrated Polyposis. 

We applied MSMuTect across 6,747 cases representing 20 tumor types from the TCGA 

dataset and identified nearly 175,000 MS indels. As expected, the tumor types with the highest 

rates of MS indels were those classically associated with the MSI phenotype – colon, rectal, 

stomach, and endometrial tumors. However, several other tumor types – including breast and 

cervical cancers – had a notable percentage of cases with high numbers of MS indels, suggesting 

that the MSI phenotype also occurs in these tumor types and that MSI testing may be warranted 

for these tumors in certain clinical settings, such as when screening for immunotherapy 

trials10,54,55. 

Comparing traditional PCR-based stratification of the MSI status of the TCGA COAD, 

STAD, and UCEC cohorts with our results, we found a significant difference in MS indel 

frequency between MSI-H and both MSI-L and MSS tumors, but the difference between MSI-L 

and MSS tumors was less significant. Furthermore, there was significant variability in MS indel 

frequency within each MS subgroup, particularly among endometrial tumors.  

We found that many MSI-L tumors have MS indel frequencies similar to those of MSS 

tumors, suggesting that some were misclassified by the MSI assay. However, a subset of MSI-L 

tumors – particularly endometrial tumors – have MS indel frequencies that more closely resemble 

MSI-H tumors. Proofreading deficient tumors arising from POLE/POLD1 exonuclease mutations 



	

	

have dramatically increased rates of SNVs and a characteristic mutational signature, as well as 

high MS indel rates, including in MSI-L and MSS cases (Fig. 3a). Thus, whereas some 

endometrial tumors appear to have concomitant POLE mutations and MSI, other MSI-L 

endometrial tumors have an SNV signature consistent with a POLE/MSS phenotype despite their 

relatively high number of MS indels. To our knowledge, an interaction between somatic POLE 

mutations and MS indels has not been reported, although a similar association was recently noted 

in yeast56. It is possible that a dramatic increase in SNVs resulting from loss of POLE 

proofreading may saturate MMR capacity (which corrects both SNVs and indels) and thus 

indirectly result in an increased number of unrepaired MS indels. 

Finally, we noted that many of the MSI-H/MSI-L endometrial tumors with lowest MS indel 

frequencies lacked the MSI-SNV signature, suggesting that these tumors may have been 

misclassified as MSI, further underscoring the differences between the PCR-based MSI assay and 

MSI classification derived from whole exome sequencing. These results highlight the limitations 

of clinical MSI assays and, given the recent identification of MSI as a biomarker of 

immunotherapy response, underscore the need for sensitive and reliable MSI assays10,54. 

Based on our understanding of the features that influence the indel mutation rate at MS 

loci, we developed MSMutSig, a tool that identifies MS loci that are mutated more frequently than 

expected by chance. MutSig15 was developed to handle SNVs and general indels (not necessarily 

within MSs), and its background mutation rate model does not fit the unique properties of MS 

indels. Indeed, applying MutSig to the MSI-H endometrial cohort using all mutations (SNVs, 

general indels and MS indels) yielded 296 significant genes (q<0.1) and an inflated Q-Q plot, 

suggesting an inadequate null model (Fig. S14).  

 Many genes have been proposed to drive cancer based on a high frequency of MS 



	

	

indels29; however, our analysis suggests that many of these MS loci have a high background 

mutation rate and therefore may be frequently mutated but not under selective pressure. Applying 

MSMutSig across 6,747 cases, we identified seven significantly mutated MS loci, three of which 

occurred in genes not previously nominated as cancer genes (ESRP1, PRDM2 and DOCK3). 

Although our analysis strongly supports a role for these MS indels as cancer drivers, direct 

experimental studies will be needed to further investigate the specific role of these mutations in 

cancer. 

In these analyses, we assumed that all MS indels in non-coding regions were not under 

selective pressure and thus could serve as an upper estimate of the indel mutation rate arising from 

technical factors (PCR errors, etc). However, cancer driver mutations are known to exist in 

regulatory regions57,58,59, and a deeper understanding of the covariates influencing MS indel 

rates across the genome may eventually enable us to adapt MSMutSig for accurate detection of 

significantly mutated MS loci in non-coding regions. Similarly, adapting MSMuTect for whole 

genome analysis may further improve the sensitivity of MSMuTect and MSMutSig by providing a 

more accurate noise model across loci of varying motif and repeat lengths. In addition, technical 

advances may also lead to improvements in MS indel calling. For example, sequencing 

technologies that produce longer read lengths will provide better coverage of long MS loci and 

enable more accurate mutation-calling for longer MS repeats. Finally, integrating MS indel calling 

tools such as MSMuTect with tools for identifying other recurrent genomic events such as SNVs 

or copy number alterations (CNAs) will provide a more comprehensive view of cancer driver 

events. 
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Figure Legends: 
	
	
Figure 1: Identifying somatic indels in microsatellites (MS indels) – schematic description of 

MSMuTect. A. All reads containing an MS region and sufficient 3’ and 5’ flanking sequence are 

aligned to a collection of all MS loci and the number of reads supporting each MS length are 

tallied to create a histogram of observed read lengths per locus. B. The length histograms for all 

sites that share the same underlying motif and number of repeats (i.e., sites with the same motif 

and mode length) from the X chromosome of male normal samples were combined into a single 

histogram. This combined histogram represents the empirical noise distribution (i.e., the 

probability that a true allele with i repeats will generate a read with j repeats). C. The maximum 

likelihood method and empirical noise distribution are used to identify the set of alleles that best 

describes the histogram for a given locus. This set includes the number of alleles, the length of 

each allele, and the fraction of DNA molecules representing each allele in the sample. After 

determining the most likely allele for both the tumor and normal sample, somatic MS indels are 

nominated when the tumor model fits the tumor data better than the normal model fits the tumor 

data and vice versa (Online Methods). 

	
	
	
Figure 2:  Distribution of MS indels across 6,747 tumors from 20 tumor types. Red horizontal 

lines represent the median fraction of MS indels in each tumor type. Fig. S6 shows a comparison 

with the SNV distributions for each tumor type. 

	
	
	
Figure 3. Differences in mutation patterns and MS indel characteristics between microsatellite 

unstable (MSI) and microsatellite stable (MSS) tumors. A. Distribution of A motif MS indels 

across clinical microsatellite (MS) subgroups (MS stable [MSS]; high MS instability [MSI-H]; 



	

	

and low MS instability [MSI-L]) in the three TCGA tumor types for which clinical MSI status 

was reported (colon adenocarcinoma [COAD], stomach adenocarcinoma [STAD], and uterine 

corpus endometrial carcinoma [UCEC]). Tumors with ≥15% of SNVs attributed to MS 

mutations (MSI-SNVs; Online Methods) are plotted in red and tumors with <15% MSI-SNVs 

are shown in blue. Similarly, tumors with ≥15% SNVs attributed to POLE-mediated 

mutagenesis (POLE-SNVs) are denoted with an ‘x’ (Online Methods). B. Mean (and standard 

deviation) relative MS indel frequencies across quintiles of replication times calculated for 

MSI-H and MSS tumors (combined from the COAD, STAD and UCEC cohorts) . Correlation 

between MS indel frequency and replication timing – not significant in MSS tumors (slope = -

0.03, Pearson correlation = -0.47, P=0.43, t-test), weak but significant negative correlation in 

MSI tumors (slope = -0.1 Pearson correlation = -0.995, P<3x10-4, t-test). C. MS indel 

frequency as a function of MS length are shown for MSS and MSI-H tumors. In both MSS and 

MSI-H tumors, the mutation frequency increases with increasing MS length. The increase is 

more rapid in MSI-H tumors based on the ratio of mutation frequency of MSI-H to MSS 

tumors across MS loci lengths (inset). D. Log 10 of the frequencies of MS insertions and 

deletions as a function of normal and mutated repeat number. The estimated number of MS 

repeats in the normal sample (y-axis) vs the the change in the number of repeats in the tumor 

(x-axis). The frequency of each specific event (i.e., an insertion or deletion of a given length) is 

based on the fraction of the total number of covered loci across all samples. MSI-H samples 

(upper panel), MSS samples (lower panel), and summaried data across all alleles (middle 

panel). MSI-H samples have more deletions while MSS samples have more insertions (p-value 

<10-31, χ2 test).  Only MS loci with ≥ 5 repeats in both the normal and mutated samples were 

included. 



	

	

	
	
Figure 4:  Transcriptional effects of the ESRP1 p.K511fs MS indel mutation. A. ESRP1 

expression levels are significantly lower in ESRP1 mutant (p.K511fs) versus wild type (WT) 

MSI tumors from the UCEC cohort (P<1.5x10-9, Mann-Whitney test). B. The ratio of FGFR2 

isoform IIIc to IIIb is significantly higher (p-value <10-7, Mann-Whitney test) in ESRP1 mutant 
	
tumors compared to WT tumors. Increased ratio of FGFR2 isoform IIIc to IIIb is associated 

with epithelial to mesenchymal transition. 

	
	
	
Figure 5: Location of ACVR2A MS indel mutations in MSI-H stomach adenocarcinoma 

(STAD) samples. The MS indel hotspot p.K437fs was identified in 52 of 69 cases (MSMutSig 

q=2.4×10-7) and had not been previously identified in these samples



	

	

Table 1:  Significantly Mutated MS Loci 
 

Tumor	set	 Gene	 Protein/genomic	change	
Mutated	
samples		

Expected	
mutated	
samples	

p-value	 q-value	
Most	common	
MS	indel*	

COAD-MSI		 ACVR2A	
p.K437fs	
g.chr2:148683686_148683693delA	

80%	(32/40)	 6.25% (2.5/40) 6.4×10-9	 3.1×10-5	 A8->A7	(100%)	

COAD-MSI		 RNF43	
p.G659fs	

g.chr17:56435161_56435167delC	

40%	(16/40)		 4.25% (1.7/40) 6.1×10-6	 0.015	 C7->C6	(100%)	

COAD-MSI		 DOCK3	
p.T1850fs	

g.chr3:51417604_51417610delC	

39%	(14/36)		 4.4% (1.6/36) 2.1×10-5	 0.08	 C7->C6	(86%)	

STAD-MSI	 ACVR2A	
p.K437fs	

g.chr2:148683686_148683693delA	

75%	(52/69)		 4.5% (3.1/69) 2.6×10-9	 9.1×10-6	 A8->A7	(100%)	

STAD-MSI	 RNF43	
p.G659fs	

g.chr17:56435161_56435167delC	

35%	(24/69)		 2.9% (2/69) 1.9×10-6	 0.0034	 C7->C6	(100%)	

STAD-MSI	 MSH3	
p.K383fs	

g.chr5:79970915:79970922delA	

41%	(28/69)		 4.5% (3.1/69) 3.2×10-5	 0.037	 A8->A7	(85%)	

STAD-MSI	 PRDM2	
p.K1489fs	

g.chr1:14108749:14108757delA	

48%	(33/69)		 8.7% (6/69) 8.2×10-5	 0.07	 A9->A8	(93%)	

UCEC-MSI	 RNF43	
p.G659fs	

g.chr17:56435161_56435167delC	

23%	(36/155)	 0.7% (1.2/155) 1.6×10-6	 0.016	 C7->C6	(84%)	

UCEC-MSI	 DOCK3	
p.T1850fs	

g.chr3:51417604_51417610delC	

23%	(33/145)	 1.6% (2.3/145) 3.9×10-6	 0.019	 C7->C6	(81%)	

UCEC-MSI	 JAK1	
p.N860fs	

g.chr1:65306997:65307004delA	

21%	(33/158)	 2.2% (3.5/158) 1.45×10-5	 0.05	 A8->A7	(89%)	

UCEC-MSI	 ESRP1	
p.K511fs	

g.chr8:95686611:95686618delA	

20%	(31/158)		 2.2% (3.5/158) 3×10-5	 0.076	 A8->A7	(94%)	

UCEC-MSI	 ACVR2A	
p.K437fs	

g.chr8:95686611:95686618delA	

18%	(29/157)		 2.2% (3.5/157) 5.9×10-5	 0.096	 A8->A7	(93%)	

 
*the percentage of tumors harboring the most common MS indel is shown in parentheses 

 



	

	

Online Methods 
	
Data description 
	

Whole exome sequence (WES) data from 20 tumor types were downloaded from The 
	
Cancer Genome Analysis (TCGA) website (https://tcga-data.nci.nih.gov/docs/publications/tcga/) 
	

60 (Table S2). We restricted our analysis to fresh frozen samples sequenced on an Illumina 

platform. 

For the analysis of microsatellite stable (MSS) versus unstable (MSI) tumors, only 

samples from the colon (COAD), stomach (STAD), and uterine (UCEC) cohorts that had MSI 

status annotated by the TCGA were used (https://tcga-data.nci.nih.gov/docs/publications/tcga/). 
	

For comparison with previously identified mutations, MAF files were downloaded from 
	
the Broad Institute’s Genome Data Analysis Center (GDAC; http://gdac.broadinstitute.org/), 
	
which includes data from samples used in the TCGA marker papers (https://tcga- 
	
data.nci.nih.gov/docs/publications). We also analyzed microsatellite (MS) indels in additional 
	
TCGA samples that were not part of the TCGA marker papers, but these did not have a curated 
	
MAF file for comparison. 
	

The three BAM files for case NA12878 from the 1000 Genome project18
 

	
(http://www.internationalgenome.org/) which were used for the false positive and false negative 
	
analysis were deposited at the FireClouad. All three of these samples were sequenced at the 
	
Broad Institute. 

	

	
	
	
	
Microsatellite (MS) definition and identification 
	

Microsatellites (MS) are genomic regions containing multiple copies of a repetitive motif 

of 1-6 basepairs (bps). While there is no consensus regarding the number of consecutive motifs 



	

	

required to constitute a microsatellite, we define a MS locus as a sequence with at least five 

successive motifs, regardless of the motif size. We allowed the MS sequence to have impurities, 

ie, bases that do not follow the exact repeated motif structure. For example, we considered the 

sequence …GTCAAAAAAAACAAAAAAAAAATCC… as one MS locus with 17 repeats of an 

A motif, rather than two MS loci, each containing 8 repeats of an A motif. We allowed up to 

15% impurity (ie. up to 15% bases that do not match the exact motif), and used the PHOBOS 

algorithm16 with default parameters to identify MS with impurities in both the reference genome 

and WES sequencing reads. Note that we do not suggest that impurities are errors in the 

reference genome, but rather reflect our looser definition of MSs. We identified 23,677,217 MS 

loci in the whole genome, 383,515 MS loci in the regions covered by the TCGA whole exome 

Illumina data, and 145,516 MS loci in the coding regions (as defined by Oncotator59). All exonic 
	
MS loci are listed in Supplementary File S1. 
	
	
	
	
MS-specific alignment 
	

For each normal and tumor sequencing file (ie. BAM file), we used PHOBOS to identify 

all reads that contained a MS sequence. Following the approach applied in lobSTR62, for each 

MS locus, we used the 5’ and 3’ flanking sequences of the MS to identify reads that support the 

specific MS. We considered all reads that had at least 10bp flanking the 5’ and 3’ ends of the 

MS. (We found that a minimum of 10bp substantially reduces the number of reads that do not 

match the particular MS.) The alignment procedure was performed in two steps. First, we 

created, for each MS motif, a library of segments from the human reference genome (hg19) that 

contained 100 bases from the 5’ and 3’ ends of each MS locus. Then for each read that contains a 
	
MS sequence, we aligned only the non-MS parts of the sequence to the library that contained loci 
corresponding to same motif that was found in the read (e.g. a read with 7 AGs was aligned 

against all MS loci with the AG motif). The second step of alignment was then performed using 



	

	

Bowtie263, and only reads that had a single best alignment were included in downstream 

analyses. MS-specific alignment decreased the number of incorrectly mapped reads by a factor 

of ~5 (Fig. S3). 

	
	
	
Noise estimation 
	

Using the MS-specific alignment, we compiled the set of reads that map to each of the MS 

loci in every sample. For each MS locus, we generated a histogram of MS repeat lengths (Fig. 1A). 

We hypothesized that not every length represented in the histogram reflects a true allele in the 

sample, and that the observed numbers of MS repeats in a read that align to a specific MS locus 

fluctuate around the true value (or values, in the case of a heterozygous site). Some read lengths 

may be artifacts that were introduced by polymerase stuttering during PCR, sequencing process, or 

misalignment. The frequency of such sequencing errors varies across MS loci and depends on 

parameters such as the specific MS motif and the number of repeats. 

To predict the true underlying alleles in the tumor and normal samples, we generated an 

empirical noise model to estimate, 𝑃{!,!}Noise 𝑘,𝑚 ,  the probability of observing a read with a length 

of k repeats of motif m, given that the true allele in the sample has j repeats of m. We assumed that 

all MS loci with the same motif and the same number of repeats have the same noise distribution 

(and hence can be pooled together to improve the estimated noise model). In addition, we assumed 

that all normal samples from male donors have only one true allele at all MS loci on the X 

chromosome, and that the true number of motif repeats corresponds to the observed mode of repeat 

lengths (ie. the most common number of repeats), while other repeat lengths represent noise. Using 

this approach, we generated an empirical noise distribution for MS loci with a specific motif and 

number of repeats. Finally, we smoothed the noise model using python nonparametric regression 

function (polynomial of 3rd order) 



	

	

 
Allele calling 
	

We used the empirical noise model to infer the most likely allele(s) at each MS locus in 

every sample. We began with the assumption that the sample had only one allele at a given MS 

locus, and found the most likely repeat length. In practice, we found the repeat length that 

maximized the log likelihood,  

𝑙𝑛 ℒ 𝐴|𝑟! = 𝑙𝑛 𝑃!!"#$% 𝑟!
!!

 

	

where A is the underlying allele, ie. the repeat length of motif m, {ri} represents the set of repeat 

lengths observed in the reads that mapped to the MS locus, and PA
Noise is the empirical noise model 

for the allele A. 

Next, we tested a model in which a sample harbors two distinct alleles at a MS locus 

present at a given ratio. These two alleles could be either germline (ie. inherited from the two 

parents)  or could represent a somatic mutation at a homozygous site. The ratio between the alleles 

can be 1:1, as in a germline heterozygous site, or, in tumors, the ratio could vary depending on the 

number of copies of each allele, the purity of the tumor sample, and whether the mutation appears 

in all cancer cells or only in a subset of the them. We determined the likelihood for two alleles, A1 

and A2, with fractions (f ,1-f); e.g. a read with 9 repeats of AC  

(r=9) and proposed alleles  𝐴 = (A1=6 AC, A2=8 AC, f=0.4). The contribution of read r to the 

likelihood function is then given by:  

                 𝑙𝑛 ℒ 𝐴|𝑟 = 𝑙𝑛 𝑓 ∙ 𝑃!!
Noise 𝑟 + 1− 𝑓 ∙ 𝑃!!

Noise 𝑟  



	

	

And based on all reads at the locus, the log likelihood is: 

   𝑙𝑛 ℒ 𝐴|𝑟 = 𝑙𝑛 ℒ 𝐴|𝑟!{!!}  

As previously, the allele set that had the maximum likelihood was chosen (by optimizing overt A1, 

A2 and f).  

We then compared the two models, the one-allele model and the two-allele model, using the log 

likelihood ratio test (using a χ2 null distribution), 𝑃!! 𝐷,∆𝑓 < 0.05  where 

  𝐷 = −2 ∙ ln ℒ! + 2 ∙ ln ℒ!  and Δf equals 2, as we added two new parameters – the new 

allele and its fraction. If the χ2 test gave a p-value > 0.05, we chose the one-allele model. If the 

χ2 p-value<0.05, we repeated the test comparing a two-allele model to a three-allele model, and 

so forth, until we reached a maximum of four alleles. We applied the following restrictions to 

this process: (1) we analyzed only sites that had at least 10 reads covering them, and (2) we 

called an allele only if there were at least 5 reads that support it. 

	
	
	
Filtering normal loci 
	

Even though normal samples should not have more than two alleles, we allowed the 

algorithm to continue scanning for more than two alleles in normal samples as a test to detect 

MS loci associated with increased noise. We did not call somatic MS indels at sites where the 

normal samples appeared to have >2 alleles or if the read counts were not consistent with a 

heterozygous site (i.e., binomial test p-value<0.05 with parameter of 0.5). 

	
	
	
Mutation calling 
	

For each tumor/normal pair, after inferring the alleles at each MS locus in each sample 

separately, we compared the inferred alleles in the tumor and normal samples. MS loci that had 



	

	

different alleles in the tumor and normal samples were considered as potentially having somatic 

mutations, and were nominated for downstream analysis. To ensure that alleles are indeed 

different, we tested whether the tumor data is described by the tumor alleles better than the normal 

alleles, and vice versa. This was performed by comparing the Akaike information criterion (AIC) 

score for the two models and requiring that the difference exceeds a predefined threshold, Tr (this 

was one of the parameters that were later optimized based on the simulated data): 

𝐴𝐼𝐶!"#$% !"!"# 𝑇𝑢𝑚𝑜𝑟 𝑑𝑎𝑡𝑎 − 𝐴𝐼𝐶!"#$%& !"#$% 𝑇𝑢𝑚𝑜𝑟 𝑑𝑎𝑡𝑎 > 𝑇!
𝐴𝐼𝐶!"#$%& !"#$% 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝐴𝐼𝐶!"#$% !"#$% 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑎𝑡𝑎 > 𝑇!

 

 Finally, as an additional filter, we performed a Kolmogorov-Smirnov (KS) test 

between the tumor and normal repeat length histograms. The KS test can identify sites with 

different alleles but does not identify the exact alleles in the tumor and normal. The KS test p-

value was used as another filtering criteria (optimized using the simulated data). 

	
	
	
False positive analysis 
	

The false positive (FP) rate was estimated by analyzing three independent whole exome 

sequencing data sets from sample NA12878 from the 1000 Genomes project (each with an 

average depth of 60x): NA12878_47, NA12878_49 and NA12878_51.  All three of these 

samples were sequenced at the Broad Institute, each based on a different WES library (to capture 

the variability introduced by library construction as well as by sequencing). From these three 

files, we created six tumor-normal pairs by selecting one to represent the tumor and a different 

one to represent the normal. Note that MSMuTect is not symmetric with respect to the tumor and 

normal (hence the 6 possible pairs) since the tumor can have more than 2 alleles with different 

allelic ratios whereas the normal is allowed at most two alleles that are consistent with a 1:1 ratio. 



	

	

Since all data were acquired from the same sample, all putative somatic MS indels identified by 

MSMuTect are false positives.  

We used MSMuTect to call somatic MS indels across a range of parameter settings and 

estimated the false positive rate by calculating the average number of apparent somatic MS indels 

nominated across the six pair-wise comparisons (Online Methods and Fig. S4). We found that the 

FP rates of the A motif and the C motif are similar across the range of Tr and KS parameters (Fig. 

S4). The AC and AG motifs had only ~2000 loci, and our analysis did not yield any FP mutations 

for either of these motifs. Therefore, we could not independently estimate the FP rates, but we 

assumed them to be similar to the FP rates of the A and C motifs and therefore used the same 

parameter values for all motifs. We chose parameters such that the FP rates for the different motifs 

resulted in an average of ~5 false positive MS indels across the entire exome, consistent with the 

FP cutoff used in MuTect 62. To achieve this, we chose values of AIC Tr=8 and KS-test = 0.031 for 

all the motifs. 

	
	
	
True positive analysis 
	

To evaluate sensitivity, we simulated 20,000 somatic MS indels by inserting or deleting a 

single motif repeat at different loci throughout the exome and then measured the ability of 

MSMuTect to detect these changes as a function of the original number of motif repeats and the 

variant allele fraction. We chose to insert or delete a single motif since these are the most 

prevalent MS indel events in the genome and are also the most challenging to detect. 

We first created virtual tumor datasets using the same three WES datasets from sample 

NA12878 (NA12878_47, NA12878_49 and NA12878_51). Here, we defined NA12878_47 as 

the normal sample and NA12878_49 as the tumor sample and simulated MS indels using data 

from NA12878_51. We generated somatic MS indels by replacing a fraction fr of read lengths in 



	

	

a histogram representing a site with k repeats with read lengths from a site with l repeats, thus 

representing a somatic event from k to k,l at (1-fr,fr).  

We then used MSMuTect to detect somatic mutations by comparing the simulated tumor 

to the third copy of NA12878 (acting as the matched normal). We evaluated the sensitivity of 

MSMuTect to identify MS indels for various allele fractions and repeat lengths (Fig. S5). We 

evaluated MSMuTect using different values of fr (ranging from 0.05 to 0.5 with steps of 0.05) 

and generated 200 mutations for each allele (k), mutated at random, to alleles l=k±1. Sensitivity 

was highest for shorter MS loci (e.g. sensitivity decreased from 98% for AAAAA, or A5 in 

short, to 75% for A12) (Fig. S5). Simulated MS indels with an allele frequency below 20% 

exhibited high rates of false negatives, likely because the allele fraction of ‘artificial’ MS indels 

generated by PCR exceeded the simulated MS indel fraction. 

	
	
	
RNA Validation 
	

For the list of the 7 significant MS loci, we manually compared the 161 MS indels found 

in the stomach cancer (STAD) cohort to the corresponding tumor RNA-seq data which was



	

	

obtained from the Broad Institute’s Genome Data Analysis Center (GDAC; 
	
http://gdac.broadinstitute.org/). An indel was confirmed if at least two RNA-seq reads supported 
	
the mutant MS allele (Table S3). 
	
	
	
	
MSI and POLE classification 
	

For each sample, a score associated with POLE mutations and a score associated with 

MSI mutations were calculated based on the ratio of signal mutations (i.e., mutations uniquely 

associated with the mutational process) to background mutations (other mutations). For POLE, 

the signal mutation63 is C>A in the context TCT, and the background mutations are all other 
	
C>A mutations. The other common POLE-associated mutation – C>T in the context TCG – was 
	
not used as a signal mutation because it is also present in other common mutational processes, 

including the signature associated with spontaneous cytosine deamination at meCpG 

dinucleotides (sometimes called the "aging" signature), and APOBEC-associated signatures65. 

For MSI, a set of three signal mutations were chosen: C(C>A)N, G(C>T)N, and Y(A>G)N 

(where Y is a pyrimidine and N is any base) based on previous analyses23, and all other 

mutations were considered background mutations. Finally, we applied a sigmoid function to the 

ratio of these mutation counts to produce a final score value between 0 and 1. 

	
	
	
Cancer genes 
	

We used a list of 727 widely accepted cancer genes recently published by Nik-Zainal et. 

Al,6 (see Supplementary Table 12 therein), which combined genes from the Cancer Gene Census 

(CGC)66 list with gene lists from other accepted sources and recent publications. 



	

	

Diversity in normal samples 
	

As part of MSMuTect, we identify the MS alleles in the normal samples before comparing 

them to tumor alleles. For each MS locus, we analyzed the alleles across all normal samples and 

calculated its diversity, i.e. the fraction of normal samples that had an allele that is different from 

the reference genome. For the significance analysis (both for MSMutSig and the search for new 

events in known cancer genes), we excluded loci that had >10% diversity. While this is similar to 

the rationale for using a panel-of-normals comparison to exclude sites with either missed germline 

events or sequencing artifacts64, in MS loci, this approach may also identify sites that are more 

prone to MS indels and have a naturally higher mutation rate. 

	
	
	
	
MSMutSig 
	

MSMutSig searches for MS loci that are mutated significantly more frequently than 

expected by chance. We found that the main two covariates that influence the mutation rate at 

MS loci are the specific motif and the number of repeats (Figs. 3B-C), while other covariates 

that are known to influence SNV rates (such as replication timing) have minimal effect on MS 

mutation rates. Thus, we estimated the background mutation frequency for each motif and repeat 

length in every tumor type separately.  

We estimated the rates (and tested the significance) of loci that contained at least one MS 

mutation across the analyzed cohort. We calculated these conditional rates (ie. conditional on 

observing at least one event) since we observed a wide variability of mutation rates with a 

significant enrichment of sites with no mutation. Estimating the mutation rate including these 

“stable” sites will underestimate the overall background rate and hence inflate the list of 

significantly mutated loci. As an example, for the A motif with 11 repeats, there were 208/242 

loci without any MS indel across the COAD MSI-H cohort, which is ~6 times more than we 



	

	

would have expected (35 loci, P-value<10-16  Binomial test,) when using all sites and events to 

estimate the background rate. Therefore, we concluded that there is a subset of MS loci that are 

less prone to MS indels and should be excluded from the estimation. Even after excluding these 

“stable” sites, there was still a large variability of mutation rates among MS loci with the same 

motif and repeat length, beyond the variability one would expect from a binomial distribution 

assuming all sites had the same underlying background mutation rate. This high variability was 

observed even among loci that reside in genomic regions that are less likely to harbor 

functionally relevant MS loci than exons, such as UTR’s and introns (Fig. 

S9).  

Therefore, we included an additional variable to attempt to capture this increased 

variability. We used a negative-binomial distribution (also known as the gamma-Poisson), which 

has two parameters that control the mean and the variability around the mean. We set the mean to 

reflect the average mutation rate (at sites with at least one MS indel), and then tuned the 

variability such that no significant loci were identified outside the exome (with FDR q<0.1). We 

then used these parameters to identify significantly mutated MS loci in the coding regions. The Q-

Q plots for the non-coding MS loci and coding MS loci are shown in Figs. S10-S12 (for different 

tumor types). One can see that there is no inflation of significantly mutated sites and most MS 

loci follow the expected uniform p-value distribution (ie. reside close to the diagonal of the Q-Q 

plot).	

	
Expression data 
	

The RNAseq based normalized expression level for each gene was obtained from the 

Broad Institute’s Genome Data Analysis Center website (http://gdac.broadinstitute.org/). We 

used the log2-normalized RSEM values when available, but in cases where they were not 

available, we used log2 RPKM values. 
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