Practice Patterns and Work Environments That Influence Gender Inequality Among Pediatric Surgeons

Citation

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41971492

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Scholarly Report submitted in partial fulfillment of the MD Degree at Harvard Medical School

Date:
13 March 2019

Student Name:
Biqi Zhang, BS

Scholarly Report Title:
Practice Patterns and Work Environments that Influence Gender Inequality Among Pediatric Surgeons

Mentor Name(s) and Affiliations:
David C. Chang, PhD, MPH, MBA, Department of Surgery, Massachusetts General Hospital

Collaborators, with Affiliations:
Maggie L. Westfal, MD, MPH, Department of Surgery, Massachusetts General Hospital
Cornelia L. Griggs, MD, Department of Pediatric Surgery, Columbia University College of Physicians & Surgeons
Ya-Ching Hung, MD, MPH, Department of Surgery, Massachusetts General Hospital
Cassandra M. Kelleher, MD, Department of Pediatric Surgery, Massachusetts General Hospital for Children
Title
Practice Patterns and Work Environments that Influence Gender Inequality Among Pediatric Surgeons

Purpose
Gender disparity in career advancement has been attributed to shortcomings at the level of the individual. The goal of this study was to test the hypothesis that female physicians face organizational barriers in practice environment that hinder advancement, even after attaining advanced specialty training.

Methods
Using a 2000-2015 New York statewide dataset, we compared board-certified pediatric surgeons by their specialist case volume as a percentage of total caseload and by Herfindahl-Hirschman Index (HHI), a quantitative representation of surgeon focus within their specialist case mix. Surgeon’s networks, defined annually and as the group of hospitals where each surgeon practiced, were also compared.

Results
Fifty-one surgeons were analyzed for 461 surgeon-years and 94,979 cases. Female surgeons had lower case volume (159 cases/year versus 214, p<0.01), lower shares of specialist cases (14.1% versus 16.7%, p=0.04), and less focused practices (HHI 0.16 versus 0.20, p=0.03). Female surgeons’ networks had fewer colleagues (7.2 versus 12.1, p<0.01), lower total case volume (388 cases/year versus 726, p<0.01), and lower specialist case volume (83 cases/year versus 159, p<0.01), even after accounting for career length. However, female surgeons performed more cases within their networks (49% versus 36%, p=0.04) and worked at major teaching hospitals as often as men (76% versus 76%, p=0.97).

Conclusions
Substantial differences in practice patterns and work environment may contribute to the gender gap in career advancement even within a highly competitive surgical specialty. Our study
establishes that the career challenges faced by female surgeons unlikely reflect personal shortcomings but rather represent system failures that require intentional scrutiny and deliberate change.
Table of Contents

Manuscript
 Introduction
 Methods
 Results
 Discussion
 Conclusion
 References
 Tables & Figures
 Supplementary Data
Introduction

Despite a narrowing gap in the number of men and women working in the health professions, women remain underrepresented in the upper echelons of academic practice and receive lower salaries in equal posts. For example, while 40% of all full-time clinical faculty in 2015 were women, only 22% of full professors and 16% of department chairs were women. In academic surgery, while 37% of all full-time faculty were women, only 20% of full professors and 3% of department chairs—ten surgery chairs—were women. With respect to pay, female surgeons have been found to earn less than male surgeons even after adjusting for age, “caliber” of medical school, years since completion of residency training, faculty rank, specialty, National Institutes of Health funding, clinical trial participation, and publication count. Although likely multifactorial in etiology, the advancement gap may be a result of inequalities in aspects of physicians’ practice environments that facilitate referrals for expertise-building work, such as complex cases, or that influence renown.

We chose to approach gender inequality as the field of medicine would approach any problem: with hard data. The objective of this study was to evaluate factors that directly contribute to a physician’s promotional eligibility for differences by gender, specifically, attributes of a physician’s clinical practice and aspects of a physician’s organizational network. Variables that impact career advancement were identified based on promotion criteria used by leading US academic medical centers. We tested the hypothesis that relative to their male counterparts, female physicians work in smaller clinical networks and have clinical practices with less expertise-building work.

Methods

Study population

As the measures and methods used in this study are new, we chose to conduct a feasibility study using a subset of surgeons. We focused on pediatric surgeons, a group of specialized surgeons whose scope of practice includes both general surgery and specialist cases. All data were derived from the 2000-2015 New York (NY) Statewide Planning and Research Cooperative System (SPARCS) dataset. In brief, SPARCS is an all-payer reporting system that
catalogues detailed information on all inpatient and outpatient care encounters occurring at hospitals throughout NY state. SPARCS is one of the few US data registries that contains physician identifiers and therefore enables analysis of individual surgeons and their practice patterns. Physician identification numbers maintained in SPARCS were matched to physician names in the NY Physician License database. A list of pediatric surgeons was then compiled by querying the American Pediatric Surgical Association membership directory. Pediatric surgery board certification dates were verified using the American Board of Surgery Online Verification website. Years in which a surgeon’s total case volume was less than the 10th percentile (n=20 cases) were excluded, as low case volume likely represents incomplete capture of a surgeon’s caseload by the NY SPARCS dataset (e.g., a surgeon who practices in both NY and New Jersey).

Surgeon specialization

Our primary endpoints were measures of surgeon specialization, which are considered indicators of a surgeon’s specialist expertise and can be important for career advancement. We compared two measures of surgeon specialization: % peds and Herfindahl Hirschman Index (HHI).

The % peds measurement represents how often a pediatric surgeon uses their pediatric surgery specialist training. It was calculated by dividing the volume of pediatric surgery “specialist” cases performed by total case volume (% peds). Non-operative services such as radiologic studies and consultations were excluded from total case volume. Specialist cases were defined using the Accreditation Council for Graduate Medical Education (ACGME) list of case types that should be completed by all pediatric surgery fellows prior to graduation (i.e., aortopexy, tracheoesophageal fistula repair, Heller myotomy; Supplementary Data Table 1); the listed cases are those focused in infancy, childhood, and patients with “special health needs arising from congenital and acquired pediatric surgical conditions” in which board-certified pediatric surgeons should be competent. We excluded appendectomy, ovarian and fallopian tube operations (e.g., ovarian cystectomy), and non-operative management of multisystem trauma from designation as specialist cases, because pediatric surgery-specific expertise is not required to perform these cases with confidence. In addition, these cases are not expertise-building cases that contribute to “clinical excellence” or lend insight for special research that beget publications, which are two major areas of focus in promotion criteria. All remaining cases
were classified as non-specialist cases. International Classification of Disease, Ninth Edition procedure (ICD9p) codes were matched to these lists of specialist and non-specialist cases (Supplementary Data Table 2). Of note, patient age parameters were not used in case designation because some pediatric surgeons care for older patients with special needs arising from pediatric surgical conditions; doing so demonstrates specialist expertise, and to exclude these cases may impact measures of surgeon specialization.

HHI represents a pediatric surgeon’s degree of focus within their specialist case mix beyond what is captured by % peds. HHI is a measure widely used in economics to assess market concentration.14 Its application to measuring surgeon specialization is modeled by Hall et al.12 An HHI close to 1 indicates a surgeon who performs a small variety of specialist cases and therefore has a narrowly focused practice; this surgeon is someone who would be considered an expert in those specific disease processes and case types. An HHI closer to 0 indicates a surgeon who performs a large variety of specialist cases, has a less focused practice, and is therefore less likely to be an expert in any specific disease process or case type. HHI is calculated by summing the squares of each fraction of a surgeon’s caseload that is accounted for by a particular specialist procedure. For example, the HHI of a surgeon who performs a total of 6 pediatric surgery specialist cases, comprising 1 aortopexy, 2 pyloromyotomies, and 3 splenectomies, would be 0.389:

\[
= \left(\frac{1 \text{ aortopexy}}{6} \right)^2 \times \left(\frac{2 \text{ pyloromyotomies}}{6} \right)^2 \times \left(\frac{3 \text{ splenectomies}}{6} \right)^2 = 0.389
\]

For analyses of HHI, years in which a surgeon’s specialist caseload was less than the 10th percentile (n=8 specialist cases) were excluded, because HHI calculations using low case volumes is mathematically imprecise and introduces extreme values into the analyses.

Practice environment

Additional study endpoints were characteristics of a surgeon’s network. Surgeon network was defined yearly and included all hospitals where a surgeon practiced; many surgeons in the US operate at more than one hospital (Figure 1). We examined five distinct measures of practice environment: 1) number of pediatric surgeon colleagues in the network 2) total network case
volume 3) network specialist case volume 4) proportion of total network case volume performed by an individual surgeon 5) whether a surgeon performed the majority of their cases at a major teaching hospital. As in prior studies, major teaching hospital was defined as belonging to the Council of Teaching Hospitals of the Association of American Medical Colleges (Supplementary Data 3).15,16

Statistical analysis

To compare surgeons who have been in pediatric surgery practice for similar lengths of time, we characterized surgeons as either early (<10 years) or late career (≥10 years) based on time since initial pediatric surgery board certification. Ten years was selected as the cut-off since promotion from assistant to full professor at a typical US academic department of surgery has been cited to occur after 10-14 years.17

Comparisons of surgeon specialization and practice environment as continuous variables were made using the Student’s t-test. Significance level was set at alpha ≤0.05. All statistical analyses were performed using STATA 13/IC (StataCorp, College Station, TX).

Results

Fifty-one surgeons were analyzed (10 female, 19.6%) for a total of 461 surgeon-years (64 female, 14.0%), and 94,979 cases (10,151 female, 10.7%). Mean career length was 12.5 years and 17.7 years for female and male surgeons, respectively (p=0.19) (Table 1). On average, surgeon case volume was 206 ± 7 cases/year and contained 16.4 ± 1.0% pediatric surgery specialist cases (% peds).

Overall, female surgeons’ case volumes were lower (159 ± 14 versus 214 ± 8 cases/year, p<0.01) and contained a lower percentage of specialist cases (14.1 ± 1.0 versus 16.7 ± 0.5 % peds, p=0.04). These differences were pronounced among early career surgeons (female 168 ± 24 versus male 257 ± 14 cases/year, p=0.01; female 14.7 ± 1.6 versus male 18.3 ± 0.7 % peds, p=0.04) but did not reach statistical significance among late career surgeons (female 153 ± 16 versus male 193 ± 9 cases/year, p=0.12; female 13.8 ± 1.2 versus male 16.0 ± 0.6 % peds, p=0.18). Female surgeons’ practices were also less focused within pediatric surgery specialist cases (HHI 0.16 ± 0.02 versus 0.20 ± 0.01, p=0.03) (Figure 2). These differences trended in the same direction after accounting for career length but did not achieve statistical significance,
likely due to limitations in sample size (early career female HHI 0.14 ± 0.02 versus male 0.18 ± 0.01, $p=0.10$; late career female HHI 0.18 ± 0.02 versus male 0.22 ± 0.01, $p=0.13$). Notably, female surgeons did not experience significant change in HHI throughout their careers ($+0.001$ HHI/year, $p=0.81$) while male surgeons exhibited increasing HHI over time ($+0.002$ HHI/year, $p<0.01$) (Figure 2).

At the network level, female surgeons practiced in smaller networks with significantly fewer surgeon colleagues (7.2 ± 0.7 versus 12.0 ± 0.5, $p<0.01$), including after accounting for career length (early career female 8.4 ± 1.3 versus male 15.5 ± 0.8 colleagues, $p<0.01$; late career female 6.6 ± 0.8 versus male 10.4 ± 0.6 colleagues, $p<0.01$) (Figure 3). Female surgeons’ networks also had lower total case volume (388 ± 38 versus 726 ± 29 cases/year, $p<0.01$) and lower specialist case volume (62 ± 8 versus 133 ± 6 specialist cases/year, $p<0.01$). These trends persisted in early career (458 ± 75 versus 906 ± 49 total cases/year, $p<0.01$; 69 ± 12 specialist cases/year versus 173 ± 11, $p<0.01$) and late career (349 ± 41 versus 642 ± 34 total cases/year, $p=0.01$; 59 ± 11 versus 114 ± 7 specialist cases/year, $p=0.05$) (Figure 3).

Upon comparing practice patterns for surgeons within their own networks, we found that female surgeons performed, on average, a greater percentage of their network’s total case volumes early in their careers ($48.8 \pm 5.8\%$ versus $36.2 \pm 2.3\%$, $p=0.04$) (Figure 4). To elaborate, in networks where early career female surgeons operated, they performed 48.8% of all cases, while their network colleagues—either male or female—performed the remaining cases. In networks where early career male surgeons operated, they performed 36.2% of the network’s case volume. Further, early career female surgeons performed a greater share of their networks’ non-specialist caseloads than their male peers ($48.6 \pm 5.8\%$ versus early career male surgeons $36.2 \pm 2.3\%$, $p=0.04$). These associations trended in the same direction among late career surgeons but did not reach statistical significance ($50.8 \pm 4.8\%$ network non-specialist caseload versus male surgeons $45.7 \pm 2.1\%$, $p=0.37$).

Finally, the percentage of female surgeons who worked at major teaching hospitals was not different from that of the male cohort (76% and 76%, $p=0.97$). After stratifying by career length, a greater proportion of early career female than male surgeons practiced at major teaching hospitals (100% versus 92%, $p<0.01$); the inverse was seen among late career surgeons, although the association did not reach statistical significance (60% versus 71%, $p=0.10$).
Discussion

Our study complements the descriptive studies on gender inequality in the current literature by using hard data to evaluate modifiable aspects of the academic workplace. We found that despite achieving the same levels of specialized training and performing a greater share of all available work, female pediatric surgeons have less specialized and less focused practices than their male peers. Further, despite working in the primary teaching hospitals of academic institutions in equal proportion, female pediatric surgeons operate in smaller networks with fewer available expertise-building cases. Collectively, the data suggest that unequal access to expertise-building work and large physician networks may contribute to the career advancement gap.

Less attention has been paid to aspects of the surgery workplace and the modifiable organizational factors that may contribute to and sustain disparity. Our study suggests that the particular network of hospitals in which a surgeon operates may affect their case volume and case mix. Visibility to surgical colleagues, referring physicians, and the medical community may be diminished for surgeons who work in smaller networks. The measurable differences in workplace attributes by gender (i.e., network specialist case volume, number of surgeon colleagues) are evident within and across networks and may thereby contradict the dogma that surgeons’ practices can be built solely by fostering relationships with surgeon colleagues, primary care physicians, and medical specialists in the local community. It is very likely that a physician’s skillset and achievements are a result of more than their individual efforts. This is further underscored by study data revealing that female pediatric surgeons work at major teaching hospitals in equal proportion to their male pediatric surgeon peers and that female pediatric surgeons perform an equal share of all available work. In fact, early career female pediatric surgeons perform substantially more cases than their early career male counterparts. Rather than comparing the efforts or prowess of individuals, it may be prudent to investigate those modifiable external workplace influences that sustain inequity in surgery.

Consistent with recent literature about the narrowing gender gap, we found that male and female pediatric surgeons work in academic environments in equal measure (74% versus 72%, respectively). Despite this, female pediatric surgeons in our cohort have caseloads that are much less specialized and focused within pediatric surgery. Given the payment contracts and promotion criteria most widely used in surgery, our study conclusions may explain why gaps in
rank and pay have persisted. Firstly, promotion criteria for many major academic centers focus on regional, national, and international renown. Renown is assessed by the number of research publications and invited lectureships that a surgeon accrues, which is often easier when a surgeon performs more specialist cases and sees more patients with specialist needs. Surgeons whose caseloads are less specialized are at an inherent disadvantage when it comes to having specialist expertise and advancing professionally. Secondly, reimbursement is higher for specialist cases. Since female surgeons’ caseloads have fewer specialist cases, it is not surprising that female surgeons have lower compensation even after accounting for years in practice.

Our study has several important implications. Numerous interventions at the system-level may mitigate gender disparities in surgery career advancement. Specialization differences between male and female surgeons may reflect unequal referral patterns for subspecialty cases. A centralized referral system may help equalize the distribution of expertise-building cases. In addition to re-distributing expertise-building cases, academic medical centers might consider revising promotion criteria to reflect the volume of generalist procedures that female surgeons have disproportionately taken on. These generalist cases contribute significant financial value to hospital systems at-large, and academic promotion criteria could better recognize these “citizenship” contributions.

Systemic remedies may be complemented by sponsorship initiatives at the level of individual physicians. Sponsorship occurs when a powerful person uses their professional clout to lift up lesser known talent by giving them high-visibility, high-profile work. The practice of sponsorship has been studied extensively in the corporate world where ceiling effects felt by accomplished businesswomen parallel the career advancement challenges faced by female surgeons. Businesses that have adopted sponsorship programs in addition to traditional mentorship efforts have seen significant progress in accelerating deserving women up their corporate ladders. In surgery, established surgeons in positions to share and transfer new patient cases to their junior colleagues should be expected to do so and, importantly, to do so fairly.

Our study conclusions are to be taken in the context of their limitations as well as with the understanding that the metrics used here are new. Methods used to describe surgeon practice patterns and work environments are novel, including the designation of specialist cases (Supplementary Data Table 1) and the definition of surgeon network. The study of NY pediatric
surgeons may not be generalizable to other physician populations. Unfortunately, very few population datasets capture physician identifiers that enable detailed analysis of clinician level practice patterns and work environments. While Medicare is another possible data source, its registry would not capture any pediatric cases. Given the results of this feasibility study, however, investigation of other medical and surgical specialties as datasets allow may offer further insight. Lastly, our study was inherently limited by the data available in SPARCS. We had no data on leaves of absence; information on maternity and paternity leave, military deployments, and medical absences are usually available at the institution level, which was difficult to obtain for our cross-institutional study. We also had no data to determine which surgeons were full-time equivalent employees; as a result, it was not possible to adjust for the effects of extra-clinical commitments on surgeons’ practice patterns.

Conclusion

Gender disparity in academic promotion and salary is well documented in medicine and surgery. While a growing body of literature has successfully described the imbalance in numbers, our study evaluates modifiable aspects of the academic workplace to uncover where actionable change may be effective. We reveal substantial differences in clinical practice patterns and practice environment between male and female physicians that may underlie the career advancement gap in a highly competitive surgical subspecialty. Given our findings, leadership may combat gender disparity by ensuring equal sponsorship for female and male physicians to join larger practices and take on expertise-building opportunities; revisiting referral patterns; and revising criteria for academic promotion to recognize generalists and specialists equally. Our study also serves as an important reminder to leadership that the career challenges faced by female physicians may not be personal shortcomings but instead represent organizational failures. Only by studying and addressing these institutional flaws explicitly can we counter all of the structures that sustain gender disparity.
References

10. School OfFAaHM. Associate Professor, Clinical Expertise and Innovation. Harvard Medical School 2016.

Table 1. Demographic distribution of New York board-certified pediatric surgeons

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Female</th>
<th>Male</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. surgeons n (%)</td>
<td>51</td>
<td>10 (19.6%)</td>
<td>41 (80.4%)</td>
<td>n/a</td>
</tr>
<tr>
<td>Length of career mean ± SD</td>
<td>16.7 ± 1.6</td>
<td>12.5 ± 2.4</td>
<td>17.7 ± 1.8</td>
<td>0.19</td>
</tr>
<tr>
<td>Annual case volume mean ± SD</td>
<td>206 ± 7.2</td>
<td>159 ± 13.6</td>
<td>214 ± 7.6</td>
<td><0.01*</td>
</tr>
</tbody>
</table>

*Student’s t-test, p<0.05
Abbreviation: SD – standard deviation, n/a – not available
Figure 1. Practice environment measures were calculated yearly and based on surgeon network, which was defined for each pediatric surgeon as the group of all pediatric surgeon colleagues who operated at the same hospitals. Depicted are practice environment measures for two example surgeons A and B. Abbreviation: peds – pediatric surgery.
Figure 2. Practice pattern differences by surgeon gender as measured by percent of annual caseload comprised of expertise-building, pediatric surgery specialist cases and, within the subset of these specialist cases, case mix focus as quantified by HHI for A) all surgeons and B) surgeons stratified by career length.

2A

<table>
<thead>
<tr>
<th>Specialist Caseload</th>
<th>Focus Within Specialist Caseload</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Peds</td>
<td>HHI</td>
</tr>
<tr>
<td>Male surgeons</td>
<td>HHI</td>
</tr>
<tr>
<td>Female surgeons</td>
<td>HHI</td>
</tr>
</tbody>
</table>

Student’s t-test, p<0.05
Figure 3. Practice environment differences by surgeon gender as measured by total network case volume, network pediatric surgery-specific case volume, and number of surgeon colleagues for A) all surgeons B) surgeons stratified by career length

3A

3B

*Student’s t-test, p<0.05
Figure 4. Proportion of total network case volume performed by male versus female surgeons after stratification by career length. To elaborate, in networks where early career female surgeons operated, they performed 48.8% of all cases, while their network colleagues—either male or female—performed the remaining cases. In networks where early career male surgeons operated, they performed 36.2% of the network’s case volume.

Student’s t-test, p<0.05